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Prioritizing molecular alterations that act as drivers of cancer remains a crucial bottleneck in therapeutic development. Here
we introduce HIT'nDRIVE, a computational method that integrates genomic and transcriptomic data to identify a set of
patient-specific, sequence-altered genes, with sufficient collective influence over dysregulated transcripts. HIT'nDRIVE
aims to solve the “random walk facility location” (RWFL) problem in a gene (or protein) interaction network, which differs
from the standard facility location problem by its use of an alternative distance measure: “multihitting time,” the expected
length of the shortest random walk from any one of the set of sequence-altered genes to an expression-altered target gene.
When applied to 2200 tumors from four major cancer types, HIT'nDRIVE revealed many potentially clinically actionable
driver genes. We also demonstrated that it is possible to perform accurate phenotype prediction for tumor samples by only
using HIT'nDRIVE-seeded driver gene modules from gene interaction networks. In addition, we identified a number of
breast cancer subtype-specific driver modules that are associated with patients’ survival outcome. Furthermore,
HIT’nDRIVE, when applied to a large panel of pan-cancer cell lines, accurately predicted drug efficacy using the driver genes
and their seeded gene modules. Overall, HIT'nDRIVE may help clinicians contextualize massive multiomics data in thera-

peutic decision making, enabling widespread implementation of precision oncology.

[Supplemental material is available for this article.]

Genomic and transcriptomic alterations are the major contribu-
tors of tumorigenesis and progression of cancer. Over the past dec-
ade, high-throughput sequencing efforts have provided an
unprecedented opportunity to identify such genomic alterations
that can lead to changes in gene regulation, protein structure,
and function (Stratton et al. 2009). Genomic and transcriptomic
data provide unique and complementary information about a par-
ticular tumor, but the translation of “big” molecular data into in-
sightful and impactful patient outcomes is extraordinarily
challenging (Vogelstein et al. 2013). During tumor progression,
cancer cells accumulate a multitude of genomic alterations; how-
ever, most are inconsequential “passenger” alterations that are ef-
fectively neutral. Nevertheless, a small fraction provide mission-
critical “hallmark” functions and are known as “driver” alterations
that modify transcriptional programs and therefore drive and sus-
tain tumor progression (Greenman et al. 2007; Stratton et al. 2009;
Vogelstein et al. 2013). Improving our knowledge on driver alter-
ations, possibly through an integrative analysis of various omics
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data, is critical to better understand cancer mechanisms and select
appropriate therapies for specific cancer patients.

There are several computational methods for identifying
cancer drivers. However, many of them rely on the recurrence
frequency of single-nucleotide variants (SNVs) with respect to
the background mutation rate (Greenman et al. 2006; Youn and
Simon 2011; Lawrence et al. 2013; Korthauer and Kendziorski
2015). As a result, these methods are restricted to identifying
only highly recurrent mutations as driver events. Recent studies
have implicated novel drivers that affect only a small subset of can-
cer patients. Notable examples include SPOP mutations and CHD1
deletions that are present in <20% of prostate cancer patients
(Barbieri et al. 2012; Grasso et al. 2012). Whereas recurrent drivers
are hypothesized to initiate carcinogenesis and are therefore pre-
sent in the majority of tumor cells, rare drivers can arise during tu-
mor evolution and be isolated to a smaller fraction of cells due to
clonal expansion (Ding et al. 2012; Greaves and Maley 2012).
These rare driver genes may be functionally important but are like-
ly to be missed by a frequency-based approach.

© 2017 Shrestha et al. This article is distributed exclusively by Cold Spring
Harbor Laboratory Press for the first six months after the full-issue publication
date (see http://genome.cshlp.org/site/misc/terms.xhtml). After six months, it
is available under a Creative Commons License (Attribution-NonCommercial
4.0 International), as described at http://creativecommons.org/licenses/by-
nc/4.0/.

27:1-16 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/17; www.genome.org

Genome Research 1
www.genome.org


mailto:cenk@sfu.ca
mailto:cenk@sfu.ca
mailto:cenksahi@indiana.edu
mailto:cenksahi@indiana.edu
http://www.genome.org/cgi/doi/10.1101/gr.221218.117
http://www.genome.org/cgi/doi/10.1101/gr.221218.117
http://genome.cshlp.org/site/misc/terms.xhtml
http://genome.cshlp.org/site/misc/terms.xhtml
http://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://genome.cshlp.org/site/misc/terms.xhtml
http://genome.cshlp.org/
http://www.cshlpress.com

Downloaded from genome.cshlp.org on October 30, 2017 - Published by Cold Spring Harbor Laboratory Press

Shrestha et al.

Perhaps the first computational method to consider large-
scale genomic alterations as driver events is CONEXIC (Akavia
et al. 2010), which correlates genes with highly recurrent copy
number alterations (CNAs) with variation in gene-expression pro-
files within a Bayesian network. Similarly, with no prior knowledge
of pathways or protein interactions, MOCA correlates gene muta-
tion information with expression profile changes in other genes
(Masica and Karchin 2011). Suo et al. (2015) also prioritize highly
mutated genes that interact with a large number of differentially ex-
pressed genes in a gene network. Another approach, (Multi)
Dendrix (Leiserson et al. 2013) aims to simultaneously identify
multiple driver pathways, assuming mutual exclusivity of mutated
genes among patients, using either a Markov chain Monte Carlo al-
gorithm or integer linear programming (ILP). XSEQ (Ding et al.
2015) uses probabilistic model to compute influence of mutated
genes over expression profile changes in other genes by consider-
ing direct gene interactions. Finally, MEMo (Ciriello et al. 2012)
identifies sets of proximally located genes from interaction net-
works, which are also recurrently altered and exhibit patterns of
mutual exclusivity across the patient population.

Simultaneously with the above methods, several approaches
were developed outside of cancer research to correlate the presence
of casual genes with gene expression. For example, Tu et al. (2006)
used a random walk approach on a molecular interaction network
to associate causal genes and pathways. Similarly, ResponseNet
(Yeger-Lotem et al. 2009; Lan et al. 2011) relates genetic perturba-
tions to transcriptomic response in the yeast model, thereby iden-
tifying a subnetwork of regulators mediating the interactions.
ResponseNet formulates a minimum-cost flow optimization prob-
lem that aims to maximize the flow between the source and target
while minimizing the cost of the connecting paths. Similarly, ex-
pression quantitative trait loci (eQTL) electrical diagrams (eQEDs)
(Suthram et al. 2008) integrate eQTL analysis with molecular inter-
action network using the circuit network model. To the best of our
knowledge, NetQTL (Kim et al. 2011) is the first method to link
CNAs to expression profile changes within an interaction network
and connect specific “causal” aberrant genes with potential targets
in the interaction network. EPoC (Jornsten et al. 2011) links CNAs
to expression changes in an interaction network assuming steady-
state perturbation effects. Similarly, PARADIGM (Vaske et al. 2010)
computes gene-specific inferences using factor graphs to integrate
different genomic changes and infer pathways altered in a patient.
MAXDRIVER (Chen et al. 2013) uses maximum information
flow to identify potential causal genes (CNAs) in an interaction
network.

More recently, HotNet (Vandin et al. 2011) was the first tool
to use a network diffusion approach to compute a pairwise influ-
ence measure between the genes in the (protein interaction) net-
work and identify subnetworks enriched for mutations in cancer.
TieDIE (Paull et al. 2013) also uses the diffusion model to identify
a collection of pathways and subnetworks that associate a fixed set
of driver genes to expression profile changes in other genes.
Briefly, the network diffusion approach aims to measure the influ-
ence of one node over another by calculating the stationary pro-
portion of a “flow” originating from the starting node that ends
up in the destination node. Since this is based on the stationary
distribution, the inferences that can be made by the diffusion
model are time independent. In that sense, the diffusion approach
is very similar to Rooted PageRank, the stationary probability of a
random walk originating at a source node, being at a given destina-
tion node. Shi et al. (2016) also prioritizes genes based on diffusion
score matrix (derived from a tripartite graph of mutations, outliers,

and patients) rank aggregation. A final method, DriverNet
(Bashashati et al. 2012), also aims to correlate genomic alterations
with target genes’ expression profile changes, but only among di-
rect interaction partners; the novel feature of DriverNet is that it
aims to find the minimum number of potential drivers that can
“cover” targets.

Among the above strategies, the ones based on mutual exclu-
sivity still focus on frequent events. The others, based on “infor-
mation flow” in gene/protein interaction networks, do not aim
to discover cancer drivers but rather are designed to identify
dysregulated subnetworks or modules. In addition, the notion of
influence they employ is based on stationary distribution of “in-
formation” originating at a particular gene/protein. As a result,
none of the available methods aim to identify rare, patient-specific
driver events based on a time-dependent notion of influence.
Finally, none of the available techniques aim to simultaneously
consider different types of genomic alterations as potential drivers.

To address the above challenges, we have developed a novel
combinatorial method, HIT'nDRIVE (a preliminary version was
presented at the Research in Computational Molecular Biology
[RECOMB] conference) (Shrestha et al. 2014). HIT'nDRIVE jointly
analyzes genome and transcriptome data for identifying and prior-
itizing sequence-altered genes as potential cancer drivers. Because
HIT'nDRIVE integrates patient-specific genomic alterations with
the associated transcriptome profile, identifying driver genes
that dysregulate large portion of each patient’s transcriptome.
Drawing upon the domain knowledge of molecular interactions
presented as a gene/protein interaction network, HIT'nDRIVE
uses network topology to derive the influence of one (sequence-al-
tered) gene over another (expression-outlier) gene and aims to
identify the most parsimonious set of patient-specific driver genes
that have sufficient “influence” over a large proportion of the ex-
pression outliers.

Results

The primary goal of HIT'nDRIVE is to link alterations at the geno-
mic level to changes at transcriptome level through a gene/protein
interaction network. Intuitively, it aims to find the smallest set of
altered genes that can explain most of the observed transcriptional
changes in the cohort (for details, see Methods). In other words,
HIT'nDRIVE aims to identify the minimum number of potential
driver genes that can cause a user-defined proportion of the down-
stream expression effects observed. HIT'nDRIVE formulates this as
a “random walk facility location” (RWFL) problem, a combinatori-
al optimization problem that we introduce in this article. RWFL
generalizes the classical “facility location” (FL) problem by chang-
ing the notion of distance it uses. Given a network, FL problem de-
fines the distance between a potential driver gene and an outlier
gene as the length of the shortest path between them. The RWFL
problem, in contrast, uses “hitting time” (or “first passage time”)
(Condamin et al. 2007; Liben-Nowell and Kleinberg 2007), the ex-
pected length of a random walk between the two nodes, as their
distance. Under the use of hitting time, the FL problem completely
changes nature: In the classical FL formulation, the goal is to asso-
ciate each outlier gene in the network with exactly one (the clos-
est) driver gene. In the RWFL formulation, each outlier gene is
associated with multiple driver genes (whose collective distance
to the outlier will no longer be the shortest pairwise distance),
forming a many-to-many relation.

As per the standard FL problem, RWFL is NP hard, even to
approximate. As a result, we reduce it to the weighted multiset
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cover (WMSC) problem, for which we give an ILP formulation
(for details, see Methods). Intuitively, in this new formulation,
HIT'nDRIVE associates the genomic alterations with transcrip-
tomic changes in the form of a bipartite graph with nodes on one
partition representing the set of aberrant genes and nodes on the
other partition representing the set of expression-altered genes,
and each edge has an influence value equal to the inverse pairwise
hitting time between the two nodes it connects (Fig. 1A). The
WMSC problem on this representation of data asks to find
the smallest subset of aberrant genes (as potential drivers) whose
total influence (sum of pairwise influence values) over a user-de-
fined fraction of expression-altered genes (for each patient) is suffi-
ciently high.

In order to quantitatively assess the genes identified by
HIT'nDRIVE, we extended our previously developed algorithm,
OptDis (Dao et al. 2011), for de novo identification of modules
of small size inside the interaction network that are seeded by at
least one predicted driver. The modules are chosen so that their
discriminative power (for phenotype classification) is the greatest
among connected subnetworks of similar size that contain the in-
dividual predicted driver genes (Fig. 1B,C). We report the classifica-
tion accuracy based on the identified driver-seeded modules as
means of quantitative validation of our results (in the absence of
ground truth). We also look at the genes that build the chosen
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We have implemented HIT'nDRIVE in C++ and solved the
ILP using IBM CPLEX version 12.5.1. HIT'nDRIVE uses three differ-
ent user-defined input parameters (for details, see Methods ): (1) o
determines the fraction of outliers to be covered overall (across all
patients); (2) p determines the fraction of outliers to be covered in
each patient; and (3) y controls the fractional lower bound on the
sum of the incoming edge weights (influence values). HIT'nDRIVE
is robust with respect to the changes in o and B but is somewhat
sensitive to the value of y, as expected. However, as y grows,
the driver genes identified by HIT'nDRIVE do not change but
simply grow in number by the addition of new driver genes, which
indicates robustness of our method with respect to y, too
(Supplemental Fig. S1).

We used STRING v10 (Szklarczyk et al. 2015) functional pro-
tein-interaction network for our analysis. HIT'nDRIVE is not sensi-
tive to topological biases in the network (Supplemental Fig. S3).
Although, the number of driver genes predicted by HIT'nDRIVE
differed slightly when different networks were used (and was pro-
portional to the number of nodes in the network), the proportion
of overlap between the driver genes predicted on different net-
works was quite robust (Supplemental Fig. S4; for details, see
Supplemental Results).
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Figure 1. Overview of HIT'nDRIVE algorithmic framework. (A) HIT'nDRIVE integrates sequence-wise changes in genome with expression changes in tran-
scriptome obtained from patients’ tumor samples. The influence values derived from the protein interaction network indicate how likely a driver gene in-
fluences its downstream target genes in the network. (B) The predicted driver genes are used as seeds to discover modules of genes that discriminate
between the sample phenotypes using OptDis. (C) Based on this, the driver modules are ranked and thus prioritized.
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HIT’nDRIVE predicts frequent as well as infrequent driver genes
in multiomics cancer data sets

We applied HIT'nDRIVE to prioritize driver genes in four major
cancer types: glioblastoma multiforme (GBM) (The Cancer
Genome Atlas Research Network 2008), ovarian serous cystadeno-
carcinoma (OV) (The Cancer Genome Atlas Research Network
2011), breast adenocarcinoma (BRCA) (The Cancer Genome
Atlas Research Network 2012), and prostate adenocarcinoma
(PRAD) (The Cancer Genome Atlas Research Network 2015) ob-
tained from The Cancer Genome Atlas (TCGA) Data Portal. Only
samples with matched genomic alterations (SNVs and/or CNAs
and/or gene fusions) and transcriptomic changes (outlier genes
from gene-expression profile) were used in our study. We used
the fusion prediction calls as reported in TCGA Fusion Gene
Data Portal (Yoshihara et al. 2014).

In GBM, we obtained 48 unique candidate driver genes al-
tered at varying frequencies across 258 GBM patients (Supplemen-
tal Figs. S8, S9; Supplemental Tables S1, S5). EGFR (36%), TP53
(29.5%), PTEN (28%), and CHEK2 (26%) were the most frequently
altered driver genes in GBM followed by CDKN2A (16%), RB1
(13%), and SEC61G (12%). Previous efforts in GBM genome
characterization identified amplification in EGFR and PDGFRA;
mutations in CHEK2, TP53, PTEN, RB1, and NF1; and deletions
in CDKN2A to be associated with GBM (The Cancer Genome
Atlas Research Network 2008; Parsons et al. 2008; Verhaak et al.
2010). HIT'nDRIVE prioritized all of the above alterations. Alter-
ations in EGFR is characteristic of a classical subtype; NF1, mesen-
chymal subtype; and PDGFRA, IDH1 with proneural subtype of
GBM (Verhaak et al. 2010). Fifteen out of 48 driver genes predict-
ed by HIT'nDRIVE (P-value = 8 x 10™*) were present in the Cancer
Gene Census (CGC) database (Futreal et al. 2004), which contains
genes for which mutations have been causally implicated in can-
cer (Fig. 2A). GSTT1 (deleted in 21 patients), a key player in drug
metabolism, was found neither in the CGC nor in the Catalog of
Somatic Mutations in Cancer (COSMIC) (Forbes et al. 2017) data-
bases. Twelve GBM driver genes were found to be actionable tar-
gets. Actionable genes were extracted from TARGET database
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(Van Allen et al. 2014), which contains genes directly linked to
a clinical action. In addition to the above list, six other driver
genes were druggable (Fig. 2B). We extracted the list of druggable
genes from the Drug-Gene Interaction Database (DGIdb) (Griffith
et al. 2013). Interestingly, ~85% of the patients in GBM cohort
harbor at least one actionable driver gene, and an additional 5%
of patients have druggable targets (Fig. 2C). HIT'nDRIVE also
identified 12 infrequent driver genes, which we define as genes al-
tered in, at most, 2% of the cases. Among the infrequent genes,
SACS is known to be associated with neurological functions,
NLRP3 is involved in apoptosis, and TIAMZ2 is involved in inva-
sion and metastasis.

The 526 OV patients harbored a total of 85 unique driver al-
terations (Supplemental Figs. S10, S11; Supplemental Tables S2,
$6). TP53 mutations were prevalent in more than half (58%) of
the patients in the cohort. Consistent with the previous findings,
we found OV patients to be driven by genomic copy-number
changes rather than recurrent point mutations (Ciriello et al.
2013; Patch et al. 2015). Recurrent somatic CNAs were observed
in GSTT1 (32.3%), WWOX (28.1%), FAM49B (15.0%), UGT2B17
(14.6%), CCNE1 (13.1%), SLC39A4 (13.1%), and MYC (12.5%).
Mutations in TP53 and BRCA1/2, and loss of RBI, NF1, and
CCNE1 were previously associated with OV (The Cancer Genome
Atlas Research Network 2011; Patch et al. 2015). HIT'nDRIVE re-
vealed 18 CGC driver genes (P-value =2 x 1075) (Fig. 2A), among
which 13 genes were actionable targets and other 12 genes were
at least druggable (Fig. 2B). More than 75% of OV patients har-
bored at least one actionable target, and an additional 6% of pa-
tients have a druggable target (Fig. 2C). GSTT1 (altered in 170
patients), in OV, is involved in estrogen and drug metabolism. It
was not found in the CGC or COSMIC databases. We identified
13 infrequent genes, among which MAPK1 is known to play an im-
portant role in oncogenic pathways in cancer.

HIT'nDRIVE identified 40 driver genes across 333 PRAD pa-
tients (Supplemental Figs. S12, S13; Supplemental Tables S3, S7).
Copy number loss of SPECCIL (23.7%), STEAPIB (13%), and
WWOX (10%) and amplification of NSD1 (16.2%) and SIRPB1
(16.2%) were the most recurrent events in PRAD patients. We
also found recurrent somatic mutation
in MUC4 (11%), SPOP (10.5%), and
TP53 (10%). The most common alter-
ations in PRAD genomes are fusion of an-
drogen-regulated promoters with ERG
and other members of ETS family of tran-
scription factors: mainly TMPRSS2-ERG
fusions (Tomlins et al. 2005). Since we re-
lied on the gene-fusion predictions ob-
tained from TCGA Fusion Gene Data
Portal (Yoshihara et al. 2014), which an-
alyzed only 178 (out of 333) patients,
we observed ERG gene fusion in only
5.7% cases. The more recent TCGA publi-
cation (The Cancer Genome Atlas
Research Network 2015) reported ERG

GBM OV PRAD BRCA

Figure2. Summary of driver genes prioritized by HIT'nDRIVE. (A) Distribution of predicted driver genes
in cancer genes databases. The CGC database contains genes for which mutations have been causally
implicated in cancer. Genes curated in the CGC database represent likely drivers of cancer. COSMIC is
a comprehensive database of somatic mutations that have been reported in different cancers.
However, every gene present in COSMIC database may not represent drivers of cancer. (B)
Distribution of driver genes in druggable genes databases. Actionable genes in cancer therapy were de-
rived from the TARGET database. List of druggable genes were extracted from DGI database. (4,B) The
numbers in the panel represent the number of genes in respective categories. (C) Distribution of patient
druggability. Patient druggability was accessed using information in the TARGET and DGl databases. The
numbers in the panel represent the number of patients in respective categories.

fusions in almost half of the patients in
the cohort. Moreover, the tools used for
gene-fusion detection, in the two studies,
were different; as a result, we observed a
much smaller number of ERG fusions
than reported previously. SPOP, TP53,
FOXA1, and PTEN are the most frequent-
ly mutated genes that have been
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previously associated with prostate cancer (Barbieri et al. 2012).
PRAD patients harbored 12 driver genes present in the CGC da-
tabase (P-value=9 x 107 (Fig. 2A), out of which eight driver
genes were actionable (Fig. 2B). Approximately a quarter of
PRAD patients could benefit with actionable targeted therapy
(Fig. 2C). Moreover, an additional 14% of patients harbored
druggable genes, which warrants deeper investigation of drug re-
purposing opportunities. NBPF1 (mutated in 17 patients), a
known tumor suppressor gene known to have neural function
and also to be involved in cell-cycle arrest, was not found in
the CGC or COSMIC databases. We identified 11 infrequent
genes in PRAD, among which IDHI-mutant patients were recent-
ly identified as a distinct molecular-subtype of PRAD (The Cancer
Genome Atlas Research Network 2015), NKX3-1 is required for
normal prostate tissue development, and CDKNI1B was previous-
ly associated with PRAD.

In BRCA, HIT'nDRIVE identified 107 driver genes across
1090 patients (Supplemental Figs. S14, S15; Supplemental
Tables S4, S8). Somatic mutation of PIK3CA (30.5%) and TP53
(30.2%) were the most recurrent events in BRCA. This was fol-
lowed by somatic mutation of CHDI (11.2%), GATA3 (10.5%),
MUC16 (6.9%), and MAP3K1 (6.9%) and CNA amplification of
NSD1 (8.7%) and MED1 (6.9%). BRCA patients harbored 16 genes
present in the CGC database (P-value=9.3 x 107%) (Fig. 2A)
among which 10 genes were actionable targets (Fig. 2B). More
than 60% of BRCA patients could benefit with the actionable tar-
geted therapy. Furthermore, additional 11% of BRCA patients
harbored at least one of the 19 potentially druggable genes (Fig.
2C). ACACA (altered in 36 patients mostly from HERZ2 subtype),
involved in fatty-acid metabolism, was not found in the CGC
or COSMIC databases. We identified 46 infrequent driver genes,
among which BRCA2 and GNAS have been previously linked to
BRCA.

Although the driver events per tumor sample greatly varied,
the median number of driver genes among the 2207 tumor sam-
ples in all four cancer types was three (Supplemental Fig. S16).
Twenty-three percent of 2207 tumor samples harbored just a single
driver gene. The remaining 77% of tumor samples harbored two or
more driver events, which may indicate either the existence of
multiple subclonal populations within the tumor or the presence
of collaboration among multiple sequence altered genes in an on-
cogenic pathway.

To evaluate the sensitivity of HIT'nDRIVE to infrequent
driver genes, we performed an in silico experiment using 1000
TCGA-BRCA tumors (referred here as the “original set”).
Different subsets of tumor samples with varying sample size
were chosen such that the subsample tumor population has
similar alteration frequency distribution to that of the original
1000 tumor samples (Supplemental Fig. S21A; see Supplemental
Methods). HIT'nDRIVE analysis was performed on the chosen
subsets of tumor samples independently to identify driver genes
and then compared the frequency of driver genes detected.
HIT'nDRIVE detected driver genes that were prevalent in just a
single patient tumor with a sample size of 15, 25, or 50 tumors
representing 6.5%, 4%, and 2% of the tumor population, respec-
tively (Supplemental Fig. S21B,C). Even when the sample size was
increased to 700-900 samples, HIT'nDRIVE was able to detect
driver genes prevalent in just four patients, representing <0.5%
of the tumor population. This demonstrates that HIT'nDRIVE
prioritizes driver genes independent of the selected sample size
and that HIT'nDRIVE is very sensitive in detecting infrequent
driver genes.

Network properties of cancer driver genes

Centrality of driver genes in the interactome

Cancer driver genes are known to occupy critical positions in the
interactome. To check whether HIT'nDRIVE-predicted driver
genes also occupy similar positions in the interaction network,
we used the node degree as a “local measure” and used node be-
tweenness (the number of shortest paths between node pairs
that pass through the node) as a “global measure of centrality.”
The driver genes predicted by HIT'nDRIVE include a number of
well-known high-degree hubs—TP53, EGFR, RB1, MYC, PIK3CA,
ERG, and CHD1—that are “central” in the interactome with high
degree and high betweenness (Fig. 3A). Although there was very
weak correlation between the number of edges (i.e., degree central-
ity) of a node and the number of samples/patients in which it
is identified as a driver, remarkably each hub gene was typically
altered in a large fraction of patients. Because of their centrality
perturbations, hub genes are likely to dysregulate several other
genes and the associated signaling pathways. Interestingly,
HIT'nDRIVE also identified low-degree genes (IDH1, MTAP, NF1,
NRG1, NSD1) that reside in the periphery of the interaction net-
work. In particular, in prostate cancer, there seems to be an inverse
correlation between the degree and how often the gene is picked as
a driver. Most of these low-degree genes are altered in a small frac-
tion of patients, indicating that HIT'nDRIVE, unlike many other
methods, does not primarily return hubs that are altered in a large
number of patients but is capable of identifying rare driver genes
without trivial topological biases.

As discussed in previous section, we used hitting time to
compute the influence of a node in an interaction network. The
influence from a source to a target node depends on the topologi-
cal position of the target node in the network. We observed that
the nodes occupying central positions in the network, i.e., with
high betweenness centrality, tend to receive more influence than
the nodes in the periphery of the network (Pearson correlation
coefficient [R]=0.61) (Fig. 3B). This is because the distance be-
tween any source node and a central target node (i.e., a hub) is
usually very short, implying a low hitting time and, thus, high
influence of the source node on the target. We also observed
negative correlation between a node’s total incoming influence
and the median outgoing influence (R=-0.54) (Fig. 3C).
Although the central hub nodes (e.g., UBC, TP53) are good receiv-
ers of influence, when individual influences are considered, they
do not contribute a lot.

Influential nodes prioritized as cancer driver genes

Next, we examined the influential driver genes that are responsible
for driving cancer. For this, we computed the total outgoing influ-
ence from each altered gene (which has been chosen as a driver),
defined as the weighted sum of all influence values from the source
to all outlier genes it is connected to (targets), weighted by the cor-
responding outlier weights. First, we investigated driver genes with
high influence values within each cancer type. We observed that
on average the total influence of driver genes was higher than
that of other altered genes in all cancer types (Fig. 3D). EGFR,
PTEN, CHEK2, TP53, and CDKN2A were the most influential driver
genes in GBM, which together exerted 38.5% of the total influence
on the GBM patient cohort. In OV, TP53, GSTT1, and MYC togeth-
er exerted 20% of the total influence. Similarly, in PRAD cohort,
SPOP, MUC4, and TP53 were the most influential genes, exerting
23.7% of the total influence. PIK3CA, TP53, and CHD1 were the
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Figure 3. Network properties of driver genes. (A) The centrality of the predicted drivers in STRING v10 network. The size of the circles is proportional to
the alteration frequency of the driver gene. The color scale represents the total influence of the driver gene on the expression outliers. (B) Correlation be-
tween influence and centrality. Each dot represents a target node receiving a certain amount of influence from all source nodes in the network. A lowess
regression line is represented in blue. (C) Correlation between incoming and outgoing influence of a node. Each dot represents a node in the network, and
the color scale represents its betweenness centrality. A linear regression line is represented in blue. (D) Boxplot of the total influence of driver genes pre-
dicted by HIT’nDRIVE on the expression outliers compared with that of other altered genes (genes not predicted as drivers). (E) Correlation between gene
influence and its alteration frequency in the respective patient cohort. (F) Relative influence of driver genes in each patient in GBM cohort with mutation in
ABCBI. (G) Relative influence of driver genes in each patient in PRAD cohort with mutation in BRAF. All gene influence values have been multiplied by 10°

before log transformation.

most influential genes, exerting 23% of the total influence on the
BRCA patient cohort. Moreover, the gene influence was positively
correlated to its alteration frequency (Fig. 3E).

We investigated influence of the predicted driver genes
within individual patients. Many recurrently altered driver genes
had a higher influence compared with other driver genes: e.g.,
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EGFRin GBM; TP53in OV; ERG in PRAD; TP53, PIK3CA, and PTEN
in BRCA.

Interestingly, among the highly influential genes, there were
also less-recurrent but functionally important and actionable
driver genes. For example, somatic mutations in ATP binding cas-
sette subfamily B member 1 (ABCB1I) were influential driver genes
in seven GBM patients (Fig. 3F). ABCB1 is a membrane-bound pro-
tein present in the endothelial cells of the blood-brain barrier. It
harnesses the energy of ATP hydrolysis to drive the unidirectional
transport of exogenous and xenobiotic substances (drug com-
pounds) from the cytoplasm to the extracellular space. It is known
to transport many anticancer compounds, including temozolo-
mide (TMZ), which is used as a first-line treatment for GBM pa-
tients. Mutations and overexpression of ABCBI in GBM have
been associated with resistance to TMZ (Lin et al. 2014). It was in-
triguing that some of these GBM patients had undergone treat-
ment prior to tissue collection and were initially mislabeled as
untreated patients. Treatment-induced selection pressure in the
drug transporter might be a plausible reason for high influence ex-
erted by ABCBI.

Similarly, HIT'nDRIVE predicted BRAF as driver genes in eight
PRAD patients (six somatic mutations and two gene fusions) (Fig.
3G). These patients harbored BRAF as a highly influential driver
gene. None of these patients harbored BRAFV°’F mutation that
is prevalent in cutaneous melanomas, thyroid cancer, and many
other cancer types. However, BRAF***’R can be targeted using
MEK inhibitors (Dahlman et al. 2012; Bowyer et al. 2014). BRAF
plays important roles in growth factor signaling pathways, which
affect cell division and differentiation. These results serve as proof
of concept that HIT'nDRIVE can prioritize functionally relevant
cancer driver genes.

Phenotype classification using dysregulated modules seeded
with the predicted driver genes

Evaluating computational methods for predicting cancer driver
genes is challenging in the absence of the ground truth (i.e., fol-
low-up biological experiments). Therefore, we mainly focused on
testing whether our predictions provide insight into the cancer
phenotype and improve classification accuracy on an independent
cancer data set. To test association of the driver genes identified by
HIT'nDRIVE with the cancer phenotype, as explained in the earlier
section, we used the driver gene-seeded gene modules, a set of
functionally related genes (e.g., in a signaling pathway), from
the protein interaction network, as features for classifying the can-
cer phenotype. By using OptDis (here referred to as HIT'nDRIVE-
OptDis), we identified small connected subnetworks that include
(i.e., are seeded by) predicted driver genes in a greedy fashion.
More specifically, we prioritized subnetworks (of at most seven
genes) iteratively so that in each iteration, we identified the sub-
networks that maximally discriminate sample phenotypes in a
gene-expression matrix, among the subnetworks that share very
few genes (at most 20%) with the subnetworks already prioritized.
Furthermore, we have also developed an unsupervised meth-
od for module identification (here referred to as HIT'nDRIVE-un-
supervised), i.e., one that does not depend on any phenotype
information. This unsupervised method seeds each module with
one HIT'nDRIVE-identified driver gene and includes outlier genes
that it has influence over and co-occurs with significantly across
patients (Supplemental Fig. S22). For this, we perform a hypergeo-
metric test to identify significant driver-outlier interaction (i.e.,
mutual presence) pairs across the patient cohort (P-value <107%).

Here we compare HIT'nDRIVE-OptDis and HIT'nDRIVE-un-
supervised to another network-based driver genes prioritization
method: DriverNet (Bashashati et al. 2012). DriverNet itself does
not aim to identify modules that we can use to compare against
HIT'nDRIVE-OptDis or HIT'nDRIVE-unsupervised modules.
Rather, DriverNet identifies driver genes in an iterative fashion,
where in each iteration, DriverNet picks the driver genes that “cov-
er” the maximum number of uncovered outliers. We use this
driver and the outlier genes it covers as the “next” DriverNet
module.

We used the set of prioritized subnetworks, i.e., the driver
modules, first, to perform binary sample classification: tumor ver-
sus normal. For this, we used gene-expression data for each of the
four cancer types (GBM, OV, PRAD, and BRCA) from TCGA as dis-
covery data sets to calculate the mean gene-expression value for
each subnetwork/driver module for each patient (Supplemental
Table S10-S13). On these subnetworks, we used the Kk-nearest
neighbor (KNN) classifier (with k=1) to perform classification on
both the expression values from TCGA and additional validation
gene-expression data sets (Supplemental Fig. S4A-C; Supplemen-
tal Table S9). The additional validation data sets were used in order
to assess the capability of the modules identified on TCGA cohort
in classifying other cohorts.

For every data set analyzed, the maximum classification accu-
racy achieved by HIT'nDRIVE modules (either HIT'nDRIVE-unsu-
pervised or HIT'nDRIVE-OptDis), for any number of modules
considered, was higher than that achieved by the DriverNet mod-
ules (Fig. 4A). Moreover, in most data sets, HIT'nDRIVE methods
achieve maximum or near-maximum accuracy using a smaller
fraction of modules (Supplemental Table S14). All three methods
achieved perfect or near-perfect classification accuracy in the
TCGA-GBM, TCGA-OV, and TCGA-BRCA data sets except for
the TCGA-PRAD data set (where the maximum classification accu-
racy achieved was 90% by HIT'nDRIVE-unsupervised, 95% by
HIT'nDRIVE-OptDis, and 86% by DriverNet). Overall, the driver
modules (identified in one cohort) were able to distinguish the tu-
mor phenotype from normal very well in validation data sets (on
other cohorts), supporting the relevance of the identified driver
genes to the cancer phenotype.

Finally, we compared the classification accuracy of randomly
formed modules in the TCGA-PRAD data set (which is the single
most challenging data set), compared against modules identified
using HIT'nDRIVE-OptDis. To generate the random modules, 60
random sets of genes, of random size (up to seven genes), were se-
lected 20,000 times. Phenotype classification was then performed
using a KNN (k= 1) classifier. HIT'nDRIVE-OptDis modules dem-
onstrated superior classification accuracy compared with that of
randomly selected modules (Supplemental Fig. S25).

CGC cancer type—specific gene enrichment

Next, we looked into the list of prioritized driver genes by both
HIT'nDRIVE and DriverNet and their overlap with the known
CGC genes (Fig. 4B). DriverNet selects a much larger number of
driver genes, compared with HIT'nDRIVE, to cover most outlier
genes (across all four cancer types) due to its model considering
only direct interactions in the network. In particular, in OV and
BRCA, the number of HIT'nDRIVE-identified driver genes are an
order of magnitude smaller than that of DriverNet. Although in
GBM and PRAD data sets, the number of driver genes identified
by DriverNet is somewhat lower and comparable to that identified
by HIT'nDRIVE (primarily because most outliers were filtered out
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HIT'nDRIVE with DriverNet.

due to sharing no interaction edge with candidate altered genes),
HIT'nDRIVE-identified driver genes cover a significantly larger
number of outliers. More importantly, even though HIT'nDRIVE
identifies a smaller number of driver genes, a larger fraction of
these driver genes can be found in the CGC database in compari-
son to the DriverNet-identified driver genes. In fact, even a larger
fraction of CGC genes specific to the relevant cancer type can be
found among HIT'nDRIVE-identified driver genes. Specifically,
HIT'nDRIVE predicted four glioblastoma-specific CGC genes
(IDH1, PDGFRA, PIK3CA, and PIK3R1) in the TCGA-GBM data
set. Among them, IDHI1, PDGFRA, and PIK3CA were not identified
by DriverNet. Similarly, four ovarian cancer—specific CGC genes
(BRCA1, BRCA2, CCNE1, and MAPKI) were predicted in the
TCGA-OV data set. CCNE1 was not identified by DriverNet. Five
prostate cancer—specific CGC genes (BRAF, ERG, FOXA1, PTEN,
and SPOP) were predicted in the TCGA-PRAD data set. BRAF and
SPOP were not identified by DriverNet. And seven breast cancer-
specific CGC genes (BRCA2, CCND1, CDH1, GATA3, MAP3K1,
PIK3CA, and TP53) were predicted in the TCGA-BRCA data set.
Among them, CDH1 and MAP3K1 were not identified by
DriverNet.

Breast cancer subtype classification using driver modules

Our next goal was to classify four major subtypes of breast cancer:
Basal, HER2, Luminal-A, and Luminal-B. For that purpose, we per-
formed binary classification for each subtype: e.g., Basal versus
non-Basal (including the normal samples). This was achieved
through the use of HIT'nDRIVE-identified driver genes from
TCGA-BRCA as seed genes, with which we identified subtype-
specific driver modules from TCGA-BRCA gene-expression data
(as described for tumor classification). We respectively obtained
37, 16, 43, and 39 subtype-specific driver modules for the Basal,
HER2, Luminal-A, and Luminal-B subtypes (Supplemental Figs.
$27-829; Supplemental Table S15). As described above, by using
these subtype-specific driver modules as features, we performed
independent classification of BRCA subtypes in the TCGA-BRCA,
METABRIC-Cambridge, and METABRIC-Vancouver data sets
(Curtis et al. 2012).

The majority of Basal-like tumors constitute triple-negative
breast cancers (TNBCs), which are highly aggressive tumors char-
acterized by lack of expression of estrogen receptor 1 (ESR1), pro-
gesterone receptor (PGR), and erb-b2 receptor tyrosine kinase 2
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Figure 5. BRCA subtype classification using driver modules. (A) Performance accuracy of classifying different subtypes for breast cancer using the activity

score of subtype-specific driver modules as features in three distinct data sets. (B) Box plot comparing subtype-specific driver-seeded modules and driver-
free modules with respect to three distinct measures: log-rank test P-value, hazard ratio (HR), and concordance index (c-index). (C) A BRCA subtype-specific
driver module (BASAL-02) seeded by NCOA3 that distinguished the Basal subtype from rest of the BRCA subtypes. (D) Activity score of the BASAL-02 mod-
ule across different BRCA subtypes. (E) Kaplan-Meier plot showing the significant association of the BASAL-02 module with patients’ clinical outcome in the

three data sets considered.

(ERBB2). Molecular mechanisms driving TNBC are the least under-
stood, and hence, no targeted therapies for TNBC yet exist
(Bianchini et al. 2016). Interestingly, HIT'nDRIVE-seeded driver
modules were able to classify Basal-like tumors with much higher
accuracy (98%) compared with other BRCA-subtypes: HER2 (94%),
Luminal-A (85%), and Luminal-B (83%) (Fig. 5A; Supplemental
Table S16). As expected, ESR1 and PGR were highly expressed
in Luminal-A/B but not in the Basal and HER2 subtypes.
Modules containing ESRI were consistently down-regulated in
the Basal subtype and up-regulated in the Luminal-A/B subtype,
whereas module LUMB-03 was up-regulated in the Luminal-B
subtype (Supplemental Fig. S31). The ESR1 network neighborhood
included 11 known transcriptional targets of ESRI (TFF1, PGR,
SLC9A3R1, GNAS, RARA, WWPI1, WNT5A, TCF7L2, FKBP4,
SPRY2, and RAD54B). These results were consistent with previous
findings (Dutta et al. 2012). ERBB2 was expressed only in nine (of
16) HER2 modules and was the most prominent hub in the large
interactome of HER2 modules. All modules containing ERBB2
were up-regulated in the HER2 subtype, and the module ex-
pression patterns were consistent in different BRCA data sets
(Supplemental Fig. S32). PGR was present in two modules
(BASAL-26 and HER2-12), both of which were down-regulated in
the Basal subtype but up-regulated in Luminal-A/B. These results
strongly suggest that HIT'nDRIVE can capture subtype-specific

driver genes and that the driver-seeded modules we identified
can indeed differentiate BRCA subtypes.

Subtype-specific breast cancer driver modules are associated
with survival outcome

To test for association of subtype-specific driver modules with pa-
tient survival outcome, we developed a risk score defined as a lin-
ear combination of the normalized gene-expression values of the
component genes in the module weighted by their estimated uni-
variate Cox proportional-hazard regression coefficients (see
Methods). Based on the risk-score values, patients were stratified
into low-risk (risk-score <33 percentile) and high-risk (risk-score
>66 percentile) groups. Both Cox regression coefficients of each
gene and risk-score cutoff values for each module were estimated
from the TCGA-BRCA cohort (training data set); later these values
were applied to the METABRIC cohorts (test data set). To assess
whether the risk-score assignment to high/low categories was val-
id, a log-rank test was performed for each module in both training
and test data sets.

We first compared driver-seeded modules against driver gene—
free modules that, according to OptDis, have the best discrimina-
tive score for the TCGA-BRCA data set. For each module, we calcu-
lated three distinct indices: log-rank test P-value, hazard ratio (HR),
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and concordance-index (c-index). We found driver-seeded mod-
ules to outperform driver-free modules on all three indices, dem-
onstrating that the driver-seeded modules were better correlated
with survival (Fig. 5B). Motivated by this, we identified the top
modules for each of the BRCA subtypes that do well based on all
three indices, and checked whether they can return meaningful
results with respect to survival. We found nine driver modules
significantly associated with patients’ survival outcome (P-value
<0.01, HR>1.5 and c-index>0.5) in the TCGA-BRCA cohort
(Supplemental Table S17). These nine modules were also signifi-
cantly associated with patient survival outcome (P-value <0.01)
in two additional cohorts (METABRIC cohorts) (Supplemental
Figs. $34-541). It is interesting to note that two of these modules
(BASAL-02 and HER2-01) were seeded by an oncogene-nuclear re-
ceptor coactivator 3 (NCOA3) driver gene. NCOA3 driver module
was the second-topmost module (Fig. 5C) to separate Basal from
other subtypes and was the top-most module (Supplemental Fig.
S34) to separate HER2 subtype. The NCOA3 driver module was
down-regulated in Basal subtype and associated with patients’
overall survival (Fig. 5D,E). A fraction of breast (and ovarian) can-
cer patients are known to harbor NCOA3 mutation, amplification,
or deletion (Gupta et al. 2016). NCOA3 alone cannot distinguish
the basal subtype. NCOA3 requires other component genes in
the module (AR, XBP1, TFF1, and SPDEF) to collectively distin-
guish the basal subtype (Supplemental Fig. S33), which, per our
knowledge, is a novel finding. However, the interaction within

the module are well known. NCOA3 is a coactivator of steroid
hormone receptors AR and ESR1 and is a transcriptional target
of XBP1 (Gupta et al. 2016). NCOA3 is known to stimulate many
intracellular signaling pathways that are critical for cancer prolifer-
ation and metastasis. The activity of NCOA3 is known to be associ-
ated with reduced responsiveness to tamoxifen in patients
(Osborne et al. 2003). SPDEF is associated with regulation of AR
activity (Lehmann et al. 2011).

HIT’nDRIVE-seeded driver genes accurately predict drug efficacy

Next, we obtained somatic mutation, copy number aberration
(CNA), and gene-expression data of pan-cancer cell lines from
the Genomics of Drug Sensitivity in Cancer (GDSC) project
(Iorio et al. 2016). We used HIT'nDRIVE (Supplemental Fig. S46)
to identify driver genes of individual cancer cell lines
(Supplemental Table S18). Following up on the premise by lorio
et al. (2016) that potential driver genes (i.e., cancer genes, which
include the CGC genes) alone could predict drug efficacy fairly
well, the predicted driver genes were used as seeds in the network
(STRING v10) to identify subnetworks that discriminate between
the drug-response phenotypes (i.e., sensitive vs. resistant cell
lines). As available in GDSC, 265 different drug treatments were
tested on each cell line provided. We present results for 25 cancer
types (the remaining five cancer types for which only a very
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Figure 6. Drug efficacy predicted by HIT'nDRIVE-seeded driver genes. (A) Accuracy of drug-response phenotype classification for all 265 drugs used in
the GDSC study across 25 cancer types (the remaining five cancer types for which only a very limited number of cell lines have been made available are
statistically insignificant and thus have not been used). The classification accuracy for each drug on each cancer type is measured based on the collective use
of at most 10 best-discriminating modules; i.e., the accuracy is maximized across the range of one to 10 (best-discriminating) modules. Note that many of
the drugs were not tested on all cancer types; in fact, for the vast majority of cancer types, only a handful of drugs were tested. (B) Classification accuracy of
modaules that distinguish the drug-response phenotypes after treatment with Gefitinib in BRCA cell lines (top), temozolomide in GBM cell lines (middle), and
Nutlin-3ain OV cell lines (bottom). Important genes identified in the modules and involved in the dysregulated signaling pathways have been highlighted.
(C-E) The figures represent the dysregulated signaling pathways in the respective drug perturbation.
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limited number of cell lines are available are statistically insignifi-
cant and thus have not been used).

Perhaps our most interesting result is that, for many drugs,
the top HIT'nDRIVE-predicted driver module for a specific cancer
type (more specifically, OptDis modules seeded by HIT'nDRIVE-
identified driver genes, prioritized with respect to drug efficacy) in-
cludes not only the drug target but also the associated (down-
stream) signaling pathway. As importantly, we measured the
accuracy of drug-response phenotype classification using
HIT'nDRIVE-OptDis for each drug treatment in different cancer
types (Fig. 6A; Supplemental Table S19). In most cancer types,
HIT'nDRIVE-OptDis correctly predicted the response to >25% of
the drugs in >95% of the patients. Specifically, stomach adenocar-
cinoma (STAD) and chronic myelogenous leukemia (LCML) are
the cancer types with the highest fraction of drugs predicted
with an accuracy of >95%, whereas liver hepatocellular carcinoma
(LIHC) and GBM are the cancer types with the lowest fraction of
drugs predicted with the same accuracy. Below we provide some
of our observations on three well-known/promising cancer drugs
for which we obtained high accuracy on specific cancer types.

Gefitinib is a clinically approved (for patients with non-small-
cell lung cancer) protein kinase inhibitor that selectively inhibits
EGFR. Interestingly, in BRCA, EGFR copy-number amplification
or overexpression primarily activates the RAS-RAF-MAPK pathway
and PI3K-AKT-mTOR pathway triggering response for cell prolifer-
ation, invasion, and survival. By use of HIT'nDRIVE, EGFR was
found as a driver gene of BRCA cell lines. Furthermore, the
EGFR-seeded driver module was the second highest-scoring mod-
ule to distinguish the drug-response phenotype, increasing the
classification accuracy to 98% (Fig. 6B,C).

Another example, Nutlin-3a, is a promising preclinical stage
compound that inhibits the interaction between MDM2 and
TPS53, inducing apoptosis. MDM2 was predicted as a driver gene
in OV cell lines by HIT'nDRIVE. The MDM2-seeded module was
the top predictor (maximum accuracy, 94%) of the drug-response
phenotype when treated with Nutlin-3a (Fig. 6B,E). Our method
predicted many other interacting partners (both as seed or compo-
nent genes in the module) of MDM2 and TP53, which are known
to play a critical role in TP53 pathway.

Finally, TMZ is a clinically approved first-line therapy for
GBM. ABC transporters (including ABCB1) help to transport
TMZ from the extracellular space to the cytoplasm of a cell. TMZ
methylates selective nucleotides of the DNA triggering DNA repair
pathway. MGMT specifically removes the methyl groups from the
methylated nucleotides escaping from DNA strand breaks. MGMT
was predicted as a component gene in the third top-scoring mod-
ule. Failure to repair DNA strand breaks triggers the DNA damage
response pathway, further activating 7TP53 and apoptosis.
Interestingly, TP53 was predicted as the seed of the top-scoring
module by HIT'nDRIVE-OptDis. Furthermore, another gene in
the DNA damage response pathway, CDKN2A, seeds another
top-ranking module, which improves the overall classification ac-
curacy to 97% (Fig. 6B,D). Note that both CDKN2A and TP53 are
the most frequently altered genes in GBM.

Discussion

In recent years, there has been an unprecedented increase in the
multidimensional high-throughput data profiling (especially ge-
nome and transcriptome) of cancer patients. This has revealed ex-
tensive mutational heterogeneity observed in the cancer (sub)
types, yielding a long-tailed distribution of mutated genes across

the patients, implying the existence of many rare/private driver
genes. Thus, there is a great need for computational methods to
mine these massive data sets and prioritize clinically actionable
driver events to aid treatment modalities using precision oncology.

Here, we have presented a network-based combinatorial
method, HIT'nDRIVE, which models the collective effects of se-
quence altered genes on expression altered genes. HIT'nDRIVE
aims to solve the RWFL problem on a gene/protein interaction net-
work—which differs from the standard FL problem by its use of
“hitting time,” the expected minimum number of hops in a ran-
dom walk originating from any sequence altered gene (i.e., a po-
tential driver) to reach an expression altered gene, as a distance
measure. We introduced the notion of “multihitting time” and
presented efficient and accurate methods to estimate it based on
single-source hitting time in large-scale networks. HIT'nDRIVE re-
duces RWFL (with multihitting time as the distance) to a weighted
multiset cover problem, which it formulates and solves as an ILP.

As a measure of influence, hitting time—the expected length
of a random walk between two nodes—or its general version, the
multihitting time, is quite different from the diffusion-based mea-
sures or Rooted PageRank, which are based on asymptotic distribu-
tions. We argue that hitting time is a better measure for our
purposes as it is (1) parameter free (diffusion model introduces at
least one additional parameter: the proportion of incoming flow
“consumed” at a node in each time step), (2) it is time dependent
(while the diffusion model and PageRank measure the stationary
behavior), and (3) it is more robust with respect to small perturba-
tions in the network (Hopcroft and Sheldon 2007).

In this article, we have demonstrated that, first, HIT’'nDRIVE
increases our ability to identify potential genomic driver alter-
ations and, second, HIT'nDRIVE prioritizes clinically actionable
driver genes, many of which happen to be private drivers. This im-
plies that it is possible to replicate the lengthy and costly experi-
mental approaches for detecting driver genes in common tumor
types by HIT'nDRIVE in-silico, strongly supporting the biological
relevance of HIT'nDRIVE'’s algorithmic framework. The fact that
a high portion of HIT'nDRIVE prioritized drivers in well-studied
cancer types overlap with known driver genes increases our confi-
dence in the calls made by HIT'nDRIVE in rarer tumor types for
which driver genes are mostly unknown. In fact, the initial results
of the Pan Cancer Analysis of Whole Genomes (PCAWG) project
reveal that >20% of tumors do not have a single (genomically al-
tered) driver gene from CGC (data not shown). HIT'nDRIVE is
thus being used for the analysis of PCAWG data to reduce this
gap. Results on new driver genes identified by HIT'nDRIVE, espe-
cially in rare tumor types will be made available by PCAWG.
Third, HIT'nDRIVE prioritizes driver genes present in both the cen-
ter and periphery of an interaction network. Fourth, our analysis
revealed that driver genes have higher collective influence on
the transcriptome than other altered genes. Some of these driver
genes are central and naturally have high influence; however,
there are also many noncentral driver genes with high influence
over other genes in the network. Fifth, HIT'nDRIVE is especially
suitable for identifying such noncentral driver genes or infre-
quent/private drivers. Sixth, we demonstrated that it is also possi-
ble to perform accurate phenotype prediction for tumor samples
by only using HIT'nDRIVE-implied driver genes and their “net-
work modules of influence” (small subnetworks involving each
driver gene where the aggregate expression profile correlates well
with the cancer phenotype) as features, providing additional evi-
dence that these genes may be driving the cancer phenotype.
The network modules we identified may provide new insights
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into the biological mechanisms underlying tumor progression.
Seventh, HIT'nDRIVE can capture subtype-specific driver genes
and such driver-seeded modules can indeed differentiate between
different subtypes of a cancer. Eighth, we have demonstrated that
subtype-specific driver modules are also associated with patients’
survival outcome, providing additional evidence that these driver
genes have clinical significance. Ninth, we also demonstrated that
HIT'nDRIVE-seeded driver genes (more specifically, OptDis mod-
ules seeded by HIT'nDRIVE-identified driver genes, prioritized
with respect to drug efficacy) include not only the drug target
but also the associated (downstream) signaling pathway. This pro-
vides us with the possibility of identifying and clinically targeting
multiple genes (not necessarily sequence-wise altered but never-
theless in the module identified by HIT'nDRIVE) dysregulating
critical oncogenic or metabolic pathways.

We also note that targeted therapeutics are being extensive-
ly used in clinical trials, but the drug response rate is very poor
(only ~5% of patients in clinical trials have good response to tar-
geted therapeutics) (Prasad 2016). This is most likely because
even if a cancer patient harbors an alteration for which targeted
therapeutics are available, we do not know if that alteration is re-
sponsible for driving the tumor (Beltran et al. 2015). HIT'nDRIVE
could potentially play a key role by prioritizing potential driver
alterations from a vast pool of passenger alterations. In our study,
we have used drug efficacy data from pan-cancer cell lines in or-
der to demonstrate that the potential genomic drivers (more
precisely driver gene-seeded modules) of the cell lines can be
used as features to predict drug efficacy. Following a similar
procedure in clinical trials, we believe that the application of
HIT'nDRIVE to predict drug efficacy would likely improve the
drug response rate.

HIT'nDRIVE predicted ABCB1 as the most influential driver
gene in seven TCGA-GBM cases that were treated with TMZ
prior to tissue collection. By using the GDSC data set, we demon-
strated that HIT'nDRIVE-OptDis can predict mechanisms of
drug sensitivity for TMZ and other drugs (Fig. 6B-E) Since ABCB1
was not mutated in any of the GBM cell lines in the analysis, it
was not identified as a driver gene of GBM cell lines. However,
the top seed driver gene, TP53, is an interaction partner of
ABCBI1 (in STRING v10 network). Other seed driver genes and
their component genes in the module that are direct interaction
partners of ABCB1 are UBC, CAV1, WDTCI, and DNAHS. ABC
transporters (including ABCB1) help to transport TMZ from the
extracellular space to the cytoplasm of a cell. On the other hand,
DNA damage caused by TMZ activates TP53, thereby dysregulating
apoptotic pathways. Thus, the presented analysis demonstrates
that the downstream expression changes are, most likely, the
manifestation of the selection pressure in ABCB1 induced by
TMZ treatment.

Protein-protein interaction (PPI) networks representing
physical interactions now include thousands of proteins and
over 1 million (undirected) interactions between them. Regulatory
networks, on the other hand, represent gene/protein regulation
occurring at multiple levels of biological systems through directed
links. Since available regulatory networks are very limited in size
and scope, our study focuses on PPI networks. However, HIT'n-
DRIVE can easily be applied to regulatory networks as they grow
in size and scope. In addition, the use of multihitting time as a dis-
tance measure between two or more driver genes and a target gene
enables HIT'nDRIVE to capture synthetic rescue like scenarios; this
is ideally suited for undirected PPI networks, but in principle can
be extended to regulatory networks in the future.

HIT'nDRIVE is a driver gene prioritization tool that is flexible
enough to incorporate different types of omics data. Both princi-
ples under RWFL and HIT'nDRIVE can be utilized to identify the
causal genes in different complex disease facing analogous prob-
lems to cancer. Finally, we believe that applications of RWFL prob-
lem may extend beyond its application to driver gene
identification to influence analysis in social networks, disease net-
works and others.

Methods

An overview of the HIT’'nDRIVE algorithmic framework

HIT'nDRIVE links alterations at the genomic level to changes at
transcriptome level through a gene/protein interaction network.
More specifically, HIT'nDRIVE identifies the minimum number
of potential driver genes that can cause a user-defined proportion
of the downstream expression effects observed. We formulate this
as a RWFL problem, a new combinatorial optimization problem
that generalizes the classical FL problem by the use of a novel dis-
tance measure. Given a network, FL problem defines the distance
between a potential driver gene and an outlier gene as the length
of the shortest path between them. The RWFL problem, in con-
trast, uses “hitting time” (or “first passage time”) (Condamin
etal. 2007; Liben-Nowell and Kleinberg 2007), the expected length
of a random walk between the two nodes, as their distance. Under
the use of hitting time, the FL problem completely changes nature:
In the classical FL formulation, the goal is to associate each outlier
gene in the network with exactly one (the closest) driver gene. In
the RWFL formulation, each outlier gene is associated with multi-
ple driver genes (whose collective distance to the outlier will no
longer be the shortest pairwise distance), forming a many-to-
many relation. Intuitively, hitting time measures how accessible
a particular outlier gene is from potential driver genes. Thus,
RWEFL problem asks to find the smallest set of sequence-altered
genes from which one can reach (a good proportion of) outliers
within a user-defined “multihitting time” (the expected length
of the shortest random walk originating from any of the sequence
altered genes) and ending at an outlier.

As per the standard FL problem, RWFL is NP hard. In fact,
even the problem of computing the multihitting time between a
set of nodes in a network and a particular target node is difficult.
In what follows, we summarize how we approach this problem
within the HIT'nDRIVE framework (for details, see Supplemental
Methods).

For simplicity, we first describe how HIT'nDRIVE works on
single patient data. Given an interaction network with X denoting
the set of sequence-altered genes (through SNVs or CNAs) and Y
denoting the set of expression-altered genes, HIT'nDRIVE com-
putes the smallest subset of X whose joint “influence” over (a
user-defined fraction of) expression-altered genes is sufficiently
high (i.e., above a user-defined threshold). The influence of a set
of (sequence-altered) genes X over an expression-altered gene g is
defined as 1/MHT(X, g), where MHT(X, g) denotes the multihitting
time, the expected length of the shortest random walk originating
ateach one of the genes in X that ends at g. Therefore, HIT'nDRIVE
aims to solve the RWFL problem in a network where X are the “po-
tential facilities” and Y are the “requests.”

Since RWFL is a computationally hard problem and cannot be
solved in a reasonable amount of time in its original formulation,
we reduce the RWFL problem to the WMSC problem, for which we
give an ILP formulation. Intuitively, in this new formulation,
HIT'nDRIVE associates the genomic alterations with transcrip-
tomic changes in the form of a bipartite graph G;;,(X, Y, E), where
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X is the set of aberrant genes, Y is the set of patient-specific expres-
sion-altered genes, and E is the set of edges. If gene x; is mutated in
a patient p, we set edges between x; and all of the expression altered
genes in the same patient (y;, p), where the edges are weighted by
the inverse pairwise hitting times wj; := H_ 1 (F1g 1A). The WMSC
problem on this representation of data asks to find the smallest
subset of X (as potential drivers) whose total influence (sum of
pairwise influence values) over a user-defined fraction of expres-
sion-altered genes (for each patient) is sufficiently high.

The reduction from RWFL problem to the WMSC problem is
achieved by estimating the multihitting time as a function of inde-
pendent hitting times of the drivers to an outlier, which provides
an upper bound on the multihitting time. The exact individual hit-
ting times are calculated by a matrix inversion method (for details,
see Supplemental Methods) (Tetali 1999). The resulting WMSC
problem can then be formulated as the ILP below, which is effi-
ciently solvable by IBM CPLEX (within minutes) for all data sets
we considered:

minxl...,x‘x\ Z,‘Xi
s.t.
Vi, jix = e
Vi ewi = yivh Y wi
2y = alY]
vp :argg, () =1
xi, e, y; € {0, 1}

The above ILP formulation for the WMSC problem introduces bi-
nary variables x;, y;, e;;, respectively, for each potential driver, ex-
pression alteration event, and edge in the bipartite graph. The
objective of the ILP is to minimize the number of drivers (i.e.,
the sum of x; values) subject to four constraints. The first constraint
ensures that a selected driver contributes to the coverage of each of
the expression alteration events it is connected to (in each patient,
if multiple patients are available). The second constraint ensures
that selected (patient-specific) driver genes contribute enough to
cover at least a (y) fraction of the sum of all incoming edge weights
to each expression alteration event. This constraint corresponds to
setting an upper bound on our estimate on the inverse of multihit-
ting time of the selected (patient-specific) drivers on an expression
alteration event. The third constraint ensures that the selected
driver genes collectively cover at least an o fraction of the set of ex-
pression alteration events. And the fourth constraint ensures that
for each patient, the top B fraction of the expression altered genes
with highest weights (;) are always covered.

As indicated above, our ILP formulation for the WMSC prob-
lem can be generalized to multiple patients with the objective of
minimizing the total number of driver genes across all patients,
subject to the constraint that a user-defined proportion of outlier
genes in each of the patients are covered by the subset of driver
genes present in that patient (for details, see Supplemental
Methods).

In order to quantitatively assess the genes identified by
HIT'nDRIVE, we extended our previously developed algorithm,
OptDis (Dao et al. 2011), for de novo identification of modules
of small size inside the interaction network that contain (i.e., are
seeded by) at least one predicted driver gene. The modules are cho-
sen so that their discriminative power (for phenotype classifica-
tion) is the greatest among connected subnetworks of similar
size that contain the individual predicted driver genes. In general,
OptDis performs supervised dimensionality reduction on the set
of connected subnetworks. It projects the high-dimensional space
of all connected subnetworks to a user-specified lower-dimension-
al space of subnetworks such that, in the new space, the samples
belonging to the same class are closer and the samples from differ-

ent classes are more distant to each other (i.e., minimize in-class
distance and maximize out-class distance) with respect to a nor-
malized distance measure (typically L;). Then we use module fea-
tures (average expression of genes in the module) for phenotype
classification (Fig. 1B,C). By using such module features, we
hope that the classifier in use does not overfit on rare driver genes
and is able to generalize the signal coming from rare drivers to new
patients. We report the classification accuracy based on the identi-
fied driver-seeded modules as means of quantitative validation of
our results (in the absence of ground truth). We also look at the
genes that build the chosen modules (of high classification accura-
cy) in an attempt to identify cancer-related pathways.

Data sets and analysis

We used publicly available data sets of four major cancer types:
GBM, OV, BRCA, and PRAD from TCGA project. All data were ob-
tained from TCGA Data Portal in May 2014, which were mapped to
GRCh37 genome build. Although TCGA has recently made avail-
able all data realigned to the newer GRCh38 genome build, to en-
sure compatibility, all TCGA data we have used in this study has
been mapped to GRCh37.

Somatic mutation

Calls (level 2 data) from all available platforms/centers were
merged. Only missense, nonsense, and splice-site mutations
were marked as somatic-mutation alteration events.

CNAs

For GBM and OV, Agilent human genome CGH microarray 244A
(level 1) data files were used, and for PRAD and BRCA,
Affymetrix genome-wide human SNP array 6.0 (level 3) data files
were used to generate the copy number profiles.

These Agilent FE format sample files were loaded into
BioDiscovery Nexus Copy Number software v7.0, where quality
was assessed and data were visualized and analyzed. All samples
were mapped to the most recent genome build (hg 19, GRCh37)
via Agilent probe identifiers and annotation (downloaded from
Agilent’s website) based on the 1M SurePrint G3 human CGH mi-
croarray 1x1M design platform. BioDiscovery’s FASST2 segmenta-
tion algorithm, a hidden Markov model-based approach, was used
to make copy number calls. The FASST2 algorithm, unlike other
common HMM methods for copy number estimation, does not
aim to estimate the copy number state at each probe but uses
many states to cover more possibilities, such as mosaic events.
These state values are then used to make calls based on a log-ratio
threshold. The significance threshold for segmentation was set at
=5 x 107, also requiring a minimum of three probes per segment
and a maximum probe spacing of 1000 between adjacent probes
before breaking a segment. The log ratio thresholds for single
copy gain and single copy loss were set at 0.2 and —0.23, respective-
ly. The log ratio thresholds for two or more copy gains and homo-
zygous losses were set at 1.14 and —1.1, respectively. Upon loading
of raw data files, signal intensities are normalized via division by
mean. All samples are corrected for GC wave content using a sys-
tematic correction algorithm. Only the high-confidence CNAs,

e., high copy number gain or homozygous deletions, were
marked as copy number aberrant events. Finally, genes that harbor
either a somatic-mutation aberrant event or a copy number aber-
rant event were taken to be the final list of aberrant genes at the ge-
nomic level.
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Gene expression

We used microarray-based gene expression (Affymetrix HT human
genome U133 array plate set, level 1) for GBM and OV data sets,
whereas for BRCA and PRAD data sets, RNA-seq—derived gene ex-
pression was used (level 3). Gene-expression profiles of normal
and tumor phenotypes were used as sample groups.

Gene fusions

Transcript fusions prediction calls for GBM, OV, BRCA, and PRAD
were obtained from TCGA Fusion Gene Data Portal (http://www.
tumorfusions.org) (Yoshihara et al. 2014). The fusion partner
genes were tagged for gene-fusion alteration.

Genomics of drug sensitivity in cancer

Somatic mutation, copy number alterations and gene expression,
and drug screening data of cancer cell lines were downloaded
from the GDSC (Iorio et al. 2016) website (http:/www.
cancerrxgene.org/downloads). Data were downloaded on August
2016.

Interaction networks

We used STRING v10 (Szklarczyk et al. 2015) protein-interaction
network that contains high-confidence functional PPIs (for de-
tails, see Supplemental Methods).

Pathway enrichment analysis

The selected set of genes were tested for enrichment against gene
sets of pathways present in Molecular Signature Database
(MSigDB) v5.0 (Subramanian et al. 2005). A Fisher’s exact test—
based gene set enrichment analysis was used for this purpose
(for details, see Software and Code Availability). A cut-off thresh-
old of false-discovery rate (FDR) < 0.01 was used to obtain the sig-
nificantly enriched pathways. The same procedure, as above, is
used to assign biological functional to the gene modules.

Derivation of outlier—genes

We used a generalized extreme Studentized deviate (GESD) test
(Rosner 1983) to obtain the outlier genes (for details, see
Supplemental Methods and Software and Code Availability).

Association of driver modules with patients’ survival outcome

To test for association of driver modules with patients’ survival
outcome, we developed a risk-score based on multigene (compo-
nent genes of the module) expression. The risk-score (S) defined
as a weighted sum of the normalized gene-expression values of
the component genes in the module weighted by their estimated
univariate Cox proportional-hazard regression coefficients (Beer
et al. 2002) as given in the equation below:

k
S= Z BiX,‘/‘.
i

Here i and j represent a gene and a patient, respectively; p; is the co-
efficient of cox regression for gene i; x;; is the normalized gene ex-
pression of gene i in patient j; and k is the number of component
genes in a gene module. The normalized gene-expression values
were fitted against overall survival time with living status as the
censored event using univariate Cox proportional-hazard regres-
sion (Exact method).

Based on the risk-score values, patients were stratified into
two groups: low-risk group (patients with $< 33 percentile of S)

and high-risk group (patients with S$>66 percentile of S).
Patients that fall in between (i.e., patients with §S> 33 percentile
of § and <66 percentile of S) were discarded from the further anal-
ysis as these patients fall into the intermediate-risk group and are
bound to introduce noise while performing log-rank test.

Both Cox regression coefficients of each gene and risk-score
cutoff values for each module were estimated from the TCGA-
BRCA cohort (training data set); later these values were applied
to METABRIC cohorts (test data set). To assess whether the risk-
score assignment to high/low categories was valid, a log-rank test
was performed for each module in both training and test data sets.

Finally, to identify the significant list of driver-modules that
were robust enough to predict patients’ survival, we calculated
log-rank test P-value, HR (Wald test), and c-index (Wald test).

Software and code availability

The hitting time-based influence-matrix generation and
HIT'nDRIVE algorithm are implemented in C++. They can be ac-
cessed from GitHub (https://github.com/sfu-compbio/hitndrive)
and in Supplemental Archive 1. The GESD test-based outlier detec-
tion method is available at GitHub (https://github.com/raunakms/
GESD) and as Supplemental Archive 2. A Fisher’s exact test-based
gene-set enrichment analysis is available at GitHub (https://github
.com/raunakms/GSEA-Fisher) and as Supplemental Archive 3.
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