On absolute units*

Neil Dewar

April 7, 2021

How may we characterise the intrinsic structure of physical quantities such as mass, length, or electric charge? This paper shows that grouptheoretic methods-specifically, the notion of a free and transitive group action-provide an elegant way of characterising the structure of scalar quantities, and uses this to give an intrinsic treatment of vector quantities. It also gives a general account of how different scalar or vector quantities may be algebraically combined with one another. Finally, it uses this apparatus to give a simple intrinsic treatment of Newtonian gravitation.

Contents

1. Introduction and Motivation 2
2. Numerical Quantities 7
3. Scalar Quantities 9
4. Scalar Algebra 11
5. Vector Quantities 13
6. Vector Algebra 15
7. Intrinsic Newtonian Kinematics 17
8. Intrinsic Newtonian Dynamics 19

[^0]9. Evaluation and Conclusion 21
A. Complete Ordered Positive Structures 24
B. Some Other Intrinsic Theories 30
B.1. Galilean and Maxwell spacetime 30
B.2. Electrostatics 31

1. Introduction and Motivation

In physics, much use is made of quantities-for example mass, charge, and length. Standardly, such quantities are represented by real numbers. One might think, however (for reasons to be discussed in a moment) that doing so is merely a convenience, and that the real numbers have more structure than the quantities they represent. This raises a natural question: what might an 'intrinsic' representation of such quantities look like, and how would laws formulated in terms of such intrinsic representations compare to more standard formulations? This paper offers an intrinsic account of the structure or scalar and vector quantities, and shows how this account may be used to offer a unit-independent formulation of Newtonian gravitational theory.

There are two motivations for this project. The first is the 'intrinsicalist' motivation. If we use numerical representations, then we traffic in mixed mathematico-physical sentences, such as 'the mass of this box is $5 \mathrm{~kg}^{\prime}$: that is, predicates which refer to both mathematical and physical entities. Even if we put aside questions about the existence of mathematical entities, there is something potentially unsatisfactory about describing physical entities in terms of entities external to them-especially when those descriptions are being used for the purposes of explanation and prediction. Presumably, this practice is licensed insofar as the physical and mathematical entities have some structure in common, and the explanations and predictions depend only on the structure of the mathematical entities that is shared by the physical entities. But showing that this is indeed the case requires giving an intrinsic description of the structure of the physical entities, and demonstrating that this intrinsic structure is sufficient for the purposes of physical theorising (albeit, presumably, at some cost in convenience).

Note that there are two ways in which this motivation is not the same as a full-blown nominalist motivation, of the kind driving Field (1980)'s program. First, as already mentioned, it applies even if one is a realist about mathematical entities. Second, the nominalist project is often taken to exclude not only reference to mathematical entities, but also reference to physical properties-at least, except insofar as such properties are
actually manifested or instantiated. For example, Field writes that
A possible approach to a coordinate-independent treatment of, say, temperature, would be to introduce a continuum of temperature properties, each one the property of having such and such specific temperature. One could then describe the structure of that system of properties not via numbers, but via certain intrinsic relations among them, say the relations of betweenness and congruence; and one could impose axioms on these notions to guarantee that there was a $1-1$ function mapping the temperature properties into the reals, and that such a function was unique up to linear transformation. There is a certain conception of properties ... on which this approach would be at least arguably a nominalistic one; but I prefer a different strategy, which doesn't invoke temperature properties but which makes do with space-time points (or more generally, space-time regions) as the only entities. ${ }^{1}$

I take the intrinsicalist motivation to be satisfied if we can, indeed, 'describe the structure of [a] system of properties ... via certain intrinsic relations among them' (and show that this structure suffices for stating the relevant laws), as that would suffice to delimit how much structure our theories are permitted to invoke. Whether this should be considered 'nominalist' is not something that I will be concerned with. ${ }^{2}$

The second motivation arises from the debate between 'comparativism' and 'absolutism' about quantity. ${ }^{3}$ In rough terms, whereas the absolutist takes the fundamental facts about quantity to consist of facts attributing absolute values of quantities to objects, the comparativist takes the fundamental facts about quantity to consist of facts attributing comparative values of quantities to pairs of objects (typically, ratios). So, for example, the absolutist will consider the fact that this bag of flour has a mass of 500 g to be fundamental, and in particular to be prior to the fact that it is half the mass of this 1 kg bag of lentils. The comparativist, meanwhile, will take the fact of their masses standing in a 1:2 ratio as fundamental; according to taste, they will claim either that the facts about their individual masses are derivative on the ratio-facts, or that we should not think that there are any such facts at all.

[^1]Comparativists will often contend that absolutism is committed to empirically inaccessible structure. To support this claim, it has been argued that doubling (say) the mass of every object in the world would not induce any empirically accessible changes; hence, we should not take the masses themselves, but only their ratios (which are, of course, invariant under such a doubling) as reflecting genuine physical facts. ${ }^{4}$ The overall argument here is an instance of a well-known argument from the philosophy of symmetry, which contends that models of a theory related by a symmetry transformation are empirically equivalent. ${ }^{5}$ Unfortunately, however, the application of this argument to the case of a mass-doubling is misguided, since this operation is not a symmetry transformation-at least, not of the laws with which we are familiar. For example, a mass-doubling is not a symmetry of the laws of Newtonian gravitation; thus, an 'overnight doubling' of all masses, in a world governed by such laws, would lead to empirically noticeable changes in the phenomena (the orbits of the planets would alter, pendulums would change their periods, etc.). ${ }^{6}$

That said, although mass-doubling is not a symmetry, certain other kinds of quantityrescalings are: for example, it is a symmetry of Newtonian gravitation to double the masses of all bodies, and double the lengths of all distances, and double the durations of all processes. In fact, more generally, consider a transformation which rescales all masses by a factor μ, all lengths by a factor λ, and all durations by a factor τ, in such a way that $\lambda^{3}=\mu \tau^{2}$. This is a symmetry of Newtonian gravitation, since-via Newton's Second Law-it induces a rescaling of all forces by a factor $\mu \lambda / \tau^{2}$, which means that Newton's law of gravitation is preserved: for,

$$
\begin{equation*}
\frac{G M m}{r^{2}} \mapsto \frac{\mu^{2}}{\lambda^{2}} \frac{G M m}{r^{2}} \tag{1}
\end{equation*}
$$

and if $\lambda^{3}=\mu \tau^{2}$, then $\mu^{2} / \lambda^{2}=\mu \lambda / \tau^{2}$. Consequently, applying such a joint rescaling of mass, length and time does not induce any empirically accessible changes. ${ }^{7}$ So the argument against absolutism is restored, albeit in a modified form: if an absolutist regards two models related by a joint rescaling (of this form) as representing different possible worlds, then she is committed to empirically inaccessible distinctions between possibilities, and hence (in some sense) to empirically inaccessible structure.

Unfortunately for the comparativist, however, it is not clear that this can be con-

[^2]strued as a positive argument for comparativism: the comparativist quantity-ratios are invariant under any rescaling of mass, length, and time, not just those rescalings where $\lambda^{3}=\mu \tau^{2} .{ }^{8}$ This leaves the aspiring comparativist with two options. They can give up on trying to capture the full content of Newtonian gravitation, and seek to find some (hopefully empirically equivalent) alternative theory which admits arbitrary rescalings as symmetries, and hence is expressible purely in terms of these ratios. ${ }^{9}$ Alternatively, they can employ 'mixed' comparative quantities, in such a way that these quantities are invariants of only the desired rescalings. ${ }^{10}$ The simplest form of such a 'mixed' comparativism would be to allow not only mass, length- and time-ratios but also mass-length, length-time and time-mass ratios; this, however, would be committed to empirically inaccessible quantities in just the way that the absolutist is (since a non-uniform rescaling where $\lambda^{3}=\mu \tau^{2}$ would be a symmetry of the dynamics, but would not leave the trans-quantity ratios invariant). A better idea is to allow a quantity corresponding to the ratio between volume (length cubed) and the product of mass with the square of duration. This will have the right invariance strucutre, but spelling out how this form of comparativism will work is non-trivial. ${ }^{11}$

There is, however, an alternative to both absolutism and comparativism, at least as those have been described here. ${ }^{12}$ I noted above that we can revive the argument against absolutism—provided, that is, that the absolutist is committed to regarding models related by joint rescalings as representing distinct possibilities. What happens if we reject that commitment? To answer this question, consider the distinction that Dewar (2019) draws between the 'sophisticated' and 'reduced' reformulations of theories with symmetries. To reduce a theory is to reformulate it purely in terms of symmetryinvariant quantities, with the result that applying the symmetry transformation to a model yields a numerically identical model (indeed, in reduced theories, there is a sense in which the symmetry transformation in question cannot even be expressed). To so-

[^3]phisticate a theory, on the other hand, is to find a formulation of the theory such that symmetry-related models are isomorphic to one another (rather than, as in the reduced theory, identical). Thus, for example, suppose that we start with electromagnetism expressed in terms of the electromagnetic potential; to reduce this theory by its gauge symmetry would be to reformulate it in terms of the electromagnetic field, whereas to sophisticate it by that symmetry would be to reformulate it in terms of $U(1)$ fibre bundles.

Dewar (2019) argues-following similar arguments for 'sophisticated substantivalism ${ }^{\prime 13}$-that a sophisticated formulation is sufficient for escaping the argument from empirical inaccessibility, as we may legitimately regard isomorphic models as representing the same possibility. ${ }^{14}$ If we accept that claim, then we have a motivation to seek a formulation of Newtonian gravitation which uses absolute quantities, but is formulated in such a way that models related by a joint rescaling (but not by an arbitrary rescaling) are isomorphic to one another. ${ }^{15}$ Doing this will, in the first instance, require doing away with the structure of the quantities that goes beyond what is invariant under a rescaling.

So this motivation, too, pushes us towards seeking a formulation of physical theory which uses less structure than a 'standard' formulation. It is going to be a matter of some controversy whether the rescaling-invariant structure coincides with the 'intrinsic' structure (appealed to in the first motivation) or not. ${ }^{16}$ However, the best way to have this debate will be if we can obtain a clear picture of what the rescaling-invariant structure is; we can then assess the suitability of that structure as a candidate for the intrinsic structure of quantities.

The paper proceeds as follows. In the next section, I introduce 'numerical quantities', and justify their use for representing 'pure' ratio-quantities (e.g. the mass-ratio between two objects). In section 3, I use numerical quantities to define the structure of scalar quantities (without any notion of a choice of unit); section 4 shows how such quantities may be algebraically combined, to form product- and ratio-quantities. Sections 5 and 6 extend these ideas to include vector quantities: how such quantities are to be defined,

[^4]and how vectors may be multiplied or divided by scalars. ${ }^{17}$ Section 7 shows how the quantities associated with space, time, and motion can then be defined; whilst section 8 presents a formulation of Newtonian gravitational theory (for point masses) in terms of these intrinsic quantities. Section 9 concludes, by evaluating this theory against the two motivations discussed here.

2. Numerical Quantities

The first kind of quantity we will consider is that of 'numerical' quantities. Such quantities are represented by positive real numbers-without any redundancy or surplus of representation. More exactly, we may say that such quantities take their values in \mathbb{R}^{+}, where \mathbb{R}^{+}is (by definition) the set of real numbers strictly greater than 0 :

$$
\begin{equation*}
\mathbb{R}^{+}=\{x: x \in \mathbb{R}, x>0\} \tag{2}
\end{equation*}
$$

One might be concerned that this is not a sufficiently intrinsic characterisation of such quantities, since it proceeds via the real numbers. ${ }^{18}$ However, it is easy to remedy this defect: we define a numerical quantity as a quantity whose values take the form of a complete ordered positive semifield. In Appendix A, it is shown that \mathbb{R}^{+}(equipped with the usual order, addition, and multiplication structures) is a complete ordered positive semifield, and that any complete ordered positive semifield is uniquely isomorphic to \mathbb{R}^{+}. Thus, we may identify the value-range of any numerical quantity with \mathbb{R}^{+}, whilst still abiding by the intrinsicalist scruples of $\S 1$: all we are noting is that in light of the unique isomorphism, we may regard \mathbb{R}^{+}as providing uniquely assigned labels for the possible values of any numerical quantity. (That is, the requirement that the labelling scheme be an isomorphism suffices to determine which label belongs to which numerical quantity-value.)

The paradigmatic examples of numerical quantities are ratio quantities, such as the mass-ratio between two massive objects. In stating that the bag of lentils is twice as massive as the bag of flour, we do not make some hidden appeal to a choice of unit, or standard of measurement: it is simply true that the number 2 is uniquely apt to represent the mass-ratio in which these two objects stand. Indeed, one can provide a

[^5]straightforward argument for the use of the positive real numbers (equivalently, the use of the elements of a complete ordered positive semifield). I will give the argument for length-ratios, but it may easily be applied to other extensive ratios such as mass or charge. ${ }^{19}$

Suppose that we have two objects A and B, and we wish to determine the ratio between their lengths. We take it as given that we can determine when two objects are the same length. Idealising, we assume that given some object, we can produce arbitrarily many objects of the same length. From this, it follows that we can determine when an object is half the length of another (by observing that if the former object is placed end-to-end with an equally long object, the two objects together are the same length as the latter object).

Without loss of generality, suppose that A is shorter than B. First, we see how many times A fits in B. Call this number n_{0}. We then determine how many times a rod half the length of A fits in the remainder of B. Call this n_{1}. We then determine how many times a rod one-quarter of the length of A fits in the remainder of the remainder, and call that number n_{2}; and so on, an infinite number of times. It follows that, where l_{A} is the length of A and l_{B} the length of B,

$$
\begin{aligned}
l_{A} & =n_{0} l_{B}+\frac{1}{2} n_{1} l_{B}+\frac{1}{4} n_{2} l_{B}+\cdots \\
& =n_{0} l_{B}+\sum_{k=1}^{\infty} \frac{n_{k}}{2^{k}} l_{B}
\end{aligned}
$$

For any $k>0, n_{k}$ is bounded by $n_{k}<2$. Therefore, the sum converges. Hence, the ratio is given by

$$
\begin{equation*}
\frac{l_{A}}{l_{B}}=n_{0}+\sum_{k=1}^{\infty} \frac{n_{k}}{2^{k}} . \tag{3}
\end{equation*}
$$

It follows that the length-ratios are given, in general, by positive real numbers (i.e. that length-ratios are a numerical quantity): a convergent sum of rational numbers will yield some positive real number, since the positive real numbers are the completion of the positive rational numbers.

[^6]
3. Scalar Quantities

Next, we consider 'scalar quantities'. These quantities may also be represented by \mathbb{R}^{+}, but only once a choice of unit has been made: that is to say, once some particular scalar value has been chosen to be represented by the number 1 . This immediately suggests one way to characterise a scalar structure: regarding \mathbb{R}^{+}as a multiplicative group, a scalar structure is a 'principal homogeneous space' (also known as a 'torsor') for this group. To explain this, we need to recall a little bit of group theory.

First, given a group G and a set Ω, an 'action' of G on Ω is an association of each $g \in G$ with a bijection $a \mapsto g * a$ of Ω to itself, such that $g h * a=g *(h * a)$. This action is said to be 'free' if for every $g \neq h$ and every $a \in \Omega, g * a \neq h * a$; and it is said to be 'transitive' if for every $a, b \in \Omega$, there is a $g \in G$ such that $g * a=b$. If G 's action on Ω is both free and transitive, then for every $a, b \in \Omega$, there is exactly one $g \in G$ such that $g * a=b$; in such a case, the action is said to be 'regular'. We will refer to this unique group element g as the 'ratio' of b to a, and denote it by $\frac{b}{a}$. Ω is a principal homogeneous space for G exactly if the action of G on Ω is regular.

One useful way to think of such a principal homogeneous space Ω is that it looks just like G, except that we 'forget where the origin is': if we pick (arbitrarily) some point $a \in \Omega$ as the origin, then we can regard Ω as a group with group multiplication defined by

$$
\begin{equation*}
b c:=\left(\frac{b}{a} \frac{c}{a}\right) * a \tag{4}
\end{equation*}
$$

and show that this group is isomorphic to G, via the isomorphism $b \mapsto \frac{b}{a}$.
Moreover, suppose that G carries some further structure which is compatible with its group structure, in the sense of being invariant under group multiplication: if this non-group structure took the form of an n-ary relation R, for instance, then compatibility would require that for any $g_{1}, \ldots, g_{n}, h \in G, R\left(g_{1}, \ldots, g_{n}\right)$ iff $R\left(h g_{1}, \ldots, h g_{n}\right)$. Then we may regard Ω as also carrying this structure, by transferring said structure via one of the above-mentioned isomorphisms; the compatibility requirement will entail that the transferred structure is independent of which isomorphism we choose. The relation R, for instance, would be transferred over by stipulating that for any $a_{1}, \ldots, a_{n} \in \Omega, R\left(a_{1}, \ldots, a_{n}\right)$ iff $R\left(\frac{a_{1}}{b}, \ldots, \frac{a_{n}}{b}\right)$, for any arbitrarily chosen $b \in \Omega$. It is straightforward to check that this definition is well-formed, since for any $c \in \Omega$, $R\left(\frac{a_{1}}{b}, \ldots, \frac{a_{n}}{b}\right)$ iff $R\left(\frac{a_{1}}{c}, \ldots, \frac{a_{n}}{c}\right)$.

Thus, when we say that a scalar quantity \mathcal{S} has the structure of a principal homogeneous space for the multiplicative group $\left\langle\mathbb{R}^{+}, \cdot\right\rangle$, we mean that we take as given some
action $a \mapsto x * a$ of \mathbb{R}^{+}on \mathcal{S} which is such that for any $a, b \in \mathcal{S}$, there is a unique $x \in \mathbb{R}^{+}$ for which $x * a=b$. As in the general case, we shall refer to this x as the ratio of b to a, and denote it by $\frac{b}{a}$. And, indeed, the ratio of b to a is just the sort of thing that we would think of as the ratio of one scalar quantity to another: for instance, if \mathcal{S} were a mass-scale, then these ratios are mass-ratios (in the ordinary sense of the term); and as we have seen, mass-ratios inhabit \mathbb{R}^{+}. Moreover, subject to a choice of unit, ${ }^{20} \mathcal{S}$ may be identified with \mathbb{R}^{+}. This, of course, is just the observation we started this section with.

Being a principal homogeneous space over $\mathbb{R}^{+}, \mathcal{S}$ inherits any of the structure of \mathbb{R}^{+} which is invariant under the multiplicative action of \mathbb{R}^{+}on itself. This includes, in particular, the additive and order structure of \mathbb{R}^{+}, as these are both invariant under multiplication: for any $x, y, z \in \mathbb{R}^{+}$,

$$
\begin{array}{r}
x \cdot(y+z)=x \cdot y+x \cdot z \\
x<y \text { iff } z \cdot x<z \cdot y \tag{6}
\end{array}
$$

More specifically, the addition of scalars is defined, in terms of the addition of ratios of scalars (elements of \mathbb{R}^{+}) by

$$
\begin{equation*}
a+b=\left(\frac{a}{c}+\frac{b}{c}\right) * c \tag{7}
\end{equation*}
$$

where c is an arbitrarily chosen scalar; and the order-relation on scalars is defined, in terms of the order-relation on ratios of scalars, by

$$
\begin{equation*}
a<b \text { iff } \frac{a}{c}<\frac{b}{c} \tag{8}
\end{equation*}
$$

where, again, c is an arbitrarily chosen scalar. These definitions are easily shown to be well-formed, i.e., independent of the choice of $c .{ }^{21}$ Similarly, since \mathbb{R}^{+}is a Lie group, \mathcal{S} inherits differentiability structure from it (i.e., \mathcal{S} is a differential manifold).

By way of contrast, the multiplicative structure of \mathbb{R}^{+}is not transferred to \mathcal{S}, since that structure is not invariant under multiplication: in general, for arbitrary $x, y, z \in$ \mathbb{R}^{+},

$$
\begin{equation*}
x \cdot(y \cdot z) \neq(x \cdot y) \cdot(x \cdot z) \tag{9}
\end{equation*}
$$

Again, this makes intuitive sense: we expect statements about adding masses together,

[^7]or about which mass is greater than another, to be well-formed; but not statements about what mass one obtains by multiplying two masses together. ${ }^{22}$

However, although characterising scalar structures as principal homogeneous spaces of a certain kind is a convenient (and potentially illuminating) way of proceeding, one might feel uncomfortable with it as a method: it might be felt that this treatment is insufficiently intrinsic, and that we should instead be characterising these structures through a set of appropriate axioms. I am not wholly convinced by this worry. Effectively, this approach to scalar structures amounts to claiming that any scalar structure is characterised by a certain kind of binary relation that holds between pairs of scalar magnitudes-it is just that the binary relation's possible values have the structure of \mathbb{R}^{+}, rather than that of the set $\left\{\right.$True,False\}. ${ }^{23}$ It is, therefore, a relation with a determinate-determinable structure, just as mass itself is a property with a determinatedeterminable structure. ${ }^{24}$

Nevertheless, for those who do share this worry, an axiomatic treatment of the desired kind is available. In Appendix A, it is shown that scalar structures can alternatively be characterised as complete dense ordered positive semigroups, using a set of axioms that (in essence) are the same as those given by Hölder (1901). That is, we can show that any principal homogeneous space over \mathbb{R}^{+}obeys the relevant axioms, and that any model of the axioms admits a regular action of \mathbb{R}^{+}. I will take this to legitimate the analysis of scalar structures in terms of regular actions of \mathbb{R}^{+}.

4. Scalar Algebra

Thus, a scalar quantity \mathcal{S} is characterised by the fact that it comes equipped with a regular action of \mathbb{R}^{+}. We now use this action to define products and ratios of scalar quantities: this will enable us to define quantities such as total momentum (the product of mass with speed) or density (the ratio of mass to volume). We already have-indeed, we began with-ratios of a given scalar quantity to itself; now, though, we will see how to define products of scalar quantities, and ratios between distinct scalar quantities. So

[^8]suppose that \mathcal{S}_{1} and \mathcal{S}_{2} are two scalar quantities, each equipped with the canonical action. We will denote the product quantity by $\mathcal{S}_{1} \cdot \mathcal{S}_{2}$. To define it, let $\left({ }^{*}, *^{-1}\right)$ denote the following action of \mathbb{R}^{+}on $\mathcal{S}_{1} \times \mathcal{S}_{2}$: for all $x \in \mathbb{R}^{+}, a_{1} \in \mathcal{S}_{1}, a_{2} \in \mathcal{S}_{2}$, acting on $\left(a_{1}, a_{2}\right)$ with x yields
\[

$$
\begin{equation*}
\left(x * a_{1}, x^{-1} * a_{2}\right) . \tag{10}
\end{equation*}
$$

\]

It is straightforward to verify that this is indeed a group action. We then define $\mathcal{S}_{1} \cdot \mathcal{S}_{2}$ as the quotient of $\mathcal{S}_{1} \times \mathcal{S}_{2}$ by this action: that is,

$$
\begin{equation*}
\mathcal{S}_{1} \cdot \mathcal{S}_{2}:=\mathcal{S}_{1} \times \mathcal{S}_{2} /\left(\mathbb{R}^{+} / \mathbb{R}^{+}\right) \tag{11}
\end{equation*}
$$

In other words, we define the product quantity $\mathcal{S}_{1} \cdot \mathcal{S}_{2}$ as a set of pairs-with the proviso that the product defined by the pair $\left(a_{1}, a_{2}\right)$ is the same as the product defined by the pair ($x a_{1}, x^{-1} a_{2}$). We will denote elements of $\mathcal{S}_{1} \cdot \mathcal{S}_{2}$ by expressions of the form $a_{1} \cdot a_{2}$, thereby denoting the equivalence class to which the pair $\left(a_{1}, a_{2}\right)$ belongs: thus, $a_{1} \cdot a_{2}=$ $x a_{1} \cdot x^{-1} a_{2}$.

So far, however, $\mathcal{S}_{1} \cdot \mathcal{S}_{2}$ is a mere set. In order to give it some structure, we now equip it with an action of $\left\langle\mathbb{R}^{+}, \cdot\right\rangle$: namely, for any $x \in \mathbb{R}^{+}, a_{1} \in \mathcal{S}_{1}, a_{2} \in \mathcal{S}_{2}$,

$$
\begin{equation*}
x *\left(a_{1} \cdot a_{2}\right)=\left(x * a_{1}\right) \cdot a_{2} \tag{12}
\end{equation*}
$$

First, this action is well-defined (i.e., is independent of the choice of a_{1} and a_{2}): a few lines of algebra shows that for any $x, y \in \mathbb{R}^{+}$,

$$
\begin{equation*}
x *\left(y * a_{1} \cdot y^{-1} * a_{2}\right)=x *\left(a_{1} \cdot a_{2}\right) \tag{13}
\end{equation*}
$$

Second, the action is regular: it is straightforward to show that for any two products $a_{1} \cdot a_{2}$ and $a_{1}^{\prime} \cdot a_{2}^{\prime}$ (with $a_{1}, a_{1}^{\prime} \in \mathcal{S}_{1}$ and $a_{2}, a_{2}^{\prime} \in \mathcal{S}_{2}$), there is a unique $z \in \mathbb{R}^{+}$such that $z *\left(a_{1} \cdot a_{2}\right)=a_{1}^{\prime} \cdot a_{2}^{\prime}$.

Hence, this action makes the product quantity $\mathcal{S}_{1} \cdot \mathcal{S}_{2}$ into a principal homoegenous space for \mathbb{R}^{+}: or, in other words, the product of two scalar quantities is itself a scalar quantity (as one would expect). As a result, $\mathcal{S}_{1} \cdot \mathcal{S}_{2}$ is equipped with both additive and order structure, just as any scalar quantity is.

The 'ratio' quantity $\frac{Q_{1}}{Q_{2}}$ is defined by a similar method to that used to define the product. This time, let $(*, *)$ denote the following action of \mathbb{R}^{+}on $\mathcal{S}_{1} \times \mathcal{S}_{2}$: for all $x \in \mathbb{R}^{+}$, $a_{1} \in \mathcal{S}_{1}, a_{2} \in \mathcal{S}_{2}$,

$$
\begin{equation*}
x(*, *)\left(a_{1}, a_{2}\right)=\left(x * a_{1}, x * a_{2}\right) \tag{14}
\end{equation*}
$$

We then define

$$
\begin{equation*}
\frac{\mathcal{S}_{1}}{\mathcal{S}_{2}}:=\mathcal{S}_{1} \times \mathcal{S}_{2} /(*, *) \tag{15}
\end{equation*}
$$

Thus, the idea is that the ratio defined by the pair $\left(a_{1}, a_{2}\right)$ is the same as the ratio defined by the pair $\left(x * a_{1}, x * a_{2}\right)$; note the analogy to defining the rational numbers in terms of the natural numbers. Members of $\frac{Q_{1}}{Q_{2}}$ will be denoted by expressions of the form $\frac{a_{1}}{a_{2}}$, this denoting the equivalence class of $\left(a_{1}, a_{2}\right)$.

Again, we define an action of \mathbb{R}^{+}on $\frac{Q_{1}}{Q_{2}}$, according to:

$$
\begin{equation*}
r * \frac{a_{1}}{a_{2}}=\frac{r * a_{1}}{a_{2}} \tag{16}
\end{equation*}
$$

As with the product quantity, it is straightforward to show that this action is both welldefined and regular. So $\frac{Q_{1}}{Q_{2}}$ is also a principal homogeneous space for \mathbb{R}^{+}; thus ratios of scalars are themselves scalars, and any ratio quantity possesses both additive and order structure.

There is a special case, however, which is worth remarking upon. If $\mathcal{S}_{1}=\mathcal{S}_{2}$, then the condition $a_{1}=a_{2}$ is well-posed. Moreover, this condition is preserved under the action $(*, *)$; note, by contrast, that the action $\left(*, *^{-1}\right)$ does not preserve this condition. This means that in the ratio quantity $\frac{\mathcal{S}}{\mathcal{S}}$, the element $\frac{a}{a}$ is naturally privileged. It is therefore a natural choice of unit, which can be used to upgrade $\frac{\mathcal{S}}{\mathcal{S}}$ from a principal homogeneous space for \mathbb{R}^{+}to (a canonical copy of) \mathbb{R}^{+}itself, by equipping it with multiplicative structure. But this makes sense, since quantities of the form $\frac{a_{1}}{a_{2}}$ where $a_{1}, a_{2} \in \mathcal{S}$, are the 'pure' ratios that we met earlier: that is, the ones which are not just a scalar quantity, but a numerical quantity.

5. Vector Quantities

Now, we turn to 'vector' quantities. ${ }^{25}$ We will define a vector quantity to be a quantity whose values constitute a vector space, equipped with a scalar-valued Euclidean norm. For example, the quantity of spatial displacement takes values in a length-valued threedimensional vector space; the quantity of velocity takes values in a three-dimensional speed-valued vector space; and the quantity of temporal displacement takes values in a one-dimensional duration-valued vector space. In general, I will use double-struck typeface to indicate vector quantities, e.g. \mathbb{V}, and boldface to indicate values of those

[^9]quantities, e.g. v. (Similarly, the zero vector in \mathbb{V} will be denoted $\mathbf{0}$.) I will use the same letter, but in script, to denote the scalar quantity in which the vector quantity's norm takes values: thus, the vector quantity \mathbb{V} will have a \mathcal{V}-valued norm.

To say that \mathbb{V} has a \mathcal{V}-valued Euclidean norm means the following. First, we extend the structure \mathcal{V} to its 'null completion' \mathcal{V}_{0} : this is an expansion of \mathcal{V} to $\mathcal{V} \cup\{0\}$, with $<$ and + extended to 0 as follows:

- For all $a \in \mathcal{V}, 0<a$
- For all $a \in \mathcal{V}, 0+a=a+0=a$

This is necessary to allow for the possibility that a vector has null magnitude. We extend the action of \mathbb{R}^{+}to \mathcal{V}_{0} by stipulating that

$$
\begin{equation*}
\lambda \cdot 0=0 \tag{17}
\end{equation*}
$$

and use this definition to extend the scalar algebra of $\S 4$ to null completions; we find that $\mathcal{S} \cdot \mathcal{V}_{0}=\mathcal{S}_{0} \cdot \mathcal{V}_{0}=(\mathcal{S} \cdot \mathcal{V})_{0}$, with $s \cdot 0=0$ and $0 \cdot 0=0$; and $\mathcal{V}_{0} / \mathcal{S}=(\mathcal{V} / \mathcal{S})_{0}$, with $0 / s=0$.

Second, a \mathcal{V}-valued norm is a map $|\bullet|: \mathbb{V} \rightarrow \mathcal{V}_{0}$ which obeys the following conditions for any $\mathbf{v}, \mathbf{w} \in \mathbb{V}, \lambda \in \mathbb{R}$:

$$
\begin{align*}
|\mathbf{v}+\mathbf{w}| & \leq|\mathbf{v}|+|\mathbf{w}| \tag{18a}\\
|\lambda \mathbf{v}| & =|\lambda||\mathbf{v}| \tag{18b}\\
|\mathbf{v}|=0 & \text { iff } \mathbf{v}=\mathbf{0} \tag{18c}
\end{align*}
$$

where $|\lambda|$ is the absolute value of λ. Finally, to say that this norm is 'Euclidean' means that it obeys the parallelogram law: for any $\mathbf{v}, \mathbf{w} \in \mathbb{V}$,

$$
\begin{equation*}
2|\mathbf{v}|^{2}+2|\mathbf{w}|^{2}=|\mathbf{v}+\mathbf{w}|^{2}+|\mathbf{v}-\mathbf{w}|^{2} \tag{19}
\end{equation*}
$$

Note that this definition makes use of the extension of scalar algebra to null completions. This has the useful consequence that \mathbb{V} carries an inner product $\langle\cdot, \cdot\rangle: \mathbb{V} \times \mathbb{V} \rightarrow$ $\mathcal{V} \cdot \mathcal{V}$, defined by the polarisation identity

$$
\begin{equation*}
\langle\mathbf{v}, \mathbf{w}\rangle=\frac{1}{4}\left(|\mathbf{v}+\mathbf{w}|^{2}-|\mathbf{v}-\mathbf{w}|^{2}\right) \tag{20}
\end{equation*}
$$

Indeed, an alternative approach would have been to stipulate that \mathbb{V} carries a $(\mathcal{V} \cdot \mathcal{V})$ valued inner product, rather than a \mathcal{V}-valued norm.

If we define (say) velocities as taking values in one vector space, that clearly can't be quite the same as the vector space in which forces take values, since velocity and force are different quantities. Yet we do want to permit certain kinds of comparisons between forces and velocities: namely, comparisons of direction. For instance, it is physically well-posed to ask whether the force on a ship is in the same direction as the ship's motion, or whether it is at some non-trivial angle, since the answer will affect what happens to the ship subsequently: if the force is directed along the ship's direction of motion, the ship will continue in that direction with increasing speed; if it is angled, the ship will change direction; if it is directly opposed to the ship's motion, the ship will keep the direction but lose speed.

Thus, at certain points in the sequel we will need the notion of a vector quantity's space of directions. We therefore define the 'direction' $\overrightarrow{\mathbf{v}}$ of a vector \mathbf{v} as the equivalence class of \mathbf{v} under positive rescaling:

$$
\begin{equation*}
\overrightarrow{\mathbf{v}}:=\left\{\mathbf{w}=\lambda \mathbf{v}: \lambda \in \mathbb{R}^{+}\right\} \tag{21}
\end{equation*}
$$

The set of directions of \mathbb{V}-i.e., the quotient of \mathbb{V} under this equivalence relation-will be denoted $\overrightarrow{\mathbb{V}}$. If \mathbb{V} is n-dimensional, then $\overrightarrow{\mathbb{V}} \cong S^{n-1} \cup\{0\}$, where S^{n-1} is the $(n-1)$ dimensional unit sphere. Hence, any two vector quantities of the same dimension will have isomorphic spaces of directions; if there is a canonical isomorphism between the directions of \mathbb{V} and those of \mathbb{W} (such as in the case of force and velocity), then we will write $\overrightarrow{\mathbb{V}}=\overrightarrow{\mathbb{W}}$. (We will see in $\S 7$ how such canonical isomorphisms can come about.)

Now that we have the notion of direction, we are able to give precise expression to the classic concept of a vectorial quantity as 'a quantity which is considered as possessing direction as well as magnitude. ${ }^{26}$ In particular, one can uniquely identify any $\mathbf{v} \in \mathbb{V}$ by specifying $|\mathbf{v}|$ and $\overrightarrow{\mathbf{v}}$: if $|\mathbf{w}|=|\mathbf{v}|$ and $\overrightarrow{\mathbf{w}}=\overrightarrow{\mathbf{v}}$, then $\mathbf{w}=\mathbf{v}$. Furthermore, given any magnitude and direction, there exists some vector with that magnitude and direction. We will use this observation below.

6. Vector Algebra

We have seen above how scalar quantities may be combined to form products and ratios. In this section, we consider how scalar and vector quantities may be combined with one another.

Suppose that we wish to combine a scalar quantity \mathcal{S} with a vector quantity \mathbb{V}. In

[^10]this case, we can formulate two further vector quantities: the product quantity $\mathcal{S} \cdot \mathbb{V}$ and the ratio quantity \mathbb{V} / \mathcal{S}. These are defined in essentially the same fashion as above. Thus, the product quantity $\mathcal{S} \cdot \mathbb{V}$ consists of equivalence classes of pairs (a, \mathbf{v}) where $a \in \mathcal{S}$ and $\mathbf{v} \in \mathbb{V}$, where the equivalence relation \sim is
\[

$$
\begin{equation*}
(a, \mathbf{v}) \sim\left(x * a, x^{-1} \mathbf{v}\right) \tag{22}
\end{equation*}
$$

\]

for any $x \in \mathbb{R}^{+}$. As above, we will denote the equivalence class of (a, \mathbf{v}) by $a \cdot \mathbf{v}$.
We wish to show that this constitutes a vector-valued quantity, with a norm taking values in $\mathcal{S} \cdot \mathcal{V}$. So first, we define addition by

$$
\begin{equation*}
a \cdot \mathbf{v}+b \cdot \mathbf{w}:=a \cdot\left(\mathbf{v}+\frac{b}{a} \cdot \mathbf{w}\right) \tag{23}
\end{equation*}
$$

It immediately follows that $a \cdot(\mathbf{u}+\mathbf{v})=a \cdot \mathbf{u}+a \cdot \mathbf{v}$. Second, we define 'scalar multiplication'that is, multiplication of elements of \mathbb{V} by elements of \mathbb{R}-according to

$$
\begin{equation*}
x(a \cdot \mathbf{v}):=a \cdot(x \mathbf{v}) \tag{24}
\end{equation*}
$$

With these definitions, we can prove that $\mathcal{S} \cdot \mathbb{V}$ satisfies the axioms of a vector space. (The proofs are straightforward, if a little tedious; they mostly involve simply using the above definitions and applying the fact that \mathbb{V} is a vector space.) The zero vector is $a \cdot \mathbf{0}$, and the inverse of $a \cdot \mathbf{v}$ is $a \cdot(-\mathbf{v})$.

Our second task is to show that $\mathcal{S} \cdot \mathbb{V}$ comes equipped with an $(\mathcal{S} \cdot \mathcal{V})$-valued norm. We define the norm on $\mathcal{S} \cdot \mathbb{V}$ as follows:

$$
\begin{equation*}
|s \mathbf{v}|:=s \cdot|\mathbf{v}| \tag{25}
\end{equation*}
$$

This takes values in $\mathcal{S} \cdot \mathcal{V}_{0}$, which is canonically isomorphic to $(\mathcal{S} \cdot \mathcal{V})_{0}$, i.e. the null completion of $\mathcal{S} \cdot \mathcal{V}$. Showing that it is a Euclidean norm is straightforward.

By a similar process, we can define the ratio quantity \mathbb{V} / S. This consists of equivalence classes of pairs (\mathbf{v}, a), subject to the equivalence relation

$$
\begin{equation*}
(\mathbf{v}, a) \sim(x \mathbf{v}, x * a) \tag{26}
\end{equation*}
$$

We denote the equivalence class of (\mathbf{v}, a) by $\frac{\mathbf{v}}{a}$. Addition is defined by

$$
\begin{equation*}
\frac{\mathbf{v}}{a}+\frac{\mathbf{w}}{b}:=\frac{\mathbf{v}+\frac{a}{b} \mathbf{w}}{a} \tag{27}
\end{equation*}
$$

'scalar multiplication' is defined by

$$
\begin{equation*}
x \frac{\mathbf{v}}{a}=\frac{x \mathbf{v}}{a}, \tag{28}
\end{equation*}
$$

and the $\frac{\mathcal{V}}{\mathcal{S}}$-valued norm is defined by

$$
\begin{equation*}
\left|\frac{\mathbf{v}}{a}\right|=\frac{|\mathbf{v}|}{a} . \tag{29}
\end{equation*}
$$

Given any $\mathbf{v} \in \mathbb{V}$ and $x \in \mathbb{R}^{+}, \mathbf{v}$ and $x \mathbf{v}$ have (by definition) the same direction. It follows that we can canonically identify the directions of $\mathcal{S} \cdot \mathbb{V}$ and \mathbb{V} / \mathcal{S} with those in \mathbb{V}, according to

$$
\begin{equation*}
\overrightarrow{a \cdot \mathbf{v}}=\overrightarrow{\mathbf{v}}=\frac{\overrightarrow{\mathbf{v}}}{a} ; \tag{30}
\end{equation*}
$$

hence,

$$
\begin{equation*}
\overrightarrow{\mathcal{S} \cdot \overrightarrow{\mathbb{V}}}=\overrightarrow{\mathbb{V}}=\overrightarrow{\left(\frac{\mathbb{V}}{\mathcal{S}}\right)} \tag{31}
\end{equation*}
$$

7. Intrinsic Newtonian Kinematics

We are now in a position to give an intrinsic theory of Newtonian spacetime; and, correspondingly, to give an intrinsic account of quantities of motion. The standard way to define Newtonian spacetime is to first define spatial displacements as forming a three-dimensional Euclidean vector space, and temporal displacements as forming a one-dimensional Euclidean vector space. Then, we define space and time as the 'affine spaces' over these vector spaces. An affine space is the principal homogeneous space for a vector space (regarded as a group, with vector addition as group multiplication): that is, it is a set of points, such that for any two points there is a unique vector defining the 'displacement' between them; and if v is the displacement from a to b, and w the displacement from b to c, then $v+w$ is the displacement from a to c.

We will proceed along similar lines, but rather than using Euclidean vector spaces (with norms taking values in \mathbb{R}^{+}), we will use vector quantities as defined above. So first, we presume two scalar quantities: the quantity \mathcal{L} of 'length', and the quantity \mathcal{D} of 'duration'. Next, we define the quantity of 'spatial displacements' \mathbb{L} to be a threedimensional \mathcal{L}-valued vector quantity, and the quantity of 'temporal displacements' \mathbb{T} to be a one-dimensional \mathcal{D}-valued vector quantity. And finally, we define 'space' to be the affine space X for \mathbb{L}, and 'time' to be the affine space T for \mathbb{T}. Given any two points $x, y \in X$, the spatial displacement between them will be denoted by $y-x$; and given
any points $t, s \in T$, the temporal displacement between them will be denoted by $t-s$.
What about quantities of motion, such as velocity or acceleration? In standard mathematical physics, one can take the space of velocities through an affine space to be the vector space over which that affine space is defined; but this is an artefact of the use of real-valued vector spaces, since the space of displacements has a length-valued norm but the space of velocities should have a speed-valued norm. So, instead, we define velocity to be a ratio quantity: specifically, it is the quantity

$$
\begin{equation*}
\mathbb{V}:=\frac{\mathbb{L}}{\mathcal{D}} \tag{32}
\end{equation*}
$$

i.e., it is the ratio quantity of spatial displacements and durations. As discussed above, this means that \mathbb{V} is a vector quantity, whose set of directions is identifiable with the directions for \mathbb{L}, and whose magnitudes take values in (the null completion of) the scalar quantity $\mathcal{V}:=\mathcal{L} / \mathcal{D}$; this scalar quantity is, of course, the quantity of 'speed'.

Next, we want to know how to define the velocity of some body moving through space over time. To do this, we need to first of all observe that since \mathbb{T} is one-dimensional, its space of directions is simply a three-element set $\{\uparrow, \mathbf{0}, \downarrow\}$ (since $S^{0} \cong\{\uparrow, \downarrow\}$). For any $d \in \mathcal{D}$, let d_{\uparrow} denote the vector in \mathcal{D} with magnitude d and direction \uparrow, and let d_{\downarrow} denote the vector in \mathcal{D} with magnitude d and direction \downarrow. The elements \uparrow and \downarrow represent, of course, the two temporal directions; we make no judgment, however, about which of these directions is 'past' and which is 'future'.

We now define a 'trajectory' as a smooth curve $x: T \rightarrow X$. Then, for any $t \in T$, we define the velocity of this trajectory in direction \uparrow at t to be

$$
\begin{equation*}
\dot{\mathbf{x}}_{\uparrow}(t):=\lim _{\varepsilon \rightarrow 0} \frac{x\left(t+\varepsilon_{\uparrow}\right)-x(t)}{\varepsilon} \tag{33}
\end{equation*}
$$

where ε takes values in \mathcal{D}. The velocity $\dot{\mathbf{x}}_{\downarrow}$ of the trajectory in direction \downarrow at is defined similarly; given that x is smooth, it follows that $\dot{\mathbf{x}}_{\uparrow}=-\dot{\mathbf{x}}_{\downarrow}$. The fact that the velocity is not determined given the trajectory, but is determined only relative to a direction of time, is just an instance of the more general fact that a derivative is defined only relative to a direction. Without a choice for a direction of time, velocities cannot be uniquely represented by vectors. ${ }^{27}$

Similarly, we define the quantity of 'acceleration' to be the ratio quantity

$$
\begin{equation*}
\mathbb{A}:=\frac{\mathbb{V}}{D} \tag{34}
\end{equation*}
$$

[^11]From this, it follows that acceleration is a vector quantity with directions identifiable with the directions for velocity (and hence, with the directions for spatial displacement), and with magnitudes taking values in the scalar quantity $\mathcal{L} / \mathcal{D}^{2}$. And given a trajectory $x: T \rightarrow X$, we define the acceleration at t to be

$$
\begin{equation*}
\ddot{\mathbf{x}}(t):=\lim _{\varepsilon \rightarrow 0} \frac{\dot{\mathbf{x}}_{\uparrow}\left(t+\varepsilon_{\uparrow}\right)-\dot{\mathbf{x}}(t)}{\varepsilon} \tag{35}
\end{equation*}
$$

where, again, ε takes values in \mathcal{D}. Thus, in effect, we define acceleration as the derivative of $\dot{\mathbf{x}}_{\uparrow}$ in the \uparrow direction; we could equally well have defined it as the derivative of $\dot{\mathbf{x}}_{\downarrow}$ in the \downarrow direction, which would have yielded the same association of accelerations to trajectories. (Thus, unlike velocities, accelerations may be uniquely represented by vectors; indeed, it is the fact that Newton's Second Law speaks only of accelerations that means that theories with purely position-dependent forces are time-reversal-invariant.)

8. Intrinsic Newtonian Dynamics

In order to move from kinematics to dynamics-that is, from the pure theory of abstract motion to the theory of forces and causes of motion-we need to introduce a third primitive scalar quantity (to join our two kinematical quantities of length and duration): that of 'mass'. We will denote this quantity by \mathcal{M}. We assume that for every body A, there is not only an associated trajectory $x_{A}: T \rightarrow X$, but also an associated mass $m_{A} \in \mathcal{M}$. This mass is taken to be fixed for all time.

We now use this quantity to define the quantity of 'force'. In order to do so as economically as possible, we will make use of Newton's Second Law, and define the quantity of force as the product of mass with acceleration:

$$
\begin{equation*}
\mathbb{F}:=\mathcal{M} \cdot \mathbb{A} \tag{36}
\end{equation*}
$$

Again, this means that force is a vector quantity whose directions live in the space of spatial directions; its magnitudes take values in the scalar quantity $\mathcal{F}=\mathcal{M} \cdot \mathcal{L} / \mathcal{D}^{2}$.

This definition, however, captures only part of the content of Newton's Second Law. The full assertion of the law states that for any body a, at any time t, there is a quantity associated to it of its 'net force', $\mathbf{F}_{A}(t)$; and that this force is related to A 's acceleration at t via

$$
\begin{equation*}
\mathbf{F}_{A}(t)=m_{A} \ddot{\mathbf{x}}_{A}(t) \tag{37}
\end{equation*}
$$

By itself, this assertion contains essentially no dynamical content. Indeed, as is well-
known, one could even take this as a definition of the notion of 'net force'-and in fact, we will do just that.

However, it acquires dynamical content once one postulates laws concerning how the net force on an object may be computed: for example, the Law of Universal Gravitation. This asserts that any two bodies A and B experience a mutual gravitational attractive force, which is proportional to their masses and inversely proportional to the square of their distance. We may therefore express it as consisting of the following two assertions. The first assertion is that there exists an isomorphism of scalar quantities

$$
\begin{equation*}
G: \frac{\mathcal{M} \mathcal{M}^{2}}{\mathcal{L}^{2}} \rightarrow \mathcal{F} \tag{38}
\end{equation*}
$$

Bearing in mind the definition of \mathbb{F}, we can also express this as an isomorphism between $\mathcal{M}^{2} / \mathcal{L}^{2}$ and $\mathcal{M} / \mathcal{D}^{2}$.

Using this isomorphism, for any (distinct) objects A and B, we let the 'gravitational force of B on A^{\prime} be denoted \mathbf{G}_{A}^{B}, and defined by

$$
\begin{align*}
\left|\mathbf{G}_{A}^{B}\right| & :=G\left(\frac{m_{A} \cdot m_{B}}{\left|x_{B}-x_{A}\right|^{2}}\right) \tag{39a}\\
\overrightarrow{\mathbf{G}_{A}^{B}} & :=\overrightarrow{x_{B}-x_{A}} \tag{39b}
\end{align*}
$$

Second, the gravitational forces on objects must be related to the net forces they experience (which, by the Second Law, are linked to the accelerations they undergo). We do this by asserting that the net force on an object is given by the sum of the gravitational forces on it (from all other objects):

$$
\begin{equation*}
\mathbf{F}_{A}=\sum_{B \neq A} \mathbf{G}_{A}^{B} \tag{40}
\end{equation*}
$$

To summarise, then, the theory we obtain is one which deals in three basic scalar quantities $(\mathcal{L}, \mathcal{D}$, and $\mathcal{M})$, two vector quantities \mathbb{L} and \mathbb{D} taking values in \mathcal{L} and \mathcal{D} respectively, and whatever derivative quantities may arise as algebraic combinations of these. ${ }^{28}$ Each of these quantities, considered individually, admits a large class of automorphisms: in particular, any scalar quantity admits a rescaling as an automorphism. However, in addition to the structure of the individual quantities we also have

[^12]an important piece of 'trans-quantity' structure: the isomorphism G. This will prove significant in differentiating the view here from the naive (unmixed) comparativism that was discussed in $\$ 1 .{ }^{29}$

9. Evaluation and Conclusion

We can now evaluate this theory against the motivations we had for developing it: does it serve its desired purpose? Regarding the first motivation, we can see more or less immediately that it does. This theory is empirically equivalent to standard Newtonian theory, which we can verify by noting that if we make a choice of unit for each of \mathcal{M}, \mathcal{L}, and \mathcal{D}, then the equations governing this theory all reduce to their familiar Newtonian forms. Nor does it appeal to extra-physical entities; only physical quantities, equipped with physically significant structure, appear in the theory.

Proving that it satisfies our second motivation-of having a 'sophisticated' version of absolutism ${ }^{30}$ —is a matter of demonstrating that two models related by a rescaling (of the appropriate kind, as discussed in §1) are isomorphic. So, first, suppose that we have a model of intrinsic Newtonian gravitation. That is, we have:

- primitive scalar quantities \mathcal{M}, \mathcal{L} and \mathcal{D};
- an isomorphism $G: \frac{\mathcal{M} \cdot \mathcal{M}}{\mathcal{L}^{2}} \rightarrow \mathcal{F}$
- a three dimensional \mathcal{L}-valued vector quantity \mathbb{L}, and a one-dimensional \mathcal{D}-valued quantity \mathbb{D};
- affine spaces X and T, based on \mathbb{L} and \mathbb{D} respectively; and
- a set of 'bodies' A, B, C, \ldots, where each body A is associated with a certain mass $m_{A} \in \mathcal{M}$, a smooth trajectory $x_{A}: T \rightarrow X$, and a net force function $\mathbf{F}_{A}: T \rightarrow$ $\mathcal{M} \cdot \mathbb{A}$ defined by (37); and
- for every pair of bodies A, B, a gravitational force function $\mathbf{G}_{A}^{B}: T \rightarrow \mathcal{M} \cdot \mathbb{A}$ given by (39)

[^13]such that equation (40) is obeyed.
Let this model be called K. Suppose that we wish to perform an appropriate joint rescaling of this model, to obtain some rescaled model K^{\prime} : that is, K^{\prime} will be obtained by rescaling \mathcal{M}, \mathcal{L} and \mathcal{T} by factors μ, λ and τ respectively, where $\lambda^{3}=\mu \tau^{2}$. We need to determine what it means to perform such a rescaling, and hence define K^{\prime}.

It is simple enough to define the rescaling of masses: if a body A has a mass m_{A} in K, then in K^{\prime} it has a mass

$$
\begin{equation*}
m_{A}^{\prime}=\mu * m_{A} \tag{41}
\end{equation*}
$$

For lengths, we define a new action \bullet of \mathbb{L} on X, related to the old action \bullet by

$$
\begin{equation*}
1 \bullet^{\prime} y:=\left(\lambda^{-1} * \mathbf{l}\right) \bullet y \tag{42}
\end{equation*}
$$

Let X^{\prime} be the affine space which is numerically identical to X, but with the action of \mathbb{L} given by \bullet ' rather than \bullet. As a result, for any points $x, y \in X$, the displacement between the corresponding points $x^{\prime}, y^{\prime} \in X^{\prime}$ is related to the displacement between x and y via

$$
\begin{equation*}
y^{\prime}-x^{\prime}=\lambda(y-x) \tag{43}
\end{equation*}
$$

We do the same thing for times: times in A^{\prime} take values in an affine space T^{\prime}, numerically identical to T but equipped with a different action of \mathbb{D}, such that for any $t_{1}, t_{2} \in T$ and the corresponding $t_{1}^{\prime}, t_{2}^{\prime} \in T^{\prime}$,

$$
\begin{equation*}
t_{2}^{\prime}-t_{1}^{\prime}=\tau\left(t_{2}-t_{1}\right) \tag{44}
\end{equation*}
$$

We now stipulate that if a body A has a certain trajectory $x_{A}: T \rightarrow X$ in K, then its trajectory in K^{\prime} is given by the corresponding trajectory $x_{A}^{\prime}: T^{\prime} \rightarrow X^{\prime}$ (defined by the condition that for all $t \in T$, the value of x_{A}^{\prime} at the corresponding point $t^{\prime} \in T^{\prime}$ is the point in X^{\prime} corresponding to $x_{A}(t) \in X$).

These stipulations determine the values of the remaining kinematical quantities in A^{\prime}. For any body a, its velocities and acceleration in A^{\prime} are related to its velocities and acceleration in A via

$$
\begin{equation*}
\dot{\mathbf{x}}_{\uparrow}^{A^{\prime}}\left(t^{\prime}\right)=\frac{\lambda}{\tau} \dot{\mathbf{x}}_{\uparrow}^{A}(t), \quad \dot{\mathbf{x}}_{\downarrow}^{A^{\prime}}\left(t^{\prime}\right)=\frac{\lambda}{\tau} \dot{\mathbf{x}}_{\downarrow}^{A}(t) \tag{45}
\end{equation*}
$$

and

$$
\begin{equation*}
\ddot{\mathbf{x}}^{A^{\prime}}\left(t^{\prime}\right)=\frac{\lambda}{\tau^{2}} \ddot{\mathbf{x}}^{A}(t) \tag{46}
\end{equation*}
$$

Next, we can use equations (37) and (39) to calculate the net force and gravitational force upon any body in A^{\prime}. For any body A, it follows from equations (37), (41) and (46)
that the net force upon it is given by

$$
\begin{equation*}
\mathbf{F}_{A}^{\prime}=\frac{\mu \lambda}{\tau^{2}} \tag{47}
\end{equation*}
$$

As for the gravitational force, let A and B be any two bodies. We observe first that

$$
\begin{equation*}
\overrightarrow{x_{B}^{\prime}-x_{A}^{\prime}}=\overrightarrow{x_{B}-x_{A}} \tag{48}
\end{equation*}
$$

and so $\overrightarrow{\mathbf{G}_{A}^{B^{\prime}}}=\overrightarrow{\mathbf{G}_{A}^{B}}$. Second, since G is an isomorphism (of scalar quantities), it commutes with the action of \mathbb{R}^{+}, and so

$$
\begin{align*}
\left|\mathbf{G}_{A}^{B^{\prime}}\right| & =G\left(\frac{m_{A}^{\prime} \cdot m_{B}^{\prime}}{\left(\left|x_{B}-x_{A}\right|^{\prime}\right)^{2}}\right) \tag{49}\\
& =\frac{\mu^{2}}{\lambda^{2}} G\left(\frac{m_{A} \cdot m_{B}}{\left(\left|x_{B}-x_{A}\right|\right)^{2}}\right) \tag{50}\\
& =\frac{\mu^{2}}{\lambda^{2}}\left|\mathbf{G}_{A}^{B}\right| \tag{51}
\end{align*}
$$

It follows that

$$
\begin{equation*}
\mathbf{G}_{A}^{B^{\prime}}=\frac{\mu^{2}}{\lambda^{2}} \mathbf{G}_{A}^{B} \tag{52}
\end{equation*}
$$

Hence, given that $\lambda^{3}=\mu \tau^{2}$, we obtain that

$$
\begin{equation*}
\mathbf{F}_{A}^{\prime}=\sum_{b \neq a} \mathbf{G}_{A}^{B^{\prime}} \tag{53}
\end{equation*}
$$

That is, A^{\prime} satisfies (40), and hence is a model. This also makes clear that if $\lambda^{3} \neq \mu \tau^{2}$, then K^{\prime} is not (in general) a model-i.e., that not all arbitrary rescalings are not symmetries, as desired.

It remains only to show that K^{\prime} is isomorphic to K. For the sake of uniformity in notation, let us denote the 'copy' of \mathcal{M} in which bodies in K^{\prime} take their mass-values as \mathcal{M}^{\prime}. Then our task is to give isomorphisms $f: \mathcal{M} \rightarrow \mathcal{M}^{\prime}, g: X \rightarrow X^{\prime}$ and $h: T \rightarrow T^{\prime}$, such that for any body $A, m_{A}^{\prime}=f\left(m_{A}\right)$ and $x_{A}^{\prime}\left(t^{\prime}\right)=g\left(x_{A}\left(h^{-1}(t)\right)\right)$. For mass, this is simple enough: we let $f: m \mapsto \mu m$, and can see immediately that f is an isomorphism. For g and h, we take them to be the identity-maps on the underlying point-sets; we now need to show that these are isomorphisms of (metric) affine spaces, which in turn requires showing that there is an isomorphism $p: \mathbb{L} \rightarrow \mathbb{L}$ such that for any $\mathbf{l} \in \mathbb{L}$ and $x \in X,{ }^{31}$

[^14]\[

$$
\begin{equation*}
(\mathbf{l} \bullet x)^{\prime}=p(\mathbf{l}) \bullet^{\prime} x^{\prime} \tag{54}
\end{equation*}
$$

\]

We let p be given by $p: \mathbf{1} \mapsto \lambda \mathbf{l}$; the fact that p is an isomorphism of \mathbb{L} then follows from the fact that it is induced by the isomorphism $l \in \mathcal{L} \mapsto \lambda l \in \mathcal{L}$. Hence, $g: X \rightarrow X^{\prime}$ is an isomorphism; by similar reasoning, we can show that $h: T \rightarrow T^{\prime}$ is an isomorphism. Hence, K is isomorphic to K^{\prime}.

Hence, if we are willing to grant the legitimacy of the sophisticationist strategy, then the way is opened up for us to regard models related by a rescaling as representing the same possible world. Whether we should grant that strategy's legitimacy, of course, is a different question. The main purpose of this paper has been to exhibit the formal apparatus above, and to recommend it as a means of giving an intrinsic treatment of physical theories. Although I have only discussed the simple case of Newtonian gravitation in the above, the framework can be straightforwardly extended to at least some other theories, as shows in Appendix B. The extension to more complex theories (e.g. relativity theory, quantum mechanics, or theories set on curved spacetimes) appears less straightforward; I leave that project for future work. ${ }^{32}$

A. Complete Ordered Positive Structures

In this Appendix, I describe some simple axioms that can be used to characterise scalar and numerical quantities (in that order, since that will simplify the presentation, despite the fact that this is the opposite of the order in which these structures are discussed in the main text). ${ }^{33}$

First, scalar structures. A 'complete dense ordered positive semigroup' \mathcal{S} consists of a set S equipped with a binary relation $<$ and a binary operation + , obeying the following axioms:

[^15]1. Total Order. $<$ is both transitive (for all $a, b, c \in S$, if $a<b$ and $b<c$ then $a<c$) and trichotomous (for all $a, b \in S$, exactly one of $a<b, b<a$, or $a=b$ is true).
2. Density. For any $a, c \in S$ such that $a<c$, there is some $b \in S$ such that $a<b<c$.
3. (Dedekind) Completeness. Any non-empty subset $P \subseteq S$ that has an upper bound has a least upper bound. ${ }^{34}$
4. Associativity. For any $a, b, c \in S$,

$$
\begin{equation*}
(a+b)+c=a+(b+c) \tag{55}
\end{equation*}
$$

5. Commutativity. For any $a, b \in S$,

$$
\begin{equation*}
a+b=b+a \tag{56}
\end{equation*}
$$

6. (Strict) Monotonicity. For any $a, b, c \in S$, if $a<b$ then $a+c<b+c$.
7. Solvability. For any $a, b \in S$ such that $a<b$, there is some $c \in S$ such that

$$
\begin{equation*}
a+c=b \tag{57}
\end{equation*}
$$

8. Positivity. For any $a, b \in S$,

$$
\begin{equation*}
a<a+b \tag{58}
\end{equation*}
$$

For ease of comparison with the literature, I note here some simple consequences of these axioms.

Proposition 1. \mathcal{S} is weakly monotone: if $a \leq b$ then $a+c \leq b+c$.
Proof. Immediate from Strict Monotonicity.
Proposition 2. \mathcal{S} is cancellative: that is, if $a+c=b+c$ then $a=b$.
Proof. This follows from Strict Monotonicity and Total Order: if $a \neq b$ then $a<b$ or $b<a$; hence $a+c<b+c$ or $b+c<a+c$; in either case, $a+c \neq b+c$.

Proposition 3. If $a<b$, then there is a unique c such that $a+c=b$; we may therefore introduce the notation $(b-a)$ to denote this unique c.

[^16]Proof. This follows from Solvability and Proposition 2.
Proposition 4. \mathcal{S} has no identity element: that is, for any $a, b \in \mathcal{S}, a+b \neq a$.
Proof. Immediate from Positivity and Total Order: since $a+b>a, a+b \neq a$.
Proposition 5. \mathcal{S} has no least element: that is, for any $a \in \mathcal{S}$, there is some $b \in \mathcal{S}$ such that $b<a$.

Proof. Consider any $a \in \mathcal{S}$. By Density, let c be such that $a<c<a+a$; it follows by Strict Monotonicity that $a+a<a+c$. Now consider $(a+a)-c$. If $(a+a)-c \geq a$, then $a+a \geq a+c$ (by Propostion 1); so by contradiction, $(a+a)-c<a$.

Proposition 6. \mathcal{S} has the Archimedean property. That is, for any $a \in S$, let \mathcal{N}_{a} be the subset of \mathcal{S} defined inductively as the smallest set satisfying the following conditions:

- $a \in \mathcal{N}_{a}$
- for any $n \in \mathcal{N}_{a}, n+a \in \mathcal{N}_{a}$

Then: \mathcal{N}_{a} has no upper bound (for any choice of a).
Proof. Suppose for contradiction that \mathcal{N}_{a} did have such an upper bound. Then by Completeness, it would have a least upper bound; call that least upper bound b. Since $a+a \in \mathcal{N}_{a}, b \geq a+a$; and since $a+a>a$ (by Positivity), $b>a$. Therefore, $(b-a)$ exists.

Now, for all $n \in \mathcal{N}_{a}, n+a \in \mathcal{N}_{a}$, and so $b \geq n+a$. Suppose for contradiction that for some $n,(b-a)<n$. Then $b<n+a$ (by Strict Monotonicity). So we have a contradiction, from which it follows that $(b-a) \geq n$ for all $n \in \mathcal{N}_{a}$; i.e., that $(b-a)$ is an upper bound on \mathcal{N}_{a}. But then, since $(b-a)<b, b$ is not the least upper bound after all. So we have a contradiction, from which the theorem follows.

It is straightforward to verify that $\left\langle\mathbb{R}^{+},<,+\right\rangle$, where $<$and + are the usual order and addition operations, is a complete dense ordered positive semigroup. Hölder (1901) demonstrated that, up to isomorphism, this is the only complete dense ordered positive semigroup.

Theorem 1 (Hölder's Theorem). Let $\mathcal{S}=\langle S, \prec, \oplus\rangle$ be a complete dense ordered positive semigroup. Then \mathcal{S} is isomorphic (as an ordered semigroup) to $\left\langle\mathbb{R}^{+},<,+\right\rangle$. That is, there is a bijection $f: \mathcal{S} \rightarrow \mathbb{R}^{+}$, such that

$$
\begin{align*}
a \prec b & \Leftrightarrow f(a)<f(b) \tag{59}\\
f(a \oplus b) & =f(a)+f(b) \tag{60}
\end{align*}
$$

The isomorphism is unique up to a positive rescaling factor: that is, if $f, g: \mathcal{S} \rightarrow \mathbb{R}^{+}$are two such isomorphisms, then there exists some $x \in \mathbb{R}^{+}$such that for any $a \in \mathcal{S}, g(a)=x \cdot f(a)$.

To connect this to the characterisation of scalar structures in the main text, we desire to show that an ordered semigroup is a complete dense ordered positive semigroup just in case it is a principal homogeneous space for the multiplicative group of \mathbb{R}^{+}(with the order and semigroup operations 'imported' from \mathbb{R}^{+}by the procedure described in the main text). So, first, let S be a principal homogeneous space for the group $\left\langle\mathbb{R}^{+}, \cdot\right\rangle$. Define an order relation \prec and an addition operation \oplus on S as described in the main text. Then using the fact that $\left\langle\mathbb{R}^{+},<,+\right\rangle$is a complete dense ordered positive semigroup, we can easily show that $\langle S, \prec, \oplus\rangle$ is a complete dense ordered positive semigroup. For example, to prove the Density axiom, we suppose that $a \prec c$, i.e. that

$$
\begin{equation*}
\frac{a}{k}<\frac{c}{k} \tag{61}
\end{equation*}
$$

for some arbitrarily chosen $k \in S$. Then by the fact that \mathbb{R}^{+}is dense, there is some $x \in \mathbb{R}^{+}$such that

$$
\begin{equation*}
\frac{a}{k}<x<\frac{c}{k} \tag{62}
\end{equation*}
$$

Since $x=\frac{x * k}{k}$, it follows that

$$
\begin{equation*}
a<x * k<c \tag{63}
\end{equation*}
$$

and so, \mathcal{S} is dense. The proofs for the other axioms are similar.
Second, suppose that \mathcal{S} is a complete dense ordered positive semigroup. By Theorem 1 , let f be an isomorphism from \mathcal{S} to $\left\langle\mathbb{R}^{+},<,+\right\rangle$. Now define an action of $\left\langle\mathbb{R}^{+}, \cdot\right\rangle$ on \mathcal{S} by

$$
\begin{equation*}
x * a:=f^{-1}(x \cdot f(a)) \tag{64}
\end{equation*}
$$

This definition is independent of the choice of f, given that any two isomorphisms are related by a positive rescaling factor. Further, it does indeed define a group action, since

$$
\begin{aligned}
(x y) * a & =f^{-1}(x \cdot y \cdot f(a)) \\
& =f^{-1}(x \cdot f(y * a)) \\
& =x *(y * a)
\end{aligned}
$$

It remains only to show that this action is regular, i.e. that for any $a, b \in S$, there is a
unique $x \in \mathbb{R}^{+}$such that $x * a=b$. For existence, observe that

$$
\frac{f(b)}{f(a)} * a=f^{-1}\left(\frac{f(b)}{f(a)} \cdot f(a)\right)=b
$$

For uniqueness, suppose that $x * a=b$; then,

$$
\begin{aligned}
f^{-1}(x \cdot f(a)) & =b \\
x \cdot f(a) & =f(b) \\
x & =\frac{f(b)}{f(a)}
\end{aligned}
$$

Before we move on, one more point is worth noting. ${ }^{35}$ As Ellis (1966) and (Michell, 1999, chap. 3) discuss, given a scalar structure $\langle S,<,+\rangle$, there will exist alternative addition operations that are compatible with the same order structure: that is, there will exist addition operations $\oplus: S \times S \rightarrow S$ which are distinct from + , yet which are such that $\langle S,<, \oplus\rangle$ is also a scalar structure. Within the group-theoretic framework, this manifests in the fact that given a free and transitive action $*$ of \mathbb{R}^{+}(as a multiplicative group) on some set S, there will exist other free and transitive (multiplicative) actions of \mathbb{R}^{+}on S which induce the same order structure as $*$, but different additive structures. So given a pair of elements $a, b \in S$, what element of \mathbb{R}^{+}should be counted as the ratio of a and b is not determined without a specification of what operation on S is being taken as addition; and that specification is not uniquely fixed by the order structure of S.

This suffices to axiomatically characterise the scalar quantities. I now turn to an axiomatic characterisation of the numerical quantities (in case, as discussed in the text, one does not wish to simply define them as having the structure of the strictly positive real numbers).

Thus, a 'complete ordered positive semifield ${ }^{36} \mathcal{R}$ consists of a set R, equipped with a binary relation $<$ and binary operations + and \cdot, such that:

1. CDOPS. $\langle R,<,+\rangle$ is a complete dense ordered positive semigroup.

[^17]2. Associativity (of multiplication). For any $x, y, z \in S$,
\[

$$
\begin{equation*}
(x \cdot y) \cdot z=x \cdot(y \cdot z) \tag{65}
\end{equation*}
$$

\]

3. Commutativity (of multiplication). For any $x, y \in S$,

$$
\begin{equation*}
x \cdot y=y \cdot x \tag{66}
\end{equation*}
$$

4. Identity. There exists a privileged element $1 \in R$ such that for any $x \in R$,

$$
\begin{equation*}
1 \cdot x=x \tag{67}
\end{equation*}
$$

5. Inverse. For any $x \in R$, there is a unique element $x^{-1} \in R$ such that

$$
\begin{equation*}
x^{-1} \cdot x=1 \tag{68}
\end{equation*}
$$

6. Distributivity. For any $x, y, z \in R$,

$$
\begin{equation*}
x \cdot(y+z)=x \cdot y+x \cdot z \tag{69}
\end{equation*}
$$

7. Compatibility. For any $x, y, z \in R$,

$$
\begin{equation*}
x \cdot z<y \cdot z \tag{70}
\end{equation*}
$$

By Theorem 1, we know that given any complete ordered positive semifield $\langle R, \prec$ $, \oplus, \odot\rangle$, there is an isomorphism of ordered semigroups $f:\langle R, \prec, \oplus\rangle \rightarrow\left\langle\mathbb{R}^{+},<,+\right\rangle$. Taking any such f, let $i: R \rightarrow \mathbb{R}^{+}$be defined by the condition that for any $a \in R$,

$$
\begin{equation*}
i(a)=f(1)^{-1} \cdot f(a) \tag{71}
\end{equation*}
$$

This yields the following result:
Theorem 2. i is an isomorphism of ordered semifields: that is, for any $a, b \in R$,

$$
\begin{align*}
a \prec b & \Leftrightarrow i(a)<i(b) \tag{72}\\
i(a \oplus b) & =i(a)+i(b) \tag{73}\\
i(a \odot b) & =i(a) \cdot i(b) \tag{74}
\end{align*}
$$

The isomorphism is unique: that is, if $h: \mathcal{R} \rightarrow \mathbb{R}^{+}$is an isomorphism (of ordered semifields), then $h=i$.

The proof is merely an adaptation of the proof that there exists a unique isomorphism (of ordered fields) from any complete ordered field to $\mathbb{R} .{ }^{37}$ Thus, any complete ordered positive semifield may be (canonically) identified with \mathbb{R}^{+}; this demonstrates that by axiomatically defining numerical quantities as complete ordered positive semifields, we are fully entitled to treat such quantities as having the structure of \mathbb{R}^{+}.

B. Some Other Intrinsic Theories

Here, I give some further elementary illustrations of the general apparatus developed above, by showing how to define Galilean spacetime, Maxwell spacetime, and the basic laws of electrostatics in an intrinsic fashion.

B.1. Galilean and Maxwell spacetime

As is well-known, Newtonian spacetime structure is, in some ways, not the most appropriate setting for Newtonian theories: a better setting is 'Galilean spacetime' (aka neo-Newtonian spacetime) or 'Maxwell spacetime' (aka Huygensian spacetime). By following the constructions in Saunders (2013), we can easily specify these spacetimes in intrinsic terms. In both cases we begin-as is the case for Newtonian spacetime-by assuming two primitive scalar quantities of length, \mathcal{L}, and duration, \mathcal{D}.

First, to define Galilean spacetime, we consider a four-dimensional vector space G, with a privileged three-dimensional subspace \mathbb{L} equipped with an \mathcal{L}-valued norm. We then equip the quotient space \mathbb{V} / \mathbb{L} with a \mathcal{D}-valued norm, so that it is a (onedimensional) vector quantity. Finally, we take Galilean spacetime to be an affine space G over G.

Second, to define Maxwell spacetime, we consider an \mathcal{L}-valued three-dimensional vector quantity \mathbb{L} and a \mathcal{D}-valued vector quantity \mathbb{D}. We then take Maxwell spacetime to be a set H equipped with

- A free but not transitive action of \mathbb{L} on H, and
- A free, transitive action of \mathbb{D} on the orbits of H under \mathbb{L}.

[^18]
B.2. Electrostatics

In order to treat electrostatics, we need a fourth primitive scalar quantity: 'electrical charge magnitude', \mathcal{Q}. We then introduce 'electrical charge' \mathcal{Q}, a \mathcal{Q}-valued onedimensional vector quantity. Note that as a one-dimensional vector quantity, its space of directions consists of three points: $\overrightarrow{\mathbb{Q}}=\{\mathbf{\Lambda}, \mathbf{0}, \mathbf{\nabla}\}$. (Note that I use different symbols to the case of \mathbb{D}, in order to make clear that there is no canonical isomorphism between $\overrightarrow{\mathbb{Q}}$ and $\overrightarrow{\mathbb{D}}$.)

For the dynamics, we again assume Newton's Second Law (37). To state how electrostatic forces come about, we first introduce Coulomb's constant in the guise of an isomorphism

$$
\begin{equation*}
k_{e}: \frac{\mathcal{Q} \cdot \mathcal{Q}}{\mathcal{L} \cdot \mathcal{L}} \rightarrow \mathcal{M} \cdot \mathcal{A} \tag{75}
\end{equation*}
$$

We now assert that to any two bodies A and B, there are associated electrical charges \mathbf{Q}_{A} and \mathbf{Q}_{B}. The 'electrostatic force of B on A^{\prime} is denoted by \mathbf{E}_{A}^{B}. Its magnitude is defined by

$$
\begin{equation*}
\left|\mathbf{E}_{A}^{B}\right|=k_{e}\left(\frac{\left|\mathbf{Q}_{A}\right| \cdot\left|\mathbf{Q}_{B}\right|}{\left|x_{B}-x_{A}\right|^{2}}\right) \tag{76}
\end{equation*}
$$

Its direction is given by the familiar rule: opposite charges attract, like charges repel. To enable a compact statement of this, let us define the following map $\circ: \overrightarrow{\mathbb{Q}} \times \overrightarrow{\mathbb{Q}} \rightarrow$ $\{-1,1\}$:

$$
\begin{align*}
& \mathbf{\Delta} \circ \boldsymbol{\Delta}=\boldsymbol{\nabla} \circ \boldsymbol{\nabla}=-1 \tag{77}\\
& \mathbf{\Delta} \circ \boldsymbol{\nabla}=\boldsymbol{\nabla} \circ \boldsymbol{\Delta}=1 \tag{78}
\end{align*}
$$

Then we can state that the direction of the electrostatic force is given by

$$
\begin{equation*}
\overrightarrow{\mathbf{E}_{A}^{B}}=\left(\overrightarrow{\mathbf{Q}_{A}} \circ \overrightarrow{\mathbf{Q}_{B}}\right) \cdot \overrightarrow{x_{B}-x_{A}} \tag{79}
\end{equation*}
$$

Finally, as with the gravitational theory, we assert that the net force is just the sum of the electrostatic forces: for any bodies A and B,

$$
\begin{equation*}
\mathbf{F}_{A}=\sum_{B \neq A} \mathbf{E}_{A}^{B} \tag{80}
\end{equation*}
$$

Acknowledgments

Thanks to audiences at the MCMP work-in-progress seminar, the LSE Sigma Club, the MCMP Colloquium in Logic and Philosophy of Science, and the metaphysics graduate seminar at Princeton. I'm also grateful to two anonymous reviewers for their helpful comments and suggestions. This research was partially conducted during a period as a Junior Researcher in Residence at LMU's Center for Advanced Studies. Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)—Projektnummer 392413352 (supported through the German Research Foundation, project number 392413352).

Neil Dewar
Munich Center for Mathematical Philosophy
LMU Munich, Germany
neil.dewar@lrz.uni-muenchen.de

References

Arntzenius, F. and Dorr, C. [2012]: 'Calculus as Geometry', in Space, Time, and Stuff, Oxford, UK: Oxford University Press.

Baker, D. J. [unpublished-a]: ‘Comparativism with Mixed Relations'.
Baker, D. J. [unpublished-b]: 'Some Consequences of Physics for the Comparative Metaphysics of Quantity', PhilSci-Archive, 12674 http://philsci-archive.pitt. edu/12674/.

Balaguer, M. [1996]: ‘Towards a Nominalization of Quantum Mechanics', Mind, 105(418), pp. 209-226.

Beisbart, C. [2009]: ‘How to Fix Directions Or Are Assignments of Vector Characteristics Attributions of Intrinsic Properties?', Dialectica, 63(4), pp. 503-524.

Bourbaki, N. [1998]: General Topology: Chapters 5-10, Springer Science \& Business Media.

Chen, E. K. [unpublished]: 'The Intrinsic Structure of Quantum Mechanics', arXiv, 1810.06551 http://arxiv.org/abs/1810.06551.

Clifford, A. H. [1958]: ‘Totally Ordered Commutative Semigroups', Bulletin of the American Mathematical Society, 64(6), pp. 305-317.

Cocco, L. and Babic, J. [2021]: 'A System of Axioms for Minkowski Spacetime', Journal of Philosophical Logic, 50(1), pp. 149-185.

Dasgupta, S. [2013]: 'Absolutism vs. Comparativism about Quantity', in Oxford Studies in Metaphysics, Vol. 8, Oxford: Oxford University Press.

Dasgupta, S. [2016]: 'Symmetry as an Epistemic Notion (Twice Over)', The British Journal for the Philosophy of Science, 67(3), pp. 837-878.

Dewar, N. [2019]: ‘Sophistication about Symmetries’, The British Journal for the Philosophy of Science, 70(2), pp. 485-521.

Eddon, M. [2014]: 'Intrinsic Explanations and Numerical Representations', in R. M. Francescotti (ed.), Companion to Intrinsic Properties, Berlin, Boston: De Gruyter.

Ellis, B. [1966]: Basic Concepts of Measurement, Cambridge: Cambridge University Press.
Field, H. [1980]: Science Without Numbers: A Defence of Nominalism, Oxford: Blackwell Publishers Ltd.

Forrest, P. and Armstrong, D. M. [1987]: 'The Nature of Number', Philosophical Papers, 16(3), pp. 165-186.

Fuchs, L. [1963]: Partially Ordered Algebraic Systems, Oxford: Pergamon Press.
Gibbs, J. W. [1960]: Vector Analysis, New York: Dover.
Hebisch, U. and Weinert, H. J. [1996]: 'Semirings and Semifields', in M. Hazewinkel (ed.), Handbook of Algebra, vol. 1 of Handbook of Algebra, North-Holland, pp. 425-462.

Hofmann, K. H. and Lawson, J. D. [1996]: ‘Linearly Ordered Semigroups: A Historical Overview', in K. H. Hofmann and M. W. Mislove (eds), Semigroup Theory and Its Applications: Proceedings of the 1994 Conference Commemorating the Work of Alfred H. Clifford, no. 231 in London Mathematical Society Lecture Note Series, Cambridge: Cambridge University Press, pp. 15-39.

Hölder, O. [1901]: ‘Die Axiome Der Quantität Und Die Lehre Vom Maß', Berichte über die Verhandlungen der Königlich Süchsichen Gesellschaft der Wissenschaften zu Leipzig, Mathematisch-Physikalische Classe, 53, pp. 1-64.

Jacobs, C. [2019]: Gauge and Explanation: Can Gauge-Dependent Quantities Be Explanatory?, BPhil thesis, University of Oxford, https://ora.ox.ac.uk/objects/uuid: f7924516-d5ac-4772-8a80-68dfbabf6035.

Krantz, D. H., Luce, R. D. and Suppes, P. [1971]: Foundations of Measurement, vol. 1 of Foundations of Measurement San Diego: Academic Press, Inc.

Malament, D. B. [2004]: ‘On the Time Reversal Invariance of Classical Electromagnetic Theory', Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 35(2), pp. 295-315.

Martens, N. C. M. [2017]: ‘Regularity Comparativism about Mass in Newtonian Gravity', Philosophy of Science, 84(5), pp. 1226-1238.

Martens, N. C. M. [2018]: ‘Against Laplacian Reduction of Newtonian Mass to Spatiotemporal Quantities', Foundations of Physics, 48(5), pp. 591-609.

Martens, N. C. M. [2019]: ‘The (Un)Detectability of Absolute Newtonian Masses', Synthese.

Martens, N. C. M. [forthcoming]: 'Machian Comparativism about Mass', The British Journal for the Philosophy of Science.

Martens, N. C. M. and Read, J. [2020]: ‘Sophistry about Symmetries?’, Synthese.
Michell, J. [1994]: ‘Numbers as Quantitative Relations and the Traditional Theory of Measurement', The British Journal for the Philosophy of Science, 45(2), pp. 389-406.

Michell, J. [1999]: Measurement in Psychology: A Critical History of a Methodological Concept, Cambridge: Cambridge University Press.

Michell, J. [2004]: ‘History and Philosophy of Measurement: A Realist View', in 10th IMEKO TC7 International Symposium, pp. 3-9. St Petersburg, Russia.

Michell, J. and Ernst, C. [1996]: ‘The Axioms of Quantity and the Theory of Measurement: Translated from Part I of Otto Hölder's German Text "Die Axiome Der Quantität Und Die Lehre Vom Mass"', Journal of Mathematical Psychology, 40(3), pp. 235252.

Mundy, B. [1983]: ‘Relational Theories of Euclidean Space and Minkowski Spacetime’, Philosophy of Science, 50(2), pp. 205-226.

Perry, Z. R. [2015]: 'Properly Extensive Quantities', Philosophy of Science, 82(5), pp. 833-844.

Pooley, O. [2006]: 'Points, Particles, and Structural Realism', in D. Rickles, S. French and J. Saatsi (eds), The Structural Foundations of Quantum Gravity, Oxford, UK: Oxford University Press, pp. 83-120.

Roberts, J. T. [2008]: ‘A Puzzle about Laws, Symmetries and Measurability', The British Journal for the Philosophy of Science, 59(2), pp. 143-168.

Roberts, J. T. [unpublished]: 'A Case for Comparativism about Physical Quantities', https://www.academia.edu/28548115/A_Case_for_Comparativism_about_ Physical_Quantities_SMS_2016_Geneva.

Saunders, S. [2013]: 'Rethinking Newton's Principia', Philosophy of Science, 80(1), pp. 22-48.

Spivak, M. [1994]: Calculus, Houston: Publish or Perish, Inc., 3rd edition.
Wolff, J. [2015]: 'Spin as a Determinable', Topoi, 34(2), pp. 379-386.
Wolff, J. E. [2020]: The Metaphysics of Quantities, Oxford, New York: Oxford University Press.

[^0]: *Forthcoming in The British Journal for the Philosophy of Science, DOI https://doi.org/10.1086/715236.

[^1]: ${ }^{1}$ (Field, 1980, p.p. 55-56)
 ${ }^{2}$ For a compelling case that nominalism in Field's sense is not a good approach to the metaphysics of quantity, see (Wolff, 2020, chap. 7).
 ${ }^{3}$ This description of the debate is rather compressed and rough: for further discussion and nuance, see Dasgupta (2013), Roberts (unpublished), Martens (2017), Martens (2018), (Wolff, 2020, chap. 8), Jacobs (2019), Baker (unpublished-a).

[^2]: ${ }^{4}$ Dasgupta (2013).
 ${ }^{5}$ Roberts (2008); Dasgupta (2016); Martens (2019)
 ${ }^{6}$ In the context of the recent absolutism-comparativism debate, this observation was first made by Baker (unpublished-b); for an extended discussion, see Martens (2019).
 ${ }^{7}$ Empirically accessible, that is, by means of gravitational phenomena.

[^3]: ${ }^{8}$ The same observation applies to Roberts' proposal that 'The reasonable comparativist will not say that just any old rescaling of dimensional quantities will leave everything unchanged; she says only that uniform rescalings do' (Roberts, unpublished, p. 11), where a uniform rescaling is (roughly) one which rescales the relevant constants of nature along with the quantities, in such a way as to preserve the laws. Certainly, holding that only uniform rescalings leave things the same is a much more compelling position; but the problem is whether the comparativist can indeed be reasonable in this fashion, given that two worlds related by a non-uniform rescaling will agree on all quantity-ratios.
 ${ }^{9}$ See Martens (forthcoming) and Jacobs (2019) for further discussion.
 ${ }^{10}$ Baker (unpublished)
 ${ }^{11}$ Although I suspect that the apparatus developed here will be useful for doing so, in any event (see footnote 29-so even hardcore comparativists should be interested in the below.
 ${ }^{12}$ (Wolff, 2020, chap. 8) also defends this 'third way' in the absolutism-comparativism debate, and gives a much more detailed discussion of the metaphysical (and meta-metaphysical) issues that are at stake here.

[^4]: ${ }^{13}$ Pooley (2006)
 ${ }^{14}$ For sophisticated substantivalism, see Pooley (2006); for more on the application of this idea to rescalings, see Wolff (2020), Jacobs (2019) and Jacobs (2019). For a critical discussion of the application of sophistication to arbitrary symmetries, see Martens and Read (2020).
 ${ }^{15} \mathrm{We}$ could call this position 'sophisticated absolutism'; or, if we take it to be constitutive of absolutism that rescalings generate new possible worlds, then we could follow Wolff (2020) and call it 'sophisticated substantivalism' (about quantities).
 ${ }^{16}$ Thanks to an anonymous referee for pressing me on this point.

[^5]: ${ }^{17}$ There is a notable element missing here: the issue of how one is to multiply vectors by one another, i.e. how to define scalar or tensor products. I leave this issue for future work.
 ${ }^{18}$ This is an interestingly different kind of non-intrinsicality to the kind discussed in $\S 1$: the issue is not that \mathbb{R} has surplus structure relative to a given numerical quantity, but rather that it has surplus members. In model-theoretic terminology, the issue is that we want a numerical quantity to have the form of a substructure of \mathbb{R}, not that we want it to have the form of a reduct of \mathbb{R}.

[^6]: ${ }^{19}$ That said, there is one important limitation: this argument is limited to ratios of extensive quantities, and it supposes that the empirical correlate of addition is direct concatenation. How to justify the structure of intensive quantities such as temperature, and what to say about 'deviant' addition operations (like those discussed in Ellis (1966) and Michell (1999)), are further questions beyond the scope of this paper. For a more detailed discussion of the concept of extensive quantity (and an argument that the above is too glib in treating mass and length analogously), see Perry (2015); for more on deviant addition operations, see (Krantz et al., 1971, §3.9), Eddon (2014), and (Wolff, 2020, chap. 9).

[^7]: ${ }^{20}$ There is something of a pun here: we may read this as the choice of a 'unit of quantity' (e.g. the choice of some particular quantity of mass to serve as our unit of mass), or as the choice of an element of \mathcal{S} to serve as multiplicative unit (i.e. group identity).
 ${ }^{21}$ They do, however, depend on what action of \mathbb{R}^{+}on S is being used; this tracks the possibility of introducing different order or additive structures onto S. See Appendix A.

[^8]: ${ }^{22}$ This inn't to say that no sense can be made of multiplying two masses together: just that the answer, whatever it is, will not itself be a mass. Indeed, in section 4 we shall see how to construct the quantity of 'mass-squared', in which the products of masses live.
 ${ }^{23}$ Indeed, it has been suggested that the real numbers might be defined as magnitude-ratios, i.e. as the values of this relation (Forrest and Armstrong, 1987; Michell, 1994). For further discussion of the idea that scalar quantities may be understood as magnitudes characterised by their standing in ratio-relations, see Michell (2004).
 ${ }^{24}$ Although see (Wolff, 2020, chap. 9) for reasons to think that determinate-determinable structure is not very useful as a way of thinking about the metaphysics of quantities.

[^9]: ${ }^{25}$ For further discussion of the metaphysics of vector quantities, see Beisbart (2009). The account here is primarily concerned with vector quantities that arise in classical physics; for an illuminating discussion of the metaphysics of quantum-mechanical spin, see Wolff (2015).

[^10]: ${ }^{26}$ (Gibbs, 1960, p. 1)

[^11]: ${ }^{27}$ See the discussion in (Field, 1980, §8.D) and Malament (2004).

[^12]: ${ }^{28}$ Note that (as announced at the start), one would perhaps be hard-pressed to describe the framework here as 'nominalist'; it is in helping itself to a whole array of quantities, rather than seeking to always express things in terms of relations between concrete particulars, that the framework developed here most clearly diverges from that of Field (1980). However, a more detailed assessment of the relationship between the two would require more space than is available here.

[^13]: ${ }^{29}$ Note that since G is an isomorphism between $\mathcal{M}^{2} / \mathcal{L}^{2}$ and $\mathcal{M} \cdot \mathcal{L} / \mathcal{D}^{2}$, it follows (after straightforward algebraic manipulation) that we obtain a correspondence between \mathcal{L}^{3} and $\mathcal{M} \cdot \mathcal{D}^{2}$. Since such a correspondence was identified as exactly what the (mixed) comparativist would need, I suspect that the theory worked out here could be used as a basis for developing an empirically adequate form of comparativism.
 ${ }^{30}$ As discussed in $\S 1$, if one takes it to be constitutive of absolutism that rescalings are not isomorphism, then sophisticated absolutism is a contradiction in terms; in that case, a better term would be Wolff's 'sophisticated substantivalism' Wolff (2020).

[^14]: ${ }^{31}$ Recall that an isomorphism between metric affine spaces A and B, over normed vector spaces \mathbb{V} and

[^15]: \mathbb{W} respectively, consists of an bijection $j: A \rightarrow B$ and an isomorphism $k: \mathbb{V} \rightarrow \mathbb{W}$ such that for any $\mathbf{v} \in \mathbb{V}$ and $a \in A$,

 $$
 j(v \bullet a)=k(v) \bullet j(a) ;
 $$

 equivalently, such that for any $a, b \in A$,

 $$
 k(b-a)=j(b)-j(a)
 $$

 ${ }^{32}$ For intrinsic treatments of relativistic spacetime, see Mundy (1983) and Cocco and Babic (2021); for quantum mechanics, see Balaguer (1996) and Chen (unpublished); and for curved geometry, see Arntzenius and Dorr (2012).
 ${ }^{33}$ The results cited here are originally due to Hölder (1901) (translated in Michell and Ernst (1996)); for further discussion, see Clifford (1958), Fuchs (1963), Krantz et al. (1971), Hofmann and Lawson (1996), Bourbaki (1998, §5.2), (Wolff, 2020, chap. 5) and references therein.

[^16]: ${ }^{34} a \in R$ is an 'upper bound' of S if $a \geq b$ for all $b \in S$; and an upper bound a is a 'least upper bound' of S if, for any upper bound c of $S, a \leq c$. (Where \leq is defined, as per usual, by the condition that $a \leq b$ iff $a<b$ or $a=b$.)

[^17]: ${ }^{35} \mathrm{My}$ thanks to an anonymous referee for pressing me to think about this issue.
 ${ }^{36}$ The terminology here follows Hebisch and Weinert (1996), according to which a semifield is an algebraic structure in which addition is a semigroup and multiplication is a group, with addition distributing over multiplication (i.e. a field, but without the requirement of additive inverses). Note, in particular, that we do not require that a semifield should contain an additive identity.

[^18]: ${ }^{37}$ For example, that given in (Spivak, 1994, chap. 30).

