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Sequencing Data

Samuel Peter Watcham

Haematopoietic stem cells are responsible for producing and sustaining the diverse array
of cell types present in the adult blood system. This complex process requires the strict
regulation of haematopoietic fate decisions and differentiation trajectories in order to maintain
a healthy state. Haematological malignancies such as leukaemia are associated with various
perturbations that disrupt this regulation and drive aberrant cell fate decisions, leading to
disease. Much of this dysregulation is proposed to occur at the transcriptional level, and
recent technological advancements in single-cell sequencing have made it possible to study
the transcriptional effects of leukaemic perturbations at the scale of individual haematopoietic
stem and progenitor cells. However, the mechanisms through which specific perturbations
lead to dysregulation of the blood system remain poorly understood.

The primary aim of this work was to build an integrative computational framework
for the analysis and comparison of leukaemic perturbations of the murine blood system as
measured by single-cell RNA sequencing. Presented in Chapter 3, this framework aims to
dissect the perturbation response across different scales – from individual genes to specific
progenitor cell types to the entire blood system – and allow informative comparisons to be
made about the similarities and differences between several perturbations. In total, eight
genetic perturbations known to associate with leukaemia were analysed, resulting in novel
biological insights concerning the behaviour of coordinated gene modules and the cellular
abundance shifts driven by them.

As many leukaemic drivers act directly upon the most immature long-term haematopoietic
stem cells, a highly targeted analysis of these cells was performed across the leukaemic
perturbations. In Chapter 4 a novel computational pipeline was built to link FACS-sorted cell
populations and single-cell transcriptional landscapes. Using this, the cellular and molecular
responses of the perturbations were investigated, resulting in several novel hypotheses. For
example, the data suggests that many leukaemic perturbations gain a competitive advantage
against wild-type cells by pushing their MPP1 cells into more active states. Additionally the
data suggests that increases in the transcriptional variability of blood stem cells is associated
with pro-erythroid fate decision shifts and vice-versa.
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Many different types of haematopoietic perturbations exist and can drive disease pro-
gression in the blood system. Chapter 5 focuses on single-cell RNA sequencing data from
three further perturbations in various settings, including an infection model of Malaria and a
model susceptible to endogenous DNA damage by aldehydes. These analyses have driven
and validated bodies of experimental work, and comparing them to the previously described
perturbation models highlighted both conserved changes and differences in the response of
the haematopoietic system across different perturbation settings.

The final project aimed to improve upon current computational methods for cellular
trajectory inference from single-cell data. Whilst high-throughput experiments allow for
the sequencing of large cell numbers, this is balanced by the sparse and noisy nature of the
returned data. Current methods perform poorly on such datasets and either cannot deal with
large cell numbers or cannot extract enough relevant signal from sparse count matrices. A new
computational tool was designed to work best on these large, sparse datasets, and infer the
most likely cellular trajectories through snapshot sequencing data using an iterative process.
In Chapter 6 this algorithm was applied to different systems including adult haematopoiesis,
and was compared to state-of-the-art methods.

Overall, this thesis has investigated the transcriptional consequences of numerous pre-
leukaemic perturbations on the haematopoietic stem and progenitor cell compartment at the
single-cell level. New methods have been built for integration of single-cell perturbation
experiments and their analysis across different biological scales. This has revealed novel
biological insights regarding the mechanisms underpinning leukaemic transformation of the
blood system.
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Chapter 1

Introduction

Parts of this chapter have been adapted from Watcham et. al. (2019), which was written by
Sam Watcham during this PhD with input from Iwo Kucinski.

1.1 Adult haematopoiesis

1.1.1 Emergence of the haematopoietic tree

Each day, the average human body produces an incredible one trillion (1012) blood cells,
in a process known as haematopoiesis (Doulatov et al., 2012). This enormous turnover is
required to sustain the key functions of the blood system including oxygen transport, immune
protection and wound healing. Associated with these functions are a myriad of blood cell
types, each with their specific roles, processes and complexities.

Over 150 years, haematopoietic research has been significantly driven by new techno-
logical breakthroughs. The very earliest microscopy-based experiments in the 19th century
established that blood was composed of two bone-marrow derived lineages: myeloid and
lymphoid, potentially arising from a cell of common origin (Boisset and Robin, 2012). It was
not until the 1950s - in the shadow of new, nuclear-weapon driven discoveries concerning the
effects of ionising radiation - that this hypothesis was confirmed through bone marrow trans-
plantation rescue of lethally irradiated mice (Jacobson et al., 1951; Urso and Congdon, 1956).
This proved that within the bone marrow, there are cells capable of both self-renewal and
differentiation towards all major blood lineages. Today these are known as haematopoietic
stem cells (HSCs).

Subsequent in vitro assays suggested the existence of cells representing intermediate
stages between HSCs and fully mature, differentiated blood cells that exhibited limited self
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Fig. 1.1 The haematopoietic tree. Schematic showing one of the classic views of the
haematopoietic cell hierarchy. Dashed boxes show 3 compartments encompassing cells of
different potency: multipotent cells on top, bipotent/oligopotent cells in the middle, and
terminally differentiated (unipotent) cells at the bottom. CMP, common myeloid progeni-
tor; CLP, common lymphoid progenitor; GMP, granulocyte-monocyte progenitor; LMPP,
lymphoid-primed MPP; MEP, megakaryocyte-erythroid progenitor.

renewal or restricted potential. However, it was not until the development of cell sorting
techniques using cell surface markers that a clear biological understanding of haematopoiesis
began to form (Julius et al., 1972; Kohler and Milstein, 1975). By the earliest years of the
21st century, the concept of the ‘haematopoietic tree’ had become rooted in the field, with the
self-renewing, multipotent HSC at the top of this cellular hierarchy (Eaves, 2015). Within
this model, HSCs undergo stepwise differentiation along a number of possible bifurcations
towards specific terminal fates, gradually losing both their self-renewal capacity and lineage
potential (Figure 1.1). The aforementioned HSC state had been further subdivided into long-
term HSCs (LT-HSC) capable of indefinite self-renewal in transplantation assays, short-term
HSCs (ST-HSC) with limited self-renewal abilities, and multipotent progenitors (MPPs),
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which displayed minimal self-renewal but nonetheless maintained an ability to differentiate
into all the main blood lineages (Nimmo et al., 2015; Orkin and Zon, 2008; Wilson et al.,
2008). Below these a number of further progenitor states had been defined using specific
surface marker combinations, including common myeloid progenitors (CMP), capable of
producing both myeloid and erythroid but not lymphoid cells, and common lymphoid
progenitors (CLP), which were restricted in the opposite manner (Akashi et al., 2000; Kondo
et al., 1997).

Due to the simplistic appeal of the bifurcating tree model, the ease with which specific
cell populations can be sorted and the sophisticated culture conditions applicable to blood
cells, the haematopoietic system has become one of the most used model systems within
stem cell biology. Over the past fifteen years, the haematopoietic tree has been subject
to constant refinements, largely as a result of further technological breakthroughs. Chief
amongst these is the development of high-throughput single-cell assays, the impact of which
will be discussed in section 1.2. In parallel, the ability to barcode individual blood cells has
led to the development of in vivo clonal tracking experiments, capable of gaining insight into
unperturbed haematopoiesis in a native setting. Together these approaches have ushered in a
new era of haematopoietic research.

1.1.2 Extrinsic and intrinsic control of cell fate decisions

During the process of differentiation from a HSC state towards a fully mature blood cell,
multiple key fate decisions must be made. At the population level, this process must be
tightly controlled in order to regulate the abundances of each mature cell type. Failure to do
this can drive disease, and many haematological malignancies exhibit clear dysregulation of
homeostatic fate decisions (Sperling et al., 2017). However, at the level of individual cells,
the processes driving these fate decisions are believed to be stochastic, dependent on both
cell-extrinsic and cell-intrinsic factors (Simons and Clevers, 2011).

Within the blood system, it is clear that the long-term self-renewal abilities of HSCs are
highly dependent on cell-extrinsic signals mediated by their neighbours and their spatial
location. Propagation of LT-HSCs in vitro is extremely challenging, and the existence of
several types of HSC ‘niches’ within the bone marrow have been proposed (Kiel et al., 2005;
Seita and Weissman, 2010; Zhang et al., 2003). It has been shown that HSCs require factors
secreted by stromal and endothelial cells within the bone marrow to effectively maintain their
HSC state, and that differences in the cytokines received by HSCs in different niches regulates
their function and fate biases (Asada et al., 2017; Ding et al., 2012). For example, Pinho
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et. al described separate niches for myeloid-biased and lymphoid-biased HSCs occupied by
megakaryocytes and arterioles respectively (Pinho and Frenette, 2019; Pinho et al., 2018).
Furthermore, signalling between HSCs and bone marrow stromal cells has been implicated
in the decreased erythro- and lympho-poiesis displayed by HSCs as they age (Valletta et al.,
2020). The specific physical properties of a HSCs’ microenvironment, such as oxygen levels,
are also known to play an important role in regulating HSC quiescence and self-renewal
(Gezer et al., 2014).

Alongside these extrinsic factors, numerous intrinsic processes are believed to play a role
in cell fate decision-making. A large amount of work has gone into defining the key molecular
drivers of haematopoietic fate decisions, with particular focus on regulation via the expression
of key transcription factors for both HSCs and more mature progenitors (Menendez-gonzalez
et al., 2019). Core regulatory networks underpinning the cellular identity of many blood
lineages have been proposed, such as a pro-erythroid network involving GATA1, KLF1 and
SCL (encoded by Tal1), a pro-megakaryocytic network involving FLI1 and PU.1, and a
pro-granulocyte network involving GFI1 and GFI1B (Dore and Crispino, 2011; Meer et al.,
2010; Wilson et al., 2010). The antagonistic roles of GATA1 and PU.1 in deciding between
myeloid and erythroid fates has been particularly well-studied (Burda et al., 2010). The exact
role that these and other transcription factors play in lineage commitment remains a topic of
great debate, with more recent studies suggesting that their expression only reinforces fate
decisions, rather than initiating them (Hoppe et al., 2016).

The current paradigm of haematopoietic fate decisions suggest that multipotent cells such
as HSCs and MPPs display low-level expression of genes and/or transcription factors relating
to distinct lineages, one of which ‘wins out’ due to intrinsic or extrinsic stochastic fluctuations
(Moignard et al., 2013; Nimmo et al., 2015). Further cell-intrinsic mechanisms such as
epigenetic regulation are increasingly thought to play a key role in lineage commitment
by granting or withdrawing access to certain regulatory regions through DNA methylation,
histone modification or chromatin conformation changes (Izzo et al., 2020). However, it
is clear that despite the advancements brought about through single-cell techniques in the
past fifteen years, the exact mechanisms through which blood cells make their fate decisions
remain incompletely understood (Laurenti and Göttgens, 2018).
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1.2 The single-cell revolution

1.2.1 Single cell experimental methods

To understand haematopoietic fate decisions at the level of single cells, methods were
required that could measure some aspect of an individual cell’s state, such as its transcriptome,
proteome or epigenome. This is challenging given the minimal amount of material involved;
a typical blood cell contains only a few picograms (10−12g) of RNA (Livesey, 2003). Hence
for many years, studies relied on bulk methods that captured population averages for a group
of cells sorted on the basis of specific surface markers, leaving any heterogeneity amongst
cells within the population obscured.

Some of the first single-cell transcriptional studies were performed using amplified
RNA from haematopoietic cells to qualitatively compare transcript abundance (Brady et al.,
1990). Technological improvements turned this idea into a quantitative single-cell approach
known as single-cell quantitative reverse transcription polymerase chain reaction (qRT-PCR)
(Hu et al., 1997). After reverse transcription of a cell’s RNA, primers targeting specific
genes are added and amplified using PCR alongside fluorescent reporter probes that allow
quantification of the relative transcript levels of each targeted gene. Modern single-cell qRT-
PCR techniques use microfluidics to optimise experimental throughput and multiplexing,
allowing measurements of over 100 genes to be made in each cell with high signal to noise
ratio (Guo et al., 2013; Ståhlberg and Bengtsson, 2010). Single-cell qRT-PCR has been widely
applied in haematopoietic contexts (Moignard et al., 2013; Wilson et al., 2015), however the
targeted nature of the method requires genes of interest to be selected beforehand, limiting
its use for the novel identification of molecular drivers involved in haematopoiesis.

Parallel to these developments in transcriptional profiling, advancements in fluorescent-
activated cell sorting (FACS) technologies led to the concept of index sorting, where the
expression of up to 30 surface proteins can be measured for individual cells, prior to being
sorted into individual wells for use in downstream functional or genomic assays (Osborne,
2010). This offers the opportunity to link surface marker profiles to functional output,
transplantation ability or whole-transcriptome profiles (Nestorowa et al., 2016; Schulte et al.,
2015; Wilson et al., 2015). Here the number of proteins measured is limited by the acquisition
and delineation of different fluorophores to be used for sorting. Similarly, mass cytometry
techniques - whereby protein antibodies are conjugated with heavy metal isotopes and
quantified using mass spectrometry - have typically been limited to measuring the abundance
of around 40 proteins per cell (Levy and Slavov, 2018). Excitingly, advancements in mass
spectometry have very recently made possible the quantification of thousands of proteins in
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individual cells, suggesting that whole-proteome single-cell studies will be an area of great
interest in the next decade (Yang et al., 2020).

In order to understand the molecular dynamics of cell fate decisions in a less biased
manner, methods for measuring single-cell gene expression on a transcriptome-wide scale
were needed. Initially, microarray techniques developed for bulk RNA-seq analysis were
extended to single cells via the development of new amplification techniques (Kurimoto et al.,
2006). In a microarray cDNA is reverse transcribed from mRNA and hybridised to a set of
probes containing DNA matching genes from across the entire transcriptome. Subsequent
labelling of the cDNA from each sample with a fluorescent dye allows quantification of gene
expression across the transcriptome.

Following these advances, the first single-cell RNA sequencing (scRNA-seq) protocol
was developed in 2009, just two years after the first applications of bulk RNA-seq techniques
(Kolodziejczyk et al., 2015; Tang et al., 2009). In scRNA-seq protocols, reverse transcribed
cDNA from an individual cell is amplified and subsequently prepared for sequencing via
library preparation. These steps can be performed in a number of ways, and in the years
following, many scRNA-seq protocols emerged that improved the accuracy, sensitivity and
throughput which could be achieved. After the lysis of an individual cell, specific reverse
transcription of mRNA molecules is achieved through poly(T) priming. Second strand
synthesis of cDNA is then performed either by poly(A) tailing as in the CEL-seq/MARS-seq
methods (Hashimshony et al., 2012; Jaitin et al., 2014), or by template switching as in the
Smart-Seq (later optimised as Smart-Seq2) method (Picelli et al., 2014; Ramsköld et al.,
2012). The latter method provided a key advantage in that full-length mRNA transcripts can
be recovered, mitigating the bias towards 3’ transcript fragments that arises from incomplete
reverse transcription. This allows secondary mRNA features such as alternative splicing and
allele-specific expression to be analysed. Finally, cDNA amplification can be performed using
either a PCR reaction (Islam et al., 2011; Ramsköld et al., 2012), or in-vitro amplification
(IVT) (Hashimshony et al., 2016)(Jaitin et al., 2014). PCR-based amplification is non-linear
and sequence dependent, leading to technical biases from differential amplification of certain
transcripts. IVT results in linear amplification, but requires a second round of reverse
transcription; this also leads to the introduction of 3’ coverage biases (Kolodziejczyk et al.,
2015).

A clear problem with these approaches was the inability to distinguish between a) two
sequencing reads that map to the same gene because they came from separate mRNA
transcripts within the cell or b) two sequencing reads that map to the same gene because they
are duplicates of the same transcript created during the cDNA amplification process. If all
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transcripts were amplified equally this would not be a problem; however this will not always
be the case. To overcome this, methods were introduced that barcoded each mRNA molecule
with a unique molecular identifier (UMI) during the initial reverse transcription step (Fu
et al., 2011). Duplicated reads from the same mRNA molecule can then be identified, and the
number of UMIs sequenced for each gene can simply be counted (Kivioja et al., 2012)(Islam
et al., 2014). UMIs were first introduced in the MARS-seq and CEL-seq-UMI methods, and
have since become widely used (Grün et al., 2014; Jaitin et al., 2014).

The other significant drawback associated with the initial wave of scRNA-seq protocols
was the combination of high costs and low experimental throughput, since the entire protocol
had to be performed for each cell individually. MARS-seq started to address this by adding a
unique barcode to each well in a 384-well plate, which labelled transcripts during reverse
transcription (Jaitin et al., 2014). Subsequent steps could then be performed on pooled
material, greatly reducing the per-cell costs. However, the experimental throughput of this
approach remained low. Shortly afterwards, a sweeping change in throughput arose from
the introduction of droplet-based microfluidic protocols. For the first time, methods such as
InDrops (Klein et al., 2015) and Drop-seq (Macosko et al., 2015) allowed the simultaneous
profiling of thousands of single cells in a relatively low-cost manner. Each individual cell is
encapsulated in a droplet along with a bead that contains both a cell-specific barcode and
UMIs. Cells are lysed and reverse transcription occurs in each droplet individually, before the
emulsion is broken and cDNA is amplified in a pooled manner (Figure 1.2). Droplet-based
scRNA-seq became commercially available in 2017 using the 10X Chromium system, created
by 10X Genomics (Zheng et al., 2017).

Whilst droplet-based methods (such as 10X) have huge advantages over plate-based
methods (such as Smart-Seq2) in terms of throughput, this comes at the expense of sensitivity.
Droplet-based methods typically have a lower mRNA capture efficiency and significant 3’
coverage bias, leading to a reduction in the number of genes captured - around 1000-3000
compared with >5000 genes per cell. In addition, their high-throughput nature necessitates
that less reads will be captured per cell for the same amount of sequencing power. Ultimately,
the choice of protocol depends on the experimental questions at hand, with droplet-based
approaches better for unbiased assessment of broad cell populations, and plate-based methods
suited to answering focused questions about specific cell types.

In the past two years, further scRNA-seq approaches have appeared, including combi-
natorial indexing, whereby successive rounds of splitting, barcoding and repooling result
in unique barcodes for each cell without ever requiring individual cells to be separated
(Rosenberg et al., 2018). Furthermore, many other modalities have joined the single-cell
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Fig. 1.2 Droplet-based scRNA-seq. Schematic of a typical droplet-based scRNA-seq proto-
col reproduced from Zheng et. al. (2017). Barcoded beads flow through a microfluidic chip
alongside cells and reagents for RT. A single bead and cell are captured in an oil droplet,
within which cell lysis and RT occur, before barcoded cells are pooled together. RT: reverse
transcription; GEM: Gel bead in Emulsion.

revolution. Single-cell ATAC-seq for examining chromatin accessibility has made use of
both droplet microfluidics and combinatorial indexing (Lareau et al., 2019; Preissl et al.,
2018). Single-molecule RNA fluorescent in-situ hybridisation (smFISH) has made it possible
to restore spatial information to whole-transcriptome profiling (Shah et al., 2016). In turn,
this had led to the creation of a large number of ‘multiomics’ approaches, where two or more
modalities are captured in single cells simultaneously (Zhu et al., 2020). Examples include
scNMT-seq, capable of capturing whole-transcriptome, whole-methylome and chromatin
accessibility measurements from a single cell (Clark et al., 2018), and CITE-seq, capable of
simultaneous measurements of both the transcriptome and a targeted subset of cell surface
markers (Stoeckius et al., 2017). These methods and their descendants, alongside new com-
putational methods for integrating genomic data across separate modalities, will undoubtedly
dominate the single-cell field in the years to come.

1.2.2 New insights into haematopoiesis from single-cell RNA sequenc-
ing

The development of experimental methods for scRNA-seq has led to an explosion of single-
cell transcriptomic datasets that have transformed our understanding of haematopoiesis. In
any given experiment, scRNA-seq offers a ‘snapshot’ of a group of cells and their expression
states at a specific time point. The distribution of these states within a high-dimensional
gene-expression space can be considered as a ‘transcriptional landscape’, which can offer
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detailed information on cellular differentiation trajectories. Behind this model lies two
key assumptions; that differentiation is a continuous process (cells do not ‘jump’ their
expression states without passing through intermediate states); and that a group of cells
will differentiate asynchronously and therefore will be captured at multiple points along
a differentiation trajectory (Weinreb et al., 2018a). Hence by combining a scRNA-seq
experiment of a heterogeneous group of progenitor cells with a) prior biological knowledge
and b) computational methods for visualising and ordering cell profiles, inferences about
differentiation trajectories and their molecular drivers within the blood system can be made
through these transcriptional landscapes.

Around 2013, haematopoietic single-cell studies started with the profiling of previously
well-defined populations (such as those in Figure 1.1), and have subsequently shifted towards
less biased selections of cells (Dahlin et al., 2018; Paul et al., 2015; Tusi et al., 2018; Wilson
et al., 2015). Arguably the culmination of this shift has resulted in the Human Cell Atlas
project, which aims to create reference maps for cells across >50 tissues in the human body
(Benoist et al., 2017). This includes a study of >500,000 human bone marrow cells sequenced
using droplet-based techniques. This dataset represents an excellent example of a large,
unbiased transcriptional landscape (Figure 1.3). Starting from the haematopoietic stem and
progenitor (HSPC) compartment containing the HSCs and other early progenitor states, cells
can move along a number of possible trajectories, some of which are shown. Hence within
this model of continuous transcriptional landscapes, cells differentiate probabilistically along
one of numerous trajectories, passing through a myriad of possible transcriptomic states as
they do. Fate decisions therefore occur at poorly-defined ‘branchpoints’ within the landscape
that may or may not be preceded/followed by molecular signals within the data (Laurenti
and Göttgens, 2018).

The idea of a continuous transcriptional landscape is clearly at odds with the discrete
nature of the classical haematopoietic tree. Single-cell profiling of the CMP, GMP, and MEP
compartments revealed high levels of heterogeneity, including at least 18 distinct cellular
subtypes with various degrees of lineage priming (Paul et al., 2015). Additionally, the surface
markers classically used to separate the three populations (FcgR and CD34) were shown to
be poor predictors of cellular identity, suggesting these populations are not discrete at all,
but rather arise from the same continuum. It was also shown that only a small fraction of
these cells displayed expression profiles consistent with multilineage activity, suggesting that
by this point in the haematopoietic hierarchy, the majority of cells had already made their
key fate decisions (Olsson et al., 2016). These findings have been largely corroborated by
single-cell functional assays, transplantations and barcoding experiments, further suggesting
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Fig. 1.3 The transcriptional landscape of the Human Cell Atlas. Each dot represents a
single-cell transcriptome from the bone marrow mononuclear cell fraction, visualised in
two dimensions using dimensionality reduction. Cells are coloured according to their likely
identity. Arrows indicate the main directions of differentiation away from the most immature
cells. HSPC, haematopoietic stem and progenitor cell; Mk, megakaryocyte.

that most key fate decisions occur in the HSC and MPP compartments (Adolfsson et al.,
2005; Görgens et al., 2013; Naik et al., 2013; Notta et al., 2016; Rodriguez-Fraticelli et al.,
2018).

Classically, the upper tier of the haematopoietic tree was split into LT-HSCs, ST-HSCs
and MPPs, all capable of generating myeloid, erythroid and lymphoid cells. Prior to the
advent of single-cell technology, the MPP compartment was thought to be composed of at
least four subpopulations (MPP1-4) with distinct functional and molecular features (Cabezas-
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Wallscheid et al., 2014; Oguro et al., 2013). Subsequent reanalysis of this model at the
single-cell level suggested that in fact, the MPP (and HSC) compartment can be characterised
by a continuous landscape in which the MPP2, MPP3 and MPP4 populations exhibited
significant lineage biases towards the erythroid/Mk, myeloid and lymphoid lineages respec-
tively (Nestorowa et al., 2016; Pietras et al., 2015). These findings further suggested that
key fate decisions were occuring very early on, potentially in the MPP1 compartment. A
landmark paper from Rodriguez-Fraticelli et. al. helped to confirm this hypothesis using a
combination of scRNA-seq and cell barcoding experiments to study the MPP populations
(Rodriguez-Fraticelli et al., 2018).

Single-cell profiling has helped to further characterise the true LT-HSC state at a molecular
level. By combining various HSC isolation strategies, Wilson et. al. were able to isolate
true functional LT-HSCs with 60% purity, describe their expression profiles and define
genesets that correlate with HSC functional ability (Wilson et al., 2015). It was apparent
that cell cycle is a major component in regulating HSC identity, confirming that the best
functional LT-HSCs are marked by a dormancy signature (Wilson et al., 2008). Another
landmark paper described how HSCs exist along a continuous dormancy spectrum, with
the best functional HSCs characterised by deep quiescence and low biosynthetic activity
(Cabezas-Wallscheid et al., 2017). Recent research has focused on the role of mitochondria
in maintaining HSC quiescence (Luis et al., 2020). However, an aspect of HSCs that remains
unclear is heterogeneity in functional lineage bias. Whilst it has been reported that HSCs
exhibit no evidence of lineage priming towards specific fates (Kowalczyk et al., 2015),
other studies have suggested the existence of a megakaryocyte-biased subset within the the
HSC compartment (Carrelha et al., 2018; Grover et al., 2016; Sanjuan-Pla et al., 2013).
Transplantation experiments have clearly suggested the existence of myeloid- and lymphoid-
bias phenotypic HSCs (Benz et al., 2012; Muller-Sieburg et al., 2004), and reconciling
this data with the lack of clear lineage priming in scRNA-seq HSC profiles remains an
open question. Furthermore, it remains unclear to what extent LT-HSCs contribute to
turnover of the blood system; it has been suggested that in steady-state conditions, the MPP1
compartment is responsible for most of the blood cell production, though other studies have
concluded that the LT-HSC compartment also offers a significant contribution (Busch et al.,
2015; Rodriguez-Fraticelli et al., 2018; Sawai et al., 2016; Sun et al., 2014).

Placing all these refinements to the haematopoietic tree in the context of a transcriptional
landscape has required the production of very broad, unbiased single-cell datasets that
profile the entire blood progenitor landscape. Initially, 1600 cells spanning 10 classical
populations were profiled, with three broad trajectories towards the erythroid, myeloid and
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lymphoid lineages observed (Nestorowa et al., 2016). High throughout droplet-based studies
have expanded this to tens of thousands of cells, revealing at least eight clear trajectories
arising from HSCs, including neutrophils, monocytes, basophils, mast cells and eosinophils
(Dahlin et al., 2018; Tusi et al., 2018). Reconstructing the hierarchy of haematopoietic fate
decisions from scRNA-seq data is a considerable technical challenge (see section 1.4 and
Chapter 6), and inferred hierarchies do not always agree with data from cellular barcoding
experiments. For example, the erythroid and megakaryocytic trajectories appear closely
linked in scRNA-seq data - consistent with the classical idea of an MEP state - whereas
barcoding studies suggest there is little coupling of the megakaryocytic fate with others,
leaving the erythroid lineage more closely coupled with neutrophils/monocytes (Pei et al.,
2017; Rodriguez-Fraticelli et al., 2018). Similarly, it remains unclear whether basophils/mast
cells originate alongside the neutrophil/monocyte trajectories (Wolf et al., 2019) or the
erythroid trajectory (Grootens et al., 2018; Tusi et al., 2018). Evidence has arisen of multiple
routes of differentiation for both megakaryocytes (Grover et al., 2016; Rodriguez-Fraticelli
et al., 2018) and monocytes (Tusi et al., 2018). Further waves of barcoding and multiomics
experiments are required to comprehensively resolve these questions.

Overall, the model of transcriptional landscapes has become an invaluable tool with
which to study haematopoiesis. Whilst most work has been focused on the murine system,
many human studies have reached similar conclusions about the early-onset of key fate
decisions, the heterogeneous nature of classically homogeneous populations, and the contin-
uous structure of the most immature compartments (Notta et al., 2016; Velten et al., 2017).
Nonetheless there are bound to be disparities between mouse and human, and currently
these can be difficult to resolve due to the ‘flat’ nature of the transcriptional landscape in
the HSC and MPP region (Kowalczyk et al., 2015). It must be remembered that scRNA-seq
data represents an incomplete view of a cell’s state, and that further information from the
proteome or epigenome may reveal great insight into haematopoiesis.

1.3 Haematological perturbations, malignancies and leukaemia

1.3.1 Genetic basis of pre-leukaemic states

There exists a wide range of blood diseases resulting from genetic alterations to haematopoi-
etic cells. These are characterised by over/under-production of one or more blood lineages;
the presence of abnormal, dysplastic cells with aberrant self-renewal or differentiation prop-
erties; and/or abnormal localisation of cells within the blood system (Taylor et al., 2017).
The phenotype, treatment and prognosis of blood disorders is as heterogeneous as their
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genetic mechanisms, which are understood to varying degrees. Nevertheless, for many of the
same reasons that haematopoiesis makes a good model system for stem cell biology, blood
disorders have been at the forefront of research into cancer genetics.

Within the haematopoietic system, disease initiation and development occurs through
dynamic genetic processes, potentially years or decades before the onset of clinical symptoms.
If a genetic mutation within a differentiating progenitor cell confers a survival advantage, a
clonal population will emerge within the blood that harbours the mutation. If the mutation
also affects the cell’s behaviour, disease can then be initiated, provided that the clone
does not disappear due to exhaustion or terminal differentiation (Corces-Zimmerman and
Majeti, 2014). A great deal of work has gone into understanding the ‘cell of origin’ for
leukaemias and associated blood disorders. The first evidence connecting stem cells to
cancer origin arose from a study of chronic myelogenous leukaemia (CML) in 1974 (Fialkow,
1974). Subsequent work looking at the self-renewal and repopulation abilities of leukaemic
cells provided further evidence that for most acute myeloid leukaemia (AML) subtypes,
transformation was occurring at the level of the most immature progenitors (Bonnet and Dick,
1997). The question of whether leukaemia is initiated by mutations in HSCs or by mutations
in committed cells that then go on to exhibit HSC-like properties (such as self-renewal)
remains a topic of debate, and it seems likely that both can occur depending on the specific
subtype of leukaemia (Passegué et al., 2003).

Nonetheless, there is growing consensus that for many leukaemias, disease is initiated by
the accumulation of numerous successive mutations within previously normal HSCs (Corces-
Zimmerman and Majeti, 2014; Welch et al., 2012). This model is visualised in Figure 1.4.
During this transformation, mutated HSCs exist in a ‘pre-leukaemic’ state defined by a small
number (possibly only one) of genetic mutations, any of which can have distinct effects on the
functional ability, differentiation capacity and molecular regulatory programmes of the HSC
(Jan et al., 2012; Shlush et al., 2014). These pre-leukaemic states can manifest themselves
clinically as less severe blood disorders such as clonal haematopoiesis, myeloproliferative
neoplasms (MPNs) and myelodysplastic syndrome (MDS) (Grinfeld et al., 2017; Sperling
et al., 2017). Further genetic alterations can then tip pre-leukaemic cells into a true leukaemic
state, conferring large proliferative advantage and eventually overrunning the haematopoietic
system. It has been shown that the mutational burden of HSCs increases with age, helping
to explain the prevalence of AML-like leukaemias in elderly patients, where enough time
has passed to acquire multiple mutations in a single HSC clone (Welch et al., 2012). This
model also helps to explain why many leukaemia patients relapse after treatment; even if the
dominant leukaemic clone is eradicated, pre-leukaemic cells may survive which then only
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require one further mutation event to cause a relapse. It is clear that the transformation from
healthy to leukaemic stem cells is an accumulating stepwise process, and both the order of
mutation acquisition and the exact identity of the cells that first acquire each mutation are
likely to play a role in the development of the disease (Li et al., 2014; Shepherd et al., 2018).

Fig. 1.4 A model for pre-leukaemic evolution of HSCs. Figure taken from Corces et.
al. (2014). The successive accumulation of genetic mutations in a HSC is shown through
changes in colour. (a) An initial mutation event occurs in a healthy HSC, conferring some
self-renewal advantage. (b,c) A mutation event may occur in a differentiated cell: either this
clone will exhaust, or it could confer HSC-like self-renewal properties onto the differentiated
cell. (d) Further mutations in the HSC could lead to a loss of self-renewal ability and hence
exhaustion. (e,f) Eventually, a final mutation will transform the pre-leukaemic HSC into
a true leukaemic state, which starts proliferating rapidly and destroying any homeostasis
within the blood system.

Pre-leukaemic haematopoietic states therefore have great potential to elucidate the mech-
anisms through which leukaemia is initiated. Results from high-throughput bulk sequencing
of human leukaemia samples have identified many commonly-mutated genes associated
with specific disease subsets (Chopra and Bohlander, 2019). Mouse models of these mu-
tations have led to great insight into how they alter haematopoiesis and in particular the
self-renewal and differentiation abilities of HSCs at a functional level (Moran-crusio et al.,
2011; Ostrander et al., 2020). With the advent of high-throughout single-cell methods, it has
now become possible to perform whole-transcriptome sequencing of the entire progenitor
landscape within these mutated mice, and assess their perturbed haematopoietic behaviour at
a systems-scale. If the cellular and molecular impacts of these pre-leukaemic states can be
understood at a single-cell level, targeted therapies can be designed to counteract the specific
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impacts of the mutations, as opposed to using current drugs that target entire biological
pathways. Here several of the most common pre-leukaemic mutations and their associated
pre-leukaemic blood disorders are briefly reviewed.

1.3.2 Myeloproliferative Neoplasms

MPNs are themselves a diverse group of clonal myeloid haematopoietic malignancies charac-
terised by the overproduction of terminally differentiated peripheral blood cells, an increased
risk of thrombosis and predisposition to acute myeloid leukaemia (Grinfeld et al., 2017). They
are distinguished from myelodysplastic syndromes (MDS) and leukaemia by the absence
of clear morphological dysplasia (abnormalities) within the blood compartment. Typically,
MPNs are split into two groups: Philadelphia-chromosome positive and negative neoplasms.
The Philadelphia chromosome is a specific reciprocal translocation of chromosome 22 that
contains a BCR-ABL1 fusion gene, leading to the constitutive activation of a tyrosine kinase
signalling protein that causes high levels of proliferation and inhibits DNA repair (Kang et al.,
2016). It is a hallmark of chronic myelogenous leukaemia (CML), characterised by the over-
production of mature granulocytes such as neutrophil, basophils or eosinophils (Hehlmann
and Hochhaus, 2007). CML accounts for 15-25% of adult leukaemias, and if left untreated
can transition into AML. The use of tyrosine-kinase inhibitors to treat CML became prevalent
in the early 2000s and has dramatically increased patient survival (Gambacorti-passerini
et al., 2011). Because of the relative severity of CML, it is usually not considered as a
pre-leukaemic state in the same manner as other MPNs, but rather as a true leukaemia that
can be fatal over a short time period if left untreated.

Philadelphia-chromosome negative MPNs are typically split into three distinct diseases:
polycythaemia vera (PV), essential thrombocytosis (ET) and idiopathic myelofibrosis (MF).
PV and ET are characterised by increases in red blood cell and platelet counts respectively,
whilst MF is caused by collagen fibres slowly replacing the bone marrow microenvironment,
leading to haematopoietic failure (Grinfeld et al., 2017). These disorders are relatively rare
and progress slowly, but are nonetheless known to predispose to acute leukaemia (Campbell
and Green, 2006). In 2005, several studies reported the existence of a single acquired point
mutation in the Janus Kinase 2 (JAK2) gene of MPN patients (Baxter et al., 2005; Coue
et al., 2005), which was subsequently found to exist in >95% of PV and 50-60% of ET and
MF patients. The mutation is known as the V617F mutation since a valine is substituted
by a phenylalanine at codon 617. JAK2 is a cytoplasmic kinase critical for instigating
signal transduction from several surface receptors including those for erythropoietin (EPO),
thrombopoietin (TPO) and granulocyte colony-stimulating factor (G-CSF) (Kisseleva et al.,
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2002). Acquisition of the V617F mutation leads to constitutive, cytokine-independent
activation of multiple signalling pathways that are usually initiated when EPO binds to its
receptor (Figure 1.5), including JAK-STAT, MAPK and ERK (Ugo et al., 2004; Witthuhn
et al., 1993). Mouse models of the mutation have clearly recapitulated the phenotype of PV,
as evidenced by increased red blood cell counts and subsequent transition to bone marrow
fibrosis (Coue et al., 2005; Li et al., 2014).

Fig. 1.5 The JAK2 V617F mutation. Reproduced from Campbell et. al. (2006). WT JAK2
phosphorylates EPO receptor in the presence of EPO to intiate multiple signalling cascades.
The V617F mutation causes this signalling to be constitutively active.

The JAK2 V617F mutation has been shown to occur within the HSC compartment of
long-lived MPNs (Anand et al., 2011; James et al., 2008), predisposing towards erythroid
differentiation (Jamieson et al., 2006). Results from multiple mouse models and single-cell
assays have suggested that the V617F mutation does not in itself confer a self-renewal
advantage on HSCs (Kent et al., 2013; Li et al., 2014; Mullally et al., 2010), suggesting that
this mutation alone is insufficient to drive disease. It seems likely that cooperation between
mutations is necessary to drive MPN disease progression; for example the self-renewal defect
observed in JAK2 V617F HSCs was rescued by introducing a second mutation in TET2
(see section 1.3.3), leading to a stronger disease phenotype (Shepherd et al., 2018). TET2
is the gene most commonly comutated with JAK2 in MPN patients, highlighting how the
accumulation and synergy between HSC mutations can start to drive a disease state. In the
clinic, JAK2 kinase inhibitors such as ruxolitinib have been used to reduce the symptoms of
JAK2-driven MPNs, but largely fail to induce remission (Bose and Verstovsek, 2017). As
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a result, other biological processes such as hypoxia response have been touted as potential
therapeutic targets (Baumeister et al., 2020).

The majority of JAK2 V617F-negative ET and MF patients exhibit acquired mutations in
either Myeloproliferative leukaemia (MPL) or CALR, which manifest themselves clinically
in extremely similar phenotypes. MPL is the cell surface receptor for TPO, and missense mu-
tations in MPL have been associated with increased JAK-STAT, ERK and AKT signalling in
a thrombopoietin-independent manner (Klampfl et al., 2013; Rampal et al., 2014). Similarly,
insertion/deletion mutations in Calreticulin (CALR) are found in 25-35% of ET and 35-40%
of MF patients (Grinfeld et al., 2017). The discovery of CALR in MPNs was unexpected,
given its WT role as a chaperone involved with protein folding, but mutant CALR has been
shown to promote TPO-independent growth in a MPL-like manner by binding to MPL and
acting as a rogue ligand, subsequently activating the same signalling cascades (Chachoua
et al., 2016; Elf et al., 2016). Notably, it is very rare for an MPN patient to have more
than one of the three main driver mutations (JAK2, MPL, or CALR), suggesting they must
have similar mechanistic backgrounds; in all three cases, constitutive cytokine signalling in
a JAK2-mediated manner clearly plays a major role. However, this belies the phenotypic
heterogeneity of MPNs; whilst the JAK2 V617F mutation can lead to PV, ET or MF, MPL
and CALR mutations are limited to ET and MF. There is evidence to suggest that high
allelic burden and/or homozygosity of JAK2 V617F predisposes towards a PV phenotype
(pro-erythroid) compared to an ET phenotype (pro-megakaryocyte), potentially suggesting
that JAK2-driven ET or MF only arises if there is not a large enough mutational burden to
drive erythrocytosis (Godfrey et al., 2013; Li et al., 2014; Tiedt et al., 2008). The identity
of advantage-conferring comutations, the order in which these occur and the specifics of
bone marrow microenvironment may all also play a role in driving MPN heterogeneity (Prick
et al., 2014; Walkley et al., 2007).

The final MPN of relevance is systemic mastocytosis (SM), characterised by an overpro-
duction of mature mast cells. Over 90% of patients presenting with SM exhibit constitutive
gain-of-function mutations in KIT, a receptor kinase that in a WT setting is tightly controlled
by the abundance of its ligand, stem cell factor (SCF) (Chatterjee et al., 2015). Mutated KIT
leads to uncontrolled proliferation and enhanced survival of mast cells, which can infiltrate
into a diverse array of organs including the bone marrow itself, resulting in organ failure
(Verstovsek, 2012). Recent work again concluded that KIT mutations are likely to originate
within the HSC/MPP pool in SM patients (Grootens et al., 2019). Much like other MPNs,
patients with SM often exhibit comutations that are likely to have distinct impacts on progen-
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itor function and differentiation, and therefore contribute to the diverse phenotypes observed
among different SM patients. This will be discussed further in the following section.

1.3.3 Clonal Haematopoiesis

Clonal haematopoiesis (CH) is the generic term for haematological malignancies where a
clonal population of cells - harbouring one or more somatic mutations - has expanded within
a patient due to a fitness advantage (Bowman et al., 2018). Often, patients with CH display no
symptoms or phenotype, but are nonetheless predisposed to further malignancies including
MPN, MDS and AML (Jaiswal et al., 2014). This fits into the model of these diseases being
caused by successive accumulation of somatic mutations in HSCs over time, where CH is
likely to be the first step towards fully malignant transformation (Corces-Zimmerman and
Majeti, 2014; Shlush et al., 2014; Welch et al., 2012). Therefore CH can be thought of as a
basal pre-leukaemic state, and provides a critical window into how a mutation can perturb
haematopoiesis and prime it towards disease.

The two most commonly mutated genes in CH are DNA methyltransferase 3A (DNMT3A)
and ten-eleven translocation 2 (TET2) (Buscarlet et al., 2017; Genovese et al., 2014). Both of
these are epigenetic regulators; DNMT3A is responsible for establishing de novo methylation
marks (Chaudry and Chevassut, 2017; Smith and Meissner, 2013), whilst TET2 catalyses the
removal of methylation marks from DNA (Ko et al., 2011). DNA methylation is known to
play an important role in altering DNA accessibility and hence impacts upon gene regula-
tion, self-renewal and differentiation processes. However the exact role specific epigenetic
regulators play in HSC functionality remains unclear. Despite their antagonistic functions,
mouse models of both TET2 and DNMT3A mutations have shown that they lead to both
increased HSC self-renewal and expansion of the most immature HSC/MPP compartment
(Bowman and Levine, 2017; Challen et al., 2014; Moran-crusio et al., 2011). Furthermore,
both mutations are thought to cause repression of lineage-specific transcription factors in
HSCs (Zhang et al., 2016), although the mechanistic reasons behind this apparent synergy
remain unclear (Jeong et al., 2013).

Recently, a landmark study used scRNA-seq to profile the entire blood progenitor com-
partment of TET2 KO and DNMT3A KO mice (Izzo et al., 2020). This suggested divergent
impacts of the two mutations upon downstream progenitors, with TET2 KO generating a pro-
monocytic differentiation bias and DNMT3A KO leading to a pro-erythroid differentiation
bias. In addition, TET2 KO HSCs were shown to be more quiescent than WT counterparts.
This complemented recent functional data that further elucidated the divergent effects of the
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two mutations (Ostrander et al., 2020). Whilst both mutations lead to increased self-renewal,
this increase was shown to be transient in TET2 KO HSCs, whilst being long-lasting in
DNMT3A mutant cells as assayed via transplantation. These studies have suggested that
previously-observed increases in HSC fitness are where the similarities between TET2 and
DNMT3A mutations end.

Izzo et. al. went on to propose a mechanistic link between epigenetic alterations and
HSC differentiation skewing by performing methylation and scATAC-seq using the same
mouse models. Pro-erythroid transcription factor genes such as TAL1, KLF1 and GATA1
were shown to be relatively denser in CpG (DNA base pairs that can be methylated) content
compared to myeloid factors such as IRF8 and SPI1. Therefore if the function of DNMT3A
is impaired, relatively more methylation will be removed from erythroid transcription factors,
potentially leading to their upregulation and subsequent erythroid-skewing of uncommitted
progenitors. The opposite would then be true of HSCs with impaired TET2 function. Whilst
such a hypothesis requires refining and confirming, it highlights how current single-cell
techniques are paving the way for new mechanistic understanding of pre-leukaemic states.

Many other genes have been shown to drive CH. One of the next most commonly mutated
genes is JAK2, again highlighting the heterogeneity within blood disorders and the continuum
of phenotypes observed across CH, MPNs and MDS (Sperling et al., 2017). As discussed
above, the JAK2 V617F mutation may require cooperating mutations to exhibit a fitness
advantage, though why the mutation should sometimes present as CH and sometimes as an
MPN remains unclear. Recently it has been shown that JAK2 is an upstream regulator of
TET2 in haematopoiesis, potentially linking JAK2 mutations to epigenetic changes (Jeong
et al., 2019). Double mutant HSCs for JAK2 and TET2 have been shown to promote a
strong disease phenotype that pushes towards an MPN-like state, albeit with clear differences
depending on whether JAK2 or TET2 was mutated first (Ortmann et al., 2015; Shepherd et al.,
2018). In a similar manner, CH mutations in the isocitrate dehydrogenase enzymes IDH1
and IDH2 are known to have an inhibitory effect on TET2 function, and are largely mutually
exclusive with TET2 mutations, suggesting similar mechanistic origins (Figueroa et al.,
2010). Mutation of polycomb repressive complex genes such as additional sex combs-like
1 (ASXL1) further implicates post-translational histone modifications as playing a role in
regulating HSC self-renewal and differentiation (Fujino and Kitamura, 2020).

In addition to a number of epigenetic modifiers, two other major biological pathways
have been implicated with CH. The first of these is the spliceosome, with mutations in
SF3B1, SRSF2 and U2AF1 (amongst others) all found in patients with CH and to a greater
extent, MDS (Inoue et al., 2016; Sperling et al., 2017). However, mechanistic understanding
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of which spliced isoforms are responsible for driving clonal expansion has proved elusive.
Similarly, several genes that form part of the cohesin complex were found to be mutated in
CH, including STAG2, SMC1A and RAD21 (Mazumdar et al., 2015). Current hypotheses
suggest that these may drive disease through their dysregulation of long-range chromatin
interactions, potentially placing further emphasis on the role of higher-order epigenetic
modifications in driving aberrant haematopoiesis (Thota et al., 2014).

Whilst clonal haematopoiesis is a relatively benign disease, it has an important role to
play in understanding leukaemic transformation. Disease progression is likely to involve
a complex interplay between a) the initial driver mutation, b) the synergistic effects of
subsequent mutations and c) bidirectional interactions between mutant HSCs and their niches
(Raaijmakers et al., 2010; Schepers et al., 2013). Notably, many patients that progress to more
serious malignancies exhibit mutations from several different pathways (e.g. one epigenetic
mutation, one spliceosome mutation, one cohesin mutation etc), potentially suggesting that
accumulating ‘orthogonal’ mutations primes HSCs towards more aggressive transformations.
An improved understanding of the impacts of the key driving genes associated with CH is
essential to produce better therapies across a range of haematopoietic malignancies in the
future.

1.3.4 Myelodysplastic syndrome, sAML and de novo AML

In contrast to MPNs and CH, myelodysplastic syndrome (MDS) is characterised by clear
morphological dysplasia of a patient’s blood cells, as well as the presence of cytopenias
(decreased blood counts) amongst terminally differentiated cells. Whilst this defines the
clinical distinction between MDS, CH and MPNs, the underlying genetics of these disorders
lie on a continuum, with largely the same sets of somatic mutations found in each. MDS
is considered to arise from the progression of clonal haematopoiesis into a more severe
disease, with the majority of MDS patients exhibiting at least two - and sometimes many -
somatic mutations, often with large clone sizes (>10%) (Papaemmanuil et al., 2013). Around
one third of patients diagnosed with MDS progress to some form of AML as a result of
further mutations (Sperling et al., 2017). Compared with CH and MPNs, MDS patients
exhibit a higher proportion of spliceosome mutations, suggesting these mutations are linked
to morphological dysplasia. Nevertheless, DNMT3A and TET2 remain the most commonly
mutated genes in MDS. Conversely, mutations in signalling pathway genes such as JAK2
and CALR occur at relatively low frequencies in MDS compared to MPNs; if they do occur,
it is often a sign of disease progression towards AML (Haferlach et al., 2014).
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Secondary AML (sAML) is defined as an AML that arises due to an existing blood
disorder such as MDS or an MPN. The threshold for diagnosis of AML is the presence of
>20% hyperproliferative leukaemic cells (blasts) within the haematopoietic system (Vardiman
et al., 2009). In contrast, de novo AML arises rapidly without any such background - most
typically in children or young adults - and whilst it is associated with better prognosis than
sAML, it is more common and leads to more deaths (Siegel et al., 2015). de novo AML is
associated with large chromosomal translocations, but also with mutations in many of the
same genes as sAML, such as DNMT3A, TET2 and ASXL1 (Patel et al., 2012). Furthermore,
there are a number of genes found mutated in de novo AML that are rarely seen in sAML
or predecessor neoplasms. These include nucleophosmin 1 (NPM1), which has roles in
multiple cellular processes including ribosome biogenesis and centrosome duplication, and
is found mutated in around 30% of de novo AML patients, often alongside mutations in
DNMT3A (Network, 2013). NPM1 mutant mouse models exhibit increased HSC self-
renewal and expanded myeloid differentiation (Vassiliou et al., 2011). Other genes, such as
the transcriptional coactivator CREBBP, are often impaired and/or fused with other genes as
a result of chromosomal translocations found in de novo AML, and impaired CREBBP has
been shown to associate with increased HSC quiescence (Chan et al., 2011). A wide range of
other mutations/translocations exist in AML subgroups, and have been reviewed extensively
(Kouchkovsky and Abdul-Hay, 2016).

The differences in the genetic underpinnings of de novo and sAML are still debated,
though it seems likely that de novo AML is generally associated with a ‘stronger’ set of
perturbations than sAML. For example, whilst a DNMT3A mutation may not be able to
generate an AML phenotype by itself, it can synergise with an NPM1 mutation to drive a
de novo AML phenotype, or with spliceosome or JAK2 mutations to drive an MDS/MPN
phenotype that may then evolve into sAML. It has been reported that de novo AMLs exhibit
greater microenvironmental dysregulation compared to sAMLs, further highlighting the
importance of cooperation between driver mutations and the bone marrow niche (Lopes et al.,
2017). Mouse models of these mutations, combined with single-cell profiling and functional
assays, offer the opportunity to investigate their affects within the context of the entire blood
system at high resolution. Integrating together information about many different mutations
will therefore help to understand the genetic, phenotypic and prognostic heterogeneity
observed across haematological malignancies, as well as highlighting conserved biological
pathways and mechanisms across different diseases.
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1.4 Computational tools for single-cell biology

1.4.1 Addressing technical and biological noise in scRNA-seq data

The raw gene counts returned by a scRNA-seq experiment are subject to confounding noise
that can inhibit downstream analyses and biological inference unless dealt with sensibly. This
noise can be technical or biological in origin, and whilst sources of biological noise can often
be of interest despite their confounding effects (e.g. cell cycle, apoptosis), technical noise
does little other than obscure relevant signal. Unfortunately, the deconvolution and removal
of technical and biological noise from scRNA-seq data remains a significant challenge.

Sources of technical noise occur at every stage of a scRNA-seq protocol, although some
will be more important than others. Only a small proportion of mRNA molecules within
a given cell will be reverse-transcribed after lysis, with the exact proportion dependent
on the protocol being used (Kolodziejczyk et al., 2015). For lowly-expressed genes, this
Poisson sampling can cause no mRNA molecules to be captured despite their existence
within the cell (Islam et al., 2014). The efficiency of the PCR amplification used in most
protocols is sequence dependent, introducing further technical variation if UMIs are not used.
Stochastic sampling of counts from the sequencing library then adds another layer of technical
variation, regardless of whether UMIs are used or not. The end result of these technical
noise sources is that biologically identical cells will return different count distributions - and
importantly, different numbers of a) total UMIs/reads and b) number of expressed genes -
due to intrinsically technical effects.

The process of correcting each cell’s count distribution to correct for technical effects
- whilst preserving biological variation - is referred to as performing a ‘normalisation’ of
the data. A wide variety of techniques have been suggested to do this. Initially, the concept
of ‘size-factors’ was used to scale each gene in a cell by a cell-specific constant factor that
represented the amount of material captured from that cell. Therefore technical variation in
the amount of mRNA captured from each cell would be mitigated. This idea was originally
implemented using a method introduced for bulk RNA-seq in the DESeq method (Anders
and Huber, 2010), and was extended for heterogeneous single-cell datasets by pooling
information across cells in the SCRAN method (Lun et al., 2016). For plate-based protocols
such as Smart-Seq2, external RNA spike-ins to each cell can be used to quantify and correct
for technical variability using the BASiCS method, which estimates size-factors based on the
abundance of these spike-ins (Vallejos et al., 2015).
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Underlying size-factor based normalisations is the assumption that the total mRNA
content of each cell in the dataset is of roughly the same magnitude, and that the counts
of all genes can be modified by a single factor, regardless of their abundance levels. More
recently, these assumptions have been questioned and new, probabilistic models of technical
variation have been proposed. These have centred on using the negative binomial distribution
to model count data from scRNA-seq experiments (Grün et al., 2014; Kharchenko et al.,
2014). Methods such as sctransform use negative binomial regression to correct count values
in a gene-specific manner, thus overcoming some of the limitations of previous approaches
(Hafemeister and Satija, 2019). Other studies have additionally modelled the presence of
‘zero-inflation’ in scRNA-seq data (extra zero counts caused by technical undersampling)
as part of new normalisation methods, such as the ZINB-WaVE approach (Risso et al.,
2018). However the existence of zero-inflation has been credibly disproved (Svensson,
2020), highlighting the importance of model assumptions on normalisation techniques.
Currently, size-factor based normalisation methods are still used for the majority of scRNA-
seq workflows, although the consensus is beginning to shift towards more generalised
probabilistic approaches. It has been suggested that normalisation methods for plate- and
UMI-based experiments should be different, as empirically the data produced by them is best
fit by slightly different models (Luecken and Theis, 2019).

Droplet-based protocols incur an orthogonal layer of technical noise due to the existence
of doublets (droplets with two cells in rather than one) that get barcoded and sequenced as if
they were a single cell, and are believed to occur at a rate of several percent (Zheng et al.,
2017). Methods have been introduced to account for this by simulating synthetic doublets
and comparing these to transcriptomes within a dataset (Wolock et al., 2018). Whilst this has
been shown to effectively remove doublets containing two disparate cell types, removing
doublets containing two highly similar cells remains difficult.

Biological ‘noise’ within scRNA-seq counts can also originate from a wide variety of
sources, many of which are related to areas of current stem cell research. These include the
effects of transcriptional bursting kinetics, whereby a gene with exactly the same activity
in two cells can record different counts due to the periodical bursting nature of mRNA
transcription (Ochiai et al., 2020). Additionally, cell-specific extrinsic signals will certainly
contribute to gene expression; this idea is now at the forefront of single cell research as new
tools are developed for spatial transcriptomics (Shah et al., 2016). The most tractable sources
of biological variation come from well studied cell intrinsic processes such as cell cycle and
apoptosis. Prior knowledge can be used to either remove cells in a specific cellular state (e.g.
apoptotic cells with a high proportion of reads mapping to mitochondrial genes) or regress



24 Introduction

out the source of variation, for example using one of the many methods designed to remove
confounding cell cycle effects (Liang et al., 2020; Scialdone et al., 2015; Tirosh et al., 2016).
Whilst in some circumstances cell cycle may be of primary interest, it typically obscures
the analysis of single-cell differentiation trajectories by causing cells at similar stages of
differentiation to have very different transcriptomic profiles.

The identification of genes that exhibit high levels of variation across a dataset (the
‘highly variable genes’) is an important step for many downstream applications including
clustering. Empirically, the variance of a gene amongst a homogeneous group of single
cells is found to be a quadratic function of its mean expression (hence it can be suitably
modelled using a negative binomial distribution), such that highly-expressed genes display
the largest variations across a dataset due to both technical and biological noise (Grün, 2020).
Methods have been proposed to identify genes exceeding the expected level of variation
given their mean expression; the method of Brennecke et. al. incorporates external RNA
spike-in values and has been widely used in plate-based experiments (Brennecke et al., 2013).
Similarly, the method from Macosko et. al. identifies genes with extreme variances compared
to other genes with similar expression values, and has been adopted for many droplet-based
experiments (Macosko et al., 2015). The importance of per-gene variation will be discussed
and extended in Chapter 4.

1.4.2 Dimensionality reduction and clustering

The great advantage of single cell genomic profiling over bulk techniques is that a) the
heterogeneity within a cellular population can be resolved, and b) the structure and relation-
ships between these heterogeneous sub-populations can be analysed. However the task of
uncovering this structure in a dataset containing many thousands of cells, each with many
thousands of genes (or other modalities) is computationally challenging. Dimensionality
reduction (DR) embeds a high-dimensional count matrix into a lower-dimensional space,
whilst aiming to preserve as much of the biological structure within the data as possible.
This low-dimensional representation can then be better comprehended and visualised (Fig-
ure 1.6A). Both the method used to perform DR and the dimensionality of the subsequent
representation play an important role in determining the possible downstream applications
of the transformed dataset (Watcham et al., 2019). For example, performing DR to a 2 or
3-dimensional representation will allow the dataset to be easily visualised, but will likely
remove too much of the biological structure to perform accurate cell clustering or inference
of differentiation trajectories (Figure 1.6B, see section 1.4.3). On the other hand, performing
DR to achieve a representation with 101-102 dimensions is likely to capture and preserve the
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vast majority of the biological structure, allowing more difficult tasks to be performed on a
suitably complex yet tractable representation of the data (Figure 1.6C). DR is used in almost
all scRNA-seq workflows, as it helps to mitigate against the sparsity of the data; whilst a
single gene is susceptible to both technical and biological zeros, a dimension within the
transformed dataset will use information from across many (correlated) genes, leading to
better resolved biological signals.

Fig. 1.6 Different levels of dimensionality reduction. (A) A set of single cells expressing
3 genes arranged along a curved shape has been simulated. There are 2 measures of
distance between the blue and red cells. Whilst D1 represents the shortest possible distance,
D2 is the distance between the cells through the structure of the data (manifold). The
two arms of the curved shape may represent continuous transition processes (e.g, cell
differentiation); therefore, distance D2 is the important distance measure. A dimensionality
reduction technique (here tSNE) should capture such features. (B) Excessive reduction
in dimensionality causes important information to be lost. In this case, a 2-dimensional
representation of the data incorrectly suggests that the green cell is farther from the yellow
cell than the orange cell, because information has been lost about axis 2. (C) To infer cellular
trajectories from scRNA-seq data, dimensionality reduction is used to learn the structure of
the data (learned data), which captures the important distances between cells in a suitable
number of dimensions, typically 10 to 100. Trajectory inference can then be attempted from
this learned data. For visualisation, the dimensionality of the data needs to be reduced to
either 2 or 3, but this will inevitably result in the loss of some of the important biological
information, rendering data unsuitable for trajectory inference.



26 Introduction

A number of DR methods have been widely applied to single-cell transcriptomics. These
include linear methods such as principal component analysis (PCA), which calculates a new
coordinate system for the data where the first coordinate (principal component 1 or PC1)
explains the greatest amount of variance possible, and subsequent components explain the
largest possible amount of variance whilst remaining orthogonal to all previous PCs. Hence
the PCs are ordered by their ‘importance’ in explaining the variation within the data, and
therefore taking the top n PCs - n=50 is typically used - as a low-dimensional representation
can explain the majority of the total observed variance (Tsuyuzaki et al., 2020). The closely
related independent component analysis (ICA) method is another linear technique that aims
to decompose a dataset into a set of independent signals that each capture a different source
of variation (Stein-O’Brien et al., 2018). In a scRNA-seq setting these may correspond to
processes such as differentiation, cell cycle or apoptosis (Ocasio et al., 2019).

Whilst PCA and ICA are widely used, they are general statistical methods that are not
necessarily suited to dissecting the stochastic biological processes involved with differentia-
tion. To address this, Haghverdi et. al. proposed the use of non-linear diffusion maps as a
DR technique that better accounts for the continuous nature of cell trajectories in scRNA-seq
data (Haghverdi et al., 2015). Distances between cells are calculated by simulating diffusive
random walks in the original high-dimensional space, in a manner similar to how an individ-
ual cell may explore gene expression space before committing to a particular lineage. Similar
to PCA, the top n diffusion components (DCs) calculated through this method can be used as
a low-dimensional representation of the data, with each component capturing some aspect of
a continuous process. For this reason, diffusion map representations have been successfully
used as a basis for creating temporal orderings of cells along a differentiation trajectory (see
section 1.4.3), as well as for reconstruction of gene regulatory networks (Haghverdi et al.,
2016; Ocone et al., 2015).

One drawback of using PCA or diffusion maps to visualise single cell data is that whilst
the top 50 components capture nearly all of the variance, the top 2 or 3 components by
themselves do not. Therefore if a large, unbiased scRNA-seq dataset contains several
different differentiation trajectories, some of them may be completely ignored when just the
top two PCs or DCs are visualised. Therefore specific methods have been developed that
aim to capture as much of the variance as possible in a very small number of components.
Two of the most widely used are the t-distributed stochastic neighbour embedding (tSNE)
and uniform manifold approximation (UMAP) methods; these aim to find a distribution
of pairwise cell distances in 2 or 3 dimensions that accurately reflects the distribution in
the original high-dimensional space (Maaten and Hinton, 2008; Mcinnes and Healy, 2018).
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Both have been widely applied to a range of scRNA-seq datasets (Ibarra-Soria et al., 2018;
Scialdone et al., 2016; Wang et al., 2018; Wilson et al., 2015).

A different approach to visualisation has been developed in the form of force-directed
graphs (FDG), which are calculated using k-nearest-neighbour (kNN) graphs. In a kNN-
graph, each cell is connected to its k nearest neighbours, as defined by a distance metric
(which could be measured in the high-dimensional space, or in the PC or DC representations).
An algorithm is then applied which simulates repelling forces between all cells, such that
cells are only held together by the nearest neighbour connections. The resulting arrangement
of cells in 2 or 3 dimensions is used as the FDG embedding (Weinreb et al., 2018a). Since
being first introduced, they have been widely used to visualise the branching structure of
differentiation trajectories within the blood system, as they excel at extracting all trajectories
into a single visualisation (Dahlin et al., 2018; Giladi et al., 2018; Tusi et al., 2018).

Clustering single cells into discrete populations can often be a useful tool for analysing the
structure of a dataset. Not only can it highlight groups of cells with the most similar profiles,
but it also defines populations for differential expression analysis (or relevant features in
other modalities). Whilst supervised clustering of scRNA-seq data using prior knowledge of
highly-expressed marker genes is sometimes possible, it is often biased by the incompleteness
of the prior knowledge relating to either the marker genes themselves or the cell types present
within the data. Unsupervised clustering is a more data-driven approach, and different
approaches have been used in a myriad of studies to investigate haematopoiesis at the single
cell level (Guo et al., 2013; Jaitin et al., 2014). These include standard hierarchical clustering,
probabilistic models and graph-based approaches (Drissen et al., 2016; Levine et al., 2015;
Paul et al., 2015).

As scRNA-seq datasets have tended towards large, unbiased sampling of continuous
transcriptomic landscapes, kNN-graph-based clustering approaches have been increasingly
appropriated for use on single cell data. Inferring sensible clusters along a well-sampled
continuous differentiation trajectory relies on maximising both intra-cluster similarities
and inter-cluster differences, regardless of the steadily changing expression profiles along
the continuous path. Graph-based approaches do this by optimising the ‘modularity’ of
the assigned clusters; this works by maximising the difference between the number of
nearest-neighbour connections within a cluster compared to what would be expected if
nearest-neighbour connections were assigned randomly (Newman and Girvan, 2004). Hence
the resulting clusters are tightly intra-connected and have the minimum possible overlap
with each other. Furthermore, modularity-based algorithms are scalable and quick to run
on large datasets; one of the most popular, the Louvain algorithm, has been widely applied
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to single cell data (Andrews and Hemberg, 2018; Blondel et al., 2008). More recently,
the Leiden algorithm has been shown to improve upon the Louvain approach in terms of
maximising the intra-cluster connectivity (Traag et al., 2019). Typically, the kNN-graphs
used for clustering are calculated from a low-dimensional representation of the data such as
PCA, as it has been suggested that performing nearest-neighbour calculations directly from
a sparse, high-dimensional space can introduce significant biases to the resulting clusters
(Radovanovic et al., 2010).

1.4.3 Inferring dynamic processes from transcriptomic landscapes

A blood cell’s differentiation trajectory from HSC to a terminal fate is a continuous, dynamic
process. When a scRNA-seq experiment is performed, all temporal information about a cell is
lost, leaving only a snapshot of its transcriptional state at some moment in time. However if an
entire trajectory (or set of trajectories) is sampled in an unbiased fashion and at a high enough
density - as is now possible with droplet-based methods - these dynamic processes can start
to be unravelled. This relies on the assumption that differentiation is asynchronous, leading
to the idea that the temporal behaviour of a single cell along a trajectory can be approximately
recreated by connecting the transcriptomic states of many different cells captured at different
stages along the same trajectory (Weinreb et al., 2018b). This raises two key computational
challenges. Firstly, given a set of cells belonging to a trajectory, how can they be ordered
into the configuration that most accurately reflects the true temporal development of a cell
along that trajectory? This is essential if the true transcriptional dynamics of differentiation
are to be found. Secondly, in systems such as haematopoiesis where stem/progenitor cells
are making fate decisions, can the potential terminal fates or a particular transcriptomic state
be defined? This is equivalent to finding the locations of the ‘branchpoints’, where fate
decisions are being made within the transcriptional landscape. Achieving this would allow
the genetic drivers of specific fate decisions and the hierarchy between diverging lineages to
be elucidated (Laurenti and Göttgens, 2018). The haematopoietic system has often been the
model of choice for trying to answer these questions.

Ordering single cells along a differentiation trajectory encompasses the idea that cells
with the most similar transcriptional profiles are likely to exist temporally close to each
other during a biological process such as differentiation. In addition, these cells are likely
to be closely related on a transcriptomic landscape. Initial attempts to order cells in this
way simply used PCA to identify a principal component that looked like it corresponded
to differentiation progress based on prior biological knowledge (Guo et al., 2010). Cells
were then ordered simply by their location on that PC. However it is unlikely that a single
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component will accurately capture all aspects of differentiation whilst not being influenced
by other processes. In 2014, landmark papers by Trapnell et. al. (2014) and Bendall et.
al. (2014) introduced the concept of ‘pseudotime’, a quantitative measure of each cell’s
progress through a continuous differentiation trajectory. The former study used minimum
spanning trees (MSTs) to identify the shortest path through a low-dimensional representation
of the data. Cells were then ordered based on their position along the MST. This approach
could further search for the location of fate decisions by looking for the largest separate
branches within the MST, and assigning these to different trajectories based on user-defined
information about the number of trajectories within the data. In practice, it was found that
such a MST approach was often unstable for large datasets, and later versions of the same
algorithm introduced completely new techniques for learning the structure of the data, such
as reverse graph embedding, to improve the stability of pseudotime estimates (Qiu et al.,
2017). Alternatively Bendall et. al. (2014) first calculated a kNN-graph on the data, and
using ensemble methods calculated the average ‘distance’ on the kNN-graph between each
cell and a user-defined starting cell. The authors beautifully demonstrated the efficacy of
this approach by reconstructing a single cell trajectory of B cells that correctly ordered the
known landmarks of B cell development, highlighting the potential ability of such methods
to identify new drivers of differentiation. Later improvements to this approach allowed for
the identification of branchpoints within the kNN-graph (Setty et al., 2016).

The concept of low-dimensional diffusion maps introduced in section 1.4.2 has been
extended to calculate pseudotimes for continuous trajectories by constructing a random-walk
based distance metric within the diffusion map space of a dataset (Haghverdi et al., 2016).
This metric, known as diffusion pseudotime (DPT), is then calculated between a user-defined
root cell (such as a HSC) and every other cell, before being used for ordering. DPT has been
widely used, largely as a result of the robustness and efficiency of diffusion maps at capturing
complex continuous structures (Nestorowa et al., 2016). However whilst it is capable of
identifying bifurcation points, the DPT algorithm struggles when confronted with a dataset
containing more than two trajectories (Qiu et al., 2017). Although pseudotime algorithms
such as DPT have proved extremely effective at ordering single cells along a trajectory,
they represent only a small fraction of the recent methods developed to infer differentiation
trajectories (and by extension, lineage hierarchy and fate decision branchpoints) from scRNA-
seq data. A wide array of approaches have been used to do this, many of which do not
explicitly calculate pseudotimes; naturally, however, once a method has been used to identify
trajectories a separate pseudotime algorithm can then be applied to achieve an ordering of
cells.
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Amongst methods designed to infer differentiation trajectories and branchpoints, there is
enormous heterogeneity in the approaches used, the prior knowledge required and differenti-
ation topologies that can be interrogated. Saelens et. al. (2019) provide a comprehensive
review of over 40 different methods using various metrics including scalability and ease of
use. One of the more common approaches is to rely on a clustering of the data to create
a graph through which trajectories can be traced. For example, the partition-based graph
abstraction (PAGA) algorithm calculates a connectivity score between each of the input
clusters using a kNN graph, before creating a new graph based on a threshold for connec-
tivity. Applied to a dataset of murine haematopoietic progenitor cells, PAGA suggested
multiple routes of differentiation to a basophil fate through either a neutrophil/monocyte or
an erythroid/megakaryocyte progenitor state (Wolf et al., 2019). Other graph-based methods
such as Slingshot and StemID take similar approaches (Grün et al., 2016; Street et al., 2018).
Nonetheless, the efficacy of this approach is heavily reliant on the quality and resolution
of the clusters used for inference. It is also not an approach that particularly lends itself
to continuous trajectories, given the need to discretise a dataset before inference can occur.
However graph-based approaches do allow for easy identification of clusters near where fate
decisions may be occurring, which can then be further interrogated at a molecular level.

As an alternative to this approach, other methods aim to build a classifier that calculates
the probability of each terminal fate in the dataset for every cell. A highly supervised
approach was introduced with the STEMNET algorithm, which uses the expression of
predetermined marker genes for each terminal fate as input to a generalised linear model,
which then predicts the degree of lineage priming towards each fate for the entire dataset. In
human bone marrow HSPCs, STEMNET strikingly predicted a lack of oligopotent progenitor
populations, with committed unipotent cells emerging from a pool of multipotent HSCs and
MPPs that were equally primed in all directions (Velten et al., 2017). This appeared to support
results from functional transplantation and in vitro assays, and raised important questions
about the nature of the haematopoietic hierarchy in humans compared to mice, many of which
remain unanswered (Laurenti and Göttgens, 2018; Notta et al., 2016). Building on this idea,
the FateID algorithm classifies single cells using a semi-supervised iterative process (Herman
et al., 2018). Provided with the identity of genes relating to each terminal fate, a random
forest classifier is used to move backwards from the end of each trajectory, classifying a small
number of adjacent cells before building a new classifier using the transcriptomes of cells
added in the previous iteration. In this way, the features used for classification are constantly
updated along each trajectory. The authors suggested that this iterative nature allowed them
to observe a greater degree of lineage priming in MPPs compared to STEMNET, although
it must be considered that FateID was benchmarked on murine haematopoietic cells rather
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than human. Nevertheless results once again suggested that key lineage decisions were being
made early on in the haematopoietic hierarchy in contrast with the classical model structure.
For each cell, FateID returns a vector of probabilities associated with commitment to each
terminal fate, allowing the location of successive branchpoints in the data to be located
wherever the probabilities for multiple fates are equivalent. One limitation of this approach
is that if the magnitude of molecular changes are vastly different between two trajectories,
classification of a bipotent progenitor population within both trajectories can be heavily
biased (Saelens et al., 2019).

More complex trajectory inference methods have also been proposed, though these typi-
cally require more starting information. The Waddington-OT method uses the mathematical
framework of optimal transport to map high-dimensional regions within a transcriptional
landscape across different timepoints, allowing trajectories to be inferred (Schiebinger et al.,
2019). However this approach relies on time course experiments, rendering it unsuitable
to study steady state haematopoiesis. Similarly, population balance analysis (PBA) takes a
physically-motivated approach to trajectory inference by attempting to solve a drift-diffusion
equation for the potential underlying a transcriptomic landscape (Weinreb et al., 2018b).
However this requires knowledge of the exit rates of cells from each terminal fate, which
is not known a priori despite recent work attempting to quantify the flux of cells through
specific HSPC populations (Busch et al., 2015).

Overall, pseudotime and trajectory inference methods have played an integral part in
uncovering hitherto unknown routes of differentiation and coupling between lineages in the
haematopoietic system. Combined with lineage barcoding experiments, trajectories inferred
from scRNA-seq data allow the transcriptomic state of a cell to be linked to its functional
fate biases, allowing questions about the hierarchy of haematopoiesis to be answered in a
way that is not possible using single cell profiling alone (Rodriguez-Fraticelli et al., 2018;
Weinreb et al., 2020). However many of the methods described here have clear drawbacks,
and do not work well with the large, complex and multimodal datasets that are now being
produced using multiomics approaches. Hence further innovation will be required to better
define the cell states involved in haematopoietic fate decisions.
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1.5 Single-cell perturbation experiments

1.5.1 Integrating scRNA-seq data across conditions

Profiling perturbed states of haematopoiesis, such as those associated with pre-leukaemic
malignancies and AML, is an important step towards understanding the mechanisms driving
disease states at the scale of the entire blood system. The effects of even a single driver
mutation can be complex and alter the wild-type transcriptional landscape in a myriad of ways
(Figure 1.7A). For example, aberrant fate decisions can result in downstream abundance shifts
due to a greater/lesser proportion of cells entering a certain trajectory (Figure 1.7B) (Laurenti
and Göttgens, 2018). Changes to the self-renewal abilities of immature populations can also
alter their apparent abundances within the landscape, as can changes to the proliferation or
apoptosis rates of a population or its upstream progenitors (Nimmo et al., 2015). Equally,
aberrant rates of differentiation along particular trajectories, due to either differentiation
blocks or over-active signalling cascades can cause a population to appear under- or over-
represented, even in the absence of any changes to the actual fate decisions (Akinduro et al.,
2018). This ‘cellular’ information (i.e. relating to differential abundances in specific regions
of a landscape) must then be considered and interpreted in the context of the ‘molecular’
information (i.e. relating to the expression of specific genes) contained within the over/under-
abundant regions, as well as in the immature progenitor populations where aberrant fate
decisions may actually be occurring (Povinelli et al., 2018).

Before these signals can be compared between WT and perturbed states, data from the
two conditions must be integrated effectively. As previously discussed, technical variation
can play a large role in scRNA-seq datasets, and wildly different levels of variation can be
observed between conditions even when they are subject to identical protocols and sequenced
at the same time (Büttner et al., 2019). This can cause biological differences between
conditions at either cellular or molecular scales to be largely obscured by technical effects.
There are two main approaches towards dealing with these ‘batch effects’ in scRNA-seq
data. The first and most common of these is to integrate each condition into a single dataset,
before using one of a number of published methods that attempt to correct for technical
variation using the conditions as a covariate. These include ComBat - which was originally
designed for microarray data and subsequently applied to scRNA-seq data (Johnson and Li,
2007) - alongside more recent, nonlinear approaches designed specifically for single cell
data, such as canonical correlation analysis (CCA), mutual nearest neighbours (MNN) and
batch-balanced k-nearest neighbours (BB-KNN) (Haghverdi et al., 2018; Polanski et al.,
2020; Stuart et al., 2019). The key assumption behind these later integration methods is that
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A BHealthy Conditions Disease Conditions

Fig. 1.7 Disease states initiate shifts in a transcriptional landscape. (A ) A schematic of
a wild-type transcriptional landscape where a pool of progenitors gives rise to 2 differentiated
populations X and Y. Arrows indicate directions of differentiation throughout the landscape
and the degree of self-renewal. (B) An example of a disease state, where the stem cell pool is
exhausted (low self-renewal), compromising production of Y cells, whereas there is increased
production of X cells because of increased self-renewal in a downstream population of X
progenitors.

at least some cells of the same type exist in multiple conditions, and that differences between
the same cell type across conditions are typically smaller than the differences between cell
types within a condition. This allows for the identification of the same cell type across
conditions using computationally efficient graph-based methods, and the (assumed technical)
differences between them removed. Batch correction methods have been applied to integrate
scRNA-seq data across different genders, species and sequencing protocols (Butler et al.,
2018). Nonetheless, the simple empirical Bayes framework of ComBat has been suggested
to outperform more recent methods on smaller datasets (Büttner et al., 2019), and it has been
further suggested that many current batch correction methods are prone to overcorrection,
thereby removing much of the biological variation inherent to a dataset (Hie et al., 2019;
Korsunsky et al., 2019). In particular, many integration methods struggle to successfully
integrate a large number of different conditions into a single dataset, limiting their practicality
in certain situations.

The second approach for mitigating batch effects is to compare data from each condition
with respect to a ‘reference’ dataset that acts as an anchor for the entire analysis. This refer-
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ence can be either the data from one of the conditions in a multi-condition experiment (most
typically the wild-type or control sample), or an external cellular atlas generated separately.
Ideally, the reference data will be large, densely sampled and cover a similar (or larger)
region of the transcriptomic landscape compared with the other conditions, allowing cells
from each condition to be ‘mapped’ to the reference via a sensible classifier. This approach
allows cellular information to be integrated across conditions in an easily comprehensible
way and without the risk of overcorrection; it has therefore been used by a number of studies
analysing the top of the haematopoietic hierarchy (Dahlin et al., 2018; Tusi et al., 2018).
However this approach cannot be used to integrate perturbations containing cell populations
that are not present in the reference. Published methods such as scmap attempt to perform
this mapping robustly based on cell-to-cell distances in gene expression space, assigning
each cell from one condition (e.g. perturbed state) onto a reference dataset; cells that cannot
be sensibly mapped to any part of the reference landscape are left unassigned (Kiselev
et al., 2018). Overall, using a reference landscape is arguably a more powerful and scalable
approach to integrating a large number scRNA-seq perturbation experiments - provided that
a suitable reference exists - compared with integrating all conditions into a single dataset.
Data integration across conditions and modalities is likely to be one of the key tasks in the
single-cell field moving forward, and both approaches will likely prove useful in extracting
information from large and varied sources, such as the Human Cell Atlas (Benoist et al.,
2017).

1.5.2 Identifying mechanisms driving perturbed haematopoietic states

Once data integration has been performed, perturbed transcriptional landscapes can be anal-
ysed and compared to their wild-type counterparts, with great potential for novel biological
insight. In the past two to three years, a small number of studies have begun to exploit this
potential by profiling broad haematopoietic populations from perturbed states, rather than
remaining restricted to a single cell type (Shepherd and Kent, 2019). Dahlin et. al. profiled
HSPCs (using 10X Genomics) from a mouse model with defective c-Kit signalling and
compared them to wild-type cells from the same broad sorting gate (Dahlin et al., 2018).
The study highlighted how the mast cell fate is completely absent in these mice, consistent
with current knowledge of mastocytosis and the phenotype of the mice (see section 1.3.2).
The perturbed cells were mapped onto clusters defined on the WT reference, and the relative
abundances of each cluster were calculated, highlighting an increase in erythroid progenitors.
Differential expression between conditions suggested a reduction in pro-apoptotic genes
amongst the perturbed cells. Whilst informative, this study was only able to scratch the
surface of the data in terms of the molecular drivers that were shifting the perturbed tran-
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scriptional landscape. Similarly, Tusi et. al. compared WT HSPCs to erythropoietin (EPO)
stimulated cells in order to understand the effects of stress on the erythroid differentitation
trajectory (Tusi et al., 2018). Unsurprisingly, it was found that the relative abundance of
erythroid progenitors increased relative to WT. More interestingly, it was suggested that
different regions of the erythroid trajectory were perturbed with different magnitudes, in
terms of the number of differentially expressed genes in each region. Pro-myeloid (and
hence anti-erythroid) transcription factors such as CEBPB were found to be downregulated
in MPPs compared to WT, potentially linking transcriptional changes to altered fate bias.

In addition to mouse models and in-vitro perturbations, scRNA-seq has also been com-
bined with targeted mutational detection in order to directly analyse human patient samples.
Giustacchini et. al. successfully used this approach to characterise CML cells, revealing
clear differences between a) healthy HSCs and CML HSCs, b) CML leukaemic cells before
and after therapy and c) CML leukaemic HSCs and CML healthy HSCs (Giustacchini et al.,
2017). One of the most interesting results was that genetically healthy HSCs from CML
patients upregulated genes associated with HSC microenvironmental factors such as IL-6 and
TNF-α , suggesting that the presence of leukaemic HSCs might be suppressing the activity of
nonmutant HSCs by causing inflammation in the HSC niche (Shepherd and Kent, 2019). This
approach could be revolutionary for understanding perturbed haematopoiesis in leukaemia
patients, and recent work has attempted to optimise the technology such that even single point
mutations can be confidently called whilst simultaneously capturing whole-transcriptome
information (Rodriguez-Meira et al., 2019). This new technology, TARGET-seq, may play
an exciting role in elucidating the interplay between healthy and malignant clones within
pre-leukaemic patients over the next few years.

Most recently, Izzo et. al. performed scRNA-seq on the blood progenitor landscape for
mouse models harbouring TET2 and DNMT3A mutations. As discussed in section 1.3.3,
this study attempted to link the observed abundance shifts in the transcriptional landscape to
the underlying epigenetic changes occurring in the most immature HSCs and MPPs (Izzo
et al., 2020). Combined with single-cell work looking specifically at HSC self-renewal,
transplantation ability and functional potential in these models (Ostrander et al., 2020;
Shepherd et al., 2018), mechanistic models of how the most common mutations driving CH,
MPNs and MDS lead to a pre-leukaemic state are starting to emerge. Nevertheless, our
understanding of pre-leukaemic states at the scale of the whole blood system remains in
its infancy. In particular, comparisons between different pre-leukaemic states are currently
difficult to perform, and there is no global framework in which to interpret the cellular and
molecular shifts observed as a result of individual mutations. This is essential if the insights
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obtained from different mouse models of pre-leukaemic states are going to be transformed
into future therapeutic strategies.

1.6 Research goals

Somatic mutations within the HSC compartment can drive haematological malignancies
and leukaemia in human patients. To decipher the mechanisms behind these processes, an
integrated understanding of the effects of these pre-leukaemic perturbations at the scale of
the entire blood system is required. High-throughput single-cell RNA sequencing combined
with mutational mouse models now offers the opportunity to analyse the entire blood pro-
genitor compartment of these perturbed mice at single cell resolution. Hence by comparing
perturbed transcriptional landscapes to healthy haematopoiesis, insights about the aberrant
fate decisions and differentiation trajectories occurring as a result of pre-leukaemic mutations
can be obtained. However, current computational methods to achieve this are limited in their
scope.

The work presented in this PhD thesis presents a range of computational methods and
approaches designed to extract hypotheses from broad, unbiased scRNA-seq perturbation
experiments. Furthermore, this thesis discusses a variety of novel biological insights into pre-
leukaemic haematopoietic states. More specifically, the aims of this thesis can be summarised
into four main goals:

1. To build a computational framework for the global integration and analysis of multiple
single-cell perturbation experiments at both the cellular and molecular scales

2. To elucidate the mechanisms through which pre-leukaemic perturbations drive aberrant
haematopoiesis within the most immature blood progenitor cells, and correlate these
findings with the transcriptional shifts observed in more mature populations

3. To investigate the combinatorial effects of multiple mutations upon the blood progenitor
landscape

4. To construct new methods for the inference of cellular differentiation trajectories from
large, sparse, scRNA-seq datasets



Chapter 2

Materials and Methods

All methods were carried out by Sam Watcham unless explicitly stated in the text. Parts of
this chapter describing data generation and methods have been adapted from Haltalli et. al.
(2020), Dingler et. al. (2020) and Prins et. al. (2020, in review).

2.1 Isolation and profiling of murine cells using droplet-
based scRNA-seq

For a given experiment, bone marrow cells were isolated from the femurs, tibiae and iliac
crest of relevant mice and were lineage depleted using the EasySep Mouse Hematopoietic
Progenitor Cell Enrichment Kit (STEMCELL Technologies) alongside red blood cell lysis.
All mice were 12 weeks (3 months) old with the following exceptions: the WT and perturbed
mice used for the p53 experiment were 9 weeks old; the WT and perturbed mice used for
the second Calr experiment were 24 weeks old (6 months). All mice were either wild-type
C57BL/6 mice or were bred from these as part of a perturbation model. Cells were then
sorted into either the LK (Lin-c-Kit+) gate or the LSK (Lin-Sca1+c-Kit+) gate. The latter
was used only in the WT reference and Calr experiments.

Droplet-based scRNA-seq was then performed using the 10X Genomics Chromium Single
Cell 3’ Reagent Kits v2 in all cases. Cells were processed according to the manufacturer’s
protocol. For each experiment, each sample (i.e. from a WT or perturbed mouse) was
barcoded and subsequently sequenced alongside the other samples from the experiment. The
exception to this was the WT reference experiment, in which cells from six wild-type mice
were pooled first and then were sorted into three LK and three LSK samples, which were
then barcoded and sequenced together. Sample demultiplexing, barcode processing and gene
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counting were all performed using the count command within the CellRanger pipeline. The
only additional input required was the expected number of cells for each sample. This was
determined experimentally. This experimental work was performed largely by Nicola Wilson,
with help in specific experiments from Myriam Haltalli (Malaria), Daniel Prins and June
Park (Calr), Meng Wang and Felix Dingler (Aldh2/Adh5). The CellRanger pipeline was run
by Rebecca Hannah in the majority of cases and by Sam Watcham in all other cases.

2.2 Quality control and normalisation of droplet-based scRNA-
seq data

The default CellRanger pipeline was applied to all wild-type and perturbed samples from
either the LK or LSK (Calr experiment only) gate. The default CellRanger cell filtering step
ranks the unique cell barcodes within the data by the number of UMI counts associated with
each barcode, before calculating a cutoff for the minimum number of UMIs per barcode. All
cells below this cutoff are excluded. The cutoff is calculated using the expected number of
cells, N, which is given as input to the CellRanger pipeline. The 99th percentile of the top N
barcodes is taken as an estimate, m, of the maximum number of UMIs for a cell. The cutoff
is then calculated as m/10.

The majority of downstream analysis of the data was performed using the python module
Scanpy (Wolf et al., 2018) with additional visualisation using the python modules Matplotlib
and Seaborn. For initial quality control, the CellRanger output was assessed for potential
doublets using code that is now freely available as the Scrublet method (Wolock et al., 2018).
This simulates synthetic doublets from pairs of cells within the data, and then scores each
cell based on its similarity to the synthetic profiles via a k-nearest-neighbour classifier. The
distribution of these scores was analysed for each sample to ensure sensible results. For each
sample, the top 1% of cells with the highest scores from each sample were removed, based
on known rates of doublet occurrence within the 10X platform (Zheng et al., 2017).

Further quality control followed. Any cells with more than 10% of their reads mapping
to mitochondrial genes were excluded as these were likely apoptotic. Any cells expressing
fewer than 500 genes were also excluded. Any cells with a total number of UMIs that were
greater than three standard deviations away from the mean for a given sample were further
excluded.
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Normalisation was then performed on a per-cell basis, such that every cell had the same
number of UMI counts in total (10,000). All analysis downstream of this point (including
differential expression) was performed on the normalised counts.

Within each experiment, highly variable genes (HVGs) were selected by concatenating all
samples within an experiment and then following the procedure of Macosko et. al.(Macosko
et al., 2015) implemented with Scanpy. An expression cutoff = 0.001 and dispersion = 0.05
were used in all cases. This typically resulted in around ∼5000 HVGs for each experiment.
No experiment had less than 4000 or more than 6500 HVGs. Count matrices were then
log-transformed with an added pseudocount, i.e. x ⇒ ln(x+1).

Log-transformed count matrices subset to HVGs were used for visualisation and cluster-
ing (see below) and for some mapping procedures (see below). Additionally for these tasks,
each gene was scaled such that it was zero-centred (mean=0, SD=1), so that each gene was
equally weighted.

2.3 Visualisation and Clustering of droplet-based scRNA-
seq

For visualisation and clustering purposes only, a further list of 380 cell-cycle related
genes were removed from the relevant dataset. This list was downloaded from Reactome
(http:www.reactome.org/). This reduced the impact of cell-cycle on visualisations and
allowed clustering to occur via cell-types rather than cell-cycle stage.

To visualise the WT reference data (LK+LSK) as a force-directed graph, principal
component analysis (PCA) was performed on the normalised, log-transformed, scaled data
subset to the HVGs. This was done using the pca function in Scanpy. From this, a k-nearest-
neighbour graph with k=7 was produced for the data using the top 50 principal components
and a Euclidean distance metric. This graph was used as input to the ForceAtlas2 algorithm
within Gephi 0.9.1 (http://gephi.org/), which produced the resulting force-directed graph
coordinates of each cell. Force-directed graph visualisations for the Malaria samples (WT,
perturbed and combined) in Section 5.2 were produced in the same manner as above.

When plotting gene expression of the WT reference data on this visualisation, points
were plotted in order of magnitude. Hence the cells with the greatest expression were always
plotted on top.
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To re-visualise the ‘Stem Cells’ cluster from the WT reference data as a UMAP, the
umap() function within Scanpy was applied to these cells (this takes as input the PCA
coordinates calculated as described above). Similarly, this method was used to visualise the
entire Aldehyde dataset and the subset Aldehyde dataset (i.e. only the ‘HSC’ cluster) in
Section 5.3.

All clustering was performed using the Louvain algorithm through the louvain()

method within Scanpy (Blondel et al., 2008). For example for the WT reference data,
the scaled HVGs were used to construct a k=15 nearest-neighbour graph from the PCA
space as above. This graph was then used as input for the Louvain algorithm. Using a
resolution=0.175 produced 13 clusters. In other cases where clustering was performed,
different resolutions were used. To cluster the WT Malaria cells, a resolution=1.0 was used.
To cluster the Aldehyde samples, a resolution=0.4 was used. To cluster the Aldehyde ‘HSCs’,
a resolution=1.0 was used. To cluster the WT reference data into fine clusters for PAGA
analysis in Section 5.4, a resolution=2.0 was used.

2.4 Mapping samples across experiments

To compare cellular abundances across pre-leukaemic models, each sample from each
experiment was mapped back onto the WT reference data. This data had already been
clustered as described above. To assign cells from a sample to these clusters, each cell was
projected (after being scaled) into the PCA space of the WT reference data. The k=15 nearest
neighbours of the cell within the reference data were located using the top 50 principal
components with a Euclidean distance metric. The cell was then assigned to the same cluster
that the majority of its 15 neighbours belonged to.

The same procedure was used to map the perturbed malaria samples onto the WT malaria
samples in Section 5.2.

2.5 Measuring differential abundances using Z-scores/paired
voting

All the pre-leukaemic models analysed in Chapter 3 (three repeats of the Jak2 model, plus
one experiment for each of the W41, Dnmt3a, Npm1, Crebbp, Tet2 HET, Tet2 HOM, Jak/Tet
Cross and p53 models) were mapped to the WT reference data as described above. The
mean proportional cellular abundance for each of the 13 clusters was calculated across all
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WT samples (excluding the p53 WT sample, which was not age-matched with the other WT
samples), along with its standard deviation. The number of cells in each sample were used
as weights for these calculations. For experiments where two samples from separate mice
were sequenced for a given genotype (e.g. the Dnmt3a, Npm1 and Crebbp experiments had
two WT and two perturbed mice), each genotype was considered as a single sample for the
purposes of this and later sections. It was later statistically justified that the WT sample
from the second Jak2 experiment and the WT sample from the Tet2 HET experiment were
significantly different from the other WT samples. Therefore the mean and standard deviation
across WT samples were recalculated with these samples removed. Z-scores (number of
standard deviations from the mean) for the abundances of each cluster were then calculated
for every sample (WT and perturbed) compared to these average values. Heatmaps displaying
these values were created using the Python module Seaborn.

To test whether the set of 13 Z-scores obtained for a sample in Section 3.2 was signif-
icantly different from the WT average, the Z-scores were converted to p-values using the
python module Scipy with the stats.distributions.norm.isf() method. These 13 p-
values were then combined using Fischer’s method, implemented in the stats.combine_pvalues()
method. This analysis assumes that the 13 initial Z-scores for a sample are independent;
this is not strictly true, since the total abundances must sum to 100%. Hence the computed
test-statistic will be an underestimate of the true value. However with 13 clusters, the co-
variance between any two clusters will be low, and Fischer’s method will provide a good
approximation.

A proxy for differential abundances was visualised on the WT reference force-directed
graph/UMAP using paired voting. Two matched samples (i.e. WT and perturbed samples
from the same experiment) were chosen. Each cell from the first sample was projected into
the PCA space of the reference dataset as described above. Each of its k nearest neighbours
in the reference data was then given a single vote. k was chosen so that the total number
of votes given out by any sample was as close to 100,000 as possible. Hence k differed
between samples in order that the total number of votes from any sample was the same. After
this was done for each cell, the votes were smoothed over the reference dataset by sharing
the number of votes each reference cell had equally amongst its k=100 nearest neighbours
(for the entire WT reference dataset) or k=20 nearest neighbours (for just the ‘Stem Cells’
cluster). This procedure was repeated for the second (matched) sample. For each reference
cell, the difference in the number of votes received from the first and second samples was
visualised. Cells were plotted in order of their absolute magnitude, so that areas of both
increased and decreased abundance could be observed.
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Three experiments (W41, Tet2 HOM, and Jak/Tet Cross) did not have a matched WT
sample alongside the perturbed sample. For these experiments, the Npm1 WT sample was
used as the matched sample. This sample was chosen because its cellular abundances across
all clusters were the closest to the average values out of all the WT samples. To compare the
results of the paired voting method with the Z-score method, the voting differences for each
experiment were averaged across each of the 13 clusters and displayed as a heatmap.

2.6 Performing differential expression

Differential expression (DE) between two sets of cells was performed using the Wilcoxon
rank-sum test (also known as the Mann-Whitney U test) using the SciPy method stats.mannwhitneyu().
For a given gene, this tests the likelihood that the expression values for each set of cells came
from the same distribution and returns the result as a p-value. Normalised counts were used
as input for all DE tests as suggested in reviews of single-cell DE methods (Soneson and
Robinson, 2018). After performing this test for each gene, the returned p-values were cor-
rected for multiple testing using the Benjamini-Hochberg correction. Genes were then called
as significant differentially expressed genes (DEGs) if they had an adjusted p-value<0.05 and
an absolute fold-change>1.2. Results were assessed visually using MA plots (fold-change vs
mean expression) to check for spurious patterns.

In one specific experiment (the third repeat of the Jak2 model), differing sequencing
saturations across genotypes introduced technical biases to the DE process and caused
spurious results (see Figure 3.5B). If a shallowly-sequenced sample A is compared to a
deeply-sequenced sample B, then a given gene in sample A may have many zero counts (due
to the shallow sequencing) and a few relatively high counts (because each cell in sample A has
few UMIs overall and hence if even one UMI is recorded, this is a relatively large proportion
of the total for that cell). The same gene in sample B may have few zero counts (due to the
deep sequencing) but also relatively small counts (because each cell has many UMIs overall).
Hence the DE testing identifies this gene as coming from different distributions in the two
samples, whereas in reality this is a technical effect rather than a biological one.

To correct for this, the raw counts for each cell in the homozygous sample of the third
Jak2 experiment were randomly downsampled. For each cell, a random cell size (total UMIs)
was chosen from the distribution of wild-type cell sizes in the cluster that the homozygous
cell belonged to. The homozygous cell was then downsampled to this cell size. This had to
be done on a per-cluster basis because different clusters had very different distributions of
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cell sizes (even in a wild-type setting). This procedure was effective at removing the spurious
technical effects observed.

In Section 3.4, the experiments without a matched WT sample (W41, Tet2 HOM, and
Jak/Tet Cross) had differential expression performed with both the Dnmt3a and Npm1
samples, as these were the WT samples that had closest-to-average cellular abundances. For
each experiment these two lists were then intersected, with the smallest adjusted p-value and
mean log2(fold-change) being used for downstream molecular analysis.

2.7 Geneset enrichment analysis/IPA analysis

Where mentioned in Chapters 3 and 4, geneset enrichment analysis/gene ontology of dif-
ferentially expressed or differentially variable genes was performed using the online tool
EnrichR (Chen et al., 2013). Only terms with an adjusted p-value<0.05 were considered
significant. The Ingenuity Pathway Analysis from Section 5.4 was performed by Michele
Vacca using the QIAGEN IPA framework (https://digitalinsights.qiagen.com/).

2.8 Integrating differential expression results within a spe-
cific cell type

332 individual genes were identified as being significantly differentially expressed (either
up or down) within the ‘Erythroid – Middle/Late’ cluster in at least two of the perturbation
models analysed in Chapter 3.4. Note that these models must be distinct; a gene is not
included if it is dysregulated in two or more of the Jak2 experimental repeats but not it any
other models. The Tet2 HET and Tet2 HOM models were treated as distinct.

The log2(fold-changes) for each experiment in each of the 332 genes was condensed into
a matrix. A UMAP visualisation of this data was created with the second and third Jak2
experimental repeats excluded so that the UMAP would not be unduly influenced by the Jak2
model. Four genes had an ‘infinite’ fold-change in one of the models due to a sample within
that model having zero expression of the gene. These infinite values were replaced with a
log2(fold-change) of 3 for positive infinities and -3 for negative infinities to allow the UMAP
to be created.

In an identical manner, a UMAP was created in section 4.3 using 231 genes that were
identified as being dysregulated in two or more models within the ‘Stem Cells’ cluster.
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2.9 Integrating differential expression results across a whole
trajectory

To integrate differential expression results across an entire trajectory, the trajectory of interest
was first chosen through partition-based graph abstraction (PAGA, for full details see below).
The shortest path between the ‘Stem Cells’ cluster and the most mature cluster in the
trajectory (chosen manually) was calculated based on a connectivity threshold of 0.3, and
cells belonging to all clusters on this shortest path were taken to belong to the trajectory of
interest.

For each experiment, the normalised and logged data for the matched WT and perturbed
samples was concatenated. Separately, the hscScore method (see below) was applied to
the WT sample, and the cell with the highest hscScore was identified as the root cell for
the experiment (i.e. the cell that is transcriptionally most similar to the transcriptome of
functionally validated HSCs). Pseudotime was then performed on the concatenated samples
using the dpt() method within Scanpy and the identified root cell. This method implements
the diffusion-based pseudotime approach taken by Bendall et. al. (Bendall et al., 2014), giving
each cell in the concatenated dataset a score between 0 (root cell) and 1. The pseudotime
analysis of the concatenated dataset was checked visually via dimensionality reduction to
ensure that a) no clear batch effects were visible between genotypes and b) the pseudotime
results were sensible. In some experiments, a small number of outlier cells that were not
removed by quality control caused problems, as they had wildly different transcriptomic
profiles to anything else and therefore were given the large pseudotime scores whilst all
other cells were given very small pseudotime scores. In these cases, the offending cells were
removed and the analysis repeated.

A sliding window approach was then implemented to calculate the expression changes of
the WT and perturbed cells over pseudotime for a gene of interest. This window had a size of
500 cells and was shifted by 100 cells at each step. Within the window, the mean expression
of each genotype was calculated at each step, with the requirement that at least 100 cells
from both genotypes were present within the window. This requirement helped to reduce
edge effects near the end of a trajectory. The mean pseudotime value of the cells within the
window was also recorded at each step.

The difference between the wild-type and perturbed expression levels was then plotted
as a function of pseudotime for the gene of interest. For the Jak2 model, which had three
experimental repeats, the results for a given gene were averaged over the three experiments.
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For models with only a single experiment but two mice per genotype (W41, Dnmt3a, Npm1,
Crebbp, Tet2 HOM and Jak/Tet Cross), the pseudotime alignment and sliding window process
was repeated independently by first using cells from one WT mouse and one perturbed mouse,
and then using cells from the other WT mouse and the other perturbed mouse. The results
were then averaged over the two biological repeats. Models without a matched WT used the
Npm1 WT mice as the matched sample.

A 4th-order polynomial spline was then fitted to the results for each model to smooth the
visualisation and further reduce the impact of edge effects. This was done in SciPy using the
interpolate.univariatespline() method. This spline acted as a ‘pseudotime-series’
for the gene along the trajectory of interest.

2.10 Unsupervised dDEG method

An unsupervised approach for the identification of dynamically differentially expressed genes
(dDEGs) was extended from the pseudotime approach described above. As input, this method
requires only the two matched samples to be compared, and the identity of the starting and
ending clusters for the trajectory of interest. It will then automatically identify the cells
belonging to the trajectory through a PAGA analysis, identify the root cell and perform
pseudotime alignment. The sliding window approach is then performed for every gene in
the dataset, followed by the fitting of a 4th-order polynomial spline to the results. To score
each gene, the mean of the absolute values of the differences between the WT and perturbed
expression along pseudotime was recorded. Simultaneously, the mean of the absolute values
of the derivative of the 4th-order polynomial spline along pseudotime was calculated. If the
mean difference was greater than 0.2, or the mean derivative was greater than 0.5, the gene
passed the threshold for being called a dDEG and was carried forward for further analysis.
These thresholds were designed to be relatively strict. The difference in expression was used
as a metric rather than the fold-change in expression in order to penalise lowly-expressed
genes. The absolute values were used so as not to penalise genes that switched between
positive and negative regulation across pseudotime.

Within this framework, experimental/technical repeats are handled by requiring a gene to
pass the thresholds in all repeats to be considered a dDEG.

The pseudotime-series of the dDEGs can then be clustered via K-means clustering.
Initially, each gene’s pseudotime series was scaled so that its maximum value was 1 and its
minimum value was -1. A user-inputted number of clusters was required and initial cluster
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centroids were selected at random. The distance between a gene’s pseudotime-series and
each centroid was then calculated using dynamic time warping (DTW), which stretches and
squeezes the pseudotime-series such that they can be clustered by shape (Berndt and Clifford,
1994). Genes were assigned to their nearest centroid. Centroids were then recalculated based
on these assignments and this process was iterated 30 times before returning the cluster
assignments of each gene and the centroid of each cluster. Empirically it was found that
the returned centroids did not differ greatly between different initialisations as long as the
number of iterations was greater than 10.

Centroids were then inspected visually and their components assessed for biological
tractability. The number of clusters found to be best for the K-means/DTW algorithm was
around 8-10, with potentially less clusters required if only a small number of dDEGs were
identified.

2.11 Visualising differential expression across a transcrip-
tomic landscape

Using a similar approach to the paired voting for differential abundances method (Section
2.5), a proxy for differential expression was visualised on the WT reference force-directed
graph using a kNN classifier. Two matched samples (i.e. WT and perturbed samples from the
same experiment) were chosen. Cells from both samples were projected into the PCA space
of the reference dataset. For each cell in the WT reference data, the mean expression of its
k=50 nearest neighbours in each of the matched samples was recorded. For each reference
cell, the difference in the mean expression of its neighbours from the first and second samples
was visualised. Cells were plotted in order of their absolute magnitude, so that areas of
both increased and decreased expression could be observed. The log2(fold-change) of the
expression between the two matched samples could also be visualised.

2.12 Processing of Smart-Seq2 scRNA-seq data

Data from 1,654 mouse HSPCs sequenced using the Smart-Seq2 platform was published
in Nestorowa et. al. (Nestorowa et al., 2016). Cells were collected from ten 12-week old
C57BL/6 WT mice, lineage depleted and then sorted whilst capturing index measurements for
c-Kit, Sca1, CD16/32, CD34, Flt3, CD150 and CD48 and EPCR. The Smart-Seq2 protocol
was performed as described previously (Picelli et al., 2014) using an Illumina HiSeq 4000
system before reads were aligned using GSNAP (Wu and Nacu, 2010). Quality control
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removed cells with <200,000 reads mapping to nuclear genes, <4,000 genes detected or
>10% of reads mapping to mitochondrial genes. Normalisation was then performed using
the scran R package (Lun et al., 2016). This led to 1,654 cells with 40,587 detected genes
being taken forward for downstream analysis.

2.13 Mapping Smart-Seq2 cells onto droplet-based scRNA-
seq landscapes

To project each of the index-data defined cell populations from the Smart-Seq2 data (MPP1,
ST-HSC etc) onto the WT reference droplet-based landscape, the normalised count matrices
of the 1,654 Smart-Seq2 cells were concatenated with the 44,802 10X cells. Note that these
count matrices had not been log-transformed or scaled and highly variable genes (HVGs) had
not been chosen. 17,007 genes were present in both datasets. After concatenation, each cell
was normalised using Scanpy to have the same number of counts (effectively, this step scaled
the Smart-Seq2 cells to match the 10X cells). HVGs were calculated as for the droplet-based
datasets. This retained 3,289 HVGs. All cells were then log-transformed and all genes were
scaled (mean=0, SD=1).

Principal component analysis was then performed on the combined dataset. Batch
correction was then performed using MNN-Correct (Haghverdi et al., 2018) as implemented
in python. This method searches for mutual nearest-neighbours between batches (i.e. pairs
of cells in different batches that are nearest-neighbours of each other) based on cosine
distances between cells. Correction vectors are calculated between each MNN pair and
cell-specific correction vectors are then calculated as a weighted average of the pair-specific
vectors, ensuring that cells close together in gene-expression space are batch corrected by
similar vectors. Hence this method can deal with non-constant batch effects within the
high-dimensional gene expression space.

This batch-corrected PCA space containing both sets of cells was carried forward. For
each index-data defined population in the Smart-Seq2 data, cells belonging to that population
were subset and their k=15 nearest-neighbours in the 10X data were identified and given a
vote. A score for each population was then defined on the 10X reference data as the number
of votes for each reference cell divided by the total number of Smart-Seq2 cells in that
population. This normalised the scores to account for the fact that some cell populations
were more or less abundant within the Smart-Seq2 data. These scores were then smoothed
over the reference data by sharing each cell’s score for each population equally amongst its
k=100 nearest neighbours.
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A set of nine mutually exclusive and collectively exhaustive index populations were
considered (CMP, MEP, GMP, LMPP, MPP1, MPP2, MPP3, ST-HSC and LT-HSC), and
each WT reference cell was annotated as belonging to the population with the highest score
in that cell.

2.14 Calculating hscScores/G2M scores/Module scores

hscScores were calculated using the hscScore algorithm published by Hamey et. al. (Hamey
and Gottgens, 2019). This method uses a multi-layer perceptron neural net trained on data
from Wilson et. al. (Wilson et al., 2015), where 92 HSC transcriptomes were assigned a score
based on their surface expression of 11 index markers. These markers were in turn measured
for HSCs that were placed in single-cell transplantation assays and their functional output
measured. Hence, the score for each of the 92 cells was correlated with their functional
potential in a transplantation setting. By training a model on the transcriptomes of these cells,
new single-cell transcriptomes could be inputted into the model to retrieve their hscScore,
which in turn is also a measure of their functional ability.

The hscScore algorithm uses as input the normalised counts matrix for a sample, and
returns a score between zero and one for each cell. It also requires that all the genes used to
train the model are present in the sample.

For the comparison of hscScores across leukaemic perturbations in Section 4.4, hscScores
were calculated independently for each model. The WT scores were scaled so the highest-
scoring WT cell was given a hscScore of one and the lowest-scoring WT cell remained the
same. This scaling factor applied to the WT cells was then applied to each of the leukaemic
models, so that scores would be comparable between models with a score of one indicating
the highest-scoring WT cell. The only model to contain any cells scoring greater than one
through this procedure was the Crebbp model, and this only occurred for two cells.

For the comparison of WT and perturbed hscScores in Sections 5.2 and 5.3, the same
procedure was applied; the WT scores were interpolated between the minimum value returned
by the algorithm and one, such that the highest-scoring WT cell had a hscScore of one. The
same scaling factor was then applied to the perturbed sample(s) in each case.

G2M cell-cycle scores were calculated using the expression values of a set of 198
Hallmark G2/M checkpoint genes downloaded from the Molecular Signatures Database
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(Liberzon et al., 2016). For each cell within a sample, the score was given by

∑
g

ln(xg +1)
n

(2.1)

with n equal to the number of G2/M checkpoint genes that passed the initial gene filtering
QC step, and xg the normalised expression of each gene. n was identical for each cell in an
individual sample.

The module scores in Section 5.3 were calculated in an identical manner using specific
gene lists. For the DNA Repair score, the gene ontology (GO) term GO:006281 – ‘DNA
Repair’ was downloaded from http://informatics.jax.org/. For the p53 Targets score, a list of
verified p53 targets published in (Tanikawa et al., 2017) was used. For the Intrinsic Apoptotic
Signalling Pathway score, the GO term GO:0097193 – ‘Intrinsic Apoptotic Signalling
Pathway’ was used.

2.15 Assigning cell-cycle stages

Cell-cycle stage assignment in Section 5.3 was performed following the method established
in Tirosh et. al. (Tirosh et al., 2016) for scoring cycling cells and implemented within the
Scanpy method score_cell_cycle(). Lists of 43 genes associated with S-phase and 55
genes associated with G2/M phases from Tirosh et. al. were used to quantify the relative
expression of these cell-cycle stages compared with a randomly chosen set of reference genes.
Cells with high relative expression levels of either program were assigned to be in S-phase
or G2/M phase respectively, whilst cells with no clear expression of either program were
assigned to the G1 phase. No cells expressed relatively high levels of both S and G2/M phase
programs.

2.16 Resolving cell-cycle shifts across whole trajectories

To assess the changes in the proportional abundance of different cell-cycle states across
the erythroid differentiation trajectory, the sample of interest was subset to only the cells
belonging to the four clusters annotated as erythroid. Density plots of the G2M score within
these erythroid cells were created using the kdeplot() method within the Seaborn python
module.

A pseudotime analysis was then performed using Scanpy’s dpt() method to calculate
an ‘erythroid pseudotime’ for the sample. The root cell for this analysis was chosen to be
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the erythroid cell with the lowest pseudotime value when the same pseudotime analysis
was performed on the entire sample prior to subsetting (e.g. for use in the dDEG pipeline).
Therefore the root cell represented the most immature erythroid cell within the sample and
was given a pseudotime score of 0. To visualise shifts along the erythroid trajectory in Figure
4.14, a sliding window of size=300 cells was shifted by 60 cells at each step in order of
increasing pseudotime. The G2M scores of each cell within the window were recorded at
each step, alongside the mean pseudotime score of the cells within the window. These G2M
scores were then sorted in ascending order for each step and plotted as a grid of size (300 x
numbers of steps), coloured by each cell’s G2M score. The width of each column was scaled
to be proportional to the difference between its mean pseudotime and that of the next column,
such that the same x-coordinate on each plot represents the same pseudotime value.

To compare the observed shifts across samples in Figure 4.15, the percentage of cells in
a G2M-high state (G2M score > 0.5) within each window for each sample was calculated.
This percentage was then plotted as a function of pseudotime for each sample. Results for
the WT samples (including the WT reference, and all WT samples from the pre-leukaemic
perturbation models excluding the p53 WT) were averaged without using sample weights,
and their standard deviation calculated.

2.17 Performing differential variability testing (VarID)

Single-cell variability calculations were based on the VarID method introduced in Grun et. al.
(Grün, 2020). The core of the VarID approach was rewritten in Python (the original package
was coded in R) with alterations to allow the calculated variabilities to be compared across
experiments. In addition, the speed and scalability of the method was greatly increased. The
altered version of the method is described here, with specific mention of the steps that were
altered from the original publication.

To begin, the normalised expression counts of a sample (e.g. the first Jak2 WT sample)
were filtered gene-wise, such that only genes expressed in greater than n=5 cells were retained.
The remaining genes were then used to model the gene-wise mean-variance relationship as
a quadratic polynomial in log-space. This returned an empirical relationship between the
mean expression of a gene and its variance that was unique to each sample, but in practice
differed very little between different samples or experiments. A k=16 nearest-neighbour
graph was then obtained for the sample from the top 50 principal components, calculated
using scaled data that had been subset to highly variable genes. For each cell in the sample,
these nearest-neighbours will be used to calculate variabilities for all genes. In the original
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method, k was calculated independently for each gene in each cell, by requiring (for a given
gene) that a cell’s neighbours had expression values which fit a negative binomial model
described by the neighbours’ mean expression. It was found that this method led to highly
variable values for k both within and across samples that led to severe batch effects in the
calculated final variabilities.

For each cell, the mean expression and variance of all genes across their k nearest-
neighbours (including the cell itself) was calculated. These local variances were then
scaled for each gene by a factor calculated through the empirical mean-variance relationship
described above. The scaled variances for each cell were then concatenated into a matrix of
single-cell variabilities for the entire sample. Overall, this step allowed the variability values
for different genes to be sensibly compared within the same sample.

Quantile normalisation was then performed on the sample following the method of
Bolstad et. al. (Bolstad et al., 2003) to standardise the distribution of variabilities within each
cell. Overall, applying this method of normalisation to all samples was found to stabilise
the results of differential variability testing downstream, and allowed cross-sample and
cross-experiment comparisons of the single-cell variabilities to be made. This step was not
performed in the original method, as the author did not test any across-sample comparisons
of variability.

Differential variability (DV) testing between two sets of cells was then performed using
the Wilcoxon rank-sum test, as for standard differential expression. For a given gene, this
tests the likelihood that the variability values for each set of cells came from the same
distribution and returns the result as a p-value. Quantile normalised variabilities were used
as input for all DV tests. After performing this test for each gene, the returned p-values
were corrected for multiple testing using the Benjamini-Hochberg correction. Genes were
then called as significant differentially variable genes (DVGs) if they had an adjusted p-
value<0.05 and an absolute fold-change>1.2. Results were assessed visually using MA plots
(fold-change vs mean expression) to check for spurious patterns. For two experiments – the
third Jak2 experimental repeat and the W41 experiment – no sensible variability results could
be calculated. The third Jak2 experiment observed extremely different cell numbers and
sequencing saturation between the WT and perturbed samples. The W41 experiment (which
did not have a matched WT sample) also observed a lower sequencing saturation than any of
the WT samples that were unsuccessfully matched with it.

In Section 4.4, the experiments without a matched WT sample (Tet2 HOM and Jak/Tet
Cross) had differential variability performed with both the Dnmt3a and Npm1 samples,
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as these were the WT samples that had closest-to-average cellular abundances. For each
experiment these two lists were then intersected, with the smallest adjusted p-value and
average log2(fold-change) being used for downstream analysis.

2.18 Identifying correlated genes driving malarial response

In section 5.2, genes that were at least 4-fold upregulated in the infected malaria cells
compared to the WT cells in all six clusters were chosen as the initial set of driving genes
involved in the infection. This list contained 20 genes. The entire set of filtered genes
(i.e. those that passed initial QC) calculated using the WT and infected cells combined was
analysed, and all genes whose normalised expression correlated highly with any of the initial
set of 20 genes were identified. Genes that had a spearman correlation >0.3 with any of the
initial 20 genes were then added to the list of driving genes. This procedure added 89 genes
for a total of 109 driving genes.

2.19 Partition-based Graph Abstraction (PAGA) Analyses

The partition-based graph abstraction (PAGA) method was introduced by Wolf et. al. (Wolf
et al., 2019). Given a single-cell dataset and an associated partitioning of the dataset (e.g. into
Louvain clusters), the method calculates a connectivity between each pair of clusters, and
from these creates a graph with the clusters as nodes, based on a threshold for connectivity.
Initially a k=15 nearest-neighbour graph is calculated for the data based on the Euclidean
distance amongst the top 20 principal components. The connectivity is then calculated
through

ci j =
1
2
(ei j + e ji)/

√
k2nin j (2.2)

where ei j is the number of edges in the nearest neighbour graph originating in cluster i and
leading to cluster j. k is the parameter associated with the nearest-neighbour graph, and ni

and n j are the total number of cells in clusters i and j respectively. Hence ci j measures the
degree to which clusters i and j are interconnected.

To calculate trajectories for the dDEG method in Chapter 3, a connectivity threshold
of 0.3 was applied to 13 clusters of the WT reference dataset. The shortest path from the
‘Stem Cells’ cluster to the end cluster of interest was calculated using the filtered edgelist
(i.e. with all connections <0.3 removed) and the get_shortest_paths() method within
the igraph python module. To calculate the fine-resolution abstracted graph in Section 5.4,
a connectivity threshold of 0.3 was applied to the 60 fine Louvain clusters from the WT
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reference dataset. The filtered edgelist was used to calculate the positions of each node for
visualisation using the ForceAtlas2 algorithm in Gephi as for the standard force-directed
graphs.

The expression of specific genes were visualised on the abstracted graph in Section 5.4
by calculating the mean of the normalised expression values within each node. Different
scalebars were used for each gene. The differential abundances were visualised by calculating
the mean voting difference for all cells within each node.

2.20 TITANS: trajectory inference through iterative ances-
tral search

2.20.1 Preprocessing steps

Starting from a scRNAseq dataset of size m×n containing m samples (cells) and n features
(genes), a diffusion map representation of the data was calculated following the method of
Haghverdi et. al. (Haghverdi et al., 2016). The resulting representation contained d diffusion
components, reducing the dataset to size m×d. Each row of size 1×d now represents a vector
of length d that stores the location of each cell in the diffusion-map space. The value of
d needs to be at least greater than the maximum number of trajectories expected within
the dataset, and in general should be >10 to efficiently capture the manifold in which the
transcriptional landscape of the dataset resides. For all the results presented in Chapter 6,
d=15.

Following the production of the diffusion components, several of TITANS preprocessing
functions are used to prepare the dataset for trajectory inference. The only initial information
that is required is either A) a list of genes known to associate with the most primitive cells in
the dataset or B) the identity of a group of cells believed to represent the most primitive state
in the dataset. If A) is provided, each cell in the dataset is scored based on its cumulative
scaled expression of the genes provided, and the highest scoring 0.1% of cells are used
to identify the ‘root space’ by calculating the average position of these cells within the
diffusion-map representation of the data. If B) is provided, these cells are used instead.

In either case, the location of the root space in the diffusion map space is now known.
Next, the location of every cell in the diffusion map space is translated (shifted) such that
the root space is now located at the origin (the location of the root space is now a vector
containing d zeros). This shifted diffusion-map representation still has size m×d. Each row
of size 1×d now represents a vector of length d that stores the location of each cell with
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respect to the location of the root space in the diffusion-map representation. A pseudotime
value between 0-1 inclusive is now calculated for each cell in the dataset using the cell closest
to the root space as the initial cell following the method of Bendall et. al. (Bendall et al.,
2014).

Finally, TITANS identifies the terminal cell states (‘endpoints’) in the dataset by looking
for cells which have a pseudotime value greater than any of its k nearest neighbours, where
k = m×0.01. To account for the effect of cell intrinsic programs that may not be related to
differentiation (such as cell cycle), pseudotime values were smoothed across the 25 nearest
neighbours of each cell prior to identification of endpoints. Smoothed pseudotime values are
not used at any other point in the algorithm. The identified endpoints can be sanity checked
by visualisation on a low-dimensional representation of the data (such as tSNE or UMAP) to
check that they coincide with the expected location of trajectory endpoints (in datasets where
this is known a priori).

2.20.2 Main algorithm

Each cell is now represented by a vector of length d that stores its position with regards to
the root space. For cell i denote this ‘cell vector’ by xi. Each cell also has an associated
pseudotime value, for cell i denote this by d pti. Starting from each identified endpoint with
cell vector xi, an iterative process containing three main steps is performed:

1. Calculate the cosine of the angle θi j between the vectors xi and x j for all cells with
j ̸= i using the equation

cosθi j =
xi ·x j

|xi|
∣∣x j

∣∣ (2.3)

2. Add to the trajectory all the cells x j not already in the trajectory which satisfy the
conditions:

cosθi j > 1− ε (2.4)

and
d pt j < d pti (2.5)

with ε representing a user defined ‘threshold parameter’ in the range

ε ∈ [0,0.01] (2.6)

3. If the number of cells added in step 2 is greater than zero, start a new iteration in which
steps 1 and 2 are repeated for each cell added in the current iteration. If the number of
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cells added in an iteration is zero, check whether the minimum pseudotime value of
all the cells currently in the trajectory is <0.01. If it is, assume that the trajectory is
near the root space and stop trajectory inference. If it is not, increase ε by a set amount
(0.002) and repeat the current iteration, whilst displaying a warning message to the
user.

This process is then repeated for each identified endpoint. Importantly, the trajectories
identified from each endpoint are independent; each cell can belong to more than one
trajectory. Equally, a cell need not belong to any of the identified trajectories.

2.20.3 Data

Mouse haematopoietic data was taken from Dahlin et. al. (Dahlin et al., 2018). This is the
same dataset used for the WT reference used in Chapters 3, 4 and 5. After generation of the
count matrices using CellRanger, the three LK (Lin-c-Kit+) samples from six pooled WT
mice were extracted and run through quality control and preprocessing steps independent of
the LSK samples. This returned 21,836 transcriptomes expressing a median of 2,842 genes.
Data was normalised, log-transformed, subset to HVGs and scaled before being used in the
TITANS algorithm. The total number of HVGs used was 5,004. The force-directed graph
representation of the data was calculated in Gephi using a k=7 nearest-neighbour graph, itself
calculated using a Euclidean distance metric on the top 50 principal components.

TITANS was run on this data using the list of MolO genes from Wilson et. al. as input
(Wilson et al., 2015). A threshold parameter of ε = 0.002 was used for all trajectories.

Mouse gastrulation data was taken from Pijuan-Sala et. al. (Pijuan-Sala et al., 2019).
Normalised log-counts were downloaded for 116,312 transcriptomes. 5,876 HVGs were
selected before being scaled. Cell metadata was downloaded to provide cluster annotation. A
UMAP representation of the data was constructed using the scaled, subset data by running
the umap() function within Scanpy. The genes associated with epiblast cells and used to
define the root space were Pou5f1, Utf1 and Dnmt3b.

TITANS was run on this data with these genes as input. A threshold parameter of
ε = 0.0005 was used for all trajectories.

2.20.4 Other methods

FateID was run in the R programming language using the FateID R library (Herman et al.,
2018). The two free parameters of the method, m (test set size at each iteration) and h



56 Materials and Methods

(number of cells from each fate used for training at each iteration). The values used in the
original publication of m = 5, h = 20 were tried, but this meant the algorithm took longer
than 24 hours on the mouse haematopoietic data. The results presented in Chapter 6 were
produced using m = 30, h = 50.

Population Balance Analysis (PBA) was run using the python scripts provided with the
original publication (Weinreb et al., 2018b). Cells corresponding to the most mature cell for
each of the seven clear lineages within the data (erythroid, MK, mast, basophil, neutrophil,
monocyte and lymphoid) were identified using the force-directed graph representation of the
haematopoietic data. The vector of cell sink rates from each fate was empirically fine-tuned
to give the most sensible looking results. The final vector used to create the results presented
in Chapter 6 was (-.12, -.10, -.09, -.09, -.11, -.12, -.12). These numbers are in the same order
as the list of trajectories above. For each cell, the fate with the highest probability was chosen
as its potential fate for visualisation.

Slingshot was run using the slingshot R library (Street et al., 2018). A Louvain clustering
of the LK haematopoietic data was created using the Scanpy method louvain() on the
scaled expression data with resolution=1.0. Slingshot was then run with default parameters on
a 15-dimensional diffusion-map representation of the data. This representation was identical
to that used to run TITANS on the same dataset.



Chapter 3

Integrated Global Analysis of
Pre-Leukaemic Murine Haematopoiesis
Models

Experimental work for this project was carried out by Nicola Wilson (isolation of primary
bone marrow cells, scRNA-seq profiling). Initial preprocessing of the resulting data was car-
ried out by Rebecca Hannah (running 10X Genomics CellRanger pipeline). After production
of the raw count matrices from the CellRanger pipeline, all computational work was carried
out by Sam Watcham, except where explicitly stated in the text.

3.1 Background

The advent of single cell RNA sequencing has led to an explosion of studies and datasets
that have provided comprehensive new insights into native haematopoiesis (Watcham et al.,
2019). The general trend has been towards larger and less biased datasets that rely only on
the broadest of sorting gates, and which provide a systems-scale view of the blood system
as a whole (Dahlin et al., 2018; Tusi et al., 2018). The ability of single cell RNA profiling
to resolve the continuous and heterogeneous nature of haematopoietic differentiation has
allowed the relationship between different blood lineages and their associated fate decisions
to be dissected in great detail (Laurenti and Göttgens, 2018). However relatively less work
has been performed to look at the effects of haematopoietic perturbations using a systems-
scale approach, and in particular to integrate the effects of many different perturbations into
a single framework that allows them to be sensibly and systematically compared.
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There are a number of perturbations that are of direct clinical relevance to understanding
the onset of haematopoietic malignancies - including clonal haematopoiesis, myeloprolif-
erative neoplasms and different types of leukaemia - in human patients (Grinfeld et al.,
2017; Sperling et al., 2017). Many of these are loss-of-function mutations which negate the
production of a specific enzyme or protein relevant for native haematopoiesis. Others include
mutations responsible for inducing aberrant intra- or inter-cell signalling pathways, leading to
anomalous differentiation or proliferative behaviour. The perturbations of the greatest interest
are those that confer some form of selective advantage to blood cells with long-term self
renewal abilities, such as HSCs, and can therefore cause lasting effects to the haematopoietic
system (Chen et al., 2015). Analysis of data from patients with haematopoietic malignancies
has revealed the most common perturbations in many diseases, and their subsequent effect
on prognosis (Taylor et al., 2017). Many of these perturbations do not immediately lead to
the onset of leukaemia by themselves, but are known to lead to less serious haematological
malignancies and predispose to leukaemia over a period of many years (Sperling et al., 2017).
Hence a thorough understanding of their effects and the mechanisms by which these effects
are mediated is essential in trying to treat these conditions quicker and more effectively in
the clinic.

Until recently, mouse models of these pre-leukaemic perturbations have been studied
with regards to specific blood cell types, such as phenotypic HSCs, to assess their functional
behaviour both in vitro and in vivo using transplantation assays (Ostrander et al., 2020;
Shepherd et al., 2018). In the past couple of years, single cell profiling has allowed the blood
system of these pre-leukaemic mice to be analysed at a far broader scale (Izzo et al., 2020).
The primary goals of these analyses are typically to assess the effects of a single perturbation
at the cellular level (abundances of specific cell types, emergence of new cell types) and
the molecular level (behaviour of specific genes in terms of RNA expression, chromatin
accessibility etc., depending on the modality of profiling). Secondary goals include linking
these effects in the context of aberrant differentiation trajectories or fate decisions. Loftier
goals may include trying to identify the specific cell types driving the perturbation and how a
mutation in a specific enzyme or protein is causing changes in these perturbation-initiating
cells. Within the bounds of these goals there is ample opportunity for novel hypotheses to
be uncovered, given the broad and unsupervised nature of the data and the current lack of
understanding about how these perturbations act at a systems-scale.

The focus of this work was to analyse scRNA-seq datasets from several pre-leukaemic
perturbations in an integrated manner, with the aim of producing novel biological insights that
would not have been possible by analysing each dataset separately. This chapter describes
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the integration of the data at both cellular and molecular levels, and showcases a range of
computational tools for the exploration and visualisation of single cell perturbation data.
In addition, this chapter describes novel biological insights about the molecular drivers of
the perturbations, their relationship to observed differentiation skews, and the interactions
between combinations of perturbations at the scale of the entire blood system.

3.2 A large wild-type dataset as a reference for pre-leukaemic
perturbation models

Prior to the generation of the perturbation datasets discussed below, a large wild-type dataset
containing almost 45,000 transcriptional profiles from six pooled female C57BL/6 mice was
generated and published in 2018 (Dahlin et al., 2018). The droplet-based 10X Genomics
pipeline was used to capture mouse bone marrow HSPCs from both the Lin- c-Kit+ (LK)
gate and the Lin- c-Kit+ Sca1+ (LSK) gate (Zheng et al., 2017). The LK sorting gate contains
the majority of haematopoietic progenitor populations, whilst the LSK gate contains only the
more immature populations such as HSCs and MPPs (Figure 3.1B). Since these immature
cells are found at very low frequencies in the bone marrow, the inclusion of LSK cells ensured
a high density of profiling across the most immature blood progenitor states. After quality
control (see methods), a total of 21,809 LK cells with an average of 2,800 genes and 22,993
LSK cells with an average of 2,500 genes were detected for a total of 44,802 expression
profiles.

Starting from this expression data, the blood progenitor transcriptomic landscape was
visualised using a force-directed graph calculated from the k-nearest neighbour matrix
of expression profiles (Weinreb et al., 2018a). Cells with similar expression profiles are
necessarily closely positioned in the two-dimensional embedding, whilst cells from separate
lineages are likely to be pulled apart (Figure 3.1A). This visualisation method has previously
been shown to successfully capture complex differentiation structures from single cell
expression data (Weinreb et al., 2018a). To highlight this, the expression of known lineage
marker genes were visualised on the force-directed graph, demonstrating that cells of similar
lineage are highly localised within the embedding (Figure 3.1C). Specifically, Procr (EPCR)
expression marks HSCs at the top of the blood hierarchy (Balazs et al., 2006), with Pf4
and Klf1 marking megakaryocyte and erythroid progenitor cells respectively (Dzierzak and
Philipsen, 2013; Rowley et al., 2011). In addition, Gzmb and Mcpt8 mark mast cell and
basophil progenitors (Dwyer et al., 2016; Ugajin et al., 2009), whilst Elane and Ms4a6c
mark the closely related neutrophil and monocyte lineages respectively (Olsson et al., 2016).
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Fig. 3.1 A large wild-type reference of murine haematopoiesis containing over 44,000
transcriptomic profiles. (A) Force-directed graph visualisation of the entire reference
dataset, coloured by cluster identity. (B) Diagram showing which classically-defined
haematopoietic populations fall within the LK and LSK sorting gates. (C) Log-transformed
gene expression of eight marker genes corresponding to different haematopoietic lineages.
Panel B was adapted from Wilson et al. (2015).
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Finally, Dntt highlights early lymphoid progenitors (Rothenberg, 2014). In total, the entry
point into eight separate blood lineages can be found within the dataset, including an
extremely small population of eosinophil progenitors marked by Prg2 and Prg3 (genes not
shown) (Olsson et al., 2016).

To take advantage of the high density sampling achieved by this wild-type dataset, and
to begin building an integrative framework for the analysis of perturbation models, it was
reasoned that this dataset could be leveraged as a ‘reference’ against which all the perturbation
models could be mapped and compared to at a cellular level. To facilitate this, the reference
dataset was clustered using Louvain clustering, which is designed to maximise both intra-
cluster similarities and inter-cluster differences (Blondel et al., 2008). This resulted in 13
large clusters, which were annotated based on the expression of known lineage marker genes
(Figure 3.1A). Notably, the erythroid lineage is split into four separate clusters, with the most
immature of these also containing the mast cell lineage. Additionally the neutrophil and
monocyte lineages are clustered together in a large myeloid cluster, highlighting how similar
the development of these progenitors may be. The most immature regions of the landscape
split into four clusters which do not express clear lineage markers and hence are difficult
to annotate; the most immature cluster that likely contains the true LT-HSCs is marked by
the expression of known HSC genes such as Procr and Fgd5. This cluster was annotated
as ‘Stem Cells’ but these will not all be true LT-HSCs, which occur at a frequency of ∼3%
within the LSK gate (see Chapter 4) (Challen et al., 2009). Overall, the reference dataset
clearly supports the model of a continuous differentiation landscape in which blood cells pass
through a myriad of poorly-defined states before settling into one of many possible terminal
lineages (Laurenti and Göttgens, 2018). Within this model, the reference landscape can be
used to define how specific perturbations alter murine haematopoiesis across the entire range
of progenitor states.

In total, eight different perturbation models were analysed for this project across a total
of eleven distinct datasets, as summarised in Table 3.1. This includes three biological repeats
of the Jak2 V617F model (Li et al., 2014) performed on different days. Each of these repeats
had matched WT and perturbed samples containing cells from a single mouse each. The
Dnmt3a R882H, Npm1 KO (Vassiliou et al., 2011) and Crebbp KO (Chan et al., 2011) models
each had matched WT and perturbed samples containing cells from two mice each. These
three models are inducible, with multiple pIpC injections given at around 6 weeks of age to
induce the perturbation. Samples from the W41 V831M (Nocka et al., 1990) and Jak2/Tet2
Cross (Shepherd et al., 2018) models did not have matching WT samples, and again each
contained cells from two mice each. Two separate Tet2 KO (Ko et al., 2011) experiments
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Model Samples Total
Cell
Number

Brief Description Notes

Jak2
V617F (Li
et al., 2014)

WT,
HOM

60041 The V617F mutation is the
most common mutation in
MPNs, which can evolve into
AML.

Three distinct
experiments, each
with matched
WTs.

W41
V831M
(Nocka
et al., 1990)

HOM 13957 The W41 point mutation
causes defective c-kit sig-
nalling.

No matched WT.
Published as part
of (Dahlin et al.,
2018).

Dnmt3a
R882H
(Unpub-
lished)

WT, HET 29718 Dnmt3a mutations are com-
mon in clonal haematopoiesis
and AML patients, and are as-
sociated with poor prognosis.

Matched WT.

Npm1 KO
(Vassiliou
et al., 2011)

WT, HET 30440 Npm1 mutations are common
in AML patients.

Matched WT.

Crebbp
KO (Chan
et al., 2011)

WT,
HOM

31273 Crebbp mutations are com-
mon in AML and ALL pa-
tients.

Matched WT.

Tet2 KO
(Ko et al.,
2011)

WT,
HET,
HOM

28138 Loss of Tet2 is associated with
clonal haematopoiesis and in-
creased risk of malignancies
including AML and CMML.

Two distinct ex-
periments. HET
experiment has
a matched WT,
HOM experiment
does not.

Jak2/Tet2
Cross
(Shepherd
et al., 2018)

Jak2
HOM/Tet2
HET

16723 A cross that is homozygous
for Jak2 V617F, and heterozy-
gous for Tet2 KO.

No matched WT.

p53 KO
(Tekippe
et al., 2003)

WT,
HOM

14098 p53 is a tumour suppres-
sor whose function in
haematopoiesis is largely
unknown.

Matched WT.
Younger mice than
all other samples.

Table 3.1 List of datasets analysed in this project. Total cell number refers to the number
of cells retained after preprocessing steps (see methods). All samples were taken from the Lin-
c-Kit+ (LK) sorting gate. WT, wild-type; HET, heterozygous mutation; HOM, homozygous
mutation; MPNs, myeloproliferative neoplasms; AML, acute myeloid leukaemia; CMML,
chronic myelomonocytic leukaemia; ALL, acute lymphoblastic leukaemia.
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were performed; the first experiment contained a homozygous Tet2 KO sample comprising
cells from two mice without a matched WT sample; the second comprised of matching
WT and heterozygous Tet2 KO samples containing cells from one mouse each. Finally, the
p53 KO model (Tekippe et al., 2003) experiment had matched WT and perturbed samples
containing cells from one younger mouse (∼9 weeks) each. This approach resulted from a
lack of understanding early on in the project about how important matched WT samples were
for downstream analysis of the perturbation models. In all cases, samples were taken from
roughly 12-week old female C57BL/6 mice to achieve concordance with the WT reference
dataset. Additionally, all samples were sorted from the Lin- c-Kit+ (LK) gate, so that each
experiment covered the same range of blood progenitor states sampled at representative
frequencies and could be compared directly with the reference dataset. An identical 10X
Genomics pipeline (version 2 chemistry) was used for every experiment, to minimise the
technical variation occurring due to initial preprocessing steps.

3.3 Integration of pre-leukaemic models at a cellular level
reveals large-scale perturbation effects

As a first step towards an integrated framework for single-cell perturbation analysis, the per-
turbation models were characterised on a cellular level to understand how specific progenitor
populations change in abundance as a result of different perturbations. Following quality
control and filtering steps that were applied identically to each experiment (see methods),
all WT and perturbed samples appeared to contain all the expected haematopoietic lineages,
as evidenced by marker gene expression and the similar layouts of force-directed graphs
calculated separately for each sample. The exceptions to this were the mast cell trajectories
from the perturbed Jak2 V617F and W41 V831M models, which were notably absent (In-
gram et al., 2000). The general similarity across samples highlighted how the perturbations
described here are relatively small in magnitude, and still allow a homeostasis to be achieved
within the blood system of these mice. Nevertheless it was clear that certain populations
occurred at different frequencies across different perturbations, potentially as a result of
differentiation skews/blocks, changes to proliferation/apoptosis, or faster differentiation
through specific states.

To quantify these abundance changes in an integrative manner, each sample from each
perturbation experiment was mapped back onto the reference dataset, and each individual
cell was assigned to one of the 13 clusters identified within the reference dataset previously.
It was reasoned that since all the samples - including the reference - were contained within
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Sample Combined
p-value

Sample Combined
p-value

WT Reference 0.51 - -

Jak2 WT (1) 0.34 Jak2 HOM (1) 4.4×10−6

Jak2 WT (2) 0.01 Jak2 HOM (2) 8.5×10−20

Jak2 WT (3) 0.55 Jak2 HOM (3) 2.1×10−8

Dnmt3 WT 0.48 Dnmt3a 0.14

Npm1 WT 0.59 Npm1 0.05

Crebbp WT 0.20 Crebbp 0.02

Tet2 HET WT 0.01 Tet2 HET 0.01

- - Tet2 HOM 0.03

- - W41 1.0×10−8

p53 WT (Young) 5.8×10−8 p53 (Young) 2.0×10−8

Table 3.2 Statistical testing reveals highly significant abundance changes in pre-
leukaemic samples. For each sample, Fischer’s method was used to calculate a combined
p-value which measures the probability of the observed abundances assuming the null hy-
pothesis is true. For each of the WT samples, the null hypothesis was calculated as the
weighted mean of all the other WT samples excluding the the Jak2 WT (2) and Tet2 HET
samples. For all the perturbed samples, the null hypothesis was calculated as the weighted
mean of all the WT samples excluding the the Jak2 WT (2) and Tet2 HET samples. Values
coloured red indicate significant results at a p-value of 0.05.

the LK gate, it was unlikely that there were completely new cell populations occurring in one
or more of the perturbed states that were not present in the reference. The mapping itself was
performed by calculating a PCA on the reference dataset, and then projecting each sample
into this PCA space. For each cell in the sample being considered, its 15 nearest neighbours
and their cluster identities in the reference were identified, and the cell was assigned to
its most similar reference cluster according to the majority vote of these neighbours. This
method of mapping had an accuracy of > 98% when mapping the reference back onto itself,
and its performance in perturbation settings was superior to specialised tools such as scmap,
BB-KNN or Seurat’s integration tools (Kiselev et al., 2018; Polanski et al., 2020; Stuart et al.,
2019), which either failed to assign a large proportion of cells to the reference or clearly
removed some of the biological variability inherent to the perturbed samples.

For each sample (excluding the Jak2/Tet2 Cross, which will be the subject of section 3.6),
the Z-score between the proportion of cells in each cluster and the average proportion of
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cells in that cluster across all WT samples (including the reference) was calculated (Figure
3.2). It is immediately clear that there is greater variation across the perturbed samples than
across the WT samples, and therefore that the perturbations are causing significant changes in
progenitor proportions across the haematopoietic landscape. Since the WT samples are age,
gender and background-matched they should contain minimal systematic biological noise,
and the remaining variation should be due to a combination of A) the random biological
noise inherent to murine haematopoiesis and B) the technical noise from the sequencing
and mapping procedures. To quantify the relative variability of each sample, Fischer’s
method was used to compute a p-value from the set of Z-scores and test whether the observed
progenitor frequencies are statistically different from the average WT frequencies (Table 3.2).
All but two of the WT samples were non-significant, whereas all but one of the perturbed
samples were significant to varying degrees.

Across the perturbed samples, divergent populations shifts were observed between dif-
ferent models. The three biological repeats of the Jak2 model show clear and reproducible
changes in abundance (Figure 3.3A) with an increase of later erythroid cells and a reduction
of MEPs and megakaryocytes, as has been described previously using bulk transcriptomics
and phenotypic characterisation of the mouse model (Li et al., 2014). This reproducibility
clearly highlights how the Jak2 perturbation induces shifts that are greater in magnitude
than the biological and technical noise associated with these experiments. Interestingly,
the W41 model shows a strikingly similar shift to the Jak2 model, suggesting a potentially
shared underlying mechanisms driving these perturbations. The Dnmt3a and Npm1 models
both show lesser but similar shifts towards later erythroid cells. Strikingly, the Crebbp and
Tet2 models show the opposite shift in abundances, with an increase in neutrophils and
monocytes opposed by a reduction along the majority of the erythroid trajectory. For the
samples that contained cells from two mice, the intra-experiment variability could also be
assessed (Figure 3.3B), suggesting that whilst abundance shifts are generally reproducible
across mice, there is significant intrinsic biological noise as a result of these perturbations.
Finally, the p53 experiment highlights how population frequencies within the LK shift with
age, as the younger p53 WT sample shows significantly more immature and lymphoid cells
compared with its older counterparts. There does not, however, appear to be large abundance
shifts due to the p53 perturbation itself.

To take further advantage of the single-cell resolution in these datasets, a new approach
for analysing differential abundances was conceived with the aim of providing extremely
fine-grained information that could be visually compared across perturbations with ease. For
each pair of matched samples (i.e. WT and perturbed samples from the same experiment), the
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Jak2 - 3 Experiments, 1 Mouse eachA

Dnmt3a - 1 Experiment, 2 Mice each

B Crebbp - 1 Experiment, 2 Mice each

Npm1 - 1 Experiment, 2 Mice each

Fig. 3.3 Inter- and intra-experiment variability across perturbations. (A) The fold
change within each cluster for each of the Jak2 experimental repeats. Each perturbed
sample is compared to its own matched WT sample. (B) The fold change within each cluster
for each mouse in the experiments where two mice were sequenced per sample. Each mouse
from the perturbed sample was compared to the average of the two mice from the WT sample.

nearest neighbours of each cell in the reference were located and a single vote was given to
each of them, such that the total number of votes given out from each sample was equal (see
methods). For each cell in the reference, the difference between the number of votes received
from each sample acts as a proxy for the differential abundance of that cell state across the
matched samples. This therefore provides abundance information at a similar resolution to
the sampling density of the reference dataset. Additionally, since the information can be
displayed using only the reference, visual comparison across different perturbations was
straightforward (Figure 3.4A). At this resolution, detail was visible that was intractable using
a cluster-based approach. The Jak2 experiments appear to show an abundance decrease
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A Jak2 (1) Jak2 (2) Jak2 (3)

W41 Dnmt3a Npm1

Crebbp Tet2 HET Tet2 HOM

p53 B
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Fig. 3.4 High-resolution abundance changes using paired voting. (A) For each experi-
ment, difference between the votes received from perturbed and matched WT samples is
plotted for each reference cell. Red indicates greater abundance due to the perturbation, blue
lesser abundance. For those experiments without a matched WT, the Npm1 WT sample was
used. (B) The voting differences averaged over the 13 clusters of the reference dataset.
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that is specific to the neutrophil but not the monocyte region of the landscape, compared
with the W41 model which notably has more neutrophil and less monocyte progenitors,
despite looking very similar to the Jak2 model overall. In addition the overall similarities
and differences between the three Jak2 repeats are clearer, with each repeat showing at least
one feature that the others do not. Strikingly, the Tet2 HET and Tet2 HOM experiments
show a clear progression in their disparity from native haematopoiesis, with both the myeloid
expansion and erythroid reduction increasing in strength between the heterozygous and
homozygous models. By averaging the voting differences across each reference cluster,
this method of assessing differential abundance was shown to be congruent with the Z-
score approach taken previously (Figure 3.4B). Because the voting method visualises the
differences between matched samples, it must be remembered that the visible differences
between models could also be driven by differences in the WT samples. It has already been
shown that the variability within the WT samples is far smaller than the perturbation effects,
suggesting this variability can be discounted when discussing Figure 3.4. To test this further,
the voting differences between two WT samples were visualised on the reference for several
different WT pairs; in all cases, the scale of the resulting abundance deviations was small
compared to the changes observed in Figure 3.4.

3.4 Global molecular integration highlights gene modules
with coordinated patterns of perturbation response

Attempting to explain the mechanisms behind the abundance changes observed in the per-
turbation models requires an integrated analysis of perturbation response at the level of
individual genes. RNA-seq is the ideal modality with which to perform this integration, as
it is capable of capturing mRNA from across the transcriptome, and therefore allows the
molecular perturbation response to be interpreted without biases towards specific genes. The
disadvantage of droplet-based scRNA-seq technologies is that the low depth of sequencing
leads to an abundance of false negatives within the data, though this is counterbalanced
by the ability to sample the transcriptomic space at a far higher density than plate-based
methods. Regardless of the experimental design, performing molecular analyses such as
differential expression (DE) from single-cell experiments requires careful consideration of
the underlying data.

To test whether significant abundance changes occur alongside significant and coordinated
molecular changes, DE was performed in all the perturbation models for cells mapping to the
cluster annotated as ‘Erythroid-Middle/Late’, since large abundance shifts were observed in



70 Integrated Global Analysis of Pre-Leukaemic Murine Haematopoiesis Models

WT Reference Landscape
Stem Cells

Megakaryocyte

Erythroid

Mast Cell Basophil

Neutrophil

Lymphoid

Monocyte

A

B Jak2 (1) WT Jak2 (1) Perturbed

Fr
eq

u
en

cy

Fr
eq

u
en

cy

Cell Sizes (UMIs/cell) Cell Sizes (UMIs/cell)

Jak2 (1) MA Plot

Lo
g
2
(f

o
ld

 c
h
an

g
e)

Mean Expression

No. of cells: ~6500

Reads/cell: ~50,000

Seq. Sat.: ~45%

No. of cells: ~6500

Reads/cell: ~50,000

Seq. Sat.: ~45%

Jak2 (3) WT Jak2 (3) Perturbed Jak2 (3) MA Plot

Fr
eq

u
en

cy

Fr
eq

u
en

cy

Cell Sizes (UMIs/cell) Cell Sizes (UMIs/cell)

Lo
g
2
(f

o
ld

 c
h
an

g
e)

Mean Expression

No. of cells: ~9500

Reads/cell: ~24,000

Seq. Sat.: ~35%

No. of cells: ~3500

Reads/cell: ~84,000

Seq. Sat.: ~58%

Jak2 (3) MA Plot - Downsampled

Lo
g
2
(f

o
ld

ch
an

g
e)

Mean Expression

C
Per-cluster 

downsampling
of Jak2 (3)
perturbed
sample

D Jak2 (1) MA Plot

Lo
g
2
(f

o
ld

 c
h
an

g
e)

Mean Expression

G
en

es

Jak2 (1) Top 400 DEGs

Cells
WT Perturbed

E
xp

re
ss

io
n
 Z

-S
co

re

E
Model

Number
of DEGs

Jak2 (1)
Jak2 (2)
Jak2 (3)

W41
Dnmt3a
Npm1

Crebbp
Tet2 HET
Tet2 HOM

1710
949
612
426
198
1044
776
120
487

Fig. 3.5 Single-cell differential expression is confounded by differential sequencing sat-
uration. (A) Reference landscape with the ‘Erythroid-Middle/Late’ circled. (B) Cell size
histograms and MA plots of the first and third Jak2 experiments. Genes that achieved an
adj. p-value of <0.05 from the Wilcoxon test are coloured in red. (C) MA plot for the third
Jak2 experiment after downsampling the perturbed cells. (D) MA plot from the first Jak2
experiment with significant DEGs in red, based on an adj. p-value cutoff of 0.05 and a fold
change cutoff of 1.2. Heatmap of the 400 genes with the smallest adj. p-value from the first
Jak2 experiment. (E) Number of DEGs in this cluster for each experiment.
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this cluster across several different models (Figure 3.5A). DE was performed on a per-gene
basis using the Wilcoxon rank-sum test, as this has been shown to outperform standard tools
for bulk RNA-seq such as EdgeR and DESeq2 in a single-cell setting (see methods) (Soneson
and Robinson, 2018). Indeed, when testing EdgeR to assess its suitability for analysing
droplet-based scRNA-seq data, highly spurious p-values were observed as a result of each
cell being treated as an individual sample. However the largest problem in performing
any method of DE was the effect of differential sequencing saturation, which occurs when
different samples within the same experiment are sequenced at different depths (sequencing
saturation is a measure of how many more reads must be sequenced to achieve proportional
increases in the total number of UMIs). This can lead to highly biased DE results regardless
of the method used, due to vastly different per-gene count distributions that are technical
artefacts of the sequencing depth (Figure 3.5B). Where it was necessary to correct for this
- such as in the third Jak2 experiment - the sample with the higher sequencing saturation
was randomly downsampled such that its resulting cell-size distribution matched that of the
sample with lower sequencing saturation. In addition, this cell-size based downsampling
had to be performed on a per-cluster basis to achieve a sensible correction (Figure 3.5C, see
methods).

Despite the limitations of the data, sensible results were obtained highlighting a varying
number of significantly differentially expressed genes (DEGs) for each perturbation in these
erythroid cells (Figure 3.5D,E). To integrate these results and assess which perturbations held
overlapping molecular signatures, each pair of experiments was taken and the intersection of
their DEG lists was found. Subsequently, for each pair of experiments the proportion of these
overlapping genes that were differentially expressed in the same direction (i.e. either were
both upregulated, or were both downregulated) was calculated (Figure 3.6A). This proportion
represents a measure of the molecular similarity between different perturbation’s responses
within this erythroid cluster, where a proportion of 0.5 indicates no likely correlation (i.e. as
many genes disagree between models as those that agree), and a score of 0 or 1 indicates
complete (anti-)correlation between models. In conjunction, our confidence in these similari-
ties depends largely on the size of the overlapping DEG lists between experiments, which
varies greatly across the perturbation models (Figure 3.6B).

Reassuringly, the three biological repeats of the Jak2 experiment show very high similarity
and large overlap; of the 383 genes differentially expressed in both the first and second Jak2
experiments, 98% of them move in the same direction (either up- or down-regulated) as
would be expected (Figure 3.6A). In addition, the W41 model and to a lesser extent the
Npm1 model both show high similarity and reasonable overlap with the Jak2 model. Notably
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Fig. 3.6 Integration of molecular perturbation response reveals links to abundance
changes (A) For each pair of perturbations, the heatmap is coloured by the proportion of
overlapping DEGs that are regulated in the same direction in both models. A proportion
of 0.5 indicates no correlation betwen models, whereas a proportion of 1 or 0 indicates
high molecular correlation or anticorrelation respectively. (B) The size of the DEG overlap
between each pair of models.
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the Dnmt3a shows very minimal overlap with other models, even accounting for the low
number of DEGs (198) observed for the model (Figure 3.6B). The Crebbp and Tet2 models
both show anti-correlation with the Jak2 repeats but a high degree of similarity amongst
themselves. For example, of the 120 DEGs identified in the Tet2 HET experiment, all 54
that overlap with the Tet2 HOM model are regulated in the same direction. It is unsurprising
that the Tet2 HET experiment shows a lesser molecular response than the Tet2 HOM, given
its reduced phenotype. In addition, whilst the high degree of similarity between the W41
and Tet2 HOM models is striking, it is worth remembering that these two experiments were
those without a matched wild-type sample. As a result, for these experiments their list of
DEGs was created by performing differential expression with both the Dnmt3a and Npm1
WT samples and intersecting the results, to mitigate the impact of technical variations across
the samples. Nonetheless some technical artefacts are likely to remain and contribute to the
observed similarity, which should be treated cautiously.

The most striking result of this analysis is how well the observed molecular similarities
in the ‘Erythroid-Middle/Late’ cluster across models equate to the observed differential
abundances in this cluster shown previously. For example, both the ‘pro-erythroid’ abundance
models such as Jak2, W41 and Npm1 and the ‘pro-myeloid’ abundance models such as
Crebbp and Tet2 forming distinct clusters based on their molecular similarities. This suggests
there may be groups of genes whose perturbation responses are directly linked to the observed
abundance changes and thus linked to haematopoietic fate decisions. To attempt to identify
these groups, the fold changes in the ‘Erythroid-Middle/Late’ cluster for all 332 genes that
were dysregulated (either up- or down-) in at least two distinct perturbation models were
calculated for each experiment. Dimensionality reduction was then performed on this set of
fold changes (Figure 3.7), to visualise their behaviour across different perturbations (Figure
3.8). There are several distinct clusters of genes that co-localise on the dimensionality
reduction plot, and therefore have the same patterns of dysregulation across the perturbations.
Most notably, there is a cluster of genes comprised of pro-neutrophil and pro-monocyte
enzymes and transcription factors including Mpo, Elane, Ctsg and Irf8 that are strongly
downregulated in the Jak2, W41 and Npm1 models but strongly upregulated in the Crebbp
and Tet2 HOM models, with smaller upregulation in the Tet2 HET model. These genes
are most highly expressed in myeloid progenitor cells, but they maintain a reasonable level
of expression along the erythroid trajectory in wild-type (Figure 3.1). The finding that
these pro-myeloid genes are upregulated in the erythroid cells of the models with decreased
erythroid abundance and downregulated in the erythroid cells of the models with increased
erythroid abundance is strong evidence that the behaviour of these genes is playing a role
in the aberrant fate decisions occurring due to these perturbations. Whilst the behaviour of
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Fig. 3.7 Dimensionality reduction of gene fold changes. UMAP representation of the 332
genes identified as being dysregulated within the ‘Erythroid-Middle/Late’ cluster in two
or more distinct perturbations. Each dot is a gene, coloured in by its fold change in the
‘Erythroid-Middle/Late’ cluster of the first Jak2 experiment. A number of specific genes are
highlighted and coloured according to their locational and biological similarities.

these genes during myelopoiesis has been investigated extensively, the exact degree to which
they play a role in erythropoiesis and HSC fate decisions is unknown (Olsson et al., 2016).

Similarly, there is a cluster of interferon-related genes including Igtp, Zbp1, Stat1 and Irf1
which show strong upregulation in the Crebbp and Tet2 models, but downregulation in the
Jak2 and Npm1 models. Interferon-gamma signalling is thought to cause myeloid-skewing in
HSCs, though its role in later erythroid cells is less clear (Morales-mantilla and King, 2018).
Interestingly the W41 model also shows upregulation of these genes, which may contribute
to the observed similarities between the W41 and Tet2 models in Figure 3.6A. It is unlikely
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Fig. 3.8 Molecular integration reveals modules of genes that are dysregulated across
many perturbations. UMAP representations of the 332 genes identified as being dysregu-
lated in two or more distinct perturbations. For each model the genes are coloured by their
fold change within the ‘Erythroid-Middle/Late’ cells in that model.



76 Integrated Global Analysis of Pre-Leukaemic Murine Haematopoiesis Models

that this signature is a biological artefact caused by certain mice having a viral infection,
since once again its pattern of dysregulation closely mirrors the observed abundance changes.
Hence the interferon pathway may also play a significant role in aberrant pre-leukaemic fate
decisions, and could potentially be a notable difference between the Jak2 and W41 models
despite their similarity at a cellular level. In the top-left of the visualisation there is a large
cluster of genes whose expression pattern is less clear, including pro-megakaryocytic genes
such as Pf4 and Pbx1 alongside anti-apoptotic genes such as Bcl2 and Erdr1 (Bincoletto
et al., 1999; Mango et al., 2014). All of these genes are strongly downregulated in the Jak2
and W41 models. The former makes sense given that the Jak2 and W41 models have a
decreased abundance of megakaryocytes. However the downregulation of anti-apoptotic
genes is surprising given the observed abundance increase of these erythroid cells in the
Jak2 and W41; this suggests that despite their overabundance, they are experiencing a stress
response and an associated increase in apoptosis. The dysregulation of these genes in the
other models is less clear, but interestingly they appear to be downregulated in the Crebbp
model, where potentially increased apoptosis or a decrease in cycling activity is driving the
observed abundance reduction (see chapter 4).

Finally, there is a large cluster of genes in the lower right corner of the visualisation
which are upregulated in the Jak2 and W41 models, but many of which are downregulated or
unchanged in the Crebbp and Tet2 models. This cluster includes many known pro-erythroid
genes such as the globins (Hba-a2, Hbb-bs, Hbb-bt), Tfrc (CD71), and Fabp5 (Tusi et al.,
2018), as well as a number of cell-cycle genes such as Ccne1, Ccne2 and Ccdc25. In addition
this cluster contains known targets of the JAK/STAT signalling pathway such as Socs2 and
Pim1 (Letellier and Haan, 2015; Schwemmers et al., 2007). Notably, however, many of
these genes are also upregulated in the Tet2 HOM model, including a number of heat shock
proteins Hsp90, Hspa5, Hspa8 and Hsph1, which are linked to cellular stress response (Chen
et al., 2012), and have been shown previously to anti-correlate with genes such as Erdr1
mentioned above (Jung et al., 2011). Hence whilst some genes in this cluster may contribute
to cellular expansion in erythroid cells, some of them may also be playing different roles in
the perturbation response that do not influence the proportional abundances of the progenitor
landscape.
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3.5 Extending perturbation analyses across whole cellular
trajectories

In order to understand the molecular mechanisms driving skewed cellular abundances, it
is not sufficient to look at the molecular changes occurring at one specific cellular stage
of maturation, as in section 3.4. Instead, the molecular perturbation response across entire
cellular trajectories must be analysed. This will provide a far broader and more dynamic
understanding of the haematopoietic system’s response to perturbation. The largest barrier
to characterising perturbation response across entire trajectories is disentangling the gene
expression changes due to the perturbation from those due to normal differentiation. Com-
paring WT cells from one stage of a trajectory to perturbed cells from another stage will
reveal many differences, but these will not be useful (Hamey and Göttgens, 2018). A coarse-
grained approach could be taken where many clusters are defined along the trajectory and
comparisons are restricted to WT and perturbed cells mapping to the same cluster. However
here an extremely fine-grained approach was desirable, and therefore using the concept of
pseudotime was preferred.

Firstly, the clusters corresponding to the trajectory of interest (e.g. the erythroid trajectory)
were chosen by performing Partition-Based Graph Abstraction (PAGA) on the reference
dataset (Figure 3.9A). PAGA calculates the relative connection strengths between each of the
13 clusters and hence infers the most likely pathway between a starting cluster (Stem Cells)
and an ending cluster (e.g. ‘Erythroid - Late’) (Wolf et al., 2019). Whilst this is a relatively
crude method of trajectory inference (see chapter 6), it sensibly defines a set of cells that
can be labelled as ‘the erythroid trajectory’, moving from the stem cell cluster to MEPs and
then through the erythroid clusters. For each perturbation, the WT and perturbed cells that
belong to this trajectory were then aligned using pseudotime (Figure 3.9B) (Bendall et al.,
2014; Trapnell et al., 2014). Briefly, pseudotime is a measure of the distance between each
cell and a root cell, defined to be the WT cell with the highest hscScore. The hscScore score
is calculated using the expression of a number of genes known to identify the most HSC-like
cells within a scRNA-seq dataset, and hence the root cell represents the best estimate of a true
WT HSC within the data (see chapter 4) (Hamey and Gottgens, 2019). The pseudotime score
of each WT and perturbed cell is then calculated. On the assumption that gene expression
changes due to the perturbation are small compared to those due to maturation, this score
should represent each cell’s progression along normal differentiation. Hence by comparing
WT and perturbed cells with the same pseudotime scores, any remaining differences should
be solely due to the perturbation response. To do this, a sliding window approach was
used to calculate the WT and perturbed expression levels of a given gene as a function



78 Integrated Global Analysis of Pre-Leukaemic Murine Haematopoiesis Models

Choose trajectory 
of interest

Stem Cells

Erythroid - Early
MEPs

Erythoid - Late

Erythroid - Middle
Erythroid - Middle/Late

Stem Cells

Megakaryocyte

Erythroid

Mast Cell Basophil

Neutrophil

Lymphoid

Monocyte

For each perturbation, align 
trajectory using Pseudotime

WT Trajectory

Perturbed 
Trajectory

Root Cell

Pseudotime
Alignment

Sliding window of gene
expression across Pseudotime 

Increasing
Pseudotime

Combined WT and
Perturbed Trajectory

Sliding Window

Visualise perturbation
response across whole

trajectory 

E
xp

re
ss

io
n
 D

if
fe

re
n
ce

B
et

w
ee

n
 P

er
tu

rb
at

io
n

 a
n
d
 W

T

Pseudotime

0

0 1

A B

CD

Fig. 3.9 Pseudotime aligns cellular trajectories to calculate dynamic differential expres-
sion. (A) Clusters corresponding to the desired trajectory are located in the reference dataset.
(B) For a given perturbation, a root cell corresponding to the most HSC-like transcriptome is
located in the WT data. Pseudotime is then calculated on the combined WT and perturbed
trajectory to align them. (C) A sliding window is used to calculate the WT and perturbed
expression of a specific gene along pseudotime. (D) The difference between the WT and
perturbed expression levels are visualised as a function of pseudotime.

of pseudotime (Figure 3.9C). The smoothed difference between these expression levels
can then be visualised between a pseudotime score of 0 (root cell) to 1 (end of trajectory)
(Figure 3.9D). Hence the region above the x-axis represents upregulation of the gene at that
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point along the trajectory and vice versa. For the perturbation with technical repeats (Jak2),
the mean perturbation response over the three experiments was calculated. For those with
biological repeats (W41, Dnmt3a, Npm1, Crebbp and Tet2 HOM) the mean response over
the two mice was calculated.

Calculating the expression increase due to each perturbation for the group of pro-myeloid
enzymes and transcription factors identified previously highlights how these genes are
dysregulated across the entire erythroid trajectory, and not simply in the single cluster
analysed in section 3.4 (Figure 3.10A). The pro-neutrophil trio of Mpo, Elane and Ctsg are
upregulated at a roughly constant level across the entire erythroid trajectory in the Crebbp
and Tet2 models, and downregulated in a similar fashion in the Jak2, W41 and Npm1 models,
with the Dnmt3a model showing little to no response. The pro-monocytic trio of Irf8, Ms4a6c
and Ms4a3 show more dynamic behaviour but the same general pattern, despite these genes
being expressed at lower level in erythroid cells. This analysis suggests that even in very
immature blood cells, these transcription factors have patterns of dysregulation that are highly
coordinated with the observed differentiation skewing. Since it is believed that the major
haematopoietic fate decisions occur early on in the hierarchy, this is further evidence that a
crucial effect of these perturbations is to induce abnormal expression levels of these myeloid
genes, which is then strikingly maintained along the entire erythroid trajectory. Similarly, the
effects of the interferon-related genes identified previously are prominent across the entire
erythroid trajectory, with the W41, Crebbp and Tet2 models upregulating these genes and
the Dnmt3a and Npm1 models downregulating them, whilst the Jak2 model shows minimal
response (Figure 3.10B). The pattern of upregulation in the Crebbp and Tet2 models suggests
that the amplitude of the dysregulation rises to a peak midway along the trajectory before
diminishing towards the end.

Analysis of the group of pro-erythroid genes upregulated in the Jak2 and W41 models
in Figure 3.8 reveals two distinct modules of genes, with differing patterns of dynamic
perturbation response when considering the entire erythroid trajectory. The first group
appears to predominantly affect the Jak2 and W41 models towards the end of the trajectory
(Figure 3.11A). Many of these genes, including Arhgdig, Cda, Fabp5 and Podxl have
previously been implicated in the response of late-stage erythroid progenitors to EPO over-
stimulation (Tusi et al., 2018). Given that the Jak2 V617F mutation acts to constitutively
activate EPO receptors (amongst others), it is unsurprising that the same behaviour is seen
here (Silvennoinen and Hubbard, 2015). Of interest is how similar the response of these
genes in the W41 model is, mirroring the abundance similarities seen previously. Whilst the
synergism between c-Kit receptor and Epo-R for producing erythroid progenitors is well
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Fig. 3.10 Pro-myeloid and interferon-related genes show dynamic differential expres-
sion across the entire erythroid trajectory. (A) Expression difference between perturbed
and WT cells (y-axis) as a function of pseudotime (x-axis) from 0 (stem cells) to 1 (end
of erythroid trajectory) for 6 pro-myeloid transcription factors. Each curve corresponds to
a specific perturbation. (B) Expression difference as a function of pseudotime along the
erythroid trajectory for 6 interferon-related genes.
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established (Munugalavadla and Kapur, 2005), it is unclear why the W41 c-Kit mutation -
which is believed to be a leaky loss-of-function mutation (Nocka et al., 1990) - should lead
to an extremely similar perturbation response. However recent evidence has suggested that
acute anaemia, a phenotype of the W41 mice, leads to compensatory EPO production outside
of the bone marrow, potentially explaining the observed similarities (Bennett et al., 2019;
Millot et al., 2010). No evidence of differential expression of Epor was observed in either
perturbation. The second group appears to affect the Jak2, W41 and Tet2 HOM models, with
dysregulation seen to be generally increasing over the course of the trajectory (Figure 3.11B).
Whilst a clear biological interpretation of these genes is difficult, many of them have been
implicated in haematological malignancies previously. For example, Chordc1 expression is
known to inhibit the ROCK signalling pathway, and Chordc1-deficient mice develop lethal
myeloproliferative malignancies resembling chronic myeloid leukaemia (Rocca et al., 2018;
Savino et al., 2015). Hectd1 loss is known to result in reduced self-renewal properties of
mouse HSPCs and interestingly is thought to inhibit the expression of interferon-related
genes (Brennan, 2019). Both of these genes have been shown to interact with the heat
shock protein Hsp90, suggesting the stress response occurring in the Jak2, W41 and Tet2
models may be tightly linked in a way that is independent of their observed differentiation
skewing (Gano and Simon, 2010; Sarkar and Zohn, 2012). Esco2 is a gene coding for
cohesin establishment, which has been suggested as a master regulator of transcriptional
reconfiguration in haematopoiesis (Panigrahi and Pati, 2012; Sasca et al., 2019), whilst
Steap3 is a ferrireductase that facilitates iron uptake in erythroid precursors (similarly to
Tfrc) (Lambe et al., 2009); it has been linked with increased lymphoma proliferation and as
a pathway for increased oxidative stress in red blood cells (Howie et al., 2019; Isobe et al.,
2011). Xbp1 is a transcription factor known to protect HSCs from stress-induced apoptosis
through unfolded protein response, but its role in erythroid cells is unknown (Liu et al., 2019).
Nevertheless there appears to be a clear stress-related link between the Jak2, W41 and Tet2
models that is not present in the others. Notably, the Tet2 HET model deviates from the
Tet2 HOM model in this group, despite mirroring the latter closely in the pro-myeloid and
interferon-related gene modules discussed above. This may suggest that whilst the Tet2 HET
model elicits similar differentiation skewing to the HOM model, it is not capable of invoking
a large-scale stress response in the erythroid trajectory.

This method of analysing perturbation response across entire cellular trajectories can also
be performed in an unsupervised manner, without requiring prior identification of genes of
interest. This novel unsupervised approach was named the dDEG method, as it is capable of
directly extracting dynamically differentially expressed genes (dDEGs) from a scRNA-seq
perturbation dataset consisting of a WT and perturbed sample. As input, the dDEG method
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84 Integrated Global Analysis of Pre-Leukaemic Murine Haematopoiesis Models

requires only a clustering of the dataset and the identity of the starting and ending clusters
for the trajectory of interest. From this, it will follow a similar procedure as in Figure 3.9 to
identify the cells belonging to the trajectory, followed by an integrated pseudotime analysis,
including the calculation of the relevant root cell. The dDEG method will then analyse
every gene in the dataset and rank them according to their degree of differential expression
across the whole trajectory (see methods, Figure 3.12A). After extracting the top dDEGs
based on a predefined threshold, dynamic-time-warping (DTW) is used to cluster the top
dDEGs into groups of genes with the same patterns of dynamic differential expression in
an unsupervised manner (Figure 3.12B) (Berndt and Clifford, 1994). Experimental repeats
are handled naturally by requiring a gene to pass the threshold in each of the repeats. Each
cluster can then be analysed further to understand its biological significance or relationship
to other clusters.

As an example of this, the dDEG method was applied to the three experimental repeats
of the Jak2 model for the erythroid trajectory. 97 genes were found to pass the threshold in
all three repeats, which were grouped into 8 clusters (Figure 3.12C). This included clusters
of genes whose magnitude of upregulation due to the perturbation peaked at different points
along the trajectory; in Figure 3.12C, the green and purple clusters peak at the start of the
trajectory, before the pink cluster peaks in the middle and the red cluster towards the end. In
addition the orange cluster contained genes that began their upregulation at the end of the
trajectory (Figure 3.12D). These included genes such as Fabp5, Calr and Hbb-bt that were
identified using the previous supervised approach, but also included several other genes with
the same pattern of dysregulation. Therefore whilst the supervised cluster-based approach
excels at integrating information across different perturbation models, the dDEG method is
designed to perform in-depth whole-trajectory analyses of a single model in a completely
unbiased manner. Once the dynamics of the clusters identified using the dDEG method have
been visualised, biological interpretation of the results can be attempted. Gene ontology
results for clusters from the Jak2 erythroid trajectory largely focus on cell-cycle effects,
particularly in clusters that are upregulated due to the perturbation towards the end of the
trajectory. However the clusters upregulated towards the start of the trajectory were also
linked to positive regulation of metabolic processes and protein-DNA complex assembly,
suggesting that early erythroid cells such as MEPs may be more metabolically active as a
result of the Jak2 mutation. This may link to the observed abundance skewing in the Jak2
model, where there are fewer MEPs and an overabundance of later erythroid cells; if the
mutant MEPs are more metabolically active than their WT counterparts they may stay in
the MEP state for less time and hence appear to be undersampled in the perturbed dataset.
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The later erythroid cells may then expand by cycling and dividing quicker leading to an
overabundance within the LK gate.

In addition to the approaches for trajectory-wide molecular analyses presented in this
section, a new visualisation method for differential gene expression was also developed. In
a similar approach to the paired-voting visualisation of abundance differences in section
3.2, the nearest neighbours of each reference cell were located in the WT and perturbed
samples of a perturbation experiment. The mean expression of these neighbours for a given
gene was then calculated, and the difference between the expression of WT and perturbed
neighbours plotted on the reference. This provides a global view of a gene’s differential
expression profile at extremely fine resolution. Applying this method to the pro-myeloid
genes identified previously recapitulates their behaviour along the erythroid trajectory and
highlights similar behaviour across the entire LK landscape (Figure 3.13A). In the Jak2
model, Mpo was downregulated in all the immature clusters and megakaryocytes as well
as the erythroid trajectory, and only reaches WT levels near to the end of the neutrophil
trajectory. Meanwhile Elane exhibits even greater downregulation in the neutrophil and
monocyte trajectories compared to the erythroid branch. This behaviour was almost exactly
reversed in the Tet2 HET model (Figure 3.13B). On the other hand, upregulation of Fabp5 in
the Jak2 model was specific to the end of the erythroid trajectory as seen previously, with
downregulation being observed in the most immature clusters. In addition whilst in the Tet2
HET model Stat1 shows its largest upregulation midway along the erythroid trajectory, a
general increase was observed across the entire LK landscape; this pattern was also seen in
the other interferon-related genes in the Tet2 and Crebbp models.

3.6 Combining mutations reveals that perturbation inter-
actions are complex and trajectory-specific

Patients with pre-leukaemic haematological malignancies such as MPNs or clonal haematopoiesis
often possess more than one driver mutation, and hence discerning how different perturba-
tions combine is of direct clinical interest (Sperling et al., 2017). However relatively little
work has been performed in this area, especially at the scale of the whole blood system. The
Jak2 V617F mutation is the most common mutation reported in MPN patients, and mutations
in Tet2 are the most common co-mutations in Jak2 V617F-positive MPNs (Shepherd et al.,
2018). Therefore incorporating a Jak2/Tet2 double mutant into the integrated perturbation
framework developed in this chapter should allow highly relevant comparisons to be made
across the single- and double-mutant Jak2 and Tet2 perturbed states.



86 Integrated Global Analysis of Pre-Leukaemic Murine Haematopoiesis Models

A Mpo - Jak2 Elane - Jak2

Mpo - Tet2 HET Elane - Tet2 HETB

Fabp5 - Jak2 Stat1 - Tet2 HETC

Fig. 3.13 Visualisation of differential gene expression at single-cell resolution. (A) For
each reference cell, the difference between the mean expression of its nearest WT and per-
turbed neighbours is plotted for the gene and experiment shown. (B) Differential expression
of pro-myeloid transcription factors in the Tet2 HET model differs completely from the Jak2
model. (C) Visualisation of differential gene expression recapitulates results from the dDEG
method in the erythroid trajectory (Fig. 3.10B, 3.11A).
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In HSCs, the Jak2 mutation is believed to drive increased proliferation at the expense of
self-renewal ability, whilst loss of Tet2 is thought to confer a self-renewal advantage whilst
decreasing proliferation (Chen et al., 2015). The co-mutation of Tet2 with Jak2 is thought
to rescue the self-renewal phenotype, leading to highly proliferative and competitive clones
that can initiate myeloproliferative disease (Shepherd et al., 2018). Recently, increasing
evidence for genetic interaction between the two molecules has been discovered, with Jak2
found to be responsible for phosphorylating Tet2 in early erythroid progenitors and hence
directly impacting DNA methylation (Jeong et al., 2019). The Jak2 V617F mutation leads
to an increase in Tet2 activity, resulting in decreased methylation levels which may lead
to upregulation of pro-erythroid transcription factors and oncogenic transcripts associated
with haematological malignancies (Shokouhian et al., 2020). The concomitant loss of Tet2
function in these cells would then negate this interaction and potentially result in an increase
in DNA methylation, inhibiting the binding activity of pro-erythroid transcription factors due
to their proportionally more CpG-rich binding motifs (Izzo et al., 2020). Therefore based
on the established literature, it might be expected that the double-mutant would negate the
effects of the Jak2 model. However its global impact on the blood system at both cellular
and molecular scales is still unclear.

To try and understand the combinatorial effects of the Jak2 and Tet2 mutations, a pertur-
bation experiment was performed on two mice that were homozygous for the Jak2 V617F
mutation (as in the Jak2 model discussed in this chapter) and heterozygous for Tet2 loss-
of-function (as in the Tet2 HET model), known as the ‘Jak/Tet Cross’. After integrating
this model into the perturbation framework already described, it was clear that in terms of
differential abundances the Jak2/Tet2 Cross looked like the Tet2 model in the myeloid region
of the LK landscape, and like a milder version of the Jak2 model in the erythroid region
(Figure 3.14A). Visualising the abundance changes on the reference dataset confirmed this
(Figure 3.14B), with an overabundance of erythroid cells only occuring in the most mature
erythroid cluster. These results were consistent across both of the mice sequenced (Figure
3.14C). This would suggest that the loss of Tet2 in Jak2 V617F mice does negate the ampli-
fication of erythroid progenitors, consistent with the hypothesis that Tet2 is a downstream
target of Jak2. Nonetheless the later erythroid clusters are still overabundant compared to
the Tet HET model alone, suggesting that the impact of the Jak2 mutation is not completely
removed along the erythroid trajectory. Further evidence for this was seen in the loss of
megakaryocytes observed in the Jak/Tet Cross, which was also seen in the Jak2 model. In the
neutrophil/monocyte region of the landscape, where the effects of the Jak2 V617F mutation
should be minimal due to a lack of EPO-receptor, the Jak/Tet Cross was very similar to the
Tet2 HET model both in localisation and magnitude of the abundance changes, suggesting
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that outside of the erythroid trajectory, heterozygous loss of Tet2 is not impacted by the
Jak2 V617F mutation. Given these findings, it was surprising to observe that the molecular
response of the Jak/Tet Cross in the ‘Erythroid-Middle/Late’ cluster matched closely with
the Jak2 model (Figure 3.14D). In particular, the Jak/Tet Cross appeared to downregulate the
cluster of pro-myeloid transcription factors, whilst upregulating the clusters of pro-erythroid
genes that were found to correlate with abundance changes previously.

To assess the the Jak/Tet Cross model over the entire erythroid trajectory, it was integrated
into the supervised dDEG analysis performed in section 3.5. In the cluster of pro-myeloid
genes, the Jak/Tet Cross behaves more like the Jak2 model than the Tet2 HET model in all
genes apart from Irf8 (Figure 3.15A). Nonetheless the magnitude of downregulation in Mpo,
Elane and Ctsg is reduced slightly from that observed in the Jak2 model alone. Similarly for
the cluster of interferon-related genes, there is greater similarity between the Jak/Tet Cross
and the Jak2 models, but there is also a hint of dysregulation in the Jak/Tet Cross in genes
such as Stat1 and Igtp (Figure 3.15B).

Strikingly, the Jak/Tet Cross is clearly acting similarly to the Jak2 model alone in both
clusters of pro-erythroid genes that were identified (Figure 3.16A,B). Hence this analysis
strongly suggests that whilst the heterozygous loss of Tet2 is altering the composition of
the Jak2 V617F erythroid trajectory at the cellular level, it remains largely unchanged at
the molecular level, raising questions about how such a disconnect between molecular and
cellular scales could occur. It is possible that the heterozygous loss of Tet2 impedes the
proliferative nature of the Jak2 V617F erythroid cells - therefore altering cellular abundances
- without affecting the signalling pathways that lead to the dysregulation of genes such as
those in Figure 3.16. Another plausible possibility is that any pro-erythroid HSC skewing
in the Jak2 model is dominated by the loss of Tet2, such that the HSC compartment is
myeloid skewed and therefore the remaining erythroid cells cannot reach the abundance
levels seen in the Jak2 model alone, despite normal proliferative behaviour. It is likely that
both of these ideas are true to some extent, and both will be investigated further in Chapter 4.
Nevertheless it is clear that the interaction between the Jak2 and Tet2 HET models is highly
complex. dDEG analysis of the myeloid trajectories reveals that the Jak/Tet Cross behaves
similarly to the Tet2 HET model at the molecular level. Hence the perturbation interaction is
trajectory-specific; in the erythroid trajectory the loss of Tet2 negates some of the cellular
effects of the Jak2 model but leaves the molecular response largely unchanged, whereas in
the myeloid trajectory the loss of Tet2 dominates any effects that the Jak2 may be causing
at both cellular and molecular scales. This ties in with the knowledge that different types
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Fig. 3.15 The Jak2/Tet2 Cross model behaves like the Jak2 model at the molecular
level in pro-myeloid and interferon-related genes. (A) Expression difference between
perturbed and WT cells as a function of pseudotime from 0 (stem cells) to 1 (end of erythroid
trajectory) for 6 pro-myeloid transcription factors. The Jak2/Tet2 Cross curve is in black.
(B) Expression difference as a function of pseudotime along the erythroid trajectory for 6
interferon-related genes.
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Fig. 3.16 The Jak2/Tet2 Cross model associates with the Jak2 model at the molecular
level in pro-erythroid genes. (A) Expression difference between perturbed and WT cells as
a function of pseudotime from 0 (stem cells) to 1 (end of erythroid trajectory) for 6 genes
affecting the Jak2 and W41 models. (B) Expression difference as a function of pseudotime
along the erythroid trajectory for 6 genes affecting the Jak2, W41 and Tet2 models.
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of leukaemia respond differentially to certain perturbation combinations, and highlights the
difficulty of understanding and treating patients with many different co-mutations.

3.7 Conclusions

This chapter describes an integrative framework for the analysis and comparison of many
different scRNA-seq perturbation experiments at the scale of the entire blood system. By
leveraging a large and densely sequenced dataset of WT haematopoiesis as a reference,
a number of computational methods and visualisation tools have been created to allow
comparison across several different perturbation models totalling nearly 250,000 single
cells. These include coarse- and fine-grained approaches to calculating differential cellular
abundances, a pipeline for integrating molecular information within specific cell types, and
both supervised and unsupervised methods for analysing molecular dysregulation across
entire differentiation trajectories. These approaches extend naturally to the study of complex
perturbation interactions and therefore have a high degree of clinical relevance to pre-
leukaemic haematological malignancies seen in patients.

3.7.1 The technical challenges of integrating scRNA-seq datasets

Any analysis of a stand-alone scRNA-seq dataset must contend with an array of technical
effects such as doublets, cell filtering and normalisation difficulties. When trying to combine
many different scRNA-seq experiments these difficulties are compounded by ‘batch effects’
such as differential sequencing depths or cell numbers across experiments. In addition,
the work in this chapter requires that all the perturbation experiments cover the same LK
landscape as each other; however differences in the antibody staining and FACS sorting
parameters when isolating LK cells from the bone marrow will be inevitable. Add in some
biological noise, as well as the fact that droplet-based sequencing methods achieve only
relatively shallow sequencing depths and it is perhaps startling that any kind of biological
insights can be gleaned from them, given the various competing sources of noise within the
data. It should be noted, however, that the 10X Genomics pipeline results in comparatively
high transcript capture compared to other droplet-based scRNA-seq methods (Giladi et al.,
2018; Paul et al., 2015; Tusi et al., 2018).

Nevertheless this work has highlighted many of the important features necessary for good
perturbation dataset integration. The first is the production of a high-quality reference dataset.
Performing cellular-level analyses by mapping each perturbation to a reference dictates that
regardless of the characteristic of each perturbation experiment, the mapping quality depends
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on the sampling density of the reference. Since true LT-HSCs represent less than 0.1% of
WT LK cells, having a reference enriched in LSK cells was invaluable in accurately mapping
cells at the top of the haematopoietic hierarchy. Secondly, the importance of having matched
WT samples for each perturbation experiment cannot be overstated. As they were some of
the first experiments to be performed, the W41 and Tet2 HOM models did not have matching
WT samples, and at every stage this caused difficulties in their integration. Having more
perturbations actually reduces this problem, as a suitable WT sample can then be paired
with the unmatched perturbed sample that a) mirrors it in terms of sequencing depth and b)
displays ‘average’ WT cellular abundances. Nonetheless differential expression comparisons
between unmatched samples will always produce many more significant genes than between
matched samples, and hence this must be accounted for by intersecting molecular results
across more than one WT comparison.

Thirdly, both coarse-grained cluster mappings and fine-grained pseudotime alignments
are useful tools for perturbation analysis. Ostensibly they serve the same purpose - to create
homogeneous regions of cells across samples that are ‘the same’ based on their transcriptome.
However due to their differences they will not always agree; a percentage of cells with
the same pseudotime score may map to different clusters in the reference and vice-versa.
Connecting cells across samples is key to the integration of perturbations and therefore
choosing the method of alignment is of central importance in extracting signal from the
noise. Work in this chapter suggests that when performing analyses across entire trajectories,
pseudotime is to be preferred as it provides a finer delineation of the gradual changes
occurring along a differentiation pathway. However when performing comparisons within
a (supposedly) homogeneous group of cells, using clusters is arguably a better approach.
For example, it would be possible to map the perturbations to a pseudotime defined on the
reference dataset and then perform a differential expression analysis on all cells falling within
a specific pseudotime window. This choice would nonetheless be arbitrary, and using a
cluster defined through a computational method (such as Louvain clustering) designed to
make the disparity between clusters as great as possible is a more data-driven approach.

3.7.2 Insights from cellular analyses

Calculating changes in the proportions of specific progenitor populations does not preclude
the absolute numbers of any population changing in a different manner; for example, if the
total number of LK cells is reduced due to a perturbation, a proportional increase in erythroid
cells may still represent a decreased number in absolute terms. Similarly if the number of
erythroid cells expands, the proportion of neutrophils may decrease despite no change in
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absolute numbers. Unfortunately this information is not available. It must be remembered
that the perturbations analysed in this chapter are relatively small in magnitude and allow a
homeostasis to be maintained in the blood system. They are therefore unlikely to dramatically
change the absolute numbers of blood progenitor cells.

Analysis of the ‘Stem Cell’ cluster will form the basis of Chapter 4. It is nevertheless
interesting to interpret this cluster’s response on a global scale. The proportion of cells in
this cluster remains unchanged in most models, but increases slightly in the Crebbp and
Tet2. Tet2 KO is known to confer a self-renewal advantage in LT-HSCs, suggesting this
may be due to a lack of differentiation activity rather than caused by excess proliferation
of the most immature haematopoietic cells. The three clusters marked as ‘immature’ do
not show high levels of marker gene expression for any specific single lineage, but based
on their transcriptome they are likely to represent early stages of myeloid or lymphoid
differentiation as opposed to erythroid, since they express low levels of markers such as
Mpo and Dntt, but show almost no expression of erythroid transcription factors. Again these
clusters show minimal proportional changes compared to more mature populations. The
most myeloid-looking of the immature clusters (the orange cluster in Figure 3.1) is reduced
in abundance in the Jak2 model, potentially connected to the reduction in neutrophils seen in
Figure 3.4.

One of the more perplexing results is that the proportion of MEPs is reduced in both
the Jak2, W41 and Tet2 models, despite the opposite behaviours of the later erythroid
and megakaryocyte populations. It is difficult to arrive at any conclusions about this from
scRNA-seq snapshot data alone. Assuming the myeloid/erythroid fate decision is occurring
upstream of the MEP population, then possibly the Jak2, W41 and Tet2 models are skewed
against erythroid cells, with the Jak2/W41 only recovering to have an overabundance of later
erythroid progenitors due to an increased proliferation program downstream, which may
itself be the cause of a skewing towards erythroid cells in an erythroid/megakaryocyte fate
decision. However since no myeloid expansion is seen in the Jak2/W41, this scenario seems
likely to only apply to the Tet2 model. It is also plausible that there is pro-erythroid skewing
of immature cells in these models, with a loss of MEPs caused by rapid differentiation
through this state. The latter explanation would appear to be supported in the Jak2/W41
by the molecular results suggesting genes upregulated above WT levels in the MEPs are
associated with increased metabolic activity. However an explanation must then be found for
why the Crebbp model has an overabundance of MEPs despite otherwise mirroring the Tet2
model. Fitting all of the data into a single model will require a new wave of lineage tracing
perturbation experiments (Pei et al., 2020; Weinreb et al., 2020).
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3.7.3 Insights from molecular analyses

Integrating molecular signals across perturbations necessarily depends on some degree of
overlap existing between experiments. The approach taken in section 3.4 discards genes that
were only differentially expressed in one perturbation model. Hence to properly analyse a
single model in detail, an approach such as the unsupervised dDEG method introduced in
section 3.5 must be used. Due to the relatively shallow depth of 10X scRNA-seq (or any
droplet-based method), performing differential expression across an entire trajectory has
far more power to identify upregulated genes than downregulated genes. This can be seen
clearly in Figure 3.12C, where only one of the eight centroids identified contains a majority
of downregulated genes. Unsurprisingly those genes which are found to be downregulated
are generally highly expressed across the trajectory. The decision to measure the degree of
differential expression using absolute expression difference also favours the identification of
highly expressed genes, which will naturally be able to vary more in absolute terms; using
fold changes instead favours lowly expressed genes where small differences can lead to big
fold changes, many of which will not be biologically relevant.

Permutation testing was performed to assess the probability of a gene passing the thresh-
old for dynamic differential expression due to chance. Using the Jak2 experiments, the
aligned erythroid trajectories containing both WT and perturbed cells had both their cell
labels and their pseudotime values randomly permuted before the dDEG method was per-
formed. Using the same threshold for dynamic differential expression as in section 3.5, on
average only 2-5 genes were identified as significant for any given permutation. Permuting
only the pseudotime values (and not the cell labels) still identifies many of the dDEGs
since their genotype information has not changed, however almost always with different
dynamic shapes. These results suggest that the dDEGs identified and their shapes are highly
unlikely to occur by chance, even when considering only a single experiment. In order to
then compare the dynamic behaviour of a gene(s) across perturbations, it is essential that
the same pseudotime value also represents the same differentiation stage across different
experiments. This may not be true if the c-Kit FACS threshold differs between experiments or
if there is highly varying cell densities in different models along the trajectory in question. To
assess this, the computational tool cellAlign was used to check whether the same pseudotime
value corresponded to the same expression states across perturbations, and to correct the
pseudotime values if necessary (Alpert et al., 2018). Minimal correction was needed for all
experiments. The alignment of pseudotime values was checked visually by comparing the
expression profiles of marker genes across the trajectory.
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The behaviour of the pro-myeloid enzymes such as Mpo and Elane strongly suggests that
they play a role in many different perturbation responses across the entire LK landscape. It is
interesting to speculate that during an initial myeloid/erythroid fate decision - when a multi-
potent cell is stochastically deciding to follow either a myeloid or erythroid differentiation
program - the pro-erythroid perturbations such as Jak2 may either reduce these genes’ ability
to be transcribed or make their transcription more variable, creating a higher probability that
in their absence, pro-erythroid signals can take hold. Studies have recently suggested that
this molecular restriction could be achieved at the epigenetic level, implicating Jak2, Dnmt3a
and Tet2 in the process (Izzo et al., 2020). It may also be that dysregulation of these genes
confers latent plasticity to cells that would otherwise be committed in WT haematopoiesis;
for example, early Tet2 MEPs may still have myeloid potential. Some of these ideas will be
considered further in Chapter 4.

3.7.4 Future Work

This chapter presents a wide range of novel biological hypotheses that could form the
starting point of further work. Further experimental validation of all the molecular results
in this chapter is required. For example, the role of interferon-related genes in erythroid
haematopoiesis and why they are dysregulated in only the W41, Tet2 and Crebbp models is
currently unknown. Similarly the stress/heat shock/unfolded protein response seen only in
the Jak2, W41 and Tet2 models requires further investigation. The cellular and molecular
behaviour of the most immature HSCs and MPPs will form the basis of Chapter 4.

For each individual model, the dDEG method reveals clusters of genes upregulated at
different stages of a trajectory. A powerful implication of this is that genes from a cluster
upregulated at an earlier stage may be mechanistically driving those upregulated at a more
mature stage. Investigating these potentially causal correlations along a trajectory would allow
gene regulatory networks to be built that evolve over the course of a trajectory. Therapeutic
targets designed to disrupt a specific stage of differentiation could then be designed.

3.7.5 Summary

In summary, the work in this chapter has built a computational framework for the integra-
tion of many different scRNA-seq perturbation datasets. The behaviour of >10 different
experiments has been analysed at the scale of the entire blood system, with a variety of
intriguing biological results discovered using a spate of new computational methods and
tools for perturbation analysis.



Chapter 4

Dissecting the Pre-Leukaemic
Perturbation Response of the Most
Immature Haematopoietic Progenitors

Experimental work for this project was carried out by Nicola Wilson (isolation of primary
bone marrow cells, scRNA-seq profiling). Initial preprocessing of the resulting data was car-
ried out by Rebecca Hannah (running 10X Genomics CellRanger pipeline). After production
of the raw count matrices from the CellRanger pipeline, all computational work was carried
out by Sam Watcham, except where explicitly stated in the text.

4.1 Background

Elucidating the behaviour of the most immature blood progenitors, including true LT-HSCs
capable of reconstituting the entire blood system from a single cell, has been a central
goal in haematopoietic research for many decades. Prior to the advent of scRNA-seq, the
classical haematopoietic hierarchy had three multipotent subpopulations at its peak: LT-
HSCs, ST-HSCs and MPPs, defined primarily through their decreasing repopulation potential
and their ability to develop into any of the main haematopoietic lineages (Eaves, 2015;
Oguro et al., 2013). Immunophenotyping hinted at functional heterogeneity within the MPP
compartment (Wilson et al., 2008), before single-cell technologies helped to cement the
model of a continuous transcriptional landscape within the HSC and MPP compartments
(Kowalczyk et al., 2015; Nestorowa et al., 2016) that forms the basis for haematopoiesis
today.
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Single-cell studies have highlighted that even within the FACS populations thought to
best isolate LT-HSCS, there is significant transcriptional heterogeneity (Cabezas-Wallscheid
et al., 2014; Dykstra et al., 2007; Wilson et al., 2015). The largest contribution to this
heterogeneity arises from cell-cycle effects, with the ‘best’ repopulating LT-HSCs existing
in deeply quiescent state marked by low biosynthetic activity (Cabezas-Wallscheid et al.,
2017; Wilson et al., 2008). Transcriptional signatures corresponding to the most LT-HSC
like states have been identified (Wilson et al., 2015), allowing a proxy for ‘stemness’ to
be calculated from single-cell transcriptomes (Hamey and Gottgens, 2019). The evidence
for lineage output bias in functional HSCs is still unclear, but several studies have hinted
at the existence of megakaryocyte-biased HSCs and suggested there may be a direct route
of differentiation from HSCs to megakaryocytes that exists in addition to the classical
route through a bipotent MEP state (Grover et al., 2016; Rodriguez-Fraticelli et al., 2018;
Sanjuan-Pla et al., 2013). Nevertheless transcriptionally, LT-HSCs do not exhibit clear lineage
priming in native haematopoiesis, despite evidence for HSC-skewing from transplantation
experiments (Benz et al., 2012; Muller-Sieburg et al., 2004).

Within the classical ST-HSC/MPP compartments, scRNA-seq identified several subpopu-
lations (known widely as MPP1-4) that exhibited clear transcriptional and functional biases,
which have been confirmed in vivo using lineage barcoding (Rodriguez-Fraticelli et al., 2018).
MPP2 is believed to be primed towards the erythroid/megakaryocytic fates, MPP3 towards
the myeloid lineages, and MPP4 (also known as LMPP) towards a lymphoid fate (Pietras
et al., 2015). This suggests that in truth, many key fate decisions are initiated upstream of
these cells in either the MPP1 or LT-HSC states, although only cells in the latter state are
potentially capable of long-term reconstitution of the blood system. However identifying
these states on a transcriptional landscape is not trivial, especially since the acquisition of
broad, unbiased droplet-based scRNA-seq datasets does not currently allow for the parallel
capture of index sorting measurements. Building hypotheses that link transcriptomic states
to functional output using scRNA-seq data alone is therefore very difficult, as it is impossible
to know whether any observed lineage priming is actually the result of including already-
committed cells in the analysis. Lineage tracing experiments are beginning to be able to
answer these questions in native haematopoiesis (Weinreb et al., 2020). Furthermore, it has
also been suggested that LT-HSCs do not contribute greatly to steady-state haematopoiesis,
but rather that they preferentially contribute during injury response or transplantation (Busch
et al., 2015; Rodriguez-Fraticelli et al., 2018). Instead it is the MPP1 compartment that take
care of the majority of steady-state blood production.
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Despite these technical limitations, scRNA-seq perturbation experiments provide an ex-
tremely valuable tool for discovering how specific mutations affect uncommitted HSC/MPP1
progenitors in a native setting (Izzo et al., 2020; Psaila et al., 2020). To date, minimal work
has been performed in this setting that does not rely on prospectively sorting a specific
group of cells (Ostrander et al., 2020; Shepherd et al., 2018). The aim of this work was to
characterise the uncommitted progenitors from different pre-leukaemic perturbation models
at both cellular and molecular levels, and to look for any evidence of lineage priming or other
signals that correlated with the observed downstream progenitor abundance changes.

4.2 Cross-platform mapping delineates the HSC and MPP
compartments in wild-type haematopoiesis

A major difficulty in building testable hypotheses from droplet-based scRNA-seq data stems
from being unable to capture index-sorting measurements from each cell prior to sequencing.
Recent multimodal techniques such as CITE-seq have begun to make this possible, but
were not commercially available during this project (Stoeckius et al., 2017). Since index
measurements are used to sort cells for functional assays, it is therefore not trivial to determine
which cells or clusters in a scRNA-seq transcriptomic landscape correspond to classically
defined populations. However, recent computational developments have led to a number of
tools that can integrate single-cell datasets across different platforms, species and modalities.
These include Seurat (Stuart et al., 2019), BB-KNN (Polanski et al., 2020) and MNN-Correct
(Haghverdi et al., 2018) (see section 1.5.1). Tools such as these can potentially be used to map
index-sorted cells from plate-based scRNA-seq platforms onto a droplet-based transcriptomic
landscape, and hence provide an estimate of which classically defined FACS population each
droplet-based cell would have belonged to.

Following this approach, a novel computational pipeline was built to map the Nestorowa
et. al. dataset (Nestorowa et al., 2016), containing 1,654 index-sorted HSPCs sequenced using
SmartSeq2, onto the WT reference landscape (Figure 4.1A). The HSPCs were collected
from nine mutually exclusive FACS gates (Figure 4.1B). Whilst the exact gates used to
define different MPP populations differ slightly across different research groups, these
gates correspond almost exactly to the widely-accepted delineation of the MPP and HSC
compartments used in Fraticelli et. al (Rodriguez-Fraticelli et al., 2018). The only differences
are that ‘LMPP’ is used in Nestorowa et. al. instead of ‘MPP4’, and the ‘MPP1’ gate in
Fraticelli et. al. is split into both ‘MPP1’ and ‘ST-HSC’ in Nestorowa et. al. The mapping
was performed by integrating the datasets and performing MNN-Correct on the joint PCA
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Fig. 4.1 Mapping index-sorted SmartSeq2 HSPCs onto the 10X reference landscape.
(A) The WT reference landscape, coloured by Louvain clusters. (B) The sorting strategies
used in Nestorowa et. al. to collect murine HSPCs from classically-defined populations using
SmartSeq2. (C) For each classical population, the 10X reference cells that map most closely
to it are coloured in orange. LK: Lin- c-Kit+; LSK: Lin- Sca1+ c-Kit+.
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Fig. 4.2 Downstream MPP compartments are lineage primed in 10X WT data, while
HSCs are quiescent. (A) Violin plots of lineage marker expression for each FACS gate
mapped to the 10X reference landscape. (B) The hscScore, a measure of ‘stemness’, for each
reference cell. (C) Violin plots of the hscScore split by Louvain clusters and mapped FACS
gates. (D) The G2M score, a measure of cell cycle activity, for each reference cell.
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space of the data (see methods). Each reference cell was then given an adjacency score for
each FACS gate, weighted so that the total adjacency score for each gate across the entire
reference dataset was the same. Each reference cell was then defined as belonging to the
FACS gate with the highest adjacency score.

The result of this mapping appeared to be qualitatively sensible, with the most mature
gates such as GMPs mapping in a high coordinated fashion to the expected region of the
reference landscape that contained the neutrophil, monocyte and basophil progenitors (Figure
4.1C). In addition the delineation of the MPP and HSC compartments seemed sensible, with
MPP2 located towards the erythroid trajectory, MPP3 towards the myeloid trajectories and
LMPP (MPP4) towards the lymphoid trajectory, whilst MPP1 and ST-HSC were located
nearer the top of the landscape containing the LT-HSCs. This behaviour directly matches
with the functional and transcriptomic lineage priming of the MPP compartment expected
from Fraticelli et. al (Rodriguez-Fraticelli et al., 2018). This was further confirmed by the
expression of known erythroid, myeloid and lymphoid markers across the mapped FACS
populations (Figure 4.2A). The erythroid transcription factors Klf1 and Gata1 were expressed
in MEPs as expected, but also exhibit expression in MPP2, whilst having very little expression
in any other MPP or HSC compartment. Similarly, the myeloid marker Mpo had greater
expression in MPP3 than any other compartment (aside from GMP), and the lymphoid marker
Dntt had the highest expression in LMPP (MPP4). Therefore the mapping appeared to have
worked well, and provides confidence that the cells marked as LT-HSC, ST-HSC and MPP1
are likely to correspond to the functionally uncommitted and fully multipotent cells within
the reference dataset.

However, the mapping did highlight some strange results, including that the MEP gate
mapped to the later regions of the erythroid trajectory instead of the Louvain cluster anno-
tated as MEP - which expressed both erythroid and megakaryocytic lineage markers. This
cluster was instead mapped as belonging to the CMP gate. In addition, the MPP2 gate
contained a number of cells that were located in the more mature regions of the erythroid
and megakaryocyte trajectories. This again raises the question of whether the pro-erythroid
lineage priming seen in the MPP2 compartment arises due to the presence of more mature,
already committed cells still residing within this gate. The technical noise and limitations of
the mapping process notwithstanding, it is unclear how to interpret this result in light of the
published functional data on the MPP2 gate (Pietras et al., 2015; Rodriguez-Fraticelli et al.,
2018).

As expected, many of the reference cells mapping to the LT-HSC gate were located at
the top of the transcriptomic landscape, and were co-located with the expression of known
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Fig. 4.3 Visualising the uncommitted progenitors within the WT reference data. (A)
A geneset for visualisation of the Stem Cell cluster was created by taking the union of
DEGs between the Stem Cell cluster and it’s three neighbouring clusters. (B) The mapped
FACS populations for the Stem Cell cluster. (C) The number of expressed genes and the
log10(UMIs/cell) for each cell in the Stem Cell cluster. (D) The hscScore and G2M score for
each cell.
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HSC genes such as Procr (EPCR) and Fgd5. However, surprisingly some cells from the
other immature clusters also mapped to the LT-HSC gate. To test where the best LT-HSCs
reside within the landscape, the recently published hscScore method was applied (Hamey
and Gottgens, 2019), which uses a machine learning model based on the expression of the set
of MolO genes identified as marking functional murine LT-HSCs (Wilson et al., 2015). This
provided a per-cell hscScore, with 1 corresponding to the ‘best’ HSC in the dataset. Plotting
these scores on the reference revealed that the best HSCs were indeed located at the top of
the landscape (Figure 4.2B), suggesting that the more mature cells identified as LT-HSC
in Figure 4.1C were anomalous. Splitting the hscScore by Louvain cluster and mapped
FACS gate revealed that, as expected, the ‘Stem Cells’ cluster and the ST-HSC/LT-HSC gates
contain the best functional stem cells (Figure 4.2C).

HSCs with the greatest ability to reconstitute the blood system are associated with a
quiescent signature and a lack of cell cycle activity (Cabezas-Wallscheid et al., 2017). To
visualise this, a G2M score was designed to provide a proxy for cell cycle activity by
calculating the geometric mean scaled expression of 198 genes known to correlate with the
G2 and M phases of the cell cycle. Hence cells with a high G2M score are likely to be
actively cycling. Plotting this score on the reference dataset clearly highlighted the correlation
between HSC gene expression and quiescence (Figure 4.2D), providing further evidence for
the identity of the true LT-HSCs within the dataset. MPP1 cells had noticeably higher G2M
scores than either the LT-HSC or ST-HSC gates. The force-directed graph on which the G2M
score is displayed was calculated after removal of cell-cycle correlated genes (see methods).

Considering these results, it was decided that the ‘Stem Cell’ Louvain cluster represented
the best estimate for the group of uncommitted cells in the WT reference. It likely contains
all the true LT-HSCs, as well as containing over 85% of the MPP1 cells and over 65%
of the ST-HSCs identified from the cross-platform mapping. In order to extract as much
structure from this cluster as possible, it was revisualised on a UMAP embedding using a
geneset constructed from the union of all DEGs between the Stem Cell cluster and its three
neighbouring clusters (Figure 4.3A). This pulled apart the different FACS populations (Figure
4.3B), and revealed how a small number of MPP2, MPP3 and LMPPs (MPP4) also reside
in this cluster. These cells express minimal levels of all lineage marker genes. Visualising
the number of expressed genes and UMI counts per cell alongside the hscScore and G2M
score for each cell revealed a clear progression from LT-HSC to ST-HSC to MPP1 in terms
of both stemness and quiescence (Figure 4.3C,D). The ST-HSC and MPP1 are known to
be functionally very similar (Pietras et al., 2015), however there was a clear shift to higher
levels of transcription, mRNA content and cell cycle activity between the two populations.
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Whether this is a clear transition or simply a proportion of cells exiting quiescence is difficult
to determine from snapshot data. Nevertheless it is clear that whist the overall structure of
the uncommitted progenitors is rather flat and featureless, there is clear substructure driven
largely by cell cycle activity and the downregulation of genes associated with a functional
HSC state.

4.3 Pre-leukaemic perturbations push the uncommitted pro-
genitor pool into a more active state

To assess the magnitude and direction of cellular abundance shifts in uncommitted progenitor
cells due to the perturbations, the paired voting method introduced in Chapter 3 was applied
using only the cells from each experiment that had mapped to the Stem Cell cluster. The
results were then visualised on the UMAP embedding of the reference Stem Cell cluster
(Figure 4.4A). Many models displayed a shift towards a greater abundance of cells in more
active, cycling states at the expense of cells in a quiescent state. In addition, model-specific
behaviour was seen. The Jak2 model displayed a clear abundance decrease in the LT-HSC
region, consistent with the known phenotype of the model from functional data (Li et al.,
2014; Shepherd et al., 2018). This was accompanied by a broad increase of MPP1 cells. By
comparison the Tet2 HET and Tet2 HOM models displayed no reduction of LT-HSCs, and
instead exhibited a shift from less active ST-HSC/MPP1 states to more active MPP1 states.
The Jak/Tet cross displayed a combination of features from the Jak2 and Tet2 models; it was
the only other model to show a clear reduction of LT-HSCs, but its shift from a less-active to
more-active MPP1 states mirrored the Tet2 models rather than the Jak2 model. This suggests
that both mutations are altering the transcriptomic landscape of these mice starting from the
most immature regions of the haematopoietic hierarchy.

Both the Dnmt3a and W41 models also displayed a clear shift away from ST-HSC
states towards more active MPP1 states. A hint of the same pattern is seen in the Crebbp
model, albeit at a very low magnitude. Notably the Npm1 model and to some extent the p53
model displayed the opposite shifts, away from the most active MPP1 states. Overall, these
abundance shifts were smaller in magnitude than those associated with the LK landscape
as a whole (Figure 4.4B), but were still larger than the differences between any pair of WT
samples.

Current models of haematopoiesis suggest that under steady-state conditions it is the
MPP1 cells that replenish the majority of the blood system, with only occasional input
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Fig. 4.4 Pre-leukaemic perturbations push uncommitted cells into a higher activity
state. (A) Abundance changes within the ‘Stem Cell’ cluster visualised on the WT reference
using the paired voting method described in Chapter 3. Red indicates greater abundance,
blue lesser abundance. For each model, the average changes over biological and/or technical
repeats is shown. (B) The colorbar from Figure 3.4 to scale with the colorbar from (A),
indicating the relatively smaller abundance changes observed.



4.3 Pre-leukaemic perturbations push the uncommitted progenitor pool into a more active
state 107

from LT-HSCs (Busch et al., 2015; Laurenti and Göttgens, 2018; Rodriguez-Fraticelli et al.,
2018). An expansion of actively cycling MPP1 cells due to a perturbation may therefore
allow mutated clones to out-compete WT clones when the mutation occurs in haematological
malignancies. This would explain, for example, how the Jak2 mouse model displays a strong
perturbation phenotype despite the fact that the Jak2 LT-HSCs do not exhibit any competitive
advantage over WT LT-HSCs (Shepherd et al., 2018). Notably the abundance changes within
the Stem Cell cluster did not correlate with downstream abundance changes in the erythroid
or myeloid lineages, suggesting that an MPP1 expansion can occur regardless of the ultimate
direction of the fate-skewing within the MPP1 compartment. Hence within the uncommitted
progenitor pool, the main effect of cellular abundance shifts in response to perturbation is
to drive the expansion of the perturbed blood system through a proportional increase in the
most active MPP1 states, rather than to skew towards specific differentiation trajectories.

Despite this, molecular integration of cells mapping to the Stem Cell cluster revealed
patterns of differential expression that appeared to correlate with observed differentiation
skews. For each perturbation experiment, differential expression was performed between
WT and perturbed samples in the Stem Cell cluster, and integrated by intersecting each
pair of perturbations as in Chapter 3. When looking at the proportion of overlapping DEGs
that are regulated concordantly, the three Jak2 experiments displayed a largely conserved
molecular signature that also overlapped to a large degree with the W41 model (Figure
4.5A). Similarly, the Crebbp, Tet2 HET and Tet2 HOM models also share a molecular
signature whilst being largely anti-correlated with the Jak2 model. Taken together, this hints
at molecular changes which may be responsible for the observed downstream differentiation
skews. However, the Dnmt3a and Npm1 models did not share a signature with each other or
with the Jak2/W41 models, as might be expected given the similarities of these models in
more mature populations. In addition, it is clear that the overall number of DEGs in the Stem
Cell cluster is small, with the size of many overlaps between perturbations being less than
25 genes (Figure 4.5B). This lack of DEGs is not due to a lack of cells - cell numbers are
comparable in magnitude to the erythroid cluster analysed in Chapter 3 - but it may be driven
in part by smaller number of genes expressed in the most immature blood cells. Nevertheless
it was clear that the transcriptional consequences of the perturbations were considerably
smaller in magnitude than those seen in more mature populations, and Figure 4.5 should be
interpreted in this context. Strikingly, the Jak/Tet Cross appeared to overlap strongly with
both the Jak2 and the Tet2 models. It was also the model with the largest number of DEGs in
the Stem Cell cluster, suggesting that the two driver mutations had combined to produce a
larger degree of transcriptional perturbation than either of the mutations had managed alone.
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Fig. 4.5 Molecular changes of uncommitted progenitors loosely correlate with abun-
dance outcomes (A) For each pair of perturbations, the heatmap is coloured by the propor-
tion of overlapping DEGs in the Stem Cell cluster that are regulated in the same direction in
both models. (B) The corresponding size of the overlap between each pair of perturbations.
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Fig. 4.6 Small-magnitude molecular changes have perturbation-specific features. (A)
UMAP representation of the 231 genes identified as being dysregulated in two or more
perturbations in the ‘Stem Cell’ cluster. Each gene is coloured by its fold-change in the first
Jak2 experiment. (B) The same 231 genes coloured by their fold-change in each model.
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Extracting all genes that were significantly dysregulated in at least two of the seven
separate models (not including the Jak/Tet Cross) produced a list of 231 genes whose
fold-changes across the perturbations were visualised on a UMAP of genes as in Chapter
3. Unlike for the erythroid cluster analysed previously, no clear clusters of coordinated
genes were apparent (Figure 4.6A). Nonetheless clear large-scale differences in fold-changes
between the erythroid-skewed models such as Jak2 and W41 and those skewed to myeloid
differentiation were observed, as well as regions where the majority of genes were similarly
up- or down-regulated across almost all of the different perturbations (Figure 4.6B). A
majority of the genes upregulated across both pro-myeloid and pro-erythroid perturbations
are cell-cycle related, lending evidence to the hypotheses presented above that a main feature
of the immature cell perturbation response is to increase the proportion of ST-HSC/MPP1
cells in an active, cycling state. In addition there is a group of genes in the top left of the
visualisation that are downregulated across all the models apart from the Dnmt3a model.
These include Erdr1, Mecom and Bcl11a, whose upregulation has counter-intuitively been
associated with increased leukaemic load (Tao et al., 2016). The significance of this group of
genes remains unclear.

Manual inspection of the 231 genes revealed that once again a number pro-myeloid
factors were strongly dysregulated (Figure 4.6A), including Mpo, Ctsg and Elane; this trio of
genes was downregulated in the Jak2, Dnmt3a and Npm1 models whilst being upregulated
in the Tet2, Crebbp and Jak/Tet Cross models. Whilst this is largely unsurprising given the
results of Chapter 3, it is striking that these genes are dysregulated even amongst a cluster
of supposedly uncommitted progenitor cells. To further confirm this, the expression of
this trio across all cells mapping as MPP1 was visualised (Figure 4.7A). This confirmed
that significant myeloid lineage priming (both pro- and anti-myeloid) was visible in cells
identified as MPP1 across many different perturbations. No lineage priming was observed
across known pro-erythroid transcriptions factors within the MPP1 compartment (Figure
4.7B). This may lend further support to a hypothesis that it is myeloid transcription factors
which ultimately control the balance between myeloid and erythroid differentiation. It is
potentially possible that some perturbed cells from certain models are already committed to
a specific fate despite mapping to the MPP1 compartment. However, the complete lack of
observed erythroid priming in any of the perturbation models does not support this idea.

In addition, a number of genes that have previously been implicated in the regulation
of HSC behaviour were dysregulated. These included Jun and Fos, whose overexpression
within HSCs in response to stress is known to be associated with increased differentiation and
a decrease in self-renewal ability (Mallaney et al., 2019), as well as Cd48, whose expression
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Fig. 4.7 Uncommitted progenitors exhibit myeloid-centric lineage priming. (A) Violin
plots showing the expression of pro-myeloid transcription factors in cells identified as
MPP1 within the Stem Cell cluster. Red/blue dots indicate these genes were significantly
up/downregulated in the respective model. (B) Violin plots showing the expression of
pro-erythroid transcription factors in cells identified as MPP1 within the Stem Cell cluster.
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Fig. 4.8 Myeloid-skewing is correlated with increased HSC functionality. (A) Violin
plots for HSC genes in cells identified as LTHSCs. Red/blue dots indicate significant
up/downregulation in the respective model. (B) Violin plot of the hscScore for the top-
scoring 10% of cells mapping to the Stem Cell cluster in each model. Black dots correspond
to the sample mean, error bars to a 95% confidence interval for the mean as estimated through
bootstrapping.

is known to anti-correlate with HSC quiescence and their functional abilities (Boles et al.,
2011). A clear pattern emerged where the erythroid-skewed models had increased expression
of these genes in cells mapping as LT-HSCs whilst the myeloid-skewed models display a
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reduction (Figure 4.8A). The exception to this is the Dnmt3a model, which had significant
downregulation of Jun. Interestingly the Jak/Tet Cross had significant upregulation of Cd48
in conjunction with significant downregulation of Jun, once again exhibiting the complex
interplay between the two mutations. JAK/STAT pathway signalling targets such as Socs2
and Pim1 were also found to be significantly upregulated in the Jak2, W41 and Jak/Tet Cross
models, indicating that the Jak2 V617F and c-Kit mutations already trigger these pathways
in LT-HSCs (Figure 4.8A).

To assess and compare the quality of the best LT-HSCs in each model at a whole-
transcriptome level, the hscScore algorithm was applied to each perturbation. The top 10%
of highest scoring cells mapping to the Stem Cell cluster from each perturbation were then
taken and their scores visualised (Figure 4.8B). All of these cells mapped to the LT-HSC
gate, and can therefore sensibly compared as a result of the age and breeding-matched
backgrounds of the models. HSCs from the Crebbp and Tet2 models displayed increased
hscScores whilst the Jak2, W41 and Npm1 models displayed decreased scores. The Jak/Tet
Cross also had decreased scores, suggesting that in the LT-HSCs, the Jak2 mutation ‘wins
out’ over the Tet2 mutation and makes them less similar to the best LT-HSCs as defined
by transplantation. This is consistent with functional work suggesting that Jak/Tet Cross
HSCs lack the self-renewal advantage conferred upon Tet2 mutant HSCs (Shepherd et al.,
2018). There is a clear correlation between overall myeloid skewing of the LK landscape
and a shift towards ‘better’ LT-HSCs that more closely resemble true functional LT-HSCs
at the transcriptomic level. This would support a hypothesis that the myeloid trajectory
is the default differentiation pathway arising from uncommitted progenitor cells, whilst
erythroid differentiation is promoted through HSCs responding to stressors which may be
both cell-intrinsic and cell-extrinsic. This idea has been considered before (Laurenti and
Göttgens, 2018; Pei et al., 2020), but further work is required to understand how a stressed
HSC skews towards the erythroid lineage in the absence of any transcriptomic erythroid
priming.

4.4 Increased single-cell variability is associated with ery-
throid differentiation skewing

Very recently it has been proposed epigenetic markers play a crucial role in explaining how
an uncommitted blood cell may be mechanistically skewed towards specific differentiation
pathways in the presence of pre-leukaemic mutations. For example, it is believed that
hypermethylation of blood stem cells - potentially as a result of a functional loss of a
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demethylating enzyme such as Tet2 - preferentially affects pro-erythroid transcription factors
due to the relatively high frequency of CpG methylation sites at erythroid promoters (Izzo
et al., 2020). This could therefore transcriptionally silence erythroid factors to a greater
extent than myeloid factors and could subsequently promote myeloid skewing (Baylin, 2005).
Functional loss of a methylating enzyme such as Dnmt3a would therefore promote erythroid
skewing in the same fashion. If Tet2 is a direct downstream target of Jak2 signalling as
reported (Jeong et al., 2019), the Jak2 V617F mutation should also lead to hypomethylation
and erythoid skewing. Hence this model potentially begins to explain the abundance shifts
observed across different mutations.

Despite this regulation occurring at an epigenetic level, it was hypothesised that its effects
may be visible at the transcriptional level in terms of the variability of single-cell expression,
as has been previously suggested (Huh et al., 2013). Stochastic hypomethylation could
potentially lead to cells within a population having highly variable abilities to transcribe a
particular gene, leading to higher variability of that genes’ expression across the population.

To test this, the VarID method was used as a starting point (Grün, 2020). Briefly, VarID
constructs a k-nearest-neighbour graph from a transcriptomic landscape, and then calculates
a variability score for each gene in each cell using the expression profiles of it’s nearest
neighbours. Hence the method produces another ‘layer’ of information that has the same
dimensions as the original expression matrix, but instead provides a measure of how variable
each gene is in the transcriptomic vicinity of each cell. So that these variabilities can be
compared across genes, they are corrected for the differing expression levels of each gene.
The global mean-variance relationship is modelled as quadratic in log-space (Kolodziejczyk
et al., 2015), and this relationship is then corrected such that variabilities are comparable
across genes regardless of their expression levels (Figure 4.9A, see methods). Comparing
two lineage markers highlighted how for a given gene, variability was maximal in regions
where expression levels were changing rapidly, and were minimal when expression levels
were constant - regardless of the actual expression (Figure 4.9B). This can be seen further in
Figure 4.9C, with the expression and variability of Klf1 across the reference clusters shown.
Variability was greatest in clusters 4 and 5 (corresponding to MEP/early-erythroid) despite
expression being maximal in the latest erythroid clusters 10 and 7.

Unfortunately, the published version of VarID cannot be used to compare variabilities
across samples. This is due to how the algorithm calculates the number of nearest neighbours
over which it assesses a cell’s variability; this number is highly dependent on both the
sampling density and the sequencing saturation of each dataset. Taking the first Jak2
experiment as an example, VarID was performed on the WT and HOM samples, before
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Fig. 4.9 An improved version of the VarID method reveals single-cell variabilities and
allows cross-sample comparisons (A) To compare variabilities across genes, the mean-
variance relationship is removed by modelling it as quadratic in log-space. (B) Comparison
of expression and variability values for Klf1 and Elane. (C) Violin plots comparing expression
and variability of Klf1. (D) An MA plot of differential variability between two samples
calculated using the original VarID method. (E) The same MA plot calculated using an altered
version of VarID with constant-neighbour restrictions. (F) The same MA plot calculated with
the additional inclusion of quantile normalisation.
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differential variability testing was performed using the Wilcoxon rank-sum test in the same
manner as for differential expression (see methods). An MA plot was calculated to visualise
the results, with significantly differentially variable genes (DVGs) highlighted in red (Figure
4.9D). Due to the above factors, almost all genes displayed reduced variability in the HOM
sample. To allow for cross-sample comparisons, VarID was rewritten from the ground
up, incorporating a constant number of nearest neighbours for all variability calculations.
In addition to greatly reducing computation time and memory load, this allowed sensible
cross-sample comparisons of variability to be made (Figure 4.9E). However, sample-specific
effects still remained, highlighted by the complete imbalance between the number of genes
with significantly increased and decreased variability. To correct this further, quantile
normalisation was performed on the variability values (see methods), in a similar manner
to that used for microarray data (Rao et al., 2008). When combined, these changes resulted
in improved sensitivity to detect DVGs and a sensibly balanced distribution of DVGs when
analysing the perturbation experiments (Figure 4.9F). This improved version of VarID was
therefore used in the analyses that follow.

Differential variability testing was performed on the Stem Cell cluster for all perturbation
experiments. Due to the extreme variation in cell density and sequencing saturation between
the WT and HOM samples in both the W41 and the third Jak2 experiment, the differential
variability testing failed to return meaningful results for these experiments and they were
excluded from further analysis. Subsampling was attempted to correct for this as in Chapter
3, but results were not improved. The concordance of the overlapping DVGs for each pair
of perturbations was calculated as had been done previously for the expression data (Figure
4.10A). Strikingly, this revealed large similarities between the Jak2, Dnmt3a and Npm1
models that were not be observed when looking solely at the expression data in Section 4.3
(Figure 4.5). Combined with the anti-correlation of these models with the Crebbp and Tet2
models, this suggested that there was a conserved signal within the Stem Cell variability data
priming these models for the pro-erythroid skewing they exhibit in more mature populations,
and that this signal was largely invisible in the context of differential expression. In addition,
the Dnmt3a and Npm1 models exhibited the largest number of DVGs, despite having the
the lowest number of DEGs (excluding the Tet2 HET). Hence whilst these models may not
appear to show a molecular response in the Stem Cell cluster, they are in fact significantly
altered from a native state in terms of their molecular variability. Interestingly the Crebbp and
Tet2 models were only correlated slightly more than would be expected by chance, potentially
suggesting that whilst the differential expression response of these models within the Stem
Cell cluster were similar, there may be different mechanisms driving these responses at a
more basic level. The variability of the Jak/Tet cross displayed general agreement with both
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Fig. 4.10 Variability changes within uncommitted progenitors correlate with observed
abundance skewing. (A) For each pair of perturbations, the heatmap is coloured by the
proportion of overlapping DVGs that are differentially variable in the same direction. (B) For
each pair of perturbations, the circle size corresponds to the number of overlapping DVGs.
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the Jak2 and Tet2 HOM models, but strangely did not correlate strongly with the Tet2 HET
model.

The number of significant DVGs was substantially larger than the corresponding numbers
of DEGs in the Stem Cell cluster for each model, resulting in large overlaps of several
hundred DVGs between each pair of models (Figure 4.10B). This provides a higher degree
of confidence in the variability results compared to the expression results presented in
Figure 4.5. A hypergeometric test was used to assess the overlap between DEGs and DVGs
for each model; no significant overlap was found (Figure 4.11A). In addition, the overlap
between DVGs in the Stem Cell cluster and DEGs in two later clusters (the ‘Erythroid-
Middle/Late cluster analysed in Chapter 3 and the ‘Neutrophil/Monocyte’ cluster) to see if
differential variability was predictive of differential expression at later time points. However
no significant overlap was found in either case.

To further decipher how variability changes were linked to abundance skewing, global
variability changes in the Stem Cell cluster were visualised for each model (Figure 4.11B).
This revealed a clear pattern in which the pro-erythroid models exhibited larger molecu-
lar variabilities globally than WT cells, whilst the pro-myeloid models exhibited reduced
variabilities. This lends support to the hypothesis that hypomethylation occurring through
a Jak2-activated increase in Tet2 or through functional loss of Dnmt3a leads to increased
transcriptional variability, and vice versa in the case of functional Tet2 loss. The potential
epigenetic links between Npm1, Crebbp and blood stem cells are not clear, although the
effects of Npm1 loss on transcription have been shown to synergize with those occurring
due to loss of Dnmt3a (Olausson et al., 2014), and Crebbp is a known histone acetyltrans-
ferase that interacts with chromatin-remodelling complexes (Chan et al., 2011; Ogryzko
et al., 1996). Notably the Jak/Tet Cross displayed no overall increase or reduction in global
variability, once again placing it as a middle ground between the Jak2 and Tet2 HET models.
If constitutive Jak2 signalling led to increased variability solely through Tet2 activation, the
loss of Tet2 should negate this, suggesting some other partially compensatory mechanism at
work in the Jak2 model.

Gene ontology analysis was performed on the set of genes with significantly increased
variability in the Jak2, Dnmt3a and Npm1 models whilst also having significantly decreased
variability in the Crebbp, Tet2 HET and Tet2 HOM models (Figure 4.12A). This list of
∼100 genes was associated with both differentiation pathways (regulation of haematopoietic
stem cell differentiation, regulation of haematopoietic progenitor cell differentiation) and
RNA splicing pathways (mRNA splicing via spliceosome, mRNA processing, RNA splicing).
Increased variability of these pathways makes sense in the context of the global variability
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Fig. 4.11 Pre-leukaemic models with pro-erythroid skewing are associated with a
global increase in molecular variability. (A) The overlap between differentially expressed
genes (red) and differentially variable genes (green) for each model in the Stem Cell cluster.
(B) Violin plot of all variability fold changes across the transcriptome for each model. Only
genes whose variabilities had been assessed in all models were used, resulting in ∼8000
genes in total.
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Fig. 4.12 Erythroid and myeloid differentiation genesets display similar variability re-
sponses. (A) Gene ontology results for the set of genes with significantly increased variability
in each of the Jak2, Dnmt3a and Npm1 experiments, which also had significantly decreased
variability in each of the Crebbp, Tet2 HET and Tet2 HOM experiments. (B) For each exper-
iment, the mean and standard deviation of expression/variability foldchanges was calculated
for either a pro-erythroid geneset (GO term 0030218) or a pro-myeloid geneset (GO term
0002573).



4.5 Cell cycle perturbations in uncommitted progenitors predict whole-transcriptome cell
cycle shifts in mature populations 121

increases seen in the pro-erythroid models. To assess whether disparate differentiation path-
ways responded differently in terms of molecular variability, the variabilities of two genesets
corresponding to gene ontology terms myeloid leukocyte differentiation and erythrocyte dif-
ferentiation respectively was calculated for each model, alongside the expression changes for
the same genesets (Figure 4.12B). Both genesets displayed similar variability trends across
models, with increases in the pro-erythroid model and decreases in the pro-myeloid models.
The exception was the Jak/Tet Cross, which exhibited increased variability of myeloid genes
(agreeing with Jak2) but a decreased variability of erythroid genes (agreeing with Tet2). It is
not clear how to interpret this result, though it does suggest that in complex perturbations
with multiple driver mutations, the molecular variability response may be trajectory-specific
in the same way that the molecular expression response was found to be in Chapter 3.

Overall, this data suggests that global molecular variability changes within the uncommit-
ted progenitor pool are strongly correlated with aberrant differentiation skews. It is plausible
that these changes may be being driven by the epigenetic affects of the mutations, though
further experimental work is needed to validate this hypothesis. The observation of mRNA
splicing pathways being differentially variable suggests a potential positive feedback loop
where variability of DNA transcription induced through epigenetic alterations triggers further
variability in mature mRNA production if RNA splicing genes are compromised. Linking
these results to Section 4.3, it is sensible to suggest that an increase in molecular variability
is associated with a decrease in HSC ‘stemness’ and vice-versa. The stress response seen in
the LT-HSCs from the pro-erythroid models may be connected to an increase in molecular
variability, though which is driving the other remains difficult to say. It is certainly clear,
however, that molecular variability is a useful layer of information that can be informative
even when traditional differential expression does not reveal large changes across conditions,
as is the case in the flat transcriptomic landscape of uncommitted blood progenitor cells.

4.5 Cell cycle perturbations in uncommitted progenitors
predict whole-transcriptome cell cycle shifts in mature
populations

The role of cell cycle in the WT HSC compartment has been reasonably well established,
with HSCs believed to exist along a ‘dormancy axis’ where the most quiescent HSCs are
associated with the best long-term engraftment and reconstituting ability (Cabezas-Wallscheid
et al., 2017; Wilson et al., 2008). These quiescent LT-HSCs are thought to provide only a
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small contribution to steady-state haematopoiesis, with the majority of blood cells being
maintained from the ST-HSC and MPP1 compartments ((Busch et al., 2015; Laurenti and
Göttgens, 2018)). However the veracity of this result has been questioned (Sawai et al., 2016).
Nonetheless there is a clear correlation between cell cycle activity and repopulating ability
amongst undifferentiated blood cells. The cell cycle response of these compartments in
response to severe stresses such as infection has been investigated, with greater proliferative
behaviour observed in response to IFN-γ and IFN-α (Baldridge et al., 2010; Vainieri et al.,
2016). More recently, the effect of leukaemic mutations on HSC and MPP proliferation have
been described in an AML mouse-model using a dual pulse-chase labelling system (Akinduro
et al., 2018). This revealed no evidence of significant changes in HSC or MPP proliferation
over the course of AML progression. However these mice achieve a high leukaemic load
within 3 weeks, and hence do not represent a homeostatic system such as those observed in
the pre-leukaemic models described in this thesis.

The G2M score introduced in Section 4.2 is a proxy for cell cycle activity that is calculated
from the transcriptome using a set of 198 genes annotated as being upregulated during the
G2/M phases of cell division. Whilst only a proxy, applying this score to the reference
dataset clearly demarcates between highly quiescent LT-HSCs, relatively quiescent MPP1
and more proliferative fate-restricted progenitors (Figure 4.3D, 4.2D). To test whether there
was transcriptional evidence for cell-cycle changes across the pre-leukaemic models, the
G2M score was calculated for each experiment. Overall, the G2M scores in pre-leukaemic
cells mapping as LT-HSCs were roughly consistent with those observed across the WT
samples (Figure 4.13A). The exceptions were the Jak2 model, which had a statistically
significant increase in LT-HSC G2M scores compared to WT, and the Crebbp model, which
displayed reduced LT-HSC G2M scores. In the MPP1 compartment, all models apart from
the Npm1 and Crebbp models had higher mean G2M scores than WT, consistent with the
abundance shifts to more active MPP1 states shown in Figure 4.4. However only the Jak2,
W41 and Crebbp models returned statistically significant changes in the G2M score. The
Jak2 results corroborate functional results from the same mouse model, which suggested
that Jak2 V617F LT-HSCs have shorter cell cycle transit time and exit quiescence quicker
than WT when stimulated (Shepherd et al., 2018). The same study also reported that Tet2
homozygous KO did not alter the divisional kinetics of LT-HSCs, which appears to also be
the case transcriptionally. However the divisional kinetics of Jak2 V617F mice crossed with
Tet2 HOM KO were found to be more similar to the Jak2 single-mutant mice. However, the
Jak/Tet Cross model investigated here (which is HET for Tet2 KO) did not display significant
changes in G2M score compared to WT, and appeared to be more similar to the Tet2 HET
and Tet2 HOM models. Functional cell cycle analyses of LSK cells from the Crebbp model
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Fig. 4.13 Jak2 and Crebbp LT-HSCs/MPP1s display small changes in cell cycle activity
compared to WT. (A) Violin plots of the G2M score in cells mapping as LT-HSCs or MPP1
across the pre-leukaemic models. Asterisks denote significant differences from WT using a
two-sided t-test with a p-value cutoff of 0.05. (B) Histogram of gene correlations with the
G2M score across the entire transcriptome. Bottom panel is a magnified version of the top
panel. (C) Force-directed graphs showing the expression of some genes highly correlated
with the G2M score.
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have previously suggested an increase of quiescent cells in G0 compared to WT controls,
again lining up well with the transcriptomic data (Chan et al., 2011).

It was therefore hypothesised that the cell cycle changes observed in the Jak2 and Crebbp
uncommitted progenitors may lead to larger changes in downstream progenitor populations
that would not be present in other models. It is important to note that within the 10X drop-seq
datasets analysed in this thesis, cell cycle is an extremely large confounding factor that
contributes greatly to the the expression profile of any individual cell. Despite only 198 genes
being used to calculate the G2M score, more than 2100 genes have an absolute spearman
correlation of > 0.2 with the G2M score. Around 75% of these are positively correlated and
around 25% are negatively correlated (Figure 4.13B). These negatively correlated genes are
therefore associated with G0 and/or G1 cell cycle states. The expression of some highly
correlated genes is shown in Figure 4.13C. This highlights how cell-cycle effects are pertinent
across the entire transcriptome; for example, Mki67 is used to calculate the G2M score, but
Top2a and Birc5 are not, despite their high correlation. It is notable that several epigenetic
enzymes including Dnmt3a and Tet2 were amongst those genes anti-correlated with the G2M
score across the LK landscape. Plotting an expression heatmap of the top 2000 correlated
and anti-correlated genes further highlights the global reach of cell cycle effects, and how
genes with strong positive correlations with the G2M score are more prevalent than those
which are anti-correlated (Figure 4.14A).

Visual inspection of the G2M score (Figure 4.2D) suggests that within the LK landscape,
the erythroid trajectory displayed a wide range of G2M values. The force-directed graph
layout in Figure 4.2D is calculated after removal of 380 genes known to associate with the
cell cycle (see methods), and hence cell cycle effects in the visualisation are diminished.
Visualisations without these genes removed revealed two clearly separated ‘highways’ of
erythroid differentiation, split by their G2M score and hence by their apparent cell cycle state.
To investigate this further, the WT reference was subset to just the four clusters annotated
as erythroid (Figure 4.14B). A histogram of the G2M scores from these erythroid cells
immediately revealed a bimodal distribution, indicating that cells are generally found in
either a G2M-Low (G2M score<0.5) or a G2M-High (G2M score>0.5) state when sequenced
(Figure 4.14C, top-left). However this histogram represents an average over all the erythroid
differentiation stages captured in the LK gate. To visualise the shifting nature of the G2M-
Low and G2M-High populations along differentiation, pseudotime was again used to give
each cell a score from 0 (most immature erythroid cell) to 1 (most mature erythroid cell).
A sliding window was then used to observe the distribution of G2M scores present at any
specific point along the erythroid trajectory (Figure 4.14C, top-right). There was a clear
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Fig. 4.14 Erythroid progenitors exhibit a bimodal distribution of G2M scores which
are severely altered in the Jak2 and Crebbp models. (A) Heatmap showing scaled gene
expression of the top 2000 genes positively- and negatively-correlated with the G2M score.
(B) The four erythroid clusters used in the downstream cell cycle analysis are highlighted.
(C) Left Column: histograms of G2M scores across all four erythroid clusters for the WT
reference, Jak2 (1) and Crebbp experiments. Right Column: the histograms expanded across
erythroid maturation using pseudotime (see methods).
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trend towards the G2M-high states as differentiation progressed, and by the time cells exit
the LK gate they are almost all found to be in a G2M-High state. It seems plausible that any
given erythroid progenitor is likely to be cycling between G2M-Low and G2M-High states,
and therefore the shifting distributions along pseudotime observed here are due to a larger
proportion of cells being in a G2M-High state at any given time point. This result appears to
contradict previous work in foetal liver that suggests tight synchronisation between cell cycle
state and erythroid differentiation landmarks (Pop et al., 2010), however such work was not
performed with single-cell resolution and focused on later stages of the erythroid trajectory.

The same analysis was then performed for each perturbation experiment. Strikingly,
both the Jak2 experimental repeats and the Crebbp experiment showed significantly altered
erythroid cell cycle behaviour. In both models, the proportion of cells in a G2M-High state at
the start of the trajectory were roughly similar. However in the Jak2 model this proportion
increased quickly, such that almost all cells were found in a G2M-High state at around the
same pseudotime coordinate when only half of the WT cells were (Figure 4.14C, middle
row). In the Crebbp model, almost no cells were found in a G2M-High state during the first
half of the trajectory. Eventually the distribution did shift such that the majority of cells
were in a G2M-High state by the time they exited the LK gate, however even at this stage
their G2M scores were noticeably lower than the WT control (Figure 4.14C, bottom row).
The results of this analysis for the other perturbation experiments is summarised in Figure
4.15A, which visualises the percentage of erythroid cells in a G2M-High state as a function
of pseudotime (e.g. it plots the ‘white line’ from Figure 4.14C for each experiment). The
average trend across all WT samples (including the reference) and its standard deviation is
shown in black and shaded grey respectively. The Dnmt3a, Npm1, Tet2 HET and Tet2 HOM
experiments all fall close to the WT trend, whilst the three repeats of the Jak2 experiment
and the Crebbp experiments fall clearly outside of it on either side. Both the W41 and the
Jak/Tet Cross experiments appear to differ from WT to some extent in the same fashion
as the Jak2 model. In the case of the Jak/Tet Cross this is significant, since it appears that
whilst the introduction of heterozygous Tet2 KO strongly reduces the hyper-proliferative
phenotype observed along the Jak2 erythroid trajectory, it does not abrogate it completely.
Hence Jak2-mediated cell-cycle abnormalities may be acting partially - but not completely -
through interaction with Tet2 or a downstream target of Tet2. For comparison, the results
for both the (younger) p53 WT mouse and the mutant p53 mouse are shown. The aged WT
exhibits a shift towards more G2M-Low cells compared to the other WTs. It is also notable
that the mutant p53 mouse increases this lower-proliferation phenotype in the same manner
as Crebbp; p53 has shown to be a downstream target of Crebbp acetylation and requires this
acetylation to activate (Tang et al., 2008).
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Fig. 4.15 The Jak2 and Crebbp models exhibit whole-transcriptome cell cycle shifts.
(A) The percentage of cells in a G2M-High state (G2M score>0.5) as a function of pseudotime
across the erythroid clusters, coloured by each model. The shaded area represents the standard
deviation of the WT results across all WT samples (including the reference but not including
the p53 WT). (B) For each gene, its log2(Fold Change) in the ‘erythroid-middle/late’ cluster
is plotted against it’s correlation with the G2M score in WT cells. Genes with a pearson
correlation greater/less than 0.2/-0.2 are plotted in red/blue respectively.
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Finally, the extent to which the Jak2 and Crebbp models alter expression of cell cycle
correlated genes globally was assessed. Differential expression was performed in cells
mapping to the ‘erythroid-middle/late’ cluster. However to account for different numbers
of G2M-Low and G2M-High cells in this cluster between WT and perturbed samples (and
the subsequent impact on DE this would have), the cells used for the DE analysis were
subset such that each sample had identical distributions of G2M scores. DE was then
performed and the fold-changes of each gene in these cells were plotted against its correlation
with the G2M score (Figure 4.15B). In the Jak2 model, 77% of genes that were positively
correlated (r>0.2) with the G2M score were upregulated and 82% of negatively correlated
genes were downregulated. Since the overall shift to more G2M-High cells had already been
accounted for, this revealed that Jak2 erythroid cells are altering their entire transcriptome
towards a more proliferative state. Conversely in the Crebbp model, only 41% of positively
correlated genes were upregulated, suggesting an opposite transcriptional shift that is smaller
in magnitude than that affecting the Jak2 cells, but which nonetheless induces large scale
alterations to the Crebbp KO transcriptome. No other model displayed significant changes
across the transcriptome when analysed in this manner.

Taken together, this data would suggest that aberrant expression of cell cycle genes within
the uncommitted progenitor compartment leads to profound changes in the cell cycle state
and expression of mature progenitors along the erythroid trajectory. The bimodal nature of
the G2M score along the erythroid trajectory is somewhat surprising, and is suggestive of a
transcriptional switch between dividing and non-dividing red blood cell progenitors. Whilst
it is potentially plausible that cells on the erythroid trajectory would have some ‘memory’ of
the fact that the MPP cells they differentiated from were more/less quiescent that in WT - via
epigenetic or other means - this is difficult to investigate using snapshot data. However the
finding that the entire cell cycle transcriptome is shifted in the Jak2 and Crebbp models may
support this idea, since it is difficult to imagine how a single driver mutation would affect so
many thousands of genes purely through its action within the erythroid trajectory.

In terms of correlation to abundance skewing, it is clear that hyper-proliferation in the Jak2
and W41 models during the early stages of the erythroid trajectory may be contributing to the
observed abundance increases of later erythroid clusters. Results in Chapter 3 suggested that
whilst the Crebbp and Tet2 models looked similar in terms of their differential abundances,
their molecular response along the erythroid trajectory differed in several respects. The
cell cycle data further suggests that the mechanisms behind their lack of erythroid cells
may be different, as both Tet2 HET and Tet2 HOM models have a non-significant yet small
increase in the proportion of G2M-High cells across erythroid pseudotime, whilst the Crebbp
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model has a significant reduction. It is possible that whilst both of these models undergo pro-
myeloid skewing from uncommitted progenitors, only the Crebbp model has this phenotype
further exacerbated by cell-cycle defects.

4.6 Conclusions

Work performed in this chapter presents a wide-ranging analysis of the uncommitted
haematopoietic progenitor landscape across pre-leukaemic perturbation models using scRNA-
seq. Cross-platform mapping was used to retrospectively assign classical FACS labels to an
unbiased WT reference of haematopoiesis, allowing the identification of LT-HSC, ST-HSC
and MPP1 states. The cellular and molecular shifts within these compartments driven by the
perturbations were characterised. An improved tool for calculating and comparing single-
cell variability revealed further insights that were not possible using the expression counts
themselves. Finally the aberrant cell cycle characteristics of the perturbations were analysed
and found to exist across the LK transcriptomic landscape.

4.6.1 Strengths and weaknesses of cross-platform mapping

Droplet-based scRNA sequencing methods have dramatically reduced the per-cell cost of
procuring single cell transcriptomes and hence have allowed the creation of large, unbiased
datasets. Since by definition, an unbiased approach uses only a small number of surface
markers to identify cells, detailed index sorting measurements of relevant surface markers
are not available for these cells. New multimodal techniques such as CITE-seq for measuring
the transcriptome and protein level of single-cells in a high-throughput manner are becoming
increasingly available, but remain in their infancy in terms of analytical techniques (Mimitou
et al., 2019; Stoeckius et al., 2017). Hence cross-platform mapping of index sorted popula-
tions onto drop-seq landscapes is currently a powerful tool to link transcriptomic state with
functional potential.

In this chapter the mapping appeared to perform excellently and largely reconstructed the
expected relationships between different haematopoietic FACS gates within the WT reference
dataset. However it remains very difficult to independently assess and quantify the quality of
these mappings. Using the hscScore method to corroborate the location of the best LT-HSCs
is useful, but no such signatures exist for other populations. Applying the mapping procedure
to data where a ‘ground truth’ is known a priori and assessing its accuracy is appealing,
but arguably native haematopoiesis is already the model where this ground truth is known
with the highest accuracy. Here the mapping was used to identify the set of uncommitted
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progenitor cells within the WT reference, in conjunction with the abscence of lineage marker
expression. However even within this group of cells, the expression of known pro-myeloid
transcription factors such as Mpo was reasonably high. It remains to be shown with greater
confidence whether the cells annotated as uncommitted in this analysis are truly multipotent.

4.6.2 Marked similarities and marked differences between perturba-
tions with opposite effects

Many of the perturbation models display a shift towards more active/cycling MPP1 states
within the ST-HSC/MPP1 compartments, regardless of the ultimate direction of their differ-
entiation skewing. This can be interpreted as a mechanism by which mutant clones could
outcompete WT clones in a competitive setting through increased proliferation. It could also
be interpreted as highlighting an inability of mutant cells to remain in a self-renewing, quies-
cent state once differentiation programs start to push them out of a LT-HSC state. Jak2 V617F
HSCs have been shown to produce differentiated cells quicker than their WT counterparts,
although no significant differences were seen in Tet2 HOM cells (Shepherd et al., 2018).
Yet despite the similarities at a cellular level, the perturbation models exhibit differences at
a molecular level which largely align with their downstream cellular and molecular shifts.
Clearly a leukaemic perturbation needs to do two things to be ‘successful’; it needs to amplify
and take over the bone marrow, and it needs to drive some kind of skewed differentiation that
ultimately results in leukaemic symptoms (be that anaemia, neutropenia, myelofibrosis etc).
Whilst there are many ways to do the latter, it appears there is a conserved method of doing
the former amongst many of the perturbations analysed here.

The molecular analysis of expression values suggests myeloid - but not erythroid -
priming of MPP1 cells is predictive of downstream differentiation skews. This is perhaps
unsurprising given that almost no expression of pro-erythroid genes is observed in WT MPP1
cells. However it once again raises the question of whether perturbed cells mapping to MPP1
actually remain functionally uncommitted or not. Nevertheless the evidence of increased
stress response and transcriptionally inferior LT-HSCs in the erythroid-skewed perturbations
is very suggestive that there is a coordinated response propogating from HSCs into the MPP
compartment and driving the observed lineage priming.
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4.6.3 Single-cell variability is a useful and informative new tool for
scRNA-seq analysis

In addition to the insights gained from the expression values, a great deal of insight was
gained from transforming the data into single cell variability data. This modality has largely
been overlooked by the single-cell community but has clear potential within the setting of
perturbation analysis. The finding that most perturbation models had far more differentially
variable genes than differentially expressed genes is difficult to interpret. On one hand, this
could be considered simply as an artefact of the numerical transformation; the variability
data has no zero-dropouts but necessarily still contains all the technical noise associated
with them (as they were part of the expression data used to create the variability data). It
could be argued that this noise is mistakenly being interpreted as true signal in the variability
data. On the other hand, it could be argued that the apparent increase in statistical power is
essentially the result of combining the expression values with information on the connectivity
of different cells through the nearest neighbour graph. The fact that differential variability
actually correlates better with downstream abundance skews than the differential expression
data certainly highlights how there is more information to be gleaned from scRNA-seq
datasets by transforming the gene expression values in innovative ways.

A notable example of this is exhibited by the Dnmt3a and Npm1 models, which have
by far the largest ratio between their number of DVGs and DEGs. There is accumulating
evidence that whilst the loss of Dnmt3a predisposes to haematological malignancies, it does
not by itself drive transformation into acute disease (Buscarlet et al., 2017; Chaudry and
Chevassut, 2017; Ostrander et al., 2020). Of the mouse models here, the Dnmt3a model is the
only one in which the mice do not develop leukaemia unless a second mutational hit occurs
(data unpublished). Similarly, evidence suggests that the Npm1 model requires cooperating
mutations to drive AML (Vassiliou et al., 2011). This may suggest that these mutations place
the blood system in a ‘poised’ state with high single cell variability, that can easily be driven
to further transformation (Ortmann et al., 2015). This is supported by the fact that whilst the
variability within the HSC/MPP compartment is very similar to models such as Jak2, this
similarity does not carry over to the differential expression results.

Overall, the uncommitted progenitor landscapes of the perturbations exhibit a clear trend
transcriptionally impaired LT-HSCs, increased expression of stress markers and increased
single cell variability levels are associated with differentiation skewing towards the erythroid
lineage and vice versa, which first manifests itself in anti-myeloid lineage priming within
the MPP1 compartment. The hypothesis that this is at least partially driven by epigenetic
alterations in which DNA hypomethylation is associated with increased expression variability
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(and vice-versa) - and that this leads to a stress response and an increased proportion of cells
not entering the ‘standard’ route of myeloid differentiation - is attractive, but much work
is needed to validate it. Nevertheless results from this chapter have proved that despite the
large amounts of noise inherent to droplet-based scRNA-seq data and the largely featureless
transcriptomic landscape displayed by mouse HSC/MPPs, it is still possible to extract a range
of coherent signals from the data through innovative analyses.

4.6.4 Future Work

There are a myriad of directions in which the work in this chapter could be continued. Work is
under way to experimentally validate both the myeloid lineage priming and the shift to higher
activity states observed in the MPP1 compartment of the perturbation models. Work to further
understand the potential interplay between epigenetic state and transcriptional variability will
focus on single-cell DNA methylation/ATAC-seq assays, potentially parallel to transcriptome
sequencing through multimodal techniques such as scNMT-seq (Argelaguet et al., 2019).
If further evidence can be found for causal links between differential transcription factor
methylation and HSC fate bias, this will greatly aid our mechanistic understanding of these
perturbations (Izzo et al., 2020).

Computationally, an exciting direction is to build this perturbation data into time-resolved
flux models of haematopoiesis. Modelling how a shift in the MPP1 state is likely to impact
the size and kinetics of downstream progenitor compartments could prove invaluable in
taking single-cell perturbation analysis out of the ‘snapshot’ era and into the realm of real-
time experiments, such as pulse-chase labelling systems capable of measuring flux through
haematopoietic compartments (Akinduro et al., 2018).

4.6.5 Summary

In summary, this chapter has discussed a comprehensive analysis of the uncommitted pro-
genitor compartment across different pre-leukaemic perturbation models. Insights have
been gained at both the cellular and molecular scales - including single cell variability and
cell cycle analyses - that provide an integrated view of how these perturbations are driving
aberrant haematopoiesis.



Chapter 5

Dissecting Haematopoietic Responses in
a Range of Other Perturbation Models

Parts of this chapter have been modified from Haltalli et al. (2020), Dingler et al. (2020), and
Prins et al. (2020) on which Sam Watcham carried out bioinformatic analysis of single-cell
data. In Haltalli et. al. (2020), single-cell experimental work was carried out by Myriam
Haltalli and Nicola Wilson. In Dingler et. al. (2020), single-cell experimental work was
carried out by Felix Dingler, Meng Wang and Nicola Wilson. In Prins et. al. (2020), single-
cell experimental work was carried out by Daniel Prins, June Park, Juan Li and Nicola Wilson.
In each case, initial preprocessing of the data was carried out by Rebecca Hannah (running
10X Genomics CellRanger pipeline). Subsequent to this, all analyses were performed and all
figures were produced by Sam Watcham, except where explicitly stated in the text.

5.1 Background

This chapter is comprised of three separate computational analyses of haematopoietic per-
turbations, each placed within the context of a larger body of experimental work. Relevant
background information is located at the start of each section.

5.2 Revealing the extent of haematopoietic reprogramming
during P. berghei infection

The response of the haematopoietic system to acute infection has been well studied. The
destruction of mature cells through both the innate and adaptive immune response is known
to induce skewed differentiation in immature HSPCs (Esplin et al., 2011; King and Goodell,
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2011). Furthermore the infection response has been shown to specifically impact HSC dynam-
ics, self renewal and their interaction with the bone marrow microenvironment (Baldridge
et al., 2010; Essers et al., 2009; Takizawa et al., 2011). For example, HSCs can be driven out
of quiescence and into a highly mobilised, cycling state through the presence of inflammatory
cytokines, potentially leading to stem cell exhaustion (Takizawa et al., 2012). This further
manifests itself as a loss of HSC engraftment within a transplantation setting, once again
highlighting the link between increased cell cycle activity and loss of HSC functionality.

Malaria is a severe and widespread infectious disease that accounts for at least 400,000
deaths a year. Is is caused by pathogenic eukaryotes of genus Plasmodium, and is transmitted
through the bites of Plasmodium-infected female mosquitoes. The infection starts in the
liver before leading to large-scale perturbation of the haematopoietic system and the specific
targeting of red blood cells. It is often fatal in humans and other species after causing
anaemia, organ failure and cerebral malaria through obstruction of blood capillaries by the
parasite. Plasmodium berghei has been successfully used as a model for investigating human
malaria, due to its similarities to human Plasmodium species and its ability to infect rodents.
In this model, mice are infected with malaria through mosquito bites, therefore simulating all
stages of the disease (Vainieri et al., 2016).

In this work, a P. berghei-infected mouse model was used to assess the effects of malaria
infection on the blood progenitor landscape as a whole. Parallel to looking experimentally
at the proliferation dynamics of infected HSCs, scRNA-seq was applied to gain a global
overview of the haematopoietic shifts driven by the infection, and to gain a fine-resolution
dataset of the transcriptional impact on specific haematopoietic cell types including HSCs.
Despite the severity of malaria in the human population, relatively little work has looked
specifically at its impact on immature blood cells at a single cell level. Additionally the
specific mechanisms through which HSPCs are impacted during malarial infection have not
been identified.

The Lin- c-Kit+ (LK) progenitor compartments of two infected and two control (mice
bitten by mosquitoes not carrying P. berghei) mice were sequenced 7 days after infection,
during the height of the ‘blood stage’ of infection progression, but before the onset of cerebral
malaria and death (Figure 5.1A). Similar cell numbers were retrieved for each mouse, with
the median number of genes detected per cell being higher in the infected mice (Figure
5.1B). FACS sorting highlighted a large upregulation of Sca-1 surface protein in the infected
mice (Figure 5.1C). This has been observed previously (Vainieri et al., 2016), where it was
unclear if this expansion of the Sca-1+ compartment had arisen from mature progenitors
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Fig. 5.1 Malaria infection skews haematopoietic differentiation towards the myeloid
lineages. (A) Schematic of disease progression in infected mice. (B) Summary of sequencing
results for the two control and two infected mice. (C) Representative sorting gate used to
identify LK cells from control and infected mice at day 7 after infection. (D) Force-directed
graphs for control and infected cells coloured by cluster identity. (E) Quantification of
changes in cluster proportions between control and infected mice. Panels A, B and C are
taken from Haltalli et al. (2020). MK: Megakaryocyte, HSPC: Haematopoietic Stem and
Progenitor Cell.
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re-expressing Sca-1 or from a significant increase in the proportion of the most immature
cells.

After quality control, force-directed graphs were calculated for the control and infected
cells separately. The control cells were partitioned using Louvain clustering into six clusters.
Each infected cell was then mapped to its nearest control cluster using the same method
introduced in Chapter 3 (Figure 5.1D), and the changes in cluster proportions between control
and infected mice were quantified (Figure 5.1E). This revealed that 7 days after the onset
of infection, the haematopoietic system of infected mice had shifted towards the myeloid
and basophil trajectories at the expense of the erythrocyte and megakaryocyte trajectories. It
is notable that whilst the infection targets mature red blood cells, it causes differentiation
skewing away from the erythroid trajectory in the bone marrow. Additionally, the number
of cells mapping to the ‘Primitive HSPC’ cluster - containing the most immature cells as
identified by marker genes - was significantly reduced in the infected mice. To reconcile this
with the increase in the Sca-1+ compartment seen by FACS, Sca1 expression was visualised
(Figure 5.2A). This clearly showed that the infection results in expression of Sca1 by all cells
in the LK gate at the transcriptomic level, despite many of them clearly mapping to regions
that are Sca1- in the control mice. Hence the proportion of the most immature haematopoietic
progenitors actually decreases due to the infection.

To further assess the effects of the infection on the most immature progenitors, the
hscScore algorithm (Hamey and Gottgens, 2019) introduced in Chapter 4 was applied to both
control and infected cells (Figure 5.2B). This revealed that the highest-scoring infected cells
displayed greatly reduced transcriptional similarities to functional HSCs when compared
to control. Quantification of the hscScores from the top 2% of highest-scoring cells from
both control and infected mice confirmed this (Figure 5.2C). Experimental work performed
by Myriam Haltalli corroborated these findings, with FACS-sorted HSCs from infected
mice unable to reconstitute irradiated mice in primary transplantation assays (Haltalli et al.,
2020) (Figure 5.2D). In addition, the absolute number of ESLAM HSCs (CD48- CD150+
CD45+ EPCR+) and CD48neg HSCs (LSK CD150+ CD48neg, (Akinduro et al., 2018)) was
significantly reduced in infected mice (Figure 5.2D). Hence the transcriptional data supports
the hypothesis that HSCs from infected mice are reduced in number and are functionally
impaired. This occurs despite an apparent increase in the proportion of LSK cells due to
the erroneous upregulation of Sca1 by infected cells. Notably, when HSCs from primary
recipients were sorted and a secondary transplantation performed, engraftment levels showed
no difference between infected and control mice. This suggests that a significantly reduced
but still measurable number of HSCs from infected mice maintain their reconstituting ability
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Fig. 5.2 Infected HSCs are functionally impaired compared to control. (A) Expression
of Sca1 in control and infected cells. (B) hscScores for control and infected cells. (C) The
top 2% of cells with the highest hscScores from control and infected cells respectively. (D)
200 HSCs (LSK SLAM) were transplanted into lethally irradiated primary recipients with
300,000 whole bone marrow (WBM) support. WBM was pooled after 20 weeks and total
blood reconstitution of engrafted HSCs was calculated. The absolute number of ESLAM
HSCs or CD48neg HSCs were also calculated. Error bars represent the mean ± s.e.m.
Statistical differences were determined using Student’s t-tests with Bonferroni correction (**
represents p < 0.01; *** p < 0.001; **** p < 0.0001).
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across serial transplantation, potentially indicating that whilst the majority of HSCs from
infected mice exhaust in response to the infection, the most quiescent can avoid any functional
impairment.

Differential expression was performed between control and infected cells for each cluster.
It was immediately clear that the principal pathway being highlighted across all clusters was
interferon (IFN) cytokine signalling, and in particular IFN-γ signalling. To highlight this,
a list of 20 genes that had at least four-fold upregulation in all six clusters were identified.
These included Igtp (interferon gamma-induced GTPase), Irf7 (interferon regulatory factor
7) and Gbp2 (interferon-induced guanylate-binding protein 2) amongst many others related
to IFN signalling (Figure 5.3A). Using these 20 genes as a base set, the transcriptome was
searched for genes whose expression was highly correlated with the base set (see methods).
This identified 89 further genes relating to IFN signalling for a total of 109 ‘driving genes’.
The importance of these genes was observed when calculating force-directed graphs for
the combined control and infected cells, with and without the driving genes (Figure 5.3B).
Removing the driving genes also removed much of the distance between control and infected
cells in the visualisation, suggesting IFN signalling is responsible for the majority of the
differences between conditions. Even after removing these genes, the most significant
DEGs that remained were also almost exclusively related to IFN signalling. It was notable
that almost no cluster-specific DEGs could be identified in the infected cells, such was
the dominance of the interferon response. This was highlighted in the MA plots for each
cluster, where in each case the most significant DEGs were the 109 driving genes that
could be identified by simply performing differential expression between all cells at once
(Figure 5.3C,D). This remained true even in the ‘Primitive HSPC’ cluster, indicating that
IFN upregulation may be responsible for the impairment of HSC functionality (Baldridge
et al., 2010).

Overall, this work identified how P. berghei infection led to pro-myeloid differentiation
skewing within the LK progenitor compartment, accompanied by a clear proportional loss of
the most immature blood cells. Transcriptionally, immature infected cells lose their HSC
signature suggesting impaired functionality. These changes appear to be driven largely by
IFN signalling pathways driven by high levels of IFN cytokines in the bone marrow. It is
interesting to note that in this infection model, a loss of ‘stemness’ in HSCs as measured by
the hscScore occurs alongside pro-myeloid differentiation skewing. This is in contradiction
to the results for the pre-leukaemic perturbation models analysed in Chapter 4. However
emergency myelopoiesis has been observed in infection models previously (Boettcher et al.,
2012; Schurch et al., 2014), and it is likely that the bone marrow cytokine signalling induced
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Fig. 5.3 The molecular response to malaria infection is driven by interferon signalling.
(A) Force-directed graphs of the combined control and infected cells with all genes (left)
and with the 109 IFN driving genes removed (right). (B) Violin plots of representative IFN
gene expression in control and infected cells. (C) MA plot comparing all infected cells to all
control cells. The 109 driving genes are highlighted in green. (D) Cluster-specific MA plots
with the 109 driving genes highlighted in green.
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by the infection overrides all other signals to such an extent that it is not reasonable to
compare the malaria model to any others. Indeed, the cellular abundance changes observed in
the malaria model are far greater than in any of the pre-leukaemic perturbations. Interestingly,
when the improved varID method was applied to the malaria experiment and the results for
the ‘Primitive HSPC’ cluster were analysed, no overall shift to greater or lesser variabilities
was observed across the transcriptome, such as those in Figure 4.11. There is little evidence
to suggest that P. berghei infection leads to epigenetic changes such as DNA methylation
in HSCs. Hence this may be indirect evidence that large transcriptome-wide single-cell
variability changes occur as a result of epigenetic alterations.

5.3 Aldehyde accumulation disrupts haematopoietic devel-
opment

Endogenous aldehydes are generated by numerous cellular processes such as lipid peroxi-
dation, glycation and response to oxidative stress (Voulgaridou et al., 2011). Many of them
are highly genotoxic and can react directly with DNA, leading to DNA damage such as
interstrand crosslinks (Hodskinson et al., 2020). Their carcinogenic and mutagenic effects
have been implicated in the pathology of various diseases ranging from neurodegenerative
disorders to heart disease. In blood, the DNA damage caused by endogenous aldehydes has
been shown to limit the function of HSCs and impair the immature haematopoietic system
through double stranded DNA breaks and chromosome rearrangements, leading to loss of
reconstitution, diminished self renewal and increased apoptosis (Garaycoechea et al., 2018;
Rossi et al., 2007).

Across the human genome there are at least 19 aldehyde-dehydrogenase (ALDH-) genes
responsible for detoxifying aldehydes (Jackson et al., 2011). ALDH2 in particular is respon-
sible for oxidising acetaldehyde to inert acetate. Acetaldehyde is a direct product of ethanol
oxidation and likely confers the majority of alcohol’s toxic effects in humans. ADH5 is
another enzyme responsible for aldehyde detoxification; however instead of acting on free
aldehydes, it oxidises glutathione, a conjugate of formaldehyde. In both cases, the result of
ALDH2 and ADH5 activity is the production of inert metabolites from damaging aldehydes.

It has been shown that crossing either Aldh2-/- or Adh5-/- mice with mice that exhibit
loss-of-function of the DNA crosslink repair gene Fancd2 leads to mice that rapidly develop
leukaemia and complete haematopoietic failure (Garaycoechea et al., 2018; Langevin et al.,
2011). However a strong haematopoietic phenotype is not seen in the Aldh2-/- or Adh5-/- mice
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themselves. These findings have suggested that even if a single aldehyde detoxifying gene is
compromised, DNA repair genes are able to compensate for this loss. However a subsequent
loss of the DNA repair pathway leaves the haematopoietic system defenceless. Hence there
appears to be two ‘tiers’ of protection against the effects of aldehydes. Nevertheless it
remains unclear whether different aldehyde detoxifying enzymes are functionally related
and/or redundant, or whether specific aldehydes have greater physiological importance than
others.

In this study, scRNA-seq was performed on WT, Aldh2-/-, Adh5-/- and double knockout
(DKO, Aldh2-/-Adh5-/-) mice as part of a larger body of experimental work that aimed to

Expression of Aldehyde Detoxifying Genes

Normalised
Expression

Fig. 5.4 Aldh2 and Adh5 are the two most important aldehyde detoxifying genes in the
blood system. Heatmap of aldehyde detoxifying gene expression in WT haematopoiesis.
Cells are coloured by cluster annotation introduced in Figure 5.5. Expression scores are
normalised between zero and one for each gene. Gapdh is included as a housekeeping gene.
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understand the effects of losing these two key detoxifying enzymes on the blood system.
Initial analysis of WT LK cells revealed that of the many aldehyde detoxifying genes in
the transcriptome, Aldh2 and Adh5 are the two genes with the highest and most consistent
expression across all haematopoietic lineages (Figure 5.4). This highlights the importance of
these enzymes within the blood system. As mentioned above, the single knockout Aldh2-/-
and Adh5-/- mice show only mild haematopoietic phenotypes. However the DKO Aldh2-/-
Adh5-/- mice display significantly retarded growth compared to the single knockouts and are
predisposed to leukaemia and early death (Dingler et al., 2020). In addition they present with
mild anaemia and depressed lymphocyte counts. Therefore there is clear evidence of genetic
redundancy between ALDH2 and ADH5, as inactivation of both genes simultaneously leads
to growth failure, malignancy and early death.

The LK compartment was sequenced for each of the four genotypes, resulting in over
33,000 transcriptomes after quality control (Figure 5.5A). Unsupervised Louvain clustering
resulted in 12 clusters that were manually annotated based upon marker gene expression
(Figure 5.5B). Whilst the WT and single knockout mice appeared to be well mixed on the
UMAP representation, the DKO cells displayed clear changes compared to other genotypes.
The most striking of these were in the immature ‘HSC’ cluster and the erythroid trajectory
(Figure 5.5C). Visualising the expression of Aldh2 and Adh5 across the LK landscape revealed
that whilst the knockouts had worked effectively, there was no evidence of compensatory
expression changes of Adh5 in Aldh2-/- mice and vice versa (Figure 5.5D). This supports a
hypothesis in which ALDH2 and ADH5 are genetically redundant.

To begin quantifying the cellular and molecular changes occurring in the perturbed mice,
the proportion of each cluster belonging to each genotype was calculated (Figure 5.6A). This
confirmed a significant under-representation of DKO cells in the ‘HSC’ cluster, alongside a
clear overabundance of cells identified as lymphoid. However whilst the end of the DKO
erythroid trajectory is separate from the other genotypes in the UMAP, the abundance of
erythroid cells is not significantly altered in the erythroid trajectory overall. To assess the
corresponding molecular changes, differential expression was performed for each genotype
across all clusters. The number of significant DEGs (both upregulated and downregulated)
was greatly increased in the DKO compared to the single knockouts in all cell types (Figure
5.6B). This suggests that the entire LK landscape is responding transcriptionally to the
combined inactivation of ALDH2 and ADH5.

Given the clear changes occurring in DKO cells within the ‘HSC’ cluster at both the
cellular and molecular levels, further investigation of this cluster was undertaken. Cells
belonging to this cluster were revisualised and reclustered, generating seven fine clusters
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Fig. 5.5 The LK compartment of Aldh2-/-Adh5-/- mice displays altered distributions of
cellular populations compared to single knockouts. (A) UMAP representation of the LK
landscape, coloured by genotype. (B) Louvain clustering of the data, annotated according to
marker gene expression. (C) Cells specific to each genotype are highlighted on the UMAP in
red. (D) Violin plots showing the expression of Aldh2 and Adh5 across genotype and across
clusters.
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Fig. 5.6 Aldh2-/-Adh5-/- mice display dramatic transcriptional changes. (A) Bar chart
showing the proportion of each cluster arising from each genotype. (B) For each genotype,
DEGs were calculated in each cluster using cutoffs of adj. p-value<0.05 and fold-change>1.2.
Circle size represents the number of DEGs either up- or down-regulated in a specific cluster.
Circle colour represents the mean fold-change of the top 50 up- or down-regulated DEGs
(measured by adj. p-value) in each cluster, using red for upregulated genes and blue for
downregulated genes.
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(Figure 5.7A). These were annotated as either HSC, lymphoid-biased or myeloid-biased
based upon the onset of known marker genes such as Procr, Flt3 and Mpo (Figure 5.7B).
DKO cells were clearly depleted in abundance within the HSC and lymphoid-biased clusters
compared to the other genotypes, suggesting a loss of the most functional HSCs (Figure 5.7C).
Applying the hscScore algorithm (Hamey and Gottgens, 2019) to the data further highlighted
a clear loss of HSC transcriptional identity within the DKO mice (Figure 5.7D). Even when
considering the LK compartment as a whole, the ‘HSC’ cluster was significantly depleted
compared to controls (Figure 5.7E). Overall, it is clear that the DKO mice have substantial
cellular and transcriptional defects within the HSC compartment. Further investigation of the
functional potential of DKO HSCs may help to explain the severe haematopoietic phenotype
observed in these mice, and will help to understand the links to similar mouse models such
as Aldh2-/-Fancd2-/- (Garaycoechea et al., 2018).

Since aldehyde accumulation is known to lead to DNA damage, it was important to
address whether the mutant mice display transcriptional evidence of a DNA repair response.
Furthermore, the tumour suppressor p53 is responsible for regulating the cellular response
to DNA damage (Lakin and Jackson, 1999), and aldehyde accumulation has been shown to
increase p53 levels in blood cells (Garaycoechea et al., 2018). Hence it is interesting to ask
whether p53 target genes are also transcriptionally affected at the single-cell level. Firstly,
differential expression was performed between genotypes using all LK cells to capture as
much signal as possible. Intersecting these results with the gene ontology term for ‘DNA
Repair’ (GO:0006281) immediately highlighted a large DNA repair response in the DKO
that is absent from the single knockouts (Figure 5.8A). This is clear evidence that across the
LK landscape as a whole, DNA damage and hence upregulation of DNA repair genes is only
required when both ALDH2 and ADH5 enzymes are absent. Significant hits include key
DNA repair genes such as Neil3 and Pclaf (Li et al., 2016; Semlow et al., 2016), as well as
well-known p53 targets Cdkn1a (p21) and Pcbp4 (Ceccaldi et al., 2012; Scoumanne et al.,
2011) (Figure 5.8B). Further upregulated hits include the Fanconi-anaemia genes Fancd2,
Fanci, Brca1 and Brca2, all of which are known to be key players in DNA repair and targets
of p53.

Further quantification of the DNA repair and p53 target response was observed by
calculating a per-cell score for each pathway based on gene expression, in an identical
fashion to the G2M score introduced in Chapter 4. Genes belonging to the DNA Repair
GO term were used to calculate the DNA repair module score (in total, 474 genes), whilst a
validated list of p53 target genes were used to calculate the ‘p53 Targets’ module score (in
total, 147 genes). Eleven genes were present in both lists; these were removed from the DNA
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Fig. 5.7 The HSC compartment of Aldh2-/-Adh5-/- mice is defective both transcription-
ally and in terms of abundance (A) UMAP of the ‘HSC’ cluster, reclustered using Louvain
clustering. (B) Example marker gene expression used to annotate the new cluster in panel A.
(C) Cells from each genotype are highlighted, with colours corresponding to the new louvain
clusters. (D) Violin plot of hscScores for all cells belonging to the ‘HSC’ cluster. (E) The
proportion of LK cells within the ‘HSC’ cluster for each genotype.
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B WT Aldh2-/- Adh5-/- DKO

Fig. 5.8 A large DNA repair response occurs in Aldh2-/-Adh5-/- mice. (A) Venn diagrams
showing the number of genes belonging to the DNA Repair GO term which are differentially
regulated across the three mutant genotypes. (B) UMAPs of gene expression for four DNA
repair genes, split by genotype.
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repair genelist to avoid duplication and create independent scores. Plotting these scores for
each genotype across the LK landscape revealed a clear increase in both pathways within
the DKO cells (Figure 5.9A). To test whether this response was being driven by specific cell
types, both genelists were intersected with the differential expression results for each cluster,
and the overall molecular response of each list across each cluster was visualised (Figure
5.9B). Once again, both pathways showed clear activation in the DKO that was not present in
the single knockouts. Notably, the effects were clearly visible in all clusters including HSCs
and progenitors. This is clear evidence that a system-wide transcriptional upregulation of
DNA repair and p53 targets occurs as a result of combined ALDH2 and ADH5 inactivation
that does not occur when only one of these enzymes is lost.

The above analyses suggest that whilst there are clear transcriptional changes occurring
across the entire progenitor compartment of the DKO mice, the largest changes appear to
be occurring within the erythroid trajectory. This is backed up by the UMAP representation
of the data, where the DKO erythroid trajectory is pulled apart from the other genotypes.
It was hypothesised that changes in cell cycle or apoptosis may be driving this separation.
Differential expression of the three erythroid clusters combined revealed over 1700 DEGs
in the DKO, compared to less than 300 in each of the single knockouts (Figure 5.10A).
Intriguingly, many of the top upregulated DEGs occurring only in the DKO were the same
genes upregulated in the erythroid trajectory of the Jak2 and W41 perturbation models
(Figures 3.7, 3.11A). These included Fabp5, Cda, Podxl and Atf4. This may suggest that
these genes are upregulated as part of a generic ‘stressed erythropoiesis’ response. It could
also suggest that DNA damage plays a role in the Jak2 and W41 models, although further
evidence of this was not observed. In the Jak2 and W41 models these changes were associated
with a large increase in cellular abundance of erythroid cells; however, this is not seen in the
DKO model. Cell cycle analysis of the erythroid cells suggested that there were a greater
proportion of cells in G2/M and S phase in the DKO compared to control (Figure 5.10B, see
methods). This is concordant with the Jak2 and W41 erythroid cells where a clear increase
in cycling activity was observed (Figure 4.15A). There was also transcriptional evidence
of increased erythroid apoptosis in all three genotypes compared to WT, as quantified by a
module score created using the ‘Intrinsic Apoptotic Signalling Pathway’ GO term (Figure
5.10C). The strongest effect was observed in the DKO cells. Large changes in cell cycle
or apoptosis scores were not observed for any other cell type in the DKO cells. Hence the
evidence would suggest that on top of the cell-type independent DNA repair and p53 response
occuring in the DKO, there are also erythroid-specific aberrations including increased cell
cycling and cell death that may be contributing to the separation observed on the UMAP.
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Fig. 5.9 DNA Repair and p53 target pathways are upregulated across all cell types in
Aldh2-/-Adh5-/- mice. (A) Module scores for the ‘DNA Repair’ and ‘p53 Targets’ genelists.
For each genotype the violin plot contains all LK cells. (B) For each genotype, the DNA
repair and p53 target genelists were intersected with the DEGs for each cluster. Circle size
represents the number of DNA Repair/p53 target genes either up- or down-regulated in a
specific cluster. Circle colour represents the mean fold-change of the up- or down-regulated
DEGs in each cluster, using red for upregulated genes and blue for downregulated genes.
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A C

B

Fig. 5.10 Erythroid DKO cells display specific cell cycle and apoptosis alterations (A)
Number of DEGs found for each genotype when combining the three erythroid clusters
from Figure 5.4. (B) Each erythroid cell was assigned a cell cycle phase based on their
transcriptome, and plotted across genotypes. (C) Module score for the ‘Intrinsic Apoptotic
Signalling Pathway’ GO term for each genotype.

Overall, this single-cell data has revealed that whilst single knockout Aldh2-/- or Adh5-/-
mice show only minor transcriptional changes compared to WT, DKO mice lacking both these
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detoxifying genes are severely compromised at a transcriptional level. Large scale molecular
changes are observed across the LK landscape, including sizeable contributions from both
DNA repair and p53 target pathways. Experimental work from this project has confirmed
that endogenous formaldehyde accumulates in DKO cells as a result of the perturbation, and
that this is responsible for DNA damage. Ongoing work is attempting to determine whether
the haematopoietic phenotypes of the DKO perturbation are solely due to the effects of
aldehydes on DNA, or whether certain aldehydes can also cause modifications at the RNA or
protein levels. What is certainly clear is that loss of both ALDH2 and ADH5 has a profound
effect on HSCs, greatly reducing their abundance and similarity to functional HSCs in terms
of their transcriptome. Further work will be needed to assess the true functional impairment
of these perturbed HSCs.

5.4 A mouse model of essential thrombocythaemia reshapes
the haematopoietic progenitor landscape

In Chapters 3 and 4, a number of pre-leukaemic perturbation models were analysed. Many of
these are associated with either clonal haematopoiesis (Tet2 and Dnmt3a) or more specifically
with myeloproliferative neoplasms (MPNs), such as the Jak2 V617F model. As discussed
in Chapter 1, the family of disorders labelled as MPNs includes polycythaemia vera (PV,
characterised by an overproduction of red blood cells), myelofibrosis (MF, characterised
by bone marrow fibrosis) and essential thrombocythaemia (ET, characterised by an over-
production of platelets). Indeed, mutations in Jak2 are found in >99% of PV patients and
>50% of MF and ET patients (Grinfeld et al., 2017). The second most common mutation
in MPNs occurs in the gene encoding for calreticulin (Calr), found in 25-40% of ET and
MF patients (Klampfl et al., 2013; Nangalia et al., 2013). Frameshift mutations can cause
mutant CALR to act as a rogue ligand for the thrombopoietin receptor MPL (TPOR), the
major regulator of megakaryocyte and platelet formation. This leads to overactivation of
numerous signalling pathways through MPL including JAK/STAT signalling (Elf et al., 2016;
Nivarthi et al., 2016).

Recently, a mouse model of ET has been generated that displays the key phenotypes
of the human disease, including a large overproduction of platelets (Li et al., 2018). In
this project, scRNA-seq was performed using this mutant CALR model as part of a larger
body of experimental work aiming to characterise the model at the single-cell level. Whilst
mutant CALR is known to act through MPL, the specific differentiation stages, mechanisms
and consequences of this interaction remain unknown. Further to this, there is increasing
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evidence that there may be multiple differentiation trajectories from HSCs to megakaryocytes,
potentially including a direct trajectory from the earliest HSCs as a result of intrinsically MK-
biased HSCs (Rodriguez-Fraticelli et al., 2018; Sanjuan-Pla et al., 2013; Sawai et al., 2016).
The impact of perturbations on these potential trajectories remains largely unexplored, and
may help to better understand megakaryocytic differentiation in wild-type haematopoiesis.

10X scRNA-seq was performed on LK and LSK samples from two pairs of WT and CALR
homozygous mutant mice (henceforth called CALR DEL). The first pair were sequenced at
3 months of age, the second pair at 6 months of age. This occurred because the sequencing
results for the first pair of mice returned far fewer WT cells than expected (972 WT LSK,
2479 WT LK, 4548 CALR DEL LSK, 7824 CALR DEL LK). Hence the sequencing was
repeated; however age-matched mice were not available. The second pair returned better
cell numbers (5959 WT LSK, 5139 WT LK, 7732 CALR DEL LSK, 7815 CALR DEL LK).
This did however allow the affects of age on the CALR DEL model to be investigated. Both
LK and LSK samples were collected because there was particular interest in the HSC region,
which is enriched in the LSK cells.

Starting from the WT reference landscape introduced in Chapter 3 (Figure 5.11A), a
fine-resolution Louvain clustering of the data was performed, to better delineate potential
stages along the megakaryocytic trajectory. This results in 60 fine clusters, each of which
belonged to one of the original clusters from Chapter 3. Partition-based Graph Abstraction
(PAGA) was then performed in order to generate a graph that visualised the potential
connections between these fine clusters (Figure 5.11B) (Wolf et al., 2019). Experimental
work (performed by Daniel Prins and June Park) had located a novel WT cell population
representing an intermediate state along the megakaryocyte trajectory that was highly MK-
biased but retained proliferative behaviour compared to classical MK progenitors sorted using
CD150 and CD41. This population was defined to be Lin-EPCR-CD48-CD150+CD45+, and
termed ‘proliferative MK-progenitors’ or pMKPs. Analysis of gene expression within the
WT reference suggested that this population should be associated with a single fine cluster
that showed no expression of Procr or Cd48 but clear expression of Slamf1 (CD150) and
Ptprc (CD45) (Figure 5.11C, pMKPs marked by arrow).

In CALR DEL mice, the pMKP population appeared to be greatly expanded when sorted
using FACS (Figure 5.11D,E). To put this in the context of abundance changes over the entire
LK landscape, the voting method for visualising differential abundance was applied to both
pairs of sequenced mice (Figure 5.12A). For comparison, the scalebar in Figure 5.12A is
identical to that used in Figure 3.4 for the other pre-leukaemic models. At 3 months, there
was a clear expansion of the HSC and MK regions of the landscape (it is worth remembering
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Fig. 5.11 pMKPs represent an intermediate megakaryocyte population and can be lo-
cated on the WT reference landscape. (A) The WT ‘reference’ transcriptomic landscape.
(B) Fine clustering of the reference resulted in 60 clusters. PAGA was used to measure and
visualise the connectivities of the fine clusters. Only connections with weights passing a
certain threshold are shown. Each fine cluster is a node, coloured as in panel A. (C) The
mean gene expression per fine cluster is plotted. Each gene has a different scalebar. (D)
FACS gating of the pMKP population in WT and CALR DEL mice. (E) The proportion of
bone marrow mononuclear cells (BMMNC) within the pMKP gate in WT and CALR DEL.
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Fig. 5.12 The pMKP population is preferentially overabundant in CALR DEL mice.
(A) Differential abundances for the two pairs of sequenced mice displayed using the voting
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the average abundance change is displayed. The scalebar is consistent within the panel, but is
not identical to the scalebar in panel A. (C) Volcano plots of DE results from the ’Stem Cells’
cluster in the older mice. Genes belonging to three GO terms associated with cholesterol
biosynthesis, unfolded protein response and cell cycle are shown. Numbers represent the
number of genes belonging to these GO terms that are up/downregulated.
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that all the other pre-leukaemic models were also sequenced at 3 months). This was matched
by a decrease in erythroid cells and a hitherto unobserved decrease in the monocyte region
and increase at the end of the neutrophil trajectory. Strikingly, at 6 months these abundance
changes were highly strengthened, with the expansion of the HSC and MK regions having
a magnitude that was far greater than any changes observed in any other pre-leukaemic
model. The decrease in erythroid and myeloid cells was similarly increased in magnitude to
compensate, though the very end of the neutrophil trajectory still displayed an overabundance.
It is therefore clear the ET phenotype of the CALR DEL mouse increases strongly with age.

The abundance changes of both pairs of mice were visualised on the PAGA graph by
averaging votes over each fine cluster (Figure 5.12B). Comparing the expression of Mpl - the
gene encoding for the TPO receptor - from Figure 5.11C suggested that the expanded region
in CALR DEL mice aligns almost exactly with cells that clearly express Mpl. Additionally, in
both pairs of mice the fine cluster with the largest overabundance due to the perturbation was
the cluster associated with the pMKPs. Experimental work has found evidence that pMKPs
are produced from HSCs in an MPP2-independent manner; in a mouse model allowing
inducible depletion of HSCs (but not MPPs or later progenitors (Schoedel et al., 2016)), a
75% reduction in HSCs was measured alongside a 68% reduction in pMKPs, but no reduction
in MPP2s or any other MPP population. Thus it is possible that the pMKP population is
mainly produced on a differentiation trajectory directly from HSCs, and that this trajectory is
being greatly stimulated in the CALR DEL model. Notably, the PAGA analysis displayed a
direct connection between the HSC and pMKP nodes. On its own this is very weak evidence
of a direct trajectory between these populations, but combined with the experimental work
this is very suggestive that the CALR mutation is directly influencing the very earliest HSCs
and promoting a ‘direct’ megakaryocyte differentiation trajectory.

To characterise the molecular impacts within Mpl-expressing cells, differential expres-
sion was performed in the older mice across the ‘Stem Cells’ and megakaryocyte clusters.
Unfortunately there were too few cells within the specific pMKP node for any meaningful
differential expression results to be obtained. Analysis of the DEGs from the ‘Stem Cells’
cluster revealed the upregulation of three major biological pathways; cholesterol biosynthesis,
unfolded protein response and cell cycle (Figure 5.12C). These pathways were all also
observed in the megakaryocyte cluster (Figure 5.13A). Ingenuity Pathway Analysis (IPA)
was performed by Michele Vacca to visualise these findings (Figure 5.13B). The cell cycle
signature is perhaps unsurprising given the abundance changes observed within these cells.
The unfolded protein response is also expected, given CALR’s role as a protein chaperone
(Nam et al., 2019). The upregulation of cholesterol biosynthesis was unexpected; however,
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it is biologically plausible. It has been shown that mice with impaired cholesterol efflux
have more proliferative HSCs and megakaryocytes, as observed in the CALR DEL model
(Murphy et al., 2013; Yvan-charvet et al., 2010). The link between cholesterol metabolism
and CALR mutations will form the basis of further work.

Finally, hscScores were calculated for the two pairs of mice. Since the breeding back-
ground of the WT and CALR DEL mice used in this project are very similar to the mouse
models analysed in Chapters 3 and 4, it is reasonable to compare them. Notably, in the
3 month old mice (age matched with the other models), the CALR DEL HSCs displayed
significantly higher scores than their WT or the other WTs (Figure 5.13C). The same shift
was observed in the 6-month old mice between the CALR DEL HSCs and their WT counter-
parts, which themselves displayed much higher scores than any other wild-type sample. It
is difficult to assess the extent to which this latter comparison is valid, however the overall
trend in the CALR DEL mice raises intriguing questions. In Chapter 4 it was suggested that
increases in proliferation of HSCs may lead to lower hscScores, however the opposite effect
is observed here. The CALR DEL HSCs do not show either an advantage or disadvantage
compared to WT HSCs in competitive transplantation assays (Li et al., 2018), but it is possi-
ble that overactivation of MPL improves their functional potential in a native setting. This
could be linked to a shift towards an MK-biased HSC state associated with the production of
pMKPs, despite no clear molecular priming of CALR DEL HSCs towards the megakaryocyte
lineage being observed.

Overall, this work suggests that in a disease model of essential thrombocythaemia,
all Mpl-expressing LK progenitors are affected by mutations in CALR and display large
overabundances compared to WT haematopoiesis. This is particularly prevalent in the newly
defined pMKP population, which represents an intermediate megakaryocytic state that may be
related to a differentiation trajectory originating directly from HSCs in an MPP-independent
manner. The perturbation induces clear transcriptomic alterations in Mpl-expressing cells
including novel upregulation of cholesterol biosynthesis genes, which may be a promising
avenue for the identification of new therapeutic strategies.

5.5 Conclusions

Work presented in this chapter has formed part of three collaborations with the Lo Celso
(Imperial), Patel (Cambridge) and Green (Cambridge) laboratories. In each case, the effect
of different haematopoietic perturbations were analysed through scRNA-seq, and placed in
the context of ongoing experimental work. Many analyses were project-specific, and this
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necessitated novel analysis and visualisation methods; this was particularly necessary to
detect molecular signals of specific biological pathways that had been found experimentally.
Where suitable, these perturbations were compared to the pre-leukaemic models analysed in
Chapters 3 and 4.

5.5.1 The suitability of droplet-based scRNA-seq as a hypothesis-testing
tool

The shallow but broad nature of droplet-based scRNA-seq approaches such as 10X lends
itself towards being a hypothesis-generating tool; it is extremely powerful at illuminating
the key features of a perturbation experiment at a large scale, and suggesting avenues down
which targeted experimental and computational work needs to head. This was the case
in the Malaria and CALR projects from sections 5.2 and 5.4, with the data generating
hypotheses about interferon response and cholesterol biosynthesis respectively that were
tested experimentally. Conversely, in the aldehyde project in section 5.3 the scRNA-seq data
was largely used to confirm prior hypotheses concerning DNA damage and p53 response in
haematopoietic progenitors, by specifically looking for those pathways within the data. In
section 5.3 this approach was extremely successful, but this belies the fact that often, trying
to confirm hypotheses about specific genes using droplet-based scRNA-seq data did not
work. This necessitated the unsupervised ‘ground-up’ approaches introduced in Chapters 3
and 4 to analyse the pre-leukaemic models, which did produce a variety of interesting and
novel hypotheses. In general, the supervised approach worked poorly due to many genes of
potential interest being lowly- or not-expressed within the drop-seq data, possibly as a result
of the polyA bias inherent to these sequencing techniques.

5.5.2 Comparing perturbations across extremely different biological
settings

The extent to which the three haematopoietic perturbations discussed in this chapter can be
integrated into the perturbation framework from Chapters 3 and 4 largely depends on the
similarity of the WT mice used to the WT mice from earlier chapters. In all cases, integrating
cellular abundance information was more straightforward, since all samples originated from
the same LK gate. The abundance perturbation response in the malaria model, for example,
was of greater magnitude than any of the pre-leukaemic models. The abundance changes in
the DKO aldehyde model and the CALR model (at 3 months) were of similar magnitude to
the pre-leukaemic models.
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Molecularly, the CALR model was able to integrate seamlessly into the perturbation
framework from Chapter 3 (as evidenced in Figure 5.13C). This was unsurprising given
the similarities of its breeding background to the other pre-leukaemic models. Both the
malaria and aldehyde models used mice originating from different facilities with disparate
breeding backgrounds, and this was evident in that their WT samples looked molecularly very
different compared to the pre-leukaemic WT samples. This in turn led to differences in DEG
results between these models and the pre-leukaemic models that were confounded by the
large differences in the WT animals. These differences were likely caused by a combination
of genetic and environmental factors. In such situations, where there is a large number of
models from one facility and a single model from another facility, it should be possible
to correct this by using one of the numerous batch correction tools available. This is an
important next step in building large perturbation comparison frameworks that are usable
out-of-the-box by anyone anywhere in the world.

5.5.3 Graph-abstraction as a link between discrete and continuous ap-
proaches

The graph-abstraction (PAGA) approach used in section 5.4 proved to be a powerful tool for
connecting specific FACS based cell populations to the transcriptomic landscape. In addition,
combining the PAGA algorithm with a very fine-grained clustering allowed the relationship
between the original clusters from the ‘reference’ landscape to be viewed in a new light.
This technique sits as an intermediate between coarse grained differential expression of
large clusters and the pseudotime techniques for identifying molecular drivers introduced
in Chapter 3. Whilst performing differential expression on fine clusters is difficult due to
reduced statistical power, it may be worth it if the exact regions where abundances are most
affected (such as the pMKP node) can be located. In addition, although the ‘connectivity’
between different nodes is hard to interpret in the context of continuous differentiation
trajectories, it nonetheless provides important information about which clusters have the most
similar transcriptomes, even if they are not located next to each other on a 2D visualisation
of the data. For this reason alone it should be considered as part of any single-cell analysis
pipeline.

5.5.4 Further work

Further integration of the perturbations analysed in this chapter with the pre-leukaemic
models discussed previously is possible, and may be highly informative. In particular, further
comparisons of the HSC region are warranted since all three perturbations display clear
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phenotypes in the most immature cells, over and above what is observed across the pre-
leukaemic models. Mapping the malaria and aldehyde models to the ‘reference’ clusters
and interrogating their abundance, molecular and variability changes with the Stem Cell
cluster should be relatively straightforward. A tougher challenge will be to assess whether
any sensible comparisons can be made that will strengthen the hypotheses stated in Chapter
4. It is not immediately clear how the abundance shifts in any of these three perturbations
would be driven by epigenetic changes. The CALR model undoubtedly belongs in the
framework set out in Chapter 3, and the striking increase in hscScores amongst the mutant
CALR mice are worthy of careful investigation. The CALR model appears to produce a very
different set of cellular/molecular shifts than any other pre-leukaemic model, but its effects
within the erythroid trajectory should be further compared to the other models that show a
proportional loss of erythrocytes, such as Tet2. Of course given the enormous overproduction
of megakaryocyte progenitors observed, it may be that in absolute terms, erythrocyte numbers
are not decreased and align more close with models like the Jak2.

5.5.5 Summary

In summary, the work in this chapter analysed transcriptomic data from three diverse
haematopoietic perturbations to identify the pathways driving the observed cellular and
molecular shifts. Many of the generated hypotheses have been validated experimentally and
have in all cases revealed large impacts upon the HSC transcriptomic states.



Chapter 6

The Trajectory Inference Method
TITANS Reveals Complex Cellular
Trajectories across Different Species and
Systems

The computational method described in this chapter was created and implemented by Sam
Watcham. It was tested on single-cell datasets from Dahlin et. al. (2018) and Pijuan-Sala
et. al. (2019), using data generated by a number of people including Nicola Wilson, Blanca
Pijuan-Sala and Carolina Guibentif.

6.1 Background

The introduction of scRNA-seq in recent years has provided a huge amount of insight into
the heterogeneous nature of differentiating cell populations. Results from single-cell studies
have led classical models of cell differentiation containing discrete transitions to be reworked
(Nestorowa et al., 2016). Instead, the notion of a continuous transcriptional landscape has
been formulated, in which a cell differentiates probabilistically through a transcriptomic
landscape in a manner defined by its current and previous cell states (Laurenti and Göttgens,
2018; Nimmo et al., 2015).

Accurately reconstructing these differentiation trajectories from scRNA-seq data may be
possible provided certain assumptions are satisfied, including the key assumption that within a
given cell population, differentiation is asynchronous (Weinreb et al., 2018b). This means that
the ‘snapshot’ of different cell states captured in a scRNA-seq experiment can potentially act
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as a proxy for the differentiation path of an individual cell over time. A number of algorithms
have been developed within this framework to reconstruct differentiation trajectories from
primitive to more mature cells (Herman et al., 2018; Schiebinger et al., 2019; Setty et al.,
2018; Street et al., 2018; Weinreb et al., 2018b; Welch et al., 2016). These methods and
others like them have been thoroughly reviewed and quantified in Saelens et. al. (Saelens
et al., 2019).

However, increases in experimental throughput have led to an explosion of very large
(>100,000 cells) and very sparse scRNA-seq datasets that sample from broad and unbiased
cell populations (generated by droplet methods such as 10X and inDrops) without time-course
information (Tusi et al., 2018; Wagner et al., 2018). Reconstructing accurate differentiation
trajectories from such data remains a significant challenge, as the transcriptomic changes
related to differentiation are extremely subtle and can be heavily obscured by both technical
and biological noise (Grün et al., 2014). In addition, many current methods do not scale well
to large cell numbers, making trajectory inference in such datasets infeasible (Svensson et al.,
2018).

To facilitate more accurate trajectory inference in this breed of datasets, TITANS (Tra-
jectory Inference Through Iterative Ancestral Search) was developed specifically to work
with large, sparse single-cell datasets taken from extremely broad cell populations. The key
advantages of TITANS over published methods are that 1) it does not rely on or compute a
graph-based representation of the dataset, meaning the calculated trajectories are more closely
related to the underlying expression data and can capture the complexities present in the high-
dimensional space, 2) it is efficient and scalable, allowing a trajectory containing hundreds of
thousands of cells to be calculated in minutes and 3) its iterative procedure for adding cells
to a specific trajectory allows very subtle transcriptomic changes to be perceived even in
very sparsely sequenced data, without requiring any user-defined temporal information. This
chapter describes how TITANS can accurately reconstruct cellular trajectories and determine
cellular hierarchy across different species and systems including adult haematopoiesis and
early mammalian development. Furthermore, TITANS was compared and contrasted with
several current state-of-the-art published methods for single-cell trajectory inference.

6.2 TITANS: Trajectory Inference Through Iterative An-
cestral Search

The aim of the TITANS algorithm is to infer the most likely trajectory through a transcrip-
tomic landscape between the most primitive, immature cells in the data and an identified



6.2 TITANS: Trajectory Inference Through Iterative Ancestral Search 163

A

C
el

ls

C
el

ls

Genes

Scaled Expression Data

Diffusion Map Components

Reduced Dimensionality DataB

C

Root Cell
(HSC)

Region of most 
immature cells

Cell belonging 
to trajectory A

θ1

θ2

cosθ1 > 1-ε
∴ cell added

to trajectory A

cosθ2 < 1-ε
∴ cell not added
to trajectory A

ε ~ 0.01

D
Trajectory 1 Trajectory 2

Root Cell/Space

Trajectory 1

Endpoint

Trajectory 2

Endpoint

Cells added
in successive

iterations

Cells added
in successive

iterations
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trajectory endpoint. For a full description of the TITANS method, see section 2.20. Briefly,
the dataset being analysed is first embedded in a d-dimensional diffusion-map space where
g >> d > m, with g the number of genes in the original dataset and m the expected number of
trajectories within the data. Diffusion maps have been widely used in single-cell genomics to
perform a similar function to principal component analysis, and have been shown to capture
greater variance with a lower number of dimensions (Haghverdi et al., 2016). The only input
required to the algorithm is information about the most primitive cells in the data (either a list
of genes known to associate with them, or a list of cell identities from a clustering analysis).
From this, the ‘root space’ within the diffusion-map space is identified. Using a pseudotime
analysis, n potential trajectory endpoints within the data are identified. For each of these
n endpoints, a trajectory is constructed by iteratively tracing back towards the root space,
adding in only the cells that are highly geometrically aligned with cells added in the previous
iteration. Once the trajectory reaches the most primitive cells within the root space, trajectory
inference is stopped. This process allows the complex winding and branching behaviour
of trajectories within a complex dataset to be captured without requiring prior biological
knowledge.

This process is shown visually in Figure 6.1. Droplet-based single-cell data is typically
extremely sparse and noisy, with the scaled expression data containing a lot of uninformative
genes that make it hard to observe structure (Figure 6.1A). Performing dimensionality
reduction on the scaled expression data to a d-dimensional diffusion-map embedding allows
this structure to be seen with greater clarity (Figure 6.1B). Once the root space and putative
endpoints within a dataset have been identified, iterative trajectory reconstruction begins from
each endpoint. During each iteration, cells are only added to a trajectory if they are highly
aligned with the cells added in the previous iteration (Figure 6.1C). After many iterations,
these trajectories will have traced back all the way to the most primitive cells (Figure 6.1D).
Importantly, the trajectories identified from each endpoint are independent; each cell can
belong to none, one or more trajectories (Figure 6.1D). TITANS can then construct the most
likely cellular hierarchy across all of the endpoints identified within a dataset.

To test whether TITANS was able to provide sensible trajectory inference in a well
characterised system, the algorithm was applied to the LK cells from the WT reference
dataset, published in Dahlin et. al. (Dahlin et al., 2018). To recap, cells were sorted from
the Lin- c-Kit+ (LK) gate which broadly captures haematopoietic stem and progenitor cells
from the top of the blood hierarchy, including the true long term haematopoietic stem cells
(HSCs) and a range of progenitor populations such as the classically defined MPPs, GMPs
and MEPs (Adolfsson et al., 2005; Pietras et al., 2015). Droplet based scRNA-seq was then
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Fig. 6.2 Application to the LK reference dataset (A) Marker gene expression on the force-
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identified by the TITANS algorithm. (C) The location of seven endpoints used as starting
points for trajectory inference, as located by TITANS in an unsupervised manner. Endpoint
colour corresponds to cell types from panel A.
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performed using 10X Chromium, with 21,836 transcriptional profiles being retained after
quality control (see methods). The median number of genes detected per cell was 2842. This
is an example of a very sparse dataset; 90% of the raw expression matrix contains zeros,
and the majority of nonzero entries have a UMI count of one, making the bulk of the dataset
binary in nature.

The transcriptional landscape of the LK cells was visualised in two dimensions using a
force-directed graph, with unsurprising similarities to the WT reference dataset as a whole.
Whilst such two-dimensional representations (alternatives include UMAP, tSNE, PCA) are
necessary to visualise cellular trajectories, is it important to remember that the visualisations
themselves cannot be used for trajectory inference as their structure is often misleading
(Watcham et al., 2019). The force-directed graph of the murine LK cells revealed the
existence of several branches which were shown to correspond to different haematopoietic
lineages, identified by the expression of known marker genes (Figure 6.2A). As described
above, the only input the TITANS algorithm requires is a list of genes associated with the
most primitive cells in the dataset. Here we used a list of the MolO genes, identified by
Wilson et. al. as being enriched in the most primitive HSCs (Wilson et al., 2015). From
these, TITANS identified the root space within the data, calculated a d = 15 dimensional
diffusion-map embedding of the data and constructed a pseudotime value for each cell (Figure
6.2B). Next, a list of seven possible endpoints was calculated and these were visualised
on the force-directed graph (Figure 6.2C). It is important to note that these endpoints
were located in a completely unsupervised manner, and no other endpoints were located.
These seven endpoints were identified as being the most mature cells within the dataset
corresponding to erythroid, megakaryocyte, mast cell, basophil, neutrophil, monocyte and
lymphoid trajectories respectively.

Starting from each of these endpoints, the TITANS algorithm iteratively added cells to
each trajectory based on their alignment in the high-dimensional diffusion-map representation
of the data. Inference was stopped once each trajectory had traced back close enough to
the root space and no new cells could be added. Each trajectory could then be separately
visualised in the force-directed graph, with colours corresponding to the cells added in each
iteration (Figure 6.3). In an attempt to reconstruct the putative cellular hierarchy within the
data, all seven trajectories were combined into a single visualisation (Figure 6.4A). By starting
with the most primitive cells and moving along the trajectories, a cellular hierarchy was
revealed in which the earliest branching point is to either move in an erythroid/megakaryocytic
direction or a mast/basophil/neutrophil/monocyte/lymphoid direction (Figure 6.4B). The
former then split into individual erythroid and megakaryocytic trajectories. The latter
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Fig. 6.3 Analysis of calculated haematopoietic trajectories reveals distinct progenitor
populations. For each identified endpoint, the resulting annotated trajectory between the
root space and the endpoint is shown. Cells added in each iteration are separated by colour,
allowing the path of the trajectory to be traced.
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assigned only to the erythroid trajectory, brown cells to only the erythroid and megakaryocyte
trajectories etc. (B) The hierarchy of fate decisions in murine haematopoiesis as inferred
from the TITANS results in panel A.
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direction then sees the lymphoid trajectory branch off, before branching into two bipotent
populations containing the mast/basophil and neutrophil/monocyte trajectories respectively.
These populations then branch into their individual trajectories.

There is currently much debate about the specific hierarchy of murine haematopoiesis, for
example as to whether mast cells and/or basophils have their origin in erythroid or myeloid
progenitors (Grootens et al., 2018; Tusi et al., 2018; Wolf et al., 2019). The TITANS analysis
presented here supports the latter conclusion, and suggests there is a shared mast/basophil
progenitor population that branches off from a population which also contains the neutrophil
and monocyte trajectories. Additionally, TITANS also defines a small population of the most
primitive cells, which are found in all seven of the calculated trajectories. This population
overlaps highly with known markers of HSCs such as Procr and provides evidence that
TITANS is capable of capturing complete trajectories through the data. The earliest branching
points in murine haematopoiesis are also hotly debated, with TITANS suggesting that a
branching to erythroid/megakaryocyte trajectories is one of the first to occur, which is
supported by recent single-cell lineage tracing experiments (Carrelha et al., 2018; Rodriguez-
Fraticelli et al., 2018; Sanjuan-Pla et al., 2013). In total, 86% of the cells in the dataset were
attributed to at least one trajectory. The remaining cells may have not been found because
they are outliers, or belong to trajectories not identified in the data. Additionally, they may
have been excluded due to transcriptional changes caused by cell intrinsic processes such as
cell division.

The inferred hierarchy presented here is not intended to be taken as a ground truth
concerning murine haematopoiesis. Rather, it is intended to describe the most accurate
hierarchy that can be inferred given the raw expression data that was collected. Calculating
each of the seven trajectories for this dataset (the largest containing 11,000 cells) takes less
than thirty seconds on a standard laptop. Despite the sparsity of the data, these complex
trajectories can be captured thanks to the large cell numbers and the broad sorting gate used.
Under these conditions TITANS performs accurately and efficiently, paving its way for use
in less well characterised systems.

6.3 Comparison to published methods

To facilitate a better understanding of the strengths and weaknesses of the TITANS algorithm,
three state-of-the-art published methods for trajectory inference - FateID, Population Balance
Analysis and Slingshot - were applied to the same dataset of murine haematopoietic cells.
Of the three, FateID is the most similar to TITANS in design, as it also works iteratively
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back from endpoints to define trajectories using a Random Forest classifier (Herman et al.,
2018). This results in each cell having an associated vector of probabilities for each trajectory.
However FateID classifies cells from all trajectories at once and does not take into account
any information about the location of the most immature cells in the dataset. This results in
the algorithm ‘overextending’ some trajectories in unlikely directions away from the most
primitive cells. Additionally the fact that FateID synchronously calculates all trajectories
means that some cells which would be classified into one trajectory have already been ‘used
up’ by a different trajectory, unduly biasing the final calculated trajectories.

Applied to the murine haematopoietic data, these issues are clear (Figure 6.5A). In
particular those cells with the highest probability assigned to the mast cell trajectory are
found well into the erythroid region of the landscape, despite the expression of well described
erythroid markers such as Klf1 and Gata1. Similarly, almost all of the most immature cells
are assigned with the highest probability to the lymphoid trajectory, a result that makes
very little biological sense given that the dataset is sure to contain a significant number of
multipotent cells. These results are independent of the specific parameters used to run the
FateID algorithm. Whilst FateID does successfully capture aspects of the landscape - such
as the separation of the most mature neutrophil and monocyte cells – it is unable to fully
elucidate the overall transcriptional landscape due to its size and complexity.

Population Balance Analysis (PBA) approaches the problem of trajectory inference in a
physically-motivated way (Weinreb et al., 2018b). It attempts to reconstruct the dynamics of
a single cell transcriptomic landscape by asymptotically solving a drift-diffusion equation
to estimate a potential function which underlies the landscape. From this cell transition
probabilities and a fate potential vector can be calculated for each cell. Whilst the rigorous
nature of this approach is to be greatly commended, the PBA algorithm requires as input
a vector of cell sink rates from each of the identified terminal states. This information is
not known a priori and very small changes in this input can lead to very large changes in
the calculated fate probabilities (Figure 6.5B), greatly limiting the ability of the algorithm
to accurately calculate the correct dynamics from the transcriptomic data. Applied to the
murine haematopoietic data, sensible results could only be achieved through manual fine
tuning of this sink rate vector. Currently there is very little published data suggesting how
sensible values of this input can be calculated (Busch et al., 2015). Therefore performing
accurate trajectory inference in a complex dataset with several terminal fates is not currently
suited to the PBA approach.

Finally, the Slingshot algorithm calculates a minimum spanning tree through the data
using user-defined clusters, before defining a pseudotime and fitting principal curves through
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Fig. 6.5 Comparison between TITANS and three published methods. (A) FateID pro-
duced a vector of seven fate probabilities for each cell in the landscape. The individual
probabilities for each fate are shown, as well as each cell coloured by the fate with the highest
probability. (B) Population Balance Analysis was used to calculate a vector of seven fate
probabilities for each cell, given a user-defined vector of sink rates from each fate. Cells are
coloured by the fate with the highest probability. (C) Louvain clustering was used to cluster
the landscape into 13 populations. Given the most immature cells (dark orange) as a starting
cluster, Slingshot was used to infer the possible trajectories through the data, given by the
overlaid red dots and paths.
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the inferred structure (Street et al., 2018). This is the latest of a number of algorithms
based on a similar approach, and has been extended to deal with branching topologies (Shin
et al., 2015; Trapnell et al., 2014). The drawbacks of algorithms such as these are that they
are heavily reliant on the quality of the supplied clusters, especially when applied to large,
continuous transcriptomic landscapes. Here Slingshot was applied using clusters generated
by a standard Louvain clustering of the LK data, and using a diffusion-map representation of
the data rather than simply the expression values as suggested by the authors. The cluster
containing the most immature cells was annotated to be the starting cluster for the algorithm.
Slingshot calculated a branching topology that did not split the neutrophil and monocyte
populations into different trajectories, despite there being clearly separated clusters for
each of these lineages (Figure 6.5C). Instead the monocyte-like cluster was an intermediate
step on the way to the neutrophil-like cluster. Additionally, the trajectory from the most
immature cells to the erythroid lineage inaccurately passed through a basophil/mast cell-like
cluster. Whilst this may be in part due to the particular clustering supplied, this indicates
how Slingshot cannot be relied upon to calculate trajectories in the setting of a continuous
landscape.

Overall, FateID performs best of the three tested algorithms on the murine haematopoi-
etic data, but it is nevertheless unable to capture the complex branching topology of the
transcriptional landscape to the same extent as TITANS. Whilst FateID has been extensively
validated to perform well on continuous datasets, it is likely that the sparsity of drop-seq data
diminishes its ability to accurately classify cells into their associated trajectories. On the other
hand PBA attempts to explicitly solve the dynamics of the system, but is greatly hindered
by the inputs required for such a calculation. Slingshot and other inference tools which rely
on a clustering of the data are typically unsuitable for the type of large, continuous datasets
that TITANS is designed to work with. In such a setting, trajectory inference using TITANS
outperforms these state-of-the-art methods and is able to capture branching processes in a
clear and accurate manner.

6.4 Application to a more complex transcriptional land-
scape

To comprehensively test TITANS in an extremely complex system, the algorithm was
applied to a recently published gastrulation atlas of 116,312 mouse embryo cells collected
at 9 sequential time points between 6.5 and 8.5 days post fertilisation (Pijuan-Sala et al.,
2019). Cells were sequenced using the 10X Chromium platform, with a median of 3,436
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genes detected per cell. Previous annotation of this dataset described 37 clusters, starting
from pluripotent epiblast cells and diversifying into progenitors from each of the three
main germ layers, shown here using a 2D UMAP representation (Figure 6.6A). Using
a set of known epiblast markers as input, TITANS located the root space in the dataset,
constructed a pseudotime and identified a number of possible endpoints as before (Figure
6.6B). Of the 19 identified endpoints, six were chosen to display the ability of TITANS to
uncover developmental trajectories in the dataset (Figure 6.6C). Not all endpoints could
be easily annotated as belonging to a specific developmental trajectory; these trajectories
may nonetheless offer new insight into the data when combined with specialised biological
knowledge.

The trajectories calculated by TITANS reveal a rich complexity within the gastrulation
dataset (Figure 6.6D). Strikingly, the trajectory towards the blood progenitor cells moves
from the early epiblast/primitive streak cells to the nascent and mixed mesoderm populations,
before entering a thin ‘highway’ through the UMAP representation that takes the trajectory
through the haematoendothelial progenitor populations to the blood progenitors and finally
the erythroid progenitor cells. The endothelial trajectory follows the same path before
branching off the highway in the haematoendothelial progenitor population. The ability
of TITANS to capture the known relationship between these two populations - despite the
strongly varying cell types along the course of the trajectories – suggests TITANS is well
suited for trajectory inference even at the scale of whole organisms.

The calculated cardiomyocyte trajectory also moves from the primitive streak into the
nascent mesoderm, but then deviates from the haematoendothelial trajectories. Instead
it moves into the intermediate and somatic mesoderm populations, before moving to the
pharyngeal mesoderm and finally into the cardiomyocyte population. Comparatively, the
calculated allantois trajectory moves directly from the nascent mesoderm to a small section of
the intermediate mesoderm and then into the allantois population directly. This suggests that
the fate decision towards the allantois occurs somewhere within this intermediate mesoderm
population. It is clear that there is a large degree of complexity within the various annotated
mesoderm populations, which TITANS is nevertheless able to dissect.

Similarly, the calculated neural crest trajectory moves from the primitive streak into the
rostral neurectoderm, before entering the brain progenitors (forebrain/midbrain/hindbrain)
and then the neural crest population. This simple summary belies the complexity of the
trajectory, which largely avoids the surface ectoderm population, despite them looking ex-
tremely intertwined in the UMAP representation. Finally the notochord trajectory is also
notable, since it passes from the primitive streak to the notochord population through a very
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Fig. 6.6 TITANS reveal the location of potential fate decisions during mouse gastrula-
tion. (A) A UMAP representation of the 116,312 cells in the mouse gastrulation dataset.
Data was labelled according to previous annotation and clustering of the data. (B) The
pseudotime score given to each cell, using a root cell identified by TITANS as being closest
to the root space within the data. (C) The location of six endpoints identified by TITANS,
with colours corresponding to those in panel A. (D) The calculated trajectories for each of
the six identified endpoints. Colours correspond to the iteration at which that cell was added
to the trajectory.
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small subpopulation of the definitive endoderm, whilst most of the definitive endoderm is
not contained within the trajectory. Overall, TITANS provides new insights into the develop-
mental paths underlying mouse gastrulation, and highlights how the TITANS algorithm is
capable of capturing complex cellular trajectories regardless of the heterogeneity, sparsity or
size of the underlying dataset.

6.5 Conclusions

TITANS has been specifically designed to infer cellular trajectories in large, sparse scRNAseq
datasets. The algorithm infers cellular trajectories by first identifying the root space (the
location of the most primitive cells) in a high-dimensional diffusion-map representation of
the dataset, before identifying potential endpoints in an unsupervised manner. From each of
these endpoints, cells are iteratively added to the trajectory if they are highly aligned with
the cells added in the previous iteration, until the trajectory has been traced back to the root
space. This procedure allows the complex topology of the high-dimensional space to be
deconstructed and easily understood, facilitating trajectory inference in the variety of large
scRNAseq datasets/atlases currently being produced (Benoist et al., 2017; Pijuan-Sala et al.,
2019; Tusi et al., 2018; Wagner et al., 2018).

When applied to mouse haematopoietic cells, TITANS infers the presence of recently
characterised progenitor populations such as mast/basophil and neutrophil/monocyte pop-
ulations in mouse haematopoietic cells (Dahlin et al., 2018; Görgens et al., 2013; Villani
et al., 2017; Yáñez et al., 2017). Furthermore, the method is able to segregate increasingly
immature cell populations and construct a putative hierarchy within murine haematopoiesis.
Importantly, this analysis further infers the presence a small group of cells as belonging to all
seven calculated trajectories. These cells are located in the correct part of the transcriptomic
landscape, as evidenced by the expression of known mouse HSC markers such as Procr.
Downstream analysis of gene expression differences between cell populations which TITANS
highlights as having different lineage potentials has the potential to implicate new genes as
drivers of haematopoietic fate decisions.

More complex systems such as murine gastrulation can also be efficiently analysed using
TITANS, and reveal the nature of a number of developmental pathways which have not
previously been observed in scRNAseq data. Our analysis reveals the location of several
putative cell fate decisions in the mesodermal and ectodermal lineages, and provides a
framework for integrating a myriad of different cell types into continuous cellular trajectories.
It is foreseen that the application of TITANS to further atlases of development - such as those
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that have been published for Xenopus, Zebrafish and Planaria (Briggs et al., 2018; Fincher
et al., 2018; Wagner et al., 2018) - should be similarly enlightening.

Compared to some of the best performing published trajectory inference methods as quan-
tified by Saelens et. al., TITANS excels at analysing large, complex and sparse datasets of
the kind which the field of single-cell genomics is fast moving towards (Saelens et al., 2019).
By not relying on any kind of graph- or cluster-based approximation to the transcriptomic
landscape, complex differentiation trajectories are captured with greater detail than other
methods. Additionally the largely unsupervised approach removes the bias inherent to manu-
ally choosing trajectory endpoints. By treating trajectories independently and combining then
only after the cell assignments are complete, TITANS maintains the speed and scalability of
cluster-based approaches such as PAGA (Wolf et al., 2019) whilst not being limited by their
drawbacks, and is capable of analysing datasets containing hundreds of thousands of cells in
a short time on standard hardware.

The main limitation of TITANS is the need for the user-defined alignment threshold
parameter to be manually chosen (see Figure 6.1). Whilst the results presented in this chapter
are robust over a large range of this parameter, setting the threshold too low will nevertheless
lead to artificial connections between trajectories. This could occur due to inherent biological
and technical noise causing cells from two distinct trajectories to be reasonably close together
in a diffusion map representation of the data. Alternatively, setting the threshold too high will
cause the majority of cells to be unclassified. Due to TITANS’ speed, it is quick and easy
to test different threshold parameters and arrive at a reasonable value. Often the parameter
can be calibrated using prior biological knowledge, such as the proportion of multipotent
stem cells expected within the data; however in many cases this is not known. In addition,
the magnitude of the ‘correct’ threshold parameter depends slightly on the size of the dataset,
as this affects the scale of the diffusion map representation. Work is currently ongoing to to
make this parameter scale-independent.



Chapter 7

Discussion

This chapter will review the overarching conclusions, themes and challenges of the work
presented in this thesis. It will also discuss potential future directions for both this work and
the field of single-cell biology at large. Detailed conclusions concerning specific results from
this thesis are presented at the end of Chapters 3-6.

7.1 scRNA-seq perturbation experiments as a tool for study-
ing pre-leukaemic states

7.1.1 Perturbed transcriptional landscapes

The concept of a transcriptional landscape has been applied to the blood system with great
effect, with multiple studies attempting to reconstruct haematopoietic differentiation in the
context of single-cell datasets (for example see Dahlin et al., 2018; Tusi et al., 2018). Work
in this thesis has showcased how the same paradigm can be equally useful in understanding
haematopoietic perturbations. By exploiting computational techniques in innovative ways,
single-cell perturbation experiments can provide novel biological insights at both cellular
and molecular scales, using the underlying perturbed transcriptional landscape as the link
through which aberrant behaviour can be understood. For example, clustering and mapping
techniques were used in Chapter 3 to quantify abundance shifts across a landscape with
extremely fine resolution, and targeted differential expression testing combined with dimen-
sionality reduction revealed potential molecular drivers of this dysregulation. Incorporating
pseudotime methods with a sliding window approach further extended the molecular analysis
of perturbations across entire differentiation trajectories, and provides a basis upon which
regulatory networks of perturbation response can be built. Taken together, the framework
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for perturbation analysis introduced in Chapter 3 is widely applicable to other perturbation
settings and can be used to study multiple differentiation trajectories in both supervised and
unsupervised manners.

7.1.2 The need for integration across multiple conditions

A central theme to this work has been the increase in signal-to-noise ratio achieved by
the integration of many different perturbations. Many of the hypotheses introduced in
Chapters 3 and 4 would not have been observed if the pre-leukaemic perturbations had been
analysed individually. Work in Chapter 3 strongly suggests that given the technical and
biological noise inherent to droplet-based scRNA-seq data, the significance of observed
abundance shifts or differentially regulated genes due to a perturbation can only be sensibly
assessed in the context of multiple different perturbations. For example, the seemingly
crucial role of pro-myeloid factors in driving aberrant haematopoietic fate decisions is only
observable as a result of multiple mutations displaying correlated molecular and cellular
shifts - both towards and away from - the myeloid terminal fate. A corollary to this is
the clear advantages gained from using a suitably large and densely sampled ‘reference’
dataset to anchor multiple perturbations. Not only does this approach allow for easier
comprehension of the overall biological signals exhibited by a group of perturbations, it also
provides greater confidence that these signals are not an artefact of poor sampling within
an individual single-cell experiment. With the current increase in the number and size of
cell-type atlases being produced for different organisms, this approach is likely to remain
viable in the future. The integrative framework from Chapter 3 further allowed for simple
comparison of combinatorial perturbations such as the Jak/Tet Cross with the Jak2 and Tet2
single mutations respectively. From this work it was clear that the perturbations induced
by such models are trajectory-specific, and similarities to their component perturbations
depend on the scale at which they are observed. As an example, the erythroid trajectory of
the Jak/Tet Cross looked very similar to the Jak2 model at the molecular level, but arguably
more similar to the Tet2 model at the cellular level. Again, such observations would not be
possible without an integrative framework for the inclusion of different perturbations.

7.1.3 Incorporating new layers of information from both external and
internal sources

Extracting true signal from sparse droplet-based scRNA-seq data is challenging, and the
returned count matrices often need to be transformed or supplemented in innovative ways
to access this information. Work in Chapter 4 employed a variety of methods to extract
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signals from the ‘flat’ transcriptomic landscape containing uncommitted haematopoietic
progenitors. By using external, index sorted blood progenitors to assign cells sequenced
using droplet-based methods to classical progenitor populations, tentative links between
transcriptional state and functional potential were achieved. This was used to highlight the
cellular similarities (many perturbations pushing their MPP1 cells towards more active states)
and molecular differences (perturbations up- or down-regulating pro-myeloid and HSC stress
genes) between models that were correlated with their abundance changes in more mature
progenitor states. Internal information from the perturbation datasets themselves was also
combined across genes as part of both existing and new metrics such as the hscScore and
G2M score, which were able to extract otherwise obscured information about the effects of
pre-leukaemic states on HSCs. Excitingly, per-gene single-cell variability was also introduced
as a new, internal source of information that may uncover otherwise hidden signals within
single-cell data. For example, it appears that pre-leukaemic perturbations inducing greater
single-cell variability are associated with downstream pro-erythroid skewing and vice versa.
Further investigation of variability as a new, easy-to-calculate layer of information within
scRNA-seq data is certainly warranted.

7.1.4 Fate decisions and differentiation trajectories in the era of high-
throughput transcriptomics

The mechanistic underpinnings of haematopoietic fate decisions remain incompletely un-
derstood, but recent work has implicated epigenetic marks such as DNA methylation as
being one route through which genetic mutations (in genes such as Tet2 and Dnmt3a) can
drive aberrant fate decisions (Izzo et al., 2020). Work in Chapter 4 provided evidence that
supposedly uncommitted MPP1 cells display pro- or anti-myeloid priming as a result of
such mutations. Furthermore, it is conceivable that single-cell variability may provide a link
between these epigenetic and transcriptional alterations, with greater variability potentially
induced in response to a lack of global DNA methylation and vice versa.

New methods of trajectory inference are needed to computationally test whether these
(perturbation-driven) aberrant fate decisions are therefore occurring in different regions of
the transcriptomic landscape compared to wild-type. Additionally, the rise of microfluidic-
based protocols for scRNA-seq has meant that datasets containing entire densely-sampled
differentiation trajectories can now be produced with relative ease. Work in Chapter 6 aimed
at creating a trajectory inference algorithm that was specifically designed to work with sparse
droplet-based scRNA-seq datasets. Future work applying this algorithm to perturbed datasets
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may help to provide further hypotheses concerning the fate potential of perturbed MPPs and
HSCs.

7.2 Limitations of scRNA-seq perturbation datasets

7.2.1 Technical variation

Mitigating the impact of technical noise is a key consideration for any scRNA-seq analysis
involving multiple experimental conditions. As discussed in Chapter 1, numerous methods
for single-cell normalisation and batch correction have been proposed (Polanski et al., 2020;
Stuart et al., 2019). Nonetheless, analysis of the pre-leukaemic states in Chapters 3 and 4
was greatly impacted by the lack of matched WT samples for a subset of perturbations (W41,
Tet2 HOM and Jak/Tet Cross). This flaw in the experimental design meant that the molecular
effects of these perturbations were strongly confounded by the increased technical variation
between the perturbed sample and any WT sample it was compared to. These effects were
minimised by averaging over comparisons with multiple WT samples, but could not be
eliminated. It is therefore advisable to produce matched control samples for all scRNA-seq
perturbation experiments, even if a suitable reference dataset exists for the system of interest.
In general, technical variation between perturbation experiments that both have matched WT
samples is less of a problem, as integrative frameworks such as the one introduced in Chapter
3 compare each experiment to a reference and therefore will not require direct comparisons
between two perturbed conditions.

Intra-experiment technical noise can also cause problems, as was the case for the third
Jak2 experiment analysed in this thesis, where the perturbed sample was sequenced to a
far higher saturation than the matched WT sample (see Figure 3.5). This resulted in many
of the same difficulties as if the WT and perturbed sample were not matched. In this case
it was found that cluster-based downsampling of the over-sequenced sample was able to
mitigate much of this technical variation, but any cluster-based downsampling procedure
will inevitably introduce bias, due to cells being downsampled based on a target cell-size
distribution that is not completely accurate for the cell in question. It remains an open question
as to whether all scRNA-seq experiments with multiple conditions should use downsampling
as a standard preprocessing step; however ‘throwing away’ data by downsampling is probably
inadvisable unless proved necessary by the failure of downstream analyses. It should be
noted that attempts were made to correct for the lack of matched WT samples in the W41 and
Tet2 HOM experiments by downsampling these perturbed samples to match an alternative
WT sample. However this approach failed to produce sensible differential expression results.
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7.2.2 Sparsity of droplet-based approaches

The high throughput attained by droplet-based scRNA-seq approaches is balanced by a
smaller number of reads obtained per cell as compared with plate-based protocols. This
trade-off - combined with the fact that only a fraction of the mRNA molecules within a cell
are transcribed for sequencing - results in large, sparse datasets such as those analysed in
this thesis. This sparsity leads to two important effects. Firstly, the expression of many
genes is extremely noisy across different cells, and secondly, only highly expressed genes
exhibit a large dynamic range of expression values across a dataset, with lowly expressed
genes typically limited to either having one UMI count (‘on’) or zero UMI counts (‘off’).
Hence analysis techniques that search for dynamic molecular changes across a trajectory
- such as the dDEG method introduced in Chapter 3 - are heavily biased towards highly
expressed genes. Furthermore, metrics used to quantify differential expression from such
sparse data must be carefully chosen; lowly expressed genes can exhibit large fold changes
due to biological noise, whilst small fold changes in highly expressed genes can be of
important significance. Using absolute expression differences between conditions is also
possible, but this again suffers from the fact that many potentially important genes do not
have the dynamic range to achieve large absolute changes. A number of imputation methods
for scRNA-seq have recently been published, with the aim of reducing biological noise
by imputing expression values that are corrected for low sequencing depths (Eraslan et al.,
2019; Lopez et al., 2018). This could help to identify new molecular drivers of perturbation
response that are currently hidden by noise, but the accuracy of imputation methods in
complex transcriptional landscape is difficult to assess and they are currently treated with a
healthy amount of scepticism. Overall, the conclusions presented in this thesis concerning
molecular drivers of perturbation response must be considered alongside the limitations of
droplet-based scRNA-seq technology, as well as the advantages and drawbacks of the metrics
used to assess significance.

7.2.3 Loss of temporal information

Pseudotime algorithms have been widely integrated into computational analyses of scRNA-
seq data, and form the backbone of several new approaches to analysing perturbation ex-
periments in this thesis. However there will not necessarily be any correlation between
differences in pseudotime and differences in real time over the course of a differentiation
trajectory. Parametrising one in terms of the other may be possible by using cell labelling
techniques to estimate the real time rate of cell flux between haematopoietic compartments,
but this remains a challenge (Barile et al., 2020; Busch et al., 2015; Sawai et al., 2016). It is
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therefore difficult to sensibly assess whether genes upregulated at one point along a trajectory
are causally linked to genes upregulated at earlier or later points. Similarly, reconstructing
lineage hierarchies from scRNA-seq data alone will always rely on a level of inference about
the relevance of cell-to-cell distances within a transcriptomic landscape; real-time informa-
tion about HSC dynamics obtained through lineage tracing or pulse-chase experiments is
therefore required to fully elucidate the topology of haematopoietic fate decisions.

7.3 New directions for single-cell perturbation models

7.3.1 Towards complete cell-state information

The single-cell perturbation landscapes analysed in this thesis were constructed using infor-
mation from a subset of mRNA molecules present in the original cells. As a result, potential
cellular heterogeneity present at the epigenetic, protein or spatial levels will remain hidden.
A complete understanding of how driver mutations impact haematopoietic differentiation
will rely on single-cell methods capable of capturing a more complete picture of an individ-
ual cell’s state, and associated methods for integrating this information across modalities
(Kucinski and Gottgens, 2020). Examples of recently published multiomics approaches
include methods for simultaneous detection of RNAs with individual proteins (Mimitou
et al., 2019; Stoeckius et al., 2017), chromatin accessibility (Buenrostro et al., 2018; Cao
et al., 2018), DNA methylation (Clark et al., 2018) and protein-chromatin binding (Moudgil
et al., 2020; Xie et al., 2017). The combination of whole-transcriptome and whole-proteome
single-cell information is particularly exciting, given that mRNA abundance explains only a
small fraction of protein abundance in single cells (Gong et al., 2017; Yang et al., 2020). Fur-
thermore, 2D spatial information can now be recovered at a whole-transcriptome scale using
methods such as seqFISH+ (Eng et al., 2019), and even 3D information can now be captured
for hundreds of genes using STARMAP (Wang et al., 2018). These will be of direct impor-
tance for investigating perturbed HSC niches and their interaction with the bone-marrow
microenvironment. To date, very little work has been performed using these multiomics
approaches to look at haematopoietic perturbations, aside from the use of TARGET-seq to
profile a cell’s mutational status alongside its transcriptome (Rodriguez-Meira et al., 2019).
Epigenetic information in particular will be vitally important, and may provide evidence
for or against many of the hypotheses concerning HSCs presented in Chapter 4. Linking
mRNA levels to chromatin accessibility and methylation status will facilitate the inference of
links between regulatory elements and their gene targets, as well as highlighting transcription
factors responsible for driving the observed expression. These multiomics methods should
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see improved sensitivity and throughput over the next few years, and likely will replace
single modality datasets as a matter of course.

7.3.2 Increasing perturbation throughput using CRISPR

Mouse models of pre-leukaemic driver mutations - such as those analysed in this thesis -
can be difficult and time consuming to construct and functionally characterise. Given the
large diversity of somatic mutations observed in patients with haematological malignancies,
alternative approaches that allow a large number of perturbations to be assessed in the same
experiment have arisen. The Perturb-Seq and CRISP-seq methods (Dixit et al., 2016; Jaitin
et al., 2016) were the first to combine scRNA-seq with multiplexed CRISPR (clustered
regularly interspaced short palindromic repeats) screening, where a library of barcoded
guide RNAs target and knockout one of a pre-selected group of genes. By identifying
which cells are associated with which guide RNA, the transcriptional effects of knocking
out specific genes can be observed in a high throughout manner. Subsequent advances
using this idea have allowed specific pairs of genetic perturbations to be studied at a whole-
transcriptome scale (Boettcher et al., 2018; Datlinger et al., 2017; Giladi et al., 2018).
High-throughput analysis of combinatorial perturbations should provide clear insights into
why certain mutational combinations lead to leukaemia progression in patients, whilst others
do not (Ortmann et al., 2015). Recovering molecular regulatory networks from such data
remains computationally challenging, but has the potential to transform our understanding of
perturbed haematopoiesis. Unpublished data from the Göttgens group has perturbed over
30 haematopoietic transcription factors - mutations in many of which are associated with
leukaemic states - in a myelo-lymphoid progenitor cell line and attempted to decode the
underlying regulatory networks from the perturbed transcriptomes, uncovering previously
unknown molecular interactions.

7.3.3 Linking perturbed states to perturbed fates

Ultimately, answering the most fundamental questions about the topology of the haematopoi-
etic differentiation hierarchy cannot be done using snapshot data alone. Instead, information
is needed that can directly link a cell’s current state (via its transcriptome, epigenome, pro-
teome etc) to the future fate of the exact same cell. There is a currently a revolution of
methods that combine single-cell snapshot measurements (primarily still trascriptomics) with
single-cell lineage tracing, whereby a cell is labelled at a starting time point, and its clonal
progeny tracked at a later time point using the inherited label (Wagner and Klein, 2020).
This simultaneous measurement of state and fate potentially allows for global models of
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differentiation dynamics across an entire cellular system. These methods use DNA sequence
barcodes as labels for lineage tracing, which can then be retrospectively recorded as part
of high-throughput sequencing. As long as the barcodes have high enough complexity,
thousands of distinctly labelled clones can be investigated from a single sequencing exper-
iment. Furthermore, continuous labelling results in cumulative barcoding, whereby cells
obtain successively more labels over time. This greatly expands the possibilities for lineage
reconstruction from the sequenced barcodes.

The first wave of methods, including scGESTALT, ScarTrace and LINNAEUS (Alemany
et al., 2018; Raj et al., 2018; Spanjaard et al., 2018), used CRISPR-cas9 activity to generate
random insertions and deletions that could be used as barcodes. Subsequent approaches have
alternatively used genetic recombination or retroviral integration techniques, such as in the
PolyLox and LARRY methods (Pei et al., 2019; Weinreb et al., 2020). The latter method was
applied to wild-type haematopoietic progenitor cells to link early biases in gene expression
to a cell’s fate potential, focusing on the neutrophil/monocyte fate decision. Furthermore,
Weinreb et al. suggested that transcriptionally very similar MPPs exhibited clear bias towards
different fate choices, highlighting the limitations of standalone transcriptional landscapes.
Computational methods to make sense of clonal barcodes from single cells remain in their
infancy, with maximum-parsimony and maximum-likelihood models having been suggested
by various groups (Feng et al., 2019; Salvador-Martinez et al., 2019). However a number
of technical issues including barcode dropouts, non-uniform likelihood of specific barcodes
occurring and lack of barcode diversity currently hamper efforts to produce a gold-standard
method for lineage reconstruction from single-cells.

Excitingly, a study from the Camargo group recently presented an inducible CRISPR
lineage tracing mouse model that will be able to simultaneously interrogate lineage and
transcriptomic information in vivo (Bowling et al., 2020). Using this model, intrinsic fate
biases in fetal liver HSCs were observed, and it will surely play a role in supporting the
next generation of studies into native haematopoiesis (Lareau et al., 2020; Morcos et al.,
2020). However as of yet, no studies have focused on using this technology to look at
differences in lineage trees between steady-state and perturbed haematopoiesis. When this
data is available, it will be hugely exciting to try and link differences in fate biases to the
underlying transcriptomes of perturbed blood progenitors, therefore identifying the true
drivers of aberrant haematopoietic fate decisions.
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7.4 Concluding Remarks

The past decade has seen single-cell transcriptomics grow from a revolutionary idea to a
mature field in its own right. The study of haematopoiesis has greatly advanced as a result,
with new insights into cellular heterogeneity, differentiation pathways and fate decisions. In
the future, scRNA-seq will be combined with other single-cell modalities and time-resolved
measurements of differentiation to further advance our understanding of the blood system as
a whole.

This PhD thesis focused on the analysis of leukaemic perturbations to the haematopoietic
system through scRNA-seq. Ultimately, an improved understanding of how these perturba-
tions alter haematopoiesis will form the basis for new therapies aimed at treating patients
with blood disorders. To this end, a integrative computational framework for the analysis
of single-cell perturbation experiments was built, revealing a range of significant cellular
abundance shifts in response to specific leukaemic driver mutations. Molecular integration of
gene expression changes highlighted coordinated gene modules associated with perturbation
response at different stages of differentiation. Furthermore, analysis of a combinatorial
perturbation showcased the complexity that arises across the blood progenitor landscape as a
result of successively accumulated mutations, with direct relevance to the onset of leukaemia
in human patients. Since many key fate decisions occur in the HSC and MPP compartments,
a detailed analysis of perturbation response in these cells revealed changes in both gene
expression and variability that correlated with differentiation skewing in downstream pop-
ulations. A conserved cellular shift towards more active MPP1 states was also observed,
alongside cell-cycle alterations that correlated with large cell-cycle transformations along the
erythroid trajectory.

Overall, this thesis has introduced a range of new computational techniques for pertur-
bation analysis and trajectory inference from scRNA-seq data. These have led to a number
of novel biological hypotheses concerning pre-leukaemic states of haematopoiesis. It is
hoped that these insights will pave the way for new experiments that further elucidate our
understanding of leukaemia progression.
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