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Abstract

This paper concerns linear models for grouped data with group-specific effects. We
construct a portmanteau test for the null of no within-group correlation beyond that
induced by the group-specific effect. The approach allows for heteroskedasticity and is
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test compares favorably. In a simulation study we find that, under heteroskedasticity,
only our procedure yields a test that is both size-correct and powerful. In a large
data set on mothers with multiple births we find that infant birthweight is correlated
across children even after controlling for mother fixed effects and a variety of prenatal
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1 Introduction

The standard linear model for stratified observations on many small independent groups is

yg,i = x′g,iβ + ηg,i, g = 1, . . . , n, i = 1, . . . ,m.

Although we do not make it explicit in the notation, everything to follow extends readily to

unbalanced data; a discussion on this follows. The errors are likely to be correlated within

groups. A standard approach (Moulton, 1986) is to model such dependence through the

error-component form

ηg,i = αg + εg,i,

where αg is a group-specific effect and the errors εg,i are assumed uncorrelated within each

group. We will allow for arbitrary dependence between the αg and the xg,i within the

groups. This formulation restricts the pairwise within-group covariances to be constant, a

restriction that is seldomly tested.

There are several tests for the presence of a group effect ( Moulton and Randolph 1989,

Akritas and Arnold 2000, Akritas and Papadatos 2004, Orme and Yamagata 2006, 2013) as

well as direct estimators of the variance of group effects (Kline, Saggio and Sølvsten 2018)

that are interesting in their own right (for example, in the teacher value-added literature;

see Hanushek and Rivkin 2010) and can be used to construct within-between variance

decompositions that are standard in the random-effect model. These procedures all break

down when the εg,i are correlated within groups, however. Likewise, the validity of many

estimators of β hinges on the absence of serial correlation; examples include the popular

instrumental-variable estimators of Anderson and Hsiao (1981), Holtz-Eakin, Newey and

Rosen (1988), and Arellano and Bond (1991). Furthermore, even if the estimator of β

is robust to serial correlation, the use of cluster-robust standard errors (Liang and Zeger

1986, Arellano 1987) for inference can lead to substantial power loss and much inflated

confidence regions when the errors are, in fact, uncorrelated; see Wooldridge (2003) and

Stock and Watson (2008) for discussion and numerical illustrations and Berk, Brown, Buja,

Zhang and Zhao (2013) and McCloskey (2017) for inference after model selection of this
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kind. Of course, the presence of correlation in the errors may also be a reflection of model

misspecification that is of interest to detect, as in the time-series literature (using, say, the

test of Ljung and Box 1978).

In this paper we develop a test of the null of no within-group correlation beyond that

induced by the group-specific effect that has good sampling properties in settings where n is

large but m is small. This fixed-m framework is the suitable asymptotic paradigm for micro

data and is complicated by the inability to well-estimate the group-specific effects. This is

a manifestation of the incidental-parameter problem (Neyman and Scott, 1948) that causes

the standard correlation tests from the time-series literature to be inapplicable here. Using

a portmanteau test is of interest if no strong stand can be taken on the particular form

of correlation that should serve as the alternative. This is relevant in many applications,

especially when the observations for a given group do not have a natural ordering (such as

time, for example).

The test statistic we construct uses (estimators of) all linearly-independent differences

between pairwise within-group covariances. Linear combinations of a subset of the moment

conditions underlying our test statistic yield the test statistics of Arellano and Bond (1991),

which can be used to test against non-zero qth-order autocorrelation in the first-differenced

errors, as well as the joint test for correlation at multiple lags as discussed in Yamagata

(2008). Because first-differencing introduces first-order autocorrelation also under the null

such a test can only be constructed for q ≥ 2. Furthermore, at least q + 2 observations

per group are needed to construct a meaningfull test for qth-order autocorrelation. Hence,

a four-wave panel is needed to construct the statistic for q = 2, and a five-wave panel is

needed for a joint test. In contrast, our test can be applied as soon as three observations

per group are available.

Inoue and Solon (2006) proposed a portmanteau test for our null under the additional

assumptions that the covariates are strictly exogenous and the errors are homoskedastic.

Their test statistic depends on a regularization parameter that can severly affect power.

The available tests against specific alternatives (still in the context of static models and

under the maintained assumption of homoskedasticity) are discussed in Born and Breitung
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(2016). The approach proposed here allows for heteroskedasticity of arbitrary form and

only requires the estimator of β used to be asymptotically linear. As such, it can be

applied to models with exogenous, predetermined, or endogenous regressors (provided, of

course, that suitable instrumental variables are available). To the best of our knowledge, a

comparable test does not exist in the literature. Relaxing the constant variance requirement

is not a mere technical detail, as it is a strong and often unrealistic restriction to impose.

One situation where heteroskedasticity will arise is when the error process is not in its

steady state; this is typical in short panels. A second situation is one where errors are

conditionally heteroskedastic and some of the regressors are non-stationary. An example

here would be a wage regression where the regressors by default include such characteristics

as age, tenure and experience, and number of children, all of which are non-stationary. Born

and Breitung (2016) have developed a test for first-order autocorrelation that is size-correct

under heteroskedasticity. Unfortunately, this test has very low power in short panels, even

against the first-order moving-average and autoregressive alternatives for which it was

designed (see the simulations also below).

We provide asymptotic power calculations for three-wave and four-wave data. They

give further insight in the behavior of our test and are subsequently used to compare its

power to the regression-based test of Wooldridge (2002), the portmanteau test of Inoue and

Solon (2006), and the m2-statistic of Arellano and Bond (1991). The power comparisons

reflect favorably on our test. Furthermore, in a simulation study with heteroskedasticity

we compare our test with the test of Born and Breitung (2016) for various sample sizes;

ours exhibits superior power across all designs and all alternatives. Finally, using data

from Abrevaya (2006), we find substantial evidence for correlation across the birthweight

of infants from mothers with multiple children, after controlling for mother heterogeneity

and a set of prenatal care indicators. This finding invalidates the estimates of the between

component of a variance decomposition of birthweight and casts doubt on the ability of

a fixed-effect approach to account for all latent factors that drive the mother’s decision

to engage in activities that can have detrimental effects on the infant’s health, such as

smoking.
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2 Testing for within-group correlation

For notational simplicity we maintain a balanced panel. It will become apparent when the

test statistic is introduced that unbalanced data (possibly with gaps) does not cause any

complication. This, together with its portmanteau nature, makes the test well suited for

general data with a group structure; examples are students in classrooms and members of

households.

Testing in the one-way analysis of variance model. We initially consider the model

ηg,i = αg + εg,i, g = 1, . . . , n, i = 1, . . . ,m, (2.1)

where ηg,i is directly observable, as in Cox and Solomon (1988), for example. Later we

will replace ηg,i by a suitable estimator. In (2.1), αg represents a group-specific unobserved

effect while εg,i is a latent idiosyncratic error that varies both across and within groups.

The standard error-component formulation assumes that all variables are independent and

identically distributed, both across and within groups (as in Arellano 2003, Chapter 3). We

will maintain this assumption across groups but will only impose E(εg,i|αg) = 0 for each

group.1 Our aim is to test the (composite) null hypothesis

E(εg,i1εg,i2) = 0 for all i1 6= i2, (2.2)

which states that there is no within-group correlation beyond the correlation induced by

the group-specific effect.

The presence of αg implies that a test of (2.2) based on covariances of the levels of ηg,i

will not be suitable. However, when iterating expectations using E(εg,i|αg) = 0 we see that

E(ηg,i1(ηg,i2 − ηg,i3)) = E(εg,i1(εg,i2 − εg,i3)) = E(εg,i1εg,i2)− E(εg,i1εg,i3). (2.3)

1Random sampling at the group level can be relaxed. It suffices to assume that the ηg,i are independent

but not identically distributed across groups for our approach to go through—under suitable strengthening

of the assumptions required for a law of large numbers and central limit theorem to apply. We refrain from

such a sampling assumption here for ease of exposition.
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For any i1 6= i2 6= i3 this is the difference between two covariances. There are m(m− 1)/2

different covariances and, hence,

r :=
m(m− 1)

2
− 1 =

(m+ 1)(m− 2)

2

linearly-independent differences. These differences are all zero if and only if we have that

E(εg,i1εg,i2) = δ for all i1 6= i2 and some constant δ. Aside from this, testing (2.2) is

equivalent to testing the alternative null that all r linearly-independent differences of the

form in (2.3) are equal to zero. Lack of power against constant within-group covariance is

unavoidable in the presence of group-specific effects and is shared by the other available

test, including those by Wooldridge (2002) and Drukker (2003) and by Inoue and Solon

(2006).

A convenient way to re-write the null that all the differences between covariances are

zero is as follows.2 Introduce the (m− 1)× r matrix

Hg :=



0 0 0 0 · · · 0 · · · 0 ηg,3 0 · · · 0

ηg,1 0 0 0 0 0 0 ηg,4
...

0 ηg,1 ηg,2 0 0 0
...

. . . 0
...

. . .
... 0 0 ηg,m

0 0 0 0 · · · ηg,1 · · · ηg,m−2 0 0 · · · 0


,

and collect all errors for a given group in the vector ηg := (ηg,1, . . . , ηg,m)′. Let D denote

the (m − 1) × m matrix first-difference operator, so Dηg = (∆ηg,2, . . . , ∆ηg,m)′, where

∆ηg,i := ηg,i − ηg,i−1. We then test the r-dimensional null

E(vg) = 0, vg := HgDηg. (2.4)

This approach delivers testable moments as soon as more than two observations per group

2Our null is equivalent to the set of moment conditions E(ηg,i1(ηg,i2 − ηg,i3)) = 0, for i1 6= i2 6= i3, but

only r of these equations are linearly independent. Our formulation in (2.4) is not the only way of selecting

r such moments but is notationaly convenient. Note that any other way would yield (numerically) the

same test statistic.
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are available.3

Observe that moments of the form

E(∆ηg,i∆ηg,i−q) = 0 for 1 < q ≤ i− 2,

are linear combinations of a subset of those in (2.4). These are qth-order autocovariances

of ∆εg,i. Arellano and Bond (1991) suggested testing for qth-order autocorrelation by

evaluating whether the corresponding sample moment can be considered large relative to its

standard error. The resulting test statistic is known as the mq-statistic. Yamagata (2008)

proposed to combine all available mq-statistics into a single test procedure. By consequence,

his moment conditions are also nested in (2.4). Notice that, as first-differencing introduces

autocorrelation of order one under the null a sensible mq-statistic can only be constructed

for q ≥ 2. Furthermore, the m2-statistic requires m ≥ 4 observations per group. The

mq-statistic is available if m ≥ q + 2. Hence, for the joint approach of Yamagata (2008) to

be different from the m2-statistic one needs panel data that consists of at least five waves.

Our test statistic for the null (2.4) is the quadratic form

sn :=

(
n∑
g=1

vg

)′( n∑
g=1

vgv
′
g

)−1( n∑
g=1

vg

)
,

and its large-sample behavior, as the number of groups n grows, is summarized in Theorem

1 below. If desired, a centered version of the weight matrix can be used in the construction

of sn.

In the theorem we consider sequences of local alternatives where

E(εg,i1εg,i2) =
σi1,i2√
n

3An alternative way to arrive at (2.4) is by noting that

E(ηg,i1ηg,i2) = E(α2
g) + E(εg,i1εg,i2).

Because the distribution of αg is left unrestricted this equation, in itself, is not of direct use. However, the

panel dimension allows to difference-out the second moment of the group-specific effect, yielding differences

of the form

E(ηg,i1∆ηg,i2) = E(εg,i1∆εg,i2),

which lead to (2.4).
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and σi1,i2 is non-zero for at least one pair of indices i1 6= i2 (and non-constant). We write

the resulting Pitman drift in the moment condition as

E(vg) =
δ√
n
. (2.5)

Here and later we denote the non-central χ2-distribution with q degrees of freedom and

non-centrality parameter c by χ2(q, c).

Theorem 1. Suppose that E(α4
g) <∞, E(ε4g,i) <∞, and that V := E(vgv

′
g) has maximal

rank r.

(i) If the null (2.4) holds sn
L→ χ2(r, 0).

(ii) Under a sequence of local alternatives as in (2.5) sn
L→ χ2(r, δ′V −1δ).

Proof. See the Appendix.

The result implies that a test that has size α ∈ (0, 1) in large samples can be constructed

by comparing sn to the (1− α)th quantile of the χ2(r, 0) distribution, rejecting the null if

the statistic is larger than the quantile in question. Such a test is asymptotically unbiased,

consistent against any fixed alternative, and has non-trivial asymptotic power against any

Pitman sequence.

When the panel is unbalanced some of the entries of the vector vg will be missing for

some groups. Setting such entries to zero (i.e., retaining only the non-missing data), our

test remains consistent provided that the number of groups for which we observe ηg,i1∆ηg,i2

grows large for each pair (i1, i2) that features in (2.4) (of course, under the assumption that

the missingness is at-random).

Testing in the one-way regression model. We now generalize (2.1) to the regression

setting

yg,i = x′g,iβ + ηg,i, ηg,i = αg + εg,i,

where yg,i and xg,i are an observable outcome and p-vector of covariates, respectively, and

ηg,i is now the latent error term. Suppose that an estimator β̂ of the coefficient vector β is
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available. Then we may use the residuals

eg,i := yg,i − x′g,iβ̂

as estimators of the ηg,i and construct the test statistic based on these residuals. We

will require the estimator β̂ to be asymptotically linear under the null and under local

alternatives of the form in (2.5), i.e., that

√
n(β̂ − β) =

n∑
g=1

ωg√
n

+ oP (1) (2.6)

for a random variable ωg that has finite variance and zero-mean under our null, but may

have non-zero mean under local deviations from our null. This is a very mild requirement

as all commonly-used estimators satisfy it (of course, under suitable regularity conditions,

see Newey 1985). When the covariates are strictly exogenous, for example, a natural

estimator of β would be the within-group least squares estimator. This estimator is robust

to within-group correlation. In contrast, when the covariates are only pre-determined, the

instrumental-variable estimators described in Holtz-Eakin, Newey and Rosen (1988), which

are based on moment conditions of the form E(zg,i∆ηg,i) = 0 for zg,i := (x′g,i−2, . . . ,x
′
g,1)
′

(or a subvector thereof, as in Anderson and Hsiao 1981) and all 1 < i ≤ m, will generally

be asymptotically biased under local alternatives as in (2.5).

To set up our test statistic based on residuals we first define, in analogy to Hg and ηg,

Eg :=



0 0 0 0 · · · 0 · · · 0 eg,3 0 · · · 0

eg,1 0 0 0 0 0 0 eg,4
...

0 eg,1 eg,2 0 0 0
...

. . . 0
...

. . .
... 0 0 eg,m

0 0 0 0 · · · eg,1 · · · eg,m−2 0 0 · · · 0


and eg := (eg,1, . . . , eg,m)′. These allow us to construct v̂g := E′gDeg, which is the plug-in

estimator of vg = H ′gDηg. The use of residuals requires modifying the weight matrix in

the quadratic form of the test statistic, however. In the proof to Theorem 2 we show that

n∑
g=1

v̂g =
n∑
g=1

(vg +Ωωg) + oP (
√
n), (2.7)
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where the r × p Jacobian matrix

Ω := E (∂vg/∂β
′) = E(Ḣ

′
g(Ip ⊗Dηg))− E(H ′gDXg)

features Ḣg :=
(
∂H ′g/∂β1, . . . , ∂H

′
g/∂βp

)′
and Xg := (xg,1, . . . ,xg,m)′, and we use Ip to

denote the p × p identity matrix. Each of the matrices ∂Hg/∂βq is of the same form as

Hg, only with ηg,i replaced by the qth-entry of ∂ηg,i/∂β = −xg,i. A plug-in estimator of

Ω is easily constructed as

O :=
1

n

n∑
g=1

Ḣ
′
g(Ip ⊗Deg)−

1

n

n∑
g=1

E′gDXg.

Thus, with ω̂g denoting an estimator of the influence function ωg, our test statistic based

on residuals is

ŝn :=

(
n∑
g=1

v̂g

)′( n∑
g=1

(v̂g +Oω̂g)(v̂g +Oω̂g)
′

)−1( n∑
g=1

v̂g

)
.

Here, ω̂g will depend on the problem at hand. If residuals are constructed using the

within-group estimator, for example, then ω̂g = (n−1
∑n

g=1X
′
gMXg)

−1X ′gMeg, where

M := IN −D ′(DD ′)−1D , the matrix that transforms observations into deviations from

their within-group mean.

Theorem 2 summarizes the large-sample properties of the test statistic ŝn. We let

δ̃ := δ+Ω E(ωg) and use ‖·‖ to denote both the Euclidean norm and the Frobenius norm.

Theorem 2. Suppose that E(α4
g) <∞, E(ε4g,i) <∞, and E(‖xg,i‖4) <∞, that (2.6) holds

and that n−1
∑n

g=1‖ω̂g − ωg‖2 = oP (1), and that Ṽ := E((vg + Ωωg)(vg + Ωωg)
′) has

maximal rank r.

(i) If the null (2.4) holds ŝn
L→ χ2(r, 0).

(ii) Under a sequence of local alternatives as in (2.5) ŝn
L→ χ2(r, δ̃

′
Ṽ
−1
δ̃).

Proof. See the Appendix.

Theorem 2 differs from Theorem 1 in the local-power result. Estimation noise in β̂ changes

the weight matrix in the non-centrality parameter. This change is independent of the

10



alternative under consideration. Local power will be further affected if β̂ suffers from

asymptotic bias under the alternative. The extent to which this happens depends on the

alternative in question. The degree to which both channels matter is governed by the

Jacobian matrix Ω. Estimation of β will have no (asymptotic) impact on the properties

of our test if Ω is equal to the zero matrix. This would happen, for example, when the

covariates are strictly exogenous and the effect αg is orthogonal to all the ∆xg,i, as in the

random-effect model (Arellano, 2003, Chapter 3). In this case, Theorem 2 collapses to

Theorem 1.

3 Power comparisons

In this section we provide power comparisons in the random-effect model for three-wave

and four-wave data. The appendix provides detailed power calculations for a dynamic

model as an additional example.

Power calculations. We first calculate asymptotic power in specific cases for three-wave

panels. In this case we test two moment conditions. Suppose that αg ∼ independent (0, γ2)

and that the errors are generated according to the (non-stationary) moving-average process

of order one

εg,i = ug,i + θ ug,i−1, ug,i ∼ independent (0, σ2
i ).

Then

E(vg) = E

 ηg,1∆ηg,3

ηg,3∆ηg,2

 = θ

 −σ2
1

σ2
2

 ,

which is zero if and only if the errors are uncorrelated, i.e., θ = 0. Further, under the null,

V =

 (γ2 + σ2
1)(σ2

3 + σ2
2) −σ2

1σ
2
3 − γ2σ2

2

−σ2
1σ

2
3 − γ2σ2

2 (γ2 + σ2
3)(σ2

1 + σ2
2)

 .

The non-centrality parameter of the limit distribution under local alternatives then equals

θ2
σ4
1(γ2 + σ2

3)(σ2
1 + σ2

2)− 2σ2
1σ

2
2(σ2

1s
2
3 + γ2σ2

2) + σ4
2(γ2 + σ2

1)(σ2
2 + σ2

3)

(γ2 + σ2
1)(γ2 + σ2

3)(σ2
1 + σ2

2)(σ2
2 + σ2

3)− (σ2
1s

2
3 + γ2s22)

2
,
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which is independent of σ2
0 but otherwise complicated. When the errors are homoskedastic

the non-centrality parameter becomes

2

3

θ2

1 + γ2/σ2
.

Consequently, power is monotone increasing in |θ| and decreasing in the ratio γ2/σ2. Both

these findings are intuitive. When we set γ2 = 0 but allow the errors to be heteroskedastic

the non-centrality parameter equals

θ2
σ2
2

(
σ2
2

σ2
3

+ 1
)

+ σ2
1

(
σ2
1

σ2
2
− 1
)

σ2
1 + σ2

2 + σ2
3

.

Power is sensitive to the variances of the innovations. For example, an increase in σ2
3,

ceteris paribus, will always cause power loss while changes in σ2
1 and σ2

2 can be both power

enhancing and power reducing.

Given an expression for the non-centrality parameter we can approximate the power

function of our test for any given sample size n. The left plot in Figure 1 shows the power

of a 5%-level test, plotted as a function of θ, for 100 observations, no group-specific effects,

and three choices of the variance parameters. The horizontal dotted line marks the size

of the test. The solid line corresponds to the stationary case where σ2 = 1 and shows

substantial power. The dashed line is for a case where the variances increase, with σ2
1 = 1,

σ2
2 = 2, and σ2

3 = 3. In this case power is slightly lower than in the stationary case. The

dashed-dotted line is for the reverse case where the cross-sectional variances decrease from

three down to one. This yields a uniformly-superior power curve relative to the stationary

case.

Now suppose that the errors are generated via the first-order autoregressive specification

εg,i = ρ εg,i−1 + ug,i, ug,i ∼ independent (0, σ2
i ),

where εg,0 ∼ independent (0, σ2
0). Then

E(vg) = E

 ηg,1∆ηg,3

ηg,3∆ηg,2

 = −(1− ρ) ρ

 ρ2σ2
0 + σ2

1

ρ3σ2
0 + ρσ2

1

+

 0

ρσ2
2

 .
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Figure 1: Power calculations
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Figure notes. Left plot: stationary data (solid line), increasing heteroskedasticity (dashed line), and

decreasing heteroskedasticity (dashed-dotted line). Right plot: stationary data (solid line), constant initial

conditions (dashed line), variance jump in second wave (dashed-dotted line). The size of the test (.05) is

indicated by a horizontal dotted line.

This will be non-zero for any value of the autoregressive parameter except zero. This

includes the random-walk alternative. The non-centrality parameter in Theorem 1 can

again be computed using the same matrix V as was used above. However, the resulting

expression is long and difficult to interpret. When the process is stationary the expression

reduces to

E(vg) = σ2%

 −1

1

 ,

with % := ρ/(1 +ρ), which lives on (−∞, 1
2
). Then the non-centrality parameter is equal to

2

3

%2

1 + γ2/σ2
.

An alternative where % = h/
√
n for some h corresponds to an autoregressive parameter that

satisfies ρ = h/
√
n+O(n−1). This result implies that the moving-average and autoregressive

alternatives are locally asymptotically equivalent. Godfrey (1981) and Yamagata (2008)

have reached the same conclusion, albeit for different tests.

The right plot in Figure 1 provides power approximations for three configurations of

13



the autoregressive process—again for n = 100 and no group-specific effects—plotted as

a function of ρ. The solid line is again for the stationary setting. This power curve is

asymmetric, with power against a given ρ > 0 being lower than against −ρ < 0. This can

be explained by the fact that |%| is asymmetric in ρ. It takes on large (negative) values

for ρ < 0 and small values for ρ > 0. Non-stationarity can be a source of power against

autoregressive alternatives. The dashed power curve corresponds to the case where σ2
0 = 0

and all other variances are equal to unity. Setting all initial conditions to zero yields power

against near unit-root alternatives. In the unit-root case the Pitman drift depends only

on σ2
2 and so a larger value would be expected to yield more power close to unity. The

dashed-dotted curve illustrates this by showing power when σ1 = σ2
3 = 1, σ2

2 = 2, and

σ2
0 = 1/(1− ρ2).

Power comparisons. Under the null of no within-group correlation the first-differenced

errors are autocorrelated at first-order (but not beyond). When errors are homoskedastic

this correlation equals −1
2
. A simple and popular alternative approach in this setting is

to test whether t := corr(∆ηg,i, ∆ηg,i−1) is different from −1
2
. This test was introduced in

Wooldridge (2002, p. 282–283) and further discussed in Drukker (2003). Simple calculations

reveal that

t = −1

2
+

1

2

θ

1− θ + θ2

under moving-average alternatives, while

t = −1

2
+

1

2
ρ

when the errors follow an autoregression of order one. In both classes of alternatives

autocorrelation is most pronounced at first order. This makes Wooldridge-Drukker test the

primary competitor. If we assume that εg,i ∼ i.i.d.N(0, σ2), then, under local alternatives,(
t̂+

1

2

)2
L→ χ2

(
1,

4

3

(
t+

1

2

)2
)
,

where t̂ denotes the first-order sample correlation coefficient. Inspection of how t varies with

θ shows that power is asymmetric, with power being higher against θ > 0 than against the
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Figure 2: Power comparison with the Wooldridge-Drukker statistic
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Figure notes. Our test for γ2 = 0 (solid line), γ2 = 1 (dashed line), and γ2 = 2 (dashed-dotted line), and

the Wooldridge-Drukker test (dotted line). The size of the tests (.05) is indicated by a horizontal dotted

line.

corresponding −θ. This asymmetry does not arise with autoregressive alternatives. Figure

2 presents power comparisons for sample sizes of n = 100. Power is plotted for our test

with γ2/σ2 = 0 (solid line), γ2/σ2 = 1 (dashed line), and γ2/σ2 = 2 (dashed-dotted line)

and for the test of Wooldridge (2002) and Drukker (2003) (dotted line). The curves clearly

illustrate our findings.

The Wooldridge-Drukker test is not a portmanteau test. It will have no power when

serial correlation manisfests itself only at higher order. It will also have no power against

alternatives where E(εg,i εg,i−1) = E(εg,i εg,i−2), for example. The latter situation arises, for

example, in the moving-average process of order two,

εg,i = ug,i + θ1ug,i−1 + θ2ug,i−2, ug,i ∼ independent(0, σ2),

when θ1 = θ2/(1 + θ2). Indeed, here, t = −1
2

for any value of θ2. The portmanteau test

of Inoue and Solon (2006) can be seen as a generalization of the Wooldridge-Drukker test.

It evaluates whether the correlations between εg,i1 − εg and εg,i2 − εg are different from

−1/(m − 1), where εg is the within-group average of the errors. The Inoue and Solon

(2006) test depends on a regularization parameter that serves to handle the fact that the
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demeaned errors sum to zero within each group. With three waves their procedure yields

three possible tests statistics, say t(1,2), t(1,3), and t(2,3). The statistic t(i1,i2) tests the null

that

corr((εg,i1 − εg), (εg,i2 − εg)) = −1/(m− 1).

In stationary designs t(1,2) and t(2,3) will have the same limit behavior. Calculations reveal

that

t(1,2)
L→ χ2

(
1,

(
1

3
d

)2
)
, t(1,3)

L→ χ2

(
1,

(
2

3
d

)2
)
,

where d = θ for moving average alternatives and d = % for autoregressive alternatives.

In both cases, t(1,3) is revealed to be much more powerful than t(1,2) and t(2,3). Figure 3

provides a power comparison between our test and the Inoue and Solon (2006) test. The

power curves for our test co-incide with those in Figure 2. The power curves for the Inoue

and Solon (2006) tests (dotted lines) carry a marker to indicate which test statistic is

used; upward triangles are for t(1,2) and t(2,3) while downward triangles are for t(1,3). The

power difference between the different Inoue-Solon tests is substantial. The Inoue and

Solon (2006) test can be much less powerful than our proposal if the wrong version of their

statistic is used. Unfortunately, which statistic will deliver maximal power depends on the

alternative, in general.

For a four-wave panel we can compare the power of our test to the m2-statistic of

Arellano and Bond (1991) (which, here, co-incides with the test of Yamagata 2008). It

tests the single moment condition E(∆ηg,2∆ηg,4) = 0. The (square of the) m2-statistic

equals (∑n
g=1∆ηg,2∆ηg,4∑n
g=1∆η

2
g,2∆η

2
g,4

)2

and has a χ2(1, 0) limit distribution under the null. Under local moving-average alternatives

of the same type as before the non-centrality parameter is

θ2
σ4
2

(σ2
1 + σ2

2)(σ2
3 + σ2

4)
,

which reduces to θ2/4 under homoskedasticity. In contrast, our procedure tests five moment
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Figure 3: Power comparison with the Inoue-Solon statistic
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Figure notes. Our test for γ2 = 0 (solid line), γ2 = 1 (dashed line), and γ2 = 2 (dashed-dotted line), and

the Inoue-Solon tests (dotted line with triangular markers). The size of the tests (.05) is indicated by a

horizontal dotted line.

conditions, and the non-centrality parameter of its limit distribution equals

3

2

θ2

1 + γ2/σ2
.

The left plot in Figure 4 provides the power curves for our test statistic (solid line) and for

the m2-statistic (dashed line), again for a sample of size n = 100 and γ2 = 0. Our approach

is seen to be uniformly more powerful. As γ2/σ2 increases relative power decreases, in line

with the left plot in Figure 2

Under stationary autoregressive alternatives,

E(∆ηg,2∆ηg,4) = −% (1− ρ)σ2,

and the non-centrality parameter for violations of the moment condition is

1

4
(%(1− ρ))2.

This expression is non-monotone in ρ. Furthermore, it approaches zero as ρ → 1 and so

the m2-statistic will have low power against near unit-root alternatives. The non-centrality
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Figure 4: Power comparison with the m2-statistic
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Figure notes. Our test (solid line) and the Arellano-Bond test (dashed line). The size of the tests (.05) is

indicated by a horizontal dotted line.

parameter for our test statistic in this context equals

3

2

%2

1 + γ2/σ2

(
1 +

2

3
ρ+

5

9
ρ2
)
.

This is strictly larger than the non-centrality parameter for three-wave data for all ρ. The

right plot in Figure 4 —again for n = 100 and γ2 = 0—confirms the poor power of the

m2-statistic against positive autocorrelation patterns and shows favorable power for our

test.

Simulations. We next provide results from a simulation experiment on a heteroskedastic

regression model. We generated outcomes via yg,i = i− .05i2 +αg +εg,i, where αg ∼ N(0, 1)

and the errors follow the moving-average process

εg,i = ηg,i + θ ηg,i−1, ηg,i ∼ N(0, i−1/3).

A motivation for this specification is a canonical regression of (log) wage on a quadratic

polynomial in age/experience. Expected wages exhibit decreasing returns to age and the

variance of wages decreases with age. In terms of our general model this corresponds to

xg,i = (i, i2)′ , β = (1,−.05)′, and heteroskedasticity. We estimate β by the within-group

estimator.
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Figure 5: Simulated power against moving-average alternatives
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Figure notes. Our test (solid line), the Inoue-Solon test (dashed line), and the Born-Breitung test for

first-order autocorrelation (dashed-dotted line). The size of the tests (.05) is indicated by a horizontal

dotted line.

19



Figure 5 provides power curves (as obtained over 10,000 Monte Carlo replications)

for our test based on ŝn (solid line), the test of Inoue and Solon (2006) (dashed line)

implemented with the regularization parameter set as in Inoue and Solon (2006, p. 841)

(which is also how it is implemented in Stata), and the heteroskedasticity-robust version

of the Wooldridge-Drukker test due to Born and Breitung (2016). These would appear the

most relevant comparisons here. Clockwise, the plots deal with m = 3, 6, 9, 12 and n = 250.

The test of Born and Breitung (2016) requires m ≥ 4, which explains why a power curve

for this test is absent from the upper-left plot.

The simulation results confirm that our approach delivers a test that is both size correct

and powerful. The Inoue and Solon (2006) test suffers from size distortion (which worsens

as n grows), which arises as a consequence of the heteroskedasticity. The test of Born and

Breitung (2016), although size correct, suffers from very low power against virtually all

alternatives, and does so for all sample sizes considered. Power does increase with m but

does so very slowly. This suggests that this test is not well suited to detect within-group

correlation in micropanels.

We also present power against autoregressive alternatives of the form

εg,i = ρ εg,i−1 + ηg,i, ηg,i ∼ N(0, i−1/3).

where we initialize each process with εg,0 ∼ N(0, 1). The results are presented in Figure

6 and are in line with those obtained for moving-average alternatives. The Inoue and

Solon (2006) test is size distorted while the Born and Breitung (2016) test is incapable of

detecting moderate deviations from the null. Furthermore, here, its power curve displays

quite erratic behavior to the right of zero which, in addition, depends heavily on the length

of the panel. Our test controls size in all cases and has good power against all deviations

from the null.
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Figure 6: Simulated power against autoregressive alternatives
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Figure notes. Our test (solid line), the Inoue-Solon test (dashed line), and the Born-Breitung test for

first-order autocorrelation (dashed-dotted line). The size of the tests (.05) is indicated by a horizontal

dotted line.
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Table 1: Descriptive statistics

Variable mean sd min max

weight 3,489 536.7 290 5,925

smokes 0.112 0.316 0 1

n cigarettes 1.837 8.237 0 99

age 28.67 5.349 14 46

male 0.514 0.500 0 1

novisit 0.0114 0.106 0 1

pretri2 0.134 0.340 0 1

pretri3 0.0258 0.159 0 1

adeqcode2 0.192 0.394 0 1

adeqcode3 0.0541 0.226 0 1

4 Empirical illustration

Infering the effect of smoking on birth outcomes is complicated by latent characteristics

that are likely to be correlated with the mother’s decision to smoke. The early literature has

aimed to tackle this problem via instrumental variables; see Permutt and Hebel (1989), and

Currie and Gruber (1996) and Reichman and Florio (1996) for related work. An alternative

approach, taken by Abrevaya (2006), is to fit a fixed-effect model to data on mothers with

multiple children. Exploiting repeated measurements is a powerful device in this context

as it allows to control for all unobserved characteristics of the mother that are constant

across births.

As data on mothers with two children is uninformative for our purposes we restrict the

sample of Abrevaya (2006) to mothers with three children (a larger number was not observed

in these data). This yields three observations on 12, 360 mothers. Such a dimension fits our

asymptotic approximation very well. Table 1 provides a summary of the variables in the

data. weight is the newborn’s weight (in grams). smokes is a binary variable indicating

whether or not the mother smokes and n cigarettes is the number of cigarettes smoked

(per day). The control variables that vary across births for a given mother are the age of

the mother (in years) (age), the newborn’s gender (male) together with several variables
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that aim to measure the extent to which the mother took adequate prenatal care. These

are novisit, a dummy that switches on if no prenatal visit occured, pretri2 and pretri3,

which state that prenatal visits occured in the second and third trimester, respectively, and

adeqcode2 and adeqcode3, which indicate whether the so-called Kessner index equals two

or three, respectively. The Kessner index is a categorical measure for adequacy of prenatal

care which is based upon length of gestation, number of prenatal visits and date of initial

prenatal visit. The three categories of the Kessner index are ‘adequate’ (a value of one),

‘intermediate’ (a value of two) and ‘inadequate’ (a value of three).

Table 2 summarizes the results of fitting a standard random-effect and a fixed-effect

model to these data. The sign on the coefficients is as expected. Most notably, smoking

has a substantially negative impact on birthweight. The table also provides p-values for

the null that there is no unobserved mother heterogeneity. Under both specifications this

null is strongly rejected. Furthermore, both the random-effect and the fixed-effect model

associate a large fraction of the variation in birthweight to latent heterogeneity at the level

of the mother, 39% and 49%, respectively.

In these data our test statistic for the null of no within-mother correlation tests two

moment restrictions. The statistic takes the value 112.64, giving very strong evidence

against our null (the test of Inoue and Solon (2006), on the other hand, gives a p-value

of .059). Consequently, it is very likely that additional unobserved heterogeneity that

is not captured by the inclusion of mother-specific effects is present in these data. One

implication of this is that the attribution of half of the variation in birthweight to mother

heterogeneity is not theoretically justified. A second consequence is that the random-effect

model is misspecified. The fixed-effect estimator (with clustered standard errors) is robust

to deviations from the null provided that the errors are mean independent of the regressors.

Given the endogeneity concerns that are central to this literature, another interpretation

of our test result is that the use of a fixed-effect strategy to identify the causal effect

of smoking on infant health need not be sufficient to solve the omitted-variable problem

described by Abrevaya (2006).
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Table 2: Regression results

Dependent variable: birthweight

Independent variable RE FE

smokes -241.3 -153.3

(11.23) (18.43)

n cigarettes 0.00565 -0.471

(0.381) (0.493)

male 134.8 135.8

(4.741) (5.158)

age 36.73 23.32

(4.773) (7.305)

agesq -0.373 -0.103

(0.0822) (0.122)

novisit 12.56 15.93

(30.73) (39.27)

adeqcode2 -79.85 -69.28

(9.435) (10.97)

adeqcode3 -168.8 -116.1

(20.10) (24.05)

pretri2 72.01 52.09

(11.06) (12.53)

pretri3 144.6 109.3

(24.72) (29.21)

no heterogeneity .0000 .0000

between contr. .3922 .4996

Table notes. Standard errors are in parentheses. for the fixed-effect estimator these are clustered at

the level of the mother. The entries for ’no heterogeneity’ are p-values for the null of no mother-specific

unobserved heterogeneity. The entries for ’between contr.’ give the estimated fraction of the variance that

is due to between heterogeneity.
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Appendix

Proof of Theorem 1. The proof is standard. Consider first the limit result under the

null. The moment conditions stated in the theorem imply that
∑n

g=1 vg/
√
n

L→ N(0,V )

and that n−1
∑n

g=1 vgv
′
g

P→ V . Hence, z :=
(∑n

g=1 vgv
′
g

)−1/2∑n
g=1 vg

L→ N(0, Ir), and

so sn = z′z
L→ χ2(r, 0). This is Part (i) of the theorem. Under the sequence of local

alternatives E(vg) = δ/
√
n the limit distribution of z contains an asymptotic bias term.

Moreover, now, z
L→ N(V −1/2δ, Ir), and so sn = z′z

L→ χ2(r, δ′V −1δ). This is Part (ii) of

the theorem.

Proof of Theorem 2. The main difference with the proof of Theorem 1 is accounting

for the estimation noise in β̂. We first prove (2.7). Because

eg,i = yg,i − x′g,iβ̂ = ηg,i − x′g,i(β̂ − β),

‖β̂−β‖2 = OP (n−1) by (2.6), and the covariates have finite second moments, the expansion

n∑
g=1

v̂g =
n∑
g=1

vg +
n∑
g=1

(∂vg/∂β
′) (β̂ − β) +OP (1)

holds. Further, as ∂vg/∂β
′ = Ḣ

′
g(Ip⊗Dηg)−H ′gDXg, the moment conditions postulated

in the theorem allow the application of a law of large numbers to establish that

n∑
g=1

∂vg/∂β
′

n

P→ Ω;

(2.7) then follows. Next, again by the moment requirements on ηg,i and ωg, the law of

large numbers yields
n∑
g=1

(vg +Ωωg)(vg +Ωωg)
′

n

P→ Ṽ .

Consequently, with

z :=

(
n∑
g=1

(vg +Ωωg)(vg +Ωωg)
′

)−1/2 n∑
g=1

v̂g
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z′z will follow a (non-central) χ2-distribution with r degrees of freedom. The non-centrality

parameter is zero under the null of no within-group correlation and δ̃
′
Ṽ
−1
δ̃ under local

alternatives. It remains only to show that

n∑
g=1

(v̂g +Oω̂g)(v̂g +Oω̂g)
′

n
− (vg +Ωωg)(vg +Ωωg)

′

n

P→ 0,

so that the distributional approximations carry over to the feasible statistic ŝn. Given

that n−1
∑n

g=1‖ω̂g − ωg‖2
P→ 0 by assumption it suffices to prove that O

P→ Ω and that

n−1
∑n

g=1‖v̂g − vg‖2
P→ 0. First,

O =
n∑
g=1

Ḣ
′
g(Ip ⊗Deg)

n
−

n∑
g=1

E′gDXg

n
.

From above, eg = ηg −Xg (β̂ − β), from which, up to OP (n−1),

O =
n∑
g=1

∂vg/∂β
′

n
+

n∑
g=1

Ḣ
′
g(Ip ⊗DXg)

n
(Ip ⊗ (β̂ − β))− ((β̂ − β)⊗ Ip)′

n∑
g=1

Ḣ
′
gDXg

n

follows by re-arrangement. Then

O =
n∑
g=1

∂vg/∂β
′

n
+ oP (1)

P→ Ω

is obtained on noting that the sample averages on the righ-hand side of the expression all

converge in probability to finite quantities and that ‖β̂ − β‖ P→ 0. Next,

n∑
g=1

‖v̂g − vg‖2

n
=

n∑
g=1

‖(∂vg/∂β′) (β̂ − β)‖2

n
+oP (1) ≤ OP (n−1)

n∑
g=1

‖(∂vg/∂β′)‖2

n
+oP (1).

With iq denoting the p-dimensional unit vector in direction q = 1, . . . , p we can conveniently

write

‖(∂vg/∂β′)‖2 = trace
(
(∂vg/∂β

′)′(∂vg/∂β
′)
)

=

p∑
q=1

‖(∂Hg/∂βq)
′Dηg −H ′gDXgiq‖2.

For all q = 1, . . . , p we have

E(η′gD
′(∂Hg/∂βq)(∂Hg/∂βq)

′Dηg) ≤ max
i1,i2

E((∆ηg,i1)
2 (i′qxg,i2)

2) = O(1)
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and

E(i′qX
′
gD
′HgH

′
gDXgiq) ≤ max

i1,i2
E((ηg,i1)

2 (i′q∆xg,i2)
2) = O(1)

by Cauchy-Schwarz because εg,i, αg and xg,i all have finite fourth-order moments. We then

have that
n∑
g=1

‖(∂vg/∂β′)‖2

n
= OP (1)

from which
∑n

g=1 ‖v̂g − vg‖2/n
P→ 0 follows. The proof is thus complete.

Power calculations for a dynamic regression model. Here we examine a stationary

first-order autoregression and estimate the slope coefficient by the instrumental-variable

estimator of Anderson and Hsiao (1981). This is the optimal generalized method-of-moment

estimator constructed from the moments

E

 yg,0∆ηg,2

yg,1∆ηg,3

 = 0.

In the calculations to follow we assume that αg = 0 for all groups. The Jacobian and

covariance matrix of the two Anderson and Hsiao (1981) moments are, respectively, equal

to

G :=
σ2

1 + β

 1

1

 , A :=
σ4

1− β2

 2 −β

−β 2

 ,

when the errors are uncorrelated and have variance σ2. These matrices can be combined

to find that

ωg = −(G′A−1G)−1G′A−1

 yg,0∆ηg,2

yg,1∆ηg,3

 = −1 + β

σ2

yg,0∆ηg,2 + yg,1∆ηg,3
2

.

When the moment conditions hold this is a mean-zero random variable. The moments

typically fail to hold when our null of no within-group correlation is violated. When

εg,i = ug,i + θ ug,i−1 with ug,i ∼ independent (0, σ2),

E

 yg,0∆ηg,2

yg,1∆ηg,3

 = −θ σ2

 1

1

 ,
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so that E(ωg) = (1 + β) θ. This is indeed non-zero for all θ 6= 0. When the errors, instead,

follow the autoregressive process εg,i = ρ εg,i−1 + ug,i with ug,i ∼ independent (0, σ2), the

bias equals

E

 yg,0∆ηg,2

yg,1∆ηg,3

 = − %

1− ρβ
σ2

 1

1

 ;

this can be verified using that yg,i =
∑∞

j=0 β
jεg,i−j, which itself follows from backward

substitution. Hence, E(ωg) = (1 + β) %/(1 − ρβ) in this case. This again fails to be zero

whenever ρ is non-zero.

The Jacobian of E(vg) with respect to β is

Ω = (1− β)σ2

 1

−1

 ,

which has a simple form. It follows that, when errors follow a moving-average process and

an autoregressive process, respectively,

E(vg +Ω ωg) = θ σ2 β2

 −1

1

 , E(vg +Ω ωg) =
β − ρ
1− βρ

β % σ2

 −1

1

 .

The bias expressions show that our test will have no power when β = 0. When the errors

follow a first-order autoregressive process trivial power will also occur when ρ = β. The

bias in the Anderson and Hsiao (1981) estimator effectively cancels the bias in our moment

conditions in these cases. This result is not general, in that it is specific to the setting of a

three-wave panel, stationary data, and the use of the Anderson and Hsiao (1981) estimator.

Lengthy but standard calculations show that the covariance matrix of vg +Ω ωg under

the null is

Ṽ = σ4

 2 −1

−1 2

− 1− β2

2
σ4

 2 + β −(1 + β)

−(1 + β) β

 .

The first matrix in the right-hand side expression corresponds to V from above (by virtue

of stationarity). With |β| < 1 it follows that (Ṽ )11 < (V )11 and (Ṽ )12 < (V )12 (in

magnitude) for any β. On the other hand, (Ṽ )22 < (V )22 when β > 0 and (Ṽ )22 > (V )22

when β < 0.
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Figure 7: Power calculations using the Anderson-Hsiao estimator
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Figure notes. Our test for β = − 1
2 (dashed line) and β = 1

2 (dashed-dotted line) using the Anderson-Hsiao

estimator, together with its oracle version (solid line). The size of the tests (.05) is indicated by a horizontal

dotted line.

The non-centrality parameter in Theorem 2(ii) is then found to equal

λβ β
2 θ2, λβ %

2

(
β − ρ
1− βρ

)2

,

for moving-average and autoregressive alternatives, respectively, where we have used the

shorthand

λβ :=
4β2

2β3 + 3β2 − 2β + 3

We note that λβ is roughly U-shaped on (−1, 1), reaching its minimum of zero at zero and

its maximum of 2/3 at the boundary. This implies, for example, that the test is uniformly

less powerful against moving-average alternatives compared to the case where the errors

are directly observed.

We illustrate our power calculations for this example in Figure 7, again for n = 100.

The power curves are for β = −1
2

(dashed line) and β = 1
2

(dashed-dotted line). The

solid line corresponds to the power curve for the oracle test where β is known (and so

Theorem 1 applies); these curves co-incide with those reported in Figure 1. The plots

illustrate the power loss relative to the oracle and the dependence of power on the value
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of the autoregressive coefficient. In the autoregressive case it also shows the loss of power

against alternatives where ρ is close to β.

Under the null the Anderson and Hsiao (1981) estimator is inefficient as we equally

have

E(yg,0∆ηg,3) = 0

in that case. Combining both sets of moments would yield the Arellano and Bond (1991)

estimator. To show the sensitivity of our test to the first-step estimator used we next

evaluate local power when using the (just identified) estimator based on this additional

moment condition alone. It turns out that the rank condition for this estimator fails when

β = 0 and so, in what follows, we presume that β 6= 0. The intermediate calculations are

similar to before and omitted for brevity. We have

Ṽ = σ4

 2 −1

−1 2

− σ4

2

1− β2

β2

 −1 1

1 −1

 .

For moving-average alternatives we find that

E(vg +Ωωg) = E(vg) = θ σ2

 −1

1

 ;

indeed, E(yg,0∆ηg,3) = 0 remains valid under such alternatives, and so E(ωg) = 0 here. For

autoregressive alternatives on the other hand,

E(vg +Ωωg) = % σ2 2β − ρβ2 − ρ
2β(1− βρ)

 −1

1

 ,

which is again more complicated. Here, our test will have no power when ρ = 2β/(1 + β2).

The plots in Figure 8 compare the power curves of this alternative implementation of

our test to the former as well as its oracle version. The power gains are substantial in the

case of moving-average alternatives. There is a small power loss relative to the oracle as the

estimator of β introduces additional sampling noise. The variance increase depends on β

only through its square and so the power curves for β = −1
2

in the upper plot and for β = 1
2

in the lower plot co-incide. The relative power gains against autoregressive alternatives are
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Figure 8: Power calculations using the alternative estimator
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Figure notes. Our test (dashed line) for β = − 1
2 (upper two plots) and β = 1

2 (lower two plots) using the

alternative method-of-moment estimator, together with its oracle version (solid line) and the test using

the Anderson-Hsiao estimator (dashed-dotted line). The size of the tests (.05) is indicated by a horizontal

dotted line.
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a more complicated function of the parameter values but are still present over most parts

of the (−1, 1) interval.
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