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Abstract— This paper deals with the control of systems for
which there is a clear distinction between preferred and auxil-
iary actuators, the latter to be used only when the control error
is large. Explicit MPC and exact penalty functions are used
to show how `asso-MPC can implement this idea. Two `asso-
MPC versions are reviewed, that allow the designer to impose
a certain nominal operations zone, namely, a neighbourhood of
the set-point in which the auxiliary actuators are never used.
For the sake of brevity, the required procedures are shown only
for version 1, but it is also discussed how they can be extended
to version 2. Limitations due to the presence of constraints are
also formalised. The `asso-MPC version 1 can be used to embed
an existing linear quadratic MPC, while `asso-MPC version 2
can be used to obtain multiple levels of priority. The paradigm is
demonstrated for version 1 through the control of the linearised
lateral dynamics of a Boeing 747. In particular, the approach
uses the spoilers only when the control error is larger than a
desired threshold.

I. INTRODUCTION

This paper addresses the use of `asso-MPC [1], [2], [3],
[4] for control scenarios in which actuators can be clearly
divided in two groups: preferred actuators and auxiliary
actuators. A pre-existing stabilising MPC is assumed to
be given, that considers only the former. These preferred
actuators are set to be used for the most of the time, and are
meant to stabilise the system. On the other hand, the auxiliary
actuators are meant to be used only when the control error
is outside a nominal region, Xnom, containing the origin.

This paper provides a set of tools to construct a `asso-
MPC that includes the pre-existing controller as well as the
auxiliary actuators. The designer can specify (to a certain
extent) the region of the error space Xnom, in which auxiliary
actuators are guaranteed not to be used by the resulting
`asso-MPC. The proposed technique allows as well to restrict
the use of auxiliary actuators to the times when the main
actuators are saturated, or when certain constraints become
active. Moreover, the original MPC controller is recovered
in Xnom. Constraints in MPC limit the achievable region of
attraction. Similar limitations occur in the achievement of a
certain Xnom, as it will be detailed in this paper. The proposed
procedures makes use of multi-parametric programming and
the theory of exact penalty functions (Theorem 14.3.1 of [5]).
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II. CONSIDERED FRAMEWORK

This paper concerns the control of Linear Time-Invariant
(LTI) systems of the form

x(k + 1) = f(x(k), u(k)) = Ax(k) +Bu(k) (1)

subject to constraints of the form

u ∈ U ⊂ Rm, x ∈ X ⊂ Rn. (2)

A. The `asso-MPC

Definition II.1. (`asso–MPC)
Consider the following finite-horizon constrained optimal
control problem (FHCOCP)

V oN (x) = min
u

VN (x, u) =̂ F (xN ) +

N−1∑
j=0

`(xj , uj)


s.t. xj+1 = f(xj , uj),

uj ∈ U, xj ∈ X, for j = 0, 1, . . . , N − 1,

x0 = x(k), xN ∈ Xf ⊆ X, (3)

with stage cost

`(x, u) = xTQx+ uTRu+ ‖Su‖1, (4)

where the terminal cost F (x) is strongly convex, uT =[
uT0 · · · uTN−1

]
, S ∈ Rms×m, ms ∈ I>0

1. At each
iteration k, the `asso-MPC applies to the plant the first move
of the optimal policy, u(k) = u?0, obtained by online solution
of (3-4), at the current state, x(k). The generated implicit
control law is referred to as KN (x) ≡ u?0(x).

The following is assumed throughout the paper

Assumption 1. (A2) For system (1)
(H0) (A,B) is stabilisable,
(H1) Q � 0, R � 0, S ∈ Rns×m,
(H2) X, U, Xf are polytopic C-sets (convex, compact).

B. Version 1: “Partial Regularisation”

This particular formulation features the terminal cost

F (x) = xTPx, P � 0. (5)

If the prediction model f is LTI, this choice of F will result
in a strongly convex Quadratic programme (QP). Stability
of the origin of the closed-loop system is investigated in
Chapter 4 of [6], where it is also shown that the explicit
control law [7] is a continuous Piece-Wise Affine (PWA)
function of x, with a dead-zone around the origin2 (as in

1In this paper I>0 denotes positive integers.
2This happens when S is penalises all actuators.



Figure 1). Differently from MPC based on 1-norm costs, in
the solution of `asso-MPC is unique, thus avoiding actuators
chattering. In order to obtain closed-loop asymptotic stability,
in [6] it is assumed that only some actuators are regularised,
namely, that the 1-norm penalty in (4) involves only a subset
of actuators, labelled u(ii). The remaining, non-regularised
actuators (used to stabilise the plant), are instead labelled
u(i). This means, for instance, that

S =
[

0 S{ii}
]
, (6)

for some matrix, S{ii}. Note that, in (6), the actuators have
been grouped as u = (u(i), u(ii)), the former being the main
or preferred actuators, used to stabilise the plant, and the
latter being the auxiliary or backup actuators. Recall that
we wish not to use the backup actuators when the control
error is in a given neighbourhood of the origin, Xnom. To do
so, a suitable S{ii} will be determined.

C. Version 2: General form

This formulation features the terminal cost

F (x) = βψXf
(x)2 + αψXf

(x), β, α > 0, (7)

where ψXf
is the Minkowski function of the terminal set Xf .

This formulation is used to provide closed-loop asymptotic
stability guarantee, for any regularisation penalty, in Chapter
5 of [6]. For this purpose, Xf is taken to be λ-contractive [8].
If the prediction model f is LTI, then this choice of F gives
again a strongly convex QP, with KN (x) unique, continuous
and PWA.

For reasons of limited space, this paper focuses only on
the partial regularisation case. For the general case, a similar
formulation is proposed in Chapter 6 of [6]. In particular, the
fact that the preferred actuators are also regularised allows
for an additional level of priority.

D. Example 1: Soft-thresholding and dead-zone

Consider the LTI system with A = B = Q = R = 1,
N = 3, S = 100, |x| ≤ 5, |u| ≤ 1, and P = 1.6180. The
terminal constraint is |xN | ≤ 1.6180. The explicit solution of
`asso-MPC is computed using the Matlab Multi-Parametric
Toolbox (MPT) [9]. As it will be shown in the next Section,
the input is divided in 2 positive components, u = u+ −
u−, providing a multi-parametric QP (mpQP) with positive
definite Hessian (required by this version of MPT). The PWA
control law, in Figure 1, features a dead-zone. In particular,
when x is in the terminal set, the plant is open-loop. This is
what happens to the regularised actuators.

The solution for different S can also be computed, by
means of an mpQP. The control law, in Figure 2, is a in
fact PWA in both x, S. It can be noticed, in Figure 2, how
initially the dead-zone varies linearly with S, to then stop for
approximately S ≥ 11. This is due to the terminal constraint.
If constraints are removed, then the dead zone will keep
increasing linearly for increasing S.
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Fig. 1. Explicit `asso-MPC for a scalar system: Control law is PWA with
a dead-zone.
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Fig. 2. `asso-MPC solution path for a scalar system: The dead-zone varies
with S.

III. MULTI-PARAMETRIC FORMULATION

The considered problem is now formulated as a QP, in
order to compute the required regularisation penalty. The
purpose is to obtain a mpQP that can be solved offline using
standard tools [7]. If the MPC is instead solved online, then
more efficient formulations exist, see for instance [10] and
references therein.

Suppose to have the polytopic constraints, X = {x | Lx ≤
1}, U = {u | Eu ≤ 1}, and Xf = {x | Lf x ≤ 1}. Then, a
constrained `asso-MPC for LTI systems can be implemented
by solving, for instance, the strongly convex non-smooth
problem (see Chapter 4 of [6])

u? = arg minu uTHu + 2uTΓx+ ‖Wu‖1
s.t. Ω u ≤ 1−Mx, x = x(k),

(8)

where 1 is a vector of ones and

Ω =

 (IN ⊗ L)Θ
Lfφ

IN ⊗ E

 , M =

 (IN ⊗ L)Ψ
LfA

N

0

 , (9)

for appropriate matrices H, Γ, Θ, Ψ, φ, with W = IN⊗S.

Assumption 2. Throughout the paper, we assume that R =
BlockDiag(R1, R2) � 0, with R2 and S{ii} diagonal.

A unitary permutation, Υ, is used to to separate the



predictions of u(i) from the ones of u(ii), namely,

Υu =

[
u{i}
u{ii}

]
, ΘΥT = [Θ1, Θ2]. (10)

The permutation can be computed as follows. Define I(i)
and I(ii) as, respectively, the indices of the columns of B
corresponding to the columns of actuator set (i) and (ii).
Define I(I) and I(II) as

I(I) =
{
I(i), . . . , I(i) +m(k − 1), . . . , I(i) +m(N − 1)

}
,

I(II) =
{
I(ii), . . . , I(ii) +m(k − 1), . . . , I(ii) +m(N − 1)

}
,

(11)
where k ∈ [1, N ] is the block index. Suppose that an index
j ∈ I(I), with j̄ being the corresponding index in the list,
that is j = I(I)

j̄
, with j̄ ∈ [1, m(i)N ] (or respectively, j̄ ∈

[1, (m−m(i)N ]). Then, Υ is constructed as follows

Υ(i, j) =

 1 if j ∈ I(I) and i = j̄,
1 if j ∈ I(II) and i = m(i)N + j̄,
0 otherwise.

(12)

A. Splitting the actuators for strict convexity

The regularised variables are split into positive and neg-
ative part, namely, u+, u− with u = u+ − u−. Then, the
additional constraints u+ ≥ 0 u− ≥ 0 are added to the
original problem. Then, problem (8) can be formulated as a
strictly convex mpQP in condensed formulation

χ? = arg minχ
1
2 χ

T H̄χ+ χT Ḡ(x)
s.t. Ω̄ χ ≤ b(x), x = x(k).

(13)

where

χ =

 u{i}
u{ii}+
u{ii}−

 , Ḡ(x) = 2Γ̄x+

 0
W{ii}1
W{ii}1

 , (14)

and with

H̄ = 2(Θ̄TQΘ̄ + R̄),
R̄ = BlockDiag(IN ⊗R1, IN ⊗R2, IN ⊗R2),
Γ̄ = Θ̄TQΨ,
Θ̄ = [Θ1, Θ2, −Θ2].

(15)
Constraint matrices for (13) are

Ω̄ =

[
Ω1 Ω2 −Ω2

Π

]
, (16)

b(x) =

[
1−Mx

0(2m(ii)N×1)

]
, (17)

Π =

[
0 −Im(ii)N 0
0 0 −Im(ii)N

]
, (18)

where ΩΥT = [Ω1, Ω2]. At each time k, the signal applied
to the plant is given by u(k) = KN (x(k)), with

KN (x(k)) = [I 0 . . . 0]ΥTBlockDiag(I, [I, −I])χ?.
(19)

IV. COMPUTATION OF THE REGULARISATION PENALTY

The regularisation penalty is computed by means of
similar arguments to the ones for soft-constraints in [11].
The theory of exact penalty functions [5] is used. For this
purpose, an mpQP is solved for all x ∈ X ∩ Xnom. In
particular, given (13) we impose that ‖u{ii}‖1 = 0, and then
compute the corresponding Lagrange multipliers.

A. Limitations due to constraints

Define Q(i) to be the 1-step operator for u(ii) = 0, namely

Q(i)(S) = {x ∈ Rn : ∃u ∈ U | u(ii) = 0, Ax+Bu ∈ S}
(20)

and recall Kj(X,Xf ) to be the j-step controllable set from X
to Xf [8], [12]. Similarly, define K{i}N (X,Xf ) as the N -step
controllable set under u(ii) = 0, from X to Xf . By definition,
X{i}N ≡ K{i}N (X,Xf ), where X{i}N is the feasible region, as
well as the Domain Of Attraction (DOA) for the formulated
`asso-MPC, under the constraint u{ii} = 0.

Theorem IV.1. The maximal feasible set for which it is
possible to have u{ii} = 0. is

X̃(i)
N = Q(i)(KN−1(X,Xf )) ∩ X. (21)

Proof IV.1. The set KN−1(X,Xf ) is the set of states
in X for which there exists an admissible control policy,
u[N−2] = {u(k)}N−2

0 ∈ UN−1, such that xN−1 ∈ Xf
under this policy. Therefore, if the state x(k) is steerable to
this set in 1 step by means of only the preferred actuators,
then we also have x(k) ∈ XN = KN (X,Xf ), from (20).
This means that X̃(i)

N ⊆ XN , and that, at the optimum,
u(ii) 6= 0,∀x ∈ XN/X̃(i)

N . To prove that considered set is
maximal, consider that Kj(X,Xf ) ⊆ K{i}j (X,Xf ), ∀j and
Kj(X,Xf ) ⊆ K{ii}j (X,Xf ), ∀j, as well as X1 ⊆ X2 ⇒
Kj(X,X1) ⊆ Kj(X,X2), ∀j.

Corollary IV.1. The maximal set in which u?{ii} = 0 can

occur is X{i}N = K{i}N (X,Xf ).

In this paper, we focus our attention on X{i}N . In particular,
a method is provided so that u?{ii} = 0 for Xnom ⊆ X{i}N .
Unfortunately, the method does not guarantee that u(ii) = 0

is verified ∀x ∈ X̃(i)
N . The reason for this is essentially

technical, and due to the fact that our 1-nom penalty is
common to all future predictions of u(ii). However, as seen
in this Section, a tuning for S could exist so that u(ii) = 0

in X̃(i)
N . This could be obtained, for instance, by up-scaling

the results of the strategy proposed next.

B. Exact penalty

Problem (13) is strictly convex, and it can be solved by
means of standard mpQP methods (for instance the method
of [7]). We proceed in a similar way to [11]. In order to
compute the exact penalty, consider a new mpQP, that is the
same as (13) with the additional constraint (u{ii}+, u{ii}−) =
0. Recall the definitions in (14)–(16). For a given x, the



optimalty conditions for (13) subject to (u{ii}+, u{ii}−) = 0
are

H̄ χ+ Ḡ(x) + [Ω1, Ω2, −Ω2]T ν = −ΠT γ
−[Ω1, 0, 0]χ− s? = −1 +Mx

Πχ = 0
(s?)T ν = 0

s? ≥ 0
ν ≥ 0
γ ≥ 0.

(22)

Considering (13), we have

X{i}N = πn

(x, χ)

∣∣∣∣∣∣
Ω̄ χ ≤ b(x)

Πχ = 0
Lx ≤ 1


 , (23)

where πn is the polytope projection on the first n-coordinates
[12], namely, on x. Notice that constructing these region ex-
plicitly can be computationally demanding, for large systems
or long horizon length.

The following result is obtained

Theorem IV.2. The exact penalty weight for ‖u{ii}‖1 =∑N−1
j=1 ‖u

{ii}
j ‖1, providing u{ii} = 0,∀x ∈ X{i}N ∩ Xnom, is

γ? = max
χ,ν,γ,x

‖γ‖∞
s.t. (22), x ∈ X ∩ Xnom. (24)

Proof IV.2. Since the ∞-norm is the dual of the 1-norm,
the exact penalty functions Theorem can be applied (The-
orem 14.3.1 of [5]), by computing the maximum ∞-norm
of the Lagrange multipliers associated with the constraint
‖u{ii}‖1 = 0. This corresponds to Πχ = 0.

This leads to the desired result

Theorem IV.3. Assume S{i} = 0, S{ii} = diag{si}. Take
mini si ≥ γ?, with γ? solving (24). Then, for the `asso-MPC
solving (13) it follows that u(ii) = 0, ∀x ∈ X{i}N ∩ Xnom.

Proof IV.3. The Theorem is a simple application of the pre-
vious result. The `asso-MPC is feasible, under the constraint
‖u{ii}‖1 = 0, ∀x ∈ X{i}N ∩ Xnom. From Lemma IV.3, γ? is
the lower bound for the exact penalty on ‖u{ii}‖1, namely,
mini si ≥ γ? provides the considered to have the same
solution of (13) subject to u{ii} = 0, ∀x ∈ X{i}N ∩ Xnom.

It can be noticed that conditions (22) provide the same
solution of the LQ-MPC with only u{i} available. We refer
to this problem as the pre-existing LQ-MPC, since it can be
designed a priori. Then, solving this smaller mpQP provides
the active sets and the critical regions, Pj , needed by the
proposed procedure. These ingredients are finally used to
compute the solution of (13), subject to (u{ii}+, u{ii}−) = 0
and the Lagrange multipliers, γ, ∀x ∈ Xnom ∩ X. In order
to proceed further with the computation, define H{ii,i} =

ΘT
2 QΘ1 and partition ΥΓ into (z{i}, z{ii}), with

z{i} =

N−1∑
i=0

BT{i}(A
i)TQi+1A

i+1, (25)

z{ii} =

N−1∑
i=0

BT{ii}(A
i)TQi+1A

i+1, (26)

The following Linear Programme (LP) can be used to
compute a candidate penalty, γ̄j , for each region Rj =
Pj ∩ Xnom 6= ∅:

γ̄j = maxx ‖2z{ii} x+ 2H{ii,i}u?{i}(x) + [Ω̃T2 , 0, 0]v?(x)‖∞
s.t. x ∈ Pj ∩ Xnom,

(27)
where Ω̃2 (similarly Ω̃1) contains the rows of Ω2, from (16),
corresponding to the active set in Pj . The PWA functions
are computed as

v?(x) = −(ΩactH̄
−1ΩTact)

−1(bact

+(2ΩactH̄
−1Γ̄−Mact)x), (28)

u? = (u?{i}, 0, 0) = −2H̄−1Γ̄x− H̄−1ΩTactv
?(x), (29)

Ωact =

[
Ω̃1 Ω̃2 − Ω̃2

Π

]
, (30)

where Π is defined in (16) and H̄, Γ̄ are from (15). The
constant term bact and the gain Mact are extrapolated from
the rows of b(x), which is also defined in (16), according
to the indices of active set and of Π. Equivalently, one can
directly solve for the multipliers, by solving the LP

γ̄j = maxx ‖Π v?(x)‖∞
s.t. x ∈ Pj ∩ Xnom,

(31)

which avoids the computation of u?{i}(x) and of several
components of v?(x). The exact penalty is then obtained
by taking the largest γ̄j over all feasible partitions.

The following result is obtained

Theorem IV.4. Consider the partition partP = {Pj}
np

j=1

of the feasible region of (13) subject to (u{ii}+, u{ii}+) = 0,
obtained from an mpQP solver, namely, with each Pj corre-
sponding to an optimal active set of the pre-existing MPC.
Then, the regularisation penalty γ?, satisfying Theorem IV.3,
is given by

γ? = maxj γ̄j ,
s.t. Pj ∈ partP,
Pj ∩ Xnom 6= ∅,

(32)

where γ̄j is computed by, either, (31) or (27), subject to (28),
(29), and (30).

Proof IV.4. Simar to [7], the Theorem can be verified
by elaborating (22). Thanks to strict convexity (H̄ � 0),
from the first equation of (22) we can obtain (29). Then,
substituting (29) into the second equality of (22), we can
obtain (28), given the active set (since constraints are not
degenerate). Then, again from the first line of (22) it can
be easily verified that (31) or (27) are equivalent. Finally, in
order to obtain the result, the multipliers are to be evaluated
for each region Pj for which Pj ∩ Xnom 6= ∅.



C. Example 2: Computation of the exact penalty

The proposed methodology is demonstrated on the follow-
ing system

A =

[
0.2 0.1
0 1.1

]
, B =

[
1 1
0 1

]
,

I(i) = {2}, Q = I, R = I, S{i} = 0, N = 3,

X = {x | ‖x‖∞ ≤ 20}, U = {u | ‖u‖∞ ≤ 5}. (33)

The terminal controller, KT = [0, KT
{i}], places the closed

loop eigenvalues at 0.2, 0.9. and it is used to compute
an invariant terminal set. The matrix P solves a Lyapunov
equation for the system in closed-loop with K. All plots are
made using the Matlab MPT toolbox [9]. The control law
for the main actuator, in Figure 3, stabilises the system and
resembles the one of a standard quadratic MPC. Figure 4
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Fig. 3. Non-regularised actuator command as a function x.

shows the control law for the auxiliary actuator resulting
from the procedure, with Xnom = {x | ± x ≤ x̄}
for, respectively, x̄ = [5 5]T and x̄ = [10 8]T . In this
case the algorithm explores only the first partition, where
no constraints are active for the original problem. A few
closed-loop trajectories are also shown, the origin being
asymptotically stable.

V. AIRCRAFT ROLL CONTROL

A 6-DOF model of a Boeing 747 [13] is linearised
around different altitudes (z [m]) and values of airspeed
(VTAS [m/s]). The objective of the control design is to
track a roll rate (p) command from the pilot, pref, while
keeping the magnitude of yaw rate (r) and sideslip angle
(ζ) moderate. The roll angle is φ. A `asso-MPC controller is
designed using partial regularisation. The preferred actuators
to perform the task are the ailerons (A1–A4), the upper
and lower rudder (UR, LR). A nominal quadratic MPC is
designed with actuators input magnitude and rate constraints.
Then, the spoilers (S1–S12) are introduced in the design as
auxiliary actuators, with the aim of helping out the ailerons
when they are close to saturation or stall, at the possible
expense of additional drag. The controller is tuned by trial
and improvement.

The control is simulated on the linearisation at the oper-
ating point (z = 5000, VTAS = 180). Figure 5 shows the

results for a moderate command (dash line). In particular,
p and φ are tracked with a good accuracy by means of the
ailerons and the rudders. At the same time, ζ and r are always
less than 1 degree. Ailerons on opposite wings have opposite
directions, and the rudders operate together. Noticeably, the
spoilers are at zero for the whole time. A larger command
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Fig. 4. Regularised actuator command as a function of x (above: x̄ =
[5 5]T , γ? = 7.75, below: x̄ = [10 8]T , γ? = 13.07).

is then applied, in Figure 6, which causes some spoilers
to be set to operation. Note that the spoilers command is
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Fig. 5. Aircraft roll control. Nominal case. Moderate roll rate command
(±3 [deg/s]).

small at the beginning, and slightly larger when the command
changes in sign, confirming the control law is a continuous
function. At the same time, when the control error becomes
less than 5.5, the spoilers command is flat, and they literally
disappear from the loop. The same behaviour can be noticed
in Figure 7, with an even larger reference from the pilot.
The spoilers commands are increased proportionally to the
reference signal (roughly speaking, they are tripled), and a
third peak appears at 8.5 seconds. Overall, the spoilers never
extend for more than 15 degrees, and are not used for longer
than 1.5 seconds, over a 10 seconds simulation.
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VI. SUMMARY

This paper presented a `asso-MPC formulation for systems
with preferred and auxiliary actuators. A design procedure
has been proposed for automatic weights generation, so that
the auxiliary actuators are not used when the control error
is in a given neighbourhood of the origin. The procedure
uses multi-parametric quadratic programming and the theory
of exact penalty functions. Simulations of the control of a
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Fig. 7. Aircraft roll control. Nominal case. Very large roll rate command
(±10 [deg/s]).

linearised Boeing 747 aircraft lateral dynamics have shown
the proposed controller to be able to confine the spoiler
activities to the case where the commands of the pilot
are outside the nominal range. The study has shown that
`asso-MPC can be a powerful tool for this class of control
problems.
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