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Abstract

Let F be a totally real field and p an odd prime. We prove an automorphy lifting theorem for
geometric representations ρ : GF → GL2(Qp) which lift irreducible residual representations ρ that arise
from Hilbert modular forms. The new result is that we allow the case p = 5, ρ has projective image
S5
∼= PGL2(F5) and the fixed field of the kernel of the projective representation contains ζ5. The usual

Taylor–Wiles method does not work in this case as there are elements of dual Selmer that cannot be
killed by allowing ramification at Taylor–Wiles primes. These elements arise from our hypothesis and
the non-vanishing of H1(PGL2(F5),Ad(1)) where Ad(1) is the adjoint of the natural representation of
GL2(F5) twisted by the quadratic character of PGL2(F5). 1

Contents

1 Introduction 1

2 Notation and normalizations 4

3 Exceptional representations 6

4 Some group theory 6

5 Shimura curves and Hida varieties 8

6 Galois theory 12

7 R = T 15

8 Ordinary automorphic liftings of exceptional ρ 18

9 Deduction of the main theorem 24

1 Introduction

Let F be a totally real number field, let p be a prime, and let ρ : GF → GL2(Qp) be a geometric Galois rep-
resentation. Conjectures of Fontaine–Mazur and Clozel predict that ρ should be automorphic, i.e. associated
to a cuspidal automorphic representation of GL2(AF ). One can often prove this when one has access to an
automorphy lifting theorem. Automorphy liftings theorems show, broadly speaking, that a geometric repre-
sentation ρ is automorphic, under the hypothesis that there is a mod p congruence between ρ and another
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geometric Galois representation ρ′ which is already known to be automorphic. In other words, they imply the
automorphy of ρ, conditional on the residual automorphy of the residual representation ρ : GF → GL2(Fp).
In this paper, we prove a new automorphy lifting result for 2-dimensional Galois representations by using a
variation of the techniques of an earlier paper of the second author [Tho16]. Our main result is the following.

Theorem 1.1. Let F be a totally real field, p > 2 a prime, and Qp an algebraic closure of Qp. Let

ρ : GF → GL2(Qp) be a continuous representation satisfying the following conditions.

1. The representation ρ is unramified almost everywhere.

2. For each place v|p of F , ρ|GFv is de Rham. For each embedding τ : F ↪→ Qp, we have HTτ (ρ) = {0, 1}.

3. The residual representation ρ : GF → GL2(Fp) is irreducible when restricted to GF (ζp) and arises from
a cuspidal automorphic representation π of GL2(AF ) of weight 2.

Then ρ is automorphic: there exists a cuspidal automorphic representation π of GL2(AF ) of weight 2 and
an isomorphism ι : Qp ∼= C such that ρ ' rι(π).

We invite the reader to compare this statement with [Kis09, Theorem 3.5.5]. The new case as
compared to loc. cit. is when p = 5, the image of the projective residual representation of ρ (i.e. ρ
modulo the center) is isomorphic to PGL2(F5) and the fixed field of its kernel contains ζ5 (which implies
that [F (ζ5) : F ] = 2). We call such ρ exceptional. It is easy to check that ρ|GF ′ remains exceptional for any
totally real extension F ′/F . A construction of Mestre gives examples of exceptional ρ (see §3 below).

We now explain the difficulty that this exceptional case presents. The most important tool for
proving automorphy lifting theorems is the Taylor–Wiles argument. The original patching argument of
[TW95] proves an R = T theorem, where R is a certain deformation ring parametrizing deformations of the
residual representation ρ with local conditions (which are in particular almost everywhere the condition of
being unramified), and T is a Hecke ring acting typically on a space of new forms S2(Γ0(N),Zp)m of suitable
level N , where m is a maximal ideal of T associated to ρ. Let S be a finite set of primes that contains the
prime divisors of N and p. The mod p cotangent space of R is a certain Selmer group H1

L(QS/Q,Ad0(ρ)),
with L = (Lv)v∈S consisting of subspaces Lv of H1(Qv,Ad0(ρ)).

One of the first steps in the Taylor–Wiles method is to choose auxiliary sets of primes Q disjoint
from S and consider deformation rings RQ with ramification allowed at S ∪ Q, which surject onto R, such
that H1

L⊥
Q

(QS∪Q/Q,Ad0(ρ)(1)) = 0. (Here we just mention that the Selmer condition LQ is a collection of

subspaces ofH1(Qv,Ad0(ρ)) for each v ∈ S∪Q, which at v ∈ Q is all ofH1(Qv,Ad0(ρ)) and L⊥Q = (L⊥v )v∈S∪Q
consist of the orthogonal complements of these subspaces under the local Tate duality pairing.) We call this
killing dual Selmer. By Wiles’ Euler characteristic formula, this ensures that H1

LQ(QS∪Q/Q,Ad0(ρ)) =

H1
L(QS/Q,Ad0(ρ)).

Using such carefully chosen (Taylor–Wiles) primes Q one asymptotically approximates the statement
that there is a unique lift of ρ with given inertial behavior (which corresponds to abelian/principal series
ramification) at auxiliary primes. As there is always a lift with given inertial behavior (which at almost all
places is the unramified condition) that arises from a newform, the Taylor–Wiles patching argument deduces
the modularity of the given lift ρ. The actual method is more intricate as the uniqueness statement is only
asymptotic and approximate: thus the Taylor–Wiles patching is necessitated. (The patching exploits the
lower bound on the growth of Hecke rings at finite levels given by producing congruences, that “matches”
better and better the upper bound on the size of deformation rings at finite levels.)

This process of killing the dual Selmer group can only be carried out under some auxiliary hypotheses
on the residual representation ρ. The most general condition is that of adequacy, as defined in [Tho12,
§2]. Here, this boils down to the assertion that ρ|GF (ζp)

is irreducible and that H1(H,Ad0) = 0, where

H ⊂ PGL2(Fp) is the projective image of ρ|GF (ζp)
and Ad0 is the natural adjoint representation of this

group.
In a previous work [Tho16], the second named author proved automorphy lifting theorems in some

cases when the representation ρ|GF (ζp)
is reducible. The idea is to consider for each N ≥ 1 modified local

deformation conditions, which are satisfied by the representation ρ mod pN (but not by ρ itself). If these
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local conditions are chosen correctly, this allows one to convert troublesome dual Selmer classes (which
cannot be killed by Taylor–Wiles primes) to classes which can indeed be killed. The usual Taylor–Wiles
argument then allows one to deduce the automorphy of ρ mod pN . An argument of level-lowering mod pN

and passage to the limit then implies the automorphy of ρ itself.
This argument was inspired by earlier works of the first named author [Kha03], [Kha04], which

use techniques of Ramakrishna to reduce to a situation where ρ mod pN lives in a universal deformation
ring which has a trivial tangent space, so a unique Qp-point. This allows one to conclude automorphy of
ρ mod pN by a rigidity argument. However, these techniques of Ramakrishna are not universally applicable,
necessitating the use of Taylor–Wiles primes to get the most general result.

In this paper, we use the techniques of [Tho16] in a similar way. In contrast to that paper, we
consider residual characteristic 5 representations ρ which do remain irreducible on restriction to the group
GF (ζ5), but which fail adequacy for a different reason: the group H1(H,Ad0) = H1(PSL2(F5),Ad0) is non-
zero. Under the assumption that the projective image of ρ is PGL2(F5) and its fixed field contains F (ζ5),
i.e. ρ is exceptional, this leads to classes in the dual Selmer group which arise by inflation from the image of
ρ. We call these classes Lie classes or Lie elements. For exceptional ρ, Lie elements of dual Selmer cannot
be killed by Taylor–Wiles primes. Indeed, a Frobenius element at a Taylor–Wiles prime has order prime to
p, and every element of the group H1(PSL2(F5),Ad0) is killed on restriction to a subgroup of order prime
to p.

We show however that these Lie elements remain non-trivial on restriction to a decomposition group
at a place v where ρ is unramified, the norm qv is 1 modulo p, and the image under ρ of Frobenius at v
has order divisible by p. (Such places were used in [Tay03] to kill Lie elements of Selmer groups when the
projective image of ρ is PSL2(F5) = A5. We use them to kill Lie elements of dual Selmer for exceptional ρ.)
By allowing ramification at such primes, we can again convert these troublesome elements into ones which
are easily killed. The rest of the argument using automorphy mod pN follows similar lines to that of [Tho16].

An important role is played by Lemma 4.2, whose proof follows from arguments in [BAdR], and which
implies that whenever ρ has projective image PGL2(F5), the projective image of ρ contains a conjugate of
PGL2(Z5). This result, together with the Cebotarev density theorem, is used to find primes at which allowing
ramification will have the desired effect on the dual Selmer group (cf. Proposition 6.9). This result is also
essential to show that we can choose these primes v to satisfy qv ≡ 1 mod p but qv 6≡ 1 mod p2; this extra
condition is needed to control the error terms in the process of level-lowering modulo pN (cf. Theorem 5.4).

It is natural to ask if our results can be generalized to prove automorphy lifting theorems in non-
adequate situations in higher dimensions (i.e. when n > 2). The answer is certainly yes, and in fact we
prove in an inadequate situation a rather restrictive automorphy lifting theorem for GL4 in §8 on the way
to constructing ordinary lifts of 2-dimensional representations. We have not attempted to understand what
is the most general theorem that can be proved this way, outside of GL2.

We now describe the organization of this paper. In §2, we recall our notation and normalizations. As
far as possible, we have tried to use the same notation as the earlier paper [Tho16]. We begin the main body
of the paper in §3 by showing, following Mestre, that exceptional residual representations ρ are plentiful over
any totally real field F satisfying the necessary condition

√
5 ∈ F . In §4, we state some group theoretical

results, and in particular prove the result of Böckle mentioned above. In §5, we define certain Shimura curves
and their 0-dimensional analogues, and study the relation between their cohomology groups. For the most
part we simply recall results proved in [Tho16, §4], but sometimes we must work harder; for example, when
we wish to understand level lowering/raising at a prime v where qv ≡ 1 mod p and ρ(Frobv) has order p.

In §6, we study the deformation theory of Galois representations, and in particular show that the
Lie elements of the dual Selmer group can be killed using a well-chosen local deformation problem. These
results are then used in §7 to prove an R = T theorem, which is very similar to the one proved in [Tho16,
§6]. In §8, we prove an auxiliary automorphy lifting result for a unitary group in 4 variables, and apply
this together with the techniques of [BLGG12] to construct ordinary automorphic liftings of automorphic
exceptional residual representations. Finally, in §9, we apply all of this to prove our main theorem (Theorem
9.3).
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2 Notation and normalizations

Galois groups. A base number field F having been fixed, we will also choose algebraic closures F of F
and F v of Fv for every finite place v of F . The algebraic closure of R is C. If p is a prime, then we will
also write Sp for the set of places of F above p, Qp for a fixed choice of algebraic closure of Qp, and valp
for the p-adic valuation on Qp normalized so that valp(p) = 1. These choices define the absolute Galois

groups GF = Gal(F/F ) and GFv = Gal(F v/Fv). We write IFv ⊂ GFv for the inertia subgroup. We also fix
embeddings F ↪→ F v, extending the canonical embeddings F ↪→ Fv. This determines for each place v of F
an embedding GFv → GF . We write AF for the adele ring of F , and A∞F =

∏′
v-∞ Fv for its finite part. If

v is a finite place of F , then we write k(v) for the residue field at v, κ(v) for the residue field of F v, and
qv = #k(v). If we need to fix a choice of uniformizer of OFv , then we will denote it $v.

If S is a finite set of finite places of F , then we write FS for the maximal subfield of F unramified
outside S, and GF,S = Gal(FS/F ); this group is naturally a quotient of GF . If v 6∈ S is a finite place of F ,
then the map GFv → GF,S factors through the unramified quotient of GFv , and we write Frobv ∈ GF,S for the
image of a geometric Frobenius element. We write ε : GF → Z×p for the p-adic cyclotomic character; if v is a

finite place of F , not dividing p, then ε(Frobv) = q−1
v . If ρ : GF → GLn(Qp) is a continuous representation,

we say that ρ is de Rham if for each place v|p of F , ρ|GFv is de Rham. In this case, we can associate to

each embedding τ : F ↪→ Qp a multiset HTτ (ρ) of Hodge–Tate weights, which depends only on ρ|GFv , where
v is the place of F induced by τ . This multiset has n elements, counted with multiplicity. There are two
natural normalizations for HTτ (ρ) which differ by a sign, and we choose the one with HTτ (ε) = {−1} for
every choice of τ .

Artin and Langlands reciprocity. We use geometric conventions for the Galois representations associ-
ated to automorphic forms, which we now describe. First, we use the normalizations of the local and global
Artin maps ArtFv : F×v → W ab

Fv
and ArtF : A×F → Gab

F which send uniformizers to geometric Frobenius
elements. If v is a finite place of F , then we write recFv for the local Langlands correspondence for GL2(Fv),
normalized as in Henniart [Hen93] and Harris–Taylor [HT01] by a certain equality of ε- and L-factors. We
recall that recFv is a bijection between the set of isomorphism classes of irreducible admissible represen-
tations π of GL2(Fv) over C and the set of isomorphism classes of 2-dimensional Frobenius–semi-simple
Weil–Deligne representations (r,N) over C. We define recTFv (π) = recFv (π⊗ | · |−1/2). Then recTFv commutes

with automorphisms of C, and so makes sense over any field Ω which is abstractly isomorphic to C (e.g. Qp).
If v is a finite place of F and χ : WFv → Ω× is a character with open kernel, then we write

St2(χ ◦ArtFv ) for the inverse image under recTFv of the Weil–Deligne representation(
χ⊕ χ| · |−1,

(
0 1
0 0

))
. (2.1)

If Ω = C, then we call St2 = St2(1) the Steinberg representation; it is the unique generic subquotient of the
normalized induction iGL2

B | · |1/2 ⊗ | · |−1/2. If (r,N) is any Weil–Deligne representation, we write (r,N)F-ss

for its Frobenius–semi-simplification. If v is a finite place of F and ρ : GFv → GLn(Qp) is a continuous
representation, which is de Rham if v|p, then we write WD(ρ) for the associated Weil–Deligne representation,
which is uniquely determined, up to isomorphism. (If v - p, then the representation WD(ρ) is defined in
[Tat79, §4.2]. If v|p, then the definition of WD(ρ) is due to Fontaine, and is defined in e.g. [BM02, §2.2].)

Automorphic representations. In this paper, the only automorphic representations we consider are
cuspidal automorphic representations π = ⊗′vπv of GL2(AF ) such that for each v|∞, πv is the lowest discrete
series representation of GL2(R) of trivial central character. (The only exception is in §8, where it is necessary
to use automorphic representations of GL4 in order to construct ordinary lifts of fixed 2-dimensional residual
representations. Since the arguments in §8 are self-contained, we avoid introducing the relevant notation
here.) In particular, any such π is unitary. We will say that π is a cuspidal automorphic representation
of GL2(AF ) of weight 2. If π is such a representation, then for every isomorphism ι : Qp → C, there is a

continuous representation rι(π) : GF → GL2(Qp) satisfying the following conditions:
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1. The representation rι(π) is de Rham and for each embedding τ : F ↪→ Qp, HTτ (ρ) = {0, 1}.

2. Let v be a finite place of F . Then WD(rι(π)|GFv )F-ss ∼= recTFv (ι−1πv).

3. Let ωπ denote the central character of π; it is a character ωπ : F×\A×F → C× of finite order. Then
det rι(π) = ε−1ι−1(ωπ ◦Art−1

F ).

For concreteness, we spell out this local-global compatibility at the unramified places. Let v - p be a prime
such that πv ∼= iGL2

B χ1 ⊗ χ2, where χ1, χ2 : F×v → C× are unramified characters and iGL2

B again denotes
normalized induction from the upper-triangular Borel subgroup B ⊂ GL2. Then the representation rι(π) is
unramified at v, and the characteristic polynomial of ιrι(π)(Frobv) is (X − q1/2χ1($v))(X − q1/2χ2($v)).
If Tv, Sv are the usual unramified Hecke operators, and we write tv, sv for their respective eigenvalues on

π
GL2(OFv )
v , then we have

(X − q1/2χ1($v))(X − q1/2χ2($v)) = X2 − tvX + qvsv. (2.2)

With the above notations, the pair (π, ωπ) is a RAESDC automorphic representation in the sense of
[BLGGT14], and our representation rι(π) coincides with the one defined there. On the other hand, if
σ(π) : GF → GL2(Qp) denotes the representation associated to π by Carayol [Car86], then there is an

isomorphism σ(π) ∼= rι(π)⊗ (ι−1ωπ ◦Art−1
F )−1.

Ordinary Galois and admissible representations. Let p be a prime, and let K be a finite extension of
Qp. If ρ : GK → GL2(Qp) is a de Rham representation with HTτ (ρ) = {0, 1} for all embeddings τ : K ↪→ Qp,
we say that ρ is ordinary if it has the form

ρ ∼
(
ψ1 ∗
0 ψ2ε

−1

)
,

where ψ1, ψ2 : GK → Q×p are continuous characters which become unramified after a finite extension of K.
(This is the same definition that appears in [Tho16, §5.1].)

If π is a cuspidal automorphic representation of GL2(AF ) of weight 2, ι : Qp ∼= C is an isomorphism,
and v is a p-adic place of F , we say that πv is ι-ordinary if it satisfies the condition in [Tho16, §4.1]. We say
that π itself is ι-ordinary if πv is ι-ordinary for each p-adic place v of F . One knows ([Tho16, Lemma 5.3])
that πv is ι-ordinary if and only if the Galois representation rι(π)|GFv is ι-ordinary.

Rings of coefficients. We will call a finite extension E/Qp inside Qp a coefficient field. A coefficient field
E having been fixed, we will write O or OE for its ring of integers, k or kE for its residue field, and λ or
λE for its maximal ideal. If A is a complete Noetherian local O-algebra with residue field k, then we write
mA ⊂ A for its maximal ideal, and CNLA for the category of complete Noetherian local A-algebras with
residue field k. We endow each object R ∈ CNLA with its profinite (mR-adic) topology.

If Γ is a profinite group and ρ : Γ → GLn(Qp) is a continuous representation, then we can assume
(after a change of basis) that ρ takes values in GLn(O), for some choice of coefficient field E. The semi-
simplification of the composite representation Γ → GLn(O) → GLn(k) is independent of choices, up to
isomorphism, and we will write ρ : Γ→ GLn(Fp) for this semi-simplification.

Galois cohomology. If E is a coefficient field and ρ : Γ → GL2(k) is a continuous representation, then
we write Ad ρ for Endk(ρ), endowed with its structure of k[Γ]-module. We write Ad0 ρ ⊂ Ad ρ for the
submodule of trace 0 endomorphisms, and (if Γ = GF ) Ad0 ρ(1) for its twist by the cyclotomic character.
If M is a discrete Z[GF ]-module (resp. Z[GF,S ]-module), then we write H1(F,M) (resp. H1(FS/F,M)) for
the continuous Galois cohomology group with coefficients in M . Similarly, if M is a discrete Z[GFv ]-module,
then we write H1(Fv,M) for the continuous Galois cohomology group with coefficients in M . If M is a
discrete k[GF ]-module (resp. k[GF,S ]-module, resp. k[GFv ]-module), then H1(F,M) (resp. H1(FS/F,M),
resp. H1(Fv,M)) is a k-vector space, and we write h1(F,M) (resp. h1(FS/F,M), resp. h1(Fv,M)) for the
dimension of this k-vector space, provided that it is finite.
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3 Exceptional representations

Let F be a totally real number field. We say that a continuous representation ρ : GF → GL2(F5) is
exceptional if its projective image Ad0 ρ(GF ) is isomorphic to PGL2(F5) and the fixed field of ker Ad0 ρ
contains F (ζ5). This forces ρ to be totally odd (i.e. det ρ(c) = −1 for every complex conjugation c ∈ GF ).
We recall that the classification of finite subgroups of PGL2(F5) shows that PGL2(F5) ∼= S5, and that any
subgroup H ⊂ PGL2(F5) such that H ∼= S5 is a conjugate of PGL2(F5).

The main point of this paper is to prove automorphy lifting theorems for geometric Galois repre-
sentations ρ : GF → GL2(Q5) with exceptional residual representation. Before doing this, we make some
general remarks.

Lemma 3.1. Let ρ : GF → GL2(F5) be exceptional.

1. Let F ′/F be a totally real number field. Then ρ|F ′ is exceptional.

2. There is no conjugate of ρ valued in GL2(F5).

Proof. 1. Let K/F be the extension cut out by Ad0 ρ. We will show that K/F is linearly disjoint from
F ′/F . After replacing F ′ by its Galois closure, we can assume that F ′/F is Galois, and must show
that F ′ ∩K = F . We observe that F ′ ∩K is a totally real Galois extension of F , with Galois group
a quotient of Gal(K/F ) = S5. The only non-trivial normal subgroup of S5 is A5, and KA5 = F (ζ5) is
not totally real. We find that Gal(F ′ ∩K/F ) must be trivial, showing that F ′ ∩K = F , as desired.

2. If τ : GF → GL2(F5) is any representation and c ∈ GF is a complex conjugation, then τ(c) is either
scalar or lies in F×5 · SL2(F5) (because −1 is a square in F5). In any case, the sign of Ad0 τ(c) (viewed
as an element of S5) is 1, and τ cannot be exceptional.

We would like a construction of exceptional ρ, equivalently S5 extensions of F , with the corresponding
quadratic subfield fixed by A5 equal to F (ζ5). Serre in a message to the first-named author told us about
a construction of Mestre, which for any number field F and a quadratic extension F ′/F , produces an Sn
extension L/F containing F ′. Mestre has made his construction explicit for n = 5, and the quadratic
extension F (ζ5)/F . We now describe this construction.

Consider P = x(x4 + B) ∈ F [x], with non-zero discriminant ∆(P ) = 28B5, and the one-parameter
family E(T ) = P − TQ where Q = 202B2x4 + 122B3. The discriminant of is ∆(E(T )) = ∆(P )S(T )2, where
S(T ) ∈ F (T ). The Galois group of the splitting field of E(T ) over F (T ) is either A5 or S5 depending on
whether ∆(P ) ∈ F ∗ is a square or not (in the latter case it is not a regular extension and contains the
extension F (

√
∆(P ))). The reader can consult §9.3 of [Ser92] for a related construction.

We now fix B so that F (ζ5) = F (
√
B) and choose a generic T ∈ F using the Hilbert irreducibility

theorem. This gives examples of exceptional ρ. As an explicit example, one can take (over any totally real
number field F with

√
5 ∈ F ) the splitting field over F of the polynomial

x5 + (1000
√

5 + 3000)x4 − (
√

5 + 5)x/2− (1440
√

5 + 3600).

4 Some group theory

4.1 A matrix lemma

We need the following elementary lemma about almost diagonalizable matrices. Let E be a coefficient field.

Lemma 4.1. Let A ∈ EndO(M), where M = (O/λn)2, and let fA(X) denote the characteristic polynomial
of A. Suppose that there exist α, β ∈ O/λn such that fA(X) = (X −α)(X −β) and α−β is divisible exactly
by λm for some integer 0 ≤ m ≤ n− 1. Then there exist e1, e2 ∈M with λn−m−1e1 6= 0 and λn−m−1e2 6= 0
such that Ae1 = αe1, Ae2 = βe2.
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Proof. It suffices to show that λn−m−1(A − β)M 6= 0. If λn−m−1(A − β)M = 0, then (A − β) acts as 0
on λn−m−1M ∼= (O/λm+1)2, implying that fA(X) ≡ (X − β)2 mod λm+1, hence α ≡ β mod λm+1. This
contradicts our hypothesis.

4.2 Closed subgroups of PGL2(O)
Now let p = 5, and let E be a coefficient field. The following lemma plays a key role in this paper.

Lemma 4.2. Let H be closed subgroup of PGL2(O) with residual image a conjugate of PGL2(F5) ⊂ PGL2(k).
Then H is conjugate to PGL2(A) where A is a closed Z5-subalgebra of O. In particular H contains a
conjugate of PGL2(Z5), and the maximal abelian quotient of H is finite, and in fact isomorphic to Z/2Z '
PGL2(F5)/PSL2(F5).

Proof. The proof follows from the arguments in [BAdR] as explained to us by G. Böckle. After conjugating
H, we can assume that the residual image of H is equal to PGL2(F5). We denote by Ad the adjoint
representation of PGL2(F5) on M2(F5) and by Z the subspace of scalar matrices. We note the following key
facts:

1. H1(PGL2(F5),Ad /Z) = 0.

2. The map PGL2(Z/52Z)→ PGL2(Z/5Z) does not split.

3. The representation Ad /Z ∼= Ad0 is absolutely irreducible as F5[PGL2(F5)]-module.

Consider the ring R = Z5 + λO. Then R ∈ CNLZ5 , and H ⊂ PGL2(R). Let ρ : H → PGL2(R) denote
the tautological representation, ρ : H → PGL2(F5) its residual representation. We can define a functor
Defρ : CNLZ5

→ Sets by associating to each A ∈ CNLZ5
the set of strict equivalence classes of liftings

r : H → PGL2(A) of ρ. The group H satisfies Mazur’s condition Φp [Maz89], so the functor Defρ is
represented by an object R ∈ CNLZ5

. Let ρu : H → PGL2(R) denote a representative of the universal
deformation.

We claim that ρu is surjective. This claim implies the lemma: by universality, there is a canonical
classifying homomorphism R → R. Let A ⊂ R denote the image. Then ρ is conjugate inside PGL2(O)
to the group PGL2(A). The natural map Z5 → A is injective, so we find that H contains a conjugate of
PGL2(Z5). To calculate the maximal abelian quotient, we first note that the commutator subgroup of SL2(A)
is SL2(A). Therefore the commutator subgroup of PGL2(A) contains the image of SL2(A). This shows
that the abelianization of PGL2(A) is the quotient of GL2(A) modulo A∗SL2(A). Via the determinant map
whose kernel is SL2(A), this quotient is identified with A∗/A∗2. Because A is local with residue characteristic
different from 2, A∗2 contains (1 +mA)2 = 1 +mA. Thus the commutator subgroup of PGL2(A) is PSL2(A),
and PGL2(A)/PSL2(A) ' PGL2(F5)/PSL2(F5), proving the last sentence of the lemma.

To prove the claim, it is enough (cf. [BAdR, Theorem 1.6], [Bos86, Proposition 2]) to show that the
induced map

ρu mod m2
R : H → PGL2(R/m2

R)

is surjective. We will prove this using the facts 1, 2, 3 above. The target of this map sits in a short exact
sequence

1 //mR/m2
R ⊗F5

Ad0 //PGL2(R/m2
R) //PGL2(F5) //1.

We know that the image surjects to PGL2(F5), so it is enough to show that the image contains mR/m
2
R⊗F5

Ad0. Because of fact 3, the image has the form V ⊗Fp Ad0 for some subgroup V ⊂ mR/m
2
R. If V 6= mR/m

2
R,

then we can choose a codimension 1 subspace K ⊂ mR/m
2
R containing V . The subspace K is then also an

ideal, for trivial reasons. Let A = R/(m2
R,K). We can then pushout by the surjection R → A to obtain a

short exact sequence
1 //Ad0 //PGL2(A) //PGL2(F5) //1.

The ring A is isomorphic either to Z5/25Z5 or F5[ε]. By construction, the image HA of H in the group
PGL2(A) has trivial intersection with Ad0, and therefore describes a section of the map PGL2(A) →
PGL2(F5).
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If A = Z5/25Z5, then this contradicts fact 2, i.e. that the reduction map does not split. If A = F5[ε],
then fact 1 implies that HA = M−1PGL2(F5)M for some M ∈ 1 + εAd0. By universality, the map R → A
then factors as R → F5 → A, which contradicts that R → A is surjective, by construction. In either case,
then, we obtain a contradiction. This establishes the claim, and therefore the lemma.

Note that the lemma above is false if the residual image is PSL2(F5), as H could be isomorphic to
A5.

5 Shimura curves and Hida varieties

In the proof of our main theorem, we need to make use of level raising and lowering results in a similar way
to [Tho16]. In this section, we recall some of the key results of [Tho16, §4] in this direction, and indicate
any needed extensions.

Let F be a totally real number field of even degree d = [F : Q], and let Q be a finite set of finite
places of F . We fix for each such Q the quaternion algebra BQ as in [Tho16, §4], ramified at Q and some set
of infinite places, a maximal order OQ of BQ, and write GQ for the associated reductive group over OF . We
fix a choice of an auxiliary place a with qa > 4d and define the class JQ of good open compact subgroups
U =

∏
v Uv of GQ(A∞F ) (which depends on a) as on [Tho16, p. 596].
Depending on whether Q is even or odd, we have for each U ∈ JQ the Hida variety XQ(U) or the

Shimura curve MQ(U) defined over F as in [Tho16, §§4.2, 4.3]. We have a theory of integral models of the
MQ(U) for good U as summarized in [Tho16, §§4.4, 4.5].

Fix a prime p and a coefficient field E. We now skip to [Tho16, §4.6] and for a set of places Q of
F not containing a, define a collection of Hecke algebras and modules for these algebras with O-coefficients.
Let S be a finite set of finite places of F containing Q. Write TS,univ and TS,univ

Q for the universal Hecke
algebras as in [Tho16]. The superscript S denotes that we are including the unramified Hecke operators Tv
only for primes v 6∈ S, and the subscript Q indicates that we are including the Uv operators for v ∈ Q. If
M is any TS,univ-module, then we write TS(M) for the image of TS,univ in EndO(M). We adopt similar

notation if M is a TS,univ
Q -module.

Let U ∈ JQ. If #Q is odd we define HQ(U) = H1(MQ(U)F ,O). If #Q is even, then we define
HQ(U) = H0(XQ(U),O). In either case, HQ(U) is a finite free O-module. If S contains the places of F

such that Uv 6= GL2(Ov), then the Hecke algebra TS,univ
Q acts on HQ(U).

If #Q is odd, then the Galois group GF acts on HQ(U), and this action commutes with the action of

TS,univ
Q . The Eichler–Shimura relation holds: for all finite places v /∈ S ∪ Sp, the action of GFv is unramified

and we have the relation
Frob2

v −S−1
v Tv Frobv +qvS

−1
v = 0

in EndO(HQ(U)).

Theorem 5.1. Let #Q be odd and let m ⊂ TS(HQ(U)) be a maximal ideal.

1. There exists a continuous representation ρm : GF → GL2(TS(HQ(U))/m) satisfying the following
condition: for all finite places v 6∈ S∪Sp of F , ρm is unramified at v, and the characteristic polynomial
of ρm(Frobv) is given by X2 − TvX + qvSv mod m.

2. Suppose that the representation ρm is absolutely irreducible (in other words, the ideal m is non-
Eisenstein). Then there exists a continuous representation ρm : GF → GL2(TS(HQ(U))m) lifting
ρm, and satisfying the following condition: for all finite places v 6∈ S ∪ Sp of F , ρm is unramified at v,
and the characteristic polynomial of ρm(Frobv) is given by X2 − TvX + qvSv.

3. Suppose that m is non-Eisenstein. There is a finite TS(HQ(U))m-module M , together with an isomor-
phism of TS(HQ(U))m[GF ]-modules

HQ(U)m ∼= ρm ⊗TS(HQ(U))m (ε det ρm)⊗TS(HQ(U))m M.

Proof. This is [Tho16, Proposition 4.7].
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5.1 Level-raising

We now discuss level-raising, as in [Tho16, §4.8]. We have to make slight adjustments as we want to allow
the set Q considered there to contain places w such that qw ≡ 1 mod p. We suppose given the following
data:

• A finite set R of finite places of F of even cardinality, disjoint from Sp ∪ {a}.

• A good subgroup U =
∏
w Uw ∈ JR.

• A finite set Q of finite places of F , of even cardinality, and satisfying the following conditions:

– Uw = GL2(Ow) for w ∈ Q.

– Q ∩ (Sp ∪ {a} ∪R) = ∅.

If J ⊂ Q, then we define the subgroup UJ of GR∪J(A∞F ) as in [Tho16, §4.7]:

• If w 6∈ J , then UJ,w = Uw.

• If w ∈ J , then UJ,w is the unique maximal compact subgroup of GR∪J(Fw).

Let S be a finite set of finite places of F containing Sp ∪R∪Q and the places w such that Uw 6= GL2(OFw).

Let m = m∅ be a non-Eisenstein maximal ideal of TS,univ = TS,univ
∅ in the support of HR(U). Thus ρm is

absolutely irreducible and for each v ∈ Q, ρm|GFv is unramified. After enlarging the coefficient field E, we
can assume that for all v ∈ Q, the eigenvalues αv, βv of ρm(Frobv) lie in k. We demand that:

• For v ∈ Q, βv/αv = qv.

• If v ∈ Q and qv ≡ 1 mod p, then ρ(Frobv) is unipotent of order p.

For each J ⊂ Q, let mJ ⊂ TS,univ
J be the maximal ideal generated by m∅ and Uv − αv, v ∈ J . Note that for

v ∈ J with qv ≡ −1 mod p, this represents a choice of one of the eigenvalues of ρ(Frobv) (since βv would
also be allowable).

Lemma 5.2. The ideal mQ is in the support of HR∪Q(UQ).

Proof. The statement is the same as [Tho16, Lemma 4.11], except that we now allow also places v ∈ Q
such that qv ≡ 1 mod p. The proof goes through unchanged in this case (and is slightly easier than the
qv ≡ −1 mod p case, since there is only one possibility for the choice of αv).

We continue with the same notation and assumptions, and prove:

Proposition 5.3. We have

1 ≤ dimk(HR∪Q(UQ)⊗O k)[mQ] ≤ 4#Qdimk(HR(U∅)⊗O k)[m∅].

Proof. The statement is the same as [Tho16, Proposition 4.12], except that we again allow here places v ∈ Q
with qv ≡ 1 mod p. The lower bound is the content of Lemma 5.2. For the upper bound, it suffices by
induction to establish the statement

dimk(HR∪J(UJ)⊗O k)[mJ ] ≤ 4 dimk(HR∪J(UJ)⊗O k)[mJ ],

where J ⊂ Q is a non-empty subset and J = J − {v} for some v ∈ J . If qv 6≡ 1 mod p, then this is done in
the proof of [Tho16, Proposition 4.12]. It therefore remains to treat the case where qv ≡ 1 mod p.

Let us first treat the case where #J is odd. Then, just as in loc. cit., we derive an exact sequence
of k[GFv ]-modules

0 //(HR∪J(UJ)⊗O k)[mJ ] //(HR∪J(U ′
J

)mJ ⊗O k)[mJ ] //(HR∪J(UJ)2
mJ
⊗O k)[mJ ] .
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The group U ′
J

appearing in the middle term is the open compact subgroup of GR∪J(A∞F ) which has the
same local components as UJ except at the place v, where we take the Iwahori subgroup U0(v); see [Tho16,
p. 611]. The operator Frob−1

v acts as Uv on the first term (HR∪J(UJ) ⊗O k)[mJ ], hence as the identity.
Moreover, (HR∪J(U ′

J
)mJ ⊗O k)[mJ ] is isomorphic to a direct sum of copies of ρm as k[GF ]-module. Since

ρ(Frobv) is supposed unipotent non-trivial, we can find a k[GFv ]-submodule A ⊂ (HR∪J(U ′
J

)mJ ⊗O k)[mJ ]
such that

(HR∪J(U ′
J

)mJ ⊗O k)[mJ ] = A⊕ (Frobv −1)A,

and the kernel of Frobv −1 on A is trivial. Using the above exact sequence we thus get

dimk(HR∪J(UJ)⊗O k)[mJ ] ≤ dimk(Frobv −1)A = dimk A ≤ dimk(HR∪J(UJ)2
mJ
⊗O k)[mJ ].

This completes the proof in the case that #J is odd. Now suppose that #J is even. In this case, we can
construct as in the proof of [Tho16, Proposition 4.12] a map

(HR∪J(UJ)mJ ⊗O k)[mJ ]→ (HR∪J(UJ)mJ ⊗O k)2[mJ ],

with kernel contained in the submodule

(HR∪J(UJ)
IFv
mJ ⊗O k)[mJ ] ⊂ (HR∪J(UJ)mJ ⊗O k)[mJ ],

on which Frob−1
v acts trivially. Moreover, (HR∪J(UJ)mJ ⊗O k)[mJ ] is isomorphic as k[GF ]-module to a direct

sum of copies of ρm. Again using the fact that ρm(Frobv) is unipotent, we can find a k[GFv ]-submodule
A ⊂ (HR∪J(UJ)mJ ⊗O k)[mJ ] on which Frobv −1 is injective and such that (HR∪J(UJ)mJ ⊗O k)[mJ ] =
A⊕ (Frobv −1)A. Then A has trivial intersection with the kernel of the above map, and we obtain

dimk(HR∪J(UJ)mJ ⊗O k)[mJ ] = 2 dimk A ≤ 2 dimk(HR∪J(UJ)mJ ⊗O k)2[mJ ]

≤ 4 dimk(HR∪J(UJ)mJ ⊗O k)[mJ ],

as desired.

5.2 Level lowering mod pN

We now state an analogue of [Tho16, Theorem 4.14] which covers the cases relevant for this paper. We fix
again a finite set R of finite places of F of even cardinality, disjoint from Sp ∪ {a} and a good subgroup
U ∈ JR. If Q is any finite set of finite places of F , disjoint from Sp ∪ {a} ∪ R such that for each v ∈ Q,
Uv = GL2(OFv ), then we define UQ ∈ JR∪Q by replacing Uv for v ∈ Q by the unique maximal compact
subgroup of GR∪Q(Fv) (cf. [Tho16, §4.9]).

Let S be a finite set of finite places of F , containing Sp, such that Uv = GL2(OFv ) for all v 6∈ S. Let
m ⊂ TS,univ be a non-Eisenstein maximal ideal which is in the support of HR(U).

Theorem 5.4. Let m, r ≥ 0 be fixed integers and consider an integer N ≥ 2mr, and a lifting of ρm to a
continuous representation ρ : GF → GL2(O/λN ). We assume that ρ satisfies the following properties:

1. ρ is unramified outside S.

2. There exists a set Q as above of even cardinality and a homomorphism f : TS∪QQ (HR∪Q(UQ))→ O/λN
satisfying:

(a) For each v ∈ Q, qv 6≡ 1 mod λm+1. There are exactly r places of Q such that qv ≡ 1 mod p.

(b) For every v /∈ S ∪Q we have f(Tv) = tr ρ(Frobv).

(c) Let I = ker(f). Then (HR∪Q(UQ)⊗O O/λN )[I] contains a submodule isomorphic to O/λN .

Then there exists a homomorphism f ′ : TS∪Q(HR(U)) → O/λN−2mr such that for all v /∈ S ∪ Q, we have
f ′(Tv) = tr ρ(Frobv).
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Unlike in the previous section, we do not need the image of ρm(Frobv) to be of order p at those
places v ∈ Q such that qv ≡ 1 mod p. Just as in [Tho16, §4.9], this theorem has the following corollary.

Corollary 5.5. Let ρ : GF → GL2(O) be a continuous lifting of ρm unramified outside S, and let m, r ≥ 0
be integers. Suppose that for every N ≥ 2mr there exists a set Q as above, of even cardinality, and a
homomorphism f : TS∪QQ (HR∪Q(UQ))→ O/λN satisfying:

1. For each v ∈ Q, qv 6≡ 1 mod λm+1. There are exactly r places of Q such that qv ≡ 1 mod p.

2. For every finite place v /∈ S ∪Q of F , we have f(Tv) = tr ρ(Frobv).

3. Let I = ker(f). Then (HR∪Q(UQ)⊗O/λN )[I] contains a submodule isomorphic to O/λN .

Then ρ is automorphic: there exists a cuspidal automorphic representation π of GL2(AF ) of weight 2, and
an isomorphism ρ⊗Qp ∼= rι(π).

Just as in [Tho16, §4.9], Theorem 5.4 follows by induction from the following result.

Proposition 5.6. Let m ≥ 0 be an integer and consider an integer N ≥ 1 and a lifting of ρm to a continuous
representation ρ : GF → GL2(O/λN ). We assume that ρ satisfies the following properties:

1. ρ is unramified outside S.

2. There exists a set Q as above of even cardinality and a homomorphism f : TS∪QQ (UQ) → O/λN
satisfying:

(a) For each v ∈ Q, qv 6≡ 1 mod λm+1.

(b) For every place v /∈ S ∪Q we have f(Tv) = tr ρ(Frobv).

(c) Let I = ker(f). Then (HR∪Q(UQ)⊗O O/λN )[I] contains a submodule isomorphic to O/λN .

Choose v ∈ Q, and let Q = Q − {v}. Then there exists a homomorphism f ′ : TS∪Q
Q

(HR∪Q(UQ)) →
O/λN−2m such that for all v /∈ S ∪ Q, we have f ′(Tv) = tr ρ(Frobv). Moreover writing I ′ = ker f ′,
(HR∪Q(UQ)⊗O O/λN )[I ′] contains a submodule isomorphic to O/λN−2m.

Proof. If qv 6≡ 1 mod p, then this is [Tho16, Proposition 4.16]. We treat the case where qv ≡ 1 mod p,

splitting into cases according to the parity of #Q. Let us first suppose that #Q is even. Let mQ ⊂ TS∪Q,univ
Q

denote the ideal generated by I and λ. Just as in the proof of [Tho16, Proposition 4.16], we obtain a short
exact sequence

0→ (HR∪Q(UQ)mQ ⊗O O/λN )[I]→ (HR∪Q(U ′
Q

)mQ ⊗O O/λN )IFv [I]→ (HR∪Q(UQ)2
mQ ⊗O O/λ

N )[I],

an O/λN -module U0, and an isomorphism (HR∪Q(U ′
Q

)mQ⊗OO/λN )[I] ∼= U0⊗O ρ. Moreover, Frob−1
v acts as

the scalar f(Uv) on the first term (HR∪Q(UQ)mQ ⊗O O/λN )[I] in the above exact sequence. By Lemma 4.1,

there exists an element e ∈ (HR∪Q(U ′
Q

)mQ ⊗OO/λN )[I] such that λN−m−1e 6= 0 and Frob−1
v e = q−1

v f(Uv)e.

The intersection of O · e with (HR∪Q(UQ)mQ ⊗O O/λN )[I] is killed by λm, so the image of e in
(HR∪Q(UQ)2

mQ⊗OO/λ
N )[I] generates an O-submodule A such that λN−2m−1A 6= 0. The proof is completed

in this case by taking f ′ to be the homomorphism TS∪Q
Q

→ O/λN−2m which is associated to A.

We now treat the case where #Q is odd. Let mQ be as before. Just as in the proof of [Tho16,

Proposition 4.16], we obtain a morphism of TS∪Q,univ
Q [GFv ]-modules

(HR∪Q(UQ)⊗O O/λN )mQ [I]→ (HR∪Q(UQ)⊗O O/λN )2
mQ [I],

with kernel contained in the submodule

(HR∪Q(UQ)IFv ⊗O O/λN )mQ [I] ⊂ (HR∪Q(UQ)⊗O O/λN )mQ [I],
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on which Frob−1
v acts by f(Uv) ∈ O/λN . There is also an O/λN -module U0 and an isomorphism

(HR∪Q(UQ)⊗O O/λN )[I] ∼= U0 ⊗O ρ.

By Lemma 4.1, we can find an element e ∈ (HR∪Q(UQ) ⊗O O/λN )mQ [I] such that λN−m−1e 6= 0 and

Frob−1
v e = q−1

v f(Uv)e. The same argument as in the case #Q even now shows that the image of e in
(HR∪Q(UQ)⊗O O/λN )2

mQ [I] satisfies λN−2m−1e 6= 0, and leads to the desired homomorphism f ′.

Lemma 5.7. Let π be a cuspidal automorphic representation of GL2(AF ) of weight 2, and let ι : Qp ∼= C
be an isomorphism. Suppose that for each finite place v /∈ Sp of F , either πv is unramified or qv ≡ 1 mod p
and πv is an unramified twist of the Steinberg representation, while for every v ∈ Sp, πv is ι-ordinary and

π
U0(v)
v 6= 0. Suppose further that rι(π)|GF (ζp)

is irreducible. Let σ ⊂ Sp be a subset. Then there exists a

cuspidal automorphic representation π′ of GL2(AF ) of weight 2 satisfying the following conditions:

1. There is an isomorphism of residual representations rι(π) = rι(π′), and π, π′ have the same central
character.

2. If v ∈ σ, then π′v is ι-ordinary. If v ∈ Sp − σ, then π′v is supercuspidal.

3. If v is place of F that does not divide p∞ and πv is unramified, then π′v is unramified. If πv is ramified,
then π′v is ramified principal series representation.

Proof. The lemma is the same as [Tho16, Lemma 5.25], except that the condition there that rι(π) irreducible
and [F (ζp) : F ] ≥ 4 has been replaced by the condition that rι(π)|GF (ζp)

irreducible. This is justified by the

paragraph following [Jar99, Lemma 12.3].

6 Galois theory

In this paper, we use the notation from Galois deformation theory introduced in [Tho16, §5]. We first
recall the basic definitions and then study the problem of killing dual Selmer for an exceptional residual
representation.

6.1 Galois deformation theory

Let p be an odd prime, let F be a number field, and let E be a coefficient field. We fix a continuous,
absolutely irreducible representation ρ : GF → GL2(k) and a continuous character µ : GF → O× which
lifts det ρ. We will assume that k contains the eigenvalues of all elements in the image of ρ. We also fix a
finite set S of finite places of F , containing the set Sp of places dividing p, and the places at which ρ and µ
are ramified. For each v ∈ S, we fix a ring Λv ∈ CNLO and we define Λ = ⊗̂v∈SΛv, the completed tensor
product being over O. Then Λ ∈ CNLO.

Let v ∈ S. We write D�
v : CNLΛv → Sets for the functor that associates to R ∈ CNLΛv the set of

all continuous homomorphisms r : GFv → GL2(R) such that r mod mR = ρ|GFv and det r agrees with the
composite GFv → O× → R× given by µ|GFv and the structural homomorphism O → R. It is easy to see

that D�
v is represented by an object R�

v ∈ CNLΛv .

Definition 6.1. Let v ∈ S. A local deformation problem for ρ|GFv is a subfunctor Dv ⊂ D�
v satisfying the

following conditions:

• Dv is represented by a quotient Rv of R�
v .

• For all R ∈ CNLΛv , a ∈ ker(GL2(R)→ GL2(k)) and r ∈ Dv(R), we have ara−1 ∈ Dv(R).

We will write ρ�v : GFv → GL2(R�
v ) for the universal lifting. If a quotient Rv of R�

v corresponding
to a local deformation problem Dv has been fixed, we will write ρv : GFv → GL2(Rv) for the universal lifting
of type Dv.
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Definition 6.2. A global deformation problem is a tuple

S = (ρ, µ, S, {Λv}v∈S , {Dv}v∈S),

where:

• The objects ρ : GF → GL2(k), µ : GF → O×, S and {Λv}v∈S are as at the beginning of this section.

• For each v ∈ S, Dv is a local deformation problem for ρ|GFv .

Definition 6.3. Let S = (ρ, µ, S, {Λv}v∈S , {Dv}v∈S) be a global deformation problem. Let R ∈ CNLΛ, and
let ρ : GF → GL2(R) be a continuous lifting of ρ. We say that ρ is of type S if it satisfies the following
conditions:

• ρ is unramified outside S.

• det ρ = µ. More precisely, the homomorphism det ρ : GF → R× agrees with the composite GF →
O× → R× induced by µ and the structural homomorphism O → R.

• For each v ∈ S, the restriction ρ|GFv lies in Dv(R), where we give R the natural Λv-algebra structure
arising from the homomorphism Λv → Λ.

We say that two liftings ρ1, ρ2 : GF → GL2(R) are strictly equivalent if there exists a matrix a ∈ ker(GL2(R)→
GL2(k)) such that ρ2 = aρ1a

−1.

It is easy to see that strict equivalence preserves the property of being of type S. We write D�
S

for the functor CNLΛ → Sets which associates to R ∈ CNLΛ the set of liftings ρ : GF → GL2(R) which
are of type S. We write DS for the functor CNLΛ → Sets which associates to R ∈ CNLΛ the set of strict
equivalence classes of liftings of type S.

Definition 6.4. If T ⊂ S and R ∈ CNLΛ, then we define a T -framed lifting of ρ to R to be a tuple
(ρ, {αv}v∈T ), where ρ : GF → GL2(R) is a lifting and for each v ∈ T , αv is an element of ker(GL2(R) →
GL2(k)). Two T -framed liftings (ρ1, {αv}v∈T ) and (ρ2, {βv}v∈T ) are said to be strictly equivalent if there is
an element a ∈ ker(GL2(R)→ GL2(k)) such that ρ2 = aρ1a

−1 and βv = aαv for each v ∈ T .

We write DTS for the functor CNLΛ → Sets which associates to R ∈ CNLΛ the set of strict equivalence
classes of T -framed liftings (ρ, {αv}v∈T ) to R such that ρ is of type S. The functors DS , D�

S and DTS are
represented by objects RS , R�

S and RTS , respectively, of CNLΛ. The cohomology groups H∗S,T (Ad0 ρ) and

the dual Selmer group H1
S,T (Ad0 ρ(1)) are defined just as in [Tho16, §5.3]. The cohomological machinery

developed in [Tho16, §5.3] then implies:

Lemma 6.5. Assume n = 2, and suppose further that F is totally real, ρ is totally odd and ρ|GF (ζp)
is

absolutely irreducible, and Rv is formally smooth over O of dimension 4 for each v ∈ S − T . Then RTS is a
quotient of a power series ring over ATS = ⊗̂v∈TRv in h1

S,T (Ad0 ρ(1))− [F : Q]− 1 + #T variables.

Proof. The proof is the same as [Tho16, Corollary 5.11], except that the assumption that ρ|GF (ζp)
is absolutely

irreducible replaces the condition [F (ζp) : F ] > 2.

6.2 Another local deformation problem

To the glossary of deformation problems considered in [Tho16, §5.4], we add the following deformation
problem that is important to the work of this paper. Let v ∈ S − Sp, and suppose that qv ≡ 1 mod p, ρ|GFv
is unramified, and ρ(Frobv) is unipotent of order p. We define a subfunctor DSt(uni)

v ⊂ D�
v by declaring that

for R ∈ CNLO, DSt(uni)
v (R) is the set of lifts of ρ|GFv to GL2(R) of fixed determinant µ which are of the form(

χ ∗
0 χε−1

)
,

with χ an unramified character.
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Proposition 6.6. The functor DSt(uni)
v is a local deformation problem. The representing object R

St(uni)
v

is formally smooth over O of dimension 4. Further Lv and L⊥v are 1-dimensional, and transverse to the
1-dimensional unramified subspaces of H1(Fv,Ad0 ρ) and H1(Fv,Ad0 ρ(1)) respectively. If ρ is exceptional,
then the image of the Lie subspace of H1(FS/F,Ad0 ρ(1)) in H1(Fv,Ad0 ρ(1)) is not in L⊥v .

Proof. The key point as follows. Consider matrices in A,B ∈ GL2(R) such that A =

(
α ∗
0 β

)
reduces to

a unipotent matrix of order p and B reduces to the identity. If

B

(
α ∗
0 β

)
B−1 =

(
α ∗′
0 β

)
,

then B is upper triangular (cf. E3 of [Tay03, §1]). The claim about Lv and L⊥v follows easily.

6.3 Auxiliary primes

Let us now suppose that F is totally real and ρ totally odd, and let F0 ⊂ F denote the the fixed field of Ad0 ρ.
We continue to impose the assumptions at the beginning of §6.1; in particular, ρ is absolutely irreducible.
Consider the inflation-restriction exact sequence

0→ H1(Gal(F0/F ),Ad0 ρ(1)GF0 )→ H1(F,Ad0 ρ(1))→ H1(F0,Ad0 ρ(1))Gal(F0/F ).

Lemma 6.7. The k-vector space H1(Gal(F0/F ),Ad0 ρ(1)GF0 ) is non-zero precisely when p = 5, the projec-
tive image of ρ is PGL2(F5) and ζ5 ∈ F0. (This implies that

√
5 ∈ F , equivalently [F (ζ5) : F ] = 2.) In this

exceptional case it is one dimensional.

Proof. This follows from [DDT97, Lemma 2.48] and its proof.

We now specialize to the case when the conclusion of the lemma is satisfied. Thus we assume p = 5,
Gal(F0/F ) ∼= PGL2(F5), and ζ5 ∈ F0. For m ≥ 1, define Fm = F0(ζ5m). (Thus F0 = F1.) Suppose given as
well a lift ρ : GF → GL2(O) of ρ, and set for each N ≥ 1 ρN = ρ mod λN .

Lemma 6.8. For each integer N ≥ 1, there is a set of places v of F of positive Dirichlet density such that

ρN (Frobv) is GL2(O)-conjugate to a matrix of the form

(
α β
0 δ

)
, where α, β, δ and qv satisfy the following

conditions:

1. qv ≡ 1 mod 5 but qv 6≡ 1 mod 52.

2. δ ≡ qvα mod λN and α ≡ δ ≡ 1 mod λ.

3. β 6≡ 0 mod λ. In particular, ρ(Frobv) is a non-trivial unipotent element of GL2(k).

Proof. It follows from Lemma 4.2 that the field extensions K1,K2 of F cut out by the projective image of
ρ and the p-adic cyclotomic character are almost linearly disjoint over F , i.e. K1 ∩ K2 is a finite abelian
extension of F , and in fact K1 ∩K2 = F (ζ5).

Let H denote the projective image of ρ, and let H1 be the subgroup of H fixing K1 ∩ K2. By
Lemma 4.2, H contains a conjugate of PGL2(Z5), hence H1 contains a conjugate of PSL2(Z5). The result
now follows from the Cebotarev density theorem. (Note that if ρ(Frobv) ∈ PSL2(F5) then qv ≡ 1 mod 5,
because ρ is exceptional.)

Proposition 6.9. Let ψ be a non-zero element in the 1-dimensional k-vector space H1(Gal(F0/F ),Ad0 ρ(1)GF0 ).
For each integer N ≥ 1 there is a set of places v of F of positive density such that:

1. We have qv ≡ 1 mod 5 but qv 6≡ 1 mod 52.

2. ρ is unramified at v.
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3. ρ(Frobv) is unipotent of order 5, and ψ|GFv is unramified at v and non-zero.

4. The restriction of ρN to GFv is of the form(
χ ∗
0 χε−1

)
.

Proof. This follows from Lemma 6.8.

We now show that when a prime of type DSt(uni)
v is present, we can use Taylor–Wiles primes to kill

the remainder of the dual Selmer group.

Proposition 6.10. Let
S = (ρ, µ, S, {Λv}v∈S , {Dv}v∈S)

be a global deformation problem. Let T ⊂ S and suppose that for each v ∈ S − T , Dv is DSt(αv)
v or DSt(uni)

v

and there is at least one place of the latter type in S. (The deformation problem DSt(αv)
v is defined in [Tho16,

§5.4].) Then for each N1 ≥ 1, there exists a finite set of primes Q1, disjoint from S, satisfying the following
conditions:

1. #Q1 = h1
S,T (Ad0(1)) and for each v ∈ Q1, qv ≡ 1 mod pN1 , and ρ(Frobv) has distinct eigenvalues.

2. Define the augmented deformation problem:

SQ1 = (ρ, µ, S ∪Q1, {Λv}v∈S ∪ {O}v∈Q1 , {Dv}v∈S ∪ {D�
v }v∈Q1).

Then h1
SQ1

,T (Ad0 ρ(1)) = 0.

Proof. By Proposition 6.6, the existence of a place v ∈ S with deformation problem DSt(uni)
v implies that

the Lie subspace of H1
S,T (S,Ad0 ρ(1)) is zero. Further one checks that

H1(Gal(Fm/F0),Ad0 ρ(1))GF = Hom(Gal(Fm/F1),Ad0 ρ(1)GF ) = 0

using that ρ|GF (ζp ) is irreducible. Thus H1
S,T (S,Ad0ρ(1)) maps injectively under the restriction map to

H1(Fm,Ad0 ρ(1)), and then by the usual arguments (see [DDT97, Theorem 2.49] and [Tho16, Proposition
5.24]) one can find a Taylor–Wiles set Q1 with the required properties.

7 R = T
Let p = 5, let E be a coefficient field, and let F a totally real number field of even degree over Q. We fix an
absolutely irreducible, totally odd and continuous representation ρ : GF → GL2(k) satisfying the following
conditions.

• ρ is exceptional.

• For each place v of F prime to p, ρ|Fv is unramified.

• For each place v|p of F , ρ|GFv is trivial.

• The character εdet ρ is everywhere unramified.

We assume that k contains the eigenvalues of every element of the image of ρ. We write ψ : GF → O∗
for the Teichmüller lift of ε det ρ. In what follows we will abuse notation by also writing ψ for the character
ψ ◦ArtF : A×F → O×. We will also suppose given the following data:

• A finite set R of even cardinality of finite places of F , such that for v ∈ R, qv ≡ 1 mod p, and ρ|GFv is
trivial.
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• A finite set Q0 of finite places of even cardinality, disjoint from Sp ∪ R, which can be decomposed as

V1 ∪ V2, and a tuple (αv)v∈V1 of elements in k, such that for v ∈ V1 the deformation problem DSt(αv)
v

(see [Tho16, §5.4] for this and other deformation problems not defined in this paper) is defined and

for v ∈ V2 the deformation problem DSt(uni)
v is defined. In particular, qv ≡ −1 mod p if v ∈ V1 and

qv ≡ 1 mod p if v ∈ V2.

• An isomorphism ι : Qp ∼= C, and a cuspidal automorphic representation π0 of weight 2 satisfying the
following conditions:

– There is an isomorphism rι(π) ∼= ρ.

– The central character of π0 equals ψ.

– For each finite place v /∈ Sp ∪R ∪Q0 of F , π0,v is unramified.

– For each v ∈ R ∪ Q0, there is an unramified character χv : F×v → Q×p and an isomorphism

π0,v
∼= St(ιχv), For each v ∈ V1, χv($v) is congruent to αv modulo the maximal ideal of Zp.

– Let σ ⊂ Sp denote the set of places v such that π0,v is ι-ordinary. For each v ∈ σ, π
U0(v)
0,v 6= 0. For

each v ∈ Sp − σ, π0,v is unramified.

We consider the global deformation problem

S = (ρ, ε−1ψ, Sp ∪Q0 ∪R, {Λv}v∈σ ∪ {O}v∈(Sp−σ)∪Q0∪R,

{Dord
v }v∈σ ∪ {Dnon-ord

v }v∈Sp−σ ∪ {DSt(αv)
v }v∈V1

∪ {DSt(uni)
v }v∈V2

∪ {DSt
v }v∈R).

The local deformation problems are as defined in [Tho16, §5.3] and §6.2 of the current paper. The rings
Λv for v ∈ σ are the local Iwasawa algebras, as in [Tho16, §6]. We fix an auxiliary place a of F as in the
following lemma:

Lemma 7.1. There exists a place a /∈ Sp ∪ Q0 ∪ R such that qa > 4[F :Q], tr ρ(Froba)/det ρ(Froba) 6=
(1 + qa)2/qa, and qa 6≡ 1 mod p.

Proof. Since ρ is exceptional, it is equivalent (by the Cebotarev density theorem) to exhibit σ ∈ GF such
that the image of σ in PGL2(F5) is not contained in PSL2(F5) and tr ρ(σ) 6= 0. Indeed, we then have

ε(σ) ≡ −1 mod p. We can choose an element σ which maps to the homothety class of the matrix

(
2 0
0 1

)
in PGL2(F5).

We set Λ = ⊗̂v∈σΛv, and write Λn for its ‘level n’ quotient, as in [Tho16, §6.2]. The situation is
now exactly as in [Tho16, §6]. We can take the quaternion algebra B ramified at Q0 ∪ R ∪ {v|∞}, and an
appropriate level subgroup U ⊂ (B ⊗F A∞F )× as in [Tho16, §6.1] (with U1

1 (a)-level structure at the place
a). If n ≥ 1, then we can define the spaces Hord

ψ (U1(σn),O) and Hord
ψ (U1(σn), k) of σ-ordinary modular

forms on B of level U1(σn), weight 2, and central character ψ, where these level subgroups are as in [Tho16,
§6]. The existence of π0, together with the Jacquet–Langlands correspondence, implies the existence of a

maximal ideal m of the Hecke algebra TΛ,Sp∪Q0∪R∪{a}
Q0

(Hord
ψ (U1(σn),O)) such that ρm

∼= ρ, and we then

obtain a surjection RS → TΛ,Sp∪Q0∪R∪{a}
Q0

(Hord
ψ (U1(σn),O))m (for any n ≥ 1; cf. [Tho16, Proposition 6.5]).

We can pass to the limit n→∞, forming

Hord
ψ (U1(σ∞)) = lim−→

n

Hord
ψ (U1(σn),O)⊗O E/O

and writing TΛ,Sp∪Q0∪R∪{a}
Q0

(Hord
ψ (U1(σ∞))) for the associated Hecke algebra. Then there is an associated

surjective homomorphism

RS → TΛ,Sp∪Q0∪R∪{a}
Q0

(Hord
ψ (U1(σ∞)))m.
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The Pontryagin dual Hord
ψ (U1(σ∞))∨ is free and finitely generated as a Λ-module; consequently the Hecke

algebra TΛ,Sp∪Q0∪R∪{a}
Q0

(Hord
ψ (U1(σ∞))) is a finite Λ-algebra (see [Tho16, Proposition 6.4]). Having intro-

duced this notation, we can state the following result, which is the analogue in our situation of [Tho16,
Theorem 6.6]:

Theorem 7.2. With assumptions as above, suppose further that V2 6= 0. Then we have FittRS H
ord
ψ (U1(σ∞))∨m =

0. In particular, the surjective homomorphism RS → TΛ,Sp∪Q0∪R∪{a}
Q0

(Hord
ψ (U1(σ∞)))m has nilpotent kernel.

Proof. The proof of Theorem 7.2 is exactly the same as the proof of [Tho16, Theorem 6.6], except that
references to [Tho16, Lemma 6.9] should be replaced by references to Lemma 7.4 below. (It is in applying
Lemma 7.4 that we use the condition V2 6= ∅.)

In exactly the same way that [Tho16, Theorem 6.6] implies [Tho16, Corollary 6.7], Theorem 7.2
implies the following corollary:

Corollary 7.3. Let C,N, n ≥ 1 be integers, and suppose that V2 6= ∅. Suppose that dimkH
ord
ψ (U1(σn), k)[m] ≤

C, and that there is a diagram
Λ //

��

Λn

��
RS // O/λN ,

corresponding to a lifting ρN : GF → GL2(O/λN ) of ρ which is of type S. Let I = ker(RS → O/λbN/Cc).
Then (Hψ(U1(σn),O)m ⊗O O/λbN/Cc)[I] contains an O-submodule isomorphic to O/λbN/Cc, and the map
RS → O/λbN/Cc factors

RS � TΛ,Sp∪Q0∪R∪{a}
Q0

(Hord
ψ (U1(σn),O)m)→ O/λbN/Cc.

Lemma 7.4. Let q = h1
S,T (Ad0 ρ(1)), and suppose that V2 6= ∅. Then for all integers N ≥ 1, there exists a

set QN of places of F satisfying the following conditions.

1. QN ∩ (Sp ∪Q0 ∪R ∪ {a}) = ∅ and #QN = q.

2. For each v ∈ QN , qv ≡ 1 mod pN .

3. For each v ∈ QN , ρ(Frobv) has distinct eigenvalues αv, βv in k.

4. Consider the augmented deformation problem

SQN = (ρ, ε−1ψ, Sp ∪Q0 ∪R ∪QN , {Λv}v∈σ ∪ {O}v∈(Sp−σ)∪Q0∪R∪QN ,

{Dord
v }v∈σ ∪ {Dnon-ord

v }v∈Sp−σ ∪ {DSt(αv)
v }v∈V1 ∪ {DSt(uni)

v }v∈V2 ∪ {DSt
v }v∈R ∪ {D�

v }v∈QN ).

Then h1
SQN ,T

(Ad0 ρ(1)) = 0.

5. The ring RTSQN
can be written as a quotient of a power series over ATSQN

= ATS in q− [F : Q]−1 + #T

variables.

Proof. This follows immediately from [Tho16, Proposition 5.10] and Proposition 6.10.
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8 Ordinary automorphic liftings of exceptional ρ

Let p = 5, and fix throughout this section a choice of isomorphism ι : Qp ∼= C. In this section, which can
be read independently from the rest of this paper, we prove the following theorem. The role it plays in this
paper is analogous to the role of [Tho16, Lemma 7.3] in that paper.

Theorem 8.1. Let F be a totally real field. Suppose that ρ : GF → GL2(F5) is an automorphic and
exceptional residual representation. Then there exists a soluble totally real extension F ′/F and a cuspidal
automorphic representation π of GL2(AF ′) of weight 2 and satisfying the following conditions:

1. π is everywhere unramified and ι-ordinary.

2. There is an isomorphism rι(π) ∼= ρ|GF ′ .

The key point is that the automorphic representation π can be chosen to be ι-ordinary. To prove
Theorem 8.1, we will follow the strategy of [BLGG12], namely taking a tensor product of ρ with another
2-dimensional representation and using an automorphy lifting theorem in 4 dimensions. The main difference
compared to op. cit. is that we are working here in the exceptional (viz. ‘inadequate’) case. We therefore
require a 4-dimensional automorphy lifting result that works in this situation, and some extra work is required
to establish this. This extra work parallels what we do for GL2 in the rest of this paper. We first prove this
automorphy lifting result in §8.1. We then prove a version of Theorem 8.1 under supplementary hypotheses,
in §8.2. We deduce the general version of the theorem in §8.3.

8.1 An automorphy lifting theorem in 4 dimensions

We adopt the deformation-theoretic notation of the papers [CHT08] and [Tho12]. In particular, we make
use of the group Gn, defined on [CHT08, p. 8], which is used to describe the deformation theory of conjugate
self-dual Galois representations.

Let K be a coefficient field with residue field k. Let E/F be an everywhere unramified quadratic
imaginary extension of a totally real number field, and let c ∈ Gal(E/F ) denote the non-trivial element,
δE/F : Gal(E/F ) → {±1} the non-trivial character. We suppose that each p-adic place v of F splits in E,
and write ṽ for a choice of place of E above v. Suppose given continuous representations ρ, σ : GE → GL2(k)
satisfying the following conditions:

1. The tensor product τ = ρ ⊗ σ is absolutely irreducible and satisfies τ c ∼= τ∨ε−3. The field k contains
the eigenvalues of all elements in the image of τ .

2. The representation ρ has projective image PGL2(F5), and the quadratic extension cut out by the
quotient PGL2(F5)/PSL2(F5) is E(ζ5). (In particular, ζ5 6∈ E.)

3. The representation σ is dihedral and remains absolutely irreducible on restriction to GE(ζp). Moreover,

# Ad0 σ(GE) is divisible by an odd prime.

4. There exist places w1, . . . , ws of E, split over F , and satisfying the following conditions:

(a) For each i = 1, . . . , s, we have qwi ≡ 1 mod p.

(b) For each i = 1, . . . , s, the representation ρ|GEwi is unramified and ρ(Frobwi) is unipotent of order
p.

(c) For each i = 1, . . . , s, the representations σ|GEwi are absolutely irreducible and detσ|GEwi is

unramified. We note that this implies that H2(Ewi ,Ad0 σ) = 0, hence the quotient of the universal
lifting ring of σ classifying liftings with unramified determinant is formally smooth and each such
lifting to O is equivalent to an unramified twist of the Teichmüller deformation.

(d) Writing vi for the places of F below wi, we have that the places vi are pairwise distinct and s is
even.
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5. The representations ρ and σ are unramified at all finite places w - v1 . . . vs.

6. There exists a RACSDC automorphic representation Π of GL4(AE) satisfying the following conditions:

(a) For each finite place w - v1 . . . vs of E, Πw is unramified. For each i = 1, . . . , s, there exists a
supercuspidal representation µi of GL2(Ewi) and an isomorphism Πwi

∼= Sp2(µi), where Spn is
as defined on [HT01, p. 32]. The central character of µi is unramified.

(b) Π has weight 0 (in the sense of [CHT08, §4.2]) and there is an isomorphism rι(Π) ∼= τ .

We fix an extension of τ to a continuous homomorphism τ : GF → G4(k) with ν ◦ τ = ε−3δµE/F for some

µ ∈ {0, 1} (which exists, by [CHT08, Lemma 2.1.4]) and define two global deformation problems (as on
[CHT08, p. 27]) in 4 dimensions relative to the representation τ :

S = (E/F, S, S̃,O, τ , ε−3δµE/F , {Dv}v∈S), (8.1)

S ′ = (E/F, S, S̃,O, τ , ε−3δµE/F , {D
′
v}v∈S). (8.2)

Here S = {v|p} ∪ {v1, . . . , vs}, and S̃ = {ṽ|p} ∪ {w1, . . . , ws}. For each v ∈ Sp, Dv is the local deformation
problem defined by the weight 0 crystalline lifting ring Rcrys of τ |GEṽ (which is non-zero because of the
existence of rι(Π)|GEṽ ), while D′v is the local deformation problem defined by the (unique) irreducible
component of SpecRcrys containing the point corresponding to rι(Π)|GEṽ . (For the existence and properties
of these deformation rings, see [Tho12, p. 863].) For v ∈ {v1, . . . , vs}, Dv = D′v is the local deformation
problem whose existence is asserted by Proposition 8.2:

Proposition 8.2. Let i ∈ {1, . . . , s} and write v = vi, w = wi. Let σ : GEw → GL2(O) denote the
Teichmüller lifting of σ|GEw to GL2(O). If R ∈ CNLO, then we write Dv(R) for the functor of liftings of
τ |GEw conjugate to one of the form ρ ⊗ σ, where ρ : GEw → GL2(R) is unipotently ramified (i.e. satisfies
the conditions defining the deformation problem of §6.2, up to unramified twist). Then Dv is indeed a local
deformation problem, and its representing object is formally smooth over O.

Proof. It follows from [CHT08, Corollary 2.4.13] that deforming τ |GEw is indeed equivalent to deforming
ρ|GEw . The proof of the proposition therefore reduces to the proof of Proposition 6.6. We are using here the
fact that ρ(Frobw) has order p (i.e. is unipotent and non-trivial).

The universal deformation rings Runiv
S , Runiv

S′ ∈ CNLO are defined, and there is a natural surjective
homomorphism Runiv

S → Runiv
S′ (corresponding to the fact that for each v ∈ S, D′v is a subfunctor of Dv). By

construction, the representation rι(Π) determines a Qp-point of Runiv
S′ .

Theorem 8.3. The O-algebra Runiv
S′ is a finite O-module. If τ : GF → G4(Qp) is a representation corre-

sponding to a homomorphism Runiv
S′ → Qp, then there exists a RACSDC automorphic representation Π′ of

GL4(AE) such that τ |GE ∼= rι(Π
′).

Proof. The proof is an application of the Taylor–Wiles argument, as found for example in [Tho12] and
especially the proof of [Tho12, Theorem 6.8]. There are two modifications that we must account for: first,
we must carefully choose a unitary group and level structure so that the relevant space of automorphic
forms gives rise to Galois representations of type S. Second, we must construct sufficiently many sets of
Taylor–Wiles primes under a weakening of the ‘adequacy’ hypothesis appearing in op. cit.. We now describe
the proof, omitting details when no novel argument is required.

In defining our unitary groups and automorphic forms, we follow [CHT08, §3.3]. In the notation
there, we take S(B) = {v1, . . . , vs}; we can then find a unitary group G over F associated to a pair (B, †),
where:

1. B is a central division algebra over E of degree 4 which is split outside S(B). For each place w of E
lying above a place of S(B), Bw is a division algebra.

2. † is an involution of B of the second kind.
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3. Writing the functor of points of G as G(R) = {g ∈ (B ⊗F R)× | gg†⊗1 = 1}, we have that G(F ⊗Q R)
is compact, and for each finite place v 6∈ S(B) of F , GFv is quasi-split.

(The existence of such a G uses that s = #S(B) is even.) We set S̃(B) = {w1, . . . , ws}. As on [CHT08, p.
96], we can find an integral model G of G over OF and for each place w of E split over F an isomorphism

ιw : G(Fv) ∼= GL4(Ew) which takes G(OFv ) to GL4(OEw). If v ∈ S(B) lies below w ∈ S̃(B), then we write
ρv : G(Fv) → GLnv (O) for a smooth representation of G(Fv) such that JL((ρv ⊗O Qp) ◦ ι−1

w ) ∼= ι−1Π∨w.
Thus ρv is not uniquely determined (because there may be more than one choice of integral lattice), but
ρv ⊗O Qp is uniquely determined up to isomorphism. The integer nv depends on v but its precise value is
not important.

If U =
∏
v Uv ⊂ G(A∞F ) is an open compact subgroup, and A is an O-module, then we will write

S(U,A) for the set of functions

f : G(F )\G(A∞F )→ (⊗v∈S(B)ρv)⊗O A

such that for all g ∈ G(A∞F ), u ∈ U , we have f(gu) = u−1
S(B)f(g) (where uS(B) denotes the projection of u to

the S(B) components). (This is the space denoted Sa,{ρv},{χv}(U,A) in [CHT08]; since we take R = ∅ and
a = 0, and leave ρv fixed throughout the proof, we omit this extra data from the notation.)

If T is a finite set of finite places of F , containing S, such that Uv = ι−1
w GL4(OFw) for all finite places

of E split over F and prime to T , then (following [CHT08, p. 104]) we write TT (U) for the commutative
O-subalgebra of EndO(S(U,O)) generated by unramified Hecke operators at finite places of E split over F
and prime to T .

We now pin down a particular choice of U and T . Our assumptions imply that we can find δ ∈ GE
such that ρ(δ) has projective image in PGL2(F5) − PSL2(F5) and none of the eigenvalues of Ad τ(δ) are
equal to −1. By the Cebotarev density theorem, therefore, we can find a place ã of E prime to p, split over
F and absolutely unramified of residue characteristic strictly greater than 3, and such that h2(Eã,Ad τ) =
h0(Eã,Ad τ(1)) = 0. In particular, the only deformations of τ |GEã are the unramified ones. We take a to be
the place of F below ã, and define U =

∏
v Uv, where:

• If v is a place of F inert in E, then Uv is a hyperspecial maximal compact subgroup of G(Fv).

• If v|p, then Uv = G(OFv ).

• If v = v1, . . . , vs, then Uv is the unique maximal compact subgroup of G(Fv) (i.e. the group of units in
the ring of integers of the division algebra Bw).

• If v = a, then Uv = ι−1
ã (ker GL4(OEã) → GL4(k(ã))) (i.e. the inverse image under ιã of the principal

congruence subgroup of GL4(OEã)). (Then Uv is torsion-free, because a is absolutely unramified and
has residue characteristic > 3.)

• If v is any other place of F split in E, then we take Uv to be a maximal compact subgroup of G(Fv).

Then the open compact subgroup U ⊂ G(A∞F ) is sufficiently small, in the sense of [CHT08, p. 98], because
of the choice of place a. We set T = S ∪ {a}. Thus the Hecke algebra TT (U) is now defined unambiguously.
The existence of the RACSDC automorphic representation Π determines (by [CHT08, Proposition 3.3.2]) a
homomorphism TT (U) → Qp such that the unramified Hecke operator ι−1

w T iw is mapped to the eigenvalue

of T iw on the 1-dimensional Qp-vector space ι−1Π
GL4(OFw )
w . The image of this homomorphism TT (U)→ Qp

is contained in Zp, and we write m ⊂ TT (U) for the maximal ideal obtained by reduction modulo p. After
possibly enlarging the coefficient field L, we can assume that TT (U)m = k. By construction, the ideal m is
non-Eisenstein, in the sense of [CHT08, Definition 3.4.3], and hence there is a lift of τ to a homomorphism

rm : GF → G4(TT (U)m)

satisfying the list of conditions in [CHT08, Proposition 3.4.4], with the exception that condition 6 (i.e. that
rm is ‘Fontaine–Laffaille’ at the primes above p) is replaced by the condition that rm is crystalline of weight
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0, i.e. of type Dv for each v ∈ Sp. In particular, these conditions imply the existence of a canonical surjection
Runiv
S → TT (U)m, realizing rm as the pushforward of the universal deformation of τ .

We will show that the closed subspace

SuppRuniv
S

S(U,O)m ⊂ SpecRuniv
S

contains SpecRuniv
S′ . This will imply the theorem. Indeed, the ring TT (U)m is a finite O-module, and the

assertion on supports implies that the underlying reduced quotient of Runiv
S′ is a quotient of TT (U)m. It follows

from the completed version of Nakayama’s lemma that Runiv
S′ is then itself finite over O. If ϕ : Runiv

S′ → Qp
is a homomorphism then for the same reason it necessarily factors through T(U,O)m, implying (by [CHT08,
Proposition 3.3.2] again) the existence of a RACSDC automorphic representation Π′ of GL4(AE) such that
ϕ ◦ rm|GE ∼= rι(Π

′).
By a standard application of the Taylor–Wiles argument, as in the proof of [Tho12, Theorem 6.8],

it is enough to show the existence of Taylor–Wiles systems, i.e. (following the proof of [Tho12, Proposition
4.4]) to prove the following claim:

Claim. Let Sp ⊂ S denote the set of places dividing p, and let H1
L⊥,Sp

(FS/F,Ad τ(1)) be the dual Selmer

group defined on [CHT08, p. 27]. Then for every N ≥ 1 and for every cohomology class

[φ] ∈ H1
L⊥,Sp

(FS/F,Ad τ(1)),

there exists an element δ0 ∈ GE(ζpN ) and an eigenvalue α0 ∈ k of τ(δ0) such that tr eδ0,αφ(δ0) 6= 0, where

eδ0,α ∈ Endk(τ) is the unique τ(δ0)-equivariant projector onto the α0-generalized eigenspace of τ(δ0).

Before establishing the claim, we make the following observations:

• The projective image Ad τ(GE) has no quotient of order p. (It is a quotient of PGL2(F5)× σ(GE).)

• Let L/E(ζpN ) denote the extension cut out by Ad τ . Then the intersection H1(L/F,Ad τ(1)) ∩
H1
L⊥,Sp

(F,Ad τ(1)) (taken inside H1(F,Ad τ(1))) is trivial. (Let w = w1. The group

H1(E(ζpN )/F,Ad τ(1)
GE(ζ

pN
)
)

is trivial, so the restriction map

H1(L/F,Ad τ(1))→ H1(L/E(ζpN ),Ad τ(1)) ∼= H1(PSL2(F5),Ad ρ) ∼= k

is injective, implying that H1(L/F,Ad τ(1)) has dimension at most 1. The restriction map

H1(L/F,Ad τ(1))→ H1(GEw ,Ad τ(1))

is injective, since the image of GEw in Gal(L/F ) is a p-Sylow subgroup. If L⊥v ⊂ H1(GEw ,Ad τ(1))
denotes the orthogonal complement of the tangent space Dv(k[ε]) = Lv ⊂ H1(GEw ,Ad τ), then L⊥v
does not contain the image of H1(L/F,Ad τ(1)). Therefore the intersection of H1(L/F,Ad τ(1)) with
the group

H1
L⊥,Sp

(F,Ad τ(1)) ⊂ ker
[
H1(FS/F,Ad τ(1))→ H1(GEw ,Ad τ(1))/L⊥v

]
is trivial.)

• For each simple k[GE(ζp)]-submodule W ⊂ Ad τ(1), there exists δ ∈ GE(ζp) and an eigenvalue α ∈ k of
τ(δ) such that tr eδ,αW 6= 0. (This is true for the individual factors ρ and σ, so follows for their tensor
product by the argument of [BLGG13, Lemma A.3.1].)

To prove the claim, let us therefore fix N ≥ 1 and a class [φ] ∈ H1
L⊥,Sp

(FS/F,Ad τ(1)), and consider the

short exact sequence

0 //H1(L/F,Ad τ(1)) //H1(FS/F,Ad τ(1))
ResFL //H1(FS/L,Ad τ(1))GF .
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The class [φ] lies in the middle group; by the second point above, its image f = ResFL [φ] inH1(FS/L,Ad τ(1))GF

is non-zero. We can view f as a GE(ζp)-equivariant homomorphism GL → Ad τ . Let W be a simple k[GE(ζp)]-
submodule of the k-span of the image of f . By the third point above, we can find an element δ ∈ GE(ζp),
together with an eigenvalue α ∈ k of τ(δ) such that tr eδ,αW 6= 0. If tr eδ,αφ(δ) 6= 0, then we’re done: take
δ0 = δ and α0 = α.

Otherwise, we can assume tr eδ,αφ(δ) = 0, in which case we choose τ ∈ GL such that tr eδ,αf(τ) 6= 0.
There is an eigenvalue α0 of δ0 = τδ such that eδ,α = eδ0,α0 , and we can calculate

tr eδ0,α0
φ(δ0) = tr eδ,α(φ(τ) + φ(δ)) = tr eδ,αf(τ) 6= 0.

This completes the proof.

8.2 Ordinary lifts under additional conditions

We now prove a version of Theorem 8.1 under supplementary hypotheses. We continue to assume p = 5.
Let F be a totally real field such that for each p-adic place v of F , Qp(ζp) ⊂ Fv, and let c ∈ GF denote a
fixed choice of complex conjugation. Let π be a RAESDC automorphic representation of GL2(AF ) of trivial
central character and satisfying the following conditions:

• The representation π is everywhere unramified and of weight 2. For each place v|p of F , πv is not
ι-ordinary.

• The residual representation ρ = rι(π) is exceptional. For each place v|p of F , ρ|GFv is trivial.

We let ρ′ = rι(π). Then det ρ′ = ε−1 and for each place v|p of F , ρ′|GFv is crystalline non-ordinary. We
suppose given as well the following additional data:

• Places v1, . . . , vs of F such that s is even and for each i = 1, . . . , s, qvi ≡ 1 mod p and ρ(Frobvi) is
unipotent of order p.

• An everywhere unramified imaginary quadratic extension E/F , disjoint from F (ζ5), in which v1, . . . , vs
and the p-adic places of F all split. We write w1, . . . , ws for a choice of places above v1, . . . , vs,
respectively. We suppose there exists an everywhere unramified character α : GE → O× of order prime
to p such that ααc = ω−1, the Teichmüller lift of the cyclotomic character. (We note that ω = ω−1,
since by hypothesis E(ζ5)/E is a quadratic extension, but we preserve this notation for psychological
reasons.)

• An imaginary quadratic extension K/F , disjoint from E(ζ5), in which every place v|p of F splits and
v1, . . . , vs are inert, and a continuous character θ : GK → k× which is unramified outside v1, . . . , vs,
satisfies θθ

c
= ε−1, and such that the restrictions θ|IKvi have order divisible by ti, for some odd prime

ti|qvi + 1.

We set σ = IndGFGK θ; then σ is absolutely irreducible, because the local restrictions σ|GFvi are absolutely

irreducible, and detσ = ε−1. Moreover, σ remains absolutely irreducible on restriction to GE(ζp). Now
choose for each place v of F above p a place v′ of K above v. We finally suppose given as well the following
additional data:

• A continuous character θ : GK → O× lifting θ which is unramified outside v1, . . . , vs and the p-adic
places and crystalline at the p-adic places, satisfies θθc = ε−2ω, and such that HTτ (θ) = {0} for each
embedding τ : K ↪→ Qp inducing a place v′ of K.

• A continuous character θ′ : GK → O× lifting θ which is unramified outside v1, . . . , vs and the p-adic
places and crystalline at the p-adic places, satisfies θ′(θ′)c = ε−1, and such that HTτ (θ′) = {0} or
{1} for each place v′ of K; and for each place v′ of K, there is at least one such embedding τ with
HTτ (θ′) = {0}, and at least one such embedding with HTτ (θ′) = {1}.
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We assume that for each i = 1, . . . , s, the groups θ(IKvi ) and θ′(IKvi ) have order prime to p (and are therefore

each canonically isomorphic to θ(IKvi )). We set σ = IndGFGK θ and σ′ = IndGFGK θ
′. Then σ is crystalline and

ordinary, satisfying detσ = ε−2ω and HTτ (σ) = {0, 2} for each embedding τ : E ↪→ Qp, while σ′ is crystalline
of weight 0 with detσ′ = ε−1 and for each place v|p of F , σ′|GFv is non-ordinary.

Let S = Sp ∪ {v1, . . . , vs}. We introduce the following deformation problem relative to F (notation
now as in §6.1):

Sρ = (ρ, ε−2ω, S, {O}v∈S , {Dv}v∈Sp ∪ {DSt(uni)
vi }i=1,...,s),

where for each v ∈ Sp, Dv is the local deformation problem of ordinary crystalline representations of Hodge–
Tate weights {0, 2}. This local lifting ring Dv is then irreducible, with smooth generic fiber. Let τ =
(ρ⊗ σ)|GE ⊗ α. Then we have

τ c ∼= (ρ⊗ σ)|GE ⊗ ω−1α−1 ∼= (ρ⊗ σ)∨|GE ⊗ ε−3ωω−1α−1 ∼= τ∨ε−3.

Thus τ is conjugate self-dual, and one sees that it satisfies the hypotheses of §8.1. We can therefore fix
an extension of τ to a homomorphism τ : GF → G4(k) with ν ◦ τ = ε−3δµE/F . The deformation problem

S is then defined (see equation (8.1)). In order to pin down the subproblem S ′ as in equation (8.2), it is
necessary to specify a RACSDC automorphic representation Π of GL4(AE) with rι(Π) = τ , and we take it
to be the one with Galois representation (ρ′ ⊗ σ)|GE ⊗ α, which exists by automorphic induction. Then the
deformation problem S ′ is also defined.

Theorem 8.3 implies that the ring Runiv
S′ is a finite O-algebra. Let us write ρu : GF → GL2(RSρ)

for a representative of the universal deformation valued in this ring, and let τu = (ρu ⊗ σ′)|GE ⊗ α, a 4-
dimensional representation with coefficients in RSρ . We have (τu)c ∼= (τu)∨ε−3, and we can therefore find
([CHT08, Lemma 2.1.1]) an extension of τu to a homomorphism τu : GF → G4(RSρ) which lifts τ . By
construction, the representation τu is of type S ′ (compare [BLGG12, p. 1567], proof of (9)), so is classified
by a homomorphism Runiv

S′ → RSρ . Just as in [BLGG12, §3.2], one can show that this is a finite morphism
of rings, and hence that RSρ is a finite O-algebra. One also knows by the standard argument in Galois

cohomology that dimRSρ ≥ 1, implying that RSρ must have a Qp-point, corresponding to a representation
ρ : GF → GL2(O) of type Sρ (after possibly enlarging O).

In the same way, the representation (ρ ⊗ σ′)|GE ⊗ α gives rise to a representation of type S ′, so
Theorem 8.3 implies that (ρ⊗ σ′)|GE ⊗ α is automorphic. It then follows from [BLGG12, Proposition 5.1.1]
that ρ|GE itself is automorphic, and so the same is true for ρ itself. We are nearly done: ρ is an automorphic
lift of the exceptional residual representation ρ which is ordinary at each p-adic place of F . However, it does
not have the desired Hodge type, and is ramified at the places v1, . . . , vs. By Hida theory and the argument
of Skinner–Wiles [SW01], we can pass to a soluble extension F ′/F and replace ρ by a representation of
weight 2 (i.e. with τ -Hodge–Tate weights {0, 1} for every τ) which does have the desired properties. This
proves Theorem 8.1 under the conditions of this section.

8.3 Ordinary lifts in general

We now complete the proof of Theorem 8.1. After making a preliminary soluble base change, we can assume
that we are in the following situation (cf. [BLGG12, Lemma 6.1.1]): we are given a totally real field F and a
cuspidal automorphic representation π of GL2(AF ), of weight 2 and trivial central character, satisfying the
following additional conditions:

• The representation ρ = rι(π) is exceptional, and for each place v|p of F , rι(π) is trivial.

• For each place v|p of F , πv is not ι-ordinary and Qp(ζp) ⊂ Fv.

By the Cebotarev density theorem, we can find a place u0 of F such that qu0
≡ 1 mod p and ρ(Frobu0

)
is unipotent of order p. (Observe that the condition qu0 ≡ 1 mod p is equivalent to asking that the place
u0 split in the unique quadratic extension of F which is contained in the field cut out by Ad ρ, which has
Galois group PGL2(F5), by hypothesis.) Let K/F be an imaginary quadratic extension disjoint from F (ζ5)
in which each place v|p of F splits and u0 is inert. By [BLGGT14, Lemma A.2.5], we can find a continuous
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character θ : GK → k× such that the order of θIKu0
is divisible by an odd prime t|(qu0 + 1) and θθ

c
= ε−1

and for each place v|p of K, θ|IKv is trivial.
Choose for each place v|p of F a place v′ of K above v. By another application of [BLGGT14,

Lemma A.2.5], we can find characters θ, θ′ : GK → O× lifting θ and satisfying the following conditions:

• We have θθc = ε−2ω, and for each embedding τ : K ↪→ Qp inducing a place v′, HTτ (θ) = {0}.

• We have θ′(θ′)c = ε−1 and for each embedding τ : K ↪→ Qp inducing a place v′, HTτ (θ′) = {0} or {1};
and for each v′, there exists at least one such embedding with HTτ (θ′) = {0} and at least one such
embedding with HTτ (θ′) = 1.

• The groups θ(IKu0 ) and θ′(IKu0 ) have order prime to p.

We choose as well an imaginary quadratic extension E/F , disjoint from K(ζ5) over F , in which every prime
above p or u0 splits, and a finite order character α : GE → O× such that ααc = ω−1. We now observe that
we can find a soluble extension F ′/F of even degree, linearly disjoint over F from K · E(ζ5), and satisfying
the following conditions:

• The place u0 splits in F ′. We write v1, . . . , vs for the places of F above u0.

• Let K ′ = F ′ ·K. Then the characters θ|GK and θ′|GK are unramified at places not dividing p or u0,
and crystalline at the places dividing p.

• Let E′ = F ′ · E. Then the extension E′/F ′ is everywhere unramified and the character α′ = α|GE′ is
everywhere unramified.

The hypotheses of §8.2 now apply to F ′ together with θ|GK′ etc. This concludes the proof of Theorem 8.1.

9 Deduction of the main theorem

We now use the results established so far to deduce the theorem stated in the introduction. We first prove
the theorem under favorable local hypotheses. We then use the results of §8 and soluble base change (in the
form of [Tho16, Lemma 7.1]) to show that the general case can be reduced to this one.

Theorem 9.1. Let F be a totally real field, let p be an odd prime, and let ρ : GF → GL2(Qp) be a continuous
representation. Suppose that the following conditions hold.

1. [F : Q] is even.

2. The representation ρ|F (ζp) is irreducible.

3. The character ψ = εdet ρ is everywhere unramified.

4. The representation ρ is almost everywhere unramified.

5. For each place v|p, ρ|GFv is semistable and ρ|GFv is trivial. For each embedding τ : F → Qp, we have
HTτ (ρ) = {0, 1}.

6. If v is a finite place of F not dividing p at which ρ is ramified, then qv ≡ 1 mod p, WD(ρ|GFv )F-ss ∼=
recTFv (St2(χv)), for some unramified character χv : F×v → Q×p , and ρ|GFv is trivial. The number of
such places is even.

7. There exists a cuspidal automorphic representation π of GL2(AF ) of weight 2 and an isomorphism
ι : Qp → C satisfying the following conditions:

(a) There is an isomorphism of residual representations rι(π) = ρ.
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(b) If v|p and ρ|GFv is ordinary, then πv is ι-ordinary and π
U0(v)
v 6= 0. If v|p and ρ|GFv is non-

ordinary, then πv is not ι-ordinary and πv is unramified.

(c) If v is place of F that does not divide p∞ and ρ|GFv is unramified, then πv is unramified; if ρGFv
is ramified, then πv is an unramified twist of the Steinberg representation.

Then ρ is automorphic: there exists a cuspidal automorphic representation π′ of GL2(AF ) of weight 2 and
an isomorphism ρ ' rι(π′).

Proof. The proof is essentially the same as the proof of [Tho16, Theorem 7.2]. At this point enough minor
deviations have accumulated that we give the details. By known results, we can assume that p = 5 and that
ρ is exceptional. Choosing a coefficient field and conjugating, we can assume that ρ takes values in GL2(O)
and that the residue field k contains the eigenvalues of all elements in the image of ρ. If N ≥ 1 is an integer
then we let ρN = ρ mod λN . We will show that ρ satisfies the hypotheses of Corollary 5.5, using Corollary
7.3. This will imply the theorem. Let us therefore fix an integer N ≥ 1, let σ ⊂ Sp denote the set of p-adic
places where ρ is ordinary, and let R denote the set of places prime to p where ρ is ramified. We consider
the global deformation problem:

S = (ρ, ε−1ψ, Sp ∪R, {Λv}v∈σ ∪ {O}v∈(Sp−σ)∪R, {Dord
v }v∈σ ∪ {Dnon-ord

v }v∈Sp−σ ∪ {DSt
v }v∈R),

and set T = Sp ∪R. Here the rings Λv (v ∈ σ) are the local Iwasawa algebras, as in §7. We now claim that
we can find a finite set Q0 of finite places of F satisfying the following conditions:

1. We have Q0 = {v1, v2} where the deformation problems DSt(αv1 )
v1 and DSt(uni)

v2 are defined (for some
choice of αv1 ∈ k). In particular, #Q0 is even.

2. The element ρN (Frobv1) is conjugate to ρN (c) for c ∈ GF a complex conjugation, and qv1 ≡ −1 mod pN .

3. We have qv2 ≡ 1 mod p, but qv2 6≡ 1 mod p2, ρ(Frobv2) has order p, and ρN |GFv2 is GL2(O)-conjugate
to a representation of the form (

χ ∗
0 χε−1

)
,

where χ is an unramified finite order character.

Indeed, we choose v2 to be any place satisfying the conditions of Proposition 6.9, and then choose v1 to be
any place such that qv1 ≡ −1 mod pN and such that ρN (Frobv1) is conjugate to ρN (c). Such a choice of Q0

having been fixed, we define the augmented deformation problem

SQ0
= (ρ, ε−1ψ, Sp ∪R ∪Q0, {Λv}v∈σ ∪ {O}v∈(Sp−σ)∪R∪Q0

, {Dord
v }v∈σ ∪ {Dnon-ord

v }v∈Sp−σ

∪{DSt
v }v∈R ∪ {D

St(αv1 )
v1 ,DSt(uni)

v2 }).

By [Tho16, Lemma 4.13] (i.e. level-raising), we can find a cuspidal automorphic representation π0 of GL2(AF )
weight 2 satisfying the following conditions:

• There is an isomorphism of residual representations rι(π0) ∼= ρ.

• If v ∈ σ, then π0,v is ι-ordinary and π
U0(v)
0,v 6= 0. If v ∈ Sp − σ, then π0,v is unramified and is not

ι-ordinary.

• If v /∈ Sp∪R∪Q0 is a finite place of F , then π0,v is unramified. If v ∈ R∪Q0, then π0,v is an unramified

twist of the Steinberg representation. If v = v1, then the eigenvalue of Uv on ι−1π
U0(v)
0,v is congruent to

αv modulo the maximal ideal of Zp.

After replacing π0 by a character twist, we can assume that π0 has central character ιψ. The hypotheses of
§7 are thus satisfied with respect to the global deformation problem SQ0

and the representation π0.
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Fix a choice of auxiliary prime a as in Lemma 7.1, let S = Sp ∪ R ∪ {a}, and let m∅ ⊂ TS,univ be
the maximal ideal corresponding under ι to the representation π0. Then m∅ is in the support of HR(U),
where U = U1(σ) is as described in §7. Let C0 = dimk(HR(U) ⊗O k)[m∅]. It follows from Proposition 5.3
that dimk(HR∪Q0

(UQ0
)⊗O k)[mQ0

] ≤ 4#Q0C0. We can therefore apply Corollary 7.3 with C = 4#Q0C0 and

n = 1 to conclude that there is a homomorphism f : TS∪Q0

Q0
(HR∪Q0

(UQ0
)) → O/λbN/Cc with the following

properties:

• For each finite place v 6∈ S ∪Q0 of F , we have f(Tv) = tr ρN (Frobv).

• Let I = ker f . Then (HR∪Q0
(UQ0

)mQ0
⊗O O/λbN/Cc)[I] contains an O-submodule isomorphic to

O/λbN/Cc.

Let m ≥ 1 be the smallest integer such that qv2 6≡ 1 mod λm+1. Since C is independent of the choice of
N , the conditions of Corollary 5.5 are now satisfied with r = 1, allowing us to conclude the automorphy of
ρ.

Lemma 9.2. Let F be a totally real field, let p = 5, and let ι : Qp ∼= C be an isomorphism. Let π be a

cuspidal automorphic representation of GL2(AF ) of weight 2 such that rι(π) is exceptional. Let σ ⊂ Sp be a
subset, and let R be a finite set of finite places of F which are prime to p. Then there exists a soluble totally
real extension F ′/F and a cuspidal automorphic representation π0 of GL2(AF ′) of weight 2, satisfying the
following conditions:

1. There is an isomorphism rι(π)|GF ′
∼= rι(π0). If v is a place of F ′ above Sp ∪ R, then rι(π)|GF ′

v
is

trivial.

2. If v is a p-adic place of F ′ dividing σ, then π
U0(v)
0,v 6= 0, and π0,v is ι-ordinary.

3. If v is a p-adic place of F ′ not dividing σ, then π0,v is unramified and not ι-ordinary.

4. If v is a place of F ′ dividing R, then π0,v is an unramified twist of the Steinberg representation and
qv ≡ 1 mod p.

5. If v is any other finite place of F ′, then π0,v is unramified.

Proof. We recall (Lemma 3.1) that the property of being exceptional is preserved under soluble base change.
The current lemma is now an easy consequence of Theorem 8.1, Lemma 5.7, and [Tho16, Lemma 4.13].

We can now prove our main theorem.

Theorem 9.3. Let F be a totally real number field, let p be an odd prime, and let ρ : GF → GL2(Qp) be a
continuous representation satisfying the following conditions.

1. The representation ρ is almost everywhere unramified.

2. For each place v|p of F , ρ|GFv is de Rham. For each embedding τ : F ↪→ Qp, we have HTτ (ρ) = {0, 1}.

3. The representation ρ|GF (ζp)
is irreducible.

4. There exists a cuspidal automorphic representation π0 of GL2(AF ) of weight 2 such that rι(π0) ∼= ρ.

Then ρ is automorphic: there exists a cuspidal automorphic representation π of GL2(AF ) of weight 2, an
isomorphism ι : Qp → C, and an isomorphism ρ ∼= rι(π).

Proof. By known results, it suffices to treat the case where p = 5 and ρ is exceptional. Replacing ρ by a
twist, we can assume that εdet ρ has order prime to p. By soluble base change and descent ([Tho16, Lemma
7.1]), we are free to replace F by any soluble totally real extension. In particular, after applying Lemma 9.2
and making a preliminary soluble base change we can assume that the following conditions are satisfied:

• For each finite place v of F , ρ is semi-stable. If ρ|GFv is ramified, then ρ|GFv is trivial.
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• The cuspidal automorphic representation π0 satisfies the following conditions:

– If v ∈ Sp and ρ|GFv is ι-ordinary, then π0,v is ι-ordinary and π
U0(v)
0,v 6= 0. If ρ|GFv is not ι-ordinary,

then π0,v is unramified and not ι-ordinary.

– If v is a finite place of F prime to p, then π0,v is ramified if and only if ρ|GFv is ramified, and
in this case π0,v is an unramified twist of the Steinberg representation and qv ≡ 1 mod p. The
number of such places is even.

The hypotheses of Theorem 9.1 are now satisfied; this completes the proof.
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