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Summary

The present thesis reveals a novel connection of Diophantine approrimation arising from
small divisors to general relativity, more precisely, the Strong Cosmic Censorship conjec-
ture. The main results provide theorems which resolve a linear scalar analog of the Strong
Cosmic Censorship conjecture in general relativity for A < 0. The proofs are intimately
tied to small divisors and the resolution crucially depends on suitable Diophantine condi-
tions. A further ingredient is the novel scattering theory on black hole interiors established

at first. The thesis consists of three parts.

In the first part we develop a scattering theory for the linear wave equation g = 0
on the interior of Reissner—Nordstrom black holes. The main result shows the existence,
uniqueness and asymptotic completeness of finite energy scattering states on the interior
of Reissner—Nordstrom. The past and future scattering states are represented as suitable
traces of the solution v on the bifurcate event and Cauchy horizons. Finally, we prove
that, in contrast to the above, on the Reissner-Nordstrom—(Anti-)de Sitter interior, there
is no analogous finite T' energy scattering theory for either the linear wave equation or
the Klein—-Gordon equation with conformal mass. This part is joint work with Yakov
Shlapentokh-Rothman (Princeton University).

The second and third parts are motivated by the Strong Cosmic Censorship Conjecture
for asymptotically AdS spacetimes. We consider smooth linear perturbations governed by
the conformal wave equation [yt — %Aw = 0 on Reissner—-Nordstrom—AdS and Kerr—
AdS black holes, respectively. We prescribe initial data on a spacelike hypersurface of
a Reissner—Nordstrom—AdS and Kerr—AdS black hole and impose Dirichlet (reflecting)
boundary conditions at infinity. It was known previously by work of Holzegel-Smulevici
that such waves only decay at a sharp logarithmic rate (in contrast to the polynomial
rate in the asymptotically flat regime) in the black hole exterior. In view of this slow
decay the question of uniform boundedness or blow-up at the Cauchy horizon in the black
hole interior (and thus the validity of the linear scalar analog of the C°-formulation of the
Strong Cosmic Censorship conjecture) has remained up to now open.

In the second part of the thesis, we answer the question of uniform boundedness in
the affirmative for Reissner—Nordstrom—AdS: We show that [¢)| < C in the black hole
interior. In this setting, this corresponds to the statement that the linear scalar analog
of the CO-formulation of Strong Cosmic Censorship is false. The proof follows a new
approach, combining physical space estimates with Fourier based estimates exploited in
the scattering theory developed in the first part.

In the third part of the thesis, we show that |¢)| — oo at the Cauchy horizon of



Kerr-AdS if the dimensionless black hole parameters mass m = M+\/—A and angular
momentum a = ay/—A satisfy certain Diophantine properties. This is in stark contrast
to the second part as well as previous works on Strong Cosmic Censorship for A > 0. In
particular, as a result of the Diophantine conditions, we show that these resonant black hole
parameters form a Baire-generic but Lebesgue-exceptional subset of parameters below the
Hawking—Reall bound. On the other hand, we conjecture that, as is the case for Reissner—
Nordstrom—AdS, linear waves remain bounded at the Cauchy horizon [¢)| < C for a set
of black hole parameters which is Baire-exceptional but Lebesgue-generic. This means
that the answer to the above question concerning uniform boundedness or blow-up on the
Kerr—AdS interior is either negative or affirmative depending on the parameters considered.
Thus, in this setting, the validity of the linear scalar analog of the CY-formulation of Strong

Cosmic Censorship depends in an unexpected way on the notion of genericity imposed.
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Prologue

Diese Coefficienten erscheinen aber in
Bruchform, und es werden die Nenner
unendlich klein, wenn die Summe der
absoluten Betrage der ganzen Zahlen
v1,...,V. unendlich gross wird. Es
muss also gezeigt werden, dass auch
die Zéahler unendlich klein werden, und
ebenso die Briiche selbst, was bei der
complizierten Zusammensetzung der
Ausdriicke unmoglich erscheint.

Karl Weierstrafs, 1878

In this excerpt of a letter addressed to Sofya Kovalevskaya in 1878, Weierstraf describes
his ongoing attempts at constructing quasiperiodic solutions to the n-body problem in ce-
lestial mechanics [103, p. 31|. Motivated by the quest for a rigorous proof of the stability
of the solar system within Newtonian gravity, he tried to prove the existence of such
quasiperiodic solutions via successive approximation, the so-called Lindstedt series. As
apparent from his notes to Kovalevskaya [103], he struggled showing the convergence of
the formal expansion due to the inevitable occurrence of small divisors, which Laplace
and Lagrange had already encountered previously [88]. Although lacking a proof, Weier-
strafs was convinced that the Lindstedt series can be shown to converge. His hopes were
founded in a remark of Dirichlet to Kronecker in 1858, in which Dirichlet claimed to have
shown such a series expansion [103, p. 48]. Unfortunately, Dirichlet died shortly after
without leaving any written work supporting his claims. Being intrigued by this problem
of convergence, Weierstraft also reached out to Mittag-Leffler who persuaded the Swedish
King Oscar II to sponsor a prize for a resolution of the problem on the occasion of the
King’s 60th birthday in 1889. The prize was awarded—after some famous corrections—to
Henri Poincaré for his groundbreaking work [126]. Instead of proving the convergence of

the series, Poincaré’s revolutionary final submission and subsequent work [127] actually
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suggested something unexpected—instability and chaos! This made Poincaré very doubt-
ful, yet still cautious (“Les raisonnements de ce Chapitre ne me permettent pas d’affirmer
que ce fait ne se présentera pas. Tout ce qu’il m’est permis de dire, c’est qu’il est fort
invraisemblable.” [127, Vol. II, p. 104|), whether such Lindstedt series can ever be con-
vergent. He saw the problem of small divisors as unavoidable and at the very nature of
things (“a la nature méme des choses” [125, p. 217]).

It was only several decades later in the mid 20th century that the existence of quasiperi-
odic orbits and a definitive resolution (see also [136]) of the prize question in honor of King
Oscar IT was found in a conglomerate of works by Siegel [135]|, Kolmogorov [85], Arnold
[3] and Moser [109] in terms of the celebrated KAM theorem. The principle result of the
KAM theorem shows the existence of quasiperiodic orbits for a general class of dynamical
systems including the n-body problem in Newtonian gravity. These sets of orbits arise
from Diophantine conditions to “avoid” the small divisors and have a bizarre Can-
tor set-like structure. This is consistent with non-existence results proved by Poincaré
for sufficiently nice sets with nonempty interior. The question of stability or instability
becomes even more peculiar as its answer crucially depends on the notion of genericity
imposed. Indeed, a consequence of the KAM theory is that these quasiperiodic orbits are
generic in the sense of the Lebesgue measure, while being exceptional in the sense of Baire.

The main result of the present thesis reveals a novel connection of the small divisor
problem and Diophantine approximation to general relativity. General relativity gen-
eralizes Newtonian gravity and is the mathematical theory formulated by Albert Einstein
[43] in 1915 upon which our contemporary understanding of gravitational physics rests.
One of the most celebrated yet wonderfully simple predictions of general relativity is the
existence of black holes. The mathematical formulation of general relativity considers
space and time as part of a four-dimensional geometric entity—spacetime. Its evolution is
governed by the Einstein equations which determine how spacetime is curved. This thesis
is concerned with the problem of where and how this determinism breaks down in the
context of black holes. This foundational question of determinism and the statement that
general relativity is a deterministic theory were first mathematically formulated by Roger

Penrose [123| as the Strong Cosmic Censorship (SCC) Conjecture.

Conjecture (Strong Cosmic Censorship [123]). For generic initial data for the Einstein

equations, the maximal Cauchy development is inextendible as a suitable reqular spacetime.

A crucial ingredient [44] in the Einstein equations is the so-called cosmological con-
stant A. For A > 0, remarkable progress in proving and disproving different formulations

(see already the discussion around Conjecture 1 and Conjecture 2) of the Strong Cosmic
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Censorship conjecture has been made over the last two decades. For A < 0, despite its
prominent role in theoretical physics [97, 146], the Strong Cosmic Censorship conjecture
and its various versions have remained open up until now. The main results in Chapter 2
and Chapter 3 of this thesis provide theorems which resolve the linear scalar analog of the
Strong Cosmic Censorship conjecture in its strongest (C%-) formulation for A < 0:

(1) The amplitude of linear waves perturbing a charged, non-rotating black hole re-
mains finite in its interior.

(2) On the other hand, if the black hole is rotating, the amplitude of such waves blows
up in black hole interiors if a suitable ratio of the black hole parameters mass, angular
momentum and cosmological constant satisfies certain Diophantine conditions.

We further conjecture that the amplitude of such waves remains bounded if the Dio-
phantine conditions are not fulfilled. Thus we see that which of the scenarios happens—
boundedness or blow-up—crucially depends on the notion of genericity imposed. We prove
that instability and blow-up occurs for Baire-generic but Lebesgue-exceptional parame-
ters, whereas we now conjecture boundedness for Baire-exceptional but Lebesgue-generic
parameters. This resembles some of the key aspects and insights of KAM theory within
the framework of general relativity. Even if Lebesgue-genericity is imposed, we argue that
stability is somewhat weak as such a parameter set has empty interior and any quantita-
tive bound on the amplitude of ¢ can in principle be arbitrarily large. In this sense, the
fate of observers falling into such black holes, though bleak, is determined—answering the
linear scalar analog of the Strong Cosmic Censorship conjecture in the affirmative. Thus,
surprisingly, small divisors and Diophantine approximation, the ‘“villains” of
the stability of the solar system in Newtonian gravity, may turn out to be the
elusive “Cosmic Censor” which Penrose was searching for in order to protect
determinism in general relativity [123|. We see in our results that the pervasive
nature of instability in dynamical systems can sometimes be conscripted to do good—a

vindication, perhaps, of Poincaré’s faith in instabilities caused by small divisors.

L’instabilité est donc la régle et la
stabilité est ’exception.

Henri Poincaré, 1885
[124, p. 172]
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Introduction

In this thesis, we study linear scalar perturbations 1) solving the conformal wave equation
2
Dgyp — 5A¢ =0 (WE)

on the interior of black hole spacetimes. We will first consider Reissner—Nordstréom black
holes [132, 113] which are asymptotically flat (A = 0) and spherically symmetric solutions

to the Einstein equations
. 1
RIC(Q)“V - §Rgul/ + Ag;u/ = 87TT[1,V (EE)

coupled to the Maxwell equations through the energy-momentum tensor 7),,, see already
(1.2.1). Reissner—Nordstrom black holes are parameterized by their charge @) and mass M
and we will focus on the subextremal range 0 < |Q| < M. Then, in the main part of the
thesis we will study asymptotically Anti-de Sitter (AdS) black holes which are solutions to
(EE) for A < 0. We will consider subextremal Reissner—-Nordstréom—AdS black holes [13],
which solve the Einstein—-Maxwell system in spherical symmetry for cosmological constant
A < 0. Moreover, we will study the rotating Kerr—AdS black holes [83] which solve the
Einstein equations for A < 0 in vacuum, i.e. T, = 0. Kerr-AdS black holes are parameter-
ized by their mass M and angular momentum a and we consider subextremal parameters
below the Hawking—Reall bound. All of the above black holes violate determinism in the
sense that they all posses a smooth Cauchy horizon. Thus, they play an essential role in

the Strong Cosmic Censorship conjecture discussed later.

In Chapter 1, we develop the first scattering theory for linear waves solving (WE)
on the interior of Reissner—Nordstrém black holes. We also prove that in contrast to
Reissner—Nordstrom, there is no analogous finite 7" energy scattering theory (WE) on the
Reissner—Nordstrom—(Anti-)de Sitter interior. A detailed introduction to the scattering
problem will given in Chapter 1. The insights from Chapter 1 will also play a key role for
the second and third part.
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Chapter 2 and Chapter 3 constitute the main part of the thesis. We consider pertur-
bations v solving (WE) arising from initial data on a spacelike hypersurface on Reissner—
Nordstrom—AdS and Kerr—AdS black holes [13]. We also consider reflecting boundary
conditions at infinity. We treat the cases of Reissner—Nordstrom—AdS and Kerr—AdS in
Chapter 2 and Chapter 3, respectively.

Our main result of Chapter 2 is Theorem 2.1 which shows that perturbations v solv-
ing (WE) remain uniformly bounded || < C in the black hole interior and extend
continuously across the Cauchy horizon of Reissner—Nordstrém—AdS. This corresponds
to the statement that the linear analog of the C°-formulation of Strong Cosmic Cen-
sorship is false. Our result is surprising because in contrast to black hole backgrounds
with non-negative cosmological constants (A > 0), the decay of ¢ in the exterior region
for asymptotically AdS black holes (A < 0) is only logarithmic as shown by Holzegel-
Smulevici [75] (cf. polynomial [129, 29, 2] (A = 0) and exponential [10, 42] (A > 0)).
Indeed, the logarithmic decay is too slow to adapt the mechanism exploited in previous
studies of black hole interiors [23, 51, 26]. The proof of Theorem 2.1 will now follow a
new approach, combining physical space estimates with Fourier based estimates exploited

in the scattering theory developed in Chapter 1.

Our main result Theorem 3.1 of Chapter 3 shows that perturbations ¢ solving (WE)
blow up everywhere at the Cauchy horizon on Kerr—AdS if the dimensionless black hole’s
mass m = M+/—A and angular momentum a = av/—A satisfy certain Diophantine prop-
erties. We show that such black hole parameters are Baire-generic but Lebesgue-
exceptional. This is in sharp contrast to the result in Chapter 2 on Reissner—Nordstrom—
AdS black holes. We also conjecture that, if the parameters m and a do not satisfy the
Diophantine conditions, linear perturbations remain bounded at the Cauchy horizon. This

would be the case for Lebesgue-generic but Baire-exceptional black hole parameters.

In the rest of the introduction we will focus on Chapter 2 and Chapter 3 which con-
stitute the main results of the thesis. The above results can be viewed as providing a
surprising—mixed—resolution of the linear scalar analog of the C®-formulation of the
Strong Cosmic Censorship conjecture. We will briefly present the various formulations
of the Strong Cosmic Censorship conjecture, review relevant previous work and give an
outline of the main results and difficulties. This will be complemented with a detailed
discussion in the introductions of Chapter 2 and Chapter 3, respectively. We will briefly
mention how the scattering theory developed in Chapter 1 fits into the above but postpone

the discussion and motivation of the scattering problem to the introduction of Chapter 1.
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The Strong Cosmic Censorship Conjecture

Our main motivation for studying linear perturbations on black hole interiors is to shed
light on one of the most fundamental problems in general relativity: The Kerr (—de Sitter
or —Anti-de Sitter) and Reissner-Nordstrom (-de Sitter or —Anti-de Sitter) black holes
share the property that in addition to the event horizon H, they hide another horizon,
the so-called Cauchy horizon CH in their interiors. This Cauchy horizon defines the
boundary beyond which initial data on a spacelike hypersurface (together with boundary
conditions at infinity in the asymptotically AdS case) no longer uniquely determine the
spacetime as a solution of (EE). In particular, these spacetimes admit infinitely many
smooth extensions beyond their Cauchy horizons solving (EE). This severe violation of
determinism is conjectured to be an artifact of the high degree of symmetry in those
explicit spacetimes and generically, due to blue-shift instabilities, it is expected that some
sort of singularity ought to form at or before the Cauchy horizon. The presence of this
singularity is paradoxically “good” because—if sufficiently strong—it can be argued that
it restores determinism as the fate of any observer, though bleak, is determined. Making
this precise gives rise to various formulations of what is known as the Strong Cosmic
Censorship Conjecture (SCC) [123, 17]. A full resolution of the SCC conjecture would
also include a precise description of the breakdown of regularity at or before the Cauchy
horizon.

We begin with the CY-formulation of the SCC conjecture which can be seen as the
strongest inextendability statement in this context. Formally, this formulation can be
regarded as the statement that observers crossing the Cauchy horizon are torn apart by

infinite tidal deformations [26].

Conjecture 1 (C%-formulation of Strong Cosmic Censorship). For generic compact,
asymptotically flat or asymptotically Anti-de Sitter vacuum initial data, the mazimal

Cauchy development of (EE) is inextendible as a Lorentzian manifold with C° metric.

Surprisingly, the C°-formulation (Conjecture 1) was recently proved to be false for
both cases A = 0 and A > 0 (see discussion later, [26]). However, the following weaker,
yet still well-motivated, formulation introduced by Christodoulou in [17] is still expected

to hold true (at least) in the asymptotically flat case (A = 0).

Conjecture 2 (Christodoulou’s reformulation of Strong Cosmic Censorship). For generic
asymptotically flat vacuum initial data, the maximal Cauchy development of (EE) is inex-
tendible as a Lorentzian manifold with C° metric and locally square integrable Christoffel

symbols.
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Unlike the C%-formulation of Conjecture 1, the statement of Conjecture 2 does not
guarantee the complete destruction of observers approaching the boundary of spacetime.
However, it restores determinism in the sense that even just weak solutions must break
down at the boundary of spacetime. Nonetheless, one may always be worried about what
notion of weak solution is finally the correct one [122, 93, 96]. In this sense it is a pity that
Conjecture 1 is false in the A > 0 cases as it would have provided a much more definitive

resolution of the Strong Cosmic Censorship conjecture.

Linear scalar analog of the Strong Cosmic Censorship conjecture

The aforementioned formulations of SCC have linear scalar analogs on the level of (WE).
Indeed, under the identification 9 ~ g, equation (WE) can be seen as a naive lineariza-
tion of the Einstein equations (EE) after neglecting the nonlinearities and the tensorial
structure. Moreover, many phenomena and difficulties for the full Einstein equations (EE)
are already present at the level of (WE). The linear scalar analog of Conjecture 1 in a
neighborhood of Kerr and Kerr—(Anti-)de Sitter corresponds to the statement that linear
perturbations arising from smooth data on a spacelike hypersurface solving (WE) blow up
(in L) at the Cauchy horizon.

Conjecture 3 (Linear scalar analog of the C°-formulation of SCC (Conjecture 1)). Lin-
ear perturbations 1 solving (WE) of subextremal Reissner—Nordstrom—(dS/AdS) or Kerr—
(dS/AdS) black holes blow up in amplitude

|| = +o0

at the Cauchy horizon.

Remark that in order to show Conjecture 3, it suffices to show that there exists one so-
lution % which blows up at the Cauchy horizon. Indeed, since (WE) is linear, any solution
which does not blow up would be manifestly exceptional in that case. The reformulation
due to Christodoulou (Conjecture 2) finds its linear scalar analog in the H}. . blow up of
1) at the Cauchy horizon in view of the identification 0y ~ T.

Conjecture 4 (Linear scalar analog of Christodoulou’s reformulation of SCC (Con-
jecture 2)). Linear perturbations ¢ solving (WE) of subextremal Reissner—Nordstrom—

(dS/AdS) or Kerr—(dS/AdS) black holes blow up in local energy

ol — +o0
at the Cauchy horizon.
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The state of the art for A=0and A >0

Linear level for A = 0. In the asymptotically flat case (A = 0) it was shown in
[51, 52| (see also [68]) that solutions of (WE) arising from data on a spacelike hypersur-
face remain continuous and uniformly bounded (no C° blow-up) at the Cauchy horizon
of subextremal Kerr or Reissner—Nordstrom black hole interiors, hence disproving Conjec-
ture 3 for A = 0. (For the extremal case see [56, 57].) The key method for the proof is
to use the polynomial decay on the event horizon proved in [29] (with rate |¢| < v~ and
p > 1) and propagate it into the interior. The boundedness and continuity of ¢ at the
Cauchy horizon was then concluded from red-shift estimates, energy estimates associated
to the novel vector field S = |uPd, + |[v[PO, and commuting with angular momentum
operators followed by Sobolev embeddings. Here u, v are Eddington—Finkelstein-type null
coordinates in the interior.

Besides the above C° boundedness, it was proved that the (non-degenerate) local en-
ergy at the Cauchy horizon blows up for a generic set of solutions 1 in Reissner—Nordstrém
[89] and Kerr [30] black holes. (Note that this blow-up is compatible with the finiteness of
the flux associated to S because 0, and 9, degenerate at the Cauchy horizons CH 4 and
CHp, respectively.) A similar blow-up behavior was obtained for Kerr in [94] assuming
lower bounds (which were shown afterwards in [69]) on the energy decay rate of a solution
along the event horizon. These results prove Conjecture 4 in the affirmative for A = 0 and
support the validity of Conjecture 2.

Another type of result proved in Chapter 1 (see also [82]) is a finite energy scattering
theory for solutions of (WE) from the event horizon Hr U Hy to the Cauchy horizon
CHpr UCH in the interior of Reissner—Nordstréom black holes. In this scattering theory a
linear isomorphism between the degenerate energy spaces (associated to the Killing field
T = 9, — 0,,) corresponding to the event and Cauchy horizon is established. The question
reduces to obtaining uniform control over transmission and reflection coefficients T(w, )
and R(w, ¢) corresponding to fixed frequency solutions. Intuitively, for a purely incoming
wave at the event horizon Hp, the transmission and reflection coefficients correspond to
the amount of T-energy scattered to CH and CHpg, respectively. Indeed, the theory also
carries over to A # 0 and Klein—Gordon masses u # 0 except for the w = 0 frequency.
(Again, these results are compatible with the blow-up of the local energy at the Cauchy
horizon because of the degeneracy of the T-energy.) This will turn out to be important
for the results in Chapter 2 and Chapter 3. We refer to the introduction of Chapter 1 for

a more detailed motivation and discussion.

Linear level for A > 0. For Kerr(and Reissner—Nordstrom)—de Sitter (A > 0) it was
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shown in [70] that solutions of (WE) also remain bounded up to and including the Cauchy
horizon—thus disproving Conjecture 3 for A > 0. Note that in both cases, A = 0 and
A > 0, the proofs crucially rely on quantitative decay along the event horizon (polynomial
for A = 0 and exponential for A > 0).

On the other hand the exponential convergence on the event horizon of a Reissner—
Nordstréom—de Sitter and Kerr—de Sitter black hole is in direct competition with the expo-
nential blue-shift instability. Thus, the question of the validity of Conjecture 4 becomes
even more subtle for A > 0 and has received lots of attention in the recent literature. We
refer to the conjecture in [24], the survey article [131] and the recent work [31, 34, 33, 32,
20].

Nonlinear level. Now we turn to the full nonlinear problem for (EE). As mentioned
before, for the Einstein vacuum equations Dafermos—Luk showed that the Kerr Cauchy
horizon is C¥ stable [26], i.e. the spacetime is extendible as a C° Lorentzian manifold.
Note that this definitively falsifies Conjecture 1 for A = 0 (subject only to the completion
of a proof of the nonlinear stability of the Kerr exterior). In principle, their proof of
C? extendibility also applies to the interior of Kerr—de Sitter black holes, where the exterior
has been proved to be stable for slowly rotating Kerr—de Sitter black holes [71], thus
falsifying Conjecture 1 for A > 0.

Nonlinear inextendibility results at the Cauchy horizon have been proved only in spher-
ical symmetry: Coupling the Einstein equation (EE) to a Maxwell-Scalar field system, it
is proved in [23] that the Cauchy horizon is C° stable, yet C? unstable [90, 91, 23] for
a generic set of spherically symmetric initial data. See also the pioneering work in [128,
120] and the more general results on the Maxwell-Charged—Scalar field system in [139,
140, 141]. This shows the C? formulation of SCC (but not yet Conjecture 2) in spherical
symmetry. See [21, 22| for work in the A > 0 case. The question of any type of nonlin-
ear instability of the Cauchy horizon without symmetry assumptions and the validity of

Conjecture 2 (even restricted to a neighborhood of Kerr) have yet to be understood.

SCC for asymptotically AdS spacetimes A < 0

The situation is changed radically if one considers asymptotically Anti-de Sitter (A < 0)
spacetimes. Due to the timelike nature of null infinity Z, see for example Fig. 1, these
spacetimes are not globally hyperbolic. For well-posedness of (EE) and (WE) it is required
to impose also boundary conditions at infinity [54, 50]. The most natural conditions are
Dirichlet (reflecting) boundary conditions, see [54]. Before we address the question of

stability of the Cauchy horizon, it is essential to understand the behavior in the exterior
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Figure 1: Penrose diagram of the maximal Cauchy development of Reissner—Nordstréom—
AdS or Kerr—AdS data on a spacelike surface ¥ with Dirichlet (reflecting) boundary con-
ditions prescribed on null infinity 7.

region of Kerr—AdS and Reissner—Nordstrém—AdS.

Logarithmic decay for linear waves on the exterior of Kerr—AdS and Reissner—

Nordstrém—AdS. For the massive linear wave equation (WE) on Kerr—AdS and Reissner—
Nordstrom-AdS, Holzegel-Smulevici showed in [75] stability in the exterior region. Indeed,
they proved that solutions decay at least at logarithmic rate towards ™ (cf. polynomial
(A = 0) and exponential (A > 0)) assuming the Hawking-Reall [67] bound! ry > |all.
Moreover, they showed that solutions of (WE) with fixed angular momentum actually
decay exponentially on the exterior of Reissner—Nordstrom—AdS. (This is in contrast to
the asymptotically flat case, in which fixed angular momentum solutions of (WE) decay
polynomially on the exterior of Reissner—Nordstrom.) However, their main insight was
that a suitable infinite sum of such rapidly decaying fixed angular momentum solutions,
possessing finite energy in some weighted norm, indeed achieves the logarithmic decay rate
[77]. This is due to the presence of stable trapping. Note that this sharpness can also be
concluded from later work showing the existence of quasinormal modes converging to the
real axis at an exponential rate as the real part of the frequency and angular momentum
tend to infinity [145, 59]. (For some asymptotically flat five dimensional black holes a

similar inverse logarithmic lower bound was shown in [6].)

Strong Cosmic Censorship for AdS black holes. With the logarithmic decay on
the exterior at hand, we turn to the question of the stability of the Cauchy horizon. We first

!Note that otherwise exponentially growing mode solutions can be constructed as shown in [40].
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recall from the discussion before that Conjecture 4 holds true for the cases A > 0. Indeed,
our methods developed in Chapter 2 and Chapter 3 in principle also show Conjecture 4 for
A < 0. However, in view of the slower decay in the case A < 0, we even expect a stronger
instability at the Cauchy horizon for A < 0. This raises the attractive possibility of the
validity of the CY-formulation of Conjecture 1 which would be a more definitive resolution
than Conjecture 2. Thus, at the level of (WE), it is the validity of Conjecture 3, the linear

scalar analog of Conjecture 1, which remains the unsolved puzzle for the A < 0 case.

First, attempting to disprove Conjecture 3 as was done in the cases A > 0, we note
that the logarithmic decay rate on the exterior is too slow to follow the methods involving
the red-shift vector field and the vector field S (see discussion before) to prove uniform
boundedness and continuous extendibility at the Cauchy horizon of solutions to (WE).
More specifically, after propagating the logarithmic decay through the red-shift region,
the energy flux associated to S is infinite on a {r = const.} hypersurface in the black
hole interior due to the slow logarithmic decay towards i*. (Contrast this with the work
[35, 121] in 2+1 dimensions.) Thus, the question of whether to expect the validity of
Conjecture 3 for asymptotically AdS black holes appears to be completely open.

In the present thesis we provide a surprising—mixed—resolution of Conjecture 3 for

A <O.

In Chapter 2 we will show (Theorem 2.1) that, despite the slow decay on the exterior,
boundedness, || < C, in the interior and continuous extendibility to the Cauchy horizon
still holds for solutions of (WE) on Reissner-Nordstrom—-AdS black holes. The additional
phenomenon which we exploit to prove boundedness is that the trapped frequencies respon-
sible for slow decay have high energy with respect to the T" vector field and can be bounded
using the scattering theory developed in [82]. Thus, for Reissner—Nordstrém—AdS,

Conjecture 3 is falsified, just as in the A > 0 cases.

In Chapter 3 we show that linear perturbations ¢ of Kerr—AdS blow up || — +oo for
a set of normalized Kerr-AdS parameters of mass m := M+/—A and angular momentum
a := av/—A which is Baire-generic but Lebesgue-exceptional. These blow-up parame-
ters are defined through a Diophantine condition. This condition arises from a suitable
Diophantine approximation related to a coupling of stable trapping in the exterior and
Cauchy horizon resonances in the black hole interior. This will be discussed in more details
in the introduction of Chapter 3. Thus, for Kerr—AdS, Conjecture 3 holds true if
Baire-genericity is imposed. We also complement our main result with the conjecture
that linear perturbations remain bounded at the Cauchy horizon for black holes which are

Baire-exceptional but Lebesgue-generic.
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Instability of asymptotically AdS spacetimes?

In the above sense, the results of the present thesis leave determinism in better shape for
A < 0 compared to the A > 0 cases. However, turning to the fully nonlinear dynamics,
there is another scenario which could happen. Recall that Minkowski space (A = 0) and
de Sitter space (A > 0) have been proved to be nonlinearly stable [53, 18]. Anti-de Sitter
space (A < 0), however, is expected to be nonlinearly unstable with Dirichlet conditions
imposed at infinity. This was recently proved in [106, 105, 108, 107| for appropriate matter
models. See also the original conjecture in [25] and the numerical results in [9]. Similarly,
for Kerr—AdS (or Reissner—Nordstrom—AdS), the slow logarithmic decay on the linear level
proved in |77] could in fact give rise to nonlinear instabilities in the exterior. (Note that in
contrast, nonlinear stability for spherically symmetric perturbations of Schwarzschild—AdS
was shown for Einstein-Klein-Gordon systems [76].) If indeed the exterior of Kerr-AdS
was nonlinearly unstable, linear analysis like that in the present thesis would be manifestly
inadequate and the question of the validity of Strong Cosmic Censorship would be thrown

even more open!
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Chapter 1

A scattering theory for linear
waves on the interior of

Reissner—Nordstrom black holes

1.1 Introduction

In this chapter, we initiate the mathematical study of the finite energy scattering problem
on black hole interiors. Specifically, we will consider solutions of the wave equation on what
can be viewed as the most elementary interior, that of Reissner—Nordstrom. The Reissner—
Nordstrém metrics constitute a family of spacetimes, parametrized by mass M and charge
@, which satisfy the Einstein-Maxwell system in spherical symmetry [132, 113] and admit
an additional Killing vector field 7. For vanishing charge ) = 0, the family reduces to
Schwarzschild. We shall moreover restrict in the following to the subextremal case where
0 < |Q] < M. Our past and future scattering states will be defined as suitable traces
of the solution on the bifurcate event horizon and bifurcate Cauchy horizon, respectively,
restricted to have finite T' energy flux on each component of the horizons.

In the rest of the introduction we will state our main results for the scattering problem
on the interior of Reissner-Nordstrém (Theorems 1.1 — 1.5), relate them to existing liter-
ature in fixed frequency scattering, and draw links to various recent results in the interior
and exterior of black holes. Finally, we will see that the existence of a bounded scattering
map for the wave equation on Reissner—Nordstréom turns out to be a very fragile property;
we shall show that there does not exist an analogous scattering theory in the presence of

a cosmological constant (Theorem 1.6) or Klein-Gordon mass (Theorem 1.7).

The scattering problem on Reissner—Nordstrom interior. In this chapter, we
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will establish a scattering theory for finite energy solutions of the linear wave equation,
Uy =0, (1.1.1)

on the interior of a Reissner—Nordstrom black hole, from the bifurcate event horizon

H=HasUHpUDB_ to the bifurcate Cauchy horizon CH = CH 4 UCHp U B, as depicted

in Fig. 1.1. The first main result of this chapter is Theorem 1.1 (see Section 1.3.1) in
B.

Q?e& 0&
7

% R

B_

Figure 1.1: Penrose diagram of the interior of the Reissner—Nordstrom black hole and
visualization of the scattering map.

which we will show existence, uniqueness and asymptotic completeness of finite energy
scattering states. In this context, existence and uniqueness mean that for given finite
energy data 1y on the event horizon H, there exist unique finite energy data on the Cauchy
horizon CH arising from vy as the evolution of (1.1.1). With asymptotic completeness we
denote the property that all finite energy data on the Cauchy horizon CH can indeed
be achieved from finite energy data on the event horizon H. This provides a way to
construct solutions with desired asymptotic properties which is a necessary first step to
properly understand quantum theories in the interior of a Reissner—Nordstrém black hole
(cf. [143, 65, 41]). The energy spaces on the event and Cauchy horizon are associated to
the Killing field and generator of the time translation 7'. Indeed, T" is null on the horizons
and, in particular, is the generator of the event and Cauchy horizon H and CH. Because
of the sign-indefiniteness of the energy flux of the vector field 7" on the bifurcate event
(resp. Cauchy) horizon (see already (1.1.4)), we define our energy space by requiring the
finiteness of the T energy on both components separately of the event (resp. Cauchy)
horizon. These define Hilbert spaces with respect to which the scattering map is proven
to be bounded.
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Finally, it is instructive to draw a comparison between the interior of Reissner—Nordstrom
and the interior of Schwarzschild (QQ = 0). As opposed to Reissner—Nordstrom discussed
above, the Schwarzschild interior terminates at a singular boundary at which solutions
to (1.1.1) generically blow-up (see [49]). In contrast, the non-singular and, moreover,
Killing, Cauchy horizons (see Fig. 1.1) of Reissner—Nordstréom immediately yield natural
Hilbert spaces of finite energy data to consider. In view of this, Reissner—-Nordstréom with
@ # 0 can be considered the most elementary interior on which to study the scattering
problem. Furthermore, in view of the recent work [26], we have that the causal structure
of Reissner—Nordstrom is stable in a weak sense (see the discussion below about related

works in the interior).

Fized frequency scattering. It is well known that the wave equation (1.1.1) on
Reissner—Nordstrom spacetime allows separation of variables which reduces it to the radial

o.d.e.
u” — Vou+ w?u =0, (1.1.2)

with potential V; (see already (1.2.37)), where w € R is the time frequency and ¢ € N is the
angular parameter. Indeed, most of the existing literature concerning scattering of waves
in the interior of Reissner—Nordstrém mainly considers fixed frequency solutions, e.g. [100,
101, 14, 64, 99, 63, 147]. For a purely incoming (i.e. supported only on H 4) fixed frequency
solution with parameters (w,?), we can associate transmission and reflection coefficients
T (w,?) and R(w,?). The transmission coefficient T(w,¥) measures what proportion of
the incoming wave is transmitted to CH p, whereas the reflection coefficient specifies the
proportion reflected to CH 4. An essential step to go from fixed frequency scattering
to physical space scattering is to prove uniform boundedness of T(w,?) and R(w, ).
This is non-trivial in view of the discussion of the energy identity (1.1.4) below. In this
chapter, we indeed obtain this uniform bound in Theorem 1.2 (see Section 1.3.2). In
particular, the regime w — 0, ¢ — o0 is the most involved frequency range to prove uniform
boundedness. As we shall see, the proof relies on an explicit computation at w = 0 (see
[64]) together with a careful analysis of special functions and perturbations thereof.

The uniform boundedness of the scattering coefficients is the main ingredient to prove
the boundedness of the scattering map in Theorem 1.1. Moreover, it allows us to connect
the separated picture to the physical space picture by means of a Fourier representation
formula. This is stated as Theorem 1.3 (see Section 1.3.3). A somewhat surprising, direct
consequence of the Fourier representation of the scattered data on the Cauchy horizon is

that purely incoming compactly supported data lead to a solution which vanishes at the
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future bifurcation sphere B4. This is moreover shown to be a necessary condition for the

existence of a bounded scattering map (Corollary 1.3.1).

Comparison to scattering on the exterior of black holes. On the exterior of
black holes, the scattering problem has been studied more extensively; see the pioneering
works [36, 38, 37, 4, 5], the book [55] and related results on conformal scattering in [98, 112,
104, 137]. Note that for the exterior of a Schwarzschild or Reissner—-Nordstrém black hole,
the uniform boundedness of the scattering coefficients or equivalently, the boundedness of

1

the scattering map, can be viewed a posteriori® as a consequence of the global T' energy

identity

/H IT¢|2+/I \Twlzz/H+ \T¢|2+/I+ Ty (1.1.3)

Considering only incoming radiation from Z~, this statement translates into |R|>+|Z|? = 1
for the reflection coefficient JR and transmission coefficients . In the interior, however, due
to the different orientations of the T vector field on the horizons (cf. Fig. 1.2), boundedness

of the scattering map is not at all manifest. In particular, the global T" energy identity on

Figure 1.2: Interior of Reissner—Nordstrom (left) and exterior of Schwarzschild or Reissner—
Nordstrom (right).

In both diagrams the arrows denote the direction of the T' Killing vector field. Note that
we have the identifications H4 = H' and B_ = B.

the interior of a Reissner—Nordstrom black hole reads

/HA ITw|2_/HB yT¢|2:/CHB |T¢|2_/CHA T2 (1.1.4)

!Note that proving (1.1.3) requires first establishing some form of qualitative decay towards i* and i .
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from which we cannot deduce boundedness of the scattering map even a posteriori. (In-
deed, identity (1.1.4) corresponds only to the “pseudo-unitarity” statement of Theorem 1.1.)

Again, considering only ingoing radiation from # 4, this translates to
1T(w, O)* = |R(w, 0))? =1 (1.1.5)

for the reflection coefficient R and the transmission coefficient ¥. Hence, while for fixed
lw] > 0 and ¢, it is straightforward to show that ¥ and R are finite, there is no a priori
obvious obstruction from (1.1.5) for these scattering coefficients to blow up in the limits
w — 0,£00 and ¢ — oo.

Moreover, note that in the exterior, the Killing field T is timelike, so the radial o.d.e.
(1.1.2) should be considered as an equation for a fixed time frequency wave on a constant
time slice. In the interior, however, the Killing field T' is spacelike so the radial o.d.e.
(1.1.2) is rather an evolution equation for a constant spatial frequency.

The Schwarzschild family can be viewed as a special case (a = 0) of the two param-
eter Kerr family, describing rotating black holes with mass parameter M and rotation
parameter a [83].2 On the exterior of Kerr many other difficulties arise: superradiance,
intricate trapping, presence of ergoregion, etc. [29]. Nevertheless, using the decay results
in [29], a definitive physical space scattering theory for Kerr black holes has been estab-
lished in [28] (see also the earlier [60]). The proof on the exterior of Kerr involved first
establishing a scattering map from past null infinity Z~ to a constant time slice ¥ and
then concatenating that map with a second scattering map from X to the future event
horizon H* and future null infinity Z*. In the interior, however, we will directly show the
existence of a “global” scattering map from the event horizon H to the Cauchy horizon
CH. Indeed, due to blue-shift instabilities (see [30]), we do not expect that the analogous
concatenation of scattering maps (event horizon H to spacelike hypersurface ¥ and then
from ¥ to the Cauchy horizon CH) as in the Kerr exterior, to be bounded in the interior

of Reissner—Nordstrom.

Injectivity of the reflection map and blue-shift instabilities. We can also con-
clude from our work that there is always non-vanishing reflection to the Cauchy horizon
CH 4 arising from non-vanishing purely ingoing radiation at H 4. This follows from the
fact that in the separated picture and for fixed ¢, the reflection coefficient R(w, ¢) can be
analytically continued to the strip |Im(w)| < x4+ and hence, only vanishes on a discrete

set of points on the real axis. This is shown in Theorem 1.4 (see Section 1.3.4).

2Both Kerr and Reissner-Nordstrom can be viewed as special cases of the Kerr-Newman spacetime.
For decay results on Kerr-Newman see [19].
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We will also deduce from the Fourier representation of the scattered data on the Cauchy
horizon CH, and a suitable meromorphic continuation of the transmission coefficient, that
there exist purely incoming compactly supported data on the event horizon H leading to
solutions which fail to be C! on the Cauchy horizon CH. This C'-blow-up of linear waves
puts on a completely rigorous footing the pioneering work of Chandrasekhar and Hartle
[14]. We state this as Theorem 1.5 (see Section 1.3.5).

For generic solutions arising from localized data on an asymptotically flat hypersur-
face, one expects a stronger instability, namely, non-degenerate energy blow-up at the
Cauchy horizon CH. Such non-degenerate energy blow-up was proven in [89] for generic
compactly supported data on an asymptotically flat Cauchy hypersurface. Later, for the
more difficult Kerr interior, non-degenerate energy blow-up was proven in [95] assuming
certain polynomial lower bounds on the tail of incoming data on the event horizon H
and in [30] for solutions arising from generic initial data along past null infinity Z~ with
polynomial tails.

Finally, we mention the forthcoming work [92] which studies the problem of non-
degenerate energy blow-up from a scattering theory perspective and also uses the non-
triviality of reflection to establish results related to mass inflation for the spherically

symmetric Einstein-Maxwell-scalar field system (cf. [90, 91]).

Breakdown of T energy scattering for A # 0 or u # 0. If a cosmological constant
A € R is added to the Einstein-Maxwell system, we can consider the analogous (anti-)
de Sitter—Reissner—Nordstréom family of solutions whose interiors have the same Penrose
diagram as depicted in Fig. 1.1. For very slowly rotating Kerr—de Sitter and Reissner—
Nordstrom—de Sitter spacetimes, boundedness, continuity, and regularity up to and in-
cluding the Cauchy horizon has been shown for solutions to (1.1.1) arising from smooth
and compactly supported data on a Cauchy hypersurface [70]. However, remarkably, there
is no analogous T energy scattering theory for either the linear wave equation (1.1.1) or
the Klein—Gordon equation with conformal mass. This is the statement of Theorem 1.6
(see Section 1.3.6). The reason for this failure is the unboundedness of the transmission
coefficient ¥ and reflection coefficients R in the vanishing frequency limit w — 0. To be
more precise, we will prove that there does not exist a T" energy scattering theory of the
wave or Klein-Gordon equation in the interior of a (anti-) de Sitter-Reissner-Nordstrom
black hole for generic subextremal black hole parameters (M,Q,A). In particular, for
fixed 0 < |Q| < M, there is an € > 0 such that there does not exist a 7' energy scattering
theory for all 0 # |A]| < e.

Similarly, we prove in Theorem 1.7 (see Section 1.3.7) that there does not exist a T’

energy scattering theory for the Klein-Gordon equation Ug1) — putp = 0 on the Reissner—
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Nordstréom interior for a generic set of masses p. This is in contrast to the exterior, where
T energy scattering theories were established for massive fields in [5, 102].
It remains an open problem to formulate an appropriate scattering theory in the cos-

mological setting and for the Klein—-Gordon equation as well as for the interior of Kerr.

Owutline. This chapter is organized as follows. In Section 1.2, we shall set up the
spacetime, introduce the relevant energy spaces, and define the scattering coefficients in
the separated picture. In Section 1.3 we state the main results of this chapter, Theorems
1.1 — 1.7. Section 1.4 is devoted to the proof of Theorem 1.2. Then, the statement of
Theorem 1.2 allows us to prove Theorem 1.1 in Section 1.5. Finally, in the last two
sections are show our non-existence results: In Section 1.6, we prove Theorem 1.6 and in

Section 1.7, we give the proof of Theorem 1.7.

1.2 Preliminaries

In this section we will define the background differentiable structure and metric for the

Reissner-Nordstrom spacetime and introduce some convenient coordinate systems.

1.2.1 Interior of the subextremal Reissner—Nordstrom black hole

The global geometry of Reissner—Nordstrom was first described in [62]. For completeness,
we will explicitly construct in this section the coordinates for the region considered. We
start, in Section 1.2.1.1, by defining a Lorentzian manifold corresponding to the interior of
the Reissner—Nordstrém black hole without the horizons. Then, in Section 1.2.1.2, we will

attach the boundaries which will correspond to the event horizon and Cauchy horizon.

1.2.1.1 The interior without boundary

We will now give an explicit description of the differential structure and metric. The
Reissner—Nordstrom solutions [132, 113| are a two-parameter family of spherically sym-
metric spacetimes with mass parameter M € R and electric charge parameter () € R

solving the Einstein—-Maxwell system

2 4
VHE =0,V Fy = 0.

. 1 1 1
Ricyy — zguwR = 81T, := 8 (47T <FM)‘F>\,, — gWFApFAp)> , (1.2.1)
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In this chapter, we consider the subextremal family of black holes with parameter range
0 < |Q| < M. Define the manifold M by

M=Rx (r_,ry) x S? (1.2.2)

where ro = M + /M2 — @Q? > 0. The manifold is parametrized by the standard coor-
dinates t € R, r € (r_,r), and a choice of spherical coordinates (#, ¢) on the sphere S2.
We denote the global coordinate vector field 9, by T

T'8

= (1.2.3)

Using the above coordinates, we equip M with the Lorentzian metric
oM Q? oM 2\ )
gQ’M:_<1_r+r2>dt®dt+<1_r+r2 dT®dT+TgSQ, (124)

where Jo2 18 the round metric on the 2-sphere. We also define the quantities

A

A:=r?—2Mr+Q*=(r—ry)(r—r_)and h:= - (1.2.5)
T
Furthermore, define r, by
2
dry = Zdr, (1.2.6)
where we choose 7,(™5"=) = 0 for definiteness. Thus,
1 1
ro(r)=r+—Ilog|r —ry|+—1loglr—r_|+C (1.2.7)
2K K_
for a constant C only depending on the black hole parameters and
Ti - T:F
= . 1.2.8
e 27‘1 ( )
We also introduce null coordinates
v=ry+tandu=r7r,—t (1.2.9)

on M. The Penrose diagram of M is depicted in Fig. 1.3.
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Figure 1.3: Penrose diagram of M; formally we have denoted the boundary (not part of
the manifold) by H = Ha UHp and CH =CHAUCHp.

1.2.1.2 Attaching the event and Cauchy horizon

Now, we will attach the Cauchy and event horizon to the manifold. The Cauchy horizon
characterizes the future boundary up to which the spacetime is uniquely determined as a
solution to the Einstein—-Maxwell system arising from data on the event horizon. Although
the metric is smoothly extendible beyond the Cauchy horizon, any such extension fails to
be uniquely determined from initial data, leading to a severe failure of determinism.

Attaching the event and Cauchy horizon gives rise to a manifold with corners. To do
so, we first define the following two pairs of null coordinates.

Let Uy: R — (0,00) and V3 : R — (0,00) be smooth and strictly increasing functions

such that
o Uy(u) =wuforu>1, Vy(v) =wv forv>1,
o Uy(u) =+ 0asu— —oc0, Vy(v) = 0asv— —oo,
e there exists a uy < 1 such that % = exp(kyu) for u < uy,

e there exists a v, < 1 such that %’L = exp(k4v) for v < wvy.

This defines — in mild abuse of notation — the null coordinates Uy : M — (0, 00) via Uy /(u)
and V3 : M — (0,00) via V4 (v), where u, v are the null coordinates defined in (1.2.9).
Similarly, let Uey: R — (—00,0) and Vey: R — (—00,0) be smooth and strictly

increasing functions such that
o Uey(u) =u for u < —1, Vey(v) = v for v < —1,

o Uey(u) = 0asu— oo, Vey(v) = 0as v— oo,
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e there exists a uy > —1 such that dg% = exp(k_u) for u > uy,
e there exists a vy > —1 such that d‘g% = exp(k_v) for v > vy.

As above, this defines null coordinates Ucy : M — (0,00) via Uegy(u) and Ve : M —
(0,00) via Veg(v), where u, v are the null coordinates defined in (1.2.9).

To define the event horizon, we consider the coordinate chart (Uy, Vyy, 6, ¢). We now

define the event horizon without the bifurcation sphere as the union
Ho :=HaUHB, (1.2.10)
where
Ha = {Up = 0} x (0,00) x S* and Hp := (0,00) x {V3 = 0} x S2. (1.2.11)

Analogously, we also define the Cauchy horizon without the bifurcation sphere in the

coordinate chart (Ucy, Vew, 0, ¢) as the union
CHo == CHAUCHp, (1.2.12)
where

CHa = (0,00) x {Vey =0} x S? and CHp := {Uey = 0} x (0,00) x S%.  (1.2.13)

Then, we define the interior of the Reissner—Nordstrém spacetime without the bifur-

cation sphere as the manifold with boundary
M= MUHUCH. (1.2.14)

The Lorentzian metric on M extends smoothly to M. In particular, the boundary of M
consists of four disconnected null hypersurfaces. In Fig. 1.4 we have depicted its Penrose

diagram. In mild abuse of notation we shall also use the coordinate systems

(Up,v,0,0) on MU M4, (1.2.15)
(u, V3, 0,¢) on M UHB, (1.2.16)
(u, Ver, 0, ¢) on M UCHa, (1.2.17)
(U, v,0,6) on MUCHp. (1.2.18)
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Figure 1.4: Penrose diagram of M.

In particular, we can write

Ha={Uy =0} x {veR} x S?, (1.2.19)
Hp ={uecR} x {Vy =0} xS?, (1.2.20)
CHa = {u€R} x {Vey =0} x S?, (1.2.21)
CHp = {Uex = 0} x {v € R} x S% (1.2.22)

Note also that the vector field 7', initially defined on M in (1.2.3), extends to a smooth
vector field on M with

0
T [y,= e e (1.2.23)

where a% is the coordinate derivative with respect to local chart defined in (1.2.15). Sim-

ilarly, we have

T lyp= ~ 1 w.r.t. to the local chart (1.2.16), (1.2.24)
0
T len,= ~ lcx, w.r.t. to the local chart (1.2.17), (1.2.25)
0
T lenp= 5 lcpy W.r.t. to the local chart (1.2.18). (1.2.26)

Note that T is a Killing null generator of the Killing horizons H 4, Hg,CH 4, and CHp. Re-
call also that VT [ey= k_T [cx and VT 4= k4T [y, where k4 is defined by (1.2.8).

At this point, we note that we can attach corners to Hg and CH to extend M smoothly

to a Lorentzian manifold with corners. To be more precise, we attach the past bifurcation
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sphere B_ to Hg as the point (Uy, Vi) = (0,0). Then, define H := HoUB_. Similarly, we
can attach the future bifurcation sphere B, to the Cauchy horizon which will be denoted
by CH. We call the resulting manifold Mpy. Further details are not given since the
precise construction is straightforward and the metric extends smoothly. Moreover, the T’
vector field extends smoothly to By and B_ and vanishes there. Its Penrose diagram is
depicted in Fig. 1.5.

Figure 1.5: Penrose diagram of Mgy which includes the bifurcate spheres By and B_.

Further details about the coordinate systems can be found in [115]. From a dynamical
point of view, we can also consider the spacetimes (Mg, gar,Q) as being contained in the
Cauchy development of a spacelike hypersurface with two asymptotically flat ends solving

the Einstein-Maxwell system in spherical symmetry.

1.2.2 The characteristic initial value problem for the wave equation

In the context of scattering theory we will be interested in solutions to the wave equation
(1.1.1) arising from suitable characteristic initial data. Recall the following well-posedness

result for (1.1.1) with characteristic initial data.

Proposition 1.2.1. Let ¥ € C°(H) be smooth compactly supported data on the event
horizon H. Then, there exists a unique smooth solution v to (1.1.1) on Mgnx \ CH such
that ¢ [y= V.

The previous proposition is well known, see [111, 133|. Analogously, we have the

following for the backward evolution.
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Proposition 1.2.2. Let U € C°(CH) be smooth compactly supported data on the Cauchy
horizon CH. Then, there exists a unique smooth solution v to (1.1.1) on Mgnx \ H such
that ¢ [ey= .

1.2.3 Hilbert spaces of finite 7" energy on both horizon components

Now, we are in the position to define the Hilbert spaces on the event H = Hq UHpUB_
and Cauchy horizon CH = CH 4 UCHp U By, respectively.

We will start with constructing the Hilbert space on the event horizon. Roughly
speaking, it will be defined by requiring finiteness of the T" energy flux on H 4 minus the T’
energy flux on Hp. More precisely, let C2°(H) be the vector space of smooth compactly
supported functions on H. Recall that the Killing vector field T is also a null generator
of H and vanishes at the past bifurcation sphere B_. This allows us to define the norm

Il - ||Z£ on the vector space C°(H) as

quug% = /HA I [)nk,  dvoln,,  — /HB I [W)nk,  dvoly,, (1.2.27)
where ¢ € C2°(H), T[¢] is the energy momentum tensor

T[] := Re(9u1pd, 1) — %g,waaww, (1.2.28)

and JT[y] := T[¢|(T,-). In (1.2.27), the fluxes are defined with respect to future directed
normal vector fields ny, and ny, on H4 and Hp, respectively.? Moreover, recall from
Fig. 1.2 that T is future (resp. past) directed on H 4 (resp. Hp). Thus, the terms arising
in (1.2.27) satisfy fHA JEW]n%A dvol > 0 and — fHB Jg[w]n%l} dvol > 0. Again, in view
of the fact that on the component Hp the normal vector field T is past directed, we can
choose ny;, =T |3, and ny, = =T [y, as the future directed normal vector fields
on H4 and Hp, respectively, such that we can realize the norm (1.2.27) as (using the

coordinate charts (1.2.15) and (1.2.16))

ol = [ 10w s Pdvsingasa+ [
X

Rx

o 10 3y |*dusin@dfdep.  (1.2.29)

The norm (1.2.27) defines an inner product, hence its completion is a Hilbert space.

Definition 1.2.1. We define the Hilbert space of finite T' energy 577_2 on both components of

3A choice of such normal vectors fixes the volume form. Also note that this is the natural setup for
energy estimates.
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the event horizon as the completion of smooth and compactly supported functions C°(H)
on the event horizon H = Ha U Hp UB_ with respect to the norm (1.2.27).

Analogously, we can consider the vector space C2°(CH) and define the norm || - HET
CH
as the T energy flux on the component CHp minus the T" energy flux on the component

CHay:
2 I T T
2y, = /c AW, Aol - /C Kl vl (1.2.30)

Again, in view of the orientation of the T vector field (cf. Fig. 1.2), this norm can be
represented as (using the coordinate charts (1.2.17) and (1.2.18))

lolZy = /R 1006 Tery [vsingaas + /
X

Rx

o 1000 13, |*dusinfdOde.  (1.2.31)

Definition 1.2.2. We define the Hilbert space of finite T' energy EgH on both components
of the Cauchy horizon as the completion of smooth and compactly supported functions
CX(CH) the Cauchy horizon CH = CHa UCHp U By with respect to the norm (1.2.30).

1.2.4 Separation of variables

In this section we show how the radial o.d.e. (1.1.2) arises from decomposing a general
solution in spherical harmonics and Fourier modes. For concreteness, let ¢ be a smooth
solution to Cgvp = 0 such that on each {r = const.} slice, ¥ is compactly supported in the
t variable.* Then, we can define its Fourier transform in the ¢ variable and also decompose
1) in spherical harmonics to end up with

n —gwt . dt

Y (T, w) = e “Y0(0, 0)(t, T, 0, @) sin 0d0dp——. (1.2.32)

RxS? V2

Due to the compact support on constant r slices, the wave equation Lyt = 0 implies that

Gme(r,w) =2 RY)(r) =: R(r) (1.2.33)
satisfies the radial o.d.e.
AL (a4 R) - AL+ 1R+ r*w?R=0 (1.2.34)
dr dr e e

“Note that we will prove later that such solutions arise from data which are dense in £%.
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In Section 1.4 we will analyze solutions to (1.2.34) and denote a solution thereof with

R(r). Moreover, it is useful to introduce the function u defined as
u(r) :=rR(r) (1.2.35)

and consider u = u(r(ry)) as a function of r,, which is defined in (1.2.7). Using the 7.
variable, the o.d.e. (1.2.34) finally reduces to

' + (W= V)u=0 (1.2.36)

on the real line with potential

. (1.2.37)

VT = A (r(r+ +7’;g— 2rqr_ N E(Er—i- 1)) '

In Lemma 1.8.3 in the appendix it is proven that, as a function of r,, the potential V}

decays exponentially as r, — do00. In particular, this indicates that we have asymptotic

free waves (asymptotic states) near the event and Cauchy horizon of the form e*™™ as

|r«] — oo. In order to construct these solutions we use the following proposition for

Volterra integral equations (see Lemma 2.4 of [134]).

Proposition 1.2.3. Let zp € RU{+00} and g € L>*(—00,xg). Suppose the integral kernel
K satisfies

o
o= / sup  |K(x,y)|dy < oo. (1.2.38)

—oo {zy<z<zo}

Then, the Volterra integral equation

f@) =g+ [ K.y (12:39)
has a unique solution f satisfying

||f||L°°(—oo,a:O) < eo‘IIgIILoo(_oo,xO). (1.2.40)

If in addition K is smooth in both variables and
o
/ sup  |OFK (z,y)|dy < oo (1.2.41)
—oo {zy<z<zo}

for all k € N, then the solution f is smooth on (—oo,xq) and the derivatives can be
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computed by formal differentiation of (1.2.39).

Remark 1.2.1. Analogous results as in Proposition 1.2.3 also hold true for Volterra

integral equations on intervals of the form (xg,x1) or (xg,+00).

This allows us to define the following fundamental pairs of solutions to the o.d.e. (1.2.36).
In view of the exponential decay of the potential, it is straightforward to check that the

assumptions of Proposition 1.2.3 are satisfied.

Definition 1.2.3. Letw € R and £ € Ng be fized. Define asymptotic state solutions uy and

ug of the radial o.d.e. (1.2.36) as the unique solutions to the Volterra integral equations

wy (W, ) = T 4 /_T* WV(y)ul(w,y)dy, (1.2.42)
ug (W, i) = e 4 /_T* Sin(W(:]*_y))V(y)uQ((,u,y)dy. (1.2.43)

Analogously, define v1 and vy as the unique solutions to the Volterra integral equations

vy (w,7y) = 9 — /OO Sim(('d(:;k_y))V(y)vl((,u,y)dy, (1.2.44)
va(w, i) = e — /OO Sin(w(:)*_y))V(y)vg(w,y)dy. (1.2.45)

sin(w(r«—y)) r

- w=0= Tx — Y in the integral kernel in which case u; and

For w =10, we set

ug coincide. We define

1(ry) == u1(0,74) = u2(0,74) (1.2.46)
and similarly,

01(r4) == v1(0,74) = v2(0, 7). (1.2.47)

Since u1(0,74) = u2(0,74) for w = 0, there exists another linearly independent fundamental

solution g solving the Volterra integral equation

fo(ry) = 1s + / (e — )V ()iin(y)dy. (1.2.48)

—00

Similarly, we also have another fundamental solution, which is linearly independent from
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U1, solving

Vo(ry) = 1rv — /Oo(r* —y)V(y)o2(y)dy. (1.2.49)

*

Since 14 is not uniformly bounded, we cannot apply Proposition 1.2.8 to construct s
and Us. Nevertheless, after switching to coordinates which are reqular at H or CH, the
existence of the desired solutions follows immediately from the usual local theory of reqular
singularities (see [119]).

Remark 1.2.2. Due to the exponential decay of the potential V; (see Lemma 1.8.3 in the
appendiz), it follows from standard theory that the solutions ui(w, ), u2(w, ), vi(w,ry)
and vo(w,rs) can be continued to holomorphic functions of w in the strip |Im(w)| <
min(ky, |k—|) = Ky for fized . € R. Indeed, in [14] it is shown that ui(w,rs) is ana-
lytic in C\ {imk4: m € N} with possible poles at {imr4: m € N} and analogously for
ug,v1, and ve. See also the proof of Proposition 1.8.2 in the appendix.

Formally, the solution u; represents a fixed frequency incoming wave from the right
event horizon H 4. This wave will scattering in the black hole interior and some portion
will be transmitted to the left Cauchy horizon CHp with corresponding solution v; and
some other portion will be reflected to the right Cauchy horizon CH 4 with corresponding
solution vy. The transmission and reflection coefficients ¥ and R will be defined as the
transmitted and reflected parts of the incoming wave v; to the left and right Cauchy

horizon, respectively. This leads us to

Definition 1.2.4. Let w # 0. Then we define the transmission coefficient T(w,l) and

reflection coefficient R(w, L) as the unique coefficients such that
u1 = Tv1 + Ros. (1.2.50)
Using the fact that the Wronskian

W(f,9) =g —f'g (1.2.51)

of two solutions f and g is independent of r., we can equivalently define the scattering
coefficients as
Qﬂ(ul, U2) Qﬁ(ul, UQ)

T = Tor o) ~ —2io (1.2.52)
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and

Qﬂ(ul,vl) Qﬁ(ul,vl)
= = . 1.2.
R 20 (va, v1) 2iw (12:53)

In contrast to the black hole exterior, there is no conservation law which gives a priori
bound on the scattering coefficients T and 3. In particular, the conservation law associated
to the vector field d; is degenerate. For fixed frequency and on the level of the transmission

and reflection coefficients, this leads to the following pseudo-unitarity property.

Proposition 1.2.4 (Pseudo-unitarity in the separated picture). The transmission and

reflection coefficients satisfy
1=|%? - IR~ (1.2.54)
Proof. First, note that any solution to the o.d.e. (1.2.36) satisfies the identity
Im(au') = const. (1.2.55)
Applying this to the solution u; = Tv; + Rwe shows the claim. O

In the following we shall see that the reflection and transmission coefficients are regular

at w=0.

Proposition 1.2.5. Let £ € Ng be fized. Then the scattering coefficients R(w, ) and
T(w, l) are analytic functions of w in the strip {w € C: |Im(w)| < K4} with values for
w =0 given by

R0, ) = (=1 (r‘ - ”) , (1.2.56)

2 T+ T—
T(0,0) = (_21)6 (:; + :t) . (1.2.57)

In particular, the reflection coefficient R(w, ) only vanishes on a discrete set of points w.
Moreover, the reflection and transmission coefficients R(w, ) and T(w,l) are analytic
functions on C\ P with possible poles at P = {imky: m € N} U{ikk_: k€ Z\ {0}}.

Proof. From the analyticity of wj,us,vi, and vp in the strip |Im(w)| < k4 (cf. Re-
mark 1.2.2), we conclude that T and R are holomorphic in {w # 0 € C: |Im(w)| < K4}
with a possible pole at w = 0. In the following we shall show that {w = 0} is a re-

movable singularity. Indeed, we will compute the explicit value of the reflection and
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transmission coefficient at w = 0 and deduce that for fixed £ € N, the transmission co-
efficient T(w, ) and the reflection coefficient R(w, ¢) are analytic functions on the strip
{w € C: Im(w)| < K4} (cf. unpublished work of McNamara cited in [64]). To do so, note

that from Proposition 1.4.2 in Section 1.4.1.3 we conclude the pointwise limits

up(w, ) = a1 (7y), (1.2.58)
v (w, ) — T1(ry) = (—1)3%111(7«*), (1.2.59)
Vo (w, ) — U1 (1) = (—1)K%a1(r*) (1.2.60)

as |w| — 0. Using the definition in (1.2.50) of T(w, £), R(w, £), and the condition 1+ |R|? =
|Z|? (cf. Proposition 1.2.4), we deduce that the limits lim,, 0 93(w,#) and lim, .o T(w, ¢)
exist and moreover can be computed to be (1.2.56) and (1.2.57). Note that (1.2.56) and
(1.2.57) have been established in [63]. Also note that in view of the analyticity properties
of uy, vy, and ve, the R(w, ) and T(w,¥) are analytic functions on C \ P with possible
poles at P = {imky: m € N} U {ikrk_: k€ Z\ {0}}. O

1.2.5 Conventions

Let X be a point set with a limit point ¢ (e.g. X = R, [a, b],C). Throughout this chapter
we will use the symbols < and 2, where the implicit constants might depend on the black
hole parameters M and Q. In particular, for functions (or constants) a(z),b(x) > 0 the
notation a < b means that there is a constant C' = C(M, Q) > 0 such that a(x) < Cb(x)
for all z € X. We will also make use of the notation <, or 2y which means that the
constant may additionally also depend on ¢. We also write a ~ b if there are constants
C(M,Q),C(M,Q) > 0 such that Ca(z) < b(z) < Ca(x) for all z € X.

We shall also make use of the standard Landau notation O and o |39, 119]. To be more

precise, as x — ¢ in X

f(z) = O(g(x)) means g((;) <C(M,Q) (1.2.61)
and
x) = o(g(x)) means /()
f(z) = o(g(x)) o) — 0. (1.2.62)

We will also use the notation Oy if the constant C' in (1.2.61) may additionally depend on
L.
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1.3 Main theorems

In this section we will formulate our main theorems.

Theorem 1.1, which we state in Section 1.3.1, establishes the existence of a scattering

map ST of the form
ST . &l — &L, (1.3.1)

which is a Hilbert space isomorphism, i.e. a bounded and invertible map with bounded
inverse. Theorem 1.1 will be proven in Section 1.5. In the separated picture, the bound-
edness of ST corresponds to the uniform boundedness of the transmission and reflection
coefficients which is stated as Theorem 1.2 in Section 1.3.2. Theorem 1.2 will be proven
in Section 1.4 (and later used in the proof of Theorem 1.1).

Section 1.3.3 is then devoted to Theorem 1.3, which connects our physical space scat-
tering theory to the fixed frequency scattering theory. (We will infer Theorem 1.3 as a
consequence of Theorem 1.1.) In Section 1.3.4, this connection allows us to prove that
the reflection map is injective, which is the content of Theorem 1.4. In Theorem 1.5,
which is stated and proven in Section 1.3.5, we construct data which are incoming and
compactly supported but nevertheless, lead to a solution which fails to be in C! on the
Cauchy horizon.

We end this section with the statement of our two non-existence results. In Sec-
tion 1.3.6 we formulate Theorem 1.6, the non-existence of the T" energy scattering theory
for the Klein-Gordon equation with conformal mass on the interior of (anti-) de Sitter—
Reissner—Nordstrom black holes. The proof of Theorem 1.6 is given in Section 1.6. Finally,
in Theorem 1.7, stated in Section 1.3.7, we show the non-existence of the 71" energy scat-
tering map for the Klein—-Gordon equation on the interior of Reissner—Nordstrém. The

proof of Theorem 1.7 is given in Section 1.7.

1.3.1 Existence and boundedness of the T energy scattering map

First, we define the forward (resp. backward) evolution on a dense domain.

Definition 1.3.1. The domains of the forward and backward evolution are defined as

DI .= {¢p € CX(H) C &), s.t. the Cauchy evolution of 1 has

compact support on constant r = const. hypersurfaces} — (1.3.2)

44



and

DLy = {¢ € C(CH) C &Ly s.t. the backward evolution of ¢ has

compact support on constant r = const. hypersurfaces}, (1.3.3)

respectively. Here, we consider r— < r < ri and note that if ¢ is compactly supported
on one {r = const.} slice, then, as a direct consequence of the domain of dependence, its
evolution will be compactly supported on all other {r = const.} hypersurfaces forr_ <r <
T

We will prove in Lemma 1.5.1 in Section 1.5 that Dg; C 5% and D(?H C ECTH are dense

domains.
These definitions of the domains are motivated by the following observation.

Remark 1.3.1. Suppose we are given data in DI[ on the event horizon H. Consider now
the unique Cauchy development (cf. Proposition 1.2.1) and observe that its restriction
to the Cauchy horizon CH will lie in Dg%' This holds true since we can first smoothly
extend the metric beyond the Cauchy horizon CH and then use the compact support on a
constant r, hypersurface to solve an equivalent Cauchy problem in an appropriate region
which extends the Cauchy horizon CH, includes the support of the solution, but does not
include i™. The smoothness of the solution up to and including the Cauchy horizon CH

follows now from Cauchy stability.

In view of Remark 1.3.1 we can define the forward and backward map on the domains

D’IL and DgH, respectively.

Definition 1.3.2. Define the forward map S{ : Dg; C 5£ — DgH C ECTH as the unique
forward evolution from data on the event horizon to data on the Cauchy horizon. More
precisely, let 1 be the solution to (1.1.1) arising from initial data ¥ € D;"; - SEL. Then,
define ST (V) as the restriction of ¢ to the Cauchy horizon, i.e. SE (V) := 1 |en€ Dg?—t'

Similarly, let ¢ be the unique backward evolution of (1.1.1) arising from ® € DEH.
Then, define the backward map by B (®) := ¢ |3€ D%Q.

Remark 1.3.2. Note that by the uniqueness of the Cauchy evolution we have that SI' and
Bg are inverses of each other, i.e. Bg ) SE;F = IdD,E’ Sg oBl' = IdDg‘H.

Now, we are in the position to state our main theorem.
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Theorem 1.1. The map Sg: D9T{ - S£ — DgH - 5gH 18 bounded and uniquely extends

to
ST. &l — &Ly, (1.3.4)

called the “scattering map”. The scattering map ST is a Hilbert space isomorphism, i.e. a

bounded and invertible linear map with bounded inverse BT : 5gH — 8% satisfying

B" 08" =1dgr, ST o B" =1dgr . (1.3.5)

Here, BT': 5g7—[ — 677; is the “backward map”, which is the unique bounded extension of
BT
In addition, the scattering map ST is pseudo-unitary, meaning that for 1 € 5%, we

have

/HA T — /HB ITy[? = /CHB ITSTy|? — /CHA ST )2, (13.6)

In more traditional language, Theorem 1.1 yields existence, uniqueness, and asymptotic
completeness of scattering states.

The proof of Theorem 1.1 is given in Section 1.5. Let us note already that Theorem 1.1
is a posteriori the physical space equivalent of the uniform boundedness of the scattering
coefficients proven in Theorem 1.2 (see Section 1.3.2). This equivalence is made precise in
Theorem 1.3 (see Section 1.3.3).

Remark 1.3.3. Note that in general, neither initial data nor scattered data have to be
bounded in L> or continuous. Indeed, we have that ®s(u,,p) = log(u)xu>1 € SgHA,
where xyu>1 15 a smooth cutoff. Similarly, ®(u,0,¢) = f(u)g(0, ) € €CTHA, where f €
C°(R) and g € L?(S?) \ L>(S?). Thus, there exist initial data BT (®4) € &}, such that
its tmage under the scattering map is not in L™ and not continuous. We emphasize the
contrast with the estimates from [51] for which more reqularity and decay along the event

horizon H are necessary.

1.3.2 Uniform boundedness of the transmission and reflection coeffi-

cients

On the level of the o.d.e. (1.2.36) in the separated picture, the problem of boundedness of
the scattering map reduces to proving that the transmission coefficient T and the reflection

coefficient R are uniformly bounded over all parameter ranges of w € R and ¢ € Ng. This
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is stated as Theorem 1.2 below.

Theorem 1.2. The reflection and transmission coefficients R(w,?) and T(w,l) are uni-

formly bounded, i.e. they satisfy

sup  (|R(w,0)| + |F(w,0)]) S 1. (1.3.7)
w€eREN
Theorem 1.2 is proved in Section 1.4. As discussed in the introduction, the proof
relies on an explicit calculation for w = 0 together with a careful analysis of the radial
o.d.e. (1.2.36), involving properties of special functions and perturbations thereof.
Let us note that, given Theorem 1.1, we could infer Theorem 1.2 as a corollary (using
the theory to be described in Section 1.3.3). We emphasize, however, that in the present

chapter we use Theorem 1.2 to prove Theorem 1.1 in Section 1.5.

1.3.3 Connection between the separated and the physical space picture

In this section, we will make the connection of the separated and physical space picture

precise.

First, let us note that we have natural Hilbert space decompositions 5% = 577_2 L@ 5%3
and SgH =~ SgHB <) ECTHA.

Proposition 1.3.1. The Hilbert spaces 5£ and SgH of finite T' energy on the event horizon
H and on the Cauchy horizon CH admit the orthogonal decomposition

el ©&L, and by 2 Ely, ® Ey,- (1.3.8)

Proof. Clearly, the embedding i: 5£A @5%3 — 57:5 is well-defined and isometric. It remains
to show that i is surjective. Let ¢ € C°(H). First, we show that we can approximate (in
T-energy) v [y, on H4 with functions ¢ € C2°(H 4) which are supported away from the
past bifurcation sphere. On H 4 choose non-degenerate coordinates (V, 6, ) := (V3,0 )
as in Section 1.2.1.2 and recall that the past bifurcation sphere is {V = 0}. Then, for

small € > 0, set

Ge(V,0,0) i= $(U = 0,V,6,5)x(—elog(V)), (1.3.9)
where x: R — [0,1] is smooth and such that supp(x) C (—o0,2] and X [(_so1j= 1. Then,
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it is straightforward to check that ¢, € C°(H,4) and

T [ — ] P dvol < / /OO V(@ (4 — )2V sin 0d8dy — 0 (1.3.10)
Ha S2.J0

as € — 0. Analogously, we can do this for Hp from which the claim follows. O
We will use this identification to represent the scattering map also in the Fourier picture
and show how these pictures connect. To do so we define the following.

Definition 1.3.3. For (V4,VUp) € SEA &> 5%3 note that 0,V A(v,0,¢) € L*(R x S%;C)
and analogously for Yg. Hence, in mild abuse of notation, we can define the Fourier and

spherical harmonics coefficients Fy , (Y a) and Fy,(¥p) as

iwFp , (Pa)(w,m,0) = r+// DyUA(v,0,0)e ™ Y (6, ©) sin 0dOde dv (1.3.11)
R.Js? V2r
and
—iwFy,(Yp)(w,m,l) == r+/ 0.V 5(u, 0, ©)e“ Yo, (6, ©) sin&d@dgpﬂ. (1.3.12)
R./s? V2m
Similarly, for (®a,Pp) € EgHA ® EgHB set
—twFep,(Pa)(w,m,b) = r_/ Du®A(u, 0, 0)e“ Yy (6, ©) sin9d9d4pd—u (1.3.13)
RS2 V2m
and
iwFeny(Pp)(w, m,l) := r_// 8U<I>B(v,0,cp)e_iw”)/'gm(9,gp)sinﬁd@dgpd—v. (1.3.14)
R.Js? V2m

Also, recall the Hilbert space decomposition 877; = €£A @&;LTLB and 5’3;_[ = gCTHB @ECTHA.

Thus, the scattering matrix can be also decomposed as

ST, S%
ST = < B §B> , (1.3.15)
SAA SAB
where
Sht El, — by, (1.3.16)

is a bounded linear map for i, j € {A, B}.5

5Note that T' does not denote the transpose but the fact that it is the scattering map associated with
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Definition 1.3.4. Define the Hilbert spaces
EEA = (3(Z; L* (r?w?dw)), 5723 = 02(Z; L*(r2w?dw)),
é’gHA = EQ(Z; L2(r:2w2dw)), égHB = EQ(Z; L2(r:2w2dw)),
where Z = {(m,{) € Z x Ng : |m| < £},

The Hilbert spaces defined in Definition 1.3.4 are unitary isomorphic to their corre-

sponding physical energy spaces. This is captured in
Proposition 1.3.2. The linear maps defined in (1.3.11)-(1.3.14)
Frn® Fpp: &4, @&, — & @&, (1.3.17)
Fery ® Fora: Eny © Ea, — Ebny, ® E (1.3.18)
are unitary.

Proof. This follows from the fact that the Fourier transform and the decomposition into

spherical harmonics are unitary maps. O

Now, we will define the scattering map in the separated picture and show that it is
bounded.

Proposition 1.3.3. The scattering map in the separated picture
ST &l @ &h — &L, o0&, (1.3.19)

defined as the multiplication operator

o (Sh SER\  [(Tw.t) R(w,0)
ST‘(s;zA sz:B) = (ma 3 >>7 (1:5:20)

s bounded. Moreover, the map ST s invertible with bounded inverse given by

gt _ ( T(w, ?) —ﬁ(w,€)> _ (1.3.21)

Proof. Indeed, ST is bounded in view of the uniform boundedness of the transmission and
reflection coefficients T and R (cf. Theorem 1.2). Also note that |T|> = 1 + |9R|? implies

the T vector field.
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that

det <ST) =1 (1.3.22)

"1
which shows (1.3.21). The boundedness of ST is again immediate since the scattering

coefficients are uniformly bounded. O

Using the previous definitions, we obtain the following connection for the scattering

map between the physical space and the separated picture.

Theorem 1.3. The following diagram commutes and each arrow is a Hilbert space iso-
morphism:
T T _ST T T
Eny ©Eqyy — Eony ©éon,
Fr @]’—HB\L \L}—CHB SFcH 4
5T 5T ST . ar 5T
Ey Oy — Eony © Eony -
Moreover, the maps ST and ST are pseudo-unitary satisfying (1.3.6) and (1.2.54), respec-
tively. More concretely, for (V4,¥p) € 877-2/1 @ ETB, we can write

<¢B> — ST (‘I/A) : (1.3.23)
Dy Up

where 0y ® 4 € L*(CH ) and 0,85 € L2(CHp) can be represented by

OuPa(u,0,9) = 5 / Z —iwR(w, €) Fp, (¥ a)(w, m, £)Y,ne(0, o)e wudy

wr— | |<£
5 / Z —iwT(w, £) Fr s (VB)(w,m, £)Y (0, (p>e—iwudw
mr_ et

(1.3.24)
and
0@ (v, 0, 9) = / D iwT(w, £) Fpy (W a) (@, m, £) Y (0, @)™ dw
Tr_ =t
5 / Y wR(W, ) Faup (V) (w, m, €)Yme(9, 0)e“ dw  (1.3.25)
Tr_ -y
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as well as 4 € ECTHA >~ HY(R; L?*(S?)),®p € EgHB >~ HY(R; L*(S?)) can be represented

by regular distributions as

D(u,b,p) = \/ir_ p. V. / Z R(w, ) Fry, (T a)(w, m, ) Yoe (0, p)e“Hdw

m|<t

1

2mr_

+ Doy, / 7 T, €) Frup (03) (w0, 10, €)Yimg (6, )6 s (1.3.26)

Im|<£

and

(0,6, 0) = Fr_ p.v. / S Tw, ) Fron (V) (@, 10, 0)Vong (0, 9) s

Im|<¢

p. V. Z R(w, £) ) Frp(¥B)(w,m, )Y, (0, ¢)e WU . (1.3.27)
\/774_ / |m|<¢

Proof. This is a direct consequence of Theorem 1.1, Theorem 1.2 and (1.5.30), (1.5.31) in
the proof of Proposition 1.5.1. O

From the previous representation of the scattered solution we can draw a link between
the boundedness of the scattering map and the fact that compactly supported incoming
data will lead to solutions which vanish on the future bifurcation sphere B;. This is the

content of the following

Corollary 1.3.1. Let ¥ = (¥ 4,0) € EZA EBE%B be purely incoming smooth data. Assume
further that W 4 is supported away from the past bifurcation sphere B_ and future timelike
infinity iT.

Then, the Cauchy evolution v arising from W 4 vanishes at the future bifurcation sphere
By.

On the other hand, if ¥V, as above, led to a solution which does not vanish at the future

bifurcation sphere By, then the scattering map S” - 5;"_2 — ‘SgH could not be bounded.

Proof. The first claim is a direct consequence of (1.3.27) in Theorem 1.3.

For the second statement let ¥4 be compactly supported data on the event horizon
and assume that its Cauchy evolution v does not vanish at the future bifurcation sphere
By . Now take data W 4 which is supported away from the past bifurcation sphere B_ and
satisfies TW4 = U4. Then, Uy € ET but its Cauchy evolution ¢ satisfies lené ECTH
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since

7 2
1Y Tews ”ScTHB

—/R o [V lenp (v,0,9)|*dvsin@dddyp = oo, (1.3.28)
X

as ¥ [cup= T3 lcnp does not vanish at the future bifurcation sphere B,. By cutting
off smoothly, one can construct normalized (in 577_2—1101"111) smooth compactly supported
initial data on 5% such that its Cauchy evolution has arbitrary large norm SCTH-norm at
the Cauchy horizon. O

Remark 1.3.4. For convenience we have stated the second statement of Corollary 1.53.1
only for the interior of Reissner—Nordstrém. However, note that it holds true for more
general black hole interiors (e.g. subextremal (anti-) de Sitter—Reissner—Nordstrom) with

Penrose diagram as depicted in Fig. 1.5.

1.3.4 Injectivity of the reflection map

In this section, we define the reflection operator of purely incoming radiation (cf. Fig. 1.6)

and prove that it is has trivial kernel as an operator from S%A — €CTHA.

Figure 1.6: Reflection & of purely incoming radiation.

Definition 1.3.5 (Reflection operator). For purely incoming radiation (¥4,0) € E'%A o
SZB, define the reflection operator

R E, — Ey, (1.3.29)
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as

RB(TV,) =Dy = pry (ST (%“)) , (1.3.30)

where Pr 4 : ECTHB &) EgHA — EgHA is the orthogonal projection.

Theorem 1.4. The reflection operator % defined in Definition 1.5.5 has trivial kernel.

Proof. Assume Z (¥ 4) = 0 for some U4 € EiA. Then, in view of Theorem 1.3,
R(w, ) Fr,(Va)(w,m,l) =0 (1.3.31)

for all m, ¢, and a.e. w € R. Moreover, since R(w, ) only vanishes on a discrete set (cf.
Proposition 1.2.5), we obtain that Fy,(Va)(w,m,¢) = 0 for all m,¢, and a.e. w € R.

Again, in view of Theorem 1.3, we conclude ¥4 = 0 as an element of 577-2,4' O

1.3.5 (C'-blow-up on the Cauchy horizon

In this section, we shall revisit and discuss the seminal work [14] of Chandrasekhar and
Hartle. The Fourier representation of the scattered data on the Cauchy horizon in The-
orem 1.3 serves as a good framework to provide a completely rigorous framework for the
C'-blow-up at the Cauchy horizon studied in [14].

Theorem 1.5 (C'-blow-up on the Cauchy horizon [14]). There exist smooth, compactly
supported and purely incoming data V4 on the event horizon Ha for which the Cauchy
evolution of (1.1.1) fails to be C' at the Cauchy horizon CH. More precisely, the solution 1)
arising from U 5 fails to be C' at every point on the Cauchy horizon CHAUB,.. Moreover,
the incoming radiation can be chosen to be only supported on any angular parameter £y
which satisfies €o(lo + 1) # 3 (ry — 3r_).

Proof. Let (o be fixed and satisfy €o(¢y + 1) # r2(ry — 3r_). Define purely incoming
smooth data W4(v,0,¢) = f(v)Yy0(0,¢) on Ha, where f(v) is smooth and compactly
supported. Moreover, assume that the entire function f satisfies f (iky) # 0. In view
of the representation formula (1.3.27) from Theorem 1.3, the degenerate derivative of its

Cauchy evolution @5 on the Cauchy horizon CHp reads

B®5(v,0, ) = —= / iwE(w, o) f(w)e™dwYyy0 (6, ). (1.3.32)
R

2mr_
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Since ¥(w, ¢) has a simple pole at w = ik (cf. Proposition 1.8.2 in the appendix), we pick
up the residue at ix4 when we deform the contour of integration in (1.3.32) from the real
line to the line Im(w) = k4 +6 for some k4 > 6 > 0. Here we use that the compact support
of f(v) implies the bound |f(w)| < elm@)lsuplsupp()l f(Re(w)) and that, in addition, by
Proposition 1.8.2, the transmission coefficient T remains bounded as | Re(w)| — oo. This

ensures that the deformation of the integration contour is valid. Hence,

w i . ke .
81){)3('[), 97 90) = \/27—; 27TZ(Z/€+)f(ZH+)€ * }/200(97 90) RGS(‘I(W, EO)? Z"/‘:Jr)
‘,r,+e—(.‘£++5)’v

il /R [(wr + iy +6)T(wn + iy +9))

Flwr +i(ky + 6))e™RVY; (0, cp)} dwp

= Ce ™"Y0(0,¢) +0 (e_("‘++5)”) (1.3.33)
as v — 00, where

C = —m:i\/% F(ir,) Res(T(w, o), w = iky) # 0 (1.3.34)

by construction. Thus, ®p is not in C' at the future bifurcation sphere as the non-

degenerate derivative diverges as v — 00:

0
Ven

Bp = e U9, Up(v,0,p) = Ce™ F+H-)v(1 4 (1)), (1.3.35)

where we recall that k_ < —xy < 0. Finally, propagation of regularity gives that the
solution is not in C'! at each point on the Cauchy horizon CH 4. More precisely, expressing

(1.1.1) is (u,v) coordinates gives

OuOytp = ;—Tﬁ(w + ) + ﬁﬁo(zo + 1), (1.3.36)

where A is as in (1.2.5) and where we have used that Ag2¢) = —£y(¢p + 1)3p. Now, note
that |¢],|0y¢| and |0,1| are uniformly bounded in the interior by a higher order norm of
U 4. This follows from [51], commuting with 7" and angular momentum operators as well
as elliptic estimates. Finally, integrating (1.3.36) in u, using the estimate |A| < ef-(u+v)
for r, > 0 (see (1.8.7)) and using the non-degenerate coordinate Vey gives the C! blow-up

also everywhere on CH 4. O
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1.3.6 Breakdown of T energy scattering for cosmological constants A # 0

Interestingly, the analogous result to Theorem 1.1 on the interior of a subextremal (anti-)
de Sitter-Reissner—Nordstrém black hole does not hold for almost all cosmological con-
stants A. In the presence of a cosmological constant it is also natural to consider the

Klein—Gordon equation with conformal mass pu = %A. We will consider in fact a general
3
2
invariant Klein—Gordon equation. To be more precise, we prove that for generic subex-

mass term of the form u = vA, where v € R. Note that v = 5 corresponds to the conformal

tremal black hole parameters (M, Q, A), there exists a normalized (in £}-norm) sequence
of Schwartz initial data on the event horizon for which the EgH—norm of the evolution

restricted to the Cauchy horizon blows up.

We define a black hole parameter triple (M, @, A) to be subextremal if
(M,Q, ) € Py := PAOUPAOUPAO, (1.3.37)
where

Pa=0:={(M,Q,A) € Ry xR x {0}:

se
A(r) := r? — 2Mr + Q? has two positive simple roots satisfying 0 < r_ < .},
(1.3.38)

PA>0 (M, Q,A) € Ry x R x Ry:
A(r) = r? —2Mr — %Ar4 + Q? has three positive simple roots satisfying
0<r_ <ry<re, (1.3.39)
PAO.—{(M,Q,A) e Ry x RxR_:
A(r) :==r? — 2Mr — %A?A + Q? has two positive roots satisfying 0 < r_ < 7, }.
(1.3.40)

Theorem 1.6. Let v € R be a fized Klein—Gordon mass parameter. (In particular, we
may choose v = % to cover the conformal invariant case or v = 0 for the wave equation
(1.1.1).) Consider the interior of a subextremal (anti-) de Sitter—Reissner—Nordstrom
black hole with generic parameters (M,Q,A) € Ps \ D(v). (Here, D(v) C Pse is a set
with measure zero defined in Proposition 1.6.1 (see Section 1.6). Moreover D(v) satisfies
PA=0 € D(v) and U N D(v) = PA=0 for some open set U C Pye.)

Then, there exists a sequence (¥, )nen of purely ingoing and compactly supported data
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on Ha with
||\I/nH5£ =1 foralln (1.3.41)
such that the solution 1, to the Klein—Gordon equation with mass p = vA

DQ]\/I,Q,Aw —up =0 (1.3.42)
arising from W, has unbounded T energy at the Cauchy horizon
|tn Ten ||€gH — 00 as N — 00. (1.3.43)

Proof. See Section 1.6. O

Remark 1.3.5. Note that from Theorem 1.6 it also follows that for fired 0 < |Q| < M, the
T energy scattering breaks down (in sense of Theorem 1.6) for all cosmological constants

0 < |A| <€, where e = ¢(M, Q) > 0 is small enough.

1.3.7 Breakdown of T energy scattering for the Klein—Gordon equation

Finally, we will also prove that the T" energy scattering theory does not hold for the Klein—
Gordon equation for a generic set of masses i, even in the case of vanishing cosmological

constant A = 0.

Theorem 1.7. Consider the interior of a subextremal Reissner—Nordstrém black hole.
There exists a discrete set D(M, Q) C R with 0 € D such that the following holds true.
For any p € R\ D there exists a sequence (U,),en of purely ingoing and compactly
supported data on Ha with

[nller =1 for alln (1.3.44)
such that the solution v, to the Klein—Gordon equation with mass
Dgar g ath — i) = 0 (1.3.45)
arising from W, has unbounded T energy at the Cauchy horizon
|tm Ten ||gg‘H — 00 as n — 00. (1.3.46)
Proof. See Section 1.7. O
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The above Theorem 1.6 and Theorem 1.7 show that the existence of a T" energy scat-
tering theory for the wave equation (1.1.1) on the interior of Reissner—Nordstrom is in
retrospect a surprising property. Implications of the non-existence of a T energy scatter-
ing map and in particular, the unboundedness of the scattering map in the cosmological

setting A # 0, are yet to be understood.

1.4 Proof of Theorem 1.2: Uniform boundedness of the

transmission and reflection coefficients

This section is devoted to the proof of Theorem 1.2. We will analyze solutions to the o.d.e.
(recall from (1.2.34))

d d 4 25
Aa <AdrR) Al +T1)R+7r"wR=0.

This o.d.e. can be written equivalently (recall from (1.2.36)) as
" + (W = V)u =0,

in the r, variable, where u = rR.

For the convenience of the reader we recall the statement of Theorem 1.2.

Theorem 1.2. The reflection and transmission coefficients R(w, ) and T(w, L) are uni-

formly bounded, i.e. they satisfy

sup  (|R(w,0)| + |F(w, £)]) S 1. (1.3.7)

w€eRLENg
The proof of Theorem 1.2 will involve different arguments for different regimes of
parameters. Also, note that in view of (1.2.56) and (1.2.57) it is enough to assume w # 0.
The first regime for bounded frequencies (|w| < wp, ¢ arbitrary) requires the most

work. One of its main difficulties is to obtain estimates which are uniform in the limit
¢ — co. We shall use that the o.d.e. (1.2.36) with w = 0, which reads

u" — Vou =0, (1.4.1)

can be solved explicitly in terms of Legendre polynomials and Legendre functions of second
kind. The specific algebraic structure of the Legendre o.d.e. leads to the feature that

solutions which are bounded at r, = —oo are also bounded at r, = 4oc0. For generic

o7



perturbations of the potential this property fails to hold. Nevertheless, for perturbations
of the form as in (1.2.36) for w # 0 and |w| < |wp|, this behavior survives and most
importantly, can be quantified. To prove this we will essentially divide the real line R 3 r,
into three regions.

The first region will be near the event horizon (r, = —oc), where we will consider the
potential V; as a perturbation. The second region will be the intermediate region, where
we will consider the term involving w as a perturbation. Finally, in the third region near
the Cauchy horizon (r, = 4+00), we consider the potential V; as a perturbation again. This
eventually allows us to prove the uniform boundedness of the reflection and transmission
coefficients R and T in the bounded frequency regime |w| < wp.

The second regime will be bounded angular momenta and w-frequencies bounded from
below (|w| > wo,f < {y). For this parameter range we will consider V; as a perturbation
of the o.d.e. since V; might only grow with ¢, which is, however, bounded in that range.
Again, this allows us to show uniform boundedness for the transmission and reflection
coefficients T and fR.

The third regime will be angular momenta and frequencies both bounded from below
(lw| > wo, £ > £p). To prove boundedness of reflection and transmission coefficients R and

T, we will consider % as a small parameter to perform a WKB-approximation.

1.4.1 Low frequencies (Jw| < wp)

We first analyze the o.d.e. for the special case of vanishing frequency. Then, we will sum-
marize properties of special functions, which we will need to finally prove the boundedness

of reflection and transmission coefficients in the low frequency regime. Let
1

be a fixed constant.

1.4.1.1 Explicit solution for vanishing frequency (w = 0)

For w = 0 we can explicitly solve the o.d.e. with special functions. In that case the o.d.e.

reads

% (A‘jf) —L(l+1)R=0. (1.4.3)
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We define the coordinate z(r) as

2 _
o(r) = —— T (1.4.4)
T —Tr— T —Tr—
or equivalently,
—r_ +7r_
r(z) = —* > et . = (1.4.5)

Then, we can write

Alz) = <7"+ 5 “)2 (z+1)(x—1) = <7”+ 5 “)2 (22 —1). (1.4.6)

Hence, Eq. (1.4.3) reduces to the Legendre o.d.e.

d 9 dR
- <(1—a: )dm> + 0+ 1)R=0. (1.4.7)
We will denote by Py(x) and Qg(z) the two independent solutions, the Legendre polyno-
mials and the Legendre functions of second kind, respectively [119, 39]. We will prove

later in Proposition 1.4.2 that @1 and @9 from Definition 1.2.3 satisfy

U1(ry) = wi(ry) == (—1)27@]34@(7“*)), (1.4.8)
Tp (1) = wo(ry) = (—1)517;(’"7:*)@24(;5(”)). (1.4.9)
+7+

These are a fundamental pair of solutions for the o.d.e. in the case w = 0. We will perturb
these explicit solutions for the regime of low frequencies (|w| < wp). To do so, we will need

properties about special functions which will be considered first.

In view of the fact that wy is fixed, constants appearing in < and 2 may also depend
on wy. Before we begin, we shall summarize the special functions we will use and list their

relevant properties in the case |w| < wp.

1.4.1.2 Special functions

Good references for the following discussion are [1, 119, 39|. First, we shall recall the

definition of the Gamma and Digamma function.

Definition 1.4.1. For z € C with Re(z) > 0 we denote the Gamma function with T'(z)
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and will also make use of the Digamma function F (z) defined as

Note that
1
and
n—1 1
F) =Y ¢ 7 =log(n) + O(n")
k=1

where v is the Fuler—Mascheroni constant.

(1.4.10)

(1.4.11)

(1.4.12)

As we mentioned above, we shall use the Legendre polynomials and the Legendre

functions of second kind. We will express them in terms of the hypergeometric function

F(a,b;c;z) for x € (—1,1), a,b,c € R as defined in [119, Equation (9.3)].

Definition 1.4.2 (Legendre functions of first and second kind). We use the standard

conventions which are used in [119, 39].

For x € (—1,1), we define the associated Legendre polynomials by

1 El 1—
P (z) = <1+z> F(f-l—l,—f;l—m; 2$>

and the associated Legendre functions of second kind by

Q' (z) = —%Trsin (;w(z + m)> wi(l,7) + %mos (;(e + m)7r> ws (0, 7).

Here,
omp l+m+1 o 1 1
wl(g’gj):(ii) QF( trm +£ m 1 2)7
I+ 5 >
2mT (1 + S5m) m (1—l—m  L—m 3 ,
w2(€7$)211(g_—772w1)$(1—90) 2F< st ;2;33)-
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We shall also use the convention P, = Pé0 and Q)" = Q%. Also, recall the symmetry

Py(z) = (=1)"Po(~=), (1.4.17)
Qe(x) = (1) Qu(~x). (1.4.18)
In the asymptotic expansion in the parameter ¢ for the Legendre polynomials and functions

we will make use of Bessel functions which we define in the following.

Definition 1.4.3 (Bessel functions of first and second kind). Recall the Bessel functions
of first kind

2k
k=0
S 22k
J == 1.4.20
1(@) =3 2 (“)FRI(k + D)V ( )
and the Bessel functions of second kind
Yo(z) =2 Jo(2) (lo <f>+ )—2iH o (1.4.21)
0 ._71' 0 g 2 ’Y 7Tk:1 k‘(_4)k(k‘)27 o ke
1 2 T
T © x2k
- — k+1 k+2 1.4.22
o kZO(F( DR 2) g T o (1.4.22)

Jo(z) =14 O(z?), (1.4.23)
Ji(z) = g +0(23), (1.4.24)
Yo(z) = %log g) o), (1.4.25)
Yi(z) = —% +o(1) as x — 0. (1.4.26)

Note that bounds deduced from (1.4.23) — (1.4.26) hold uniformly on any interval (0, a] of
finite length. We shall also use the bounds

[Jo(@)| < 1, [Yo(z)] S 1+ |log()| (1.4.27)
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for0<ax <1 and

[Jo(@)] S Yo(z)| S (1.4.28)

Sl-

1
vz’
forx >1[1, p. 360, p. 364].

In the proof we will also use the following asymptotic formulae for P, and @, for large

¢ in terms of Bessel functions.

Lemma 1.4.1. [39, §14.15(ii1)] We have

o) = (525)" (0 (2252) +er ), (1429
Qu(cos ) = —g (Sifl 0)5 (Yo <9<2£2+1)> + eu(e)> : (1.4.30)
Q¢ (cos ) = —% (Siie); (Y1 (9(%;1)) + eg,g(e)> : (1.4.31)

(20 + 1)
<
S, JO( 2 >‘+ 2

s [a(HD) ()]

for @ € (0,7 —0) and for any fixred § > 0. In particular, this holds uniformly as 6 — 0.

where the error terms can be estimated by
1 0(20+1
le1,6(0)], lea,e(6) { Yo <H> H : (1.4.32)
1

We shall use the following asymptotic formulae for the Legendre functions at the

singular endpoints.
Lemma 1.4.2. [39, §14.8] For 0 < x < 1 we have
Py(x) =1+ f1(z), (1.4.34)
1
Q(x) = §(log(2) —log(l—z))—vy—F{+1)+ fi(x), (1.4.35)

where |f1(z)] <¢ (1 — ). Moreover, analogous results hold true for —1 < x < 0 due to
symmetry.

Now, we will estimate the derivatives of the Legendre polynomials and Legendre func-

tions of second kind.
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Lemma 1.4.3. For z € (—1,1) we have

dP, 9
— | < e 1.4.36
= (1430
For x4 ::l—ﬁ with 0 < a < 1 and £ € N we have
d
(1 - (£200)%) %(ixa,e) S (1.4.37)

Proof. Inequality (1.4.36) is known as Markov’s inequality and is proven in [11, Theorem
5.1.8]. We only have to prove (1.4.37) for = +xz, ¢ due to symmetry. From the recursion
relation [39, §14.10] we have

- dQy
(€ + 1) 1(1 - xi,f) dz (xa,f) = xa,@QZ(xa,Z) - Q€+1(xa,€)

= (Ta,e — 1)Qu(Tae) + (Qu(Tae) — Qey1(Tae))- (1.4.38)

We will consider both summands separately.

Part 1: Summand (240 — 1)Qr(xar)

First, consider 1 — x40 = ﬁ, where we implicitly define cos(6,,¢) = x4, Note that we

have

oe(x) = /201 — 70) + O((1 — 70,)

[S][°Y
[\
Q
+
)
/N
7N
—
e
~
)
N———
N
N———

)=V e

2 «
= T <1+O(1+€2)>. (1.4.39)

In particular, we have 0, (¢ < 1. This gives

—Qe(xay) = —Qu(cos b ) = g (Siic;z £> ’ <Yo <W> + 62,6(%,6)) . (1.4.40)
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Again, we will look at the two terms independently. First, note that

1
T Oae \2 1
3 (i) (o(0ae(2)))

1
s o~ 2 /2 O00(20+1)
S Zlog (LT 1
2 (sin&al) (7r Og< 4 +00)

= (1+0(62,)) (mg(ea,g) + log <£ + ;) + 0(1))
(1 +0 (1;}62» (; log <1f€2> +log <€ + ;) + O(l))
- (1 +0 (14(:‘52» <; log(ar) + %log (1 + é;%) + 0(1))
1
2

log(a) + O(1). (1.4.41)

In order to estimate e ¢(0y ¢) we shall recall inequality (1.4.32). It works analogously to

the previous estimate up to a good term of %Jré. In particular, this shows

|Qe(2a,e)| S [log(a)| +1 (1.4.42)

and

‘(xa,f - 1)@@(960175)‘ N

(1.4.43)

Part 2: Summand (Q/(za¢) — Qe+1(Zar))

Using the recursion relation for the difference of two Legendre function [39, §14.10], we

have

(0 +1)(Qe(xa,) — Qer(@ae) = —(1 = 373,4)%@% (@a,e) + (1 = Ta)Qe(@aye).  (1.4.44)

We estimate the term (1 — z4.¢)Q¢(2q,¢) by what we have done above as

(1= 2a,0)Qe(Ta,)| S (log(a)[+1) S 1. (1.4.45)



For the term —(1 — xi,z)%Q%(xa,f) we use (1.4.31) to get

—(1 =22 )2 Qh ()|

< \/EIIM <1 40 <1+0“£2>> <Y1 <<z+ ;) 9M> 4 eu(ea,g)) C(1.4.46)

As before, we shall start estimating the first term using (1.4.26) and (1.4.39) to obtain

o 1 a 1
£2+11+e<1+O<1+€2>>Y1(<H2)9“’5>
o 1 o 1
= —— 1 - S — 1
\/£2+11+€< +0(1+£2>>< 7r(2€+1)0a,e+0( )>

« 1 1
< —(—=+1) 51 1.4.4
~ £2+11+€<\/EJr )N ( 7

We estimate the second term using (1.4.33), (1.4.24), (1.4.26), and (1.4.39) to obtain

o 1 a
'\/;1% (1 +0 <1+€2>> e2,0(0ar)
o 1 1
SVeriize\m st 1.4.4
N\/;He?(\/a*)fv (1.4.48)

We have estimated that |Q¢(za,e) — Qet1(xar)| S %H which proves the claim in view
of (1.4.38). O

Finally, we prove asymptotics for the derivatives of the Legendre of functions of second

kind near the singular points.

Lemma 1.4.4. For 0 < x <1 and xt — 1 we have

(1—:):2)%‘ =1+ 0y((1 — x)log(1l — z)). (1.4.49)

By symmetry this also yields for —1 < x <0 and x — —1

dQ: _

(1—2?) e

(=1)* 4+ O((1 + x) log(1 + z)). (1.4.50)
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Proof. From the recursion relation [39, §14.10] and (1.4.35) we obtain

(1-= )de

=(U+1)(x
= (t+1)(Qr = Qey1) + Ou((1 — ) log(1 — z))
< D(F(€+2) — F(£+ 1))+ 0u((1 ) loa(1 — )
Ou((1 —z)log(1 — x)). (1.4.51)

(L +1)(2Qr — Qey1)
—1)Qe+ (L +1)(Qr — Qes1)

O]

Having reviewed the required facts about special functions, we shall now proceed to

prove the uniform boundedness of the reflection and transmission coefficients.

1.4.1.3 Boundedness of the reflection and transmission coefficients

As mentioned before, we will consider three different regions: a region near the event
horizon, an intermediate region, and a region near the Cauchy horizon. In 7, coordinates

we separate these regions at

Ri(w.0) = 1og (- (1.4.52)
T(w, = o s\ 15 4.
and

N 1 w?

for 0 < |w|] < wp and £ € Ny. Note that —oco < R} (w,?) < 0 < R(w,!) < 0.

Region near the event horizon.

Proposition 1.4.1. Let 0 < |w| < wp and £ € Ng. Then, we have

[0t [| oo (— 00,7y S I, (1.4.54)
[ur ]l oo (—o0,mp) S 1. (1.4.55)

Proof. Recall the defining Volterra integral equation for u; from Definition 1.2.3

ui(ry) = €9 + / s = YD) o ) dy. (1.4.56)

oo w
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with integral kernel

sin(w(ry —y))

K(r,y) == V(y). (1.4.57)

From Lemma 1.8.3 in the appendix, we obtain for r, < R]

V()| S €547 (1+ %) (1.4.58)
and in particular,
V(RD)| S 2+ (14 2) = o, (1.4.59)
This implies for r, < R]
Kren)] € IV S (1 + e (1.4.60)
and thus,
/RI sup | K(re,y)|dy < 42;162'!”1%I < 1. (1.4.61)
—o0 y<ra<R} ||
The claim follows now from Proposition 1.2.3. O

Now, we would like to consider w as a small parameter and perturb the explicit solu-
tions for the w = 0 case in order to propagate the behavior of the solution through the
intermediate region, where V; is large compared to w. In particular, V; can be arbitrarily

large since ¢ is not bounded above in the considered parameter regime.

Intermediate region. First, recall the following fundamental pair of solutions which

is based on the Legendre functions of first and second kind

wi(ry) == (—1)£7A§::<)Pg(l‘(7’*)), (1.4.62)
wy(rs) := (—1)£;(T*) Qe(x(rv)), (1.4.63)
+7+

where P, and @, are the Legendre polynomials and Legendre functions of second kind,
respectively. Our first claim is that we have constructed this fundamental pair (w;, ws2) to

have unit Wronskian and moreover #; = wy and 2y = w9 holds true.

Proposition 1.4.2. We have wy = %1 and we = U and the Wronskian of uq and us
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satisfies
Qﬁ(wl, w2) = Qﬂ(ﬂl, 17,2) =1. (1.4.64)

Similarly, we also have ¥ = (—1)*“w; = (—1)* 24,

Proof. We first prove that 20(w;,wy) = 1. Since the Wronskian is independent of r,, we
will compute its value in the limit r, — —oo. In this proposition £ is fixed and we shall

allow implicit constants in < to depend on /. Clearly,
wy(ry) = 1 as ry — —o0. (1.4.65)

Moreover, we have that for r, <0

dPy(x) dz

S B a(r)l + | =g, ) g ()] ST (1.4.66)

w1 (74)

dr,

*

where we have used (1.4.36). This, in particular, also shows that w; satisfies the same

boundary conditions (w; — 1, w} — 0 as r. — —o0) as @; defined in Definition 1.2.3 and

(re

thus, w1 and % have to coincide. Similarly, we can deduce 9 = (—1)"=+

w1.

For wa, we use (1.4.35) to obtain

wa(re) — 1] < <—]’;(+7;+) <;10g <1+:2c(r)> e+ 1)> —r*> e (1.4.67)

For an intermediate step, we compute log(l + x(r.)) from (1.4.4) near r, = —oo. In
particular, for the limit r, — —o0, we can assume that r, <0 and thus, r—r_ 2 r  —r_.

Hence,

log(1 4 z(ry)) = log <1 + (ry —r) 4+ (r— = 7‘)>

Ty —Tr—

= log <1 - ) oty TR >
T —T— T —Tr—

— log ( 2f(/r*) €2k+7‘*>
r4 —Tr—
= 2k 7y + log(2f (1) (ry —r_)7h), (1.4.68)
where f is defined in (1.8.11). Thus, this directly implies

lwa(ry) — 7| < ryeF 4™ 41 < 1 (1.4.69)
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Finally, we claim that w) — 1 as r, — —oo. We shall use estimate (1.4.50) near z(r,) = —1

to obtain

wh(r.) — 1] < €247

1)+ [l A Ay

kyry dz  dr.

< e2hers 4 ]:S:j 14O ((1+4 z(rs)) log(1 + z(ry)))] %iﬁ - 1) . (1.4.70)
Now, in order to conclude that
|wh(rs) — 1| = 0 as r. — —o0, (1.4.71)
it suffices to check that
1_;2(74*)(?2 — ki as ry — —00. (1.4.72)
But this holds true because
%ii 1o ;2(7**) T+_—27“_7“A2 =g ks o (1473)
Now, this implies that
W(wy,ws) = 7”*l_i>rr_1oo (wwhy — wiws) =1, (1.4.74)
and moreover, that we = U9 as they satisfy the same boundary conditions at r, = —oco. [

Having proved the Wronskian condition we are in the position to define the perturba-

tions of 47 and o to non-zero frequencies.

Definition 1.4.4. Define perturbations w1, and tg ., of 4y and Uy (cf. (1.4.8) and (1.4.9))

in the intermediate region by the unique solutions to the Volterra equations

U1,0(re) = G (rs) + w? /m (@1 (re)a2(y) — @1 (y)ta(rs)) G1w(y)dy (1.4.75)
Ry
and
U2, (rs) = U2(rs) + w? /:* (1 (re)a2(y) — 1 (y)ao(ry)) tow(y)dy. (1.4.76)

1
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Proposition 1.4.3. Let 0 < |w| < wp and £ € No, then we have for r. € [R}, Rj]
ur(w, ry) = A(w, £)t1 4 (1) + B(w, O)wia (1), (1.4.77)
where

|A(w, 0)] + |B(w, 0)] < 1. (1.4.78)

Proof. First, note that by construction in Definition 1.4.4 we have

1w(RY) = 11 (RY), (1.4.79)
) ,(RY) = @ (R]), (1.4.80)
tgw(RY) = t2(RY), (1.4.81)
Uy, (RY) = U5(RY). (1.4.82)

Now, we want to estimate the previous terms. By construction, we directly have that

a1 (RT)| < 1. (1.4.83)
Then, note that
w? w?
<1 NS ——r0 1.4.84

Hence, from (1.4.35), we obtain

1 1
luo(RY)| S 1+ ) log(1+x(RY)) — F ({+ 1)’ S 1+ log(lw])] < log (M) , (1.4.85)

where we have used that for £ > 1 we have [ (£ +1) = log(¢) +~v+ O(¢1). For i (R}) we

have the estimate

(R S [ARDQe(a(R))| + \ 9 ) 4y <1, (1.4.86)
where we have used (1.4.37) and (1.4.84) as well as the fact that
)t < (1.4.87)
O X <L A.
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Now, we can express A via the Wronskian as

(u1,U2w)

2
| | ‘ m(ul,wauZw) ( )

By construction, we have 20(a w, U2,.,) = 2W(u1,U2) = 1. Hence, using Proposition 1.4.1

we conclude
|A] < |ur (RY) i, (RY)| + |y (RY)t2.0(RY)| S |a5(RY)| + |wiz(RY). (1.4.89)

Thus, we conclude

|A| < 1. (1.4.90)
Note that from (1.4.36), we have
- " dFP,\ dx w?
1@y (RY)] < ’(1 + dx) - < (1402 7 S w?. (1.4.91)
Hence, we can also estimate B by
1 ~ < 1 ~/ * ~ *
|B| = mlw(uhm,w)l ST (lay (R + |wiy (RT)])
1
<1+ |am’l(l%’{)\ <1, (1.4.92)
where we used Proposition 1.4.1 again. O

For the intermediate region we will need the following result in order to get uniform

bounds for the Volterra iteration.

Lemma 1.4.5. Let 0 < |w| < wp and £ € Ny, then

RS 1
[ttt g (). (1.4.99)

R} |w]
R3 1
~ 2
/ G2 (rs)|dry < log () : (1.4.94)
R; |w

Proof. We first prove (1.4.93). We shall split the integral in two regions. The first region

is from 7, = R} to r. = 0. In that region we define 6 € (0, 5] such that cos(0) = —x (7).
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Using also Lemma 1.4.1 we obtain

a1 (ra)| S [Pe(x(re)] = [Pe(=a(rs))| = | Pe(cos 0)]

(i 9) I((£+5)0)

The last term shall be treated as an error term. Thus,

s () |drs < / Pula)| ——dz < / Pea)— s
/R; x(Ri‘)’ l+a 1402 | T2

<

~

+ le1,e(0)]- (1.4.95)

1442
2 1
N / , |Pe(cost)|————sinfdo
arccos(lfCl:"FT) 1—cosf
™ 0
< /2 | Py(cos 0)|—27 g9, (1.4.96)
il 1 —cosf

Here, C and (' are positive constants only depending on the black hole parameters. We

further estimate using equation (1.4.95)

/ " () ar.

R}
s 1
2 0 \2 1 sin 0
< Jo((d 4+ =)0)| —————dO + E , 1.4.97
N/leie (sin@) ol(£+ 2) )‘ 1 —cosf - hror ( )
where we will take care of the term
Error = / T Jere(®)] (1.4.98)
C11%
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later. First, we look at the term

1
2 1 sin 0
7o ((“z) 9)‘1_0039%’

Chw 9 1 0

L > 1
g/ d9—|—/ O—Bdeg | log(|w])], (1.4.99)
1 62

where we have used equation (1.4.27) and (1.4.28). Now, we are left with the error term

1 [ in ¢ 1 1
Error < —— 2 (o((£+5)0)| + [Yo((¢ + )9) )6

147 Cips 1 —cosf

1 2 sin 6 | log(|w]|)] /’5 1
< —— (141 do < ————~ —do
T+l o 1—(:059( + [og(jwD)dd 5 1+0 Jo, w0

2+1

log?(|w]) +log(1 +¢) 2 1
S Slog” [ — ). 1.4.100
~ 147 ~ 108 |w] ( )
Thus,
0 1
/ |1 (ry ) |drs < log? () : (1.4.101)
R} |w]

Completely analogously, we can compute

R3 ) 1
/ @1 (r)[dry < log <> : (1.4.102)
0 |w]
The proof of equation (1.4.93) is completely similar up to a term which involves
+3
GO
2T 7149 < log? [ — (1.4.103)
Cilw 0 |w|
appearing in the estimate analogous to (1.4.99). O
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With the help of the previous lemma we can now bound our solution u; at R5. This

results in

Proposition 1.4.4. Let 0 < |w| < wp and ¢ € No, then
[utllzoo(re,ry) S 1 and [ui](R3) < |wl. (1.4.104)
Proof. Recall that we have from Proposition 1.4.3 for r, € [R}, R3]
ur(w, ) = A(w, 0)01 (1) + wB(w, £) g, (1+) (1.4.105)

for some uniformly bounded (in |w| < wp and ¢) constants A, B. In particular, from

Proposition 1.2.3 and Remark 1.2.1 we obtain the bound

|81l Loo (R, RY) < €|t oo (2, RY) (1.4.106)
for
R
o= w2/ sup @1 (14 )U2(y) — U1 (y)tz(rs)|dy. (1.4.107)
Ry {r«|ly<r«<R3}

First, we have the bound

@1l oo Rz Ry) < 1. (1.4.108)
Secondly, for r, € [R}, R3] we have
W2
1-2(r) 2 (1.4.109)
and
w2
1+xz(re) 2 T2 (1.4.110)

Consider the case z(r,) > 0 first and implicitly define 6(r,) by cosf(r«) = z(ry). Then,

in view of (1.4.30) and 0(z(rs)) = /2 — 2z(rs) + O((1 — :r:(r*)%)), we estimate

Y (W“”)\ < Yo ()| (L4.111)

a2 (re)| S |Qe(cos(6(r)))] S 5

for a C = C(M,Q) > 0. Analogously, this also holds for x(r.) < 0 such that (1.4.27) and
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(1.4.28) imply

- 1
2| Lo (R, Ry) < log (M) : (1.4.112)

Together with Lemma 1.4.5 we obtain

asS L (1.4.113)
Hence,
01wl oo Ry RE) S 1 (1.4.114)
and similarly,
- 1
@20 Lo (RE,RE) S log W) (1.4.115)

This shows [u1|peo(rr,ry) <1 in view of (1.4.105).

Now, we are left with the derivative u}(R3). To do so, we start by estimating @} (R3)
and @5 (R%). Using the analogous estimate as we did for R in (1.4.86) and (1.4.91), we

obtain

iy (R3)| <1 and |} (RS)] < w2 (1.4.116)
Note that
~/ * ~/ * 2 RS ~/ *\ ~ ~ ~/ * ~
ity (R3) = Uy (Ry) +w - (Ul(R2)U2(y) - ul(y)u2(R2)) U, (y)dy (1.4.117)
1

and thus in view of Lemma 1.4.5, (1.4.116), (1.4.115), (1.4.112), and (1.4.108) we estimate

~ * ~ * 1 R; ~ *\ ~ ~ ~ *
o (RS)| < [ (R3)| +w?log (w) [ i) + s ()5 7l
1

<1+ w2 | log(|w])] (w2 log2(|w\) + logQ(\wD) <1 (1.4.118)
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Similarly, we obtain

Ry
@ o, (RS)| < @) (RS)| + w? /R |y (R5)tiz(y)] + | (y) iy (R5)]dy
1

S w? +w?(w’ log?(|w]) +log®(jw])) S | (1.4.119)

which concludes the proof in the light of (1.4.105). O

Region near the Cauchy horizon. Completely analogously to Proposition 1.4.1,

we have

Proposition 1.4.5. Let 0 < |w| < wgp and £ € Ng. Then, we have

[Vl (Ry,00) S @l Villzoe(ry,00) S 1 (1.4.120)

and
03] oo (Rg.00) S 1wl Nvall oo (rs 00) S 1- (1.4.121)

Boundedness of the scattering coefficients. Finally, we conclude that the reflec-

tion and transmission coefficients are uniformly bounded for parameters 0 < |w| < wp and

f € Ng.

Proposition 1.4.6. We have

sup (8w, 0)] + |Z(w, O)]) S 1. (1.4.122)
0<|w|<wo,lENg

Proof. Let 0 < |w| < wp and ¢ € Ny and recall Definition 1.2.4. Then, Proposition 1.4.4
and Proposition 1.4.5 imply

[ (ur, v2)| _ |ua (R3)vy(R5)| + |uy (R)va(R3)|

EABS WS ] <1 (1.4.123)

and
9 < QU(TZ‘M)! < IU1(R§)vi(R§)I’I‘IUS(RS)W(RE)I <1 (1.4.124)
O
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1.4.2 Frequencies bounded from below and bounded angular momenta
(lw] > wo, £ < 4o)

Now, we will consider parameters of the form |w| > wy and ¢ < £y, where wq is small and
determined from Section 1.4.1. Also, the upper bound on the angular momentum ¢y will
be determined from Section 1.4.3. As before, constants appearing in < and 2 may depend

on wy.

Proposition 1.4.7. We have

sup  (|R(w, 0] + [T(w, 0)]) < 1. (1.4.125)

wo<|wl],£<Lo

Proof. Recall the definition of u; as the unique solution to
Tx

S =)y (4 (w0, ) dy. (1.4.126)

w

w(wyr) = e+ [

—0o0

Note that in the regime ¢ < ¢y we have a bound of the form
|V(7"*)’ S, e—Zmin(k+,\k7|)|’r*| (14127)

which implies the following bound on the integral kernel of the perturbation in (1.4.126)

sin(w(r« —y
K (e, y)| = ((w))V(y)' S|V (1.4.128)
in view of |w| > wp. Thus,
/ sup |K (v, y)|dy 5/ V(y)|dy < 1. (1.4.129)
—oo r+€R —00

Hence, from Proposition 1.2.3 we deduce
[utllpeery S 1 (1.4.130)
and
Uil Lo ry S lwl. (1.4.131)

Note that we have obtained similar, indeed even stronger bounds for u; as in Proposi-

tion 1.4.4. An argument completely similar to Proposition 1.4.6 allows us to conclude. [
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1.4.3 Frequencies and angular momenta bounded from below (Jw| > wy,
> {y)

In this regime we assume w > wgy and ¢ > £y, where we choose ¢y large enough such that
V; < 0 everywhere. Note that such an ¢35 can be chosen only depending on the black hole

parameters.
We write the o.d.e. as
' = —(w? = V))u (1.4.132)

and will represent the solution of the o.d.e. via a WKB approximation. For concreteness

we will use the following theorem which is a slight modification of [116, Theorem 4].

Lemma 1.4.6 (Theorem 4 of [116]). Let p € C%(R) be a positive function such that

Flz) = \ [ v

satisfies sup,cr F'(z) < 0o. Then, the differential equation

d(i (r)

dy‘ (1.4.133)

d?u(x)

w2 —p(z)u(x) (1.4.134)

has conjugate solutions u and u such that

w(z) =p 1 (exp <z /Ox \/f)(y)dy> + e> : (1.4.135)

[eXp <Z /Ox x/f?(y)dy> —in+ jj: (exp <—z/0$ \/ﬁ(y)dy) + 6>

Ll

/
_ , (1.4.136)
2

o' (x) = ip

n(x)], |e(z)] < exp (F(z)) — 1. (1.4.137)

Proposition 1.4.8. Let wy < |w| and ¢ > {y. Assume without loss of generality that
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w > 0. Then,

U (w, 1) = Aw?i(w? — V(r,))1 { < /OS* (w? — Vi(y 2dy> —in(ry)
A |
where

Al =1, fuep(\e\(m) +nl(rs)) S 1

and

r*l—lleoon(r*) - T*1—1>I£loo 6(7’*) =0

In particular, this proves

limsup |u(ry)| < 1,

T4 —>00
lim sup |u/(r,)| < |wl,
T —>00

and uniform bounds on the reflection and transmission coefficients

sup  (|R(w, O)] + [T(w, O)]) S 1
wo<|wl|,£>Lo

Proof. We will apply Lemma 1.4.6. First, we set

p=(w*—Vp)

which is positive and smooth. Then, the o.d.e. reads

"
U = —pu.

(1.4.138)

(1.4.139)

(1.4.140)

(1.4.141)

(1.4.142)

(1.4.143)

(1.4.144)

(1.4.145)

(1.4.146)

Now we have to show that F is uniformly bounded on the real line. Note that we have
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the following bounds on the potential and its derivatives

Ve(r )|, VE (r)|, VY ()| S £2e25+7 and €22+ < |Vy(ry)| for 7, <0, (1.4.147)
Ve(r) |, V7 ()|, VY ()] S £2e25=" and (22" < |Vy(r)] for 7 > 0. (1.4.148)

Here, we might have to choose {o(M, Q) even larger (r2 (ry — 3r_) + £({ + 1) > 0, cf.

(1.8.16)) in order to assure the lower bounds on the potential. Finally, we can estimate F'

by
sup F(ry) ’/ 1 -3 )dy‘
r«€R
l 1
/ p i (p~ip 4 p il I) d
1 €4n,y 62H,y
/ 5 + 3 dy
f (E 2 +_62H y)g (KAQ +_e2m_y)§
4H+y 62H+y
n / 4 ) dy, (1.4.149)
CJ oo \ (€72 4 e2r4v)2 (072 4 e2649)2

where we have used the bounds from (1.4.147) and (1.4.148). We shall estimate both

terms independently. After a change of variables y — 2}% log(y), we can estimate the first

term by
2k_y
/ 5 + ‘ 3 dy
f g 2 +_62m y)g (6—2_+_6257y)§

/ )
N Yy
¢ €2+y% Tyt

z 1
562/ Y 4+ ;
0o (L+2y)2 (1+2y):2

%0 1
5/ LA _dy < 1. (1.4.150)
o (1+y)2 (L+y)2

Jun

p

Completely analogously, we get the bound for the second integral. In particular, this
shows

sup F' < 1. (1.4.151)
R

This implies the bounds on 7 and € in the statement of the theorem (cf. (1.4.140)) using
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(1.4.137).
The limits in equation (1.4.141) follow from the fact that F'(r.) — 0 as r. — —oo by
construction.

The bound on the reflection and transmission coefficients follows now from

R < W (uy,v1)
~ w

< — limsup (Jujv| + Juivf]) $1 (1.4.152)

1
o ‘w T4 —>00

and analogously for ¥.
Finally, A can be determined from the asymptotic behaviour u — €™ as r, — —o0

and it is given by

A= lim exp <iw7“* — z/ (w2 — V(y))édy)
0

Tx—>—00

— lim exp <z/0r ((w2 —V(y): — w) dy) (1.4.153)

Tx—+—00

which converges since V' tends to zero exponentially fast. In particular, this also shows

that [A] = 1. O

Finally, Theorem 1.2 is a consequence of Proposition 1.4.6, Proposition 1.4.7, and

Proposition 1.4.8.

1.5 Proof of Theorem 1.1: Existence and boundedness of

the T energy scattering map

Having performed the analysis of the radial o.d.e. and having in particular proven uniform
boundedness of the transmission coefficient ¥ and the reflection coefficients R, we shall

prove Theorem 1.1 in this section.

1.5.1 Density of the domains D}, and D7,

We start by proving that the domains D;"_; and Dg% are dense.

Lemma 1.5.1. The domains of the forward and backward evolution Dg_; and DgH are

dense in 5%; and 5gH, respectively.

Proof. We will only prove that the domain of the forward evolution is dense since the

other claim is analogous.
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Recall that by definition C2°(H) is dense in &£;. Now, let ¥ € C°(H) be arbitrary
and denote by v its forward evolution. We will show that we can approximate ¥ with
functions of D,,E arbitrarily well. To do so, fix r,..q < rg < 4. Then, using the red-shift
effect (see Lemma 1.8.1 in the appendix) the N energy of ¢ [,—,, will have exponential
decay towards i4. Hence, it can be approximated with smooth functions ¢, of compact
support on the hypersurface r = rg w.r.t. the norm induced by the non-degenerate N
energy (see Remark 1.8.1 in the appendix). More precisely, on X,, = {r = 1o} define a
sequence ¢, € C°(%,,) by

¢n(ta 0, ¢) =9 [r:ro (tv 0, d’)X(n_lt)’ (1'5'1)

where (0,¢) € S? and x: R — [0,1] is smooth with suppx C [~2,2], ¥ l[=1,)= 1. Then,

we obtain that fz J ,ﬂv [ — qbn]ng Odvol — 0 as n — oco. By construction, the restriction
7’0 T

to the event horizon of the backward evolution, ®,, of each ¢,, will lie in sz. Finally, we

can conclude the proof by applying Lemma 1.8.2 from the appendix, which yields

[0~ 2, = /H JTI0 — | Thdvol < / IR~ bulnls, dvol 50 (15.2)

r=ro

as n — oo. O

1.5.2 Boundedness of the scattering and backward map on D}, and DZ,,

In the following proposition we shall lift the boundedness of the transmission and reflection

coefficients (Theorem 1.2) to the physical space picture on the dense domains D?T_[ and DCTH.

Proposition 1.5.1. Let 1) be a smooth solution to (1.1.1) on Mgn such that 1 [y € D7T{
(or equivalently, ¥ e € DgH) Then,

2 2 2 2
1% Tena HgCTHA + 1Y Tewp ||gg"HB <B (W; 144 ||g77_"LA + 1Y Trp ||g£B> (1.5.3)
and

2 2 » 2 2
19 e g+ 16 e Vg, < B (10 fena Vg, +00 tens I, ) (159)

for constants B and B only depending on the black hole parameters.

Proof. Set ¢ := T and note that ¢ [y € D;"; and ¢ also solves (1.1.1). Since ¥ € Dg; - 5%,
we have that ¢ 3 ,= T% |3 ,€ L*(Ha) with respect to the unique volume form induced
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by the normal vector field 7. Analogously, we also have ¢ [ ,= TV [4,€ L*(Hp). Thus,
we can define the Fourier transform on the event horizon with the charts (1.2.15) and
(1.2.16) as

ay,(w,0,¢) = \/12?/R¢ R (0,0, ¢)e " dv (1.5.5)
and
1 WU
a'HB(w707¢) = \/ﬂ/R¢ THB (U,@, ¢)€ du. (156)

We can further decompose the Fourier coefficients in spherical harmonics to obtain

Lm

a3 (@) = (Yom, ag,) r2(s2) and a3 (@) = (Yo, asp) 12(s2)- (1.5.7)

From Plancherel’s theorem, we obtain

g?
19 T34 H%A = Z /]aH":(w)\Zdw, (1.5.8)
Im|<t,¢>07R
€1
s 12 = 3 /ya,g(w)ﬁdw. (15.9)
* ml<eez0”R

Similarly, since ¢ [ex€ DEH, we define

1 )
berea(.0.6) == = /R 6 lers (v,6,0)e = dv (1.5.10)
and
1 wu
bCHB(w,9,¢) = \/%/RCZ) fc'HB (u,9,¢)e du. (1.5.11)

We can further decompose the Fourier coefficients in spherical harmonics to obtain

bér, (W) = (Yem, beaga ) r2(s2y and begy, (W) = (Yo, by ) r2(s2)- (1.5.12)
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Again, in view of Plancherel’s theorem

/,m
19 Teta ”‘%EHA = ) /|bCHA(w)|2dw, (1.5.13)
Im|<,6>0
/,m
19 s lzr, = D /ybCHB(w)Fdw. (1.5.14)
B mi<ee>0”R

and similarly for CHp. We shall also decompose ¢ on a constant r slice. Fix r € (r_,ry),
then set

Pme(w, ) = \/12?/R/82 Y;0(6, 0)p(t, 7,0, ¢)e”“ sin dhdpdt (1.5.15)
such that

0010.0) = <= [ dusleor) V0,01 (1.5.16)

|| <£,620

This is well-defined since ¢(t,r, 6, ¢) is compactly supported on each r = const. slice.

Since ¢ is smooth, we also know that ¢y, satisfies the radial o.d.e. (1.2.34) and can be

expanded as

. r r
Gme(w, r(ry)) = aﬁ_’g(w)%ul(w,r*) - agfg(w)%uz(w,r*), (1.5.17)
where
uy — 7| Sp 2T~ (ry =), (1.5.18)
lug — €| Sp T~ (ry — 1) (1.5.19)

for r, < 0. Note that this holds uniformly in w. We shall show in the following that indeed

asﬁ = aﬁﬁ and 045_’["; = asﬂz. To do so, note that for r(r,) with r, < 0 we have for fixed

(m,¢) that
" (t, ) = (b, Vi) 12(s2)
dw

— /R (aﬁ_’ﬁ(w)%ul(w,r*(r)) + aﬁ_’[n;(w)%uz(w,r*(r)D em\/TTT' (1.5.20)

We want to interchange the limit »r — r with the integral. In order to use Lebesgue’s
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dominated convergence theorem we will estimate asﬁ and agjg. Note that

|WQU( wmf7u2 AN
S S 2 7¢mf7u2 5
2|w| Ty

Qﬂ Td]méa UQ)

W (u1,uz)

o |G e, ua)
lagy, | =
Qﬂ(ul,ug

(1.5.21)

which is independent of 7(r,) and integrable since w — ¥h(w,75) is a Schwartz function.
Now, we shall fix v =r, 4+t and let r — r4 such that r, — —oo. Then, using Lebesgue’s

dominated convergence theorem, we obtain

m ,m WU —2iwry iwv dw
b :/R(ag_m(w) +aHB(w)e iwrs g )F—FO(m—r)

as r — r4. Finally, for v fixed and letting » — r4 (or r, — —o0), we obtain

o dw
0m £m iwv
’ oy (w)e™’ —= 1.5.22
Oy () = [ i@ (1522)
in view of the Riemann—Lebesgue lemma. Also, by definition of aﬁ’jZ,
Ol 0.0.0)= Y (6.0, 0)6 Vi (6, 6) - (15.23)
Ha \U, U, - a’HA w Im\Y, \/% 9.

|m|<£,6>0

In view of the Fourier inversion theorem and the fact that the spherical harmonics form a

basis we conclude that

agﬁ = a%A and analogously, athB = aﬁ_ﬁ; (1.5.24)

Similarly to (1.5.17), we can expand @mg in a fundamental pair of solutions corre-

sponding to both Cauchy horizons CH 4 and CHp. In particular, we can write

n lm r lm r
Qbmf(wa T(T*)) = ﬁC’HA (W)T—Fvl(w7 T*) + BC’HA (w)%UQ(wa T*)a (1525}
where
lvp — e | Sp 2T N (1 — 1), (1.5.26)
[vg — ™| Sp e =T~ (r—1_). (1.5.27)
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for r, > 0. Similarly to (1.5.24), we can prove

o LB (W) = by, (w) and T+6CHB( ) = by, (). (1.5.28)

Moreover, from the uniform boundedness of the reflection and transmission coeflicients

(cf. Theorem 1.2) we have the estimate

IbCHA( )| + by, (w )I
|8k )]+ 18 )] = = (|Rafyn + S| + [Fakn + Saf

)

cu% (@)] + lag w)]) = c<\% ()] + laf (@)]) (1.5.29)

for a constant C' which only depends on the black hole parameters. Here, we have used

the fact that
lm
<5§H3> = (T %> (O‘HA>. (1.5.30)
BC”HA R T aHB

In view of 1 = |T|? — |R|?, we also have
lm = ~ lm
e I O (1.5.31)
l,m _|\ < IBZ,m e
g CHa

a3y ()] + lagn @] S lbezs, (@) + lbezs, @)I- (1.5.32)

from which we deduce

Estimate (1.5.29) and (1.5.32) show the claim in view of (1.5.8), (1.5.9), (1.5.13), and
(1.5.14). Finally, in view of the Fourier inversion theorem, note that the previous also jus-

tifies the Fourier representation of scattering map (1.3.20), and the Fourier representations
(1.3.24) and (1.3.25). O
1.5.3 Completing the proof

Having proven Lemma 1.5.1 and Proposition 1.5.1, we can finally show Theorem 1.1 in

the following.

Proof of Theorem 1.1. Since DI, C &} is dense (Lemma 1.5.1) and S3: DI, C & —
DgH - Sg;_l is a bounded injective map (Remark 1.3.2, Proposition 1.5.1), we can uniquely
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extend Sg to the bounded injective scattering map
sT. &l — &5, (1.5.33)

Analogously, in view of Proposition 1.2.2, Remark 1.3.1, Remark 1.3.2, and Proposi-
tion 1.5.1, we can uniquely extend the bounded injective map Bg : DCTH C SCTH — DCTH -
&}, to the bounded injective backward map B”: €L, — €], (Lemma 1.5.1).

Since Bl o S{' = Idth and SI o Bl = IdDgH on dense sets, it also extends to £}, and
&Ly, from which (1.3.5) follows. Similarly, it suffices to check (1.3.6) for ¢ € D,. Indeed,
(1.3.6) holds true for ¢ € DI, in view of the T energy identity. O

1.6 Proof of Theorem 1.6: Breakdown of 7' energy scatter-

ing for cosmological constants A # 0

In the presence of a cosmological constant A, the situation regarding the T" energy scatter-
ing problem is changed radically. In this section we will consider the subextremal (anti-)
de Sitter—Reissner—Nordstrom black hole interior (M a)asrN; 9@,am,4) Which is completely
analogous to (Mgn,gg,m). We will assume that (M,Q,A) € Py as defined in Sec-
tion 1.3.6. Also, recall that in the presence of a cosmological constant it is natural to look

at the Klein—-Gordon equation

Ogth — ptp = 0 (1.6.1)

with mass p = %A for the conformal invariant equation or more general u = vA for fixed
veR.

This section is devoted to prove Theorem 1.6 which relies on the fact that solutions
of the corresponding radial o.d.e. in the vanishing frequency limit w = 0 generically map
bounded solutions at r, = —oo to unbounded solutions at r, = +00. More precisely, for

A # 0 we obtain—after separation of variables for (1.6.1) and setting dr, = h~'dr—the

o.d.e.
—u" + Vi pu = wu (1.6.2)
for u(ry) = r(r«)R(ry), where
Vea =h (hrh/ + W; D u) =h (%? + W;l) - u) (1.6.3)
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and

2
h:ﬁ:l—%—;/\r%ﬂ. (1.6.4)
Here, consider r(r,) as a function r, and recall that ’ denotes the derivative with respect
to 74«. The presence of the mass and the cosmological constant leads to a modification of
the potential Vj 4.

Nevertheless, the potential Vj 5 still decays exponentially at oo and we can define
asymptotic states ugA), uéA), and ng), ng) for w # 0 and ﬂgA), Q;A), and 6§A), féA) forw =20
just as in the case where A = = 0 in Definition 1.2.3. In particular, &gA) and 17%1\) remain
bounded as r, — —oo and r, — 400, respectively. In contrast to that, ’EL(QA) and féA)
grow linearly in their respective limits. The next proposition states that in the presence
of a cosmological constant, solutions to (1.6.1) in the case w = 0 which are bounded at

ry = —o0 do not need to be bounded at r, = +o0.

Proposition 1.6.1. Fiz v € R (e.g. v = % for the conformal invariant mass) and fix
subextremal black hole parameters (M,Q,A) € Pse. Assume moreover that (M,Q,\) ¢
D(v), where D(v) C Pse is defined in the proof and has measure zero. Then, there exists

an by = ly(v) € Ng such that we have
™ = Ao, A, M, Q)0™ + B(to, A, M, Q)5S (1.6.5)

with B = B(fy, A, M,Q) # 0. Moreover, PA=" C D(v) for all v € R and there exists an
open subset U with Ps{,\fo CU CPs and Psc NU = PSAe:O.

Proof. Let v € R be fixed. In the case A = 0 we can represent %; with Legendre polyno-
mials and in particular we have that B(¢,A = 0, M,Q) = 0 for all £ and 0 < |Q| < M.

Note that we can write B as

e, ol

) _ we™, al™) (1.6.6)

B(A7€7M7Q) = T AN A
w™, o)

for all A such that (M,Q,A) € Pse.

Step 1: P, C R? is open and has two connected components where either
@ >0 or Q < 0. For the sake of completeness we will give a proof of Step 1, although
this seems a quite well-known fact. Note that Ps. = PA>0 U PA<C UPA=Y is open which
can be inferred from its definition.

For the second statement, first note that {Q = 0} N Pse = 0. We will now show
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that {@ > 0} N Py is connected. In Proposition 1.8.3 in the appendix we show that
PA>0 N {Q > 0} and PA<ON {Q > 0} are path-connected. To conclude, note that for
every (Mo, Qo, Ao = 0) € PA=0, there exist paths from (M, Qo, Ag) to both (Mp, Qq, €) €
PA>0 and (Mo, Qo, —¢) € PA<O for some e(My, Qo) > 0. Together with the fact that
PA=0N{Q > 0} is path-connected, this shows that {Q > 0} N P is path-connected and

similarly that {Q < 0} N Pg is path-connected which proves the claim.

Step 2: P > (M,Q,AN) — B,A,M,Q) is real analytic. To show Step 2 we
first express (1.6.5) in r coordinates. Note that for (M,Q,A) € Ps equation (1.6.5) is

equivalent to

(D) PO () = AW AP @) + BN (2(r), (16.7)

r—

where r € (r_,r4),

2 _

a(r) = -y T (1.6.8)
Ty —Tr— Ty —T—

r(z) = —* 5 e ‘2”* (1.6.9)

and 0 < r_ < ry. Now, note that Pse > (M,Q,A) — r— and Pse > (M,Q,A) — r4
are real analytic. Moreover, we can write A = (r — r_)(r — r4)p(r) for a second order
polynomial p(r), where Pse © A +— p(r) is also real analytic for fixed r. Now, PE(A), PE(A)
and QéA) appearing in (1.6.7) are defined as the unique solutions of

d dR

o <(1 - xQ)p(r(x))dx> + 06+ 1)R —r(z)>’VAR =0 (1.6.10)
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satisfying

PN = (1) + Op(1 + 2) as z — —1, (1.6.11)
ap™

di = 0y(1) as x — —1, (1.6.12)
PN —140,(1—2)asz—1, (1.6.13)
dP(A)
# =0y(1) as x — 1, (1.6.14)
) _ 1
Q) = —§log(1 —2)+O0y(1) as z — 1, (1.6.15)
d ~(A)

@ _ 1 +Og((1 — ) log(1 — z)) as z — 1. (1.6.16)

dr  2(1-2)

Note that (1.6.10) depends real analytically on (M, Q, A) € Pse such that PK(A) (z), JBE(A) (z),
QEA)(:):) are real analytic functions of (M,Q,A) € Pg for x € (—1,1). Hence, Pse >
(M,Q,\) — B({,A, M, Q) is real analytic.

Step 3: B(ly(v),A,M,Q) only vanishes on a set D(v) C Ps of measure

zero. The claim follows from

0B(¢, A\, My, Qo)
oA A=0

£0 (1.6.17)

for some 0 < |Qo| < Mp. Throughout Step 2 we fix 0 < |Qo| < My and avoid writing their
explicit dependence. First note that that for A = 0 we obtain the Legendre functions of
first and second kind, i.e. PZ(O) = 15@(0) = P, and ng) = Q¢ and B(0,¢) = 0. Now, define
coefficients A(¢,A) and B(f, A) to satisfy

P™N = A(e, NP + B(e, )OI, (1.6.18)
and note that (1.6.17) is equivalent (use that B(£,0) = B(¢,0) = 0) to

OB(L, \)

T‘A:O £0. (1.6.19)

By construction, PK(A) solves (1.6.10). Multiplying

d dr;" () ()
P (1 —2H)p(r(z)) di: + L+ 1P —r(z)?vAPY =0 (1.6.20)
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by PE(O) and integrating from z = —1 to x = 1 yields

—1 X

()
0= /1 P <£§ ((1 - xQ)p(T(w))d? ) + 00 +1)PM - r(x)%AP£<A>> da.
(1.6.21)

Using the expansion (1.6.18) and the properties (1.6.11) — (1.6.16) at the end points z = —1
and x = 1 gives after an integration by parts

-1

1 ar”
V= / PE(A) (dd <<1 — 2®)p(r(z)) de + (¢ + 1)p€(0) _ 7”(96)2VAP€(0) dz
x i

+p(r(1)B(¢, A). (1.6.22)

Now, taking 8/\} A—o and integrating by parts once again yields

p(r(l))aA‘AZOB(£7 A)

1 (0) |2

2

1 (0)
-/ i <1x2>aAA0(p<r<x>>>+up;°>fr<mm0] dr. (1623)

Recall that we are in the subextremal range which guarantees that p(r(1)) # 0. We will
now distinguish two cases, v =0 and v # 0.

Part I: v =0. In the case v = 0 we have

2
(1 —2%)p(r(x))d (1.6.24)

L1dp,

p(r(1))9ala=o B(E, A) = Oala=o / =L

-1
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In the case v = 0 we will choose ¢ = 1 such that
p(r(1))0ala=0B(1,A)
1
~onlaco [ (1= aP)plr(@))do

= —A(r
=Oala- 0/ (7’+—7" )de

e (<—8> s

r3 _p3
my = Mo(rh =) + Q3 o) — A 1Y)

8(ry —r2) ’
15(ry —r_)31a=0

Ti—TB
M()(T —Tr_ )+QO(T+—7’ )
g_3 + 4 4 ’
" =) e r)
B §r§_ 4+ — 2M0(r3_ + r5_) + Q%(ri + r4_) ‘

3 (ry —r_)* A=0

-8

—5(3r++3r +4rpr_ )‘

_—8

15

A=0

(6MF — Qf) < —24M;.
The last step is a long but direct computation using that A = r? — 2Myr + Q(Q) — %r‘l and

ri|amo = Mo+ /MZ — Q3, ie. Q2 = rir_|a—o and 2My = r4|a—o + r—|p—0. Moreover,
in view of the inverse function theorem we have

4
i ‘
_ S 1.6.2
8A|A—OT+ 3(T+—T7) A=0 ( 6 5)
and
A
EN ,:—7‘ . 1.6.26
Ala=or 3(ry —r_)la=0 ( )
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0
apr(®

Part II: v # 0. In this case we choose ¢ = 0 such that PE(O) = 1and —£— = 0. Hence,
~ 1
p(r(1))0A|a=0B(¢, A) = 8/\\/\:0/ r(z)?vAds
~1
! ry—7T ry+ro\?
- yaAyAzo/ (— R e ‘) Adz (1.6.27)
1 2 2
L GRS CRE R | I (16.29)
=V 6 T4+ r_ 5 T4+ r_ AD . .0.

This shows that Pse > (M,Q,A) — B(ly(v), M,Q,A) is a non-trivial real analytic
function which zero set D(v) has zero measure. The proof also shows that PA=0 ¢ D(v)
and that there exists an open set U C Py with PA=0 C U and D(v) N U = P40, O

Proposition 1.6.2. Let v € R be fized. Let w # 0, (M,Q,A) € Pse, and £ € Ng. Then,
define completely analogously to Definition 1.2.4 transmission and reflection coefficients
F(w, l,A) and R(w, L, A) as the unique coefficients such that

ugA) = T(w, ¥, A)v%A) + R(w, L, A)véA) (1.6.29)

holds.

Now, assume further that (M,Q,A) € Ps \ D(v), where D(v) is defined in Proposi-
tion 1.6.1. Then, there exists an ly = Lo(v) such that

lim [R(w, )| = lim |F(w, {y)| = +o0. (1.6.30)
w—0 w—0

This shows that ¥ and R have a simple pole at w = 0.

Proof. Fix £y = £y(v) from Proposition 1.6.1 and (M, Q, A) € Ps such that
B(€0>A7 Ma Q) 7& 0.

Now, note that the o.d.e. implies that %Im(ﬂu’) = 0 which shows that 1 = |T|?> — |R|?.

In particular, either |T| and |R| are both bounded or both unbounded as w — 0. Also

note that as w — 0, we have that ugA) — ﬂgA) pointwise.

Now, assume for a contradiction that there exists a sequence w, — 0 such that |Z(w,)|
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and |9(wy,)| remain bounded. Thus,

. A . A
11msup||u§ )HLOO(R) ShmsupHug )||Loo((,oo70))
wn—0 wn—0

+ lim sup Hiﬁng) + TU%A)”LOO((O’OO)) <C (1.6.31)

wn—0

for some constant C' > 0. Now, using that B({y, A, M,Q) # 0 in Proposition 1.6.1, we
can choose a rj € R such that |&§A)(7"S)| > C which contradicts the fact that ugA) — ﬂgA)

pointwise as w, — 0. O

Finally, this allows us to prove Theorem 1.6 which we restate in the following for the

convenience of the reader.

Theorem 1.6. Let v € R be a fized Klein—-Gordon mass parameter. (In particular, we
may choose v = % to cover the conformal invariant case or v = 0 for the wave equation
(1.1.1).) Consider the interior of a subextremal (anti-) de Sitter-Reissner—Nordstrom
black hole with generic parameters (M,Q,A) € Ps \ D(v). (Here, D(v) C Pse is a set
with measure zero defined in Proposition 1.6.1 (see Section 1.6). Moreover D(v) satisfies
PA=0 C D(v) and U N D(v) = PA=O for some open set U C Pye.)

Then, there ezists a sequence (¥, )nen of purely ingoing and compactly supported data
on Ha with

”\IJTLHE£ =1 foralln (1.3.41)
such that the solution v, to the Klein—Gordon equation with mass u = vA
Ogrrgath —up =0 (1.3.42)
arising from W, has unbounded T energy at the Cauchy horizon
ln Ten ||gg‘H — 00 as n — 00. (1.3.43)

Proof. Fix ¢y = {yo(v) from Proposition 1.6.2 such that the reflection and transmission
coefficients blow up as w — 0. Define a sequence of compactly supported functions ¥,, on
Ha by Un(v,0,¢0) = fo(v)Yoe(0, ), such that f, € CZ°(R),

/w2|fn(w)|2dw =1 and / W2 fr(w)]?dw > e/ W fn(w)|?dw = € (1.6.32)
R - R

S|=
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for some ¢ > 0. Imposing vanishing data on Hp, this gives rise to a unique smooth
solutions 1, up to but excluding the Cauchy horizon. Arguments completely analogous
to those given in the proof of Proposition 1.5.1 show that
2 i 2 2 2\( # 2
I ten Iz, = 55 [ (193, OF + 15, 0P fu(w) s, (1.6:34)

Thus,

2 ~
[4n Tew 20 > T;/ WP (R(w, OF + |T(w, 01| fulw) Pdw
CH re

>etinf (B2 4 |3). (1.6.35)
T we[_ll

n’n

Since |R],[T] — coasw — 0, also inf .1 1;[R| = oo and inf ;1 1)[T] — coasn — oo.
2n’n n

2n’

Thus, as n — oo, we have

1 Ten llgz, — oo (1.6.36)

1.7 Proof of Theorem 1.7: Breakdown of 7' energy scatter-

ing for the Klein—Gordon equation

In this last section we will prove that for a generic set of Klein—Gordon masses, there does
not exist a T scattering theory on the interior of Reissner—Nordstrém for the Klein—Gordon

equation. For the convenience of the reader, we have restated Theorem 1.7.

Theorem 1.7. Consider the interior of a subextremal Reissner—Nordstréom black hole.
There exists a discrete set D(M,Q) C R with 0 € D such that the following holds true.
For any p € R\ D there emists a sequence (V,)nen of purely ingoing and compactly

6Such a function can be constructed by setting fn(v) := ﬁf(%) for smooth f: R — [0,1] with
supp(f) C [-2,2], f Ij=1,1j= 1 and some normalization constant ¢ > 0. Indeed,

1

[ Fhera = [ : WAiaf o) dw = [ @R =e> 0 (1.6.33)

—1

kS
n

in view of f(0) = J f(w)dv > 0.
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supported data on H, with
||\I/nH5£ =1 foralln (1.3.44)

such that the solution vy, to the Klein—Gordon equation with mass

DQ]\/I,Q,Aw —up =0 (1.3.45)
arising from ¥, has unbounded T energy at the Cauchy horizon

ln Ten ||€gH — 00 as N — 00. (1.3.46)

Proof. The proof of this statement is easier than and similar to the proof of Theorem 1.6
and the proofs of the propositions leading up to it. More precisely, similar to Section 1.6
we define asymptotic states ﬂg“), 6%“) and 6&“) and define A(¢, u) and B(¢, ) by ag“) =
A(l, u)f)&“) + B(¢, ,u)f)éu). As in Section 1.6, R 5 p+— B({, u) is real analytic and from the

o.d.e. —u” +Vy,,u = 0 we obtain

0Bl 9V,
9Blw| / Thel @24, (1.7.1)
where
hh' 0L +1) dh e+ 1)
‘/&M = h 7 + 7”2 — [L = h 7 + 7‘2 — ,u (172)
and
2M Q2
h=1——+ = 1.7.
" + 2 (1.7.3)
as in (1.2.5). Now, note that
Ve =—h>0 (1.7.4)
ou =0

which is manifestly positive from which we can infer, by analyticity, that B(¢, u) # 0 for
all p € R\ D, where D = D(M,Q) C R is a discrete set. This proves the analogous
statements to Proposition 1.6.1 and Proposition 1.6.2. The claim of Theorem 1.7 follows

now as in the proof of Theorem 1.6. O
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1.8 Appendix
Energy estimates in the interior.

Lemma 1.8.1. Let ¥ € CX(H) and denote by v its evolution in the interior. Then,
the non-degenerate N energy of ¥ decays exponentially towards iy on every {r = ro}

hypersurface for rreq < ro < ry. Here, rpeq only depends on the black hole parameters.

Proof. This argument is very similar to [51, Proposition 4.2]. We only prove it for the
right component of i+ and clearly only have to look at a neighborhood of iT. First, recall
the existence of the celebrated redshift vector field N satisfying K™V [¢] > bJ/{LV [¢]nty for
T4 > T > Tred, Where n, is the normal to a v = const. hypersurface.7

We set

E(v) = JNntdvol, 1.8.1
w v
V=00,Tred ST<T 4

and apply the energy identity with the redshift vector field N in the region R = {r €
[Tred, T+], v € [vo, v1]}, where v is large enough such that vy > sup supp(¥). This gives in

view of the coarea formula that

E(v1) — E(vo) + B/Ul E(v)dv <0 (1.8.2)

vo

for every v1 > vy > supsupp(¥). Inequality (1.8.2), smoothness of v — FE(v) and a further
application of the energy identity in the region {v > vo, 74 > r > 1,4} finally shows

/ J;]Lvnffdvol < Cexp(—buwy), (1.8.3)
V2V0,T=Tred
where C is a constant depending on W. This concludes the proof. O

Remark 1.8.1. By cutting off smoothly we can clearly approzimate ¥ on a {r = const.}

hypersurface with compactly supported functions for any fived r € (rreq, 7).

Lemma 1.8.2. Let o be a smooth solution of the wave equation on MRgn such that its

restriction to the event horizon has compact support and let ro € (Tyeq,7+). Then,

T
/ J, n*dvol S / Jlivn“dvol. (1.8.4)
H {r=ro}

"The normal is fixed by making a choice of a volume form on the null hypersurface
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Proof. We shall use the vector field S = r=20,,. By potentially making ,.q larger, we
can assure that the bulk term K*° := V“J;f of the vector field S has a fixed negative sign
in ro € (rred, 7+). This current is analogous to the current introduced in [51, par. 4.1.3.2].
Moreover, applying the energy identity in the region R = {ro < r < r;} and noting that
TNt rmrg ~ T[] —ry as well as JT[y]n# |y ~ T[]t yields

/ N [],ntdvol + / K%dvol > / J ! ntdvol. (1.8.5)
{r=ro} R H

This concludes the proof. ]

Analytic properties of the potential and the scattering coefficients. In the
following we would like to summarize analytic properties of the potential V;(r) and u;,uz,
v1 and vy as functions of w. This is similar to parts of [14].

First, however we will show the the exponential decay of the potential V; as r, — Fo0.

Lemma 1.8.3. We have

|A(r)] < €2+ forr, <0 (1.8.6)
and
IA(r)| < €= forr, > 0. (1.8.7)
Moreover, we have
Velr) | [VE (r)l, IV ()] S (L4 €06+ 1))e* 4™ for 1, <0 (1.8.8)
and
Velra) [ IV (rls Ve (r)] S (L4 £(€+ 1)) for 7, > 0. (1.8.9)
Proof. Note that
k_
ry —1r=C(r—r_)F e 2F4re2har (1.8.10)

for a constant C' only depending on the black hole parameters. Thus, for r, < 0, we have

ry —r(ry) = fry)e2hr (1.8.11)
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for a smooth function f(r.), which is uniformly bounded below and above for r, < 0.
Moreover, we have f'(r.), f”(r«) — 0 exponentially fast as r, — —oo. The estimates
(1.8.8) and (1.8.9) are now straightforward applications of the chain rule and the fact that

%:%andA:(r—r,)(r—rg. O

Proposition 1.8.1. The potential Vy can be expanded as

Ve(re) = > Crne®™ ™, (1.8.12)
meN
where |Cp| Sp e ™ for a o > 0.
Proof. Define the variable
Ki
2(r) i= 2547 = C2RAT (ry — ) (r — 1 )", (1.8.13)

where C' > 0 is such that z(#) = 1. From the inverse function theorem it follows that
Vi(z) = Vi(r(z)) can be analytically continued in a neighborhood of z = 0 and thus, there

exists a Taylor expansion around z = 0 such that

Ve(z2) = Cpnz™ (1.8.14)
n=1
Hence,
Vi(r) =) Cpe®™mr, (1.8.15)
n=1
where
o _ i _dvi|  dr
Y7 2=0 -~ dr — dz|,_,
ro—r_—
= +7~4+ (r3(ry —3r_) +£(£+1)) . (1.8.16)

Note that the coefficients C, decay exponentially fast in m. To see this, remark that we

can re-define 7, := r, — p for some constant p > 0. Similarly to (1.8.15), we expand V; as
m ~
V, = Z D, e+ (1.8.17)
m=1

which shows C),, = D,,e2%+™°, By analyticity we have |D,,| < \C’]m“ for some C > 0
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and thus,
Crm| See”™ (1.8.18)

for a fixed o > 0. O

Proposition 1.8.2. Let £ € N be fixed. Then,

sup  |[R(w, )] + [F(w, £)] e 1. (1.8.19)
{| Re(w)[>1}

Moreover, T(w,f) has a pole of order one at w =ik given that ((€ + 1) # r2 (ry — 3r_).

Proof. Recall, that u; is the unique solution to

Tx

up(ry) = e +/ MV(y)ul(y)dy. (1.8.20)

oo w

In [14] it is shown that the Volterra iteration has the form

up (ry) = eirs (1 +5 (m)) , (1.8.21)
n=1

ur) = > ConcmnsConnromns - Congliny iy €577 (1.8.22)
mn...m1EN

mp>-->m1

1

with d,,, = —(4dmki(mr4 + iw))~". Note that in view of the bound in (1.8.18) one can

check that the Volterra iteration for u; converges on w € C\{imr : m € N} and moreover,

sup  |ui(re =0)] Se 1, (1.8.23)
{IRe(w)[>1}

sup  |u)(re = 0)| <y |w). (1.8.24)
{IRe(w)|>1}

Analogously, we have that v; is analytic on w € C\ {imr_ : m € N} and vy is analytic on
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w € C\ {—imk_ : m € N}. Moreover,

sup [ui(re = 0)| S 1, (1.8.25)
{IRe(w)|>1}

sup Vi (re = 0)] Se |wl- (1.8.26)
{IRe(w)|>1}

and

sup |vz(rs = 0)| Se 1, (1.8.27)
{| Re(w)[>1}

sup  [vh(r = 0)] K¢ |wl. (1.8.28)
{IRe(w)|>1}

This finally shows (1.8.19) in view of the definition of the transmission and reflection

coefficients ¥ and R using Wronskians, cf. Definition 1.2.4.

Now, we prove that T(w, ¢) has a pole of order one at w = ik assuming that £({+1) #
ri(hr — 3r_). First note that

ugl)(r*) = Z C’m1dm162H-~_mIT* (1.8.29)

m1EN

has a pole of order one at w = ix4 since C7 # 0, see (1.8.16). Since for n # 1 there is
no term of the form €2*™* in (1.8.22) as m,, > n, the pole at w = ixy cannot be canceled
by the other terms and must occur in u;. Moreover, this pole of u; at w = ik4 is not of
higher order that one since d; does not occur at higher powers than one in the Volterra

iteration. This implies that T(w, ¢) has a pole of order one at w = ir4. ]

Connectedness of the subextremal parameter range.

Proposition 1.8.3. Let the subextremal parameter space PS%>0 and Pé}fo be defined as in
(1.3.39) and (1.3.40), respectively. Then, PA>°N{Q > 0}, PA<n{Q > 0}, PA>°n{Q < 0}
and PA<0 N {Q < 0} are path-connected.

Proof. The claim follows for PA>% N {Q > 0} and P2~ N {Q > 0} from the following
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continuous parametrizations

P70 1{Q > 0} ={(M,Q,A) ER xR xR:
A=3(0t +r2 vl b vrer— +ryro) T

6M = A(T_A,_ + 7"_)(7’+ + T’C)(T_ + Tc)a

1

Q= (g(m +r_+ Tc)(rr+rc)) ’

forO<r_ <ry < rc} (1.8.30)

and
3 -1
PAON{Q >0} = {(M,Q,A) €RXRxR: A:3<4(7‘+—|—7‘_)2—r+7‘_—§i> ,

6M = —A <1(7“++7"—)2+fi—7“+7“—> (ry+7-),

A 3
Q= (—3r+r_ (i(m +r_)?+ &)) ;

for 0 <r_ <ry and § > (i(T+ +r_)?— r+r_>

D=

} (1.8.31)

in view of the fact that {0 < r_ <ry <r.fand {0 <r_ <7y, & > (%(r++r,)2—r+r,)%}
are path-connected as subsets of R%. In the following we will show (1.8.30) and (1.8.31).
First, in the case A > 0, note that (1.8.30) follows from comparing coefficients of

_Tg(r2 —2Mr+Q? — %ATA) =(r—r_)(r—ry)(r—r)(r—ro)

for 1o < 0 < r_ <ry < rc Indeed, we obtain 19 = —(r— + 4 + r.) and (1.8.30) can be
deduced.
In the case A < 0, note that =2(r®> — 2Mr + Q? — $Ar?) only has two real roots

0 < r— < ry such that we compare coefficients of

07— 2Mr £ @ = A = (=)~ )~ )~ )

N

with ¢ = & +i&. We obtain 26, = —(rp +r_) and & > (3(rp +r_)% —ryr_)

guarantee A < 0. Now, a direct computation shows (1.8.31).

to

Completely analogously we can show path-connectedness for P20 N {Q < 0} and

PA<ON{Q < 0}. O
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Chapter 2

Uniform boundedness and
continuity at the Cauchy horizon

for linear waves on
Reissner—Nordstrom—AdS black

holes

2.1 Introduction

We initiate the study of (massive) linear waves satisfying on the interior of asymptotically
Anti-de Sitter (AdS) black holes (M, g). We will consider Reissner—Nordstrom—AdS (RN—
AdS) black holes [13] which can be viewed as the simplest model in the context of the

question of stability of the Cauchy horizon. We consider the massive linear wave equation
o
Uornaas® + ﬁw =0 (2.1.1)

for AdS radius [? := —% on a fixed subextremal Reissner—-Nordstréom—AdS black hole with
mass parameter M > 0 and charge parameter 0 < |Q| < M. Moreover, we assume the so-
called Breitenlohner-Freedman bound [12] for the Klein-Gordon mass parameter o < 7,
which includes the conformally invariant case for & = 2. This bound is required to obtain
well-posedness |73, 144, 142] of (2.1.1).

Recall from the discussion in the introduction of the thesis that solutions with fixed

angular momentum ¢ actually decay exponentially in the exterior region. For such solutions
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with fixed £, uniform boundedness with upper bound C' = C} in the interior and continuity
at the Cauchy horizon can be shown using the methods involving the vector field S =
|uP,, + |v|PD,. Note however that this does not imply that a general solution remains
bounded in the interior as the constant C, is not summable: ZEL:() Cy ~ el - 400 as
L — oo. Note in particular that, as a result of this, one cannot study the new non-
trivial aspect of this problem restricted to spherical symmetry. (Nevertheless, see [8] for

a discussion of the Ori model for Reissner—Nordstrém—AdS black holes.)

Main theorem: Uniform boundedness and continuity at the Cauchy hori-
zon. We now state a rough version of our main result. See Theorem 2.3 for the precise

statement.

Theorem 2.1 (Rough version of Theorem 2.3). Let ¢ be a solution to (2.1.1) arising from
smooth and compactly supported initial data (1o, 1) posed on a spacelike hypersurface ¥

as depicted in Fig. 1. Then, ¢ remains uniformly bounded in the black hole interior
v <C,

where C is constant depending on the parameters M,Q,l, o, the choice of Yo and on
some higher order Sobolev norm of the initial data (1o,1). Moreover, 1 can be extended

continuously across the Cauchy horizon.

As we have explained in the introduction of the thesis, the main difficulty compared to
the asymptotically flat case, where the analysis was carried out entirely in physical space
and requires inverse polynomial decay in the exterior [51], is the slow decay of ¢ along the
event horizon. Our strategy is to decompose the solution v in a low and high frequency
part ¢ = 1, + 1y with respect to the Killing field T' = % and treat each term separately.

For the low frequency part v,, we will show a superpolynomial decay rate in the
exterior, see already Proposition 2.4.7. For this part we also use integrated energy decay
estimates for bounded angular momenta ¢ established in [75]. This superpolynomial decay
in the exterior is sufficient so as to follow the method of [51] with vector fields of the form
like S == |u[P9,+|v[Pd, to show boundedness and continuity at the Cauchy horizon, up to
the additional difficulty caused by the fact that we allow a possibly negative Klein—Gordon
mass parameter. The violation of the dominant energy condition due to the presence of a
negative mass term can be overcome with twisted derivatives [12, 144, 78|, which provide
a useful framework to replace Hardy inequalities for the lower order terms in this context.

For the high frequency part 1y, which is exposed to stable trapping and does in general

only decay at a sharp logarithmic rate in the exterior, the key ingredient is the scattering
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theory developed in [82] (see discussion above). More specifically, the uniform bounds
for the transmission and reflections coefficients T and R for |w| > wp proved in [82] turn
out to be useful for the high frequency part ¢;. These bounds allow us to control || at
the Cauchy horizon by the T-energy norm on the event horizon commuted with angular
derivatives. The T-energy flux on the event horizon is in turn bounded from initial data by
a simple application of the T-energy identity in the exterior. In particular, no quantitative
decay along the event horizon is used for the high frequency part 1y. This is what allows

us to overcome the problem of slow logarithmic decay.

Owutline. This chapter is organized as follows. In Section 2.2 we set up the spacetime
and summarize relevant previous work. In Section 2.3 we state and prove our main result
Theorem 2.3. Parts of the proof require a separate analysis which are treated in Section 2.4
and Section 2.5.

2.2 Preliminaries

We start by setting up the Reissner—Nordstrom—AdS spacetime (see [13]) and defining

relevant norms and energies. We will also introduce useful coordinate systems.

2.2.1 The Reissner—Nordstrom—AdS black hole

We are ultimately interested in the behavior of solutions to (2.1.1) to the future of a
spacelike hypersurface ¥ as depicted in Fig. 1. For technical reasons (Fourier space
decompositions are non-local operations) we will however construct also parts to the past

of Xg. In the following will define the spacetime pictured in Fig. 2.1.

2.2.1.1 Construction of the spacetime (Mgnads, gRNAAS)

First, for black hole parameters M > 0,Q # 0, 1% # 0 define the polynomial

4
r
Aprqu(r) :==7r* —2Mr + 17 + Q? (2.2.1)
and define the non-degenerate set
P = {(M,Q,1) € (0,0) x R x (0, 50):
Anr,,(r) has two postive roots satisfying 0 < r_ < ri}. (2.2.2)
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Figure 2.1: Penrose diagram of the constructed spacetime (MRgNadS, GRNAdS)

Note that P defines black hole parameters in the subextremal range. From now on, we

will consider fized parameters M, Q, [, o, where

M,Q,l GPanda<g. 2.2.3
4

Note that M is the mass parameter, ) the charge parameter of the black hole and [ = H
is the Anti-de Sitter radius. For this specific choice of parameters we will also write
A(r) == Ap,,(r) and denote by 0 < r_ < ry the positive roots of A.

Now, let the two exterior regions R4, Rp and the black hole region B be smooth four
dimensional manifolds diffeomorphic to R? x S2. On R4, Rz and B we introduce global'

coordinate charts:

(TRAatRAae'RAvQORA) € (T+,OO) x R x 82,
(TRB,tRB,QRB,QORB) S (7”+,OO) X R x 82, (2.2.4)

(18,185,058, 8) € (r_,ry) x R x S2.

If it is clear from the context which coordinates are being used, we will omit their sub-

scripts throughout the chapter. Again, on the manifolds R4, Rp and B we define—using

1Up to the known degeneracy of spherical coordinates at the poles of the sphere.
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the coordinates (t, 7,0, ) on each of the patches—the Reissner—Nordstrom—Anti-de Sitter
metric
A(r) r?

9=-"7 dt®dt+A(r)

dr @ dr 4 r*(df ® df + sin? fdp ® dp). (2.2.5)

On each of R4, Rp and B, we define time orientations using the vector field atRA on Ry,
—8tRB on Rp and —0,, on B.
We will also define the tortoise coordinate r, by
dr, 2

— =% (2.2.6)

in R4, Rp and B independently. This defines r, up to an unimportant constant. Then,
in each of the regions R4, Rp and B, we define null coordinates by

v=ry+tand u=r,—1, (2.2.7)

where for example for the v coordinate on R 4, we will use the notation vz, and analo-
gously for the other regions. Note that throughout the chapter we will use the notation ’

for derivatives 8% .

Patching the regions R4, Rp and B together. Now, we patch the regions R4, Rp
and B together. We begin by attaching the future (resp. past) event horizon H} (resp.
) to R4 by formally? setting

H = {ur, = —oo} and H, := {vg, = —oo}. (2.2.8)
Similarly, we attach H}, := {vg, = —oc} and Hp = {ug, = —oc} to Rp. In the
(up,vp) coordinates associated to B we make the identifications H} = {ug = —oo} and
H}, = {vp = —oo}. Then, we attach the Cauchy horizon CH4 := {vg = +o0o} and

CHp :={up = +oo} to B.
Finally, we attach the past (resp. future) bifurcation sphere B_ (resp. B,) to B as

B_ :={up = —oo0,vg = —oo} and By = {up = +00,v5 = +00}. (2.2.9)

We shall also set CH := CH4UCHp UDB,. Note that all horizons HX, Hy, ’HE, Hy, CHa,
and CHp are diffeomorphic to R x S? and the past (future) bifurcation sphere B_ (B, ) is

2This can be made rigorous using ingoing Eddington-Finkelstein coordinates (r,v, ¢, 0) adapted to the
event horizon. Since this is well-known, we avoid introducing yet another coordinate system.
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diffeomorphic to S2. Moreover, we identify B_ with {ug, = —oco,vg, = —oco} and also
with {ur, = —00,vgr, = —oo}. The resulting manifold will be called Mrnags. Note that,
g extends to a smooth Lorentzian metric on Mgnaqs which we will call grnags and in
particular, (MRNAdS, gRNAdS) 1S & time oriented smooth Lorentzian manifold with corners.
We illustrate the constructed spacetime as a Penrose diagram in Fig. 2.1. Note that the
vector field 0y defined on R 4, Rp and B, respectively, extends to a smooth Killing field on
MRnNads, which we will from now on call T'. Moreover, the standard angular momentum

operators W; for i = 1,2, 3, the generators of s0(3) defined as
Wi = sin pdy + cot 0 cos 0, Wa = — cos p0p + cot 8 sin pd,, W3 = —0,, (2.2.10)

are Killing vector fields. It shall be noted that W; for ¢ = 1,2,3 are spacelike every-
where, whereas T is future-directed timelike on R4, spacelike on B and past-directed
timelike on Rp. Moreover, T is future-directed null on H,, HI,CH B, past-directed null
on H;,HE,CH A and vanishes on B_,B,. Finally, note that one can attach conformal
timelike boundaries Z4 and Zp corresponding to {rg, = +oo} and {rg, = +oo}, respec-

tively.3

2.2.1.2 Initial hypersurface X,

We will impose initial data on a spacelike hypersurface >y to be made precise in the fol-
lowing. Note that we can choose for convenience that the spacelike hypersurface Yg lies
to the future of the past bifurcation sphere B_. Indeed, by general theory (an energy
estimate in a compact region) this can be assumed without loss of generality [27]. More
precisely, let 3o be a 3 dimensional connected, complete and spherically symmetric space-
like hypersurface extending to the conformal infinity Z = Z4 UZp. Moreover, assume that
B_ C J (X0)\ 2o.

A possible choice of ¥y is denoted in Fig. 2.2. We are ultimately interested in the
shaded region to the future of ¥y. For the rest of the chapter, we will consider such a X
to be fized.

2.2.2 Conventions

With a < b for a € R and b > 0 we mean that there exists a constant C(M, Q, 1, o, X)
with a < Cb. If C(M, Q,1, a, ¥p) depends on an additional parameter, say ¢, we will write
a <¢b. We also use a ~ b for some a,b > 0 if there exist constants C1(M, Q, 1, a, 3p) > 0

3Note that Z4 and Zp are not contained in Mgnads.
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Figure 2.2: The shaded region of interest lies in the future of 3.

Co(M,Q,l,a, %) > 0 with Cra < b < Cea. We shall also make use of the standard Landau
notation O and o [119]. To be more precise, let X be a point set (e.g. X = R,[a,b],C)
with limit point ¢. As z — cin X, f(x) = O(g(z)) means ‘Ii;ggI' < C(M,Q,l,a) holds in
a fixed neighborhood of ¢. We write Oy(g(z)) if the constant C' depends on an additional

parameter £. For the standard volume form in spherical coordinates (¢, ) on the sphere

S? we will use the notation dogz := sin §dedd. Finally, let the Japanese symbol be defined

as (x) := 1+ a2 for x € R.

2.2.3 Norms and Energies

We are interested in solutions to the massive wave equation (2.1.1) associated to the
metric grnads on a subextremal Reissner—Nordstrém AdS black hole with black hole
parameters M, @, as in (2.2.3). In view of the timelike boundaries 74 and Zp, we need to
specify boundary conditions on Z4 and Zp in addition to prescribing data on the spacelike
hypersurface Yo, cf. Fig. 2.2. We will use Dirichlet (reflecting) boundary conditions which
can be viewed as the most natural conditions in the context of stability of the Cauchy
horizon. In principle, however, in view of [144], we could also use more general boundary
conditions like Neumann or Robin conditions. We will now introduce an appropriate
foliation and norms in order to state the well-posedness statement in Section 2.2.4.

We will foliate R4 URpU ’HX U ’Hg U B with spacelike hypersurfaces. To do so, we let
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T be a smooth future-directed causal vector field on R4 URg U ’HX U HE U B with the
properties that

T onRAUHJAf
-T on RBUHE

T:

and that 7T is a future-directed timelike vector field on B. Now, define the leaves
S = @7 (t*)[So), (2.2.11)

where ®7 is the flow generated by 7 and t* € R is its affine parameter. We have illustrated

some leaves in Fig. 2.3.

776

Figure 2.3: Illustration of the foliation with leaves ¥, defined in (2.2.11).

2.2.3.1 Further coordinates in the exterior region

In the region R4 U ’HX, we moreover define a global (up to the well-known degeneracy on
S?) coordinate system (t*,7,¢,6), where t* is the affine parameter of the flow generated
by 7. Note that on R4 U ’Hj we have O« = T such that t*(tg,r) — t*(¢t1,7) = ta — t; and

t(t5,r) — t(ty,r) = t5 — t}. Similarly, we can define such a coordinate system on Rp.
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2.2.3.2 Norms on hypersurfaces >«

By construction 3+ intersects R4, Rp and B. We will now define norms on Y;« which

are adaptations of the norms introduced in [73]. We define

2 _ 2 2
HwHHII%IfIAdS(E ”w”Hk Zt*ﬂB + H¢H k )8 (E ﬁ(RAUH+)) + "17/)" Et ﬂ(RBUH+))
(2.2.12)

and

CHIQ{NAdS = 02(Rt*§HE{1\?ids(2t*)) N Cl(Rt*Q Hé’f\)IAds(zt*)) N CO(Rt* RNAdS(Et*))
(2.2.13)

where each of the terms appearing in (2.2.12) will be defined in the following.

Norms in the interior region. We begin by defining the first term in (2.2.12). We

define || - H?{k(zi* ) 8 the standard Sobolev norm of order k on the Riemannian manifold

(X¢= N B, grNAdS I5,nB)-

Norms in the exterior region. Due to the symmetry of the regions R 4 and Rp, we
will only define the norms on R 4 in the following. The norms on Rp are be constructed

analogously. We use the coordinates (t*, 7,0, ) in R4 to define the norms

s 2.2 :
Wl = [, o, 0 sin a0t
B s (.2 2 2\ 21, o
HI/JHH“ (S NRA) WHHO o (S NR4) +/Et*ﬂRAT ("” 0r )" + Ww‘ )T dr sin 0dody
"¢HH2S *O'RA) H¢HH1 S(Et*mRA)

+ / r* (r|0201? + P2V 0,02 + [V Y 4[?)r2dr sin 0d0dg
Y+ NRa

and similarly for higher order norms. Here and in the following we denote with ¥ and ¢ the
induced covariant derivative and the induced metric, respectively, on spheres of constant
(t*,7). We will also use the notation |Y|? := ¢(V¢, V). Now having defined (2.2.12),

we will define energies in the following.
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2.2.3.3 Energies on hypersurfaces >«

We set

Ei[)(t*) := B [)(t*) + B [W](t) + EF [](t) (2.2.14)

for i = 1,2, where all terms in (2.2.14) will be defined in the following.

Energies in the interior region. In the interior region we are not concerned with

r-weights and define the energies as

E{g[w](t*) = Hd’”?{l(zt*mg) + Hat*wH%?(Et*mB)’ (2.2.15)
ESI(E) = 1912 m,. ) + 100l (s, ) + 107400 T2 5, ) (2.2.16)

Energies in the exterior region. To define the energies in the exterior region, it is

convenient to start with defining the following energy densities
1
erfv)] = 5100 YI* + 210 + VYL + [

3
e2y)] == e1[y)] + e1[0p- 9] + Z e [Wih] + r10:0,9* + r* |V Or0 | + |V Y|

i=1

and their integrals as

/ ei[yp]r2dr sin fdOdy (2.2.17)
P3P ﬂ(RAUHX)

for : = 1,2. Note that we will write EZB for the analogous energy restricted to R p.

Also remark the following relation between the norms and energies defined above

+ 11817

[ ] ||w||H10 (S+NRA) H0 22*(773;;)’

A AT 2
E2 [1/}] ~ ZHW%T/JHHX’(?S(Zt*ﬁRA) + Hat*l/}HHkgs(Et*mRA)
7
+H7/)HH20 (SR A +||8 wHHO 2 Y NRA)’

2.2.4 Well-posedness and mixed boundary value Cauchy problem

Having set up the spacetime and the norms, we will restate the well-posedness result for

(2.1.1) as a mixed boundary value-Cauchy problem. For asymptotically AdS spacetimes,
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well-posedness was first proved in [73].

Theorem 2.1 ([73|). Let the Reissner—Nordstrom—AdS parameters (M, Q,1) and the Klein—
Gordon mass o < 9 be as in (2.2.3). Let initial data (vo,91) € C(So) x C°(Xg) be
prescribed on the spacelike hypersurface Yo and impose Dirichlet (reflecting) boundary
conditions on T =T, U ZIpR.

Then, there ezists a smooth solution 1p € C*°(Mpgnads \ CH) of (2.1.1) such that
Y Isno= Yo, TY [s,= 1. The solution 1) is also unique in the class C(Rt*;H]}d(\)jAdS(Et*))m
CH(Rp; HO72(24)).

Remark 2.2.1. The well-posedness statement in Theorem 2.1 holds true for a more gen-
eral class of initial data, called a H/ids wnatial data triplet which give rise to a solution in
CHZxags: see [15].

2.2.5 Energy identities and estimates

In order to prove energy estimates, it turns out to be useful to introduce two types of
energy-momentum tensors. Besides the standard energy-momentum tensor associated
to (2.1.1), a suitable twisted energy-momentum tensor plays an important role in our
estimates. Indeed, due to the negative mass term, the standard energy-momentum tensor
does not satisfy the dominant energy condition. However, the dominant energy condition
can be restored for the twisted energy-momentum tensor introduced in [12, 144|. In
particular, these twisted energies will be used in the interior region, whereas in the exterior
region we will work with the standard energy-momentum tensor. We will first review the

energy estimates in the exterior.

2.2.5.1 Energy estimates in the exterior region

Energy-momentum tensor. For a smooth function ¢ we define

_ 1 - a
T[] = Re(0,00,0) = 59 (92600 - ﬁ|¢|2) . (2.2.18)
For a smooth vector field X we also define

JX[g] := T[g)(X, ") and K¥[g] := ¥, T [g], (2.2.19)
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X

where X7 := Lxg is the deformation tensor. The term KX is often referred to as the

“bulk term” and satisfies
KX[¢] = V' X[g] (2.2.20)

if ¢ is a solution to (2.1.1). Note that if X is Killing, then KX vanishes. More generally,
integrating (2.2.20) one obtains an energy identity relating boundary and bulk terms.
For more details about the energy-momentum tensor and its usage for standard energy

estimates we refer to [27].

Boundedness and decay in the exterior region. In the exterior regions R4 and
R p we have energy decay and boundedness results which have been proved in [73, 72, 75,
77)*. To state them we make the following choice of volume forms and normals on the event
horizon. We set dVOlHX = r2dt*doge and Mot = T and similarly for ’Hj_,g}. Moreover, we
denote by dvoly,, ~ rdrsinfdfde the induced volume form on the spacelike hypersurface
Y+ MR 4 and by n’ét its future-directed unit normal. We summarize these energy identities

and estimates in the following.

Proposition 2.2.1 (|73]). A solution ¢ to (2.1.1) arising from smooth and compactly

supported data on g as in Theorem 2.1 satisfies
JI[pnk dvols —i—/ JE[pIn# L dvol,, ¢ :/ JE[nk dvols, .,
/EtErTR‘A g i3 E H(47,t3) g i Ha pxMRa g ) g
(2.2.21)

where t; < t5 and HA(t5,t5) == Hi N {t; <t* <t5}. The analogous energy identity holds
in Rp. In particular, (2.2.21) shows that the T-energy fluz through T = T, UZp vanishes.

Moreover, the T-energy flux through the event horizon is bounded by initial data

/H JTW]”ZXdVOIHj +/7-[ JTW}”ZLEdVOIHg < Eq[](0). (2.2.22)

e el
A B
Finally, note that

_ A
Lt ~ [ paeul + Sap
Et*ﬂRA Et*mRA

+ |V |* + |]?]r?dr sin 0dOd . (2.2.23)

4Strictly speaking, in [75] this has been only explicitly proved for Kerr-AdS which includes
Schwarzschild—AdS. However, the same proof as for Schwarzschild-AdS works completely analogously for
Reissner—Nordstrom—AdS and we shall not repeat these arguments here.
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Remark that (2.2.23) follows from a Hardy inequality (see [72, Equation (50)]) which is

used to absorb the (possibly) negative contribution from the Klein—Gordon mass term.

Theorem 2.2 (|77, Theorem 1.1], [75, Section 12|). A solution ¢ to (2.1.1) arising from

smooth and compactly supported data on Xg as in Theorem 2.1 satisfies

/ e1[1]r? sin drdfdy < / e1[1]r? sin drdfdep, (2.2.24)

S NR A LoNRa

/ ea[1h]r? sin drdfdy < / ea[1h]r? sin drdfdep, (2.2.25)
S NR A LoNRa

and similarly for higher order norms. Moreover, we have the energy decay statements

/ e1[yp]r? sin Bdrdfdy < ea[1p]r? sin fdrdfdy (2.2.26)
Y+ NRa

1 /

sup |9 < S /Z - (ea[t)] + e2[Op+p])r? sin Odrdfdep (2.2.27)

SenRa o [log(2+1%)]?
for t* > 0 in the exterior region R4 and similarly in Rg. Moreover, just like for
Schwarzschild-AdS (cf. [75]), fixed angular frequencies decay exponentially. More pre-
cisely, let Yo, denote the spherical harmonics and let ¥ be a solution to (2.1.1) aris-

ing from smooth and compactly supported data on Xg. If there exists an L € N with
(¥, Yie) r2(s2y = 0 for £ > L, then

/ e1[1]r? sin 8drdfdy < exp (—e*C(M’Q’l’O‘)Lt*> / e1[1]r? sin drdfdep,
TxNR A 2oNRa

(2.2.28)

fort* >0 and a constant C(M,Q,l,a) > 0 only depending on the parameters M, Q,1, .

Remark 2.2.2. Note that (2.2.28) also implies pointwise exponential decay for ¢ (assum-
ing (Y, Yem) r2(s2y = 0 for £ > L) and all higher derivatives of 1 using standard techniques
like commuting with T and W;, elliptic estimates as well as applying a Sobolev embed-
ding. Moreover, the previous estimates above also hold true for a the more general class
of solutions CHExaas- See [13] or [75, Theorem 4.1] for more details.

Remark 2.2.3. The previous decay estimates have only been stated to the future of 3¢ in
the region R 4, nevertheless, they also hold in Rp. Moreover, they also hold true to the

past of Xg for an appropriate foliation for which the leaves intersect Hy and Hy, and are
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transported along the flow of =T for Ry UM, and along the flow of T' for Rp UHy.

We now turn to the energy estimates in the interior region B.

2.2.5.2 Energy estimates in the interior region

Twisted energy-momentum tensor. We begin by defining twisted derivatives.

Definition 2.2.1 (Twisted derivative). For a smooth and nowhere vanishing function f

we define the twisted derivative

V= fV, <f> (2.2.29)
and its formal adjoint
Vi = —;Vu(f-). (2.2.30)

We shall refer to f as the twisting function.

Remark 2.2.4. Note that we can rewrite the Klein—Gordon equation (2.1.1) in terms of

the twisted derivatives as

=V Vi =V =0, (2.2.31)
where the potential V is given by
B a Ugf
V= <l2 + ! ) (2.2.32)

Now, we also associate a twisted energy-momentum tensor to the twisted derivatives.

Definition 2.2.2 (Twisted energy-momentum tensor). Let f be smooth and nowhere van-
ishing and V as defined in Definition 2.2.1. We define the twisted energy-momentum
tensor associated to (2.1.1) and f as

~ = ~ 1 —_  ~
T[] = Re (VuoVi0) = 50 (Vod V76 + VIgI), (2:2.33)
where V is as in (2.2.32) and ¢ is any smooth function.
We will now compute the divergence of the twisted energy-momentum tensor.
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Proposition 2.2.2 ([78, Proposition 3|). Let ¢ be a smooth function and f be a smooth

nowhere vanishing twisting function. Then,

VuTL6) = Re ((=Vi V"6 = Vo) V,0) + 5,[0], (2.2.34)
where
5.00] = V*(f g + ff o, (2.2.35)

Now, assume that ¢ moreover satisfies (2.1.1) and X is a smooth vector field. Set

TX[9] == Tyw[¢| X" and KX[¢] := *m,, T [¢] + XV S, [0]. (2.2.36)

Then,
VHIX[¢] = KX[g]. (2.2.37)

Finally, note that if the twisting function f associated to V is chosen such that V > 0, then
’i‘W satisfies the dominant energy condition, i.e. if X is a future pointing causal vector
field, then so is —JX.

We will make use of the twisted energy-momentum tensor in the interior region B for
which we use null coordinates (ug,vg) introduced in Section 2.2.1. For the rest of the

subsection we will drop the index B. Then, setting
2M 2
Q% (u,v) == <1 -+ Q— + z2> (2.2.38)

where r = r(u,v), we write the metric in the interior region B as

02 (u,v)

5 (du ® dv 4 dv @ du) + 7% (u, v)dose. (2.2.39)

YRNAdS = —
Note that in the interior we have r_ < r(u,v) < ry and dr, = = dr. In Proposition 2.6.1
in the appendix we have written out the components of the twisted energy-momentum
tensor, the twisted 1-jets JX and the twisted bulk term K~ in null components. We will

use the notation Cy, := {u = w1}, C,;, = {v = v1} for null cones and %,, = {r = r1} for
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spacelike hypersurfaces in the interior. Furthermore, we set (in mild abuse of notation)

w (v1,v2) = {u=wu} N{vi <v <o}, (2.2.40)

C
Cuy (r1,72) = {u=wu} N {r <r <o} (2.2.41)

and analogously for ¥ and C. We will also make use of the following notation. For any

7€ (r_,ry) we set

and for hypersurfaces with constant u,v,r we denote nc,,nc_,ns, as their normals.®

Red-shift vector field.

Proposition 2.2.3. There exist a ryeq € (r—,7r+), a constant b(M,Q,1, ) > 0, a nowhere
vanishing smooth function f associated to the twisted energy momentum tensor and a
future directed timelike vector field N such that

0 < JY[glng < bK"[g] (2.2.42)
for Reed := {rrea < r <ri}N{v > 1} and any smooth solution ¢ to (2.1.1).
Proof. This is proven in Section 2.6.2. O

We will now prove the main estimate which we will use in the red-shift region in the

interior.

Proposition 2.2.4. Let ¢ be a smooth solution to (2.1.1) and let ro € [ryeq,7+). Then,

for any 1 < v < vy we obtain

~ - v2 N
/ JY [¢]ng dvole, + / JNgn&, dvoly, + / / JY [¢]ng dvole, dv
Cyy (To,7+) Zrg (v1,02) v JC,(ro,r4)

Zvg

< / jliv [czﬁ]ngvdvolgv + / jliv [qﬁ]néfl Ldvoly+.
C,. (ro,r+) H(vi,v2)

~uq

(2.2.43)

5 . .

°For null hypersurfaces there does not exist a unit norm normal vector, however, for a fixed volume
form, there exists a canonical normal vector which we will choose here. Our choice of volume forms and
the corresponding normals can be found in Section 2.6.1.
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Proof. We apply the energy identity (spacetime integral of (2.2.37)) in the region R(v1, v2) :=
{ro <r <ri}n{v; <v < wvy} to obtain

/ J AJLV [gb]ngv dvole, + / J iV [gb]n’érdvol& + / K" |[¢]dvol
c (T07T+) 27‘0 (0171)2)

Coy R(v1,v2)

= / Iy [¢lng dvole, + / I [g]nt, dvoly.. (2.2.44)
C,, (ro,m+) H(v1,v2)

Finally, the claim follows from Proposition 2.2.3. O

No-shift vector field. In this region we propagate estimates towards ™ from the
red-shift region to the blue-shift region using a T' = 0; invariant vector field X and a t-
independent twisting function f. Take r..q fixed from Proposition 2.2.3 and let rpjue > 7—
be close to r_. We will use the no-shift vector field in two different parts of the chapter:
First, we will use it in the proof of Proposition 2.6.2 in the appendix in order to prove
well-definedness of the Fourier projections. In this case we will choose 7y4e in principle
arbitrarily close to r—. The estimate degenerates as we take rpje — 7—, however for the
purpose of Proposition 2.6.2 such an estimate is sufficient. Our second application of the
no-shift vector field is to propagate decay of the low-frequency part v, in the interior (see
already Section 2.4.2). Here, we will take rhue = rpue(M, @, 1) only depending on the
black hole parameters as determined in Proposition 2.4.12.

In either case, we will choose
X =X =0y + 0y (2.2.45)

as our vector field. (Indeed, any future directed and 7" invariant vector field would work.)

We define our twisting function as
fus(r) = €T (2.2.46)

for some fBps = Bus(Tblue) > 0 large enough such that

Q

2 ns
VG + fudr() + DB -G 21 (2240)

2~

_Dgfns . g o

Ve e T

uniformly in [rplye, red]. In particular, since r € [rpiye, rred] is bounded away from ry,r_,

we have

JX0In% 2 [Vl + Vo> + [V 6 + | (2.2.48)
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for a smooth function ¢. Our main estimate in the no-shift region is

Proposition 2.2.5. Let ¢ be a smooth solution to (2.1.1) and r¢ € [rplue, Tred]- Then for

any vy > 1 we have
/ J X [¢]nk, dvoly, S / I [¢Ink, dvols,, (2.2.49)
g (Vs,204) rrod Vrpeq (Urg (v4)),20x)

where we remark that v, — vy, (ury(v4))) = const.

Proof. We apply the energy identity (spacetime integral of (2.2.37)) with X = 9, + 9,
(cf. (2.2.45)) and fns as in (2.2.46) in the region {ro <7 < rea} N{u < up,, (v6)} N{v <
20, }. The choice of f,5 guarantees the twisted dominated energy condition for the twisted
energy-momentum tensor. Together with the coarea formula as well as the facts that

[7%(70), T+ (Tred)] 18 compact and X is T invariant, we conclude

/ T [¢Ink, dvoly, <By / / T [¢]nk. dvoly, dr
g (vs,20x) r0<T<rred ¥ U7 (V5 (Urg (V+)),20x)

+ / JX @k dvol,.,  (2:2.50)
E"‘red (U"‘red (uTo (U*))72U*) red
for a constant By = By(M,Q, 1, o, X0, Tred, Thlue)- Similarly, after setting
o) e — 7X w
E(v,7) -—/ Jii [¢Ins, dvols, (2.2.51)
E7:(’572'0*) "
for 7 € [ro, Tred], we also have
E(vi(ury (v4)), 7) < By / E(r(try (v4)), F)AT + E(vp, (g (04)), Trea)  (2.2.52)
'FSFSTer

for a constant By = Bl(M ,Q,1,a,30). An application of Gronwall’s inequality yields

E(vi(try(vs)), 7) S E(Uned (Urg (Vs)); Tred) (2.2.53)

which implies the result. O

We will use an additional vector field in the interior in the blue-shift region (r_, rpjye)-
We will however only define it later in the chapter in Section 2.4.2.3 when we actually use

it to propagate estimates for the low-frequency part 1, all the way to the Cauchy horizon.

Notation. In the main part of the chapter we will makes use of the Fourier transform

and convolution associated to the coordinate ¢ in (¢, 7,0, ¢) coordinates as in (2.2.4). We
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denote Fr as the Fourier transform (and . ! as its inverse) defined as

Frifllw,r,0,¢) = \/%/Re_mf(t,r,ﬁ,ap)dt (2.2.54)

in the coordinates (t,7,¢,6) of Ra,Rp and B, respectively. Here, we assume that ¢
f(t,r,0,p)is (at least) a tempered distribution and (2.2.54), in general, is to be understood

in the distributional sense. Moreover, the convolution * associated to the coordinate t is
defined as

(f*g)(t,r,0,0) = /Rf(t —s,1,0,0)g(s,7,0,p)ds, (2.2.55)

where we again assume that ¢ — f(¢,7,0, ) is a tempered distribution and t — g(¢,7,6, )
is a Schwartz function. Here, (2.2.55), in general, is to be understood in the distributional

sense.

2.3 Main theorem and frequency decomposition

Now, we are in the position to state our main result

Theorem 2.3. Let the Reissner—Nordstrom-AdS parameters (M,Q,1) and the Klein-
Gordon mass a < % be as in (2.2.3). Let p € C°(Mpgnadas \ CH) be a solution to
(2.1.1) arising from smooth and compactly supported initial data (¢, T) [s,= (vo,%1) €
CX(Xg) x CX(X0) on Xg with Dirichlet (reflecting) boundary conditions imposed at T
and Zp (cf. Theorem 2.1). Then, ¥ is uniformly bounded in the interior region B

satisfying
sup ] D), (2:3.1)
where D[] is defined as
3
D[] := E[](0) + Y Ei[W:W;4)(0). (2.3.2)
ij=1

Moreover, v extends continuously to the Cauchy horizon, i.e. 1 € C°(Mpgnags)-

Remark 2.3.1. The data term D[] in (2.3.2) can be controlled by the initial data (1o, 1)
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such that (2.3.1) can be written in terms of initial data as

sup [] < C(M, Q. e, o) (IWoll o+ [l o2
B RNAdS(Z()

RNAAS(Z()
3

3
* .Zl ”WiijOHngl(\)IAdS(Zo) + 'Zl H)/Vi)/vjwl’’Ijrlg)‘}\;z(is(zo))
ij= b=

(2.3.3)

for a constant C(M,Q, 1, «, Xg) only depending on the parameters M, Q, 1, « and the choice
of initial hypersurface Y.

Remark 2.3.2. Theorem 2.3 can be extended to a more general class of initial data using
standard density arguments. In the context of uniform boundedness and continuity at the
Cauchy horizon, it is enough to consider smooth and localized initial data. Nevertheless,
note that for more general initial data in appropriate Sobolev spaces, already well-posedness

becomes more delicate [73].

Proof of Theorem 2.3. We split up the proof in four steps, where Step 8 and Step 4 are

the main parts relying on Section 2.4 and Section 2.5.

Step 1: Decomposition into low and high frequencies. Let
Y € C°°(MprNaas \ CH) (2.3.4)

be as in the assumption of Theorem 2.3. Now, in R4, Rp and in B, define the low
frequency part 1), and the high frequency part 1y as

Wy 1= ——=F7" [Xuwo) * ¥ and 1y 1= ¢ — 1, (2.3.5)

¥~
3

where
1
Xwo € C°(R) such that x, (w) = 0 for |w| > wp and X, (w) = 1 for |w| < Juwo- (2.3.6)

From Proposition 2.6.3 in the appendix we know that the low and high frequency parts 1,
and 1)y in (2.3.5) are well-defined and v, and 14 extend to smooth solutions of (2.1.1) on
Mgnads \ CH. The cut-off frequency wy = wo(M, Q,1,«) > 0 will be chosen in the proof
of Proposition 2.4.4 only depending on M, Q,[,«. For convenience we can also assume
that xu, is a symmetric function which implies that ¢, and ¢y will be real-valued as long

as ¢ was real valued. This concludes Step 1.
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Having decomposed the solution in low and high frequency parts v, and 1)y, we shall
now see how the initial data D[] and D[vy], respectively, can be bounded by the initial
data DI[¢)] of .

Step 2: Estimating the initial data of the decomposed solution. This step is

the content of the following proposition.
Proposition 2.3.1. Let ¢ be as in (2.3.4) and y,,vy be as in (2.3.5) and recall the
definition of D[] from (2.3.2). Then,

Dlihy] S D[] and Dlipy] S D[y]. (2.3.7)

Proof. Since v = 1, +1)y, it suffices to obtain a bound of the type D[] < D[1)], where D[]
is defined in (2.3.2). Because of the Dirichlet conditions imposed at infinity, the energy
fluxes through Z4 and Zp vanish (see (2.2.21)), and we estimate

D[] < D[wy),

where D[1),] is a higher order energy on the hypersurface
= (Ran{tr, =0})UB_U(RpN{tr, =0})

to be made precise in the following. Note also that the normal vector field on R4 N Xy is
ng = —=0;.

0 VA

More precisely, due to the support properties of the initial data, there exists a relatively
compact 3-dimensional spherically symmetric submanifold® K C Yo with B ¢ K and

such that

3
D) S D) = sl 1) + Ins, Wll72z) + D IWiWih I3 i)

1,7=1
3 3
+ Y IWWng I3z ) + / Z WiWiihy] | 72 sin drdade
ij=1 SoNRA\K =1
3
+ / e1ly] + Y erWViWjihy] | r?sin 6drdode. (2.3.8)
SoNRB\K ij=1

Estimate (2.3.8) follows from general theory [27], that is a (higher order) energy estimate

5We introduce K just for a technical reason: The energy density e1[-] defined on SoNRa degenerates
at the bifurcation sphere 5_.
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followed by an application of Gronwall’s lemma. In order to estimate the energy on the
compact hypersurface K we decompose K in KNR 4 and K NRp and estimate the energy
on each of those slices independently. Again, in view of the fact that R 4 and Rp can be

treated analogously, we only show the estimate in R 4. Note that all the terms of

3

19513 rvm ) + 175,05 T2nm) T D, VWit 131 (e 0
ij=1

3
+ Z IWiWing ol 22 (rerm ) +/ Z 1 WiW;,] | r? sin 0drdfdy

ij=1 YoNRA

are of the form
/ f18%4,|? sin Odrdode
{t=0}"R 4

for appropriate T" invariant weight functions f > 0 and 7T invariant coordinate derivatives
0 € {0,0,,09,0,} of order k =0,1,2,3. Using that

wb = \/12?f1:1 [Xwo] * ),

where F ! [Xwo] =: 1 is a fixed Schwartz function, we conclude—again since 7" is Killing—
that
/ F)O",[2(0, 7,0, 0)drdos> = / F(r)ln = 0" [*(0,r, ¢, 0)drdose
{t=0}N"R 4 {r>ry}xS2

2
dT‘dO'Sz

/ n(—s)@kw(s,r, v, 0)ds
R

- / £(r)
{r>r4}xS2

< / In(s)/ds / in(—s)| F) (s, 7, 0, 0) Pdrdogads
R R {r>r4}xS2

< sup / FEO* (s, 7, 0,0) Pdoss
R

< / F(r)I0F62(0, 7, 0, 0)drdoss < DIy,
{t=0}NR 4

where we have used boundedness of higher order energies in the exterior which are proved
in [72] and restated in Theorem 2.2. Also note that we can interchange the derivatives
with the convolution since T is a Killing vector field. Thus, we conclude that D[t,] < D[t/]
and again by Cauchy stability and the vanishing of the energy flux at Z (see (2.2.21)),
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we can bound D[] < D[] which finally shows D[y),] < D[)]. Hence, D[¢y] < D[] also
holds true. [

The previous analysis in Step 1 and Step 2 allows us to treat the low and high frequency
parts v, and vy completely independently.

Step 3: Uniform boundedness for 1, and ;. This step is at the heart of the
chapter and will be proved in Section 2.4 and Section 2.5. According to Proposition 2.4.13
and Proposition 2.5.1,

sup [ < D[ty (2.3.9)
and

sup 03 < D[y (2.3.10)
Thus, in view of Step 2, we conclude

sup TS sup ] + sup 951> S Dlihy] + Dly] < D[] (2.3.11)
which shows (2.3.1).

Step 4: Continuous extendibility beyond the Cauchy horizon. Again, this is
proved Section 2.4 and Section 2.5. In particular, in Proposition 2.4.14 and Proposi-
tion 2.5.2 it is proved that 1, and 4, respectively, are continuously extendible beyond
the Cauchy horizon. Thus, ¢ = v, + 4 can be continuously extended beyond the Cauchy

horizon which concludes the proof. O

2.4 Low frequency part ),

We will begin this section by showing that v, decays superpolynomially in the exterior
regions R4 and Rp (Section 2.4.1). This strong decay in the exterior regions then leads
to uniform boundedness of v, in the interior B and continuous extendibility of ¢, beyond
the Cauchy horizon. This will be shown in Section 2.4.2. In the following, it suffices to

only consider R 4 because the region Rp can be treated completely analogously.
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2.4.1 Exterior estimates

We will now consider 1, in the exterior region R 4 and show an integrated energy decay
estimate which will eventually lead to the superpolynomial decay for . First, however,

we review the separation of variables for solutions to (2.1.1).

Definition 2.4.1. Let ¢ € CHI%NAdS be a solution to (2.1.1) satisfying
3 / 10107 (6, Yo )2 (1, £)[dlt < 50 (2.4.1)
0<ij<2”R

forr e (r_,ry), r € (ry,00) and every |m| < £. In the regions B and R 4, respectively,

set

r

V2r

where (Yym)|m|<¢ are the standard spherical harmonics.

u[@](r,w, £,m) :=

/ G, Vi) 125y, (2.4.2)
R

Proposition 2.4.1. Let be as in (2.3.4) and )y, ¥y be as in (2.3.5). Then, u[y)](r,w,f,m),
ulthy](r,w, €,m) and uly](r,w,,m) as in Definition 2.4.1 are well-defined and smooth

functions of r,w in R4 and B.

Proof. First, note that '™ := (¢, Yy,,) Yo is a solution to (2.1.1), supported on the fixed
angular parameter tuple (¢,m). Thus, in view of Theorem 2.2 and Proposition 2.6.4,
Y (t,7,0,¢) and all its derivatives decay exponentially in ¢ in R4 and in B on any

{r = const.} slice. O

Proposition 2.4.2. Let ¢ € CH3ypgs be a C?-solution to (2.1.1) satisfying (2.4.1). Let
u[p] be defined as in (2.4.2). Then, u[¢] solves the radial o.d.e. (in B and R4)

—u" + (Vi — w?)u =0, (2.4.3)
. d
where ' = I
dh
o U +1) «
_ dr
and
A oM 2 Q?



Moreover, in the exterior region R4 we have lim, ]r%u[q&]] =0, lim, 00 \r_%u[qﬁ]/\ =0.
Finally, note that

d dn (& pe 41 dh &Eh 9pp
w:<dr+(+)_a>+h<_dr+d7‘2_(+)‘ (2.4.6)

dr dr \ r r2 12 r2 r r3

Proof. The fact that u[¢] solves the radial o.d.e. is a direct computation. For the de-
cay statement as r — oo, note that u[d](r,w,l,m) = u[dem,]|(r,w,l,m), where ¢g, =
(¢, Yom)s2Yem,. In particular, (2.2.28) (together with Remark 2.2.2) then implies

/OO (/OO (¢, ng>52\2dr> "t < oo (2.4.7)

Thus,

(/ °O |u[o>]|%1r>é < ( / OO (/" r2r<<z>,Yem>sz|olt)2olr)é
< /Z (/jo r2|(¢, ng>sz|2dr> : dt < oo. (2.4.8)

Since u[¢] solves (2.4.3), analyzing the indicial equation at the regular singularity r = oo
9 9
(see |40, Section 2.2.2]), shows that |r%u[¢]| =O0(r Vi %) and ]r_%u[¢]’| =0(r Vi %)

as r — oo in order to satisfy (2.4.8).7 O

Next, we prove that the potential V; has a local maximum for large enough angular

parameter {g.

Proposition 2.4.3. There exists an ZO(M,Q,l,a) € N such that for all £ > fy, the

potential V; has a local mazimum 1y max > 74+ and Vé’ >0 for vy <1 < 7pmax- Moreover,

T¢max —7 Tmax ‘= %M + %MQ — 2@2 as ¥ — 0o.

Proof. Note that for ¢ large enough, V; is non-negative in a neighborhood of r; with
r > ry. Also, V; vanishes at » = ry. Hence, it suffices to show that % is negative

somewhere for r > ro. But note that

av _

3M 20)?
dr

F(r)4+r30(0 +1) <rjﬁ — 2h> = F(r)+2r 300 + 1) <r —1-5

(2.4.9)

"The integrability condition (2.4.8) corresponds to the Dirichlet boundary condition at infinity on the
level of the o.d.e.
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for some function F'(r) which is independent of ¢. Now, first choose r > 7 large enough
only depending on M, @Q such that the last term is negative. Then, choose ¢ large enough
such that it dominates the first term which proves that a 7y max as in the statement exists.

The limiting behavior 74 max — %M + 1/%M2 —2Q? as { — oo also follows from (2.4.9).
This concludes the proof. ]

Now, we are in the position to prove a frequency localized integrated decay estimate

in the exterior region for the bounded frequencies |w| < 2wy.

Proposition 2.4.4. Let u(r,) = u“™9(r,) solve the radial o.d.e. (2.4.3) in the exterior
R4 and assume that lim,_,~o |7‘%u| =0 and lim,_, \r_%u’| = 0. Moreover, let |w| < 2wy,

where wo(M, Q, ¢, ) > 0 small enough will be fized in the following proof. Then, we have
T=00 A ' ) ) -
1 (WP + [ulP (e + 1) +1%)) dr.. S —Q(R™) (2.4.10)
RS>

for all R;>° small enough such that r(R;*°) < 1o, where 1o = ro(M,Q,l,a) > ry is

determined in the following proof. Here, the boundary term Q(R;OO) satisfies

QR™)| S (wllul + [/ 2)(1 + Oplr — 7)) as R-™ — —oc. (2.4.11)

Proof. We will first argue that it suffices to prove (2.4.10) for £ > ¢y(M,Q, 1, «) for some
fixed o(M,Q,1, ) € Ng. Note that (2.4.10) for £ < ¢y is an easier variant of [|. Indeed,
we perform the same steps in [| but instead take a = 0, wy = 0 and H = 0 throughout [|.
This leads to || with L replaced by ¢y. The estimate on the boundary term follows from

[l

We will now consider ¢ > £y, where {j is determined below. Let rg, r1 depending only on
M, Q,l,a be such that 71 < 19 < 11 < rmax — 9, Where ryax is defined in Proposition 2.4.3.
Here, 6 = §(fy) > 0 is such that V' > 0 for all ry < r < ryax — 8, cf. Proposition 2.4.3.
We can make §(¢y) as small as we want by choosing ¢ sufficiently large. Now, we choose

wo(M,Q,1, ) > 0 small enough and ¢ large enough such that

A
2
V—-w +4l27“2 ZE(K—Fl)—!—ﬁ for r > ro,

V—w220 for ro <r <rq,

(2.4.12)
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and for all |w| < 2w, £ > £y. For smooth f(r,) and h(r,), we define the currents

1
Qf:f u/2+ w?_v U2 +f/Reu/ﬂ _7fllu2, 2413
2
- ~ 1-~
Q" := hRe(a) — 5h’yuP (2.4.14)
with
dQ’ 1
Q" = d? =2f ' * = fV'Jul? = S f"|ul?, (2.4.15)
- inz ~ 1~
Q" = i [[u'1? + (V= w?)|uf*] — gh"IUIQ, (2.4.16)

where we recall that ’ denotes the derivative d‘i*. Thus,

Q'+ Q" = W PRf + h)+ul? <—fV’ - %f’" + MV —w?) - ;;}”) .

We choose a smooth f < 0 such that

e f is monotonically increasing,

e f = —1/r? in a neighborhood of 7 = r,,

o f < —¢ for ry <r <7y and some ¢;(M,Q,l) >0,

e ASfI<Aforry <r<r,

. 17" S A,

o f=0forr>rp.— 9.

and a smooth h > (0 such that

o =0 for r < ro,
o \iL"\Slfor o < 7T1,
° leforrzrl.

Then, we have

21" 1) + |ul*(—=fV' — %f”’) for ri <r <,
_, )
Q7+ @ = L 2V L L) frro<r<n,  (2417)
\U'P—i—]u\Z(—%f”’—F(V—wQ)) for r > ry.
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Thus, choosing ¢y(M, Q, 1, ) large enough (and wo(M, @, 1, ) > 0 possibly smaller) and
using (2.4.17), (2.4.12), (2.4.9) and the properties of f and h, we have

Q'+ @ 2 5 (WP + P e+ 1) + ) (24.18)

for ry <r < rpax — 9 and

=~/
QF + QM Z WP+ (V = W) uf> > |/ — [u)?

_ AN
s e (E(K +1)+ 7’2) ul?  (2.4.19)

for r > rpax — ¢ and some ¢(M,Q,l,«) > 0. Integrating Qf/ + Q;‘/ in the region r, €
(R, >°,r«(r = +00)) and applying the following Hardy inequality (see [72, Lemma 7.1|)

[ e TS up (2.4.20)
w [“dry 2/ wl“dry 2.4.20
r ) r 54l27’2

=Tmax — =Tmax —

to control the negative signed term in (2.4.19), yields

r=-+400 A
/R_oo - (1t PX fr<rmue—sy + [ulP €+ 1) +77)) dre S —QF (Ru(—00)).  (24.21)

Note that we use lim, oo ]r%u\ = 0 and lim, ]r_%u/ | = 0 to apply the Hardy inequality.

To obtain control of |u/|? in the region r > 7nax — ¢ in (2.4.21) we just add a small portion

of the integral over (2.4.19). This proves
r=-400 A 9 ) ) f
/ a (|u/|* + [u?(€(t + 1) + r?)) dry $ —Q7 (R.(—0)), (2.4.22)
R

where |Q7(R7>)| < (|w|?|ul® + |v/|*)(1 4+ O¢(r — r1) as R7> — —oc is satisfied by the

construction of f. O

With the frequency localized integrated energy decay estimate of Proposition 2.4.4 we
will now prove a local integrated energy decay estimate in physical space. Indeed, a naive
application of Plancherel’s theorem to (2.4.10) gives a global integrated energy estimate.
However, localizing this energy decay requires some sort of cut-off which does not respect
the compact frequency support. Nevertheless, by carefully choosing a localization, we can
show that the error term decays superpolynomially in time. At this point we shall remark
that we do expect v, to decay exponentially. However, for our problem, superpolynomial

decay in the exterior is (more than) sufficient.
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Proposition 2.4.5. Let 1, be as in (2.3.5). Then, for any ¢ > 1, 71 > 0 and in view of
(2.2.23), we have the integrated energy decay estimate

/ (7721004, [ + 17210, 0|2 + [Yaby |2 + [1hy]?] r2dt*dr sin 6dOdp
Ran{t*>27}

C(q)
< TPy n# + / JE [, nk dvols, 2.4.23
/E.,—lﬂ’RA ,u[ ] 1+ 74 o ,u[ b] o 0 ( )

1

where C(q) > 0 is a constant only depending on q. Moreover, for any To > 271, this

directly implies

/ JHT [1y] n‘éTz dvoly,,
XrNR A

+ / [r2100 s [* + 17210 [* + [V, |2 + [0 [*] 2dt*dr sin 040y
RAﬂ{t*Z2T1}

C(q)
< JE [ nt + —2 / JE [y |nk dvols; (2.4.24
/E-rlﬂRA a [ ] 1+ qu YoNR A K [ ] o 0 )

for the T-energy.

Proof. In order to show (2.4.23) we will first construct an auxiliary solution ¥ of (2.1.1).
We set initial data for ¥ on X7, as (Wo, 1) := (¢, T¢) [s, nr,- Then, we will define
data Wy on H} N {t* < 7} such that the data can be extended to a C* function in a
neighborhood of ng N {t* = 71} for some finite regularity k. Choosing the regularity k
large enough will guarantee well-posedness. More precisely, in local coordinates (t*, 7, 6, @)

and for r = r, we define

k
\IJQ(t*7 T+, %, 9) = Z )‘qubb f{t*zn} (_](t* - 7-1) +TL T4 P, 9) (2425)
=1

for t* < 7 and some uniquely determined (\;)i1<j<i such that

Wy (t*,ry, 0, 0) fort* <r
R x S2 5 (1, p,0) 1y | L2070 200) ! (2.4.26)
@Z}b(t*,“m 2 9) for ¢* > 1

is C*. Indeed, the function is smooth everywhere except at t* = 7. Now, we consider the
mixed boundary value-Cauchy-characteristic problem, where we impose data as follows.
On the null hypersurface H} N {t* < 71} we impose W5. This null cone intersects the

spacelike hypersurface ¥, on which we have prescribed (¥, ;) as data. As before, we
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)= (¥, TWy) s,

Figure 2.4: In the darker shaded region J* (X, )N R4 we have that ¥ = ¢, and in the
lighter shaded region we can estimate the energy of ¥ in terms of 1,. This holds true as
Ty is the CF reflection of v, from H} N {t* > 7} to H N {t* <7}

assume the Dirichlet condition on Z4. For fixed £ > 0 large enough, this is a well-posed
problem and can be solved backwards and forwards in R4 [111, Theorem 2|. We will call
the arising solution ¥ and by uniqueness note that U = 1, on (R4 UH}) N JH(Z,).
Indeed, analogously to v, we have ¥ & C’HPQ{N aqs and by choosing k large enough, we
can make U arbitrarily regular, in particular C?. Moreover, ¥ decays logarithmically and
(U, Yorn) Yo decays exponentially towards i* and i~ on a {r = const.} hypersurface.®
Refer to Fig. 2.4 for a visualization of the Cauchy-characteristic problem with Dirichlet
boundary conditions.

Analogously to ¢ = 1, + 14, we decompose the new solution ¥ in low and high
frequencies ¥ = ¥}, + Wy: We define

1
V2T

where y2y, is a smooth cutoff function such that xa,, = 1 for |w| < wy and xa,, = 0 for

U, = FirtXowe] * ¥, and ¥y := U — U, (2.4.27)

|w| > 2wp. Now, note that from the T-energy identity (2.2.21) we have

/+ Jg[wb]néfldvoly :/ JE[%]”;TI dvoly,| (2.4.28)
'HA(’T'l, ) Y NRA

as the flux through 74 vanishes in view of the Dirichlet boundary condition at Z4. Here,
we use the notation H(a,b) := H}N{a < t* < b}. Moreover, from the T energy identity,

8We will use this statement only in a qualitative way such that u[¥,] is well-defined in (2.4.31) and
satisfies (2.4.10).
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we have

J [Wnk,dvoly = / T lp)nf dvols, + / . J L []nk,dvoly,
HA ETIHRA HA( 007'1)
< JE [y |nk  dvoly, + / JE [y |k, dvoly
/2 PR H Y 1 HE (m1,00) Iz H
<

]
Ty [pInf, dvols, . (2.4.29)
Y NRaA

We have used the estimate

JEWInY, dvoly < / JE [, In, dvoly,
/}‘LX(OO,T]_) K H ’ng(n,oo) K e

which follows from our construction of the initial data. Thus,

1 [Wnk,dvoly + / . J 5 [W]nk,dvoly S / JZ[\I/]n’éTl dvoly,. . (2.4.30)
HA HA 27—1 NR A

Now, note that u[W¥,] defined as

W) (r,w, €, m) / (G, Vi) 2ty (2.4.31)

\/ﬁ

satisfies the assumptions of Proposition 2.4.4 such that (2.4.10) holds true for u[¥;,]. We
now integrate the frequency localized energy estimate (2.4.10) associated to u[¥,] in w
and sum over all spherical harmonics. There are two main terms appearing and we will
estimate them in the following. This step is similar to [| so we will be rather brief. An

application of Plancherel’s theorem for the integrated left hand side of (2.4.10) yields
/ [[069, 2 + 10, Wy |* + 72|V, |* + 72| T, |?] dt*dr sin 0dOd
Ra

< lim / dw / ar. 53 [Pl )2+ 2+ 60+ D)+ 7]
RI°°—>—oom

(2.4.32)

To estimate the boundary term on the right hand side of (2.4.10), we first decompose u[V}]
as u[¥,] = a(w, m, £)uy + b(w, m, £)uz, where uj,us are defined as the unique solutions to
the radial o.d.e. (2.4.3) in the exterior satisfying u; = e +Oy(r —7r,) and ug = e~ +
O¢(r—ry)asr — ry (re = —o0). Here, a = a(w, ¥, m) and b = b(w, £, m) are the unique
coefficients of the decomposition. Then, in view of (2.4.11) and ) = iwuy + Oy(r — ),
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uby, = —iwug + Oy(r — 1), we estimate

Q1 S (Jwl*la(w)*lu* + |w]?[b(w) Pluz|?) (1 + Oe(r —r+))
= (lwPla(@)]* + [w*[b@)[*) (1 + Oc(r —74)) (2.4.33)

as r — ry. Now, using that wa(w), wb(w) are in L. (R) and in L?(R) (note that they have
compact support), an application of the Riemann-Lebesgue Lemma, the Fourier inversion
theorem and Plancherel’s theorem shows that Y, , [& [w[*(la(w, £, m)[*+|b(w, £, m)|*)dw <
fHX |TW,|? + sz TW,|? < 2ij |TW,|?, where the last inequality follows from the T
energy identity fHX TV, |? = sz |TW,|? in the region R 4. Thus, we conclude the global
integrated energy decay statement

1 1
=100, 12 + =10, 9,2 4+ YT, |2 + | T, | dvol < T, 2. (2.4.34)
2 2
Ra r T +

Ha

Hence, in view of ¢, = W in {t* > 71} N R4 we have

r

1 1
/ |:2‘8twb|2 + 7!3r*¢b|2 + ’W%;’Q + ‘wb2:| dvol
RaN{t*>271} r
1 1
-/ Lo+ Sow 9w + v avo
Ran{t*>2m} LT T
1 1
S / [2‘6t‘1’b|2 + 7\6“‘1%‘2 + \V\IJHQ + ]\Iﬂ,ﬂ dvol
RaN{t*>271} r

r

1 1
+/ [2\3t‘1’u\2+23m%\2+ IV 0* + !%!2} dvol
Ran{t*>2m} LT r

§/+ T\I/b‘z—i-/ / Jg[qfﬁ]n;t*dvolzt*dt*

HA t*>211 JEHNRA

< / . TW|* + / / JE[\IIﬁ]n%t*dvolzt*dt*
HA t*>2711 JExNR 4

S / JZ [\Il]ngT1 dvoly, + / / Jg[\llﬁ}n%t* dvoly,, dt*
X NRa t*>211 JExNR A

:/ J;{[ﬂ)b]ngqdVOlgT1 —I—/ / JMT[\Ifﬁ]n;t*dvolgt*dt*. (2.4.35)
Y NRa t*>211 JENRA

Here, we have also used (2.4.34), (2.2.23) and the fact that fHJE W, > < fHX |TV|2.

Moreover, the estimate [; .+ [T9[* S [ n  JL[¥]nk  dvoly, ~follows from (2.4.30).
A 1 &

Finally, we are left with the term [,.o,  [5 ~z, JE[\IJﬁ]n‘ét* dvoly,, dt*. We will show

that this term decays at a superpolynomial rate. First, introduce xj := 1 — X2, and
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set Xowo 1= Fr (X2wo)s Xt = Fp ' (x3), which are well-defined in the distributional sense.
Then,

1 1
Uy= ——yvux U = ——
f \/27rXﬁ v 2T

since Xy * 1, = 0 in view of their disjoint Fourier support. In particular, for t* > 7 we

Xox (0 — o) (2.4.36)

have
1

o= (V2D = i) (¥ 1) = =iy + (V= )

1
Wy = =X (V=) = N

V2r
(2.4.37)

as 0 % (U —p) = U —1, = 0 for t* > 7. To make notation easier we define ¢ :=
—\/%(\I’ — 1) which is only supported for ¢* < 71 and satisfies ¥y = X2, * ¢. Now, as a
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result of the T" invariance of dvoly,, and JE[‘]n’i*, as well as (2.2.23), we have that

/ / Jp [@y]nk,  dvols,, dt*
t*>21 JExNR 4

1 A
S / <2|8t*\11ﬁ’2 + ﬁ|8rwﬁ|2 + ’W‘I’ﬁP) T2d052drdt*
t*>2711 J(ry,00)xS2 \T r

t(r1,r) 2
< / / [ ‘ / Ny (E(E*, ) — 5) (01 0) (5)ds
t*>2711 J (r4,00)xS? —00

2

LA
7“2

t(r1,r)
/ N (H(E",7) — 8)(0r) (5)ds

—00

t(r1,r)
+ / oo (12, 7) — 5)[|V6](5)ds

—00

< / i () ds / / [/ i (£ — %) 10p B(5%)ds
— t*>21 r+, )xS? —00

T1

+ / X (1" = )] 10, 02(5%)ds" + / rxm(t*—s*)rww2<s*>ds*} rdogedrdt”

S R G
t*>2711
(oo
(T-H )X82
,S/ Iy [qﬁ]nzodvolgo/ / |X 2wy (t° — s*)|ds™dt™
YoNRA t*>211

< J 1 [1hy ]k, dvoly / ds*dt*
I ~/z;0f‘l’R,A [ ] Zo ’ t*>211 e’} ’t* - |q+2

fE()l"‘IRA 12 [wb]nEOdVOIEO
~a 1+7f

2
] r?dogzdrdt*

(s") + %‘8r¢|2(3*) + \W¢|2(s*)] ?”QdUSsz> ds*dt*

Here, we have used the boundedness of the T-energy (cf. (2.2.22)), i.e

/ J§[¢]n‘§t*dvolgt* < / I} [¢Ink dvols, < / I [hy]nks, dvols,.
YixNR A YoNR A Yo0NRa

(2.4.38)

Finally, we have also used that the Schwartz function ys., decays superpolynomially at

any power ¢ > 1. This concludes the proof in view of (2.4.35). O

In order to remove the degeneracy of the T-energy at the event horizon, we will use
the by now standard red-shift vector field [27]. As usual, the red-shift vector field N is a
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future-directed T' invariant timelike vector field which has a positive bulk term K~ > 0
near the event horizon. In a compact r region bounded away from the event horizon ’Hj‘,
the bulk term KV of N is sign-indefinite but this will be absorbed in the spacetime integral
of the T' current in Proposition 2.4.5. Also, note that NV = T for large enough 7. In the
negative mass AdS setting, we refer to [72, Section 4.2] for an explicit construction of the
red-shift vector field V. Note that the red-shift vector field IV has the property that

/ T [Wp]nk, , dvols,, ~ / e1[thy)r2dr sin AdOde (2.4.39)
YixNRa YpxNR 4

for ¢, as in (2.3.5).

Proposition 2.4.6. Let ¢, be as in (2.3.5). Then for any 1o > 211 > 0, we have

/ Jﬁ[wb]n’gmdvolzﬁ + / (’@*%’2 + |V |* + WHQ) dt*dog2
SryMR A HEN{2r <t*<m}

; J; JL [y |nk, dvols,
[T i e, [ g S ARGk
211 JExNR A £ (RA n s

(2.4.40)

and in particular,

/ J;iv [1%]71;72 dVOlETZ + / / JN [1%]7%; dvoly,. dt*
YrpNRaA 271 J X NRA

/ b fEOnRA Jiv[%]n%odvolzo
7 DI QRA 1+ T{]

A

/ JN n* + El Wb]( ) (2441)
Y NRa 1+ 7—1

Proof. We apply the energy identity (the spacetime integral of (2.2.19)) with the red-shift
vector field N for 1), in the region R4 N{2m < t* < 1}, where 211 < 79. After taking care
of the negative lower order term via a Hardy inequality and absorbing the sign-indefinite

bulk of N away from the horizon (in the region {r > ro} for some r¢y > r ) in the spacetime
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integral of J on the right hand side (see [72, Section 4] for further details), we arrive at
/ Ty [p)nfs dvols + / . I by dvoly
£ryNRA HiN{2m <t*<m}

T2
+ / / I3 [y]nk , dvoly, . dt*
211 JExNR 4

T2
< / / JE[ylnt, dvols,, d* + / TN, dvols; .
271 JEpNRaAN{r>ro} Y27 MR A

(2.4.42)

First, note that the integrated energy term

T2
/ / i [p)nk, , dvols,. dt*
271 S8 NRaN{r>ro}

on the right-hand side of (2.4.42) can be controlled by the left-hand side of Proposi-
tion 2.4.5. Then, remark that the integral along the horizon f’Hjﬁ (om<t<m} ? N[y, dvoly
is sign-indefinite due to the (possible) negative mass. However, this can be absorbed in
the bulk term using an € of the integrated bulk term of the red-shift vector field N and
some of the bulk term of the integrated energy estimate in Proposition 2.4.5, cf. |72, Equa-
tion (70)]. Finally, using the integrated energy estimate from Proposition 2.4.5 again, we

conclude

/ T [k dvols,, + / (1065 ” + [V |* + [1hy|?) dt*dose
SryNRA 2 HEN{2n<t*<m}

; J JT[hy ]k, dvols,

+/ / TN [y ]nk: _dvoly,.dt* < / TNt + ToNRa “H 0 ‘
2 JeRa s ' s oma " Wl 1+

(2.4.43)

O

Now we obtain

Proposition 2.4.7. Let ¢, be defined as in (2.3.5). Then, for any ¢ > 1 and 7 > 0 we

have

1 1
Tilints. 5 / T [ihyInks dvols, Sq ———Ei'[15](0)  (2.4.44
/;THRA © [wb] X ~4 14+ 74 SonRoa m Wb] 2o Yo ~gq 1 [d}b]( ) ( )

1474
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and

1
. 2 2 2\ < N i
Lo e B (TP S g [ s v,

1

So T2 P ] (0) (2.4.45)

Proof. In view of Proposition 2.4.6 it suffices to prove (2.4.44). Upon setting

f(s):= / Jiv[qbb]ngsdvolgs,
YsNRa

we have from Proposition 2.4.6 that

t2 f(0)
f(t2) + o, f(s)ds <q f(t) + 1+ t(f

for any to > 2t; > 0. The claim follows now from Lemma 2.4.1 below. O

Lemma 2.4.1. Let f: [0,00) — [0,00) be a continuous function satisfying

g 0)
sie+ [ fas < ata () + %) (2.4.40)

for any g > 1, 0 < 2t; <ty and some a(q) > 0 only depending on q. Then, for all ¢ > 1,
there exists a constant C(a(q),q) > 0 only depending on « and q such that

C(a(q),q)

1< =

£(0) (2.4.47)

for allt > 0.

Proof. Fix ¢ > 1. First, note that from (2.4.46) we have for any to > 2¢t; > 0

o)

1+t]

f@)ﬁmw(ﬂh)%

Without loss of generality, let ¢ > 10 be arbitrary. Then, take a dyadic sequence 73411 =
27k, where 79 = 1. Now, there exists a n € Ng such that ¢ € [7,,43, Tht+4]. Then, again
from (2.4.46) we have

/Tm f(s)ds < a(g) ( Fm) + f(o>q>

Tn+1
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from which we conclude that there exists a § € [Tp41, Tnh42] such that

), KO,

Tn+1 1+ T;{H

6 <ao) (

Hence, since 2 < 7,43 <t < Th14,

) < ala) (1 + 19— ) <al@ (alg) (17 4+ O SO,

1+7l, L R AR o
(2.4.48)

Now, note that 7,, ~ ¢t and hence, f(t) < C(1, oz(q))l%rt. This improved decay can now be
fed into (2.4.48) to obtain a decay of the form f(t) < C(2, a(q))ﬁ. This procedure can
be iterated until one obtains

f(0). (2.4.49)
O

2.4.2 Interior estimates

Having obtained the superpolynomial decay for 1, in the exterior and in particular on
the event horizon, we will now use this to show uniform boundedness in the black hole
interior. We will first propagate the superpolynomial decay on the horizon established in

Proposition 2.4.7 further into the interior. To do so we will make use of the red-shift.

2.4.2.1 Red-shift region

With the help of the constructed red-shift current in Proposition 2.2.3, we obtain

Proposition 2.4.8. Let ro € [ryed,7+). Let 1y, defined as in (2.3.5) and recall that from

Proposition 2.4.7 we have

/ JN by dvoly < EA[4,)(0) (2.4.50)
H(v1,v2)

1 1—{—1}%

for 1 <wvy <wy. Then,

~ U (v1) 1 -
[ g vole, ~ [ [ R+ (TP + Vi) dosedu
C,. (ro,r+) v —00 S2

vy

1

ST BB, (245
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. v2 1 .
N [y)nk dvoly, N/ / IVt |
/ETO(UL'UZ) a > v JS2 V 02

VR (I952 + [F 4 VI ) dudoge 5, ZHEAD)
1
(2.4.52)

for any 1 < v < vg.

Proof. From Proposition 2.2.4, estimate (2.4.45) in Proposition 2.4.7 and upon defining

E(v) := / TN [1hy]nf. dvolg (2.4.53)
C,(ro,r+) -
we obtain
- v2 B EA 0
E(v9) —i—/ E(v)dv Sq E(vi) + 11[%]2), (2.4.54)
V1 + 'Ul
for any 1 < v1 < vy. This implies
- . 1
E(v) Sq (E(v=1) + E{'[1),](0)) (2.4.55)

1+ 04

for any v > 1. This follows from an argument very similar to Lemma 2.4.1. Note that we
have by general theory [27] that E(v = 1) < E;[4,](0). Thus,

1
1404

E(v) Sq E1[1,)(0) (2.4.56)

for v > 1 which proves (2.4.51). The estimate (2.4.52) now follows from (2.4.51) and
Proposition 2.2.4. ]

2.4.2.2 No-shift region

Now, we will propagate the decay towards i+ further into the black hole for r € [rred, blue),

where rpue > 7— is determined in the proof of Proposition 2.4.12.

Proposition 2.4.9. Let ¢, defined as in (2.3.5). For any ro € [Tblues Tred), ¢ > 1 and any

vy > 1 we have

= Er[h](0)
JX[ihy)n dvoly, <, —22 (2.4.57
~/Er0 (vs,2v4) a [ ] r 71 + ’Ug )
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Moreover, for any 1 < p < q we also have
/E (vt )(<U>p + <U>p)ji( [%]ngdvol& Sq,p FE W)b](o) (2.4.58)
ro Vs, 700

Proof. Applying Proposition 2.2.5 with ¢ = 1, we have (2.2.49) for v,. To estimate
the right-hand side of (2.2.49) we use Proposition 2.4.8 and the fact that the difference

Vs — Up,y (Ury (Vs))) = const. to obtain

E1[4,](0)

Ji ]k, dvols, Sq = ol

/ (2.4.59)
27"red (Urred (uT'O (U*)),ZU*)

from which (2.4.57) follows. Finally, (2.4.58) is a consequence of the fact that (v)P ~ (u)?

(using rprue < 7 < 7red) and the following well-known lemma. O

Lemma 2.4.2. Let f: [1,00) = R>q be continuous and assume that there exists a q € R,
q > 1 such that fjxf(s)ds < x% for all > 1 and some constant D > 0. Let 1 < p < q be
fixed. Then, floo sPf(s)ds < C(q,p)D for a constant C(p,q) > 0 only depending on p and
q.

Proof. Set x; := 2'. Then, floo sPf(s)ds = S25°, [T sPf(s)ds < 2PD Yo 2ip—iq

i=0 Ju;

C(q,p)D. O

Remark 2.4.1. From now on we will consider p and q as fixed and constants appearing

in <, 2 and ~ can additionally depend on 1 < p < q.

~ o~

By doing the analogous analysis in the neighborhood of the left component of i™ we

obtain

Proposition 2.4.10. Let 1), defined as in (2.3.5). Then, for any ro € [Fplue, r+) we have

|+ ) (90l + (90 + V2 + [632) dvls, S BAJ0). (2460

70

Commuting with angular momentum operators (W;)1<i<3, an application of the Sobolev
embedding H?(S?) < L°°(S?) and using the fact that p > 1, we also conclude

Proposition 2.4.11. Let v, defined as in (2.3.5). Then,

3
sup %> S Ex[s)(0) + D Ed[WWj)(0). (2.4.61)

BN {rplue<r<r4} ij=1
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Finally, we will use the decay towards ™ to show uniform boundedness in the interior

and continuity all the way up to and including the Cauchy horizon for v,.

2.4.2.3 Blue-shift region

We will now introduce the twisting function and vector field which we will use in the
blue-shift region. Recall that we look for a twisting function f which satisfies V 2 1,

where

Vo (D;f n ;) , (2.4.62)

To do so, we set f := ePpie” and obtain

O o 2 «Q
V= _;-f - ﬁ = 6g1ueQ2 + ﬁblueav"(g2) + ;ﬁblueQ2 - ﬁ (2463)
Note that for rpue > r— close enough to r_, we have
87“92 > Cplue (2464}

for all rpje = 7 > r— and some constant cpge > 0 only depending on the black hole
parameters. Thus, we obtain V 2 1 uniformly in the blue-shift region rye > r > r— by
choosing fpue > 0 large enough and 7y close enough to r—. In the blue-shift region we
define the vector field

Sy = N ((u)Pd, + (v)Pd,) (2.4.65)

for some potentially large N > 0 and p > 1 as in Remark 2.4.1. We will show in the follow-
ing that supy_, |1, (uo, vo, 0, )| is uniformly bounded from initial data D[¢),] independently
of (ug, vo) € J*(y,,,.)NB. To do so, we will apply the energy identity (spacetime integral
of (2.2.37)) in the region

Ry = Ryg(uo,v0) = JT(S) NI (v, up) = J+(E7’bluc) N{u<wu}N{v<wvy} (2.4.66)
which we depict in Fig. 2.5.
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Figure 2.5: Illustration of the region Ry as the darker shaded region in the Penrose diagram
of the interior B. The lighter shaded region is the blue-shift region.

This leads to

TN [hyInls dvole, + / JIN[hInk  dvole

Coyo (U (v0),u0)

+ [ K [y,]dvol = /

B jf”[%]n%rbl dvoly, , (2.4.67)
Rf E"ﬂblueﬁ‘] (Uo,uo) ue

where v, is defined in (2.3.5). In the following we will show, that after choosing N > 0
large enough and an appropriate integration by parts to control error terms, we can control

the flux terms by initial data. This gives

Proposition 2.4.12. Let v, defined as in (2.3.5). Then,

TN [yInls dvole, + / TN [y]ntt dvole
/Cuo(vrblue(u0)7v0) g “o 0 C (u'rblue(vo)yuo) : —vo o

L)

S / j;?N W}b]n‘;}r dVOIETblue < Eq[1,](0) (2.4.68)
Zrbluem‘]i(UO”U‘O) blue
and
/ (07100332 + (P2 + 132)0%) dudos:
Cug (v’“blue (u0),v0)
+ (710 + (2 + 1[2)92) dodr:
¢ (u'rblue (UO)’UO

0

S / TNk, dvols, < Er[t4])(0) (2.4.69)
27"blue nJ- (U07u0) ue
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for any (ug,vo) € JT(3y,,..). Commuting with the angular momentum operators (W;)1<i<s

also gives

3
/c S )<U>p(\3v¢b|2 + ) 107 dudose S Erfth](0) + Y By VWit ](0).

2 4,j=1
(2.4.70)
Proof. The general strategy of the proof is to apply (2.4.67) and to show that
/ K*®Ndvol > 0 + boundary terms, (2.4.71)
Ry

where the boundary terms are small (lower orders in Q) and by choosing 7pe closer to
r—, can be absorbed in the positive flux terms on the left hand side of (2.4.67). In the
first part, we compute the flux terms for our vector field SV defined in (2.4.65). Then, in
the second part, we will estimate the bulk term and indeed show (2.4.71). From this we
will then deduce (2.4.68).

Part I: Flux terms of Sn. We obtain three flux terms from (2.4.67). The future

flux terms read (cf. Proposition 2.6.1)

JIN [p]ng dvole,
/C“O (Vrp e (10)00) : o 0
(u)?

= / <<v>”lmwb\2 + Q2 (Vo ° + V\wb2|)> rNt2qudoge
Cug (U (u0) v0) 4

(2.4.72)

and

JoN [de]n‘C‘ dvole,
/Cowbmc(vo),uo) 8 R

- V)P
:/c . (<U>p|Vu1/)b\2 —|—QQ<4>(|W%|2 +V’¢b’2)> PN 20 ydogs.
= urblue vo),uo

0

(2.4.73)

The past flux term on the spacelike hypersurface ¥, is uniformly bounded by initial

data from Proposition 2.4.10:

/ TN TIng, | dvols, S B [15)(0). (2.4.74)
E7"bluem‘]7 (UO’UO) e
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Part II: Bulk term of Sn. We will now estimate the bulk term

/ K*°Ndvol
Ry

appearing in the energy identity (2.4.67). The terms appearing in KN can be read off
in (2.6.4) with S% = X% = rN(u)? and S¥, = XV = rV(v)P. To estimate all terms, we
will also integrate by parts and substitute terms of the form 9,0, using the equation
Oy, = 0. The boundary terms arising from the integration by parts will then be absorbed
in the future flux terms appearing in Part I: Flux terms of Sn. In the following we shall
treat each terms of KX as in (2.6.4) with X = Sy individually.

First term of (2.6.4). The first term of (2.6.4) is non-negative:

2

— o7 (PO T P + (PO )Tt 2) = Nr¥ L (P[9P + () Vuth ).

(2.4.75)

This means that—Dby choosing N > 0 large enough—we will be able to absorb sign-
indefinite terms of the form rV=1(v)?|V ), |> and V=1 (u)?|V1h,|2. This will be used in
the following.

Before we treat the second term appearing in (2.6.4), which is sign-indefinite, we look

at the angular and potential term in the second line of (2.6.4).

Angular and potential term: Second line of (2.6.4). Now, we look at the term

involving angular derivatives. In the region Ry we have
N
= (OO0 + a6 W) - (0.0 (0P + @) (V2 + VIP)
2 () + @?) (IY%]* + VIt[?) - (2.4.76)

The terms arising when 9, hits (v)? and when 9, hits (u)?P are sign-indefinite and of the

form

=2V ()20 + ()~ u) (1997 + Vi) (2.4.77)

They are absorbed in 7V ((v)P +(u)P) (|V4, |2 + V|1, |?). Indeed, for any fixed € = €(p) > 0,
we can choose e even closer to 7_ (depending on €) such that |v|[(v)P~2 < (v)P~1 <
€((v)P+ (v —2r,)P) holds in R and similarly for |u|(u)P~2. Also recall that we have chosen
the twisting function such that V 2 1.
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Second, sign-indefinite term of (2.6.4). Now, note that the second term in the
first line of (2.6.4)

~2rN ()P + (u)?) Re (Voth, Vs ) (2.4.78)

is sign-indefinite, however, we can absorb it in other positive terms after integrating by
parts in the region Ry as we will see in the following. In order to integrate by parts, it
is useful to express the twisted derivatives with ordinary derivatives. The integration by
parts will generate boundary terms. As mentioned above, we estimate these boundary
terms with the fluxes in the energy identity. This will be done later in (2.4.84) and we
will not write the boundary terms explicitly in the following. We will also have to control
(sign-indefinite) ordinary derivatives by positive terms in (2.4.75) and (2.4.76). Note that

this is possible since

()P10u1y|* = (V)P |Vot)|” — (0)PQ° Re ($001),) — %(@”94\%\27 (2.4.79)

where the right hand side of (2.4.79) is controlled by (2.4.75), (2.4.76) and potentially

choosing 7pue closer to r_. The analogous statement holds true for (u)?|0,1,|2.

The integrated term we have to estimate reads
1 .
/ — 2N ()P 4 <u>p)ﬁ Re (8v(f¢b)8u(fz/}|,)> Q?r?dudvdog:. (2.4.80)
Ry

We only look at

’ /72 er+1 <U>ple Re (mau( f%)) 0’dudvdog:

as the term in (2.4.80) involving (u)? is estimated in an analogous manner. Using the
explicit form of f and noting that we have control over ((v)? + (u)?)Q*|¢,|? from (2.4.76),

it suffices to estimate

‘ / rN L) Re (8y1, 0y, ) Q2 dudvdos:
Ry

+ \ O (0)? Re (9, (9uhy)) Q2dudvdos:
Ry

+‘ / Q%(v)? Re (1, (0u1)y)) Q*dudvdos:|. (2.4.81)
Ry

Now, note that the second term of (2.4.81) (excluding the factor Q? appearing in the
volume form) reads r—2Q%(v)? Re (¢,(8,¢,)) and is controlled by (2.4.75) and (2.4.76)

using Cauchy’s inequality and by potentially choosing rp. even closer to r—. Now, in
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both terms, the first and third term of (2.4.81), we integrate by parts in u. We also use
Re (7,!178”%) = %&M% 2). Then, it follows that—up to boundary contributions which will
be dealt with below in (2.4.84)—we have to control the terms

NN ()P Re (¥,0,1,) Q*dudvdog:

‘ + ‘ / N+1 >p Re (%(%&;%)) Q4dudvd032
Ry

+| / ()P |4, 224 dudvdog: . (2.4.82)
Ry

The first and third term (excluding Q2 as above) of (2.4.82) are controlled by (2.4.75),
(2.4.76) and by potentially choosing 7. even closer to r—. For the second term of (2.4.82)

we will use (2.1.1) which reads

a —4 2 1 o
0= Ugruaas¥ + 2% = 2 (Guduthy) + — (0t + Outhy) + ﬁASﬂl’b + 2%

to substitute 0,,0,1,. Replacing 0,0, and integrating by parts on the sphere, we estimate
all but one term of (2.4.82) using (2.4.76) and (2.4.75). The term which we cannot estimate
with (2.4.76) and (2.4.75) is of the form

) / V)P Re (U, (1)) Qdudvdos: | = ‘ / V)P, (|1y2) Q0 dudvdog: |. (2.4.83)
Ry

This is of a similar form as the third term in (2.4.81), which we control—as before—via

an integration by parts in w. Finally we have controlled all terms except for boundary

terms arising from the integration by parts.

The first boundary terms arose from integrating by parts the first term in (2.4.81). It

consists of two parts and is of the form

rN L) Re (1, (0p1),)) Q2 dvdos: (2.4.84)

’ /Cuo ﬂ{vrblue (uo)<v<wvp}

+ } /E rN )P Re (¥, (Duty)) Q?dvdoge|.  (2.4.85)

Tblue NJ = (vo,uo)

The second term (2.4.85) is absorbed in the past flux term on the spacelike hypersurface

b by choosing rpjue possibly closer to r— and noting that dVOerblue = VO2r2dvdoge.

Tblue
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The first term (2.4.84) is controlled as follows

T’N+1<U>p Re (%(&,wb)) Qdedasg

‘ /Cuo ﬂ{vrblue (uo)<v<wvp}

<

rN L0, 2PV 2dudose

/Cuo {ry e (w0)<v<vo}

+ NPl |2 (02 i 0? iQdedo 2l. 2.4.86
Cuoﬁ{vrbl e(u0)<v<vo}

Now, note that
(P23 S (r— u)P(Q)F S 1+ (W)P(Q)3, (2.4.87)

where we have used that 7% (Qz)i < 1 for 7 > 74 (rplue) Which holds true since Q2 decays
exponentially as r, — co. Using (2.4.87) we absorb (2.4.86) in the flux term (2.4.72) by
potentially choosing 7pue closer to r— such that 2 is uniformly small in the blue-shift
region. Completely analogously, we control the other boundary terms which arose from

integrating by parts.

Now, we are left with the terms of the last two lines in (2.6.4).

Terms from last two lines of (2.6.4). We will only look at the terms with v
weights as the terms involving u weights are estimated completely analogously. It suffices

to estimate the terms

02 )
N P N 2.4.
g ]+ o o2 (2.4.88)
and
O f?= o
= ()P 2 Vot V. (2.4.89)
Since %’?)‘ < 02, we control the terms in (2.4.88) using (2.4.76) and by potentially

choosing 7pjye closer to r_. Expanding (2.4.89) yields

Dy f2
22

N )P LT, = ~2Baer™ (0)7Re (Tt Vot ) + 22N (02 0, .

(2.4.90)

The second term on the right-hand side is estimated by (2.4.76) and potentially choosing
Tblue Closer to r—. The first term on the right-hand side of (2.4.90) has the same from as
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(2.4.78) and is estimated in the same way as (2.4.78).
Finally, we have estimated and absorbed all sign-indefinite terms in the energy identity
to obtain (2.4.71). Thus, we have proved (2.4.68), which concludes the first part of the

proof.

Part III: Proof of (2.4.69) and (2.4.70). Now, observe that the estimate (2.4.69)
follows from (2.4.68) and (2.4.79). More precisely, the error arising from interchanging the

twisted derivatives with partial derivatives on C, are estimated as
- _ 1
(V)P 10u3|* = (V)P [Vut* + (0)PQ" Re ($,00) — 7 (0)" Q[ [*
< ()P [V ? + [(0)PQ° Re (4, 0uty) |-

Finally, note that the error term on the right hand side is controlled as in (2.4.84). This

works for C,, completely analogously which concludes the proof. O

2.4.2.4 Uniform boundedness and continuity at the Cauchy horizon for bounded
frequencies

Now, Proposition 2.4.12 allows us to prove the uniform boundedness.

Proposition 2.4.13. Let 1, be as defined in (2.3.5). Then,

sup  [1[* < Ei[1h,)(0 ZElwijb}(KD[wb]. (2.4.91)
BnJ+(Zo) ij=1

Proof. In view of Proposition 2.4.11, it suffices to prove (2.4.91) only in J*(%,,,..) N B.
Let (ug,vo) € JT(Xr,,,.) N B be arbitrary. Then, by Proposition 2.4.11, Proposition 2.4.12
and the Sobolev embedding on the sphere H2(S?) — L°°(S?), we have

2
v
’wb(um’UOy@:e)‘Q S (/ ‘8v¢b(u07'079079)dv> + ‘wb(umvrblue(uO)v@ve)’Q

"blue (uo)

5/ (0)P|0u1)y*dvdos
cuo (UTbl e(’uo) UO)

t Z/ < Y210, WiW;1h, P dvdoge
uO (U’"blue uo Uo
3
+ Exfih)(0 Z Ei[WiWyih] < Erfi)(0) + Y B [WViW;13,](0),
L=l ij=1
(2.4.92)
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where (W;)i—123 are the angular momentum operators. This shows (2.4.91). O

Proposition 2.4.14. Let 1), be as defined in (2.3.5). Then, 1), is continuously extendible
beyond the Cauchy horizon CH.

Proof. Similarly to (2.4.92) we have

V2 v2
W}b(u()vv%@ve) _¢b<U07U17807 9)‘2 5 / <'U>pd’l}/ <U>p|8fuwb<U,0,’U7g0, 9)‘2(1?}

v1 v1

V2 3
S [T [ Bwl+ Y B | 240

v ,j=1

uniformly in ug, ¢, 6. The same estimate holds after interchanging the roles of u and v.

After commuting the equation with Ws, we have from (2.4.91)

3
sup [0 u[* 5 E1[0,5)(0) + > EiWiW;8,)(0) < C < o0 (2.4.94)
i,j=1

for some constant C' < oo depending on the initial data. (Recall that we assumed our

initial data to be smooth and compactly supported.) Thus, for ¢1 < @2, we have

P2 N
‘¢b(u0>7]0>§02a0) _@ZJb(UO,UO,Wl,HO)F 5 / Slép|8<,0¢b‘ < 0‘802 _801‘ (2495)

¥1
uniformly in ug, vg, 8g. A similar estimate holds true for 6. Applications of the fundamental

theorem of calculus and a triangle inequality finally yield the continuity result for ¢,. O

2.5 High frequency part

In the previous section we have shown the uniform boundedness for the low frequency part
Y,. Now, we turn to ¢y, the high frequency part. The key ingredient for the proof of the
uniform boundedness for [¢4| in the interior is (a) the uniform boundedness of transmission
and reflection coefficients associated to the radial o.d.e. (2.4.3) which is proved in [82] for
A = 0, together with (b) the finiteness of the (commuted) T-energy flux on the event
horizon given by (2.2.22).

Now, recall the radial o.d.e. (2.4.3) which reads —u” + Vyu = w?u in the interior,
where V; decays exponentially as r, — 4oo(r — r_) and r. — —oo(r — ry). For
w # 0, so in particular for |w| > <, the radial o.d.e. admits the following pairs of mode

solutions (u1,u2) and (v1,v2), where u; and ug are solutions to (2.4.3) satisfying u; =
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ers 4+ Oy(r —ry) and ug = e~ + Oy(r — r4) as r. — —oc. Similarly, v; and vy satisfy
v1 = ™ + Oy(r —r_) and vg = e ™ + Oy(r — r_) as ry — +o00. Now, for w # 0,
the transmission and reflection coefficients T(w, ) and R(w, f) are defined as the unique

coeflicients satisfying
up = F(w, £)v1 + R(w, £)va. (2.5.1)

See [82] for more details. In the following we will state the uniform boundedness of T(w, ¢)
and R(w,r) for |w| > 4. In [82, Proposition 4.7, Proposition 4.8] this has been proven
for A = 0. However, the proof of Proposition 4.7 and Proposition 4.8 in [82] also applies

if we include a non-vanishing cosmological constant.”

Lemma 2.5.1 ([82, Proposition 4.7, Proposition 4.8|). Fiz subextremal Reissner—Nordstrom—
AdS black hole parameters (M, Q,1), a constant wy > 0 and a Klein—Gordon mass param-
eter a < %. Then, the scattering coefficients T(w, ) and R(w, ¥) as defined above satisfy

sup (“z(w7£)’ + ’%(w7£)‘) SM,Q,l,wO,a 1 (252)
|w|>“2 ,eeNg

and the mode solutions uyi,us and vi, vy are uniformly bounded

sup  [uillzeo®y SMQlwoa I, SUP  [[uallper) SMQuLwo,a 1y (2.5.3)
|w|2u.1270’£€N0 ‘UJ‘Z%,ZENQ

sup  lvillzer) SMQlwoa L SuP [[v2llLeer) SMQwoa 1 (2.5.4)
|w|>%2,eNg |w|>%2,£€No

Proof. Since we are the regime |w| > %2, the proof for A < 0 works exactly as for A =0
as shown in [82, Proposition 4.7, Proposition 4.8]. Thus, we will be very brief.
We first consider the case £ < ¢y, where £ is chosen sufficiently large later in the second

part. Note that u; solves the Volterra equation

Tx

sin(w(rs —y))

o V(y)ui(y)dy. (2.5.5)

up (ry) = e —i—/

—00

As |w| > = and since the potential V' is uniformly bounded (in the regime ¢ < £y) and
decays exponentially as r, — 400 , standard estimates for Volterra integral equations (see

[82, Proposition 2.3]) yield (2.5.3) for u; and similarly for ug, v; and vs.

9Note that for A # 0 the scattering coefficients 9t and T have a pole at w = 0. However, for frequencies
bounded away from w = 0, so in particular for |w| > % as in the present case, ¥ and %R are uniformly
bounded for both cases A =0 and A # 0. See [82] for more details.
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For the regime ¢ > £y, we will use a WKB approximation. Indeed, choosing ¢, suffi-
ciently large, we have that p := w? — V is positive for r, € R and smooth. Now, u; is
a solution of the radial o.d.e. v” = —pu. Just like in [82, Equation (4.149)] we control
the error term F'(r,) = j*oo p‘i | %p‘i |dy of the WKB approximation and conclude that
uy remains uniformly bounded. Similarly, this holds true for us, v1 and vy and for the

scattering coefficients SR and ¥ which concludes the proof. O

Another result which we will use from [82] is the representation formula for 4 in the
separated picture. It is essential that |w| > %" to apply the same steps as in [82, Proof of

Proposition 5.1].

Lemma 2.5.2 ([82, Proof of Proposition 5.1|). Let ¢y as in (2.3.5). Then, we have

Yy(t,r, 0,0 S eg\; Z Yo (0 /|w|>wo]:Hj [T/’ﬁ rHX] (w, m, £)uy (w, £, 7)e™ dw
|m|<¢ 2
Z Z Yo (0 / Fout [@bﬁ [H+} (w,m, O)ug(w, ,7)e dw,
V2 £eN |w|>2
o |m|<e 2
(2.5.6)
where
Fo[0)(w,m, €) := F e (¢, Yim)s2dv (2.5.7)
and
Fot[0l(w,m, €) \/%/ D, Vi) s2du. (2.5.8)

Proof of Lemma 2.5.2. This proof is very similar to [82, Proof of Proposition 5.1| so we
will be rather brief.

Let 94 as in (2.3.5). Since the expansion in spherical harmonics converges pointwise,
it suffices to prove (2.5.6) for "L/}§m = (4, Yom)s2Yem for fixed m, . Now, define u[l/)fm] as
n (2.4.2) such that

1 .
/m Im iwt
=—Ym U e dw. 2.5.9
% V2w ¢ /( |>40 W}ﬁ ] ( )

This is well-defined in the interior in view of Proposition 2.4.1. Moreover, u[wfm] solves
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the radial o.d.e. and can be expanded in the basis u; and uy (Jw| > ):
u[z/zfm] (re,w,m, £) = a(w, m, )uy (rs, £,w) + blw, m, )ug(rs, £, w). (2.5.10)

Now, first note Proposition 2.6.4 implies that w u[@bfm](r, w) is a Schwartz function for

r € (r—,r4). Since

la(w,m, £)] = < )m}(uwgm],w) (2.5.11)

Qn ]qu)
2w

m,uz)

_ |w<u[w§m],uz>

in view of |w| > £, we conclude that w — a(w,m, ¢) is in L*(R) for fixed £, m. Recall that
the Wronskian QH( fy9) = f'g — f¢' is independent of r, for two solutions of the radial
o.d.e. (2.4.3). We have also used that [luz| =~ < 1 and [[uhl|pe S¢ 14 |w| for [w] > £
(cf. [82, Proposition 4.7 and Proposition 4.8|). Similarly, we have that w — b(w,m, 1) is in
L'(R). Using

Y™ = Y (aw,m, O)ui(r,w, ) + b(w, m, Oua(r,w, £)) etdw  (2.5.12)

xﬁr/zf

and a direct adaptation of [82, Proof of Proposition 5.1] finally shows a(w, m, ¢) = ]:Hj [wfm
(w,m,0), blw,m,l) = ]-"Hg [1/)§m [Hg](w,m,ﬁ).m This shows the representation formula
(2.5.6) for 1. O

We will now prove the uniform boundedness for .
Proposition 2.5.1. Let ¢y be as defined in (2.3.5). Then,

sup  [vx]* < E1fuy] (0) + Z Ey[WiW,)(0) < D). (2.5.13)
BAJ+ (o) ]

Proof. We start with the representation of 14 as in (2.5.6). For convenience, we will only
estimate the term involving .7-"7_[: [¢](w, m, ¢) and assume without loss of generality that
]:HE [#](w,m,¢) = 0. Indeed the term ]:HE [¢](w, m, ¢) can be treated analogously. Now,

10More precisely, following the lines starting from equation (5.20) in [82, Proof of Proposition 5.1] which
contain an application of Lebesgue’s dominated convergence, the Riemann—Lebesgue lemma and the inverse
Fourier transform yields the result.
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in view of (2.5.3), we conclude

2

[Wy(r b0, PS> D Ym(«ﬁﬁ)[

£eNg meZ,|m|<e

<y 3 /01+f32‘f%[¢”%£](w,m,f)

£eNg meZ,|m| <t

Yo (¢, 0)[? 1
DIEDY M/l i

2
“o W
0eNg meZ,|m|<t W=

N Z Z /w|>“0(1 +€)3w2 ‘-FHA Wu FHX] (w,m,é)rdw

Ny mez,jm|<¢” |

Fru [Uiﬁ fﬂﬂ (w, m, £)dw

|> “o
2

2
‘dw

/ | Ty)|*dvdog: + Z / ITW,Wjts|2dvdose. (2.5.14)

5,j=1

Here, we have used that

20+ 1
Z Yo (0, 0)% = 4+ (2.5.15)

m=—/

which is known as Unsold’s Theorem [138, Eq. (69)].
Finally, on the right hand side of (2.5.14) we only see the commuted T-energy flux. An

application of the T-energy identity in the exterior and an energy estimate in a compact
spacetime region shows that the commuted T-energy flux on the event horizon is controlled
from the initial data (cf. (2.2.22) in Theorem 2.1). Thus, in view of (2.5.14) we conclude

3
[5(r, t,0,0) > S Erfibg)(0) + > Ex Vi) (0). (2.5.16)
ij=1

O

Proposition 2.5.2. Let vy be as defined in (2.3.5). Then, vy is continuously extendible
across the Cauchy horizon CH.

Proof. Let (un,vn,0n,pn) — (@,9,0,3) be a convergent sequence. We will also allow
4 = +o0o and ¥ = +o00 as limits which correspond to limits to the Cauchy horizon. We

represent 1y again as in (2.5.6). Similar to the proof of Proposition 2.5.1, it is enough to
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consider the case where ]:Hg [y [Hg | vanishes. Hence,

wﬁ(t’ T ¥, 9) = ! Z Z }/Zm(9>30)/

wo
27T JoNo i<t W=

.7:7{: [@Dﬁ [Hﬂ (m, £, w)uy (w, £, 7)e dw.
(2.5.17)

First from (2.5.15) we have sup,, g [Yom(¢,0)| S 1+ ¢ and from (2.5.3) we have that

sup |ug et V)| = sup |upe™?| < 1.
u,v t,r

Then, a similar estimate as in (2.5.14) and an application of Lebesgue’s dominated con-

vergence theorem allow us to interchange the limit n — oo with the sum -, Z‘m‘ <0

Since Y (0n, on) — Yo (0, @) pointwise as n — 0o, it remains to show that
[ B [0 ] s 000
Wiz~

:/ } fmA- [W fHﬂ (m%w)(T(w,é)vl(w,f,r(un,Un))
+ R(w, O)va(w, £, r(tn, Un))>€th(u"7vn)dw

converges as n — oo for fixed angular parameters m, £. But, in view of (2.5.2), depending
on whether v = +00 or & = +00, we can deduce the continuity using Lebesgue’s dominated
convergence and the Riemann—Lebesgue lemma. Both are justified by a slight adaptation
of the steps which resulted in (2.5.12). This concludes the proof. O

2.6 Appendix
2.6.1 Twisted energy-momentum tensor in null coordinates in the inte-
rior

We will write out the components of the twisted energy-momentum tensor in the interior.

Proposition 2.6.1. Consider null coordinates (u,v, 8, ) in the interior region B. Recall
that the metric is given by (2.2.39). Let f € C°(B) be a spherically symmetric nowhere
vanishing real valued function and X be a smooth vector field of the form X = X“0, +
XY0,.

The components of the twisted energy-momentum tensor (2.2.33) associated to f are
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given by

2 2
Tuu = ﬁu 2= f? au <¢> >Tvv = @v 2= 2 av (fb) )
Vud|” = f 7 Vo] 7

_ _ 2
T = Ty (|Y7¢!2+V|¢I2),
Tog = |0po|? Re (V, ¢V r Vo|* + V||

99—|9¢|+§ e( u® v¢>—§(| o> +Vol*),
- 2r2 sin? 0 = Zsin% 0
Ty = 0,0 + T’ (S;; Re <VU¢V”¢> e (W¢|2 + V9| )

The deformation tensor Xm = %Exg 18 given by

2
X, _vv v X U u
7 = QQ@X = QQ@X
Xw“”:——(auX“JravX”) 2 (9 +a” QZX“
02 02 \/92 V2 ’
02 0?2
X_ 00 v u v u
= (X'4+ X L ——_— (I C)Y
m 2r3( + ) m 2r3 sin26?( +X7)

In the following we explicitly write down future-directed normals and induced volume

forms for hypersurfaces of constant r values X, and for null cones C, and C,, of constant

u and v values, respectively.

1
ny, = —@(au + 9,),dvoly, = r’VQ2dogedu = r*VQ2dogadv,

2 r?
ne, = @&A,dvolgv = EQ dog2du,

2 r2 9
ne 53 0v,dvole, = 59 dogadw.

Then, the fluzes of X are given by
~ 2XY - X
T [0, = ~55 IVudl® + = (1Yol + VIsP) , (2.6.1)
~ 2X XV
T lolng, = 5 IVudl® + = (IVo* + VIel) (2.6.2)

B ; 02
TXloln, = V%(X“mmumwu4<X“+X“><|v¢|2+w¢2>). (263
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The twisted bulk term associated to the twisting function f reads (cf. [144])
RX = X, T 4 X75,,

where

Svy V*(fv)‘¢|2 f =

2f

Voo V76,

In coordinates we have

KX == 2 (0,519 +0,X" 906l ) — 2(X* + X*) Re(T0g¥0)

QQ
2
- (2(8UXU +o,xm - I8

(x? +X“>) (V6P + VIo?)

QQ v U 2 u ( ) 2 o
+ o xio + xe (-2 g 0L s )
v ( ) 2 an o
+X (— s |9F = S5 VooV ¢> (2.6.4)

2.6.2 Construction of the red-shift vector field

In this section we will give the proof of Proposition 2.2.3.

Proof of Proposition 2.2.3. We choose the ansatz N = N“0, + N"9, for our red-shift
vector field. We will first estimate the twisted 1-jet J and then the twisted bulk term K.

J current. From (2.6.2), we have

2NY - NV
o IVuol + = (17912 + VIeP) (2.6.5)

V=— (fo’f + ;) . (2.6.6)

Oof _ 2! (292 2>
=0 +0,(22)

T [9lng, =

where

First, if f = f(r) we have

.

: (2.6.7)
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where f = %. Thus, choosing f = e Pred” gives

O f [0} 2Bred «
v (B 5) = - @) - PG o)

Note that for r..q < r4 close enough to r4, we have
—0,9% > Creq (2.6.9)

for all req < r < r4 and some constant c,eq > 0 only depending on the black hole
parameters. The constant ceq > 0 does not decrease, when we choose r..q even closer
4. Now, by choosing feq > 0 large enough to absorb the negative contribution from —z
and by choosing ry.q close enough to ry, we ensure that V 2 1 in req < r < ry. This
finally shows that if we take N as a future directed vector field, the 1-jet .J /iv ngv is positive

definite. We will construct the explicit form of N in the bulk term estimate.

Bulk term K. Now, we will estimate the bulk term. We will choose the components
of the timelike vector field N = N*9,, + N0, as

11 0?
NY:=————and N :=1— —. 2.6.10
R 5 (26.10)
Note that N is smooth in R,cq. Moreover, for fixed d1,d2 > 0 (only depending on the black
hole parameters), we can choose 7¢q close enough to 7 such that N is future directed in

Rreqd- Then, note that

R0 = (-0,0) (L9002 + el¥uol?) - 2 (g = 5 +1 5.9 Re(T.0%.0)

r\Q2 4 82
(2.6.11)
1 (F58) (G -1+ BE) e+ vio (2.6.12)
v (1 n <1 - 511> 02 51294> VigP (2:6.13)
T <$2 - 511> W\W + <$2 - 511> %@%W% (2.6.14)
+ <1 _ (5222> _a;(fffv)wﬁ T <1 - ?j) @f@aww (2.6.15)
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In the following we will show that

KN[gl 2 %I%W + [Vod? + (IV0]? + V]o]?). (2.6.16)

We will start with the sign-indefinite term appearing in (2.6.11). We estimate it as follows

1 9 2, 119, 42
\_<Q_+1_52Q> o(Fus¥0)| £ GIVuP + LIVuP,  (2617)

where we have applied an e-weighted Young’s inequality. We have also used that—by
choosing 7eq closer to r4—we can make 2 uniformly smaller than any constant, in
particular smaller than §; and 2 once those are fixed. Choosing e small enough, we absorb
the term &\@u(b\? of (2.6.17) in the first term of (2.6.11). Then, choosing d2(d1, €) small
enough, we can also absorb the term %|@v¢|2 in the first term of (2.6.11). Completely
analogously and by potentially choosing do and d; even smaller, we estimate the terms of
the form é Re(ﬂ@vgﬁ) arising from (2.6.14) and (2.6.15).

Next, note that, in view of V 2 1 and ’%@2)})‘ < 02, we choose 41 small enough such
that we absorb error terms coming from (2.6.14) and (2.6.15) in the term with the good
sign in (2.6.12). By doing so we also have to make (e, d1) > 0 small enough. Finally, once
81 and d, are fixed, note that we can make terms involving higher orders of Q2 arbitrarily

small by choosing ryeq close to 4. This finally shows (2.6.16) and concludes the proof. [

2.6.3 Well-definedness of the Fourier projections ¢, and

Proposition 2.6.2. Let ¢ € C°(Mgnaas \ CH) be as in (2.3.4) and let r € (r_,r4),
(,0) € S? be fized. Then, t — (t,r,0,¢) is a tempered distribution. Moreover, higher
derivatives t — 0%)(t,r,0, ), where O € {8y, 0,, Oy, 0,} are also tempered distributions.

Proof. Fix r € (r_,r1), (¢,0) € S2. We will first prove that t + (¢, 7, p,0) is slowly
growing.'! Since 1) € C*®°(Mgnaas \ CH) and in view of the facts that [, commutes with
T = 9; and our initial data are smooth and compactly supported, it suffices to obtain a
polynomial bound for ¥(¢,r,,0). To do this we will propagate mild polynomial growth
from the exterior region in the interior. (Note that this growth is far from being sharp

but it will be sufficient for the purpose of proving well-definedness of 1, and 1).)

From Theorem 2.2 and Remark 2.2.2 we infer that +) and its derivatives remain bounded

HVWWith slowly growing we mean that ¢ — Y(t,r, ,0) and all its 9; derivatives have at most polynomial
growth as [t| — oo.
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along the event horizon H. A direct integration yields
/ o vl S () (2.6.18)
v1,02

where (v9) denotes the Japanese bracket and 0 < v; < wy. The constant appearing in
Svo,un depends on some higher Sobolev norm of the initial data.

Then, using the red-shift vector field (more precisely, applying Proposition 2.2.4) yields
/ Ty [W)nk, dvols, Syq.yy (v2) (2.6.19)
27'0 ('Ul 7U2)

for any ¢ € [rreq,7+). If 7 € (r—,ry) as fixed above lies in the red-shift region [ryeq,7+),
we directly conclude (2.6.21) after commuting with the angular momentum operators W;
and a Sobolev embedding on S?. If however 7 € (r_,7req), We choose Thiue = Tplue(r) small
enough such that r € [rpjue, Tred), 1-€. 7 lies in the no-shift region. Then, Proposition 2.2.5

yields

/ J X [nk, dvolg, <, / T [nks dvols, Syouir (V) (2.6.20)
3 (v,20) B eq (Vrpeq (ur(v)),20)
for any v > 1. After commuting with angular momentum operators W; and a Sobolev

embedding on S? we obtain

t
/0 ot 0, ) + |9t v 0, O)Pelt S () (2.6.21)

from which we can deduce that ¢t — (¢, 7, ,0) is slowly growing (where we recall that
r, p, 0 are fixed). Similarly, as ¢t — —o0, we obtain the same conclusion.

Now, commuting with J;, the angular momentum operators W; and using elliptic
estimates it follows that higher order derivatives are also slowly growing which concludes
the proof. O

Corollary 2.6.1. The Fourier projections v, and 1y in the interior B as in (2.3.5) are
well-defined and are smooth solutions of (2.1.1).

Proof. From Proposition 2.6.2 we know that ¢ — (¢, r, p, ) is a tempered distribution
in the interior for fixed r,¢,0. Thus, v, defined in (2.3.5) is well defined as F-'[xy,] is
a Schwartz function. Moreover, 1, is smooth because ¢ is smooth itself and by Proposi-
tion 2.6.2 we have that all higher derivatives t — 0¥ (t,r, o, §) are tempered distributions,
too. Now, this also implies that 1, € C°°(B) solves (2.1.1) which concludes the proof in

161



view of 1) = 1y, + 1. O

Proposition 2.6.3. Let ¢ € C®°(Mpgnaas \ CH) be defined as in (2.3.4). Then, there
exist 1, € C*°(Mpgnads \CH) and 1y € C*°(Mpgnaas \CH), two solutions of (2.1.1) with

1
V2T

where Xu, 15 defined in (2.3.6) and

Py, = Tt IXwo) * ¥ and vy = ¢ — 1y, (2.6.22)

Bitre) = [ P ()t = s 0)ds (2.6.23)

in all coordinate patches (tr,,TRA>0R A PRA): (tRp TRy, ORE: PRE) and (t3,78,08, 0B)
in the regions R4, Rp and B, respectively.

Proof. First, from Theorem 2.2 we know that i and all higher derivatives decay loga-
rithmically on the exterior regions R4 and Rp.'? Hence, ¢ and all higher derivatives
are smooth tempered distributions (for fixed r, ¢, #) in the exterior regions R4 and Rp
as functions of tg, and tgr,, respectively. Thus, the Fourier projections v, (2.6.23) is
well-defined in R4 and Rp and it follows by Lebesgue’s dominated convergence that 1,
is a smooth solution of (2.1.1). Moreover, from Corollary 2.6.1 we deduce that v, is also
a well-defined smooth solution of (2.1.1) in the interior B.

Finally, 1, defined a priori only in R4, Rp and B, extends to a smooth solution of
(2.1.1) on MpgNads \ CH. This follows from using regular coordinates near the respective
event horizons (outgoing Eddington—Finkelstein coordinates (v, r, 8, ¢), where v(t,r) = t+
Te,7(t,7) = 1,0 = 0,0 = @ near H 4 and ingoing Eddington—Finkelstein coordinates near
‘Hp) and writing 1, again as a convolution in this coordinate system v, = \/%}"T_ L [Xewo | %

Note that T" = 3, in this coordinate system. This concludes the proof in view of ¥ =
Yy + g O

Proposition 2.6.4. Assume that ¢ € C°(Mgrnadas \CH) is a solution of (2.1.1) arising
from smooth and compactly supported initial data as in Theorem 2.1. Assume further that
there exists an L € N with (¢, YY) 2(s2y = 0 for £ > L. Then, for every r € (r—,ry)
and (0,¢) € S2, the function t v+ (t,r,¢,0) is a Schwartz function. Moreover, higher
derivatives t — 0%)(t,r,0, ), where 0 € {0y, 0y, Oy, 0y} are also Schwartz functions.

Proof. The proof follows the same lines as the proof Proposition 2.6.2 with the difference

12This decay is only used in a qualitative way.
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that we have exponential decay on the event horizon

vy
/v1 Jliv [w]n;‘ﬁdvole < D[y] exp (—e_C(M’Q’l’O‘)Lm) , (2.6.24)
where D[1] is as in (2.3.2). Note that (2.6.24) follows from [|. Analogously to the proof
of Proposition 2.6.2 we can propagate this decay to any {r = const.} hypersurface in the
interior. This is very similar to [20]. As before, by commuting with 9; and W; as well as
using elliptic estimates, we see that on {r = const.}, ¢ and higher derivatives 0% decay

exponentially towards both components of i*. This concludes the proof. ]
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Chapter 3

Diophantine approximation as

cosmic censor for AdS black holes

3.1 Introduction

We consider perturbations v solving the conformal scalar wave equation
2
Ogtp — gA@ZJ =0 (3.1.1)

on Kerr—AdS black holes (M, g), see already (3.2.11) for the metric. We restrict to subex-
tremal parameters satisfying the Hawking—Reall bound (3.2.8) and assume a # 0. We
further consider reflecting boundary conditions at infinity. Our main result Theorem 3.1
shows that perturbations ¢ solving (3.1.1) blow wup everywhere at the Cauchy horizon
on Kerr-AdS if the dimensionless black hole parameters mass m = My/—A and angu-
lar momentum a = av/—A satisfy certain Diophantine properties. We show that such
black holes are Baire-generic but Lebesgue-exceptional. This is in sharp contrast to
the analogous result [81] on Reissner—Nordstrom—AdS black holes in Chapter 2, where it
was shown that such perturbations remain bounded and extend continuously across the
Cauchy horizon.

We also conjecture that, if the dimensionless black hole parameters mass m = M+/—A
and angular momentum a = av/—A do not satisfy the Diophantine conditions, linear per-
turbations remain bounded at the Cauchy horizon. This would then hold for Lebesgue-
generic but Baire-exceptional black hole parameters.

Since the black hole parameters satisfy the Hawking-Reall bound, superradiance is

absent. In particular, the instability in Theorem 3.1 originates from an intricate resonance
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phenomenon of stable trapping in the exterior coupled to the zero-frequency resonances
associated to the Killing generator of the Cauchy horizon in the interior. In order to
present our main theorem and the connection of the linear scalar analog of the Strong
Cosmic Censorship conjecture (Conjecture 3) on Kerr—AdS to Diophantine approximation,
we will first outline the behavior of waves on the black hole exterior in Section 3.1.1 and

then focus on the interior in Section 3.1.2. Finally, putting both insights together, the

initial data

Figure 3.1: (I): Exterior propagation, (II): Interior propagation

connection to Diophantine approximation becomes transparent in Section 3.1.3. This
will lead to a new expectation that transcends Conjecture 3 and Conjecture 4 which we
formulate in Section 3.1.4 in terms of Conjecture 5 and Conjecture 6. In Section 3.1.5
we state the our main result Theorem 3.1, which resolves Conjecture 5 in the affirmative.
Then, in Section 3.1.6 we give an outlook on Conjecture 6. We briefly describe our proof

of Theorem 3.1 in Section 3.1.7 and give an outline of Chapter 3 in Section 3.1.8.

3.1.1 Exterior: log-decay, resonances and semi-classical heuristics

We recall from the discussion in the introduction of the thesis the result by Holzegel-
Smulevici [75, 77| that perturbations 1) solving (3.1.1) decay at a sharp inverse logarithmic

rate

(3.1.2)

on the Kerr—AdS exterior. The reason for the slow decay is a stable trapping phenomenon

near infinity. One manifestation of this phenomenon is the existence of so called quasi-
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modes and resonances (quasinormal modes) which are “converging exponentially fast” to
the real axis. While our proof of Theorem 3.1 does not make use of a quasinormal mode
construction or decomposition, they do provide good intuition—paired with the interior
analysis in Section 3.1.2—how the relation to Diophantine approximation arises. Our dis-
cussion of quasi(normal) modes starts with the property that (3.1.1) is formally separable

as shown in [13].

Separation of Variables. With the fixed-frequency ansatz

’LL(T) . »
= ——2 G i(aw,cosB)emPe it 3.1.3
the wave equation (3.1.1) reduces to a coupled system of o.d.e’s (see already (3.2.36)).
The radial o.d.e. reads

—u"(r*) + V(r*,w, Ape)u =0 (3.1.4)
for a rescaled radial variable r* € (—o0, ) with 7*(r = r;) = —o0, 7*(r = +00) = §. The

radial o.d.e (3.1.4) couples to the angular o.d.e. through the potential V' which depends

on the eigenvalues \,,¢(aw) of the angular o.d.e.
P(aw)Spe(aw, cos0) = A\pe(aw)Spe(aw, cos f), (3.1.5)

where P(aw) a self-adjoint Sturm—Liouville operator. The radial o.d.e. (3.1.4) is equipped
with suitable boundary conditions at r* = —oo and r* = 5 which stem from imposing reg-
ularity for v at the event horizon and Dirichlet boundary conditions at infinity. This leads
to the concept of a mode solution ¢ of (3.1.1) defined to be of the form (3.1.3) such that
u solves (3.1.4) and S,,¢ solves (3.1.5) with the appropriate boundary conditions imposed.
If such a solution ¥ were to exist for w € R, this would correspond to a time-periodic solu-
tion. Such a solutions are however incompatible with the fact that all admissible solutions
decay. Nevertheless, there exist “almost solutions” which are time-periodic. This leads us

to the concept of

Quasimodes. In 77| it was shown that there exists a set of real and axi-symmetric
frequencies (wy,, my, = 0, £, )nen such that the corresponding functions ,, “almost” solve
(3.1.1) in the sense that Oyt + 2Ath, = F, with |F,| < exp(—n). These almost-solutions
are called quasimodes and their existence actually implies that the logarithmic decay is
sharp as shown in [77]. These quasimodes are equivalently characterized through the

condition that the Wronskian 20[ug+, uso] of solutions ugy+, us of (3.1.4) adapted to the
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boundary conditions satisfies

|w[uﬂ+7u00]<wn7mn7£n)’ Se . (316)

~

The reason why there exist such quasimodes is the fact that in the high frequency limit,

the potential in (3.1.4) admits a region of stable trapping, see already Fig. 3.2.

Quasinormal modes. Although the Wronskian 20[uy, us] does not have any real
zeros, Wluyy, uso| # 0, it might very well have zeros in the lower half-plane with Im(w) < 0.
These zeros correspond to so-called quasinormal modes, i.e. finite energy solutions of the
form (3.1.3) which decay at an exponential rate. For a more precise definition, construction
and a more detailed discussion of quasinormal modes in general we refer to the introduction
of [58]. Turning back to Kerr—AdS, we note that the bound (3.1.6) implies the existence
of zeros of W[uy+, us] exponentially close to the real axis as shown in [59], see also [145].
More precisely, it was shown that there exist axisymmetric, finite energy solutions to

(3.1.1) of the form (3.1.3) with frequencies m = 0 and (w,¥) = (wn, {n)neN satisfying

cly, < |Re(wn)| < Cly, (3.1.7)
0 < —Im(wy) < Cexp(—cty). (3.1.8)

While the previous results were proved in axisymmetry to simplify the analysis, in princi-

ple, they also extend to non-axisymmetric solutions as remarked in [59].

Semi-classical heuristics. We turn to the heuristic distribution of quasinormal
mode frequencies in the semi-classical (high frequency) limit. For large m € Z, ¢ > |m/|, we
expect a quasinormal mode with frequencies m, ¢,w = wr + iwy to exists, if the potential

V(r*,wr, m, Ame(aw)) appearing in the radial o.d.e. (3.1.4) satisfies (see Fig. 3.2)
o V(r*,wr,m, Apme(awr)) > 0 for r < r* < rog,
o V(r*,wr,m, \pe(awr) < 0 for ro < r*.

Note that the conditions above are satisfied for a range of wg of the form ¢/ < |wg| < CY.
In addition, the potential has to satisfy the Bohr—-Sommerfeld quantization condition, i.e.

the phase space volume

1
%Vol {(r*,€): E +V(r*,wr, m, Ame(awr)) < 0,7 > 2} (3.1.9)

should be an integer multiple modulo the Maslov index. Heuristically, we expect that for

given but large |m/|,¢ > |m|, there exist N(m, ¢) quasinormal modes with N(m,¢) ~ ¢ and
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V(r*,w,m, Ape(aw))

ENTE

Figure 3.2: Potential V' with parameters for which we expect quasimodes. The grey area
is a suitable projection of the phase space volume.

(Wmtn)n=1,. ,N(m,¢) satisfying

cl < |Re(wmen)| < CY, (3.1.10)
0 < —Im(wpmen) < Cexp(—¥). (3.1.11)

For our heuristic analysis we will now consider a solution ¢ of (3.1.1) which consists
of a sum of quasinormal modes. (Warning: A general solution cannot be written as a sum
of quasinormal modes.) We denote with t,,s, the quasinormal mode associated to the

frequencies (wyem, m, ) and formally consider the sum

N(m,f)

Y, 0,0) =D > > Yen(t,7,60,0). (3.1.12)

meZ (>|m| n=1
Restricting v to the event horizon yields

N(m,L)

Y Iy (v,0 (;5+ Z Z Z a(m,¢,n)e Mmf"“Smg(awmgn,cos Q)eimg”f (3.1.13)

meZ (>|m| n=1

for suitable weights a(m, ¢,n). Since 1) F?—L has finite energy and finite L? norm along the
horizon, we infer that >-, .7 > s 2 0= me) la(m, £, n)]QWM < oo. This is true if
the weights satisfy (see (3.1.11))

la(m, £,n)|* ~ exp(—£). (3.1.14)
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3.1.2 Interior: scattering from event to Cauchy horizon

7 \ o
7 \
P e
v 7 N
Q?A 7 \
7 \

7 \
7 \
7 \

Sy p—crn
&
N

Figure 3.3: Interior scattering G4, ¢ from event horizon H to Cauchy horizon CH

We now turn to the interior problem and we will view some aspects of the propagation
of ¥ from the event horizon to the Cauchy horizon as a scattering problem as visualized in
Fig. 3.3. We refer to Chapter 1 for a detailed discussion of the scattering problem on black
hole interiors. Unlike Chapter 1, we will not develop a scattering theory for Kerr—AdS,
but rather make use of a key insight from Chapter 1 adapted to our context. Recall from
Proposition 1.6.2 that on Reissner-Nordstrom—AdS, the scattering operator &y, ¢y in
the interior has a zero-frequency resonance. This zero frequency, however, has to measured
with respect to the Killing generator of the Cauchy horizon. In the present case for Kerr—
AdS, the vector field K_ := T+ w_® generates the Cauchy horizon. One thus expects the
analog of the scattering operator &4;,_,c, on the interior of Kerr—AdS to have the form

Gy = F LoR(w,m,f) o F=F Lo tw,m, 6)

W —w_m

oF (3.1.15)

with the zero frequency resonance w —w_m = 0. At this point, we also refer to Fig. 3.4 for
an illustration of the main difference of the behavior of linear perturbations on Reissner—
Nordstréom—AdS and Kerr—AdS.

3.1.3 Heuristics and relation to Diophantine approximation

We now connect the exterior analysis from Section 3.1.1 to the interior analysis in Sec-
tion 3.1.2. The following analysis will be purely formal but illustrates the connection to
Diophantine approximation. From the exterior analysis, we assume that our solution 1 is

a sum of quasinormal modes as in (3.1.13). Now, we have to apply the scattering operator
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(IT) Interior: Low frequency resonance w = 0

Decouple

(I) Exterior: High frequency stable trapping |wl, |m|, ¢ — +oo

initial data

Boundeduess || < C or Blow-up |¢| = +00?

(II) Interior: Low frequency resonance w —w_m =0
Coupling possible for w ~ w_m and w,m — 400

= Diophantine approximation

(I) Exterior: High frequency stable trapping |w|, |m],{ — +o00

initial data

Figure 3.4: Reissner—Nordstrom—AdS (top): High frequency stably trapped perturbations
decouple from low frequency resonance w = 0.

Kerr-AdS (bottom): High frequency stably trapped perturbations couple to low fre-
quency resonance w = w-_1m.

(3.1.15) to obtain the behavior at the Cauchy horizon. First, we may formally think of
the Fourier transform along the event horizon to be only supported on the quasinormal

frequencies to obtain

(m.0)

2] ~ Z Z Z a(m, £,n)8(w — Winen)- (3.1.16)

n=1

Now, we multiply the reflection coefficient

R(w,m, () = (L0 (3.1.17)

W —w_m
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in Fourier space. Then, taking the inverse Fourier transform and neglecting t yields

formally

¥ ley ~ F L oRo Fl [y
N(m,t)

£, n)8(w - o gim
N Z Z Z / m, n w wmén)eflwuezmd)_smg(aw)dw' (3118)
W —w_m

meZ ¢>|m| n=1

Finally, we consider the L?(S?)-norm of the sphere such that we formally obtain

NGO la(m, £,n)|?

meZ £>|m| n=1

where we recall that a(m, ¢,n) decay exponentially as in (3.1.14). To resolve Conjecture 3,
we have to determine whether for such exponentially decaying coefficients a(m, ¢,n), the

sum (3.1.19) remains uniformly bounded or whether this sum can become infinite.

Small divisors and Diophantine approximation. The convergence of (3.1.19)
is an example par ezcellence of a small divisor problem. Indeed, if |wyp — w_m|
is also exponentially small in m,¢,n, the sum in (3.1.19) becomes infinite for general
a(m, ¢,n). More precisely, for the sum in (3.1.19) to become infinite, it suffices that there
exist infinitely many (m,¢,n) such that |wye — w_m| decays exponentially. Thus, we

conjecture blow-up if
|wWimen — w—_m| < exp(—¢) for infinitely many admissible (m,¢,n), (3.1.20)

where (m, ¢,n) are admissible if m € Z,£ > |m|,n=1,...,N(m,¥).

Conditions like (3.1.20) lie at the heart of Diophantine approximation. Indeed,
semi-classical heuristics suggest that w,,e, are uniformly distributed and we assume for a
moment that wp,e, = c({+ %) for n =0,1,...,/ for a constant ¢ = ¢(M, a,A). Then, the
ratio r(m,a) := “=, which is dimensionless and only depends on the dimensionless black
hole parameters (m = M+/—A, a = ay/—A), has to satisfy the Diophantine condition

(42

— X

r(M,a,\) € Z := {1‘ €R: ‘

< exp(—¥) for co-many admissible (m, ¢, n)} .

(3.1.21)

Thus, from our heuristic derivation, we conjecture that linear perturbations blow wup
on the Cauchy horizon of Kerr-AdS with mass M = m/v/—A and angular momentum
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a = a/v/—A if the ratio r = r(m, a) satisfies the Diophantine condition (3.1.21).

The set # is Baire-generic and Lebesgue-exceptional. The set % can be written

as a limsup set as

2-N U U U{xeR:‘f;?_x

moEN |m|>mg £>|m| 0<n<L

< exp(—ﬂ)} . (3.1.22)

It is a countable intersection of open and dense sets such that & is of second category in
view of Baire’s theorem. Thus, the set # is generic from a topological point of view, which
we refer to as Baire-generic. On the other hand, from a measure-theoretical point of
view, the set Z is exceptional. Indeed, an application of the Borel-Cantelli lemma shows
that the Lebesgue measure of & vanishes. This is the easy part of the famous theorem by
Khintchine [84] stating that for a decreasing function ¢, the set

T — p‘ < 9la) for co-many rationals p} (3.1.23)
q

Wig| := {:c €R: . .

has full Lebesgue measure if and only if the sum ) g ¢(q) diverges. Thus, #Z is Lebesgue-

exceptional.

More refined measure: The Hausdorff and packing measures. This naturally
leads us to consider the more refined versions of measure, the so-called Hausdorff and
packing measures Hf, P/ together with their associated dimensions dimpy, dimp
(see Section 3.2.1). The Hausdorff and packing measure generalize the Lebesgue measure
to non-integers. In a certain sense, they can be considered to be dual to each-other:
The Hausdorff measure approximates and measures sets by a most economical covering,
whereas the packing measure packs as many disjoint balls with centers inside the set. While
for all sufficiently nice sets these notions agree, they indeed turn out to give different results

in our context.

We first consider the Hausdorff dimension. A version of the Borell-Cantelli lemma
(more precisely the Hausdorff-Cantelli lemma) and using the natural cover for % shows
that the set Z is of Hausdorff dimension zero. This again can be seen as a consequence
of a theorem going back to Jarnik [79] and Besicovitch [7] which states the set W[¢] as in
(3.1.23) has Hausdorff measure

0 if Y, 4" P%(q) < o0

el = +oo if Y ¢ S (g) = o0

(3.1.24)
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for s € (0,1). However, measuring also logarithmic scales, i.e. considering the Hausdorff
measure Hf for f = log!(r) for some t > 0, it follows that the set Z is of logarithmic
Hausdorff dimension. On the other hand, using the dual notion of packing dimension,
it turns out that # has full packing dimension, a consequence of the fact that it is a

set of second category (Baire-generic) [46].
Summary of properties of %. To summarize, we obtain that
e Z is Baire-generic,
o Z is Lebesgue-exceptional,
o % has zero Hausdorff dimension dimy (%) = 0,
o % is of logarithmic Hausdorff dimension,
o Z has full packing dimension dimp(Z%) = 1.

The above heuristics will enter in our revised conjectures, Conjecture 5 and Conjecture 6,
which transcend Conjecture 3 and Conjecture 4 for A < 0. Before we turn to that in
Section 3.1.4, we briefly discuss other aspects of PDEs and dynamical systems for which

Diophantine approximation plays a crucial role.

Diophantine approximation in dynamical systems and PDFEs. Most promi-
nently, Diophantine approximation and the small divisor problem are intimately tied to
the problem of the stability of the solar system [110] and more generally, the stability of
Hamiltonian systems in classical mechanics. We refer to the discussion in the prologue
of the thesis. The small divisor problem and Diophantine approximation are ubiquitous
in modern mathematics and arise naturally in many other aspects of PDEs and dynam-
ical systems. We refer to [47, 114] and for a connection to wave equations with periodic
boundary conditions and to the more general results in [61] as well as the monograph
[130]. Similar results have been obtained for the Schrodinger equation on the torus in [86,
80, 45]. Further applications of Diophantine approximation include the characterization
of homeomorphisms on S' by the Diophantine properties of their rotation numbers or

analyzing the Lyapunov stability of vector fields, see the discussion in [87].

3.1.4 Conjecture 5 and Conjecture 6 replace Conjecture 3 and Conjec-
ture 4 for AdS black holes

With the above heuristics at hand, we now transcend Conjecture 3 and Conjecture 4
for subextremal Kerr—AdS black holes below the Hawking—Reall bound in terms of the

following two conjectures.
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Conjecture 5. Linear scalar perturbations v satisfying (3.1.1), and arising from generic
smooth data on a spacelike hypersurfaces with Dirichlet boundary conditions at infinity,

blow up
9l 22(s2) (u, 7) = 400 (3.1.25)

at the Cauchy horizon of Kerr—-AdS for a set PBiow-up 0f dimensionless black hole param-

eters mass m = M+/—A and angular momentum a = an/—A with the following properties
¢ PBlow-up is Baire-generic (of second category),
® PBlow-up is Lebesgue-exceptional (zero Lebesgue measure).

Remark 3.1.1. Remark that Conjecture 5 is an instability result for a linear equation.
Thus, it suffices to show that there exists one admissible set of initial data (1o, v1) leading
to a solution v which blows up in the sense of (3.1.25). Indeed, if true, this shows that
data (1;0, 1/71) for which the arising solution does not blow up are exceptional in the sense
that they obey the following co-dimension 1 property: The solution arising from the per-
turbed data (o + cibg, Y1 + 1) blows up for each ¢ € R\ {0}. This is analogous to the
notion of genericity used by Christodoulou in his proof of weak cosmic censorship for the
spherically symmetric Einstein-scalar-field system [16, 15]. It is an interesting question
to find further, more refined genericity conditions for the set of initial data leading to

solutions which blow up as in (3.1.25).

Remark 3.1.2. Moreover, we conjecture that the set PBiow-up has
e Hausdorff dimension dimg (P Biow-up) = 1 + log,
e full packing dimension dimp(PRiow-up) = 2.
Moreover, in view of our discussion we additionally conjecture

Conjecture 6.(A) Linear perturbations 1 satisfying (3.1.1), and arising from generic
smooth data on a spacelike hypersurfaces with Dirichlet boundary conditions at infinity,

remain uniformly bounded
191 2(s2)(u, 1) < C, (3.1.26)
yet, blow up in energy

Il — +oo (3.1.27)
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at the Cauchy horizon of Kerr—AdS for a set PBounded 0f dimensionless black hole param-

eters mass m = M+/—A and angular momentum a = av/—A with the following properties
o PBounded s Baire-exceptional (of first category),
o PBounded s Lebesgue-generic (full Lebesgue measure).

(B) Linear perturbations v satisfying (3.1.1), and arising from generic smooth data on a

spacelike hypersurfaces with Dirichlet boundary conditions at infinity blow up in energy
HT/]HHIIOC — 400 (3.1.28)

at the Cauchy horizon of Kerr—AdS for all subextremal parameters below the Hawking—
Reall bound.

Blow-up in amplitude. Note that in Conjecture 5 (and Conjecture 6) we have re-
placed the statement of blow-up in amplitude from Conjecture 3 with statement about the
blow-up of the L?-norm on the sphere. Indeed, the blow of the L?-norm in Conjecture 5, if
true, implies that [|¢)||fo(s2) — +00. In this sense, if Conjecture 5 is true, the amplitude
also blows up.

It is however an interesting and open question of whether one may actually replace the
L>°(S?) blow-up statement in (3.1.25) with the pointwise blow-up

lim {4 (u, 7,60, ¢~ )| — 400 (3.1.29)

for every (0,¢*) € S?. One may even speculate about the geometry of the set of
(0,¢* ) € S? for which pointwise blow-up holds. It appears that ultimately one has to
quantitatively understand the nodal domains associated to the generalized spheroidal har-

monics Sy,¢(aw_m, cosf) at the resonant frequency.

More general boundary conditions. The above conjectures are both stated for
Dirichlet conditions at infinity. Neumann conditions are also natural to consider and
indeed well-posedness was proved in [144, 78]. For Neumann conditions we also expect
the same behavior as for the case of Dirichlet boundary conditions. For other more general
conditions, it may be the case that linear waves grow exponentially (as for suitable Robin
boundary conditions [78]) or on the other hand even decay superpolynomially as in the
case for purely outgoing conditions |[74]. For even more general boundary conditions, even

well-posedness may be open.
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3.1.5 Main result: Conjecture 5 is true

Our main result of Chapter 3 is the following resolution of Conjecture 5.
Theorem 3.1. Conjecture 5 is true.
The proof of Theorem 3.1 will be given in Section 3.8.3.

Remark 3.1.3. We also prove in Section 3.8.3 the statement about the packing dimension
of PBiow-up as conjectured in Remark 3.1.2. The statement concerning the Hausdorff

dimension, however, remains open.

Remark 3.1.4. While we only consider Dirichlet boundary conditions at infinity, in prin-

ciple, our proof is expected to also apply to Neumann boundary conditions.

3.1.6 Outlook on Conjecture 6

We also expect that our methods provide a possible framework for the resolution of Con-
jecture 6.

We have already remarked in the introduction to the present thesis that our methods
may in principle also show the statement of energy blow-up Conjecture 6(B). Indeed, we
expect that a quasinormal mode which decays at sufficiently slow exponential decay rate
compared to the surface gravity of the Cauchy horizon will indeed lead to blow up in
energy at the Cauchy horizon.

Towards Conjecture 6(A), we note that our proof, particularly the formula (3.8.100),
reveals the main obstruction for boundedness which can serve as a starting point for a

resolution of Conjecture 6(A).

3.1.7 Brief description of the proof

We will give a brief description of the key ideas of our proof. First, we mention that
compared to the heuristic discussion above, we will not make use of quasinormal modes.
Our proof will be based on frequency analysis on the real axis, i.e. with w € R.

We start with the interior analysis. We recall from our previous discussion that the
analog of a scattering operator (3.1.15) from the event to the Cauchy horizon has a singu-
larity at the resonant frequency w — w_m. In reality, this singularity becomes evident in

the formula (3.8.100) which roughly translates to the statement that, as r — r_, we have

9 (w0, ™) [F2(s2y ~ D Iml* [Fulth In)(w = w_m)|? + Err(D), (3.1.30)
ml
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where Err(D) is uniformly bounded by an (higher order) energy of the initial data. Both,
the proof and the use of formula (3.8.100) lie at the heart of the proof of Theorem 3.1. The
proof of (3.8.100) is technical and combines physical space methods with techniques from
harmonic analysis. One of the key technical steps (see Proposition 3.3.3) is a quantitative
bound (see already (3.3.67)) on the derivative of the generalized spheroidal harmonics

sup HawSmg(aw)H%Q <m

|aw—aw7m|<% ~
near the resonant frequency. This is shown in Section 3.3.3 and the proof relies on uniform
bounds (in m, ¢ and w ~ w_m) on the resolvent of the associated singular Sturm-Liouville
operator, see the discussion in Section 3.3.3. These bounds are shown by constructing the
associated integral kernel using suitable approximations with parabolic cylinder functions
and Airy functions. The analogous resolvent bounds and estimates for solutions of the
radial o.d.e. in the interior are shown in Section 3.8.1. The proofs in Section 3.8.1 rely on

WKB approximations and estimates on Volterra integral equations.

In what follows, we will connect the aforementioned interior analysis and in particular
the formula (3.1.30) to the exterior. A key step is to characterize the generalized Fourier
transform along the event horizon Fy[¢) 4] in terms of the initial data which is the content
of Section 3.7. While in the actual proof (see already Proposition 3.7.1), we will make use

of suitable cut-offs in time and space, we may think of Fy[¢) [4] as having the form

1

Ful 12](w,m, £) ~ Wiy, ]

/ UOOH(¢0, ¢1)dVOlgO, (3.1.31)
3o

where H(tp,11) depends on the initial data which will be chosen to be smooth and
compactly supported. A consequence of the work by Holzegel-Smulevici [75] is that for
our choice of initial data, higher order energy fluxes along the event horizon are bounded.
Thus, |0}V |4 g € L?(H) for all 4,5 > 0 which corresponds in Fourier space to the

statement that
W[ 6 [m|72 Fa[p T3] € L*(Ris X Zm X Zys|my) for all 4, j1, ja > 0. (3.1.32)

In view of the above and (3.1.30), in order to show blow-up, it is necessary that the
Wronskian (cf. Section 3.1.1 before) evaluated at the resonant frequency 20[uyy, too)(w =
w_m) decays (at least) superpolynomially for infinitely many (m,¢). In our proof, we
actually require that the Wronskian even decays exponentially |20[uy, too)(w = w_m)| <

e~te~I™l for infinitely many (m,¢). (Connecting this to our previous heuristic discussion
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with quasinormal modes in Sections 3.1.1-3.1.3, this can be interpreted as the statement
that there exist infinitely many quasinormal mode frequencies exponentially close to the
resonant frequencies w = w_m.)

Before we address this question of whether the Wronskian actually decays exponen-
tially |20[uy, too)(w = w_m)| < e~fe~I"! for infinitely many (m, £), we will assume for a
moment that this is indeed the case. Then, with carefully chosen initial data (see already
Section 3.6), the decay of the Wronskian |2[us, teo](w = w_m)| < e ‘e~ ™l for infinitely
many (m,{) corresponds to peaks in Fy[t¢ 4] at the resonant frequencies (see already
Lemma 3.6.2) which are however consistent with the integrability properties of Fy[t 4]
as in (3.1.32). Since these peaks appear for infinitely many (m,¢), infinitely many sum-
mands of (3.1.30) are greater than em%, see already (3.8.137), from which the blow-up
result follows.

Finally, this leaves us to address the question of whether the Wronskian satisfies
W [ugy, Uoo](w = w_m)| < e~‘e™™ for infinitely many (m,f). Similar to our previous
heuristic discussion, we will show that this Diophantine conditions holds true for a set
of dimensionless black hole parameters (m,a) = (M+v/—A , av/—A) € PBlow-up Which is
Baire-generic but Lebesgue-exceptional. We specify this set Zgjow-yp in Definition 3.5.3.

3.1.8 Outline of Chapter 3

In Section 3.2 we set up the Kerr—AdS spacetime and recall the decay statement on
the exterior as well as Carter’s separation of variables. Section 3.3 and Section 3.4 are
devoted to the analysis of the angular and radial o.d.e., respectively. Then, in Section 3.5
we define the set Ppiow-up and show its topological and metric properties. Then, for fixed
parameters in #Bjow-up We define suitable compactly supported initial data in Section 3.6.
In Section 3.7 we treat the exterior problem and estimate the behavior of the solution
along the horizon. Finally, in Section 3.8 we propagate the solution from the event to the

Cauchy horizon and eventually show the blow-up result.

3.2 Preliminaries

3.2.1 Fractal measures and dimensions
3.2.1.1 Hausdorff and Packing measures

We begin by introducing the Hausdorff and packing measure. We refer to the monograph

[46] for a more detailed discussion. For an increasing dimension function f: [0,00) —
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[0, 00) we define the Hausdorff measure H/(A) of a set A as

HI(A) := sup HI(A), (3.2.1)

where

Hg(A) = inf{z f(diam(U;)): {U;};2; countable cover of A, diam(U;) <d}.  (3.2.2)
i=1

If f(r) =r*, we write H* = H" and for s € N, the measure H* reduces to the Lebesgue
measure up to some normalization. While the Hausdorff measure quantifies the size of a set
by approximation it from outside via efficient coverings, we also recall the dual notation:
The packing measure quantifies the size of sets by placing as many disjoint balls with

centers contained in the set. Again, for a dimension function f, we define the pre-measure

Pg(A) = lir?jélp { Z f(diam(B;)): {B;};2; collection of closed,
i=1

pairwise disjoint balls with diam(B;) < 6 and centers in A} (3.2.3)

and finally the packing measure as
P/(A) := inf {Z P{(A):Ac Al} : (3.2.4)
i=1 i=1

3.2.1.2 Hausdorff and Packing dimensions

For f(r) = r® Hausdorff and Packing dimensions dimyg and dimp are now characterized

as the jump value, where the respective measure jumps from 0 to oo, more precisely
dimg(A) = sup{s: H*(A) =0}, dimp(A) =sup{s: P*(A) = 0}. (3.2.5)

We also say that a set A has Hausdorff dimension dimg(A) = s+ log if the jump appears

for the dimension function f(r) = r*log’(r) for some t > 0.

3.2.2 Kerr—AdS spacetime
3.2.2.1 Parameter space

We let the value of the cosmological constant A < 0 be fized throughout the paper. For

convenience and as it is convention, we re-parametrize the cosmological constant by the
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AdS radius

-3
l:=4]—. 3.2.6
A (3:2:6)
We consider Kerr—AdS black holes which are parametrized by their mass M > 0 and
their angular momentum a # 0. Moreover, without loss of generality we will only consider
a > 0 and require 0 < a < [ for the spacetime to be regular. For M > 0, 0 < a < [, we

consider the polynomial

A@yzuﬁ+r%<r+ﬂ>—2Mn (3.2.7)

12
We are interested in spacetimes without naked singularities. To ensure this, we define a
parameter tuple (M, a) € R, to be non-degenerate if 0 < a < [ and A(r) defined in (3.2.7)
has two real roots satisfying 0 < r_ < r4. Finally, to exclude growing mode solutions (see

[40]) we assume the Hawking-Reall (non-superradiant) bound
r3 > al. (3.2.8)
This leads us to the definition of the dimensionless black hole parameter space
2 = {(m,a) € RZ: (M, a) := (ml/v/3,al/V/3) is non-degenerate and 2 > al}.

Note that in view of (3.2.6), we have M = m/y/—A = ml/v/3 and a = a/v/—A = al/\/3.

Finally, remark that & is a Baire space as a (non-empty) open subset of R%. In
particular, this allows us to speak about the notion of Baire-exceptional and Baire-generic
subsets. Recall that a subset is Baire-meager if it is a countable union of nowhere dense
sets and a subset is called Baire-generic if it is a countable intersection of open and dense
sets. Note that if a subset is Baire-generic then its complement is meager and vice versa.

Finally, in a Baire space every Baire-generic subset is dense.

3.2.2.2 Kerr—AdS spacetime

Fized manifold. We begin by constructing the Kerr—AdS spacetime. We define the
exterior region R and the black hole interior B as smooth four dimensional manifolds

diffeomorphic to R? x S2. On R and on B we assume to have global (up to the well-known
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degeneracy on S?) coordinate charts

(tr, TR, OR, 9R) € R X (r4,00) x S?, (3.2.9)
(ts,rs, 08, ¢8) € R x (r_,r;) x S2. (3.2.10)

These coordinates (¢,r, ¢, 0) are called Boyer-Lindquist coordinates. If it is clear from the
context which coordinates are being used, we will omit their subscripts throughout the

chapter.

The Kerr—AdS metric. For (m,a) € & and M = mil/\/3 and a = al/+/3, we define

the Kerr—AdS metric on R and B in terms of the Boyer—Lindquist coordinates as

A — Aga?sin? 0 v »
00 S Y 1t @ dt + —dr @ dr + —df © df

JKAdS ‘= —

X A Ay

An(r2 4 a2)2 — Adg2 sin?
" o(r —i—aLQE a* sin esin29dqb®d¢

Ag(r? +a?) — A
Bl Z; )8 in? 0(dt @ do + do @ di), (3.2.11)

where
a? a?
Yi=r’4a?cosh, Ag:i=1— Z—ZCOS2 0, =2:=1- 7 (3.2.12)

and A is as in (3.2.7). We will also write A, :=1— ‘;—ij which arises from the substitution

x = cosf in Ag. At this point we define

—_ —_ —
a= a= a=

—_— = W= =
Ti—i-aQ’ r2 +aq2 " rZ 4+ a2

Wy 1= (3.2.13)

Now, we time-orient the patches R and B with —Vig and —Vrg, respectively. We also

note that 0; and Jy are Killing fields in each of the patches. The inverse metric reads

2 2\2 2 .2
B n 0 A A
gdes=( (" +a7)” | asin >at®at+zar®ar+;ae®ae

A A
=2 =242 Za(r? +a?) E
- 9y ® 0 - 8y @ Oy + 0y @ 0y).
+<EA9sin29 m) »® ¢’+( A A92)< : ® 05+ 05 © %)

(3.2.14)
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On R and B, we define the tortoise coordinate 7*(r) by

(3.2.15)

where A is as in (3.2.7). For definiteness we set r*(r = +00) := %l on R and r*(3(ry +
r_)) =0 on B.

Eddington—Finkelstein-like coordinates. We also define outgoing Eddington—Finkel-

stein-like coordinates (v, 7,0, d~>+) in the exterior R as
v(t,7) =t + 71X (1), Gy(h,7) = ¢+ wir*(r)xy(r) mod 2, (3.2.16)

where x,(7) is a smooth monotone cut-off function with x,(r) = 1 for r < r4 + n and
Xo(r) = 0 for r > r, + 2n for some 1 > 0 small enough such that J*({r > 2r .} N {tg =
0)N{v =0} =0 ! and n < ZF. In these coordinates the spacetime (R,gkads) can
be extended (see [75] for more details) to a time-oriented Lorentzian manifold (D, gkads)
defined as D := {(r,v,0,¢,) € (r_,00) x R x S2}. Moreover, the Lorentzian submanifold
(DN {r_ <r < ri},ggads) coincides (up to time-orientation preserving isometry) with
(B, gkags). We identify these regions and denote the (right) event horizon as Hg := {r =

r4+}. The Killing null generator of the event horizon is
K_|_ = 81} + W+8q;+. (3217)

The Killing field K is called the Hawking vector field and is future-directed and timelike
in R, a consequence the Hawking—Reall bound r > al.
To attach the (left) Cauchy horizon C#, we introduce in B further coordinates (v, r, 6, ¢_),

as

v=t+1r", ¢_(¢,r) =+ w_r*mod 2r, r=r, 6=40. (3.2.18)

In these coordinates, the Lorentzian manifold extends smoothly to » = r_ and the null

hypersurface CHy, := {r = r_} is the left Cauchy horizon with null generator
K_:=0,+w-0; . (3.2.19)

Note that 0, = 0y and 8(57 = 0y in B.

!Note that Vv is not timelike everywhere on R, in particular g(Vov, Vv) = a? sin? GEflAe_l for r €
[T+7 r++ 77] .
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To attach the left event horizon Hj; we introduce new coordinates on B defined as
(’LL, r>97¢*+) €Rx (Tfa"ur) X 82 by

u(t,r) :=—t+r", ¢ :=¢—wyr* mod 2m,r =1,0 =40 (3.2.20)
on B and attach Hy, as Hy = {r = r4}. Similarly, introduce (u,r,0,¢* ) as
u(t,r) = —t+r*, ¢ :=¢—w_r" mod 2m,r=1r,0=10 (3.2.21)

on B and attach the right Cauchy horizon CHr as CHr = {r = r_} in this coordinate
system. Indeed, Ky and K_ extend to Killing vector fields expressed as K, := —3d, +
w+8¢: and K_ := —0, + w_0y . They are past directed Killing generators of H, and
CHR, respectively. Finally, we attach the past and future bifurcation spheres By and Bey.
Formally, they are defined as By, := {v = —oo} x {r = r4} x S* = {u = —c0} x {r =
r4} x S? respectively in the coordinates systems (v,r,0, ¢4 ) and (u,r,0, ¢% ). Similarly,
we have Bey = {v = +oo} x {r =r_} x S = {u = +oo} x {r = r_} x S%. Finally, we
define the Cauchy horizon CH := CHy UCHRr U Bey. This is standard and we refer to
the preliminary section of [30] for more details. The metric gxaqs extends to a smooth
Lorentzian metric on By, Bey and we define (Mxkagqs, gxkads) as the Lorentzian manifold
constructed above. Moreover, T':= 0; and ® := 04 extend to smooth Killing vector fields
on Mgaqs with Ky =T +w;® and K_ =T +w_®.

Kerr—AdS-star coordinates. On the exterior region R we define an additional sys-

tem of coordinates (t*,7,6,¢*) from the Boyer-Lindquist coordinates through

t"=t+ A(r) ,r=r,0=0,¢0" == ¢+ B(r) (3.2.22)

dA _ _2M dB _ 4= _n_ _ :
where & = A(1+€72) and G- = 5 and A = B = 0 at 7 = +oo. As shown in [75,
Section 2.6|, these coordinates extend smoothly to the event horizon Hpr and we call the
coordinates (t*,r, 0, ¢*) covering R U Hp Kerr—AdS-star coordinates. Note that the event

horizon is characterized as Hr = {r = 4} in these coordinates.

Foliations and Initial Hypersurface. We foliate the region R UHp with constant
t* hypersurfaces >« which are spacelike and intersect the event horizon at r = r. We
also foliate the region R with constant ¢ hypersurfaces ¥; which are also spacelike and

terminate at the bifurcation sphere By as r — ro. For the initial data we will consider
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the axially symmetric spacelike hypersurface
Yo =Xi—0=RnN {tR = 0} (3.2.23)

Note that ¥y does not contain the bifurcation sphere By. We will impose initial data on
Yo U By UHp. We will choose the support of our initial data to lie in a compact subset
K C ¥on{r > 2r;}. Thus, we assume vanishing data on # U By. This will be made

precise in Section 3.6.

Boundary conditions. Note that the conformal boundary Z, expressed formally as
{r = +o0}, is timelike such that (Mgads, gkads) is not globally hyperbolic. Additional
to Cauchy data for (3.1.1), we will also impose Dirichlet boundary conditions at Z = {r =
+o0}.

3.2.3 Conventions

If X and Y are two (typically non-negative) quantities, we use X < Y of Y 2 X to
denote that X < C(M,a,l)Y for some constant C(M,a,l) > 0 only depending on the
black hole parameters (M, a,l) unless stated explicitly otherwise. We also use X = O(Y)
for [ X| SY. Weuse X ~Y for X <Y < X and if the constants appearing in <, >, ~ or
O depend on additional parameters a; we include those as a subscript, e.g. X Sg,4, Y-

In Section 3.6 we will fix parameter (m, a) € Ppjow-up and all constants appearing in
and 2 throughout Section 3.6 Section 3.7, Section 3.8 will only depend on this particular
choice and on | > 0 as defined in (3.2.6).

3.2.4 Norms and energies

To state the well-posedness result of (3.1.1) and the logarithmic decay result on the Kerr—
AdS exterior, we define the following norms and energies in the exterior region R U Hp.
These are based on the works |73, 75, 77|, where more details can be found. In the
region R U Hp we let ¢ and Y be the induced metric and induced connection of the
spheres S?*,r of constant t* and r. For a smooth function ¢» we denote |V ...V|? =
gAA/ o gBBY 4 YUY 4 ... Y. Now, we define energy densities in Kerr—AdS-star

coordinates as

0] = 10 0P + 0,0l + TP + 0P, (3220
3

eal)] := er[y] + e1[Op] + 3 e[ Q] + 0,0 + P20, Yl + VY S, (3.2.25)
=1
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and similarly for higher order energy densities. Here, (2;);—123 denote the angular mo-
mentum operators on the unit sphere in 6, ¢* coordinates. We also define the energy norms

on constant t* hypersurfaces as

HwHHoS =) —/ r¥|4)|2r?dr sin §dAde*, (3.2.26)
I

|yw|@ﬁs%) :/E r* (r?10:9* + [V* + [¢]?) r?drsin 0dOde*, (3.2.27)
t*

2 _ 2 s(,.4 2 2 2
190 ) =10+ [ G000+ 71T 0

+ Y Vo|?)ridrsin0d0de*.  (3.2.28)

We now denote the space HAdS(Et*) as the space of functions with Vi) € L2 (X4 for i =

,k and such that |[1||? < 0o and we denote with CH% g the space of functions

HE2 (S0)
1 on R UHp such that ¢ € mq:O,...,k Cq(Rt*;Hjigg’sq(Et*)), where s, = —2,s,_1 = 0 and
sj=0forj=0,...,k—2.

3.2.5 Well-posedness and log-decay on the exterior region

In the following we state well-posedness and decay for (3.1.1) with Dirichlet boundary
conditions. The following theorem is a summary of several results by Holzegel, Smulevici
and Warnick shown in |73, 75, 77, 78§].

Theorem 3.2 (|73, 75, 77, 78|). Let the initial data Vo, V1 € C°(Xg). Assume Dirichlet
boundary conditions at T and vanishing incoming data on Hy U By. Then, there exists
a unique solution 1 € C*°(Mgaas \ CH) of (3.1.1) such that |x, = Yo, nx,Y|s, = Vi,
Y [ uBy,= 0. The solutions satisfies ¢ [RrunR€ C’H}ids for every k € N. We also have

boundedness of energy as

/ e1[1]r? sin drdfde* < /
Et*

e1[1p]r? sin drdfde* < / e1[Y]r? sin fdrdfde (3.2.29)
D

Yo

for t5 > t7 > 0 as well as for all higher order energies. Similarly, the energy along the

event horizon is bounded by the initial energy as

/ \V“(‘WMQTQ sin fdvdfdeg, <j, / ex[¢]r? sin Odrdfde. (3.2.30)
Hr

0<ii1+ia<k o
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Moreover, the energy of ¥ decays

1

e1[v]r? sin 0drdfde* < ————
/zt* 1] P llog@ 1 )P

/ ea[p]r? sin fdrdfde (3.2.31)
o

for all t* > 0 and similar estimates hold for all higher order energies. Similarly, by
commuting and applications of the Soboelv embeddings, ¥ and its derivatives also decay

pointwise

1

11 qio 73 2<

0<iy+ia+i3<k

/ ep43[Y]r? sin fdrdhde. (3.2.32)
D)

3.2.6 Separation of variables

The wave equation (3.1.1) is formally separable [13] and we can consider pure mode solu-

tion in the Boyer—Lindquist coordinates of the form

u(r) —iwt ima
t,r,0,0) = —=—e 'S, y(aw, cos B)e™ 3.2.33
0(1.7,0.6) = e S cos0) (3.2.33)
for two unknown functions u(r) and S,,¢(aw, cos #). Plugging this ansatz into (3.1.1) leads

to a coupled system of o.d.e’s. The angular o.d.e. is the eigenvalue equation of the operator
P(aw) which reads

P(aw)Spe(aw, cos0) = \pe(aw)Spe(aw, cos b)), (3.2.34)
where
PE)] = Pul€)f = — ——0p(Bgsin 000 f) + =72 _Ze2A7 cos?
o T sing VY b Agsin?6 0
—2 gi“j 294 2 425in20 (3.2.35)
m A, 2 cos pa’s . 2.

The operator (3.2.35) is realized as a self-adjoint operator on some suitable domain in
L?((0,7);sin0df). As a Sturm-Liouville operator, the spectrum of P(aw) consists of
simple eigenvalues A, ¢(aw), where ¢ € Zs |,y labels the eigenvalue in ascending order.

The eigenvalue \,s(aw) of P(aw) couples the angular o.d.e. to the radial o.d.e.

—u 4 (V —whu =0, (3.2.36)
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where ’ := d‘:*. Here, the potential is given by

V=W+W (3.2.37)
with purely radial part
o _A237,2 5?—;—&—37“2(1—1—‘;—22)—4Mr+a2 2A 1
Vl — (7“2 T a2)4 —_ (7"2 T a2)3 - 1727702 T a2 (3238)

and frequency dependent part

A pe(aw) + w?a?) — Z2a?m? — 2mwaZ(A — (r? + a?))

Vo= (r2 + a?)?

(3.2.39)

We will be particularly interested in the case where the frequency parameter w excites
the resonance at the Cauchy horizon at w = w_m. Moreover, in order to be in the regime
of trapping in the exterior we also want w and m to be large. Hence, we will think of % as
a small semiclassical parameter. In particular, setting w = w_m in (3.2.36) and separating

out the m? we obtain

—u”" + (M*Vigain + V1)u = 0, (3.2.40)
where V7 is as in (3.2.38) and
Vo(w =w-_m) A Ame(aw—_m) = 5 = 2
Vmaln = m2 = (7“2 T a2)2 m2 +wia® —2aw_= ) — (w, — LL)T) .

(3.2.41)

We will prove the main theorem, Theorem 3.1, in Section 3.8.3. Before that, we
first have to show various properties of the angular o.d.e. and the radial o.d.e. for fixed

frequencies (w, m, ). We start by considering the angular o.d.e. (3.2.34).

3.3 The angular o.d.e.

For the operator P(£) as in (3.2.35) we change variables to = cosf. This is a unitary

transformation and thus, the eigenvalues of P(§) are equal to the eigenvalues of P, given
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(3.3.1)

The Sturm—Liouville operator P, is realized as a self-adjoint operator acting on a domain

D C L?*(—1,1) which can be explicitly characterized as

D={fecL*-1,1): f € AC'(—1,1), P.f € L*(—1,1), lim (1 - 23 f'(x) =0 if m = 0}.
(3.3.2)

Having the same spectrum as P, the operator P, has eigenvalues (Ap¢)¢>|m| With corre-

sponding real-analytic eigenfunctions Sy,¢ = Spe(&, x) which satisfy
PySie = AmeSme  and HSmf(g)HLQ(—I,l) =1 (333)

We note that for { = a = 0, the eigenvalues (Ayu¢)/>|m| Teduce to the eigenvalues of the
Laplacian on the sphere A\,s(a = £ = 0) = £(£+1). We also define the shifted eigenvalues

Arme(€) = Ame(€) + €. (3.3.4)

A computation (see [75, Proof of Lemma 5.1]) shows that

Pp() +€° - l%az(l —2%) > Z2P,(¢ = 0,a = 0) (3.3.5)

in the sense of self-adjoint operators acting on D C L?(—1,1). Hence,
Ame(€) > Z20(0 + 1) > Z¥m|(Im]| + 1). (3.3.6)
Having recalled basic properties of the angular problem we now focus on the resonant

frequency w = w_m. We assume that m # 0 for the rest of Section 3.3. This will simplify

the notation as % is well-defined.
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3.3.1 Analysis of the angular potential I at resonant frequency in semi-
classical limit

In the current Section 3.3.1 and in Section 3.3.2 we consider the operator

d d =2m? x?
P, =P, = D=2 (Aa0-)S ) 4= =22
_ (& =amw_) dx( ( x)dx>+Az(1—m2) a‘miwZ 2
-2 Edp 24 2021 - o?) (3.3.7)
maw,A 12$ Z2CL X .

with corresponding eigenvalues A,,p := A\ppr(aw—_m). We re-write the eigenvalue problem

P, f=X\f (3.3.8)
as
P, f=0, (3.3.9)
where
P, =A (1—:(:2)i A (1—x2)i- +m2Wy(z) + P, (3.3.10)
w— xX dﬁl’,’ xT d,:U error oI
2
Parror i= Ag(1 — x2)l—2a2(1 ) (3.3.11)
and
2 2 2 2 2 3 2
Wy =2 — [ w? +2aw_E ZQ] (1—27) — AAL(1 —z7), (3.3.12)
with
<A
A= (3.3.13)

In the semi-classical limit m? — oo we consider Puror as a perturbation and W, determines
the leading order terms of the eigenvalues and eigenfunctions. Consequently, our analysis

focuses on W; which we analyze in the following lemma.

Lemma 3.3.1. Let W be the potential defined in (3.3.12).
1. For A\ < 22, we have Wy > 0 for x € [0,1].

2. For A\ =Z2, we have W1 > 0 on (0,1] and Wy(x = 0) = 0.
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3. For A > Z2, the potential Wi has exactly one root in x € [0,1] and satisfies

dWy _ «
— 2 A 3.3.14
2 (3:3.14)

for xz € [0,1]. We call this root xo which also satisfies zo € (0,1).

Proof. We start by expanding W; and obtain

Wi(z) =22 — X+ a12® + apa? (3.3.15)
with
w— 1+aj B a*(a® —12)%(a® + 12 + 2r%)
b E 15(a2 + r2)2
2 a? a*(a® —1?)%(a® + 12 + 2r2) 5= (1 a?
- 1—|_l72 a 16(a? +1r2)2 A== +TQ
(a—0%a+D)*2a%0%r2 + (a® + )rt) - _, a?
= (a2 1 )2 +(AN=Z29) 1+l—2 (3.3.16)
and

4.2 —l2 20,2 l2 2 2 2
gp= ST HEHAT) oty (3.3.17)
16((12_,_7,3)2 2

We also note that

Wi(z =0) =22 -\ (3.3.18)

We now consider the case \ > =2 and remark that

dW;

1, = 2mrt 4aga’. (3.3.19)

We look at two cases now, as > 0 and as < 0. If as > 0, then we directly infer that
% > 2aqz. If ay < 0, then we use that 23 < z and estimate

dW:
d—l = a1z + 4asx’® > (2a1 + 4ag)x. (3.3.20)
z

Now, a direct computation yields

2a?+ 124202 - -
241 + day = 2= (fa - > > A (3.3.21)

T2 (a2 41r2)2
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Note that this shows (3.3.14) for € [0,1] and we conclude 3. Together with (3.3.18), this
also shows that Wi (z) > 0 for z € (0,1] and A = Z2 such that we have 2.

Finally for A < 22, we have Wi > 0 everywhere because for each fixed = € [0,1), the
function \ — W, (z) is strictly decreasing and Wi(z = 1) = 22 > 0. O

3.3.2 Existence of sequence of angular eigenvalues at resonant frequency
with A, = Am2 + O(1)

For our proof later on, we will use that there exists a sequence of eigenvalues of the
form A\p,0, = /~\ml2 + O(1) at the resonant frequency. To show such a result we state the
following theorem on semi-classical distribution of eigenvalues. This is also referred to as
Bohr—-Sommerfeld quantization. Its proof relies on suitable connection formulas of Airy
functions and can be found in [119, Chapter 13, §9.1]. We denote the total variation of a
function f: R — R in the interval (a,b) with V,;(f).

Proposition 3.3.1 ([119, Chapter 13, §9.1]). Let f, g € C*(R) and assume that f(z)/[(x—

Zo)(x — mg)] is positive, i.e. f has two simple roots at To < xg. Define the error-control

1 d2 1 g
F(z)= [ —F— ( 1) — —dx (3.3.22)
/ f1ad=® \|f15 ) |f]2

for some irrelevant normalization and further assume that for some large ¢ > 0,

function

e the error-control function satisfies V_oo —c(F ), Vetoo(F ) < 00,
o [T\/] diverges as x — +oo and [ “\/f diverges as x — —o0.

Then, there exists an error function ¥ satisfying |V] S.q uw™2 such that for all u large
enough the following holds true. There exists a bound state w (i.e. a solution which is

recessive at both ends x — +00) of the differential equation
w” = (U f + g)w, (3.3.23)

if and only there exists a positive integer n € N such that

2 [0 on + 1
/ J—fdz+9=""F1 (3.3.24)
Y Zo

u

With the above proposition at hand we proceed to the main proposition of this sub-

section, where we recall that we still consider the case w = w_m.
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Proposition 3.3.2. Let pg € & be arbitrary but fized. Then, for almost every Ao €
(22,00) (more precisely, for every Ao € (22, 0) \ Ny, for some Lebesque null set Ny, ),
there exists a strictly increasing sequence of natural numbers (m;);en such that for every

i € N, the operator P, admits an eigenvalue \j := \p,0;, = Ao, (W = w_m) satisfying

Ai = m 2= A 4+ A8 m2 (3.3.25)

error'’'%;

where \)\é?mr| Sﬂo,po 1 as m; — oo. Here, m; ~ £; and particularly £; < mz2 for i sufficiently

large.

Proof. We consider the equivalent formulation of the angular o.d.e. in (3.3.9) and moreover

change coordinates

x 1 ~
such that
— = A, (1 —2?%). (3.3.27)

This yields the equivalent eigenvalue problem

1 d2 1
—@d—gﬂg + (Wl + Wperror)g =0 (3328>

for g in a dense domain of L?(R,w(y)dy) with weight
w(y) == Ay(1 — 2?) = Ay (1 = z(y)?). (3.3.29)

From Lemma 3.3.1 we infer that W7 has a unique positive root for X > =2 which we denote

with yo(A) := y(xg(N)). We also define
€)= “Whdy, (3.3.30)

where we recall that W7 is symmetric around the origin. For the potential W7, we have
(e.g. [48, p. 118]) that &: (22,00) — R, X — £(X) is a strictly increasing smooth (even

real-analytic) function. Further note that

o) —r
¢ = /y A6(1—(3/)2)dy >0 (3.3.31)

dA 0 2V



so by the inverse function theorem, £ has a smooth inverse.

Now, by a standard result on Diophantine approximation (see e.g. [66, Theorem 6.2]),
we have that for each x € R\ N, where N is a Lebesgue null set, there exist sequences of
natural numbers (n;);en and (m;)ien with n;41 > n; and m;; > m; such that
2 2n; +1 1

_emit ) o (3.3.32)

™ m; o mf

for all ¢ € N. Now, since { has a smooth inverse, there exists a Lebesgue null set Ny, =
£71(NV) C (22, 00) such that for each \g € (22, 00) \ Ny, we have
2~ 2n; +1 1
~£(No) — — <

i m; m;

(3.3.33)

SN

for a sequence of natural numbers (n;);en and (m;);en with n;1 > n; and mi1 > m,.

Now, we will apply Proposition 3.3.1. First, we see that for all A in a small neighbor-
hood of Ay € (£2,00) \ Ny, the potential Wy (y) and Peyor satisfy the assumptions of the
proposition: Indeed, both W7 and Peor are smooth. Moreover, Wy has two simple roots

which do not coalesce and fj \/|W1|dg diverges as y — +oo. Finally, for |y| — oo, we

have
Wy > = and Ay 4t < dz (3.3.34)
1= ) dy ) dy2 ~ dy L.
as well as
dx
Perror| S +- 3.3.35
|Paro S (3:.35)
Thus, we infer
Ve,oo(F)s V—co,—c(F) < 00 (3.3.36)

for some ¢ > 0 large enough, where

]- d2 1 Perror
I (y) = / L4 _ Femor g, (3.3.37)
Walrdy? \|wa)i ) (e

From Proposition 3.3.1 we now conclude that the eigenvalues A = Am?2 for A in a neigh-
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borhood of Ay are characterized by

_2n+1

92
—6(V) + 95, — (3.3.38)

for n € N, where |J5 [ <5, m=2.
Now, for fixed Ay € (22, 00), let the sequence (1, n;)ien as above be such that (3.3.33)

holds. Then, we obtain associated eigenvalues from (3.3.38) which satisfy

~ (T2 +1 7 _ ~ _ s _
Ai=¢! (2 P 279;()) =1 (5()\0) + 05, (m; 2)) = Xo+ O3, (m;?). (3.3.39)
The last equality holds due Taylor’s theorem and (3.3.31). O

3.3.3 Bounds on J:\,,, and 0:S,,, near resonant frequency

For the main proof in Section 3.8.3 we need to bound the quantities O,\;¢(aw) and
OwSme(aw) near the resonant frequency, i.e. for w ~ w_m with m sufficiently large. We
will choose our initial data in Section 3.6 to be supported on angular modes m > 0 which
are large and positive. This is just done to make the notation easier. Thus, for the rest of

the subsection, we assume that m > 0.

We first note that a direct computation shows that

aSmZ (67 l‘)
0SSy = ———— 3.3.40
(S = (3:3.40)
solves the inhomogeneous o.d.e.
(Pz — )\mg)agsmg = (85Pz — 85/\mg)smg (3.3.41)
with Dirichlet boundary conditions at x = £1, where
0P, (&) _. 2 = a?,
P, = = 28— —2m——x°. .3.42
O¢ o€ §A$ mAxlx (3.3.42)
We will first consider O¢ Ape.
Lemma 3.3.2. The eigenvalues \pe(§) satisfy
OeAme(E)] < (St BePrSmed (1. (3:3.43)
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and thus,

sup 9 Ame(€)] S . (3.3.44)

1 1
§e(amw— — - ,amw—_+-)

Proof. Taking the L2-inner product of (3.3.41) with S,,, and using that P, is self-adjoint,
as well as & — (S, Smg)Lz(_Ll) =1, we see that

’(95)\| < |<Smg,a§Pg;Smg>L2(_171)| < Hagpr (3.3.45)

Now, the claim follows from the fact that [|0: Py | < [£] + |m]. O

It is far more difficult to estimate 0¢S,,¢ which we express as
O¢Sme = Res(Ape; Po)llg H,

where H = (0¢ Py — Og A\nt) Sy is the inhomogeneous term of (3.3.41), Res(Ape; Pr) is the
resolvent and Hﬁmg is the orthogonal projection on the orthogonal complement of S,,p. A
possible way to control the resolvent operator Res(\,; Px)HﬁmZ, is to show lower bounds
on the spectral gaps |\, ¢(aw) — A, r41(aw)| uniformly in m,¢ — oo and w ~ w_m. Our
formally equivalent approach is based on an explicit construction of the resolvent kernel

via suitable approximations with parabolic cylinder functions and Airy functions.

We begin by noting that from standard results on solutions to Sturm-Liouville prob-
lems, each eigenfunction S, is either symmetric or anti-symmetric around x = 0. More-
over, O¢Sy,e admits the same symmetries as Sp,e. If Sy, is antisymmetric around z = 0
we have S ¢(x = 0) = 0, i.e. Dirichlet boundary conditions at x = 0. Similarly, if S,,,
is symmetric, we have Neumann boundary conditions at x = 0, i.e. %Smg(x =0) =0.
Hence, the problem reduces to studying the interval = € [0,1) with Dirichlet/Neumann
boundary conditions at x = 0 and Dirichlet boundary conditions at z = 1. We moreover
recall that

1
(Sme, Sme) 12(~1,1) = /1 Sepdz =1 (3.3.46)

such that
1 1
/ S2,dr = . (3.3.47)
0 2
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Now, any solution of the inhomogeneous o.d.e. (3.3.41) can be written as
O¢Sme = Sp + 1Sme + c2Sme, (3.3.48)

where S,/ is a solution to the homogeneous o.d.e. which is linearly independent from S,
and S, is any particular solution to (3.3.41). Also, ¢; and ¢ are constants depending on

the choice of S,y and the choice of particular solution S,.

Now, we remark that
Spe ¢ L? (3.3.49)

as Sy is linearly independent of Sp,,. Indeed, analyzing the singularity = 1 with the
Frobenius method, we directly infer that all solutions which are in L? at = = 1 are multiples
of S;e. (Here, we recall that m # 0.)

In Lemma 3.3.3 below we will construct a particular solution which is bounded at
x = 1. Since 0¢Spy is bounded at x = 1, we have that for such a choice of particular

solution, necessarily ¢z = 0. Hence, for S, as in Lemma 3.3.3 we have
8§Smg = Sp + 1S (3.3.50)

Now, as 0¢Spe is orthogonal to Sy, in L?(—1,1) and both of them are either symmetric
or anti-symmetric around z = 0, we conclude that they are also orthogonal with respect
to L%(0,1). Hence, multiplying (3.3.50) with ¢S, and applying the Cauchy-Schwarz
inequality yields

10 SmellL2(0,1) < I1Spllz2(0,1)- (3.3.51)

In the language of spectral theory and in view of our previous discussion, the bound
(3.3.51) shows that

10eSimellz2 = || Res(Ame; Po)Us,  Hl g2 < [[Spll 2.

Lemma 3.3.3. Let m € N be sufficiently large. In the parameter range & € (aw_m —
1

oy AWM+ %) there exists a particular solution Sy, to (3.3.41) satisfying

1
1Spll20,1) S Iml2- (3.3.52)
Proof. We let |¢|] < 1 such that £ = amw_ + >. We now construct a particular solution
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Sy of (3.3.41) which satisfies
d d =2m? x?
—— (A=) — )+ Em2a%i - — 2mlaw_
[ dx( ( x)dx>+Am(1—x2) maw_Ax maw Al
2 5 2y = SN E d® ,
tra (1—2°) — Z(2caw— + e“m )A—x - QEA—xl—x - )\} Sp
2 = a? ,
= [85)\ + 28 (amw_ + E)Ix + QmAI A } St (3.3.53)
Again we introduce new variables y(0) = 0 and gg = AA-29) which can be computed
explicitly as
1
y(z) = 7= (10g(1 +x) —log(l—z)+ a4 log(1 — %:E) - %log(l + jx)) . (3.3.54)
Note that
. 14z (1-9%2\1
25y = L 3.3.55
1—=z (1 + ?x) ( )
We define
s1(y) = Sme(z(y)), (3.3.56)
such that
e’} 1
/o 51 () Az(1 — 22(y))dy = /0 S2 ,dx = . (3.3.57)
We also write
9p(y) = Sp(2(y)) (3.3.58)

E—| 221 —2?) — AAL(1 — x2)) 9p

Then, in these variables we re-write (3.3.53) as
2

2 [Ea%}z + 2aw_E B
2

2

- 2

2 a
‘%szzx)gp

d 2
—@g +m =
2
2 2 2N = 2 2
—i—Am(l—x)(pa(l—m)—_(2ew_+em )Aa;
2 CL2
Ay(1 —z%) [85)\ + 2E(amw_ + E)Alﬁ x2] S1. (3.3.59)
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We recall the definition of W; in (3.3.12) and define

2
Wa(y) := Ap(1 — %) (lQaQ(l — 22) — E(2caw_ + 2m~2) 2 — 2 :c2> (3.3.60)

Ay Ayl
and
F(y) = A,(1— 2) Oe\ + 25( +£)x—2+2 Eaj 2 (3.3.61)
y) = Ay T ¢ =(amw—_ AL mAxZQx . 3.

Thus, we are interested in construction a particular solution g, satisfying the inhomoge-

neous second order o.d.e.

d2

~ap T (m*Wy + Wa)gy, = Fs. (3.3.62)

A direct computation shows that g,, which we define as

o) Yy
9p = 82(y)/ Sf(ﬂ)F(?J)dﬂJrsl(y)/O s2(9)s1(9) F(9)dy, (3.3.63)
Y

solves (3.3.62), where s is a suitable solution of

d2
L + (m*Wy + Wa)g =0 (3.3.64)

which we will construct in Lemma 3.3.4 below. Moreover, we will choose so such that the

integrals in (3.3.63) converge, 20(s1, s2) = 1, and

/0 " go)2(1 — 2(y))Asdy < m. (3.3.65)

We state the existence of such a particular solution g, in the following and refer to Sec-
tion 3.3.4 for its proof. More precisely, Lemma 3.3.4 follows from Lemma 3.3.13 and
Lemma 3.3.18.

Remark 3.3.1. By construction, the solution to the inhomogeneous o.d.e. satisfies g,(y(z))
8£Smf as gp(y(‘r)) = ReS(AmZQ P.T)Hé_mg (H)

Lemma 3.3.4. Let m € N sufficiently large as in Section 3.3.4. For { € (aw-_m —

L aw_m+ L), there exists a solution sy to (3.3.64) with W(s1,s2) = 1 such that g, as in
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(3.3.63) satisfies

/0 " g )2(1 — 2(4)?) Audy < m. (3.3.66)

With Lemma 3.3.4 at hand, we conclude the proof of Lemma 3.3.3. O

Finally, combing (3.3.51) and Lemma 3.3.3 we have proved the main proposition of

this subsection.

Proposition 3.3.3. For all m € N sufficiently large, the eigenfunctions Sp,¢(&,cos®) of
the operator P defined in (3.2.35) satisfy

1
sup ”8w5m((CLOJ, ')‘|L2([O,7r];sin9d9) 5 ma2. (3367)
we(w,m—ﬁ,w,m—kﬁ)

3.3.4 Proof of Lemma 3.3.4

Throughout this subsection (Section 3.3.4) we assume that
1 1
e (aw_m — —,aw_m+ ) (3.3.68)
m m

and m > 0. We first argue that for sufficiently large m, we only need to consider the cases
A > E2.
Lemma 3.3.5. For sufficiently large m, we have infycr (m*Wi(y) + Wa(y)) > 0 for any

)< =2

Proof. Choosing m sufficiently large, recalling (3.3.68) and in view of Lemma 3.3.1, the
result follows from

Walz =0) = = > 0. (3.3.69)

O]

Lemma 3.3.6. For { as in (3.3.68) and for sufficiently large m as in Lemma 3.3.5, any
eigenvalue X = m2X\ of P, satisfies X > =2,

Proof. This is immediate as for A < =22 and sufficiently large m, the operator —f—; +

m2W, + Wy is strictly positive in view of Lemma 3.3.5. O

2 and we consider the case \ €

Thus, it suffices to show Lemma 3.3.4 for A =
E¢ 4 1,00) in Section 3.3.4.2.

>
(22,22 + 1] in Section 3.3.4.1 and the case )€ (B2 +

199



3.3.4.1 The case =2 < \ <2241

[1]

Let A € (52,22 + 1]. In this range, A can be arbitrarily close to Z2. As A — 22, the
root yo > 0 of the potential Wj(y) coalesces with y = 0. Thus, our estimates need to
be uniform in this limit and the appropriate approximation is given by parabolic cylinder
functions. To do so we will introduce the following Liouville transform which is motivated
by [118]. We define a new variable?

§=£&(y) (3.3.70)

to satisfy

e\ w
(dj) - 1_(@2, (3.3.71)

where we choose o > 0 such that £(yg) = a > 0 and {(y = 0) = 0. By construction, this
defines € = £(y) as a smooth (even real-analytic) increasing function with values in [0, 00),
see also [118, Section 2.2]. Note that this holds true as the right hand side satisfies

Wi(y)
2 _ a2

>0 (3.3.72)
for y > 0. Equivalently, the function {(y) can be expressed as
Yo L @ L
/ (=Wh)2dyg = / (o —7%)2d7 for y < yo, (3.3.73)
Y 3
Yy o1 §) 1
Wedy = / (72 — o®)2d7 for yg < y < oo. (3.3.74)

We also consider y = y(&) as a function £ and define

o1 := <j§>_ S1. (3.3.75)

=

In this new variable £, the function o) = 0 (&) satisfies

d%o

_@ + [m2(§2 _ a2) + \If] o =0, (3.3.76)

2Here and in the following, ¢ is not to mixed up with & appearing in (3.3.1).
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where the error function W is given by

1 1
dy dy\ 2 d*(y~2)
o=, 4 (¥ . 3.
2+< ) & (3.3.77)

Since W is analytic and non-increasing in 5\, we apply [118, Lemma 1] to conclude that ¥
=2 =2

is continuous for (&, X) € [0,00) x [22,22 + 1]. Now, we define the error-control function
(see (6.3) of [118])

S/
F ;:/0 mdg (3.3.78)

with Q(z) = |1:]% We will now bound the total variation of the error-control function Fj
in (3.3.78). To do so we first show

Lemma 3.3.7. The smooth and monotonic functions & = &(y) and y = y(&) as defined in
(3.3.71) satisfy

Ey) ~y (3.3.79)
(Cihg ~ & (3.3.80)
32;2} S (3.3.81)
for all & sufficiently large.
Proof. We estimate
3‘5 <o E_2a2 52 (3.3.82)

(3.3.83)

for £ large which shows (3.3.80). Upon integrating the inequalities, we obtain (3.3.79).
For (3.3.81), we differentiate (3.3.71) to obtain

< Wi
~ 62 _ 042
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&y
dg?

d [e2—a2
de \| Wa(y(¢))

£ | & dwidedy| _
Sy 5 AT AY g 3.3.84
Wi W2 dr dyde| ¥ ( )




where we have used that
dW dx o9z _ dy
Wi~l,— <1,—<e 2 <e ™ and —= < 3.3.85

for £ large enough.

This allows us now to estimate the total variation of the error control function Fj.

Lemma 3.3.8. The error control function Fy satisfies
1
(3.3.86)

VO,OO(FI) S 1
me6

Proof. As W is continuous on [0,00), it suffices to control the integral for large £. We

control both terms of

_dy dy\? d*(y~2)
U= Wt <d§> g (3.3.87)

independently. For large £, we estimate the first term as

dy £ —a?
—Ws| < |W- < EWx 3.3.88
| < ey [ S < (3.3.89)
in view of
52
Wy > o (3.3.89)
for & large enough. Moreover, we note that
Wa| < e*=Y (3.3.90)
for y large enough. Hence, for £ large enough we have
| Wa| < ge™ 2208 < =8 (3.3.91)
in view of Lemma 3.3.7. For the second term, we have
5 2 1
<dy)% P b ||, G0 1 (3.3.92)
d) de |~y A |~ s
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for ¢ sufficiently large. Hence,
0| < (1+6) 2 (3.3.93)

for ¢ sufficiently large. Recall that ¥ is continuous everywhere and 2 = ]x\% such that

o=

|
vo,oo(mg/ Y ge <ot
0

gém%

(3.3.94)

O

Having controlled the error terms we now proceed to the definition of our fundamental

solutions based on appropriate parabolic cylinder functions.

Proposition 3.3.4. There exist solutions wy and we of (3.3.76) satisfying

1

wr =U (—Qma2,§\/ 2m> +m (3.3.95)
— 1

we = U (—2ma2,§\/ 2m> + 72, (3.3.96)

where U and U are parabolic cylinder functions defined in Definition 3.9.2. The error

terms satisfy
i = Bt (-émoﬂ,g\/%) My (-imoﬂ,g\/%> O(m™3) (3.3.97)
iio = Ep <—;moz2,£\/%> My (—;moﬂ,f\/%) O(m™3) (3.3.98)
Bein = Ej* (—;moﬂ,g\/%> Ny (—;ma2,§\/%> O(m™%) (3.3.99)
Deily = Ey (—;maz,éV%) Ny (—;moﬂ,g\/%) O(m™s) (3.3.100)

uniformly in A € [22,22 + 1] and € € [0,00), where the weight function Ey, the modulus
functions My and Ny are defined in Section 3.9.2.

Proof. This follows from [118, Theorem 1]. The error bounds hold in view of Lemma 3.3.8
and [118, Section 6.3]. O

Remark 3.3.2. For large x > 0, the function U is recessive, whereas U is dominant.

Hence, wy is recessive and wsy is dominant.
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Lemma 3.3.9. The Wronskian 20(w1,ws) satisfies

|2¢ (w1, wa)| ~ /mI’ (; + ;ma2> : (3.3.101)

for m sufficiently large.

Proof. For U(b,z) and U (b, ) we have the Wronskian identity 23(U, U) = \/gl’(% —b), see
[118, Equation (5.8)]. The result follows now from the chain rule and the error estimates

in Proposition 3.3.4. O

Lemma 3.3.10. The function o1 defined in (3.3.75) has the form
g1 = Alwl, (33102)
where w1 is as in Proposition 3.53.4 and A1 # 0 is a real constant.

Proof. Both functions o and w; are non-trivial solutions to (3.3.76) which are recessive
as £ = oo (or y — 00). The claim follows now as the space of solutions of (3.3.76) which

are recessive as & — 0o is one-dimensional. ]

Using the parabolic cylinder functions, we now define a solution oo which is linearly

independent of .

Definition 3.3.1. We define the solution oo of (3.3.76) as

1
g9 w9 (3.3.103)

= Alim(wl, wz)

and the solution s9 to (3.3.64) as

52(y) = (dy> o2(£W)). (3.3.104)
A direct computation shows
Lemma 3.3.11. We have
W, (s1,52) = We(o1,02) = 1. (3.3.105)
Here, 20, and W denote the Wronskians with respect to the y and § variable.
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Lemma 3.3.12. With 01 and o2 as defined in (3.3.75) and (3.3.103) we have

ol S 11y (- gma?,6vam ) My (- g, v (3:3.106)
1 1 1

|oa| < ‘Awﬁ](wl,wg) Ey (—zmaz,&/%) My (—Qma2,§\/%> (3.3.107)

01(E)ra(€)] < MMU <_;ma2,g@) . (3.3.108)

Proof. We estimate

lo1] = [Ajwi] = [A4]

1
U <—2ma2,£\/2m> +m

1 1
< AL ES! (—Qma2,§\/ 2m> My (—2ma2,§\/ 2m> (3.3.109)
and
09| ! o] < ! 0 (—Lma? evam )+
o w - ——ma
2 A12U(w1,w2) 2= Alw(wl,wg) 2 ’ 2
1 1 1
< Ey [ —=ma?,6v2m | My | —=ma?,&V2m ) . 3.3.110
O]
Now, we recall the definition of g, in (3.3.63) as
0 Yy
=) [ S@F@AT+50) [ 1@ F @) (3:3111)
y

for s as in (3.3.56) and where we take sy as in (3.3.104). Now, we are in the position to

show the main lemma of Section 3.3.4.1.
Lemma 3.3.13. Let A € (22,22 + 1] and let s9 as in (3.3.104). Then, g, satisfies
OO 2 2
| w02 - aP) Ay S m. (33112)
0

Proof. We plug (3.3.111) into (3.3.112) and we will estimate both terms which appear
independently.

For the first term, we change variables from y to £, use that x — FEy(b,z) is non-
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decreasing, as well as Lemma 3.3.12 to estimate

[0 ([ sormar) - e

00 00 B 0 2
- /0 ﬁ()(/ﬁ a%@)F(s)dﬁ) (1 - 2()?) A (6)de
< (M (hma VB’ =
5/0 [ W, 0)? (/5 ) F ]

My~ gma?, EVam)IdE) (1 - x<s>2>Ax<5>] .

(3.3.113)

Now, we use the bounds on My and 20(wi,ws) from Proposition 3.9.1 and Lemma 3.3.9

to deduce

[0 ([7 d@r@ar) 1 s

1 00 00 B B B 2
< L [T aleaneae < / |al<s>|F<s>rds>
|F|? ¢
</ |s1]*(1 — 2(y / A= a2(y )dyy
/ €. x? = a2 ,]° d¢
< Ay(1 —z?) [85)\+2H(amw —I—m)Af—I—Z A—Z—Qx ] d—ydy
<m, (3.3.114)

where we used the Cauchy—Schwarz inequality and the fact that s; satisfies (3.3.57) as

well as (3.3.44).
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For the second term we argue similarly and obtain
o0 Y 2
|7 s ([ @ @r@) 0-aw?ad

< [ st e am ( | w@n@re >dy)2

o M2 (—%moﬂ,&/%) ?
: (/ W) 'F(@"ﬁ)

x? = a?
2= — 4+ 2m——
('35)\ + 25 (amw_ + m)A + AP T

2
dé§
2
—=d
dy y)

(3.3.115)

O]

3.3.4.2 The case ) € (2 +1,00)

For the parameter range = (22 4+ 1,00) we consider \ = m2)\ as a large parameter and
re-write the o.d.e. (3.3.62) as

2

d .~
— 3 +m2A\Whg, + Wag, = Fsi, (3.3.116)
where
~ _ W- EZ 2 2 1— 2
Wy =Wi(y) = — = = — |2d®w? + 2aw_E 5 M — A (1 —2%). (3.3.117)
A A l A
We also recall the homogeneous o.d.e. (3.3.64)
2 o
—@g+m AWig + Wag = 0. (3.3.118)

Recall also that s; as defined in (3.3.56) is a solution of (3.3.118). As before, we define yo

as the unique non-negative root of Wl(y). It satisfies

1
Yo~ 5z log(). (3.3.119)

which becomes arbitrarily large for A — o0o. Our estimates have to take care of this limit.
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Lemma 3.3.14. In the region 0 <y < yo — 1 we have

1 ~ dWl ~ d2V~V1 dWl 2\ (17
=<-W <1, — < < —+(1- . 3.12
Foryo—1<y <yo+1, we have
T P S\ R W 1 o 1/ IO O (A T
" <|W| S =, — ~ =, < = < = 3.3.121
A~ LA Noody XN | dy? A dy? A ( )
Foryo+1 <y < oo, we have
-1 dwy | d?Wy| _dz _ 1
~ = and — < — < = .3.122
Wi an TRETARETED (3.3.122)

Proof. From Lemma 3.3.1 we have that W is increasing on y € [0, 00) and moreover, for

y € [yo — 1,50 + 1] we have that

dwy, AW, dz dx

1
= "> - > 3.3.123
1y ~ dr dywx(y) R ( )
Thus, for y < yo — 1 we have
- ~ Yo dW- 1
W) = Wi -1z [ gz S (3.3.124)
yo—1 dy A
Moreover, for 0 <y < yo — 1 we have
dw, _ dzx ) . 1 =
— < —=A(1- < |W- = < |W 3.3.125
G S5 = Adl=at) S+ S S W) (3:3.125)

using the definition of W and [W;| > +. Similarly, we obtain

1
A

dw,
dy

42w,
dz?

<1 -a?) P + (- ()

< + (1 —z(y)®)|W|. (3.3.126)

. Moreover, just

~

In the region y € [yo — 1,yo + 1], recall from (3.3.123) that dd—vgl >

Sl
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as in (3.3.126), we obtain

T 211 311 1
dWal | & W HdWh) o de 1 (3.3.127)
dy |'| dy? |"| dy? ¥y~ A
In the region y € (yo + 1, 00), analogous to (3.3.124), we have
1 ~ 1
=< < = 3.3.128
TSMss ( )
and moreover,
dwy |d*Wy| _dz _ 1
S e - (3.3.129)
dy | dy y A
O

Y ~
62 = / Wi (y)dy (3.3.130)
y
for y > yo and
Yo =
= / —Wi(y)dy (3.3.131)
y

for y < yo. We denote

G:=¢(y=0)=— (‘; /Oyo \/—Wl(y)dy>§ . (3.3.132)

We further introduce the error control function

vl 4 W, 5[z
H(y) ;:/ s <\Wl| 4)_ 2 | 1’3dy. (3.3.133)
vo [Wh|1dy Wqlz  16<(y)

The fact that H is absolutely continuous is a standard result and follows from [117,
Lemma, Section 4], see also [119, Lemma 3.1, Chapter 11]. In the following we establish
a quantitative version of this.

Lemma 3.3.15. The error-function H defined in (3.3.133) satisfies
Vooo(H) < Az. (3.3.134)
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Proof. Since H is absolutely continuous we compute

yo—1
Vo,00(H) :/
0

1 2 <|~ ri) W, 5|z
= 13 9 1 - = -

|W1|i dy? W)z 16¢(y)?

vo+1 W, 5[z

<|W1\7) _ W | 1\3

|W1|4 dy |W1|2 16§(y)

~ 1

~ 1 W- 5|Wh|2

d ('Wl‘ i) N 1f|3 (1|)3

+IT+II1 (3.3.135)

_l’_

/01
/

and estimate each term independently relying on Lemma 3.3.14.

Term I. We estimate term I as

- 2
vo—1 1 d 1
I,s/ LI (LR
0 Wilz \ dv e

We consider the first term appearing in (3.3.136) and in view of Lemma 3.3.14 we obtain

Wy (W |W1|%d

Wi |2 3

(3.3.136)

_ 1 AW
yo—1 1 dW1 dy < yo—1 Tyl dy < 1
yN ~ 3 yr\J ~ 1
0 W3 0o [Wz Wz 10

For the second term involving the second derivative, we use (3.3.120) to conclude that

<Az (3.3.137)

yo—1 1 d2 T yo—1 M 1— 2 N
/ g dyﬁ/ Ay 172wl 58 (3.3.138)
o [Wiz o Wiz [Wil2

For the third term we use that |[Ws| < 1 — z(y)? such that

/yo_l Wal 53 /00(1 — z(y)})dy < A2 (3.3.139)
0 |Wh|2 0
For the last term in (3.3.136), we have
/yo SR /yo—l Ve
oL e vy
! <Az, (3.3.140)




Term II. For this term, we use Taylor’s theorem around the point y = 79 and a

lengthy but direct computation shows that

1 a2 <| N \—i) Wy 5|z
— = (i _2
W | dy? Wz 16<(y)?

- N2 305 -
9<d2W1> —10d Wi dWi -1

< # “ ‘ dy? dy® dy n |[Wa| 2 (3.3.141)
~ 1 5 T ~ 1 o=

[ — yol? vE@wo—1y0+1) 140 (ddﬁ) 2 o ly — yol2

Y

uniformly in y € [yo — 1, yo + 1] from which we conclude that |I7| < 2

Term II1. In the region y € [yo + 1, 00) we first have

yo+1 ~ 2 y - 2 1 1
Sy) 2 (/ Wldﬂ) + (/ \/ Wldg> >+ (y—yo—1)°2= (3.3.142)
Yo yo+1 A A

such that

W2 < Az
¢ Y1+ (y—y—1)?

which is integrable at y = co. Moreover, we have

L& ooy We | _de (g 1) _deos
e (M) - s | e o | s GV
|Wh|1 dy |W1|2 Y W2 W2 Y

Combining the estimates (3.3.143) and (3.3.144) we obtain that |II]|
cludes the proof.

Finally, we also introduce

2
Wy = W or equivalently W; = (dg)
S dy

which we will bound from below in the following.
Lemma 3.3.16. We have

Mai(A55(y))

“%\
N
>
o=

211

(3.3.143)

(3.3.144)

~1
< A2z which con-

O

(3.3.145)

(3.3.146)



Proof. First, for yo — 1 <y < yo we have

2(=9)

:/yo W1ldj < (yo — y)y/— Wi (y)

N|w

and for yp <y < yo+ 1 we have
2 3 v ~
352 = Widg < (y — yo)y/ Wa(y),
Yo
where we have used the monotonicity of W;. Hence,

2
x = 3
W1=W12< W ) ZS\’
S Y=Y

Wi

(3.3.147)

(3.3.148)

(3.3.149)

for |y — yo| < 1. Now, using Ma;(x) < 1 we conclude that for |y — yo| < 1 we have

o=

Mai(Ais(y) _ 1

T S s
Wl W14

Ll

For |y — yo| > 1, we use that Mu;(z) < |x|_i to obtain

1 1 11
MAl(Aslc(y)) < \<114~ R I P\
Wi [clAT2[Wafs At

Now, we are in the position to define the following fundamental solutions.

Proposition 3.3.5. There exist solutions wy and we of (3.3.118) satisfying

wi = 7 (AFs() + ()
Wi
wWwo = Al (Bl()\%g(y)) + nBl()‘vy)) )

1
1
Wy
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(3.3.151)

(3.3.152)
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where

i )\a i )‘7 — 1 _
|77A( ly)|7 JaynA (1 y)A| - g EAll()\;’g)m 1, (33154)
Mai(A36) A3 Naz(As )W
i )\a i Av L —
|77B( ly)|’ 1|ay77B (1 y)A| T S EAI()\;’g)m 1‘ (33155)
Mai(A36) N5 Npj(A5¢)Wp
Moreover, the Wronskian of wi and ws satisfies
20 (w1, ws)| ~ A3. (3.3.156)

Proof. This follows from [119, Chapter 11, Theorem 3.1] and the error bounds follow from
the bounds on Vy (H) in Lemma 3.3.15. The Wronskian identity is a direct consequence
of the chain rule. O

Lemma 3.3.17. There exists a constant Ay # 0 such that s; = Aswi, where wy is defined
in (3.3.152) and sy is defined in (3.3.56).

Proof. Note that both, w; and s; are recessive as y — 0o. Since the space of solutions
which are recessive at y — oo is one-dimensional, we conclude that s; and w; are linearly
dependent. O

In view of Lemma 3.3.17 we define

1
S9

e —y) 3.3.157
Agw(wl,wg) 2 ( )

where wz is as in (3.3.153). Note that this implies that

Qn(sl,SQ) =1. (3.3.158)

Lemma 3.3.18. Let A € [22 +1,00) and let sy as in (3.3.157). Then, gp defined as
[e%¢) 9 Y
=) [ SDF@IT+510) [ 510 F @) (3.3.159)
y
satisfies
| a0 —at)) Ay s m. (3.3.160)
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Proof. Analogous to the proof of Lemma 3.3.13 we first estimate

[Taw ([ ADF@AT) (- 02y

o0 w2 fo%) 2
~Jo M(/ wl(ﬂ)sl(?J)F(z})d?J) (1—2(y)*)As(y)dy. (3.3.161)
’ )

Now, we use Proposition 3.3.5 and standard bounds on Airy functions from Section 3.9.1,

as well as Lemma 3.3.16 to obtain

)] £ B3 bs ) GO < Bl ek (33162
Wit (y)

fuao)]  [EaOds) G < i, (3.3.169
Wit (y)

Now, plugging these estimates into (3.3.161) and using that E_l()\%g(y)) is a decreasing
function, we conclude

(3.3.164)
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For the second term, we argue similarly and estimate
00 Yy 2
|7 s ([ s @rma) o-swaa
2 poo
< ([ m@s@raia) [T e -
1
2

([ m@smra >|dy)2

A3 o0 2 Aim?2
_ Fl|dy < 3.3.165
W(wy, ws)? </0 ] y) ~ ( )

N

Thus, we conclude

<ms <m. (3.3.166)

T2 T2 2
A3m < A3m
2
3

> 2
[T ara-swiaas ot s

3.4 The radial o.d.e. on the exterior

We will now derive for which frequency parameters (w,m,¢) the resonant frequencies
w = w_m in the interior are excited by frequency parameters which are exposed to stable
trapping in the black hole exterior. This allows us then to define the set Pgiow-up in

Section 3.5.1. Thus, we will analyze the radial o.d.e. at frequency w = w_m.

3.4.1 Radial o.d.e. at resonant frequency admits stable trapping

We now construct the range of angular eigenvalues \,,s(amw_) at the resonant frequency
w = w_m for which the radial o.d.e. admits trapping. Recall from (3.2.41) that the
normalized high frequency part of the potential is given by

Vmain =

A <)\mg(aw_m)

2,2 = 2
(7«2 + a2)2 m2 twla” — 20“(*)‘—‘) - (w, - wr) . (341)

Note that
Vmain — _(W— — W+)2 <0asr*— —oo. (342)

For the potential Viain to admit stable trapping, we require that V. has two roots

r1 < 79, see already Fig. 3.5. This is the case if the angular eigenvalues \,¢(aw_m)m 2
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lie in an interval (o1(p), o2(p)), where o1 and oy depend continuously on the black hole

parameters p = (m, a). In order to define o1 and o9, we set

E:= | |[{p} x By = | | {p} x (uo(p), m1(p)), (3.4.3)

pe? pes

E, = {u > =2 (,u +w?a? — 2aw_E) —1?W? <0,

=2

—

M? 2 (9M2

(1 +3 + a2>_2) (1 + wa? — 2aw_E) — Pw? > 0} (3.4.4)

is a bounded open interval and po(p) := inf Ey, pi(p) := sup Ey. Again, E, is well-defined
as the conditions only depend on p. We will show that E is a fiber bundle. To do so we
first show that E, is indeed non-empty.

Lemma 3.4.1. For any p € &2, the set E, defined in (3.4.4) is non-empty, hence a

bounded open interval.

Proof. By continuity, it suffices to show that

2

l (52 +a?w? — 2aw_E) —w

7 <0 (3.4.5)

which in turn follows from
r? < al. (3.4.6)

To see that r2 < al holds true, we write A(r) in terms of r_ as

A(r)=12(r —r2) (3 +r%r_ +r(r? 4+ a® + 17) — a*1*rZY). (3.4.7)

Hence,
0> 9,A(r) =172 3r1 +r2a® + 7212 — a?1?) (3.4.8)

implies
3rt < a?1? (3.4.9)
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from which
r? <al (3.4.10)

follows. O

From (3.4.4) it also follows that pp and p; are manifestly continuous functions on 2.

Hence, E is a (topological) fiber bundle. Now, also note that F is trivial with global

trivialization pp: E — & x (0,1),(p, ) — (p, uiuo - ﬁ) and we find (using this

trivialization) two global sections
o1 € I'(F) and og € I'(E) with o1(p) < o2(p) (3.4.11)

for all p € & (in mild abuse of notation). Having constructed o1 and o3, we will now

show the existence of turning points 71 < r9 of Viain-

Lemma 3.4.2. Let m2\,y(aw_m) € (01,02) as chosen in (3.4.11). Then, Vipain has a

MATIMUM Tmag € (T4,00), and two roots r1,ry with 14 < 11 < Tyae < r2 < 00 such that

Vinain > 0 for r € (r,72), (3.4.12)
Vinain < 0 for r € [r4,00) \ [r1, r2) (3.4.13)

and 19 — 11 2oy 00 1.

Proof. By construction of o1 and o9, for any m =2\, € (01,02), the potential Vi, has

a maximum and satisfies

le Vinain < 0, Vipain(r = 74) < 0 and Vipain(r = 7cut) > 0, (3.4.14)
T oo
where roy = 2. See also [77, Lemma 3.1].

We will show now that Viain has exactly two roots in [ry, 00) from which (3.4.12) and
(3.4.13) follow. Indeed, in view of the above, Viyain either has two or four roots in [r4, 00).
To exclude the case of four roots, it suffices to exclude the case of three critical points in
[r4,00). To see this, note that

dVinain (=223 + 6M7r? — 2Za®r — 2Ma®)m 2\ pe(aw_m) + 4aZ(w, — w_)(r? + a?)

dr (r2 + a?)3

(3.4.15)
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has at most three real roots, one of which is in [r, 00) in view of the construction above.
Indeed, one other root has to lie in (—oo,r_] as
deain dvmain 87" A (T* )

Tl}gloo dr > 0 and dr (7" = 7"7) = m < 0. (3416)

Thus, Vinain has at least one and at most two critical points in [ri,00) from which we
deduce (3.4.12) and (3.4.13). O

3.4.2 Fundamental pairs of solutions

We will now define various solutions to the radial o.d.e. associated to the boundary and to
the turning points. Recall that the turning points define the transition from the trapping

region to the semiclassically forbidden region.

3.4.2.1 Solutions associated to the boundary

We first define the associated solution to the radial o.d.e. (3.2.36) which satisfies the
Dirichlet boundary conditions at 7* = $I. Throughout Section 3.4.2.1 we consider all

frequency parameters w,m, £.

Definition 3.4.1. We define the solution us as the unique solution to (3.2.36) satisfying

Uoo (gl) ~0 (3.4.17)
ul, (gz) — 1, (3.4.18)

where we recall that ' = d;l*.

Definition 3.4.2. We also define uy+ and uy- as the unique solutions to (3.2.36) satis-
fying

Ugr = eI gt 5 oo, (3.4.19)

Ugy— = @I o ¥ 5 oo, (3.4.20)

3.4.2.2 Solutions associated to turning points at resonant frequency

For the solutions associated to the turning points we are only interested in the resonant
frequency so we are now considering the radial o.d.e. for w = w_m. We define solutions
associated to the turning point 7] and 73 as illustrated in Fig. 3.5. In view of Lemma 3.4.2,

we define solutions to the radial o.d.e. as follows.
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V(r*,w,m, Ape(aw))

INIE

Figure 3.5: Rough shape of the potential and the turning points ] and r3.

Definition 3.4.3. Assume that o1 < Apem ™2 < o9 and denote the turning points of
Vinain with v5 := r*(r1) < r*(r2) =: r5. Then, for some fized € > 0 sufficiently small only

depending on the black hole parameters, define

2
- (% fq:kl ’Vmainﬁdy) P orre (—o0,77)
&(r*,m) = R 2 (3.4.21)
(2 fri‘ Vrgaindy) rte [TT7 T; - 6]
2
<3f7“gvé d)3 *G(*+ *)
* 2 Jr* Ymain Y r U] €, Ty
Ea(r*,m) == ) Ly (3.4.22)
— (3% Vol 2dy)* 7" € 13,30
7 Vmain * *
fi:= ¢ for r* € (—oo, 15 — €, (3.4.23)
1
P Vm in % *
foi= fa forr* € [r] +¢, gl] (3.4.24)
2

and the error control functions

a 1 d2 1 Vi 5“/main|%
Hy(r* ::/ — — dy, 3.4.25
1( ) T { |Vrmain’i dT*Q <‘Vmain|‘1l> ‘Vmainﬁ 16|§1‘3 Y ( )

*
1

" 1 d2 1 % 5 Vmain 2
H2(T*) ::/ 1 2 T — : T ‘ 42 dy. (3.4.26)
s |~Vmain’Z dr “fmain|Z ‘Vmain|§ 16|§2|

*
2
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Lemma 3.4.3. The error control functions Hy and Ho satisfy

Vosors—c (H1) Seor.00 1 (3.4.27)
Vri‘—i—e,lg (HQ) Se,al,og 1. (3428)

Proof. We will use [119, Chapter 11, Lemma 3.1] to show the bounds on the total variation
of Hy and H>.

We begin with Hy. From

o1 < Ame(aw_m) < o9 (3.4.29)
we have that
Ymair‘* (3.4.30)
* — 1)

is a positive smooth function on [r; + ¢, 5{]. Moreover, Vi is a smooth function. Thus, we
can apply [119, Chapter 11, Lemma 3.1] and since the interval [r1 + ¢, 1] is compact, we
conclude that (3.4.28) holds true.

For H;, we have to deal with the unbounded region * € (—o0, 75 +¢€). We decompose
Vosorg—e (H1) =V_oorr—1 (H1) + Vir 1,5 (H1) . (3.4.31)
Completely analogous to the proof of the bound on Hs we have
Vet —trg—e (H1) Serr o 1. (3.4.32)
For the term V_ 1 (H1) we remark that
~Vinain ~o1,02 L [Vinainls [Vinainl Sov.00 €7 and [Vi] S €27 (3.4.33)

for r* € (—oo,r] —1). Using the lower bound —Vipain, we infer from (3.4.21) that

wlro

=& (r*) 2 (—r") (3.4.34)
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for r* € (—oo,r] —1). Hence,

- 1
VY% *_1 (Hl) < /Tl ! Vn/rialn Vrfam Vi + |Vmain|2 dr*
—0o0,r — ~01,02 1
1 —o© ‘Vmain’ 2 ’Vmain‘ 2 ’Vmain ’ 2 ’gl |3
ri—1 . 1
501702 / 62K+T + |7,*‘2d7a* §0’1,02 1. (3435)
—00

O]

With the bounds in Lemma 3.4.3 at hand, we apply [119, Chapter 11, Theorem 3.1]
which allow us to define the following. In particular, the error bounds (3.4.40)—(3.4.46)
hold due to Lemma 3.4.3.

Definition 3.4.4. We define solutions to the radial o.d.e. (3.2.36) for w =w_m as

uai (r*,m) = Ali( )f 1( ") {Al(m3§1) + eain(m, r* } for r* € (—oo,r5 — €], (3.4.36)

upi1 (r*,m) = i { (m3&1) + epir (m, r* } for r* € (—oo,r5 — €], (3.4.37)

uai2(r*,m) == % i {Al m3£2 + eaip(m,r” } forr* € [r] + ¢, 2[], (3.4.38)

upip(r*,m) = % {Bl m3£2 + egia(m, r* } forr* € lri +e, 21] (3.4.39)
Moreover,

leait] Se Mai(m€)Exl (ms&)m™, (3.4.40)
eanl Se fi Nai(mi) B (migym™?, (3.4.41)
lepit] Se Mai(ms &) Eas(ms&)m ™, (3.4.42)
i | e fléNAi(mggl)EAi<m%fl) -5, (3.4.43)
leaiz] Se Mai(m$&)Exl (ms&)m™, (3.4.44)
izl Se F2 Nas(mia) B (mb &o)m™3, (3.4.45)
lepia| Se Mai(m5 &) Ens(ms&o)m™, (3.4.46)
|€Bi2] Se fQ%NAi(mgfz)EAi(m%&)m_%, (3.4.47)

where (3.4.40)—(3.4.43) hold uniformly in r* € (—oo,r5 — €] and (3.4.44)—(3.4.47) hold
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uniformly in v* € [r] + €, 5l]. Finally, we choose the initialization such that

leain ()| Se Mai(m3&)Ext(m5&s) (exp [2Vys 4o (H2)m™] — 1), (3.4.48)
lepin ()] Se Mas(m5 €2) Eai(m3 &) (exp [QVT*’Z%(HQ)m_I} - 1) (3.4.49)

. . _z
and in particular, |exia(51)| Se m™ 6, epip(51) = 0.

3.5 Definition and properties of Zgiow-up

With the fundamental solutions from Section 3.4.2, we are now in the position to define

the set of black hole parameters &Biow-up-

3.5.1 Definition of Zgiow-up

We first define Wronskians of solutions of the radial o.d.e. which will play a fundamental

role in the estimates.

Definition 3.5.1. We define W1: & X Zyyy X Zy>pyy) — C and Wa: P X Zyy X Zys | — C

as

W1 (p, m, l) = Wluy+, tso) (M, {,w = w_m,p), (3.5.1)
W (p, m, l) = Wluaiz, Ueo|(m, {,w = w_m, p). (3.5.2)

Note that this is well-defined as the Wronskians 201 and 22 only depend on & (by con-

struction). Moreover, they are manifestly continuous functions on & for fixzed m,£.

Remark 3.5.1. Note that the Wronskian 201 does not vanish as discussed in the intro-
duction. Nevertheless, 1 can be very small (as m — 00) which corresponds to frequency
parameters associated to stable trapping. On the other hand, Qs may vanish and this in-
deed corresponds to stable trapping. In particular, if Wo vanishes, then the solution us is
a multiple of the uaio which is exponentially damped in the semi-classical forbidden region.
In this case, we infer that W1 is exponentially small and indeed, we are in the situation of
stable trapping. This intuition leads to the definition of PRiow-up in Definition 3.5.2 and
Definition 3.5.3 below.

Before we define the set #Biow-up, We parametrize the level sets {a = const.} C & by
9 = 9(p) = aw_(p).
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That is, for each ap, there exists an interval (¥1,72) and a real-analytic embedding
Yao (191,192) — @,’}/ao(’ﬁ) = (m(ﬂ),ao) with Yao ((191,’[92)) = {a = Cl()} N &. This em-
bedding depends smoothly on ag and thus, the vector field defined by

L'(p) == Yaep) (3.5.3)

is smooth and tangential to the level sets {a = const.}. The flow generated by I' will be
denoted by ®..

Definition 3.5.2. For mg € N we define

Uno=J U Um0, (3.5.4)
m2>mo m<l<m?
meN leN

where

U(m, €)= {p € 2 | W] < e V™, 01(p) < Ame(aw—(p)m) < o2(p), [Wa| < e~'e ™,

1

ITWs| > 1, |Wa (L (p))| > e~fe ™ for all |7] € [e~fe™, W]}' (3.5.5)

Definition 3.5.3. We define

f@Blow—up = m Umo (356)

mo€EN

While a priori the set #giow-up could be empty, we will show in the following that it

is dense in & and Baire-generic, i.e. a countable intersection of open and dense sets.

3.5.2 Topological genericity: gjow-up is Baire-generic

We will first show that each Uy, is dense. To do so, we let mgy and pg = (mg,ap) € &
be arbitrary and fixed. Also, let Y C & be an open neighborhood of pg. We will show
that there exists an element of U,,, which is contained in &/. We now define a curve of

parameters through pg as follows.

Definition 3.5.4. For 6 = 0(po,U) > 0 sufficiently small, we define the real-analytic
embedded curve vs(po) C U through po as

Y5(po) :={p = (m,a) € F: a = ao,[J(p) — V(po)| < 0} (3.5.7)
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Throughout Section 3.5.2 we will only consider

p € v5(po)- (3.5.8)

We parameterize s(po) with 9 € (99 — 6,99 + ), where Jg = J(po).

Remark 3.5.2. Note that the expression Z is (by construction) constant on ~vs(po). A di-
rect computation shows that the eigenvalues satisfy I'(Ape(aw_m)+a?w?m?—2aw_m?Z) €
(—2m?2,0).

Remark 3.5.3. From Proposition 3.3.2 and Remark 3.5.2 we have that for almost every
o > 22, there emist sequences (m;)ien and (;)ien (m; < 4; < mlz) with m; — 0o, £; — 00
as i — oo such that the angular eigenvalues satisfy

Ai = Amye, (w0 = w_m) = Aym? = Agm? + 20, (3.5.9)
where |/\é?ror| ,<V/~\07p0 1 at pg and \/\é?ror| 5;\07130 14 |9y — 19|mf <1+ (sz2 uniformly on
v5(po) as m; — oo . Moreover, we assume without loss of generality that m;+1 > m; and

note that the choice of subsequence m;, {; depends on pg.

Lemma 3.5.1. Let A1 := SUPycy;(p) 01(P) and Az := infyc ) (po) 02(p) and choose § > 0
potentially smaller such that \i < Xo. Then, there exists a Ao € (A1, 2) \ Ny, (see
Remark 3.5.3) with the following properties.

Let 5\1 = 5\0 + )\'(gll;)mmf2 be the associated angular eigenvalues from Proposition 8.3.2.

Then, for all p € v5(po), and for all i € N sufficiently large, we have
T > ¢(6,p0), (3.5.10)

where £ : v5(po) — R is defined as

5l 00 2 2)2
) ;:/2 \/|Vmain|dr*:/ \/—(TZ;)Vmaindr (3.5.11)
T; T2

and ¢(0,p0) > 0 only depends on § > 0 and pg.

Proof. Note that to highest order in 7/, the function T’ ((Tjj Aaj ) Vmain> has a sign. Thus,
by choosing § > 0 sufficiently small and ry/l = ro /l(po,j\i) sufficiently large (choose
\ € (A1, A2) \ Ny, sufficiently close to o2 and potentially increase o), we have that for all

i €N, |T¢x| > c(0,p0) for all parameters in v5(po). O

Recall the definition of 207 and 205 from Definition 3.5.1.
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Proposition 3.5.1. Let mg € N. Then, there exist a parameters

pBlow-up S '75(130) cu

and an i € N such that mg <m; < ¥; < m? with

o1(PBlow-up) < Amit; < 02(PBlow-up) (3.5.12)
and
201 (Fp1ow-up) | < V™ (3.5.13)
as well as

|m2(19B10w—up)| =0 and ‘FmQ('ﬂBlow—up” > 17

1

1205(9)| > e “ie™™ for all e e™™ < [IBlow-up — V| < e (3.5.14)

i
The proof of Proposition 3.5.1 relies on the following two lemmata and will given
thereafter. First, we will start by showing that for every m; > mg large enough, there
exists a PBlow-up € V5(Po) such that Wy = 0 and [I'Ws| > 1. We will state this as the

following Lemma.

Lemma 3.5.2. For every mqg > 0 there exists an i € N with m; > mq and a parameter
79Blow-up with ‘ﬂBlow-up — 19(]30)‘ < 6 such that

1. W (IBlow-ups ms) = 0,

AL 5
2. uppp = Oéoof22 (%l)uoo fO’f’ ¥ = 79Blow—up with ‘aoo('lgBlow-upﬂ ~ miﬁ)

3. ‘FwQ(ﬁBlow—upvmi” > 1,

4. For all ¥ with e~e™™ < |9 — Iplow-up| < 3, we have [Wa (V)| > e fie ™,

25
m;

Proof. Throughout the proof we use the convention that all constants appearing in <, >

~) o~

~ and O only depend on pg,l and § > 0.
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Let mg > 0. We begin by showing 1. From Lemma 3.4.3 and (3.5.11) we have

AL Al
1

Qﬂ[uAig,um](mi,ﬁ) = 'LLAiQ(T* = lﬂ'/Q, mz) = J2 (T’;)fQ 4 (71'/2) {A1<m§§2(ﬂ'/2)) + GAiQ(mi,lﬂ'/Q)}

Wl

= fi )i (/) {Ai (— <;mi§oo>

on vs(po). Now, for all m; > my sufficiently large, we use the asymptotics for the Airy

(3.5.15)

functions as shown in Lemma 3.9.1 to conclude that
. 3

Thus, in order to conclude that 2[uaiz, ueo|(m4, ) = 0 for some value on v5(po), we have

Wl

> + O(m;%) = \/17? (;mifoo>_é (cos (migoo - g) + O(m;l)) .
(3.5.16)

to vary p(¥) € v5(po) such that m;&w goes through a period of 27. Thus, it suffices to let
£oo go through a period of 27Tmi_1. From (3.5.10) we have
Ténc| > (6, p0) > 0 (3.5.17)

on vs(po). Thus, by potentially choosing m; > 7 even larger, there exists a parameter

ﬁBlow-up with

1
|19B10w-up - 79(130)’ S E (3518)

)

such that

wQ(ﬁBlow—upa mz) =0 and p(ﬁBlow—up) € 75(]30)- (3519>

Having found m; and ¥YBiow-up, we will now prove 2. We again use Lemma 3.9.1,
(3.4.45) and an analogous computation as in (3.5.15) to conclude that for ¥ = Ugjow-up We

have
L1 5
[upio(r" = Im/2,m;)| ~ f3 (Im/2)mf. (3.5.20)
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Thus, for ¥ = Ypiow-up We have

5

L 5
uai2 = fg (Im/2) oo tioe With [ase| ~ mf. (3.5.21)
To show 3, we recall that
ITéoc] > (3, po) (3.5.22)

on v5(po) in view of (3.5.10). Now, we take the derivative of (3.5.15) with respect to I'.
_1 1
Since |I’TVinain| < 1 and [I2T'V;] < 1, we have that TO(m; ¢) = O(m, °) in (3.5.15). Note

1

that this follows from [119, Chapter 11, Proof of Theorem 3.1]. Thus, for ¥ = UBiow-up We

infer
5
|T'Ws| ~ m? (3.5.23)

which shows 3. We also have the estimate (3.5.23) for all ¥ with |¢ — UBlow-up| < m; 2 for

m; large enough which upon integration shows 4. O

Lemma 3.5.3. There exists a constant ¢ > 0 (only depending on po and 6 > 0) such that
forp € ys(po) we have

AL AL
(W (uaig, usin)| S fi* (r1)e” ™™ and [W(uaig, uain)| S fi (r7)e” ™ (3.5.24)

for all m; sufficiently large. Moreover, there exist constants a1 = a1(m;) € R and 1 =

B1(m;) € R satisfying [a1| S e” ™ and |B1] < e such that uaiz = ajuairl + B1usil-

=

A~

Proof. We start by proving |20 (uaie, upi1)| <

=3

(r7)e~“mi. Choose € > 0 sufficiently small
but fixed and evaluate the Wronskian at r* + €. Then, using standard bounds on

Airy functions from Lemma 3.9.1 we obtain

3
luai(r} + €)] Se —— e—3mits (ri+e) (3.5.25)
mf & (rf + €)
11 N 3
Wpia (7 + €) Se mPES (% + €) f2 (ry)em 3782 (11 +0), (3.5.26)
1 § *
lupit (] + €)| Se —1— e3miEs (rite) (3.5.27)
mf & (r} + €)
11 3
gy (1 + €)] Se mOEE (1 + €) f2 (rf)ehmiss (ri+9), (3.5.28)
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Now, choosing € > 0 sufficiently small only depending on py and d, there exists a constant
¢ > 0 such that

T+~ +e) > (3.5.20)

from which the first estimate follows by evaluating the Wronskian 20(uajo, upi1) at r* =
4 + ¢ and the fact that fi(r})/fa(r5) ~ 1. The second estimate of (3.5.24) follows in the
same manner but it is easier as uaje is already exponentially small in the region between

the turning points r] and r3 since
G P —— (UG RO (3.5.30)

1 1 *
[ulyiy (75 + €)] Se mPEL (7% + €) f2 (r})e™ 57 0749), (3.5.31)

For the second part we first note that

o — W(uaiz, upi1) B, = W(uaiz, uai1) (3.5.32)

W(uair, ugi1)’ 0 (uBi1, wai1)

To conclude it suffices to show that

wln

1
W(uair, usi) ~ fi (ri)m; . (3.5.33)

In view of the error bounds from (3.4.40)—(3.4.43) and the chain rule, we infer that

~

2 1 2
[+ (wair, upin)| ~ 77 (r1)m; Wa(Ai(z), Bi(z)) ~ fi (r7)m] (3.5.34)

N|=

for all m; sufficiently large. O

Now, we are in the position to prove Proposition 3.5.1.

Proof of Proposition 3.5.1. Let mg € N be arbitrary. Using Lemma 3.5.2, we let m; > my
and fix PRlow-up € V5(po) C U such that Wy = 0 and [T'Ws| > 1 as well as [Wa(J)| >

e~tie™™i for elie™ ™ < | — UBlow-up| < # We moreover have
1 1
Uso = ozgolf2 2l [2)upia = agolf2 2(Ir/2) (aruail + Prusit) , (3.5.35)

228



5
where || ~ mf. Thus, in view of Lemma 3.5.3 we have

A1
(W ltioo, wp+ ]| = lacg fy  (Im/2) (01 DWluain, up+ ] + Pr20{upin, ug+]) |
5
%

Al
S fo 2w /2)my ©em ™ (|Wluair, uge+ ]| 4 W[usin, ugg+]|) (3.5.36)

for some constant ¢ = ¢(pg) > 0. To estimate Wluai1, uy+| and Wlupi, ugy+] we infer
from Lemma 3.9.1 and (3.4.36), (3.4.37) together with the associated error bounds, that

ot

~

_1 L1 5 _1 5
luain] Smy °, Jun| S FEODME, sl Smy °, Jugn| S 7 0rDmS (3.5.37)

i

o=
=

for all r* sufficiently small and particularly as »* — —oo. Moreover, as r* — —o0, we have
that

i(w——wy)mr*

(3.5.38)

Upy+ ~ €

such that

~

[Wuair, upe+ ]|, [W(usin, up]| S fE(rT)my -

N[
<ol

(3.5.39)

Thus, by potentially choosing m; even larger (i.e. choose mg larger in Lemma 3.5.2) and

.1 .1
noting that f3 (1) ~ (w— —wy) ~ f7(r]), we have

ot

1D [too, ugy+]| S mi_gmi%e_cmi = e M < e VM, (3.5.40)
O
Now, we can conclude
Proposition 3.5.2. The set PBiow-up 5 a Baire-generic subset of &.

Proof. Since pg € & and U C &, U > pg were arbitrary, Proposition 3.5.1 shows that
for any my € N large enough, the set Up,, as defined in Definition 3.5.2 is dense in Z.
Since W, W», o1 and o2 are continuous, Uy, is manifestly open. Thus, in view of Baire’s

theorem, Zgiow-up is Baire-generic and in particular dense. O

3.5.3 Metric genericity: Biow-up is Lebesgue-exceptional and 2-packing
dimensional

Proposition 3.5.3. The set PRiow-up @5 a Lebesgue null set.
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Proof. 1t suffices to show that Zgjow-up N C has vanishing Lebesgue measure (denoted by
| - |) for any closed square C' contained in & with side length less than unity. Throughout
the proof, all constants appearing in <, >, ~ and O will only depend on the cube C. We

~) ~)

start by estimating U(m, ¢) N C' with the co-area formula: We have

U(m, 0) " C| = / HY(U(m, 0) 1 C N {a = a})d. (3.5.41)
ac(ag,az)

We recall that H! denotes the one dimensional Hausdorff measure. As |ag — a1 < 1, it

suffices to estimate H'(U(m,£) N C N {a = a}) uniformly for a € (ay, az).

For each a € (a1, a2) we claim that U(m,¢) N C N {a = a} can be decomposed into at
most O(m?) many subsets, each of which with length at most O(e~Ye~™). More precisely,
for 91 < 93 let v3(Y1), va(Y2) be elements of U(m,¢) N C N {a = a}. Then, we claim that
either, |99 — 91| < 2e~e™™ or |9y — U] > #

Indeed, note that vz(d2) = <I>|1:92_191|('Ya(191)). Thus, from the definition of U(m,¢) and
since both, v;(¥1),va(VY2) € U(m, ), we conclude that

1
[0 — V1] < 2 %e™™ or — < |2 — V). (3.5.42)
m

Hence, we decompose U(m,£) N C N {a = a} into O(m?) many subsets, each of which has
length O(e~™e~%). Thus,

HY Um,0)nCn{a=a}) <m2e e ™ (3.5.43)
which implies
U(m,0) N C| < m2efe™™. (3.5.44)
Now,
Unc= |J UmoncC (3.5.45)
m<e<m?

satisfies |Up,,c| S e™™. Since Ppiow-up N C = limsup,,,_,~, Un,c, we conclude
|<@Blow—up N C| =0 (3.5.46)

in view of Borel-Cantelli lemma. O

Proposition 3.5.4. The set PRiow-up has full packing dimension, i.e. dimp(ZBiow-up) =
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Proof. This follows from Proposition 3.5.2 and [46, Corollary 3.10]. O

3.6 Construction of the initial data

We will now define our initial data and show first properties of the corresponding solution,
particularly a quantitative description of the (generalized) Fourier transform of the solution

along the event horizon. We begin by fixing an arbitrary parameter
p= (mv a) € @Blow—up- (361)

which we keep fixed through the rest of the chapter, i.e. throughout Section 3.6, Sec-
tion 3.7, Section 3.8. This also fixes the mass M = mil/v/3 and angular momentum
a = al/v/3. As stated in the conventions in Section 3.2.3, all constants appearing in <,
2, ~ and O will now depend on p as fixed in (3.6.1) (and on [ > 0 as fixed in (3.2.6))
throughout Section 3.6, Section 3.7, Section 3.8.

By construction of Zgiow-up and since p € FPpiow-up, there exists an infinite sequence

m; — 00, {; — 00 (3.6.2)

with
9 [ugy+ , Uoo] (w = w_mng, my, &) < eV, (3.6.3)
AmtlB910) ¢ (1 (), 0 (p)). (3.6.4)

my

Lemma 3.6.1. There erists a compact interval K =C (—oo, 1), an € > 0 and a constant
¢ > 0 such that for every i € N large enough, there exists a subinterval K; = [r} — m%, T+
C K with

i)
m;

UDS i = Uso (W = womy, my, £, ™) > <. (3.6.5)

Moreover, we choose K such that inf K > 3r.

Proof. By Definition 3.4.1, uss = Uso(w = w_my;, m;, £;,7*) is a solution to (3.2.40), i.e. a
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solution to

—u” + (M2 Vinain + V1)u = 0, (3.6.6)
where
A Ame(aw_my; _
Vinain = 2+ a2)? ( me(m? J +w?a? - 2aw_:) — (w_ —wy)?, (3.6.7)
a2y Sadt (14 5) —AMr+a® g
1= - - 3.6.8
YT (2 a?)! (r2 4 a?)3 2 r2+a? ( )
with w5 (Ir/2) = 0 and u&; ' (Ir/2) = 1. Since
Amge; (aw—_m;
e (mz ) & (01(p),oa(p)) (3.6.9)
i
there exists an § > 0 and a 75 such that
* _—
Vinain < —d for r* € [T2’l§> s (3610)

see Lemma 3.4.2. Without loss of generality we can assume that 75 > r*(r = 3ry). In

particular, for m; sufficiently large, we have that

Vinain + Vim; 2 < =6 (3.6.11)
for r* € [r3, 51). Now, let K =:= [f5,r3] C (73, 5l) be a compact subinterval. In the

region [75, 51), the smooth potential Vipain satisfies

Vinain < =0, [Viainl S 1 and |V | < 1. (3.6.12)

ain

Moreover, |Vi| < 1 uniformly in [, Z1). This allows us to approximate us; via a WKB

approximation. First, we introduce the error-control function

i

1
|Vmain ’ 2

. EL _1d? _1
Foo(r7) ::/ [Vinain| 4d7y2 (‘Vmain| 4) — dy (3.6.13)

and note that Fio(5/) = 0. In view of the above bounds on Vi,ain, and Vi we obtain

= (Fao) < 1. (3.6.14)
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Hence, from [119, Chapter 6, §5] the solution us, is given as

A ™7
us = sm( /2 Venain] dy> (1+ eu), (3.6.15)

m; ’Vma1n| 4

where A = | mam( * =Z)| satisfies |A| ~ 1 and €, satisfies €, (51) =0 as well as
/ V..* Es 1
|€uce | e gkl (o) < —. (3.6.16)
2m; ‘ Vain | 2 i i

Now, since ua; oscillates with period proportional to m;, there exists a compact subinterval

K; C K of the form K; = [r] — ﬁ,rz + ] for some ¢ > 0 such that for all r* € K;, we
have
€
“=(r* iafi, —. 3.6.17
i ) > (3:6.17)
]

We are now in the position to define our initial data which will be supported in the
compact set K as defined in Lemma 3.6.1. We assume without loss of generality that all
m; are large enough such that we can apply Lemma 3.6.1. First, let x: R — [0,1] be a
smooth bump function satisfying y = 0 for |z| > 1 and x = 1 for |z| < 5. Then, for i € N

we set
Xi: (=00, m/2) = [0,1],7* = x(c my(r* —r})). (3.6.18)

Definition 3.6.1. Let m;, ¢; be as in (3.6.2). For each i > iy for some ig € N sufficiently
large, let K; C K be the associated subinterval as specified in Lemma 3.6.1 and let x;
defined as in (3.6.18). Then, we define initial data on ¥g as

d} [20: ‘IIO = 07 (3619)

nz(ﬂ/’ on (Tu 07 ¢) = \Ifl(’l", 95 QS) = Z 6_m? 1/11'(7", 97 ¢)a (3620)

i>ig
where

VT @l ()
S O ()

Yi(r,0,¢) = Spm.t; (aw_mi, cos 0)e™i?. (3.6.21)
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Having set up the initial data we proceed to

Definition 3.6.2. Throughout the rest of Section 3.7 and Section 3.8 we define ¢ €
C®(Mxkerr-aas \ CH) to be the unique smooth solution to (3.1.1) of the mized Cauchy-
boundary value problem with vanishing data on Hy U By, Dirichlet boundary conditions at
infinity and the initial data (Vo, V1) € C°(Xg) posed on g specified in Definition 3.6.1.

This is well-posed in view of Theorem 3.2.

Remark 3.6.1. We note that our initial data are only supported on the positive azimuthal

frequencies m = my; for i > ig. The same will apply to the arising solution 1.

In the following we define the quantity ay which will turn out to be the (generalized)

Fourier transform of the solution v along the event horizon.

Definition 3.6.3. For the initial data Vo, ¥y as in Definition 3.6.1 we define

_im¢Smg(aw, cos )

1 e z
ay(w,m,l) = = uge
. ) V2 W[z, o] /7"+ /sz {m
X (—\/ —gtt Uy —iwg"Wg + gt¢8¢\lfo) }daszdr.

(3.6.22)

Now, we show that the (generalized) Fourier transform of our initial data has “peaks”
at the resonant frequencies w = w_m for infinitely many m. This is a consequence of our

choice of initial data. We formulate this in

Lemma 3.6.2. For ay as in Definition 3.6.1 we have
ay(w =w_m,m,l) = ay(w = w_m;, m;, £;)dmm, e, , (3.6.23)

where

=

lay(w = w_m;, m;, £;)| Z €™ (3.6.24)

-

for (mi, ¢;) large enough as in (3.6.2).

Proof. As ¥y =0, we compute

o0
» .
/ /2 ﬁug’o— e M08, p(aw_m, cos ) (—+/—gt) ¥ dogdr
ry JS
1 1

1 )
= e—mf 6mm¢5ai / Xi(r)d’l“ ~e M m'ilémmiéwi' (3625)

(2
T+
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To conclude we use that from (3.6.3) we have

190 [wsy+ , too) (w = w_mny, my, £)] < e V™, (3.6.26)

3.7 Exterior analysis

3.7.1 Cut-off in time and inhomogeneous equation

We will now consider the 3 as defined in Section 3.6. The goal of this section is to
determine the Fourier transform of 1 along the event horizon. To do so we will first take
of a time cut-off of 1. Let x: R — [0, 1] be a smooth and monotone cut-off function with
x(x) = 0 for x < 0, x(z) = 1 for > 1. Now, define x¥(v) := x(v/e)x(R — v) such
xE — 1(0,00) pointwise as € — 0 and R — oo. Moreover,

3y(x(v/€)) = So(v) and I (x(v/€)) = Gy(v) (3.7.1)
as € — 0 in the sense of distributions. On R U Hi we set
¢§(U7 Ty 07 Q;Jr) = ¢(U7 Ty 0> CZM)XE(U) and wR = ¢(U7 Ty 07 Q;Jr)X(R - U) (372)

and note that 1 is smooth and compactly supported in v and satisfies the inhomogeneous

equation

2

Oppcer nastie’ + 508 = FI = 200x ) (V)Y + Y000 pasXe (373)
nalogously, satisfies the inhomogeneous equation wit
Analog ly¢R isfies the inh g quati ith

2
|:ngerrfAdsqb}% + ﬁwR = FR = 2(8'UXR)(VU)w + Q/)DgKerrfAdSXR' (374)

As in [75, Section 5.1] we have

1
|FR‘27‘2 S TﬁI@WlQ + 7“2|3r¢|2 + |W@Z}|2 + W‘Qa (3.7.5)
1

[FEPr S 5 51000 + 210002 + Vol + o, (3.7.6)

In view of our coordinates, we also have that ¥ (¢, 7,0, ¢) is a compactly supported func-

tion in R; with values in C*°((ry,00) x S?). This allows us to apply Carter’s separation
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of variables to express 1% as

BE(t,r,0,6) = /R SWE) (@, 0, d)e“ du, (3.7.7)

where

S (w,r,0,90) : / YE(t,r, 0, p)e™ dt (3.7.8)

is smooth and a Schwartz function on R, with values in C*((ry,00) x S?). We further

decompose F[E](w,r,0,$) in (generalized) spheroidal harmonics

Sl (w,r,0,0) = 3 wE(w,m, £,r)Sme(aw, cos )™, (3.7.9)
ml
where
wAf(w,m,&r) ::/ FE(w, 7,0, )e ™S, (aw, cos 8)dose (3.7.10)
S2

is smooth in w and r for fixed m and ¢ and moreover
VB € LRy X Ziy X Zysp|; O (4, 00)) (3.7.11)
in view of Plancherel’s theorem. Equivalently, we have

wR(w m, 0, ) YE(t, 7,0, 6)e“e™ ™S, 4 (aw, cos B)dog:dt. (3.7.12)

=75 e

Note that %(v,r, 6, <$+) is smooth and compactly supported on R, and takes values in
C*®([r4,00), X SZ 3 ) which shows after a change of coordinates in (3.7.12) that
b +

OE(w, r,m, £)e@wrmr (3.7.13)
extends smoothly to r = r; (r* — —o0). Similarly to the above, we have
SFR(w,m, lr)= — / / SER(t,7,0,0)e“'e™ ™S, y(aw, cos )dogdt.  (3.7.14)
S2

V21 JR

Now, we define

ul = uli(w,m, 0,r) .= (r* + aQ)%wAf(w,m,E, T) (3.7.15)
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and

= - E/Fe\R(w,m,E,r). (3.7.16)

HER(w, myl,r) = ————
(2 + a2)}

Then, since ! satisfies (3.7.3), we have that uf satisfies the inhomogeneous radial o.d.e.

—uf” +(V—whult = HE (3.7.17)

[ €

pointwise for each w,m, £ on 7* € (—o0, ], where we recall that ' = dﬂ*.

3.7.2 Estimates for the inhomogeneous radial o.d.e.

Lemma 3.7.1. The solution uf as defined in (3.7.15) satisfies the boundary conditions

€

N g (3.7.18)

= O0y(A) as " — —o0 (3.7.19)
and in the inhomogeneity HI defined in (3.7.17) also satisfies
R * R’/ . R *
H=0asr" =00, H +i(w—wim)H = 0y(A) asr* — —oo. (3.7.20)

Proof. To see (3.7.18) note that

o < 2+ @10 = | [ ] 02 0 0001,0,0)618 i cos0)e o]
R JS2

(3.7.21)
In view of the compact support of 1/}5 in t, it suffices to show that the pointwise limit

lim rpR(t,r,0,¢) =0 (3.7.22)

holds true. But this follows from the fact that ¢% € CH} .
For (3.7.19), we use (3.7.13) to see that 8, ()2 (w, r, m, £)e!@~“+™"") extends smoothly

to r = ry. Thus, using 0, = ’”2za2 Op+, we infer that
R’/ . R __ *
Uy +i(w —wym)ug = Oy(A) as r* — —oo. (3.7.23)
Analogously, we obtain (3.7.20). O
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Lemma 3.7.2. We represent ult as

Ry ! /2 HEdy + / HEq (3.7.24)
u(r*) = ——qu u U u . 7.
‘ m[u?-ﬁauoo] " r* ot Y - —o0 ety
Moreover,
R *\ i(w—wim)r* _ R
74*1_1>moou (r*)e e 3 (3.7.25)
where afH is defined as
R ! / : HEd (3.7.26)
Ay = U . 7.
eH m[u?_ﬁ’ uoo] - ool Ay

Proof. First, since there do not exist pure mode solutions as shown in |75, Theorem 1.3],
the Wronskian 20[ug,+, uso| never vanishes. Thus, (3.7.24) is well-defined and in view of
the boundary conditions of uf* and H[* as shown in Lemma 3.7.1, a direct computation
shows (3.7.24). To show (3.7.25) we note that

. 2
-
lim sup / uH+H€Rdy
r*——00 —00
r(r*) |§ﬁ%|2 T A
< limsu < dr Uyt P ———=dy | =0 3.7.27
_Mog(/m et B (3.7.27)
because
) |SFR|?
/ |2 < ’2dr <oo and  sup |uy+| < oo. (3.7.28)
T4 re+ta r*e(—oo,ry)
O

Lemma 3.7.3. The inhomogeneous term HER has the pointwise limit

HE .= lim HR
e—0
A ! —imé t " to
— ( . n 2) < Ye Smg aw < \/?\111 wyg \IJO +g a¢\1;0) do-s2
T a \/
(3.7.29)
A —z(w w4m)
T ( 2 + 2)3 / /2 EFR v, T, 0 ¢+) wu _Zm¢+S g(aW)dUs2d’U.
r a=)2 R-1Js
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In addition,

1 3
R R R 3 %
N S R4 3.7.30
Qe 7 T i o] /_oo HooHt AT ( )

pointwise as € — 0.

Moreover, we have

A 1 ;
HEY 5 H .= / Ye M8 i (aw
(r2 +a2)2 V27 Js2 o)
(_@\pl —iwg W, + gt¢a¢lllo> dog:  (3.7.31)
and

alt = ay (3.7.32)

pointwise as R — oo.

Proof. We start with the decomposition Ff* = F, 4+ Fr, where the support of F, is in
{0 <t <e}n{r > 2ry} for € > 0 small enough and the support of Fg is in the set
{R -1 < v < R}. This decomposition is well-defined in view of the finite speed of
propagation.

We first consider F, and write its (generalized) Fourier transform as

_ 1 . .

YF(w,m,l,r) = / /Fe(t,r,e,qb)el“’tdt Ee_’md)Smg(aw?cos 0)doge. (3.7.33)
V2m Js2 Jr

Recall that for all e > 0 sufficiently small, we have that v(¢,7,0,¢) = t on the support of
F,. Thus,

F. — Fy = —/—g!"6—0¥1 + g"6,_oWo + ¢"?81-004 ¥ (3.7.34)

as € — 0 in the sense of distributions (compactly supported distributions) on R; with
values in C°°((ry,00) x S?). Hence,

ﬁ(w, m,l,r) = / e"™M9S, o(aw, cos 0) F.e“te“Pdtdogy
2 JR

75 )

1 :
/ e"M9S, o(aw, cos 0) (—@‘I’l —iwg" Wy + gwa(b\l'o) dos>  (3.7.35)
S2

_) —_
V2T
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pointwise. Thus,

H® = lim HE =
e—0
A

1
= Ye meg aw) ( V=gt — iwg" Ty + ¢'%9, ¥ )da
(1 +a?)} Var Js: ! A

A fz(w w4m)
+ 3 / / SFr(v, 7,0, dy)e” e=imd+ g 'me(aw)dogadv
(r2 +a?)2 R-1.Js?
(3.7.36)
pointwise.
Now, to show that QEH — aft it suffices to show
2 A A
/2 Uoo—— ST dy—>/ Uoo— S Epdy (3.7.37)
—c0  (r2+a?)2 (r?2 4+ a?)2

pointwise as € — 0. But recall that F, is compactly supported in (r4,00) for all 0 < € < €
sufficiently small and supy_ ., sup, ]X/]Z?'E] < oo so we can interchange the integral with

the limit € — 0.

Now, we will show that H* — H as R — oco. As 1 and its derivatives decay pointwise

at a logarithmic rate (see Theorem 3.2), we infer that

sup |F|(0,7,0,04) =0 (3.7.38)
r€(r,00),0,6+ €S2

as R — oco. Thus, we have

/ / SFr(v, 7,0, dy)e™? e~imd+ g 'me(aw)dogadv
R—-1JS2

<r? sup \Ey|(v,7,0,¢4) =0 (3.7.39)
ve(R—1,R)
TE(T+7OO)707(£+ES2

pointwise as R — oco. This shows H® — H pointwise.
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Finally, to show that af[ — ay as R — oo, we estimate

e~ Hw—wym)r R+1 3
uoo YFg(v, 70, )e e ™+ S i (aw)dogedudr*
[ oy [t s

NI

1 A
< 2 dr* su / /E2F 2 7‘2d0 dr
[ el BT A s
A 2 2
| dr* su Frl?’r?doczdr
/ 212 1 a2 R}Iz)+1/ /52 |FR| 52
RO mzw sup / /61 Jridogedr — 0 (3.7.40)
€(R,R+1) S2

as R — oco. Here, we have used that |uso| < Ciup|r*| which holds true as for each w,m, ¢

there exist constants as, a. only depending on the w,m, £ such that us = asus + actc,
sin((w—wym)r*)

where us and u. are solutions to the radial o.d.e. satisfying us; ~ o—wrm and

Ue ~ cos((w — wym)r*) as r* — —oo. In the case w = wim, this reduces to us ~ r*

and u. ~ 1 as r* — —oo. Hence, aft — ay as R — oo pointwise for each w,m, £. O

3.7.3 Representation formula for ¢ at the event horizon

Proposition 3.7.1. Let a} be as defined in (3.7.30). Then, on the event horizon Hp we
have

- 1 .
R, ry,0,04) = Z/af[Smg(aw,cos@)elmme_w”dw, (3.7.41)
R

\ /27r(r_2i_ +a?) e

in L*(R, x S?). Moreover,

2
\/TJFT VB, 74,0, 04 )Sme(aw, cos 0)e Zm¢’+e“‘”’daszdv (3.7.42)
2 RxS2

pointwise and in L?(R, X Z,, X Zy>|m))-

Proof. We have

~ 1 / . . N S
R H(w—wym)r*, R imoy —iwv
(v, 0,04) = E e U Spme(aw, cosB)e e dw
Vel ) 27 (r? + a?) me R ol )

(3.7.43)
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and

21 42 .
(w— * T+ a 7 i ;
etlwmwrm)rty ke 5 VR, 7,0, 1) Sme(aw, cos B)e” M+ dogadu
T RxS?

(3.7.44)

for r, <r <ry +mn. Now, since ¥/t is compactly supported in v uniformly as r, — —oo,
we can interchange the limit r* — —oco with the integral over v. Thus, sending r — r4

(r* — —o0) yields in view Lemma 3.7.2

r2 + a? - o
af;_[ = +T o VR, 14,0, 04 )Sme(aw, cos B)e” M+ eV dogadu, (3.7.45)
X

where afH is given in (3.7.26). Now we will perform the limit ¢ — 0. First, from

Lemma 3.7.3 we have that

1 3

as € — 0 pointwise. Moreover, wf has compact support uniformly as € — 0 and ¢§ — R
pointwise and in L?(R, x S?) as ¢ — 0. Thus, the right hand side of (3.7.45) converges
pointwise and due to Plancherel also in L?(R,, X Z,,, X Zg>|m|) as € — 0. Hence, afH — ai
also holds in L2(Ry, X Z, X Zy>|m|) and we conclude

which holds pointwise and in L?(Ry, X Z,, x Zy>|m|)- And by Plancherel we also have

"UT'+,0(Z5+ \/72 /G’H
(ry + a?)

in L2(R, x S2). 0

PR( Sme(aw, cosB)e imes g=iwv g, (3.7.48)

3.8 Interior analysis

Having established the behavior of our solution v in the exterior R, we will now consider
the interior region B characterized by r € (r_,ry). We first consider the radial o.d.e. in

the interior which allow us to represent our solution v as a suitable generalized Fourier
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transform. We also recall that in the interior region the tortoise coordinate is defined in
(3.2.15) as

dr* A

oL (3.8.1)

where 7*(™$"=) = 0 and that A < 0 in the whole interior region.

Remark 3.8.1. As our initial data are only supported on azimuthal modes m which are

large and positive, we only need to consider this frequency range in the following estimates.

3.8.1 Definitions and estimates for the radial o.d.e. in the interior

We recall the radial o.d.e. (3.2.36) and write it in the interior r_ < r < ry as

AL
—U” + <(T’2—i—a2)2 - (mwr — (.U)2 + ‘/1) u = 0, (382)
where
L := Ay + 62w? — 2mwaZ= (3.8.3)

and V7 is defined in (3.2.38). Note that L > 0 follows from |75, Lemma 5.4]. Also note
that Vi = O(]AJ) uniformly for 7* € (—o00,00). We will mainly treat V; as a perturbation
and recall that the high-frequency part of the potential is given by

Vi = T e (mw, —w)=. (3.8.4)

We now define fundamental pairs of solutions to the radial o.d.e. corresponding to the

event and Cauchy horizon, respectively.

Definition 3.8.1. We define solutions uy,,,us, to (3.8.2) in the interior as

Uy, = e W (3.8.5)

Uy, = eIt (3.8.6)

for r* - —oo. For w # wym, they form a fundamental pair. For w = wym the solutions

uy, and uy, are linear dependent. Analogously, we define

ucy, = e wmw-mr (3.8.7)

Ucy, = €@e-mr (3.8.8)
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as r* — +o00. For w # w_m, they form a fundamental pair. For w = w_m the solutions

ucy, and ucy, are linearly dependent.
We moreover define reflection and transmission coeflicients.

Definition 3.8.2. For w # w_m define the transmission coefficient ¥ = T(w, m,¥) and

the reflection coefficient R = R(w, m, ) as the unique coefficients such that

UHp = TuC’HL + ERUC’HR' (389)
FEquivalently, we have
g — Blurg, uenn] _ Wlury, uer) (3.8.10)
Wlucy,, ucry)  2i(w —w-_m)
o~ Blusgven,] _ Wluwg, vew,) (3.8.11)
Wlucy, ucH, | —2i(w — w_m)

They satisfy the Wronskian identity

w—wym

TP = |%R° + : (3.8.12)
w—w_m
Further, we define the renormalized transmission and reflection coefficient
1
ti=(w—w_m)%T = ?Qﬁ[uHR, UCH R, (3.8.13)
i
1
ti=(w—w_m)R = —%Qﬂ[uHR, uc, ) (3.8.14)
which satisfy
" i=tw=w_m) = —t(w=w_m) =Y. (3.8.15)

Lemma 3.8.1. There exists a constant ey > 0 only depending on the black hole pa-
rameters such that the following holds true. Assume that |w — w,m| < €cqgm for some
r € [r_,ry], then L 2 m2.

Proof. Note that L is larger than the lowest eigenvalue of the operator P(aw) + a?w? —

2aZwm, where P is as in (3.2.34). Since

1
P(aw) + a*w? — 2aZwm = — ——9p(Ag sin 60y-)
sin 6
—_ 2 2
! = i 2 sin?0 3.8.16
+A—0 msing—awsmﬁ +2l—251n , (3.8.16)
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it suffices to show that the second term is bounded from below by O(m?). To do so, let

r € [r_,r4] such that |w — w,m| < ecygm. Then, in view of

awr =Z 55 (3.8.17)
we conclude
= 2 = 2
m— —awsin® | = (m— — aw,msinf + a(w,m — w)sin O
sin 6 sin 6
222 2 _ 2
Zm; 1- - _sin?g— gwsiDQG > m?
sin® 6 a? +r? = m
(3.8.18)
for sufficiently small €.y > 0 only depending on the black hole parameters M, a, . O
Lemma 3.8.2. Assume that |w —w,m| > ecuem for all v € [r_,r4]. Then,
1
lurgllLee®) S 1 llung Lo ry S Il + [m] + L2, (3.8.19)
1
luer, oo ry S 1 luck, ey S lwl + Im| + L2, (3.8.20)
1
luctipllzo®) S 1, llueug ler) S lw| + [m| + L. (3.8.21)

Proof. We first assume that w — w,m > ecyym for all r € [r_,r;]. Moreover, from our

assumption, we have that the principle part of the potential V; satisfies

!
Y
Vi

1/

~V; > m? and : 7” <|A| (3.8.22)
i

and the error term satisfies |Vi| < |A|. Thus, the error control function

LA T 1 Vi
E, r* ::/ — 5 (V&%) — d 3.8.23
0= | g (V) = (3.8.28)

satisfies V_oo oo (F, )

UHR,

< L. This allows us to apply standard estimates on WKB ap-

~ m

proximation such as [119, Chapter 6, Theorem 2.2| and deduce that

1 *
[Va(=o0)|4 ./’" 1 ‘
Uy, = Ay, 2 exp | —i Viiy)zdy | (14 €w,, (), 3.8.24
o = A e (= [ W ) (1, 0). @820
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for some Ay, with |Ay, [ = 1. Moreover,

e, ()] < w1 e (co0) = el (co0) = 0. (3525
su € T —, su N an: € xX0) = € —xX) = 0.
r*epR ‘MR ~m r*eII)? ‘Vﬁ|% m “HR UHR
This shows that
1 1
sl < 1 and usy e < IV gy S lol + lm| + L3, (3.8.26)

Similarly, we show that the above holds for w,m — w > ecyym. This shows (3.8.19).
The bounds (3.8.20) and (3.8.21) are shown completely analogously and their proofs are
omitted. O

In the rest of the section we will make use of

Definition 3.8.3. We define

Uiy = €T g (3.8.27)
Up, = e*"(“’*“’—m)’”*u;.[L7 (3.8.28)
UCHp = e_i(‘”_w—m)r*ucq.[R7 (3.8.29)
ucy, =T (3.8.30)

Lemma 3.8.3. Assume that |w — wy,m| < €cuqem for some r € [r—,ry] and assume that
m € N is sufficiently large. Let Ry := —i log(L) and Ry := 53— log(L). Then,

2|k |
1
il Lo (—o0,ma] S 1 Ut | oo (—o0,re) S | + |m| + L2, (3.8.31)
1
HUCHLHLoo[RLOO) S, 1, HuCHLIHLOO[Rl,OO) S ’w| + ‘m’ + L2, (3'8'32>
1
gl Loo(ry,c0) S 1 luens Il Lo ry 00) S lw| 4 Im| 4+ L2, (3.8.33)
and
|Outiggp|(R1) S1og(L), [Ouupy,[(R1) < log(L)(Jw| + [ml), (3.8.34)
|Ouuicry|(Re) S 1og(L), [0uucwy|(Rz) S log(L)(Jw] 4 |m)), (3.8.35)
|Ousucr, |(R2) S log(L), [Ouuc,'|(Re) S log(L)(|w] + |m]). (3.8.36)
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Moreover,

1wtz (oo S 1. 10usttity o (oorm) S 1. (3.8.37)
10wt e g S 1. 10stucitn | = (poe) S 1. (3.8.38)
10wt e (aoe) S 1. 10063, | oe (aoe) S 1. (3.8.39)

Proof. From Lemma 3.8.1 we know that L > m?. Now, we write uy » as the solution to

the Volterra equation

Upy = e~ iwwim)r +/ K, 9)(1 + Ry — )V (y)un, (y)dy, (3.8.40)

where the kernel is given by

K(T*, y) _ — ];1 — Sin((w ;i«#;r:)g* - y)) (3841)

and V := V; + Vi + (w — wym)?. For y € (o0, Ry), a direct computation shows

. Ry 5
(14 Ry~ 9)[V()| S (1 + Ry — y)Le2+, / (1+ R —y)[V(y)ldy 1
and
sup |K(r*,y)| S 1. (3.8.42)

y<r*<R;

Standard estimates on Volterra integral equations (apply [119, Chapter 6, Theorem 10.1]

to the term wuyy,, — e~ w—wrm)r™y yield

lwrp oo (—oo,my) S 1 (3.8.43)
lurer Lo (o0,my) S 1+ |w —wim| S 1+ |w —wr,m| +mlwg, — w4

S14 |w—wrml+m|AR)| <1+ |w—wr,m|. (3.8.44)

Now, for the region r* € [Ry, Rp] we approximate uy, with a WKB approximation. To

do so we remark that for r* € [Ry, R2] we have

‘/‘ﬁ/ lj//
—Vizland |—|, || S |A| (3.8.45)
ANz

) ~Y
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and the error term satisfies |V;| < |A|. Thus, the error control function

1 d? 1 Vi
F, r¥) = —— (V&%) — d 3.8.46
)= [ g (Vi) - (3:8.40

is bounded as Vg, g, (FuHRg) < 1. This allows us to apply [119, Chapter 6, Theorem 2.2]
to deduce that

Upp = Aug UWKB 4 T Buy, , UWKB

1 *
LT
= Ay exp | —i [ [Vi(y)|zdy | (1 + €uy,, , (r7)
Gl B (1 s )
1 *
[Va(Ra)[7 : / ’ 1
+ B, exp | @ Vi(y)|2dy | (14 €uy, . (7)), (3.8.47)
AT P ( Hrp )
for
i = —Juwinp, Utn) g g, ZDWKBL U (3.8.48)
R W(UwKBy, UWKB,) R W(uwKB,, UWKB )
Moreover,
sup  Jew,, . (77)] S 1, (3.8.49)
re€[Ri,Rs) A
sup e, (S swp |Vl S L2+ |m]+ |wl, (3.8.50)
T*E[Rl,RQ} RA T*E[R17R2]
Cup, , (R1) = €, (R1) =0, (3.8.51)

and analogously for Curp Evaluating the Wronskians at * = R;, we obtain

A, |+ | Bue, | S 1 (3.8.52)

UHR
in view of (3.8.43) and (3.8.44). This shows that

||u’HR||L°°(—oo,R2) S (3853)

1
[uatsll oo (—o0, ) S Il + Im] + L2 (3.8.54)

To show the bound on J,uy, we consider uy,. Then, uz, satisfies the Volterra equation

~ ’"* f(r*, ~ 5
wiin =1+ [ M(Hm—y)wmum(ymy, (3.8.55)
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where K (r*,y) = elw—wrm)(r"—y) sin((w—wsm)(r’—y)) Completely analogous to before, it

w—wim
follows that

lugtn | oo (—oo,rr) S 1 and [luggy [l e (—oo,my) S 1. (3.8.56)

Now O,uy, solves

*

Ouity = [ (0KG 070 + KG0)0.7 ) wita )y

—00

- /Oo 14+ Ry — y(l + R — y)V (y)Owup, (y)dy. (3.8.57)

As |0y Ame(aw)| S |m| from Lemma 3.3.2, we conclude that
0.V < |Alm and |0,K (r*,y)| S (rF = y)® (3.8.58)

such that

R 5 B 5
/ (0K G 1)V () + KO )07 (0) ) it ()] dy < 1. (3.8.59)
Again, by standard bounds on Volterra integral equations [119, Chapter 6, §10| and using
(3.8.53), (3.8.53), we obtain

10wt oo (—o0,m1) S 1 (3.8.60)
and
||awu";l12,||L°°(—oo,R1) <1. (3.8.61)

This shows (3.8.37)—(3.8.39). Now, we write

8wuHR _ aw(efi(wa-rm)T*u;LR) _ —iT*UHR + e*i(wfw-rm)r*awu;[R (3862)
and
Opupy, = —iugy, —iruy,, — i(w — w+m)e_i(w_w+m)’"*8wuq}}% + e_i(‘”_"“fm)’"*(?wuﬁR’.
(3.8.63)
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Evaluating this at * = R; we obtain
|0wupy|(R1) S |R1| S log(L). (3.8.64)
and
Oty |(R1) S log(L)(Im] + |wl). (3.8.65)

This shows (3.8.34)(3.8.36). The proofs for ucy, and ucy,, are completely analogous. [

Lemma 3.8.4. The renormalized transmission and reflection coefficients satisfy

21t] = [20[user, el S Il + ] + L2 (3.8.66)
20| = | W[y, uer, ]| S Iml + |w] + L2 (3.8.67)
and
1
sup 2[0,t = sup |0 uny f,, uen )l S (Jm| + L2)log(L)
we(w_m—1,w_m+1) we(w_m—1,w_m+1)
(3.8.68)
1
sup 2[0,%] = sup |00 W[urp, ucy, J| < (Im| + L2)log(L).
w€(w_m—1,w_m+1) we(w_m—1,w_m+1)
(3.8.69)

Moreover, we have

(0,3, ucr) ()| 4 [ [Bustirg ucre, ) ()| S Tog(L) (| + lm| + LE),  (3.8.70)
Wlusigs Auticre) ()] + [Wlusgs, uticre, ()| < log(L)(lw] + ] + LB)  (3.8.71)

uniformly for r* € [Ry, Ra].

Proof. The bounds (3.8.66) and (3.8.67) follow directly from Lemma 3.8.2 and Lemma 3.8.3.

To show (3.8.68) we evaluate the Wronskian at 7* = 0 and write

)

) + Wlug s ey (r* =0).  (3.8.72)

0w WUy, ucHy) = 00Wluy,, ucr,|(r" =0
= W[0ups s UcH | (1T =0
Hence, (3.8.68) follows from (3.8.70). To show (3.8.70), we apply the fundamental theorem
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of calculus for Ry < r* < Ry and obtain

r*

W0ttt ueH ) ()] S/ |0r« W [0 uy gy uct ) |AT™ + [2B[Ouny y uct ] (R1)]-

Ry
(3.8.73)
Since O0p+W[Owtupy, UcH ] = —UppUcH 0. (Vi + V1), we conclude in view of Lemma 3.8.3
that
sup |0 W[0uunp, ucryl| S |m| + |wl. (3.8.74)
r*€[R1,R2]
From the proof of Lemma 3.8.3 we also have
1
W [0 upp s ucrg] (R1)] S log(L)(Jw| + [m| + L2) (3.8.75)
such that
« 1
sup | W[ upp, ucry] (r")| < log(L)(lw| + [m| + L7) (3.8.76)
r*€[R1,Rs]
follows. Similarly, we obtain
sup | Wlup g, wuenpl(r¥)] S log(L)(|w] 4 [m]) (3.8.77)

T*G[Rl,RQ]

leading to (3.8.68) and (3.8.70). Completely analogously we obtain (3.8.69) as well as
(3.8.71). 0

With the above lemma in hand we conclude

Lemma 3.8.5. Let m € N be sufficiently large and let € > 0 be sufficiently small only

depending on the black hole parameters. Then,

- 1
| sup - |0tttz Loo (—00,0) S L2 log(L), (3.8.78)
w—w4+m|<e
- 1
| sup | HaquHRHL‘”(O,oo) ,S L> 10g(L), (3879)
w—w_m|<e
- 1
sup  [|Owuchy |l Lo (0,00) S L2 log(L). (3.8.80)

|lw—w_m|<e

Proof. We again only show the claim for uy;,, as the other cases are completely analogous.

Assume that |w — wim| < € for some € > 0 sufficiently small. In view of Lemma 3.8.3 it
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suffices to consider the region r* € [R;,0]. Now, note that

1 ’"*
e T | G MR
- UC?—LR/ U pucH,, Ouw(—Vi — V1))
Ry
N Qﬁ[awUHR,ucyL](RﬂuC%R N w[awuHRJUCHR](Rl)UCHL.

Wlucyy, ucH, | Wlucw, , ucHz)

Hence, using Lemma 3.8.3, Lemma 3.8.4,

sup  [0,(Vg + V1)l < Iml,
T*G[Rl,RQ]

as well as the lower bound |W[ucy,, ucy, ]| 2 |m|, we obtain

sup |Ouse,| S L7 log(L).
r*€[Rq1,0]

In view of uy, = ei(“’_‘”m)r*uHR and the chain rule, the claim follows.

Lemma 3.8.6. The renormalized transmission and reflection coefficients satisfy

(€71 2 |ml and [¢] Z |m].

(3.8.81)

(3.8.82)

(3.8.83)

(3.8.84)

Proof. Throughout the proof we assume that w = w_m. As ucy, = ucy, for w =w_m,

it suffices to bound the Wronskian [20[uy,, ucs ]| from below. To do so, let A and B be

the unique coefficients satisfying ucy, = Auy, + Buy,. From ucy, = Ucw, it follows

that ucy, = 2Re(Auyy,,). Now, for € > 0 to be chosen later, define

1 1
5 = —— log(L -
R2 2|K/,| Og( )+ €

Now, ucy, — 1 is a solution to the Volterra equation

0o y— r* .
wenn = 1= [ T (= BYV() (uers — 1)+ 1]y,
r* 2

where V = V; + Vj(w = w_m). We have

> > 20k | RS 2lr |
/ (y— RV (y) < Le 2175 < o=
RS
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Using bounds on solutions to Volterra integral equations as before (see [119, Chapter 6,
§10]), we obtain that

1
lucrn = Lllzoo(rg,00) < 5 (3.8.88)
for € > 0 small enough depending on the choice of parameters M, a,l. Thus,
1
9 < ’U’C’HR(RE) = 2Re<mU'HR(R§)) S 2’9’[”’“7{12“[/00(—00,}%5)' (3'8'89)

Note that (3.8.31) also holds if we replace Ry by RS for some fixed value of € > 0. Thus,
we conclude that |B| = || 2 1 which shows

s, ezl 2 (o — wi)lm| 2 m]. (3.8.90)

This concludes the proof. ]

3.8.2 Representation formula for ¢ on the interior

Proposition 3.8.1. Let ¢y € CX(Hg) and let ) € C®(B) be the arising solution of
(3.1.1) with vanishing data on Hry,. Then,

(v,r,0,44) = [t e, cos ) Falio o,
R ml

1

(3.8.91)

where uy, s defined in (3.8.1) and

A/ +a? o o
Fylol(w,m, l) := +/ /¢o(v,9, by )evem M+ S (aw, cos B)dogadw.
V2 s? JR
(3.8.92)
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Moreover, in B we have

v, 1,0 —tw(v—r* zm(J),—w,r*)
b(o,1,0,6-) = ?QMQ >e v [
t l
Sime(aw, cos 0) F [1ho] MuCHL dw
w—w_m
—iw(v—r*) im(d_—w_r*)
\/ r2 + a?) Z P / ‘
t(w,m,{)
Sme(aw, cos 0) Fpy[tho] ———ucy ,dw (3.8.93)
w—w_m
as well as

—r*) jim(¢* +w_r*)

¢(u r,0,¢") = \/WZ p.v. / e
Sime(aw, cos 0) Fy o] MUCHL dw

tw( zm¢*+w7’)
\/ r2—i—a2 Z /

t(w,m,l)

Spe(aw, cos 0)fH[wo]w — cHpdw. (3.8.94)

Proof. Note that Fy[io](w, m,¥) is rapidly decaying and smooth which follows from the
fact that g € C°(H). Moreover, in view of Lemma 3.8.2 and Lemma 3.8.3, we have
that the right hand side of (3.8.91) is a smooth solution to (3.1.1) in the interior region
B. Now, the claims follows from the uniqueness of the characteristic problem and the fact
that the right hand side of (3.8.91) converges to ¢ as r — 4. The other formulas follow

from a change of coordinates. O

Before we prove the blow-up result, we need one more final ingredient which is a

consequence of the domain of dependence.

Lemma 3.8.7. Let ¢ € C™(B) be a solution to (3.1.1) arising from vanishing data on
Hr, and smooth data g € C*°(HR) posed on Hgr. Then, @(uo,ro, 0o, ¢* ) only depends on

Yo [{USQT*(TO)_UO+5}, where ¢ > 0 is a constant only depending on the black hole parameters.

Proof. In coordinates (v,r,0,¢_) (or equivalently in coordinates (v,7,6,¢y)) define the

function v := v 4 f(r) on B and choose f to satisfy % =_/Z |i| with initial condition
= 0. This i 11 defined !

flry) is is well defined as W

Now [ is non-negative and satisfies sup,.(

is integrable at the event and Cauchy horizons.

f < ¢ for a constant ¢ > 0 only depending

T— )T+)
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on the black hole parameters. A computation also shows that, uniformly on B, we have

a? sin? a?

SA,  ¥E < 0 and ggags(Vo,—Vr) <0. (3.8.95)

gKAas(V0, Vi) =

This means that Vv is a future-directed timelike vector field. Thus, level sets of the
function ¥ are spacelike.

Now, consider

¥ (uo, 70, 00, L) (3.8.96)

Since Vv is future directed and timelike, it follows from the domain of dependence that
(3.8.96) only depends on

Yo [{5(v,r)<8(0(ro,u0),ro)y = Y0 [ {v<2rs (ro)—uo+f (ro)}+ (3.8.97)

since v(v(rg, up),ro) = 2r*(ro) — up + f(ro) . This concludes the proof. O

3.8.3 Proof of Theorem 3.1

We recall that the cosmological constant A < 0 (and thus [ = \/—3/A > 0) was arbitrary
but fixed as in (3.2.6).

Theorem 3.1. Conjecture 5 holds true.

More precisely, let the dimensionless black hole parameters (m,a) € PRiow-up be arbi-
trary but fized as in (3.6.1), where Ppiow-up 5 defined in Definition 3.5.3.

Let 1p € C°(Mgags \ CH) be the unique solution to (3.1.1) arising from the smooth
and compactly supported data specified in Definition 3.6.2 on Kerr—AdS with parameters

(M,a) = (m/v/=A,a/v/—A).

Then, for each ug € R, the solution v blows up at the Cauchy horizon CHR as
Jim 19 (o, )72 (s2y = +00- (3.8.98)
Moreover, Pgiow-up C & has the following properties:
® PRiow-up s Baire-generic,
® PBlow-up s a Lebesgue-exceptional (PRiow-up has zero Lebesgue measure),
® PBlow-up has full packing dimension dimp(PBiow-up) = 2.
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Remark 3.8.2. The above statement shows that generic data (i.e. data which do not
satisfy the co-dimension 1 property as described in Remark 3.1.1) lead to solutions which
blow up as in (3.8.98). Thus, the above statement indeed proves that Conjecture 5 holds

true.

Proof of Theorem 3.1. The stated properties of Zjow-up On the Baire-genericity, the zero
Lebesgue measure and the full packing dimension follow from Proposition 3.5.2, Proposi-

tion 3.5.3 and Proposition 3.5.4, respectively.

We now turn to the proof of (3.8.98). First, we write 1o := v [3,, and note that

D= Z / V' K7 4po(v, 0, 64 )P dogedu < oo (3.8.99)
RxS2

0<i+j<4

in view of Theorem 3.2. Now, let ugp € R be fixed and let r;, — oo be a sequence with

ry, > 1y for sufficiently large r5. We will first prove that as 7, — oo, we have that

2

ey, ()
ek, ) Ry — )| 4 Er(D),  (3.8.100)

where |Err(D)| Sy, D uniformly for all ) > r§ and R, := 2r) — ug + ¢é. Also recall the

(o, )72y = D |

me

definition of af! in (3.7.30). Here we also introduced the notation ucy,“~ = ucy, (w =
w_m). Once we have established (3.8.100), the blow-up result of (3.8.98) will be proved.

Thus, we now turn to the proof of (3.8.100). In view of Lemma 3.8.7 we have that
Y (uo, 75,0, ¢~ ) only depends on 9o [{y<2r —yo+a- Consider now

UG (0,0, 9y ) == g (v,6, ), (3.8.101)

where 1" (v, 6, ¢4 ) = 10(v, 6, ¢4 )X (R — v) is defined in (3.7.2) with R,, = 2% — ug + ¢.
Now, ¥ (ug,r},0,¢* ) only depends on .
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Using the representation formula (3.8.94) in Proposition 3.8.1 we write

iw(uo—ryk) im(p* +w_rk)

Blug, 7,0, 6%) = JWZ pv. [ e c
< Sy cos9>mwo]w uer 4
X Spme(aw, cos 0)F. [wn]w uc dw
— [ +11. (3.8.102)

We consider both terms individually and start with the term I. Moreover, we split the
term [ into |aw — aw_m| < % and |aw — aw_m| > % and call the terms I s and Inon-res,
respectively, such that I = Ies + Inonres. First, we claim that the spherical L?-norm of

the term

I, eiw(uo 7r;‘l)6im(¢>’: +w_r})

Ve
res = p.v.
BEC e PO

(wmﬁ)

X Spe(aw, cos 0) Fy [1/10] muCHde

(3.8.103)

is controlled by D uniformly as 7}, — oo.

Lemma 3.8.8. We have HInon_reSHQLQ(Sg)(TZ,uo) < D for all v} large enough.

Proof. Using |

we estimate

| < am in the integrand of (3.8.103) and [;" /" M%d¢p = 27,5,

w—w-_m

2

”Inon—reSH%Q(SQ) f,zm?/o Z /\Smg aw, cos 0) Fy (g ] tucy, |dw| sin6d6.
m =|m|
(3.8.104)

From the Cauchy—Schwarz inequality as well as Lemma 3.8.2, Lemma 3.8.3 and Lemma 3.8.4,
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we obtain

2 ' i(aw, cos0)|? .
||Inon—resHL2(32) / Z / 1 + w2 + Amg) dw sin 0d9

« Y / (14 @)1+ A (1407 + )| Flo] Pl

£>|m]|

S Y [0+ A+ + A Pl S D,

m {>|m|
(3.8.105)
where we have used that A,,, > Z2¢(¢ + 1) such that 2> |m| 1+A — <t O
Now, we turn to the term Ieg:
VI (o) imio )
— w(ug—ry) im (P> +w_r}
w, m,t
X Spe(aw, cos H)FHWD](WiUCHde
(3.8.106)

t(w—w_m)r*

and write ucy, = e~ ucy, - Then,

1 w_m+ ain —2i(w—w_m)r} iwuo T n
res = I;les + Ifes -V Z p.V‘/ € € H[wO]
27 (r2 + a?) —~ wom—-L w—w_m

x MO~ S, o(aw_m, cos ) t(w_m, m, £)ucy, "

w_m-+-L
Fam —2i(w—w,m)7‘:€iwuo~/—_- n eimqﬁi
\/27‘( r2+a2 / - L Hlvp]
X | Sime(aw-m st (1, m, Ouci) (€)

Spe(aw, cos0) — Spe(aw_m, cos 6)

+ t(w, m, O)ucy, ]dw (3.8.107)

W —w-m

for some £(w) € (w_m — L w_m+ -L). We also use the notation

ucy, (1) = ucy, (w = w_m,r"). (3.8.108)
Again, we consider both terms 12, and I’ individually and begin with term I7...

Lemma 3.8.9. We have || reSHLQ(SQ)(r;’;,uO) S D forallr) > 1.
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Proof. We decompose the term I% = I°L + %2

s = Lo + 1% further into the two summands appearing

in the w-integral. We will estimate each of them individually. We begin with I%L and
estimate
2 2
LUFEEDY / / T\ Flt] St aso-m) 0, (tuche, ) (€)|dw| sin 66
< Z > / / (1 4+ A2 )| Fr[08)|Sme (aw—_m)[2dw sin #d6
£>|m|
1 Ou(tuci, ) (§)
(1 wp 1060
m £>|m]| |f~—aw,m|<% 1+ Amf(g)
A2 (aw_m)log?(Ape(aw_m))
< A d mt = < D.
SY| X [0+ aboimuiias | | 30 e Ak S
m \£>|m)| £>|m)| m
(3.8.109)
Here we have used Lemma 3.8.3, Lemma 3.8.4, Lemma 3.8.5 and the fact that
Ao me = Ame(aw—_m) ~ Apy(af) (3.8.110)
for all | —w_m]| < i which in turn is a consequence of Lemma 3.3.2.
We now control the second term I%2 and estimate
) 2
~Mt G n1Sme(aw) — Spe(aw—_m)  _ )
178212, (s2) S Z/ / _— Fulvy] o tucy, | dw| sinfdf
£>|m| am
<Z (Z (14 AJ )| Fr o] Pdw
|
w_m +am 2
Z tuc, | / ‘ me(0) = Smela-m) " 41 g
S w m—L 1+ A3 w—w_m
< Z 1 + A ) Fr[yf] P dw
m\z|m|
w mK w,m-i-m
Z / / 10 Sime|? (a) sin 0ddw | < D,
>|m w ,me w,m—ﬁ |E—w_ m\<
(3.8.111)
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where we have used the mean value property, Lemma 3.8.3, Lemma 3.8.4 and Proposi-
tion 3.3.3. ]

Now, we proceed with I%,, i.e. the first term in (3.8.107). We begin by recalling the

definition of Fy (]

res ?

Fulyg] = // Zwv% v, 0 ¢+) Sme(aw, cos 0)e ~mot dudoga. (3.8.112)

Similar to Lemma 3.8.9 we will replace the S,,s(aw) appearing in (3.8.112) with S,,¢(aw_m).

In order to do so, we introduce

_m ke —2i(w—wom)r Liwuo F
Ia B w-m+too o i (w—w m)rnezwuo‘FH[waL] o

res ° p /
NGt r2 a?) Z e L w—w_m
am

x M= S, p(amw_, cos O)t(w_m,m, £)ucy, ", (3.8.113)

Fulvo] = Y~ /R UG e (V)€ dv = \ /73 + aZF (5 1) (3.8.114)

and?

V0 e (v / V30,8, 6.1) Sme(aw_m, cos f)e "+ dos. (3.8.115)

Lemma 3.8.10.
H res Iges”%,?(S?) 5 Dv (3.8.116)

Proof. Similarly to the proof of Lemma 3.8.9, we write

Sme(aw) — Spe(aw_m) .

Sme(aw) = Spe(aw—_m) + (w — w_m) (3.8.117)

W —w-_m

for frequencies |w —w_m| < ﬁ in (3.8.112). Then, using a Cauchy—Schwarz inequality on

the sphere, supje o, i<t [0AE)] S ml, upe_ gy i<t 0P S |m] (see (3.3.42)),

*Recall that § denotes the standard Fourier transform §[f](§) := —= [, flz)e**de.
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Proposition 3.3.3 as well as elliptic estimates, we control the error term as

~ |12
Fu—F wu, n 7 ?
(1 +m?A%_ ) ﬁ Sm[/sz /Re Yo (0,0, ¢4)dv| dose
2
+/ /ei““W3ng(v,9,<§+)dv dasg]. (3.8.118)
s2 |JR

Now, from Lemma 3.8.3 and Lemma 3.8.4 we conclude after an application of the Cauchy—

Schwarz inequality and Plancherel’s theorem that

I,

res

- IgesH%P(SQ) S D. (38119)

O

Note that the function w — F[¢f,,,](w) is a L*(Zy, X Zys | )-valued Schwartz function

since v > ¥, ,(v) is & L*(Zp X Zy>|m)-valued Schwartz function. We also define

- 1 —2i(w—w_m)r} Jiwug T, n
1% = Zp.v./ ¢ ¢ fHWO]dw
ml R

U V/2r(r2 + a?) Ww—w-m

x ™S, p(amw_, cos 0)t(w_m, m, L)uci,“" . (3.8.120)

Lemma 3.8.11. We have || 1%, — f&SH%Q(SQ) S D forallr) > 1.

Proof. We use that the spheroidal harmonics S, (amw_, cos (9)6””‘;5’i form an orthonormal

basis of LQ(SQ) to estimate
w_miﬁ 400 ) ~ ,
/ s I s, e

Hfges - IgesH%Q(S2) g Z |m’2
ml

2
S InPanetao-m)| [ 1Futugias]| <D (38121)
me R
where we used the Cauchy—Schwarz inequality in the last step. O

Now, we turn to Izﬁes as defined in (3.8.120) and first only consider the w-integral

1 —2i(w—w_m)T} Jiwug T, n
mt, = ——— v./e e Fulvil . (3.8.122)
R

22+ az)p. w—w_m
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We have

/2 2 %\ i .
Int® — "+ ta 1 p.v / S[wgmé( —up + 2rn)elW7m ] ein_mr;‘de
res Vi +a?V2r R w

2 2
\/TL ta
+ 1 2iw_mr}

1 n *\ iw_m-
= NGCETT \/72?6 np.v. (w) {S[wo me(s — o +27))e ]}

/02 2
_ "+ ta 1 €2iw7mr;‘b
Vi +a?V2r

where sgn has to be understood as a Schwartz distribution. We have used that § [p.v. ( L )] =

w

imsgn [wgmg(- — ug + 27"2)6“””} , (3.8.123)

imsgn in the sense of distributions. Now, since g is smooth, the function v — g, , is
a Schwartz function with values in the space of superpolynomially decaying sequences in

m, ¢ as a subspace of L?(Z,, x Zy>|m|). Particularly, this implies that
- ucy,  Intlg € L2 (Zim X Zpsjm); L2(rg, 00)), (3.8.124)

so we can project 1%, on ™9~ Sme(amw_, cos 6). Indeed, this yields

res

(€™P~ S, o (amw_, cos ), I 12(s2)

2 2
\/TL et o s we
+ t UCH, ein,mr

2 tad® Vor

To summarize, we have decomposed I as

mimsgn |l (- —uo + 27‘2)6”*”]. (3.8.125)

I = Ies + Inon-res = Ires + Inon-res = ff“es + (Iges - jges) + (I}les - fges) + Ifes + Inon—resa

(3.8.126)
where 1% satisfies (3.8.125) and
A A ~ 1
”(Iges - Iges) + (Iges - II('LeS) + Ifes + Inon—resHLQ(S2) S Dz. (38127>
Completely analogous to the the analysis before, we also decompose I1 as
IT = Ilies + Inonres = Ilves + Ilnon-res
~a o a o Q ~a b
= IIres + (Ilges - IIres) + (IIres - IIres) + IIres + IInon—resa
(3.8.128)
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where

a o Q

(1% — TTp) + (ITpeg — ITpeg) + T2 + nonres| 12(s2) S D? (3.8.129)

res

and IT,._ satisfies

[r2 1 .2
o - TL 4 a% w5, @
(e~ 8, o(amw_, cosh), II?GS)Lz(Sz) = UCHr

imsen | Yl (- — ug)e™
\/W \/ﬂ g wo mf( )
(3.8.130)
Hence, using
U = —t“" and uew Y = uen, ", (3.8.131)

we obtain

(€™ Spe(amw_, cos0), Tt + ITyes) 12(s2)

2 2 *

A/ T ac qw_, ~ W 2 —u

_ + + t UCH,, W mug 0 n twW_mu

7r e Yo me(v)e dv.
VT2 + a? Vo —up

(3.8.132)

Now, by construction of ¢, we have that 1, ,(v) = 0 for v > 277 — ug + ¢, where ¢ is a

constant only depending on the black hole parameters. In particular, this implies that

2
2 2
VI T ugg, / /
iT e 0 Yo (0)e“-"do| <y D
%é: V 7"7% + a? 2 2} —ug " “

(3.8.133)

which allows us to—up to a term bounded by D%—replace the integral in (3.8.132) with
an integral on the whole real line v € R. Finally, from Proposition 3.7.1 (more precisely
(3.7.42)), we obtain

2

AT+ a?

* + t UC'H

‘WH%z(Sz)(uo,m) :Z W\/m L /wOmE v)e="dy| 4+ Err(D)
ml n

tw_ ~ w_
=3 B (o = o)

/2 2 H
y rsta

2
+ Err(D), (3.8.134)
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where |Err(D)| Sy, D uniformly for all 7, > r§. This established the claim (3.8.100) at
the beginning of the proof.
Now, from Lemma 3.7.3 we have that af[" — ay pointwise for fixed w, m, ¢ as R,, — oo.

We also have the pointwise limit
ucy,”~ — 1asr, — oco. (3.8.135)

Hence, applying Fatou’s lemma yields
lim inf |42 G T - 2 = 2 CyyD 3.8.136
inm_}go WHL2(52)(U07%) = Mze:| "lan(w = w-_m)|” = Cy, D, (3.8.136)
m.

where C, > 0 is a constant depending on ug. Since

INE

(7| 2 [m| and |ay(w = w_m;, m;, £)] Z €™ (3.8.137)

for infinitely many m; as shown in Lemma 3.8.6 and Lemma 3.6.2, respectively, we obtain

r%igloo 191172 (s2) (w0, 737) = +o00. (3.8.138)
Since the sequence r} — oo was arbitrary we conclude (3.8.98). O

3.9 Appendix

3.9.1 Airy functions

We recall the definition of the Airy functions of first and second kind Ai and Bi as follows.

Definition 3.9.1. For x € R, we define Ai(x) and Bi(z) via the improper Riemann

integrals

1 [ ¢
Ai(z) == / cos <3 + :mf) dt, (3.9.1)
0

Bi(z) := i/ooo [exp (—t; + xt) + sin (t; + zt)] . (3.9.2)

Equivalently, the Airy functions are the unique solutions of

v = xu (3.9.3)
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with

N S
Ai(0) PEYEn AT (0) ) (3.9.4)
. 1, 36

such that 20,(Ai(z), Bi(z)) = 1. Further, we define the constant c as the largest negative

root of Ai(zx) = Bi(z). Then, we introduce the error-control functions

(Bi(:c)/Ai(a;))% x> (2Ai(m)Bi(m))% x>c

> c
Epi(x) == and Ma;(z) := L
1 x<c (Ai(z) + Bi?(z))2 z<c
(3.9.6)
and B! (z) := ﬁ(x). From [119, Chapter 11, §2] we remark that F; is a monotonically

increasing function of x which is never less than 1 and moreover,

Ai(z)] < A,fjfff as well as |Bi(z)] < Ma;(z)Ea;(2). (3.9.7)

The Airy functions obey the following asymptotics.

Lemma 3.9.1 ([119, Chapter 11, §1], [39, §9.7]). For large x > 0, the asymptotic behaviors

of the Airy functions are

1
Ai(—x) ! cos <2:1:§ - 7r> + éai(z), Ai(-z) = % sin <§x§ — iw) + épy (),

- \/77'(.7;% 3 4 \/77'
(3.9.8)
1
-1 2 3 7 T4 3 1
Bi(—x) = sin | —x2 — — | 4+ €ai(x), Ai'—mzcos<x2—7r>+€i/x,
(<o) = —psin (Gok - ) o), AV(-a) = 22 NG
(3.9.9)
where |€ai| < 21 and l€ar| < a1, In particular, we have
1
(i), [Bi(—2)] S —— and AV (~2)],[BY (—2)| 1+ % (3.9.10)
1+xa
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for x > 0. Moreover, for x > 0 we have

~23
Ai(z) <~ (3.9.11)
2y/mrt
. xie%x% 7
X
2,3
v 7 5
Bi(z) < <1+ (XAi () +1) 3>, (3.9.13)
N 6 4812
1,208 7
T4ec: T
Bi(2) < (1+ (§+1) " ;‘> (3.9.14)
X
L(iz+1)

where xai(z) = ﬁm

3.9.2 Parabolic cylinder functions

We define the parabolic cylinder functions U and U in the following.

Definition 3.9.2. For b < 0 and x > 0 we recall the definition of the parabolic cylinder

functions

1 l(2b+1) —1a? 1 111
m2e 4
b By zb ;—a?
Ub,z) = NEFED) 1 1<2 +47272x>
1
r22-1(2-1) 1. 331
- (1 1b) e 1 Fy <2b+4;2;2w2>, (3.9.15)
Z

where 1 F1(a;b;2) ==Y 07 ‘;;(n)zl denotes the confluent hypergeometric function. Here, we

use the notation a\™) := xz(x + 1)(x +2) - - - (x + n) for the rising factorial.

Remark that 90(U, 0) = /2T (4 — b).

We define auxiliary functions to control error terms in terms of parabolic cylinder
functions. We first define p(b) as the largest real root of the equation U (b, z) = U(b, z).
Note that p(b) > 0 for b < 0.
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Definition 3.9.3. For b <0, we set

1 for 0 <z < p(b)

7 (b,
ggb@; for x > p(b)

Ey(b,z) = (3.9.17)

For fixed b, the function Ey (b, x) is continuous and non-decreasing in 0 < z < co. We
denote E{,l = E%J

Definition 3.9.4. For b <0, x > 0, we also define functions My and Ny by

VU2 4+ U2 for 0 < x < p(b)
My (b, x) :== _ (3.9.18)
20U for p(b) < .

VU2 4+ U” for 0 <z < p(b)

Ny (b, z) = S (3.9.19)
\/w for p(b) < z.

Definition 3.9.5. We define the function (y as

2
-(3ffa=-mmar)t ro<e<y,
2

Cult) = t N (3.9.20)
(% fl (72 — 1)§d7'> fort>1.
Note that we manifestly have
\U| < E"'My,|U| < EMy and |UU| < M3 (3.9.21)
for z > 0 and b < 0.
Proposition 3.9.1. The envelope function My satisfies
1 1 1 1 1 1
ME (—2u2,uy\/§) S T 3 T (2 + QMQ) (3.9.22)
p3 1+ [Cu ()l 14 p3lu(y)l=
uniformly in p>1 and y > 0 and
M <—1u2 ,uy\f2> <1 (3.9.23)
uniformly in 0 < u <1 and y > 0. In particular, My satisfies
1 2 11
‘MU (—2u2,uy\f2) <T <2 + 2u2> . (3.9.24)
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Proof. These estimates follow from [118, Equation (5.23), (6.12) and Section 6.2]. O
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