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Summary

The present thesis reveals a novel connection of Diophantine approximation arising from
small divisors to general relativity, more precisely, the Strong Cosmic Censorship conjec-
ture. The main results provide theorems which resolve a linear scalar analog of the Strong
Cosmic Censorship conjecture in general relativity for Λ < 0. The proofs are intimately
tied to small divisors and the resolution crucially depends on suitable Diophantine condi-
tions. A further ingredient is the novel scattering theory on black hole interiors established
at first. The thesis consists of three parts.

In the first part we develop a scattering theory for the linear wave equation �gψ = 0

on the interior of Reissner–Nordström black holes. The main result shows the existence,
uniqueness and asymptotic completeness of finite energy scattering states on the interior
of Reissner–Nordström. The past and future scattering states are represented as suitable
traces of the solution ψ on the bifurcate event and Cauchy horizons. Finally, we prove
that, in contrast to the above, on the Reissner–Nordström–(Anti-)de Sitter interior, there
is no analogous finite T energy scattering theory for either the linear wave equation or
the Klein–Gordon equation with conformal mass. This part is joint work with Yakov
Shlapentokh-Rothman (Princeton University).

The second and third parts are motivated by the Strong Cosmic Censorship Conjecture
for asymptotically AdS spacetimes. We consider smooth linear perturbations governed by
the conformal wave equation �gψ − 2

3Λψ = 0 on Reissner–Nordström–AdS and Kerr–
AdS black holes, respectively. We prescribe initial data on a spacelike hypersurface of
a Reissner–Nordström–AdS and Kerr–AdS black hole and impose Dirichlet (reflecting)
boundary conditions at infinity. It was known previously by work of Holzegel–Smulevici
that such waves only decay at a sharp logarithmic rate (in contrast to the polynomial
rate in the asymptotically flat regime) in the black hole exterior. In view of this slow
decay the question of uniform boundedness or blow-up at the Cauchy horizon in the black
hole interior (and thus the validity of the linear scalar analog of the C0-formulation of the
Strong Cosmic Censorship conjecture) has remained up to now open.

In the second part of the thesis, we answer the question of uniform boundedness in
the affirmative for Reissner–Nordström–AdS: We show that |ψ| ≤ C in the black hole
interior. In this setting, this corresponds to the statement that the linear scalar analog
of the C0-formulation of Strong Cosmic Censorship is false. The proof follows a new
approach, combining physical space estimates with Fourier based estimates exploited in
the scattering theory developed in the first part.

In the third part of the thesis, we show that |ψ| → ∞ at the Cauchy horizon of



Kerr–AdS if the dimensionless black hole parameters mass m = M
√
−Λ and angular

momentum a = a
√
−Λ satisfy certain Diophantine properties. This is in stark contrast

to the second part as well as previous works on Strong Cosmic Censorship for Λ ≥ 0. In
particular, as a result of the Diophantine conditions, we show that these resonant black hole
parameters form a Baire-generic but Lebesgue-exceptional subset of parameters below the
Hawking–Reall bound. On the other hand, we conjecture that, as is the case for Reissner–
Nordström–AdS, linear waves remain bounded at the Cauchy horizon |ψ| ≤ C for a set
of black hole parameters which is Baire-exceptional but Lebesgue-generic. This means
that the answer to the above question concerning uniform boundedness or blow-up on the
Kerr–AdS interior is either negative or affirmative depending on the parameters considered.
Thus, in this setting, the validity of the linear scalar analog of the C0-formulation of Strong
Cosmic Censorship depends in an unexpected way on the notion of genericity imposed.
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Prologue

Diese Coefficienten erscheinen aber in
Bruchform, und es werden die Nenner
unendlich klein, wenn die Summe der
absoluten Beträge der ganzen Zahlen
ν1, . . . , νr unendlich gross wird. Es
muss also gezeigt werden, dass auch
die Zähler unendlich klein werden, und
ebenso die Brüche selbst, was bei der
complizierten Zusammensetzung der
Ausdrücke unmöglich erscheint.

Karl Weierstraß, 1878

In this excerpt of a letter addressed to Sofya Kovalevskaya in 1878, Weierstraß describes
his ongoing attempts at constructing quasiperiodic solutions to the n-body problem in ce-
lestial mechanics [103, p. 31]. Motivated by the quest for a rigorous proof of the stability
of the solar system within Newtonian gravity , he tried to prove the existence of such
quasiperiodic solutions via successive approximation, the so-called Lindstedt series. As
apparent from his notes to Kovalevskaya [103], he struggled showing the convergence of
the formal expansion due to the inevitable occurrence of small divisors, which Laplace
and Lagrange had already encountered previously [88]. Although lacking a proof, Weier-
straß was convinced that the Lindstedt series can be shown to converge. His hopes were
founded in a remark of Dirichlet to Kronecker in 1858, in which Dirichlet claimed to have
shown such a series expansion [103, p. 48]. Unfortunately, Dirichlet died shortly after
without leaving any written work supporting his claims. Being intrigued by this problem
of convergence, Weierstraß also reached out to Mittag-Leffler who persuaded the Swedish
King Oscar II to sponsor a prize for a resolution of the problem on the occasion of the
King’s 60th birthday in 1889. The prize was awarded—after some famous corrections—to
Henri Poincaré for his groundbreaking work [126]. Instead of proving the convergence of
the series, Poincaré’s revolutionary final submission and subsequent work [127] actually
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suggested something unexpected—instability and chaos! This made Poincaré very doubt-
ful, yet still cautious (“Les raisonnements de ce Chapitre ne me permettent pas d’affirmer
que ce fait ne se présentera pas. Tout ce qu’il m’est permis de dire, c’est qu’il est fort
invraisemblable.” [127, Vol. II, p. 104]), whether such Lindstedt series can ever be con-
vergent. He saw the problem of small divisors as unavoidable and at the very nature of
things (“à la nature même des choses” [125, p. 217]).

It was only several decades later in the mid 20th century that the existence of quasiperi-
odic orbits and a definitive resolution (see also [136]) of the prize question in honor of King
Oscar II was found in a conglomerate of works by Siegel [135], Kolmogorov [85], Arnold
[3] and Moser [109] in terms of the celebrated KAM theorem. The principle result of the
KAM theorem shows the existence of quasiperiodic orbits for a general class of dynamical
systems including the n-body problem in Newtonian gravity. These sets of orbits arise
from Diophantine conditions to “avoid” the small divisors and have a bizarre Can-
tor set-like structure. This is consistent with non-existence results proved by Poincaré
for sufficiently nice sets with nonempty interior. The question of stability or instability
becomes even more peculiar as its answer crucially depends on the notion of genericity
imposed. Indeed, a consequence of the KAM theory is that these quasiperiodic orbits are
generic in the sense of the Lebesgue measure, while being exceptional in the sense of Baire.

The main result of the present thesis reveals a novel connection of the small divisor
problem and Diophantine approximation to general relativity . General relativity gen-
eralizes Newtonian gravity and is the mathematical theory formulated by Albert Einstein
[43] in 1915 upon which our contemporary understanding of gravitational physics rests.
One of the most celebrated yet wonderfully simple predictions of general relativity is the
existence of black holes. The mathematical formulation of general relativity considers
space and time as part of a four-dimensional geometric entity—spacetime. Its evolution is
governed by the Einstein equations which determine how spacetime is curved. This thesis
is concerned with the problem of where and how this determinism breaks down in the
context of black holes. This foundational question of determinism and the statement that
general relativity is a deterministic theory were first mathematically formulated by Roger
Penrose [123] as the Strong Cosmic Censorship (SCC) Conjecture.

Conjecture (Strong Cosmic Censorship [123]). For generic initial data for the Einstein
equations, the maximal Cauchy development is inextendible as a suitable regular spacetime.

A crucial ingredient [44] in the Einstein equations is the so-called cosmological con-
stant Λ. For Λ ≥ 0, remarkable progress in proving and disproving different formulations
(see already the discussion around Conjecture 1 and Conjecture 2) of the Strong Cosmic
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Censorship conjecture has been made over the last two decades. For Λ < 0, despite its
prominent role in theoretical physics [97, 146], the Strong Cosmic Censorship conjecture
and its various versions have remained open up until now. The main results in Chapter 2
and Chapter 3 of this thesis provide theorems which resolve the linear scalar analog of the
Strong Cosmic Censorship conjecture in its strongest (C0-) formulation for Λ < 0:

(1) The amplitude of linear waves perturbing a charged, non-rotating black hole re-
mains finite in its interior.

(2) On the other hand, if the black hole is rotating, the amplitude of such waves blows
up in black hole interiors if a suitable ratio of the black hole parameters mass, angular
momentum and cosmological constant satisfies certain Diophantine conditions.

We further conjecture that the amplitude of such waves remains bounded if the Dio-
phantine conditions are not fulfilled. Thus we see that which of the scenarios happens—
boundedness or blow-up—crucially depends on the notion of genericity imposed. We prove
that instability and blow-up occurs for Baire-generic but Lebesgue-exceptional parame-
ters, whereas we now conjecture boundedness for Baire-exceptional but Lebesgue-generic
parameters. This resembles some of the key aspects and insights of KAM theory within
the framework of general relativity. Even if Lebesgue-genericity is imposed, we argue that
stability is somewhat weak as such a parameter set has empty interior and any quantita-
tive bound on the amplitude of ψ can in principle be arbitrarily large. In this sense, the
fate of observers falling into such black holes, though bleak, is determined—answering the
linear scalar analog of the Strong Cosmic Censorship conjecture in the affirmative. Thus,
surprisingly, small divisors and Diophantine approximation, the “villains” of
the stability of the solar system in Newtonian gravity, may turn out to be the
elusive “Cosmic Censor” which Penrose was searching for in order to protect
determinism in general relativity [123]. We see in our results that the pervasive
nature of instability in dynamical systems can sometimes be conscripted to do good—a
vindication, perhaps, of Poincaré’s faith in instabilities caused by small divisors.

L’instabilité est donc la règle et la
stabilité est l’exception.

Henri Poincaré, 1885
[124, p. 172]
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Introduction

In this thesis, we study linear scalar perturbations ψ solving the conformal wave equation

�gψ −
2

3
Λψ = 0 (WE)

on the interior of black hole spacetimes. We will first consider Reissner–Nordström black
holes [132, 113] which are asymptotically flat (Λ = 0) and spherically symmetric solutions
to the Einstein equations

Ric(g)µν −
1

2
Rgµν + Λgµν = 8πTµν (EE)

coupled to the Maxwell equations through the energy-momentum tensor Tµν , see already
(1.2.1). Reissner–Nordström black holes are parameterized by their charge Q and massM
and we will focus on the subextremal range 0 < |Q| < M . Then, in the main part of the
thesis we will study asymptotically Anti-de Sitter (AdS) black holes which are solutions to
(EE) for Λ < 0. We will consider subextremal Reissner–Nordström–AdS black holes [13],
which solve the Einstein–Maxwell system in spherical symmetry for cosmological constant
Λ < 0. Moreover, we will study the rotating Kerr–AdS black holes [83] which solve the
Einstein equations for Λ < 0 in vacuum, i.e. Tµν = 0. Kerr–AdS black holes are parameter-
ized by their mass M and angular momentum a and we consider subextremal parameters
below the Hawking–Reall bound. All of the above black holes violate determinism in the
sense that they all posses a smooth Cauchy horizon. Thus, they play an essential role in
the Strong Cosmic Censorship conjecture discussed later.

In Chapter 1, we develop the first scattering theory for linear waves solving (WE)
on the interior of Reissner–Nordström black holes. We also prove that in contrast to
Reissner–Nordström, there is no analogous finite T energy scattering theory (WE) on the
Reissner–Nordström–(Anti-)de Sitter interior. A detailed introduction to the scattering
problem will given in Chapter 1. The insights from Chapter 1 will also play a key role for
the second and third part.

16



Chapter 2 and Chapter 3 constitute the main part of the thesis. We consider pertur-
bations ψ solving (WE) arising from initial data on a spacelike hypersurface on Reissner–
Nordström–AdS and Kerr–AdS black holes [13]. We also consider reflecting boundary
conditions at infinity. We treat the cases of Reissner–Nordström–AdS and Kerr–AdS in
Chapter 2 and Chapter 3, respectively.

Our main result of Chapter 2 is Theorem 2.1 which shows that perturbations ψ solv-
ing (WE) remain uniformly bounded |ψ| ≤ C in the black hole interior and extend
continuously across the Cauchy horizon of Reissner–Nordström–AdS. This corresponds
to the statement that the linear analog of the C0-formulation of Strong Cosmic Cen-
sorship is false. Our result is surprising because in contrast to black hole backgrounds
with non-negative cosmological constants (Λ ≥ 0), the decay of ψ in the exterior region
for asymptotically AdS black holes (Λ < 0) is only logarithmic as shown by Holzegel–
Smulevici [75] (cf. polynomial [129, 29, 2] (Λ = 0) and exponential [10, 42] (Λ > 0)).
Indeed, the logarithmic decay is too slow to adapt the mechanism exploited in previous
studies of black hole interiors [23, 51, 26]. The proof of Theorem 2.1 will now follow a
new approach, combining physical space estimates with Fourier based estimates exploited
in the scattering theory developed in Chapter 1.

Our main result Theorem 3.1 of Chapter 3 shows that perturbations ψ solving (WE)
blow up everywhere at the Cauchy horizon on Kerr–AdS if the dimensionless black hole’s
mass m = M

√
−Λ and angular momentum a = a

√
−Λ satisfy certain Diophantine prop-

erties. We show that such black hole parameters are Baire-generic but Lebesgue-
exceptional . This is in sharp contrast to the result in Chapter 2 on Reissner–Nordström–
AdS black holes. We also conjecture that, if the parameters m and a do not satisfy the
Diophantine conditions, linear perturbations remain bounded at the Cauchy horizon. This
would be the case for Lebesgue-generic but Baire-exceptional black hole parameters.

In the rest of the introduction we will focus on Chapter 2 and Chapter 3 which con-
stitute the main results of the thesis. The above results can be viewed as providing a
surprising—mixed—resolution of the linear scalar analog of the C0-formulation of the
Strong Cosmic Censorship conjecture. We will briefly present the various formulations
of the Strong Cosmic Censorship conjecture, review relevant previous work and give an
outline of the main results and difficulties. This will be complemented with a detailed
discussion in the introductions of Chapter 2 and Chapter 3, respectively. We will briefly
mention how the scattering theory developed in Chapter 1 fits into the above but postpone
the discussion and motivation of the scattering problem to the introduction of Chapter 1.
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The Strong Cosmic Censorship Conjecture

Our main motivation for studying linear perturbations on black hole interiors is to shed
light on one of the most fundamental problems in general relativity: The Kerr (–de Sitter
or –Anti-de Sitter) and Reissner–Nordström (–de Sitter or –Anti-de Sitter) black holes
share the property that in addition to the event horizon H, they hide another horizon,
the so-called Cauchy horizon CH in their interiors. This Cauchy horizon defines the
boundary beyond which initial data on a spacelike hypersurface (together with boundary
conditions at infinity in the asymptotically AdS case) no longer uniquely determine the
spacetime as a solution of (EE). In particular, these spacetimes admit infinitely many
smooth extensions beyond their Cauchy horizons solving (EE). This severe violation of
determinism is conjectured to be an artifact of the high degree of symmetry in those
explicit spacetimes and generically, due to blue-shift instabilities, it is expected that some
sort of singularity ought to form at or before the Cauchy horizon. The presence of this
singularity is paradoxically “good” because—if sufficiently strong—it can be argued that
it restores determinism as the fate of any observer, though bleak, is determined. Making
this precise gives rise to various formulations of what is known as the Strong Cosmic
Censorship Conjecture (SCC) [123, 17]. A full resolution of the SCC conjecture would
also include a precise description of the breakdown of regularity at or before the Cauchy
horizon.

We begin with the C0-formulation of the SCC conjecture which can be seen as the
strongest inextendability statement in this context. Formally, this formulation can be
regarded as the statement that observers crossing the Cauchy horizon are torn apart by
infinite tidal deformations [26].

Conjecture 1 (C0-formulation of Strong Cosmic Censorship). For generic compact,
asymptotically flat or asymptotically Anti-de Sitter vacuum initial data, the maximal
Cauchy development of (EE) is inextendible as a Lorentzian manifold with C0 metric.

Surprisingly, the C0-formulation (Conjecture 1) was recently proved to be false for
both cases Λ = 0 and Λ > 0 (see discussion later, [26]). However, the following weaker,
yet still well-motivated, formulation introduced by Christodoulou in [17] is still expected
to hold true (at least) in the asymptotically flat case (Λ = 0).

Conjecture 2 (Christodoulou’s reformulation of Strong Cosmic Censorship). For generic
asymptotically flat vacuum initial data, the maximal Cauchy development of (EE) is inex-
tendible as a Lorentzian manifold with C0 metric and locally square integrable Christoffel
symbols.
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Unlike the C0-formulation of Conjecture 1, the statement of Conjecture 2 does not
guarantee the complete destruction of observers approaching the boundary of spacetime.
However, it restores determinism in the sense that even just weak solutions must break
down at the boundary of spacetime. Nonetheless, one may always be worried about what
notion of weak solution is finally the correct one [122, 93, 96]. In this sense it is a pity that
Conjecture 1 is false in the Λ ≥ 0 cases as it would have provided a much more definitive
resolution of the Strong Cosmic Censorship conjecture.

Linear scalar analog of the Strong Cosmic Censorship conjecture

The aforementioned formulations of SCC have linear scalar analogs on the level of (WE).
Indeed, under the identification ψ ∼ g, equation (WE) can be seen as a naive lineariza-
tion of the Einstein equations (EE) after neglecting the nonlinearities and the tensorial
structure. Moreover, many phenomena and difficulties for the full Einstein equations (EE)
are already present at the level of (WE). The linear scalar analog of Conjecture 1 in a
neighborhood of Kerr and Kerr–(Anti-)de Sitter corresponds to the statement that linear
perturbations arising from smooth data on a spacelike hypersurface solving (WE) blow up
(in L∞) at the Cauchy horizon.

Conjecture 3 (Linear scalar analog of the C0-formulation of SCC (Conjecture 1)). Lin-
ear perturbations ψ solving (WE) of subextremal Reissner–Nordström–(dS/AdS) or Kerr–
(dS/AdS) black holes blow up in amplitude

|ψ| → +∞

at the Cauchy horizon.

Remark that in order to show Conjecture 3, it suffices to show that there exists one so-
lution ψ which blows up at the Cauchy horizon. Indeed, since (WE) is linear, any solution
which does not blow up would be manifestly exceptional in that case. The reformulation
due to Christodoulou (Conjecture 2) finds its linear scalar analog in the H1

loc blow up of
ψ at the Cauchy horizon in view of the identification ∂ψ ∼ Γ.

Conjecture 4 (Linear scalar analog of Christodoulou’s reformulation of SCC (Con-
jecture 2)). Linear perturbations ψ solving (WE) of subextremal Reissner–Nordström–
(dS/AdS) or Kerr–(dS/AdS) black holes blow up in local energy

‖ψ‖H1
loc
→ +∞

at the Cauchy horizon.
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The state of the art for Λ = 0 and Λ > 0

Linear level for Λ = 0. In the asymptotically flat case (Λ = 0) it was shown in
[51, 52] (see also [68]) that solutions of (WE) arising from data on a spacelike hypersur-
face remain continuous and uniformly bounded (no C0 blow-up) at the Cauchy horizon
of subextremal Kerr or Reissner–Nordström black hole interiors, hence disproving Conjec-
ture 3 for Λ = 0. (For the extremal case see [56, 57].) The key method for the proof is
to use the polynomial decay on the event horizon proved in [29] (with rate |ψ| . v−p and
p > 1) and propagate it into the interior. The boundedness and continuity of ψ at the
Cauchy horizon was then concluded from red-shift estimates, energy estimates associated
to the novel vector field S = |u|p∂u + |v|p∂v and commuting with angular momentum
operators followed by Sobolev embeddings. Here u, v are Eddington–Finkelstein-type null
coordinates in the interior.

Besides the above C0 boundedness, it was proved that the (non-degenerate) local en-
ergy at the Cauchy horizon blows up for a generic set of solutions ψ in Reissner–Nordström
[89] and Kerr [30] black holes. (Note that this blow-up is compatible with the finiteness of
the flux associated to S because ∂v and ∂u degenerate at the Cauchy horizons CHA and
CHB, respectively.) A similar blow-up behavior was obtained for Kerr in [94] assuming
lower bounds (which were shown afterwards in [69]) on the energy decay rate of a solution
along the event horizon. These results prove Conjecture 4 in the affirmative for Λ = 0 and
support the validity of Conjecture 2.

Another type of result proved in Chapter 1 (see also [82]) is a finite energy scattering
theory for solutions of (WE) from the event horizon HR ∪ HL to the Cauchy horizon
CHR ∪ CHL in the interior of Reissner–Nordström black holes. In this scattering theory a
linear isomorphism between the degenerate energy spaces (associated to the Killing field
T = ∂v − ∂u) corresponding to the event and Cauchy horizon is established. The question
reduces to obtaining uniform control over transmission and reflection coefficients T(ω, `)

and R(ω, `) corresponding to fixed frequency solutions. Intuitively, for a purely incoming
wave at the event horizon HR, the transmission and reflection coefficients correspond to
the amount of T -energy scattered to CHL and CHR, respectively. Indeed, the theory also
carries over to Λ 6= 0 and Klein–Gordon masses µ 6= 0 except for the ω = 0 frequency.
(Again, these results are compatible with the blow-up of the local energy at the Cauchy
horizon because of the degeneracy of the T -energy.) This will turn out to be important
for the results in Chapter 2 and Chapter 3. We refer to the introduction of Chapter 1 for
a more detailed motivation and discussion.

Linear level for Λ > 0. For Kerr(and Reissner–Nordström)–de Sitter (Λ > 0) it was
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shown in [70] that solutions of (WE) also remain bounded up to and including the Cauchy
horizon—thus disproving Conjecture 3 for Λ > 0. Note that in both cases, Λ = 0 and
Λ > 0, the proofs crucially rely on quantitative decay along the event horizon (polynomial
for Λ = 0 and exponential for Λ > 0).

On the other hand the exponential convergence on the event horizon of a Reissner–
Nordström–de Sitter and Kerr–de Sitter black hole is in direct competition with the expo-
nential blue-shift instability. Thus, the question of the validity of Conjecture 4 becomes
even more subtle for Λ > 0 and has received lots of attention in the recent literature. We
refer to the conjecture in [24], the survey article [131] and the recent work [31, 34, 33, 32,
20].

Nonlinear level. Now we turn to the full nonlinear problem for (EE). As mentioned
before, for the Einstein vacuum equations Dafermos–Luk showed that the Kerr Cauchy
horizon is C0 stable [26], i.e. the spacetime is extendible as a C0 Lorentzian manifold.
Note that this definitively falsifies Conjecture 1 for Λ = 0 (subject only to the completion
of a proof of the nonlinear stability of the Kerr exterior). In principle, their proof of
C0 extendibility also applies to the interior of Kerr–de Sitter black holes, where the exterior
has been proved to be stable for slowly rotating Kerr–de Sitter black holes [71], thus
falsifying Conjecture 1 for Λ > 0.

Nonlinear inextendibility results at the Cauchy horizon have been proved only in spher-
ical symmetry: Coupling the Einstein equation (EE) to a Maxwell–Scalar field system, it
is proved in [23] that the Cauchy horizon is C0 stable, yet C2 unstable [90, 91, 23] for
a generic set of spherically symmetric initial data. See also the pioneering work in [128,
120] and the more general results on the Maxwell–Charged–Scalar field system in [139,
140, 141]. This shows the C2 formulation of SCC (but not yet Conjecture 2) in spherical
symmetry. See [21, 22] for work in the Λ > 0 case. The question of any type of nonlin-
ear instability of the Cauchy horizon without symmetry assumptions and the validity of
Conjecture 2 (even restricted to a neighborhood of Kerr) have yet to be understood.

SCC for asymptotically AdS spacetimes Λ < 0

The situation is changed radically if one considers asymptotically Anti-de Sitter (Λ < 0)
spacetimes. Due to the timelike nature of null infinity I, see for example Fig. 1, these
spacetimes are not globally hyperbolic. For well-posedness of (EE) and (WE) it is required
to impose also boundary conditions at infinity [54, 50]. The most natural conditions are
Dirichlet (reflecting) boundary conditions, see [54]. Before we address the question of
stability of the Cauchy horizon, it is essential to understand the behavior in the exterior
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Figure 1: Penrose diagram of the maximal Cauchy development of Reissner–Nordström–
AdS or Kerr–AdS data on a spacelike surface Σ with Dirichlet (reflecting) boundary con-
ditions prescribed on null infinity I.

region of Kerr–AdS and Reissner–Nordström–AdS.

Logarithmic decay for linear waves on the exterior of Kerr–AdS and Reissner–
Nordström–AdS. For the massive linear wave equation (WE) on Kerr–AdS and Reissner–
Nordström–AdS, Holzegel–Smulevici showed in [75] stability in the exterior region. Indeed,
they proved that solutions decay at least at logarithmic rate towards i+ (cf. polynomial
(Λ = 0) and exponential (Λ > 0)) assuming the Hawking–Reall [67] bound1 r+ > |a|l.
Moreover, they showed that solutions of (WE) with fixed angular momentum actually
decay exponentially on the exterior of Reissner–Nordström–AdS. (This is in contrast to
the asymptotically flat case, in which fixed angular momentum solutions of (WE) decay
polynomially on the exterior of Reissner–Nordström.) However, their main insight was
that a suitable infinite sum of such rapidly decaying fixed angular momentum solutions,
possessing finite energy in some weighted norm, indeed achieves the logarithmic decay rate
[77]. This is due to the presence of stable trapping. Note that this sharpness can also be
concluded from later work showing the existence of quasinormal modes converging to the
real axis at an exponential rate as the real part of the frequency and angular momentum
tend to infinity [145, 59]. (For some asymptotically flat five dimensional black holes a
similar inverse logarithmic lower bound was shown in [6].)

Strong Cosmic Censorship for AdS black holes. With the logarithmic decay on
the exterior at hand, we turn to the question of the stability of the Cauchy horizon. We first

1Note that otherwise exponentially growing mode solutions can be constructed as shown in [40].
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recall from the discussion before that Conjecture 4 holds true for the cases Λ ≥ 0. Indeed,
our methods developed in Chapter 2 and Chapter 3 in principle also show Conjecture 4 for
Λ < 0. However, in view of the slower decay in the case Λ < 0, we even expect a stronger
instability at the Cauchy horizon for Λ < 0. This raises the attractive possibility of the
validity of the C0-formulation of Conjecture 1 which would be a more definitive resolution
than Conjecture 2. Thus, at the level of (WE), it is the validity of Conjecture 3, the linear
scalar analog of Conjecture 1, which remains the unsolved puzzle for the Λ < 0 case.

First, attempting to disprove Conjecture 3 as was done in the cases Λ ≥ 0, we note
that the logarithmic decay rate on the exterior is too slow to follow the methods involving
the red-shift vector field and the vector field S (see discussion before) to prove uniform
boundedness and continuous extendibility at the Cauchy horizon of solutions to (WE).
More specifically, after propagating the logarithmic decay through the red-shift region,
the energy flux associated to S is infinite on a {r = const.} hypersurface in the black
hole interior due to the slow logarithmic decay towards i+. (Contrast this with the work
[35, 121] in 2+1 dimensions.) Thus, the question of whether to expect the validity of
Conjecture 3 for asymptotically AdS black holes appears to be completely open.

In the present thesis we provide a surprising—mixed—resolution of Conjecture 3 for
Λ < 0.

In Chapter 2 we will show (Theorem 2.1) that, despite the slow decay on the exterior,
boundedness, |ψ| ≤ C, in the interior and continuous extendibility to the Cauchy horizon
still holds for solutions of (WE) on Reissner–Nordström–AdS black holes. The additional
phenomenon which we exploit to prove boundedness is that the trapped frequencies respon-
sible for slow decay have high energy with respect to the T vector field and can be bounded
using the scattering theory developed in [82]. Thus, for Reissner–Nordström–AdS,
Conjecture 3 is falsified, just as in the Λ ≥ 0 cases.

In Chapter 3 we show that linear perturbations ψ of Kerr–AdS blow up |ψ| → +∞ for
a set of normalized Kerr–AdS parameters of mass m := M

√
−Λ and angular momentum

a := a
√
−Λ which is Baire-generic but Lebesgue-exceptional. These blow-up parame-

ters are defined through a Diophantine condition. This condition arises from a suitable
Diophantine approximation related to a coupling of stable trapping in the exterior and
Cauchy horizon resonances in the black hole interior. This will be discussed in more details
in the introduction of Chapter 3. Thus, for Kerr–AdS, Conjecture 3 holds true if
Baire-genericity is imposed. We also complement our main result with the conjecture
that linear perturbations remain bounded at the Cauchy horizon for black holes which are
Baire-exceptional but Lebesgue-generic.
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Instability of asymptotically AdS spacetimes?

In the above sense, the results of the present thesis leave determinism in better shape for
Λ < 0 compared to the Λ ≥ 0 cases. However, turning to the fully nonlinear dynamics,
there is another scenario which could happen. Recall that Minkowski space (Λ = 0) and
de Sitter space (Λ > 0) have been proved to be nonlinearly stable [53, 18]. Anti-de Sitter
space (Λ < 0), however, is expected to be nonlinearly unstable with Dirichlet conditions
imposed at infinity. This was recently proved in [106, 105, 108, 107] for appropriate matter
models. See also the original conjecture in [25] and the numerical results in [9]. Similarly,
for Kerr–AdS (or Reissner–Nordström–AdS), the slow logarithmic decay on the linear level
proved in [77] could in fact give rise to nonlinear instabilities in the exterior. (Note that in
contrast, nonlinear stability for spherically symmetric perturbations of Schwarzschild–AdS
was shown for Einstein–Klein–Gordon systems [76].) If indeed the exterior of Kerr–AdS
was nonlinearly unstable, linear analysis like that in the present thesis would be manifestly
inadequate and the question of the validity of Strong Cosmic Censorship would be thrown
even more open!
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Chapter 1

A scattering theory for linear
waves on the interior of
Reissner–Nordström black holes

1.1 Introduction

In this chapter, we initiate the mathematical study of the finite energy scattering problem
on black hole interiors. Specifically, we will consider solutions of the wave equation on what
can be viewed as the most elementary interior, that of Reissner–Nordström. The Reissner–
Nordström metrics constitute a family of spacetimes, parametrized by massM and charge
Q, which satisfy the Einstein–Maxwell system in spherical symmetry [132, 113] and admit
an additional Killing vector field T . For vanishing charge Q = 0, the family reduces to
Schwarzschild. We shall moreover restrict in the following to the subextremal case where
0 < |Q| < M . Our past and future scattering states will be defined as suitable traces
of the solution on the bifurcate event horizon and bifurcate Cauchy horizon, respectively,
restricted to have finite T energy flux on each component of the horizons.

In the rest of the introduction we will state our main results for the scattering problem
on the interior of Reissner–Nordström (Theorems 1.1 – 1.5), relate them to existing liter-
ature in fixed frequency scattering, and draw links to various recent results in the interior
and exterior of black holes. Finally, we will see that the existence of a bounded scattering
map for the wave equation on Reissner–Nordström turns out to be a very fragile property;
we shall show that there does not exist an analogous scattering theory in the presence of
a cosmological constant (Theorem 1.6) or Klein–Gordon mass (Theorem 1.7).

The scattering problem on Reissner–Nordström interior. In this chapter, we
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will establish a scattering theory for finite energy solutions of the linear wave equation,

�gψ = 0, (1.1.1)

on the interior of a Reissner–Nordström black hole, from the bifurcate event horizon
H = HA ∪HB ∪B− to the bifurcate Cauchy horizon CH = CHA ∪ CHB ∪B+, as depicted
in Fig. 1.1. The first main result of this chapter is Theorem 1.1 (see Section 1.3.1) in

HA
H
B

CH
A

CH
B

i+i+

B+

B−
Figure 1.1: Penrose diagram of the interior of the Reissner–Nordström black hole and
visualization of the scattering map.

which we will show existence, uniqueness and asymptotic completeness of finite energy
scattering states. In this context, existence and uniqueness mean that for given finite
energy data ψ0 on the event horizon H, there exist unique finite energy data on the Cauchy
horizon CH arising from ψ0 as the evolution of (1.1.1). With asymptotic completeness we
denote the property that all finite energy data on the Cauchy horizon CH can indeed
be achieved from finite energy data on the event horizon H. This provides a way to
construct solutions with desired asymptotic properties which is a necessary first step to
properly understand quantum theories in the interior of a Reissner–Nordström black hole
(cf. [143, 65, 41]). The energy spaces on the event and Cauchy horizon are associated to
the Killing field and generator of the time translation T . Indeed, T is null on the horizons
and, in particular, is the generator of the event and Cauchy horizon H and CH. Because
of the sign-indefiniteness of the energy flux of the vector field T on the bifurcate event
(resp. Cauchy) horizon (see already (1.1.4)), we define our energy space by requiring the
finiteness of the T energy on both components separately of the event (resp. Cauchy)
horizon. These define Hilbert spaces with respect to which the scattering map is proven
to be bounded.

26



Finally, it is instructive to draw a comparison between the interior of Reissner–Nordström
and the interior of Schwarzschild (Q = 0). As opposed to Reissner–Nordström discussed
above, the Schwarzschild interior terminates at a singular boundary at which solutions
to (1.1.1) generically blow-up (see [49]). In contrast, the non-singular and, moreover,
Killing, Cauchy horizons (see Fig. 1.1) of Reissner–Nordström immediately yield natural
Hilbert spaces of finite energy data to consider. In view of this, Reissner–Nordström with
Q 6= 0 can be considered the most elementary interior on which to study the scattering
problem. Furthermore, in view of the recent work [26], we have that the causal structure
of Reissner–Nordström is stable in a weak sense (see the discussion below about related
works in the interior).

Fixed frequency scattering. It is well known that the wave equation (1.1.1) on
Reissner–Nordström spacetime allows separation of variables which reduces it to the radial
o.d.e.

u′′ − V`u+ ω2u = 0, (1.1.2)

with potential V` (see already (1.2.37)), where ω ∈ R is the time frequency and ` ∈ N0 is the
angular parameter. Indeed, most of the existing literature concerning scattering of waves
in the interior of Reissner–Nordström mainly considers fixed frequency solutions, e.g. [100,
101, 14, 64, 99, 63, 147]. For a purely incoming (i.e. supported only onHA) fixed frequency
solution with parameters (ω, `), we can associate transmission and reflection coefficients
T(ω, `) and R(ω, `). The transmission coefficient T(ω, `) measures what proportion of
the incoming wave is transmitted to CHB, whereas the reflection coefficient specifies the
proportion reflected to CHA. An essential step to go from fixed frequency scattering
to physical space scattering is to prove uniform boundedness of T(ω, `) and R(ω, `).
This is non-trivial in view of the discussion of the energy identity (1.1.4) below. In this
chapter, we indeed obtain this uniform bound in Theorem 1.2 (see Section 1.3.2). In
particular, the regime ω → 0, `→∞ is the most involved frequency range to prove uniform
boundedness. As we shall see, the proof relies on an explicit computation at ω = 0 (see
[64]) together with a careful analysis of special functions and perturbations thereof.

The uniform boundedness of the scattering coefficients is the main ingredient to prove
the boundedness of the scattering map in Theorem 1.1. Moreover, it allows us to connect
the separated picture to the physical space picture by means of a Fourier representation
formula. This is stated asTheorem 1.3 (see Section 1.3.3). A somewhat surprising, direct
consequence of the Fourier representation of the scattered data on the Cauchy horizon is
that purely incoming compactly supported data lead to a solution which vanishes at the
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future bifurcation sphere B+. This is moreover shown to be a necessary condition for the
existence of a bounded scattering map (Corollary 1.3.1).

Comparison to scattering on the exterior of black holes. On the exterior of
black holes, the scattering problem has been studied more extensively; see the pioneering
works [36, 38, 37, 4, 5], the book [55] and related results on conformal scattering in [98, 112,
104, 137]. Note that for the exterior of a Schwarzschild or Reissner–Nordström black hole,
the uniform boundedness of the scattering coefficients or equivalently, the boundedness of
the scattering map, can be viewed a posteriori1 as a consequence of the global T energy
identity ∫

H−
|Tψ|2 +

∫
I−
|Tψ|2 =

∫
H+

|Tψ|2 +

∫
I+

|Tψ|2. (1.1.3)

Considering only incoming radiation from I−, this statement translates into |R|2+|T|2 = 1

for the reflection coefficientR and transmission coefficients T. In the interior, however, due
to the different orientations of the T vector field on the horizons (cf. Fig. 1.2), boundedness
of the scattering map is not at all manifest. In particular, the global T energy identity on
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T
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Figure 1.2: Interior of Reissner–Nordström (left) and exterior of Schwarzschild or Reissner–
Nordström (right).
In both diagrams the arrows denote the direction of the T Killing vector field. Note that
we have the identifications HA = H+ and B− = B.

the interior of a Reissner–Nordström black hole reads∫
HA
|Tψ|2 −

∫
HB
|Tψ|2 =

∫
CHB
|Tψ|2 −

∫
CHA
|Tψ|2 (1.1.4)

1Note that proving (1.1.3) requires first establishing some form of qualitative decay towards i+ and i−.
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from which we cannot deduce boundedness of the scattering map even a posteriori. (In-
deed, identity (1.1.4) corresponds only to the “pseudo-unitarity” statement of Theorem 1.1.)
Again, considering only ingoing radiation from HA, this translates to

|T(ω, `)|2 − |R(ω, `)|2 = 1 (1.1.5)

for the reflection coefficient R and the transmission coefficient T. Hence, while for fixed
|ω| > 0 and `, it is straightforward to show that T and R are finite, there is no a priori
obvious obstruction from (1.1.5) for these scattering coefficients to blow up in the limits
ω → 0,±∞ and `→∞.

Moreover, note that in the exterior, the Killing field T is timelike, so the radial o.d.e.
(1.1.2) should be considered as an equation for a fixed time frequency wave on a constant
time slice. In the interior, however, the Killing field T is spacelike so the radial o.d.e.
(1.1.2) is rather an evolution equation for a constant spatial frequency.

The Schwarzschild family can be viewed as a special case (a = 0) of the two param-
eter Kerr family, describing rotating black holes with mass parameter M and rotation
parameter a [83].2 On the exterior of Kerr many other difficulties arise: superradiance,
intricate trapping, presence of ergoregion, etc. [29]. Nevertheless, using the decay results
in [29], a definitive physical space scattering theory for Kerr black holes has been estab-
lished in [28] (see also the earlier [60]). The proof on the exterior of Kerr involved first
establishing a scattering map from past null infinity I− to a constant time slice Σ and
then concatenating that map with a second scattering map from Σ to the future event
horizon H+ and future null infinity I+. In the interior, however, we will directly show the
existence of a “global” scattering map from the event horizon H to the Cauchy horizon
CH. Indeed, due to blue-shift instabilities (see [30]), we do not expect that the analogous
concatenation of scattering maps (event horizon H to spacelike hypersurface Σ and then
from Σ to the Cauchy horizon CH) as in the Kerr exterior, to be bounded in the interior
of Reissner–Nordström.

Injectivity of the reflection map and blue-shift instabilities. We can also con-
clude from our work that there is always non-vanishing reflection to the Cauchy horizon
CHA arising from non-vanishing purely ingoing radiation at HA. This follows from the
fact that in the separated picture and for fixed `, the reflection coefficient R(ω, `) can be
analytically continued to the strip | Im(ω)| < κ+ and hence, only vanishes on a discrete
set of points on the real axis. This is shown in Theorem 1.4 (see Section 1.3.4).

2Both Kerr and Reissner–Nordström can be viewed as special cases of the Kerr–Newman spacetime.
For decay results on Kerr–Newman see [19].

29



We will also deduce from the Fourier representation of the scattered data on the Cauchy
horizon CH, and a suitable meromorphic continuation of the transmission coefficient, that
there exist purely incoming compactly supported data on the event horizon H leading to
solutions which fail to be C1 on the Cauchy horizon CH. This C1-blow-up of linear waves
puts on a completely rigorous footing the pioneering work of Chandrasekhar and Hartle
[14]. We state this as Theorem 1.5 (see Section 1.3.5).

For generic solutions arising from localized data on an asymptotically flat hypersur-
face, one expects a stronger instability, namely, non-degenerate energy blow-up at the
Cauchy horizon CH. Such non-degenerate energy blow-up was proven in [89] for generic
compactly supported data on an asymptotically flat Cauchy hypersurface. Later, for the
more difficult Kerr interior, non-degenerate energy blow-up was proven in [95] assuming
certain polynomial lower bounds on the tail of incoming data on the event horizon H
and in [30] for solutions arising from generic initial data along past null infinity I− with
polynomial tails.

Finally, we mention the forthcoming work [92] which studies the problem of non-
degenerate energy blow-up from a scattering theory perspective and also uses the non-
triviality of reflection to establish results related to mass inflation for the spherically
symmetric Einstein–Maxwell–scalar field system (cf. [90, 91]).

Breakdown of T energy scattering for Λ 6= 0 or µ 6= 0. If a cosmological constant
Λ ∈ R is added to the Einstein–Maxwell system, we can consider the analogous (anti-)
de Sitter–Reissner–Nordström family of solutions whose interiors have the same Penrose
diagram as depicted in Fig. 1.1. For very slowly rotating Kerr–de Sitter and Reissner–
Nordström–de Sitter spacetimes, boundedness, continuity, and regularity up to and in-
cluding the Cauchy horizon has been shown for solutions to (1.1.1) arising from smooth
and compactly supported data on a Cauchy hypersurface [70]. However, remarkably, there
is no analogous T energy scattering theory for either the linear wave equation (1.1.1) or
the Klein–Gordon equation with conformal mass. This is the statement of Theorem 1.6
(see Section 1.3.6). The reason for this failure is the unboundedness of the transmission
coefficient T and reflection coefficients R in the vanishing frequency limit ω → 0. To be
more precise, we will prove that there does not exist a T energy scattering theory of the
wave or Klein–Gordon equation in the interior of a (anti-) de Sitter–Reissner–Nordström
black hole for generic subextremal black hole parameters (M,Q,Λ). In particular, for
fixed 0 < |Q| < M , there is an ε > 0 such that there does not exist a T energy scattering
theory for all 0 6= |Λ| < ε.

Similarly, we prove in Theorem 1.7 (see Section 1.3.7) that there does not exist a T
energy scattering theory for the Klein–Gordon equation �gψ − µψ = 0 on the Reissner–
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Nordström interior for a generic set of masses µ. This is in contrast to the exterior, where
T energy scattering theories were established for massive fields in [5, 102].

It remains an open problem to formulate an appropriate scattering theory in the cos-
mological setting and for the Klein–Gordon equation as well as for the interior of Kerr.

Outline. This chapter is organized as follows. In Section 1.2, we shall set up the
spacetime, introduce the relevant energy spaces, and define the scattering coefficients in
the separated picture. In Section 1.3 we state the main results of this chapter, Theorems
1.1 – 1.7. Section 1.4 is devoted to the proof of Theorem 1.2. Then, the statement of
Theorem 1.2 allows us to prove Theorem 1.1 in Section 1.5. Finally, in the last two
sections are show our non-existence results: In Section 1.6, we prove Theorem 1.6 and in
Section 1.7, we give the proof of Theorem 1.7.

1.2 Preliminaries

In this section we will define the background differentiable structure and metric for the
Reissner–Nordström spacetime and introduce some convenient coordinate systems.

1.2.1 Interior of the subextremal Reissner–Nordström black hole

The global geometry of Reissner–Nordström was first described in [62]. For completeness,
we will explicitly construct in this section the coordinates for the region considered. We
start, in Section 1.2.1.1, by defining a Lorentzian manifold corresponding to the interior of
the Reissner–Nordström black hole without the horizons. Then, in Section 1.2.1.2, we will
attach the boundaries which will correspond to the event horizon and Cauchy horizon.

1.2.1.1 The interior without boundary

We will now give an explicit description of the differential structure and metric. The
Reissner–Nordström solutions [132, 113] are a two-parameter family of spherically sym-
metric spacetimes with mass parameter M ∈ R and electric charge parameter Q ∈ R

solving the Einstein–Maxwell system

Ricµν −
1

2
gµνR = 8πTµν := 8π

(
1

4π

(
F λ
µ Fλν −

1

4
gµνFλρF

λρ

))
, (1.2.1)

∇µFµν = 0,∇[µFνλ] = 0.
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In this chapter, we consider the subextremal family of black holes with parameter range
0 < |Q| < M . Define the manifoldM by

M = R× (r−, r+)× S2, (1.2.2)

where r± = M ±
√
M2 −Q2 > 0. The manifold is parametrized by the standard coor-

dinates t ∈ R, r ∈ (r−, r+), and a choice of spherical coordinates (θ, φ) on the sphere S2.
We denote the global coordinate vector field ∂t by T :

T :=
∂

∂t
. (1.2.3)

Using the above coordinates, we equipM with the Lorentzian metric

gQ,M = −
(

1− 2M

r
+
Q2

r2

)
dt⊗ dt+

(
1− 2M

r
+
Q2

r2

)−1

dr ⊗ dr + r2
/gS2 , (1.2.4)

where /gS2 is the round metric on the 2-sphere. We also define the quantities

∆ := r2 − 2Mr +Q2 = (r − r+)(r − r−) and h :=
∆

r2
. (1.2.5)

Furthermore, define r∗ by

dr∗ :=
r2

∆
dr, (1.2.6)

where we choose r∗(
r++r−

2 ) = 0 for definiteness. Thus,

r∗(r) = r +
1

2κ+
log |r − r+|+

1

2κ−
log |r − r−|+ C (1.2.7)

for a constant C only depending on the black hole parameters and

κ± =
r± − r∓

2r2
±

. (1.2.8)

We also introduce null coordinates

v = r∗ + t and u = r∗ − t (1.2.9)

onM. The Penrose diagram ofM is depicted in Fig. 1.3.
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HA
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{u
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−∞
}H

B
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{v
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−∞
}

CH
A

=
{v

=
∞
}CH

B
=
{u

=
∞
}

i+i+

Figure 1.3: Penrose diagram ofM; formally we have denoted the boundary (not part of
the manifold) by H = HA ∪HB and CH = CHA ∪ CHB.

1.2.1.2 Attaching the event and Cauchy horizon

Now, we will attach the Cauchy and event horizon to the manifold. The Cauchy horizon
characterizes the future boundary up to which the spacetime is uniquely determined as a
solution to the Einstein–Maxwell system arising from data on the event horizon. Although
the metric is smoothly extendible beyond the Cauchy horizon, any such extension fails to
be uniquely determined from initial data, leading to a severe failure of determinism.

Attaching the event and Cauchy horizon gives rise to a manifold with corners. To do
so, we first define the following two pairs of null coordinates.

Let UH : R→ (0,∞) and VH : R→ (0,∞) be smooth and strictly increasing functions
such that

• UH(u) = u for u ≥ 1, VH(v) = v for v ≥ 1,

• UH(u)→ 0 as u→ −∞ , VH(v)→ 0 as v → −∞,

• there exists a u+ ≤ 1 such that dUH
du = exp(κ+u) for u ≤ u+,

• there exists a v+ ≤ 1 such that dVH
dv = exp(κ+v) for v ≤ v+.

This defines – in mild abuse of notation – the null coordinates UH : M→ (0,∞) via UH(u)

and VH : M→ (0,∞) via VH(v), where u, v are the null coordinates defined in (1.2.9).
Similarly, let UCH : R → (−∞, 0) and VCH : R → (−∞, 0) be smooth and strictly

increasing functions such that

• UCH(u) = u for u ≤ −1, VCH(v) = v for v ≤ −1,

• UCH(u)→ 0 as u→∞ , VCH(v)→ 0 as v →∞,
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• there exists a u+ ≥ −1 such that dUCH
du = exp(κ−u) for u ≥ u+,

• there exists a v+ ≥ −1 such that dVCH
dv = exp(κ−v) for v ≥ v+.

As above, this defines null coordinates UCH : M → (0,∞) via UCH(u) and VCH : M →
(0,∞) via VCH(v), where u, v are the null coordinates defined in (1.2.9).

To define the event horizon, we consider the coordinate chart (UH, VH, θ, φ). We now
define the event horizon without the bifurcation sphere as the union

H0 := HA ∪HB, (1.2.10)

where

HA := {UH = 0} × (0,∞)× S2 and HB := (0,∞)× {VH = 0} × S2. (1.2.11)

Analogously, we also define the Cauchy horizon without the bifurcation sphere in the
coordinate chart (UCH, VCH, θ, φ) as the union

CH0 := CHA ∪ CHB, (1.2.12)

where

CHA := (0,∞)× {VCH = 0} × S2 and CHB := {UCH = 0} × (0,∞)× S2. (1.2.13)

Then, we define the interior of the Reissner–Nordström spacetime without the bifur-
cation sphere as the manifold with boundary

M̃ :=M∪H∪ CH. (1.2.14)

The Lorentzian metric onM extends smoothly to M̃. In particular, the boundary of M̃
consists of four disconnected null hypersurfaces. In Fig. 1.4 we have depicted its Penrose
diagram. In mild abuse of notation we shall also use the coordinate systems

(UH, v, θ, φ) onM∪HA, (1.2.15)

(u, VH, θ, φ) onM∪HB, (1.2.16)

(u, VCH, θ, φ) onM∪ CHA, (1.2.17)

(UCH, v, θ, φ) onM∪ CHB. (1.2.18)

34



HA
=
{u

=
−∞
}H

B
=
{v

=
−∞
}

CH
A

=
{v

=
∞
}CH

B
=
{u

=
∞
}

i+i+

Figure 1.4: Penrose diagram of M̃.

In particular, we can write

HA = {UH = 0} × {v ∈ R} × S2, (1.2.19)

HB = {u ∈ R} × {VH = 0} × S2, (1.2.20)

CHA = {u ∈ R} × {VCH = 0} × S2, (1.2.21)

CHB = {UCH = 0} × {v ∈ R} × S2. (1.2.22)

Note also that the vector field T , initially defined onM in (1.2.3), extends to a smooth
vector field on M̃ with

T �HA=
∂

∂v
�HA , (1.2.23)

where ∂
∂v is the coordinate derivative with respect to local chart defined in (1.2.15). Sim-

ilarly, we have

T �HB= − ∂

∂u
�HB w.r.t. to the local chart (1.2.16), (1.2.24)

T �CHA= − ∂

∂u
�CHA w.r.t. to the local chart (1.2.17), (1.2.25)

T �CHB=
∂

∂v
�CHB w.r.t. to the local chart (1.2.18). (1.2.26)

Note that T is a Killing null generator of the Killing horizons HA,HB, CHA, and CHB. Re-
call also that ∇TT �CH= κ−T �CH and ∇TT �H= κ+T �H, where κ± is defined by (1.2.8).

At this point, we note that we can attach corners toH0 and CH0 to extend M̃ smoothly
to a Lorentzian manifold with corners. To be more precise, we attach the past bifurcation
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sphere B− to H0 as the point (UH, VH) = (0, 0). Then, define H := H0∪B−. Similarly, we
can attach the future bifurcation sphere B+ to the Cauchy horizon which will be denoted
by CH. We call the resulting manifold MRN. Further details are not given since the
precise construction is straightforward and the metric extends smoothly. Moreover, the T
vector field extends smoothly to B+ and B− and vanishes there. Its Penrose diagram is
depicted in Fig. 1.5.

HA
=
{u

=
−∞
}H

B
=
{v

=
−∞
}

CH
A

=
{v

=
∞
}CH

B
=
{u

=
∞
}

i+i+

B+

B−

Figure 1.5: Penrose diagram ofMRN which includes the bifurcate spheres B+ and B−.

Further details about the coordinate systems can be found in [115]. From a dynamical
point of view, we can also consider the spacetimes (MRN, gM,Q) as being contained in the
Cauchy development of a spacelike hypersurface with two asymptotically flat ends solving
the Einstein–Maxwell system in spherical symmetry.

1.2.2 The characteristic initial value problem for the wave equation

In the context of scattering theory we will be interested in solutions to the wave equation
(1.1.1) arising from suitable characteristic initial data. Recall the following well-posedness
result for (1.1.1) with characteristic initial data.

Proposition 1.2.1. Let Ψ ∈ C∞c (H) be smooth compactly supported data on the event
horizon H. Then, there exists a unique smooth solution ψ to (1.1.1) on MRN \ CH such
that ψ �H= Ψ.

The previous proposition is well known, see [111, 133]. Analogously, we have the
following for the backward evolution.
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Proposition 1.2.2. Let Ψ ∈ C∞c (CH) be smooth compactly supported data on the Cauchy
horizon CH. Then, there exists a unique smooth solution ψ to (1.1.1) on MRN \ H such
that ψ �CH= Ψ.

1.2.3 Hilbert spaces of finite T energy on both horizon components

Now, we are in the position to define the Hilbert spaces on the event H = HA ∪HB ∪ B−
and Cauchy horizon CH = CHA ∪ CHB ∪ B+, respectively.

We will start with constructing the Hilbert space on the event horizon. Roughly
speaking, it will be defined by requiring finiteness of the T energy flux on HA minus the T
energy flux on HB. More precisely, let C∞c (H) be the vector space of smooth compactly
supported functions on H. Recall that the Killing vector field T is also a null generator
of H and vanishes at the past bifurcation sphere B−. This allows us to define the norm
‖ · ‖2ETH on the vector space C∞c (H) as

‖ψ‖2ETH :=

∫
HA

JTµ [ψ]nµHA dvolnHA −
∫
HB

JTµ [ψ]nµHB dvolnHB , (1.2.27)

where ψ ∈ C∞c (H), T[ψ] is the energy momentum tensor

T[ψ]µν := Re(∂µψ∂νψ)− 1

2
gµν∂αψ∂αψ, (1.2.28)

and JT [ψ] := T[ψ](T, ·). In (1.2.27), the fluxes are defined with respect to future directed
normal vector fields nHA and nHB on HA and HB, respectively.3 Moreover, recall from
Fig. 1.2 that T is future (resp. past) directed on HA (resp. HB). Thus, the terms arising
in (1.2.27) satisfy

∫
HA J

T
µ [ψ]nµHA dvol ≥ 0 and −

∫
HB J

T
µ [ψ]nµHB dvol ≥ 0. Again, in view

of the fact that on the component HB the normal vector field T is past directed, we can
choose nHA := T �HA and nHB := −T �HB as the future directed normal vector fields
on HA and HB, respectively, such that we can realize the norm (1.2.27) as (using the
coordinate charts (1.2.15) and (1.2.16))

‖ψ‖2ETH =

∫
R×S2

|∂vψ �HA |
2dv sin θdθdϕ+

∫
R×S2

|∂uψ �HB |
2du sin θdθdϕ. (1.2.29)

The norm (1.2.27) defines an inner product, hence its completion is a Hilbert space.

Definition 1.2.1. We define the Hilbert space of finite T energy ETH on both components of

3A choice of such normal vectors fixes the volume form. Also note that this is the natural setup for
energy estimates.
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the event horizon as the completion of smooth and compactly supported functions C∞c (H)

on the event horizon H = HA ∪HB ∪ B− with respect to the norm (1.2.27).

Analogously, we can consider the vector space C∞c (CH) and define the norm ‖ · ‖2ETCH
as the T energy flux on the component CHB minus the T energy flux on the component
CHA:

‖ψ‖2ETCH :=

∫
CHB

JTµ [ψ]nµCHB dvolnCHB −
∫
CHA

JTµ [ψ]nµCHA dvolnCHA . (1.2.30)

Again, in view of the orientation of the T vector field (cf. Fig. 1.2), this norm can be
represented as (using the coordinate charts (1.2.17) and (1.2.18))

‖ψ‖2ETCH =

∫
R×S2

|∂vψ �CHB |
2dv sin θdθdϕ+

∫
R×S2

|∂uψ �CHA |
2du sin θdθdϕ. (1.2.31)

Definition 1.2.2. We define the Hilbert space of finite T energy ETCH on both components
of the Cauchy horizon as the completion of smooth and compactly supported functions
C∞c (CH) the Cauchy horizon CH = CHA ∪ CHB ∪ B+ with respect to the norm (1.2.30).

1.2.4 Separation of variables

In this section we show how the radial o.d.e. (1.1.2) arises from decomposing a general
solution in spherical harmonics and Fourier modes. For concreteness, let ψ be a smooth
solution to �gψ = 0 such that on each {r = const.} slice, ψ is compactly supported in the
t variable.4 Then, we can define its Fourier transform in the t variable and also decompose
ψ in spherical harmonics to end up with

ψ̂m`(r, ω) :=

∫
R×S2

e−iωtYm`(θ, φ)ψ(t, r, θ, φ) sin θdθdφ
dt√
2π
. (1.2.32)

Due to the compact support on constant r slices, the wave equation �gψ = 0 implies that

ψ̂m`(r, ω) =: R
(ω)
m` (r) =: R(r) (1.2.33)

satisfies the radial o.d.e.

∆
d

dr

(
∆

d

dr
R

)
−∆`(`+ 1)R+ r4ω2R = 0. (1.2.34)

4Note that we will prove later that such solutions arise from data which are dense in ETH.
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In Section 1.4 we will analyze solutions to (1.2.34) and denote a solution thereof with
R(r). Moreover, it is useful to introduce the function u defined as

u(r) := rR(r) (1.2.35)

and consider u = u(r(r∗)) as a function of r∗, which is defined in (1.2.7). Using the r∗
variable, the o.d.e. (1.2.34) finally reduces to

u′′ + (ω2 − V`)u = 0 (1.2.36)

on the real line with potential

V = V` = ∆

(
r(r+ + r−)− 2r+r−

r3
+
`(`+ 1)

r4

)
. (1.2.37)

In Lemma 1.8.3 in the appendix it is proven that, as a function of r∗, the potential V`
decays exponentially as r∗ → ±∞. In particular, this indicates that we have asymptotic
free waves (asymptotic states) near the event and Cauchy horizon of the form e±iωr∗ as
|r∗| → ∞. In order to construct these solutions we use the following proposition for
Volterra integral equations (see Lemma 2.4 of [134]).

Proposition 1.2.3. Let x0 ∈ R∪{+∞} and g ∈ L∞(−∞, x0). Suppose the integral kernel
K satisfies

α :=

∫ x0

−∞
sup

{x:y<x<x0}
|K(x, y)|dy <∞. (1.2.38)

Then, the Volterra integral equation

f(x) = g(x) +

∫ x

−∞
K(x, y)f(y)dy (1.2.39)

has a unique solution f satisfying

‖f‖L∞(−∞,x0) ≤ eα‖g‖L∞(−∞,x0). (1.2.40)

If in addition K is smooth in both variables and∫ x0

−∞
sup

{x:y<x<x0}
|∂kxK(x, y)|dy <∞ (1.2.41)

for all k ∈ N, then the solution f is smooth on (−∞, x0) and the derivatives can be
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computed by formal differentiation of (1.2.39).

Remark 1.2.1. Analogous results as in Proposition 1.2.3 also hold true for Volterra
integral equations on intervals of the form (x0, x1) or (x0,+∞).

This allows us to define the following fundamental pairs of solutions to the o.d.e. (1.2.36).
In view of the exponential decay of the potential, it is straightforward to check that the
assumptions of Proposition 1.2.3 are satisfied.

Definition 1.2.3. Let ω ∈ R and ` ∈ N0 be fixed. Define asymptotic state solutions u1 and
u2 of the radial o.d.e. (1.2.36) as the unique solutions to the Volterra integral equations

u1(ω, r∗) = eiωr∗ +

∫ r∗

−∞

sin(ω(r∗ − y))

ω
V (y)u1(ω, y)dy, (1.2.42)

u2(ω, r∗) = e−iωr∗ +

∫ r∗

−∞

sin(ω(r∗ − y))

ω
V (y)u2(ω, y)dy. (1.2.43)

Analogously, define v1 and v2 as the unique solutions to the Volterra integral equations

v1(ω, r∗) = eiωr∗ −
∫ ∞
r∗

sin(ω(r∗ − y))

ω
V (y)v1(ω, y)dy, (1.2.44)

v2(ω, r∗) = e−iωr∗ −
∫ ∞
r∗

sin(ω(r∗ − y))

ω
V (y)v2(ω, y)dy. (1.2.45)

For ω = 0, we set sin(ω(r∗−y))
ω �ω=0= r∗ − y in the integral kernel in which case u1 and

u2 coincide. We define

ũ1(r∗) := u1(0, r∗) = u2(0, r∗) (1.2.46)

and similarly,

ṽ1(r∗) := v1(0, r∗) = v2(0, r∗). (1.2.47)

Since u1(0, r∗) = u2(0, r∗) for ω = 0, there exists another linearly independent fundamental
solution ũ2 solving the Volterra integral equation

ũ2(r∗) = r∗ +

∫ r∗

−∞
(r∗ − y)V (y)ũ2(y)dy. (1.2.48)

Similarly, we also have another fundamental solution, which is linearly independent from
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ṽ1, solving

ṽ2(r∗) = r∗ −
∫ ∞
r∗

(r∗ − y)V (y)ṽ2(y)dy. (1.2.49)

Since r∗ is not uniformly bounded, we cannot apply Proposition 1.2.3 to construct ũ2

and ṽ2. Nevertheless, after switching to coordinates which are regular at H or CH, the
existence of the desired solutions follows immediately from the usual local theory of regular
singularities (see [119]).

Remark 1.2.2. Due to the exponential decay of the potential V` (see Lemma 1.8.3 in the
appendix), it follows from standard theory that the solutions u1(ω, r∗), u2(ω, r∗), v1(ω, r∗)

and v2(ω, r∗) can be continued to holomorphic functions of ω in the strip | Im(ω)| <
min(κ+, |κ−|) = κ+ for fixed r∗ ∈ R. Indeed, in [14] it is shown that u1(ω, r∗) is ana-
lytic in C \ {imκ+ : m ∈ N} with possible poles at {imκ+ : m ∈ N} and analogously for
u2, v1, and v2. See also the proof of Proposition 1.8.2 in the appendix.

Formally, the solution u1 represents a fixed frequency incoming wave from the right
event horizon HA. This wave will scattering in the black hole interior and some portion
will be transmitted to the left Cauchy horizon CHB with corresponding solution v1 and
some other portion will be reflected to the right Cauchy horizon CHA with corresponding
solution v2. The transmission and reflection coefficients T and R will be defined as the
transmitted and reflected parts of the incoming wave v1 to the left and right Cauchy
horizon, respectively. This leads us to

Definition 1.2.4. Let ω 6= 0. Then we define the transmission coefficient T(ω, `) and
reflection coefficient R(ω, `) as the unique coefficients such that

u1 = Tv1 + Rv2. (1.2.50)

Using the fact that the Wronskian

W(f, g) := fg′ − f ′g (1.2.51)

of two solutions f and g is independent of r∗, we can equivalently define the scattering
coefficients as

T :=
W(u1, v2)

W(v1, v2)
=

W(u1, v2)

−2iω
(1.2.52)
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and

R :=
W(u1, v1)

W(v2, v1)
=

W(u1, v1)

2iω
. (1.2.53)

In contrast to the black hole exterior, there is no conservation law which gives a priori
bound on the scattering coefficients T andR. In particular, the conservation law associated
to the vector field ∂t is degenerate. For fixed frequency and on the level of the transmission
and reflection coefficients, this leads to the following pseudo-unitarity property.

Proposition 1.2.4 (Pseudo-unitarity in the separated picture). The transmission and
reflection coefficients satisfy

1 = |T|2 − |R|2. (1.2.54)

Proof. First, note that any solution to the o.d.e. (1.2.36) satisfies the identity

Im(ūu′) = const. (1.2.55)

Applying this to the solution u1 = Tv1 + Rv2 shows the claim.

In the following we shall see that the reflection and transmission coefficients are regular
at ω = 0.

Proposition 1.2.5. Let ` ∈ N0 be fixed. Then the scattering coefficients R(ω, `) and
T(ω, `) are analytic functions of ω in the strip {ω ∈ C : | Im(ω)| < κ+} with values for
ω = 0 given by

R(0, `) =
(−1)`

2

(
r−
r+
− r+

r−

)
, (1.2.56)

T(0, `) =
(−1)`

2

(
r−
r+

+
r+

r−

)
. (1.2.57)

In particular, the reflection coefficient R(ω, `) only vanishes on a discrete set of points ω.
Moreover, the reflection and transmission coefficients R(ω, `) and T(ω, `) are analytic

functions on C \ P with possible poles at P = {imκ+ : m ∈ N} ∪ {ikκ− : k ∈ Z \ {0}}.

Proof. From the analyticity of u1, u2, v1, and v2 in the strip | Im(ω)| < κ+ (cf. Re-
mark 1.2.2), we conclude that T and R are holomorphic in {ω 6= 0 ∈ C : | Im(ω)| < κ+}
with a possible pole at ω = 0. In the following we shall show that {ω = 0} is a re-
movable singularity. Indeed, we will compute the explicit value of the reflection and
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transmission coefficient at ω = 0 and deduce that for fixed ` ∈ N0, the transmission co-
efficient T(ω, `) and the reflection coefficient R(ω, `) are analytic functions on the strip
{ω ∈ C : Im(ω)| < κ+} (cf. unpublished work of McNamara cited in [64]). To do so, note
that from Proposition 1.4.2 in Section 1.4.1.3 we conclude the pointwise limits

u1(ω, r∗)→ ũ1(r∗), (1.2.58)

v1(ω, r∗)→ ṽ1(r∗) = (−1)`
r+

r−
ũ1(r∗), (1.2.59)

v2(ω, r∗)→ ṽ1(r∗) = (−1)`
r+

r−
ũ1(r∗) (1.2.60)

as |ω| → 0. Using the definition in (1.2.50) of T(ω, `), R(ω, `), and the condition 1+|R|2 =

|T|2 (cf. Proposition 1.2.4), we deduce that the limits limω→0 R(ω, `) and limω→0 T(ω, `)

exist and moreover can be computed to be (1.2.56) and (1.2.57). Note that (1.2.56) and
(1.2.57) have been established in [63]. Also note that in view of the analyticity properties
of u1, v1, and v2, the R(ω, `) and T(ω, `) are analytic functions on C \ P with possible
poles at P = {imκ+ : m ∈ N} ∪ {ikκ− : k ∈ Z \ {0}}.

1.2.5 Conventions

Let X be a point set with a limit point c (e.g. X = R, [a, b],C). Throughout this chapter
we will use the symbols . and &, where the implicit constants might depend on the black
hole parameters M and Q. In particular, for functions (or constants) a(x), b(x) > 0 the
notation a . b means that there is a constant C = C(M,Q) > 0 such that a(x) ≤ Cb(x)

for all x ∈ X. We will also make use of the notation .` or &` which means that the
constant may additionally also depend on `. We also write a ∼ b if there are constants
C(M,Q), C̃(M,Q) > 0 such that Ca(x) ≤ b(x) ≤ C̃a(x) for all x ∈ X.

We shall also make use of the standard Landau notation O and o [39, 119]. To be more
precise, as x→ c in X

f(x) = O(g(x)) means
∣∣∣∣f(x)

g(x)

∣∣∣∣ ≤ C(M,Q) (1.2.61)

and

f(x) = o(g(x)) means
f(x)

g(x)
→ 0. (1.2.62)

We will also use the notation O` if the constant C in (1.2.61) may additionally depend on
`.
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1.3 Main theorems

In this section we will formulate our main theorems.

Theorem 1.1, which we state in Section 1.3.1, establishes the existence of a scattering
map ST of the form

ST : ETH → ETCH, (1.3.1)

which is a Hilbert space isomorphism, i.e. a bounded and invertible map with bounded
inverse. Theorem 1.1 will be proven in Section 1.5. In the separated picture, the bound-
edness of ST corresponds to the uniform boundedness of the transmission and reflection
coefficients which is stated as Theorem 1.2 in Section 1.3.2. Theorem 1.2 will be proven
in Section 1.4 (and later used in the proof of Theorem 1.1).

Section 1.3.3 is then devoted to Theorem 1.3, which connects our physical space scat-
tering theory to the fixed frequency scattering theory. (We will infer Theorem 1.3 as a
consequence of Theorem 1.1.) In Section 1.3.4, this connection allows us to prove that
the reflection map is injective, which is the content of Theorem 1.4. In Theorem 1.5,
which is stated and proven in Section 1.3.5, we construct data which are incoming and
compactly supported but nevertheless, lead to a solution which fails to be in C1 on the
Cauchy horizon.

We end this section with the statement of our two non-existence results. In Sec-
tion 1.3.6 we formulate Theorem 1.6, the non-existence of the T energy scattering theory
for the Klein–Gordon equation with conformal mass on the interior of (anti-) de Sitter–
Reissner–Nordström black holes. The proof of Theorem 1.6 is given in Section 1.6. Finally,
in Theorem 1.7, stated in Section 1.3.7, we show the non-existence of the T energy scat-
tering map for the Klein–Gordon equation on the interior of Reissner–Nordström. The
proof of Theorem 1.7 is given in Section 1.7.

1.3.1 Existence and boundedness of the T energy scattering map

First, we define the forward (resp. backward) evolution on a dense domain.

Definition 1.3.1. The domains of the forward and backward evolution are defined as

DTH := {ψ ∈ C∞c (H) ⊂ ETH s.t. the Cauchy evolution of ψ has

compact support on constant r = const. hypersurfaces} (1.3.2)
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and

DTCH := {ψ ∈ C∞c (CH) ⊂ ETCH s.t. the backward evolution of ψ has

compact support on constant r = const. hypersurfaces}, (1.3.3)

respectively. Here, we consider r− < r < r+ and note that if ψ is compactly supported
on one {r = const.} slice, then, as a direct consequence of the domain of dependence, its
evolution will be compactly supported on all other {r = const.} hypersurfaces for r− < r <

r+.

We will prove in Lemma 1.5.1 in Section 1.5 that DTH ⊂ ETH and DTCH ⊂ ETCH are dense
domains.

These definitions of the domains are motivated by the following observation.

Remark 1.3.1. Suppose we are given data in DTH on the event horizon H. Consider now
the unique Cauchy development (cf. Proposition 1.2.1) and observe that its restriction
to the Cauchy horizon CH will lie in DTCH. This holds true since we can first smoothly
extend the metric beyond the Cauchy horizon CH and then use the compact support on a
constant r∗ hypersurface to solve an equivalent Cauchy problem in an appropriate region
which extends the Cauchy horizon CH, includes the support of the solution, but does not
include i+. The smoothness of the solution up to and including the Cauchy horizon CH
follows now from Cauchy stability.

In view of Remark 1.3.1 we can define the forward and backward map on the domains
DTH and DTCH, respectively.

Definition 1.3.2. Define the forward map ST0 : DTH ⊂ ETH → DTCH ⊂ ETCH as the unique
forward evolution from data on the event horizon to data on the Cauchy horizon. More
precisely, let ψ be the solution to (1.1.1) arising from initial data Ψ ∈ DTH ⊂ ETH. Then,
define ST0 (Ψ) as the restriction of ψ to the Cauchy horizon, i.e. ST0 (Ψ) := ψ �CH∈ DTCH.

Similarly, let φ be the unique backward evolution of (1.1.1) arising from Φ ∈ DTCH.
Then, define the backward map by BT

0 (Φ) := φ �H∈ DTH.

Remark 1.3.2. Note that by the uniqueness of the Cauchy evolution we have that ST0 and
BT

0 are inverses of each other, i.e. BT
0 ◦ ST0 = IdDTH

, ST0 ◦BT
0 = IdDTCH

.

Now, we are in the position to state our main theorem.
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Theorem 1.1. The map ST0 : DTH ⊂ ETH → DTCH ⊂ ETCH is bounded and uniquely extends
to

ST : ETH → ETCH, (1.3.4)

called the “scattering map”. The scattering map ST is a Hilbert space isomorphism, i.e. a
bounded and invertible linear map with bounded inverse BT : ETCH → ETH satisfying

BT ◦ ST = IdETH
, ST ◦BT = IdETCH

. (1.3.5)

Here, BT : ETCH → ETH is the “backward map”, which is the unique bounded extension of
BT

0 .
In addition, the scattering map ST is pseudo-unitary, meaning that for ψ ∈ ETH, we

have ∫
HA
|Tψ|2 −

∫
HB
|Tψ|2 =

∫
CHB
|TSTψ|2 −

∫
CHA
|TSTψ|2. (1.3.6)

In more traditional language, Theorem 1.1 yields existence, uniqueness, and asymptotic
completeness of scattering states.

The proof of Theorem 1.1 is given in Section 1.5. Let us note already that Theorem 1.1
is a posteriori the physical space equivalent of the uniform boundedness of the scattering
coefficients proven in Theorem 1.2 (see Section 1.3.2). This equivalence is made precise in
Theorem 1.3 (see Section 1.3.3).

Remark 1.3.3. Note that in general, neither initial data nor scattered data have to be
bounded in L∞ or continuous. Indeed, we have that ΦA(u, θ, ϕ) = log(u)χu≥1 ∈ ETCHA,
where χu≥1 is a smooth cutoff. Similarly, ΦA(u, θ, ϕ) = f(u)g(θ, ϕ) ∈ ETCHA, where f ∈
C∞c (R) and g ∈ L2(S2) \ L∞(S2). Thus, there exist initial data BT (ΦA) ∈ ETH such that
its image under the scattering map is not in L∞ and not continuous. We emphasize the
contrast with the estimates from [51] for which more regularity and decay along the event
horizon H are necessary.

1.3.2 Uniform boundedness of the transmission and reflection coeffi-
cients

On the level of the o.d.e. (1.2.36) in the separated picture, the problem of boundedness of
the scattering map reduces to proving that the transmission coefficient T and the reflection
coefficient R are uniformly bounded over all parameter ranges of ω ∈ R and ` ∈ N0. This
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is stated as Theorem 1.2 below.

Theorem 1.2. The reflection and transmission coefficients R(ω, `) and T(ω, `) are uni-
formly bounded, i.e. they satisfy

sup
ω∈R,`∈N0

(|R(ω, `)|+ |T(ω, `)|) . 1. (1.3.7)

Theorem 1.2 is proved in Section 1.4. As discussed in the introduction, the proof
relies on an explicit calculation for ω = 0 together with a careful analysis of the radial
o.d.e. (1.2.36), involving properties of special functions and perturbations thereof.

Let us note that, given Theorem 1.1, we could infer Theorem 1.2 as a corollary (using
the theory to be described in Section 1.3.3). We emphasize, however, that in the present
chapter we use Theorem 1.2 to prove Theorem 1.1 in Section 1.5.

1.3.3 Connection between the separated and the physical space picture

In this section, we will make the connection of the separated and physical space picture
precise.

First, let us note that we have natural Hilbert space decompositions ETH ∼= ETHA ⊕ E
T
HB

and ETCH ∼= ETCHB ⊕ E
T
CHA .

Proposition 1.3.1. The Hilbert spaces ETH and ETCH of finite T energy on the event horizon
H and on the Cauchy horizon CH admit the orthogonal decomposition

ETH ∼= ETHA ⊕ E
T
HB and ETCH ∼= ETCHA ⊕ E

T
CHB . (1.3.8)

Proof. Clearly, the embedding i : ETHA⊕E
T
HB ↪→ E

T
H is well-defined and isometric. It remains

to show that i is surjective. Let ψ ∈ C∞c (H). First, we show that we can approximate (in
T -energy) ψ �HA on HA with functions ψε ∈ C∞c (HA) which are supported away from the
past bifurcation sphere. On HA choose non-degenerate coordinates (V, θ, ϕ) := (VH, θ, ϕ)

as in Section 1.2.1.2 and recall that the past bifurcation sphere is {V = 0}. Then, for
small ε > 0, set

ψε(V, θ, ϕ) := ψ(U = 0, V, θ, ϕ)χ(−ε log(V )), (1.3.9)

where χ : R→ [0, 1] is smooth and such that supp(χ) ⊆ (−∞, 2] and χ �(−∞,1]= 1. Then,
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it is straightforward to check that ψε ∈ C∞c (HA) and∫
HA

JT [ψ − ψε]µnµdvol .
∫

S2

∫ ∞
0

V (∂V (ψ − ψε))2dV sin θdθdϕ→ 0 (1.3.10)

as ε→ 0. Analogously, we can do this for HB from which the claim follows.

We will use this identification to represent the scattering map also in the Fourier picture
and show how these pictures connect. To do so we define the following.

Definition 1.3.3. For (ΨA,ΨB) ∈ ETHA ⊕ E
T
HB note that ∂vΨA(v, θ, φ) ∈ L2(R × S2; C)

and analogously for ΨB. Hence, in mild abuse of notation, we can define the Fourier and
spherical harmonics coefficients FHA(ΨA) and FHB (ΨB) as

iωFHA(ΨA)(ω,m, `) := r+

∫
R

∫
S2

∂vΨA(v, θ, ϕ)e−iωvY`m(θ, ϕ) sin θdθdϕ
dv√
2π

(1.3.11)

and

−iωFHB (ΨB)(ω,m, `) := r+

∫
R

∫
S2

∂uΨB(u, θ, ϕ)eiωuY`m(θ, ϕ) sin θdθdϕ
du√
2π
. (1.3.12)

Similarly, for (ΦA,ΦB) ∈ ETCHA ⊕ E
T
CHB set

−iωFCHA(ΦA)(ω,m, `) := r−

∫
R

∫
S2

∂uΦA(u, θ, ϕ)eiωuY`m(θ, ϕ) sin θdθdϕ
du√
2π

(1.3.13)

and

iωFCHB (ΦB)(ω,m, `) := r−

∫
R

∫
S2

∂vΦB(v, θ, ϕ)e−iωvY`m(θ, ϕ) sin θdθdϕ
dv√
2π
. (1.3.14)

Also, recall the Hilbert space decomposition ETH ∼= ETHA⊕E
T
HB and ETCH ∼= ETCHB⊕E

T
CHA .

Thus, the scattering matrix can be also decomposed as

ST =

(
STBA STBB
STAA STAB

)
, (1.3.15)

where

STij : ETHj → E
T
CHi (1.3.16)

is a bounded linear map for i, j ∈ {A,B}.5

5Note that T does not denote the transpose but the fact that it is the scattering map associated with
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Definition 1.3.4. Define the Hilbert spaces

ÊTHA := `2(Z;L2(r−2
+ ω2dω)), ÊTHB := `2(Z;L2(r−2

+ ω2dω)),

ÊTCHA := `2(Z;L2(r−2
− ω2dω)), ÊTCHB := `2(Z;L2(r−2

− ω2dω)),

where Z = {(m, `) ∈ Z× N0 : |m| ≤ `}.

The Hilbert spaces defined in Definition 1.3.4 are unitary isomorphic to their corre-
sponding physical energy spaces. This is captured in

Proposition 1.3.2. The linear maps defined in (1.3.11)–(1.3.14)

FHA ⊕FHB : ETHA ⊕ E
T
HB → Ê

T
HA ⊕ Ê

T
HB (1.3.17)

FCHB ⊕FCHA : ETCHB ⊕ E
T
CHA → Ê

T
CHB ⊕ Ê

T
CHA (1.3.18)

are unitary.

Proof. This follows from the fact that the Fourier transform and the decomposition into
spherical harmonics are unitary maps.

Now, we will define the scattering map in the separated picture and show that it is
bounded.

Proposition 1.3.3. The scattering map in the separated picture

ŜT : ÊTHA ⊕ Ê
T
HB → Ê

T
CHB ⊕ Ê

T
CHA , (1.3.19)

defined as the multiplication operator

ŜT =

(
ˆSTBA

ˆSTBB
ˆSTAA

ˆSTAB

)
:=

(
T(ω, `) R̄(ω, `)

R(ω, `) T̄(ω, `)

)
, (1.3.20)

is bounded. Moreover, the map ŜT is invertible with bounded inverse given by

ŜT
−1

=

(
T̄(ω, `) −R̄(ω, `)

−R(ω, `) T(ω, `)

)
. (1.3.21)

Proof. Indeed, ŜT is bounded in view of the uniform boundedness of the transmission and
reflection coefficients T and R (cf. Theorem 1.2). Also note that |T|2 = 1 + |R|2 implies

the T vector field.
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that

det
(
ŜT
)

= 1 (1.3.22)

which shows (1.3.21). The boundedness of ŜT
−1

is again immediate since the scattering
coefficients are uniformly bounded.

Using the previous definitions, we obtain the following connection for the scattering
map between the physical space and the separated picture.

Theorem 1.3. The following diagram commutes and each arrow is a Hilbert space iso-
morphism:

ETHA ⊕ E
T
HB ETCHB ⊕ E

T
CHA

ÊTHA ⊕ Ê
T
HB ÊTCHB ⊕ Ê

T
CHA .

ST

FHA⊕FHB FCHB⊕FCHA

ŜT

Moreover, the maps ST and ŜT are pseudo-unitary satisfying (1.3.6) and (1.2.54), respec-
tively. More concretely, for (ΨA,ΨB) ∈ ETHA ⊕ E

T
HB , we can write(

ΦB

ΦA

)
= ST

(
ΨA

ΨB

)
, (1.3.23)

where ∂uΦA ∈ L2(CHA) and ∂vΦB ∈ L2(CHB) can be represented by

∂uΦA(u, θ, ϕ) =
1√

2πr−

∫
R

∑
|m|≤`

−iωR(ω, `)FHA(ΨA)(ω,m, `)Ym`(θ, ϕ)e−iωudω

+
1√

2πr−

∫
R

∑
|m|≤`

−iωT̄(ω, `)FHB (ΨB)(ω,m, `)Ym`(θ, ϕ)e−iωudω

(1.3.24)

and

∂vΦB(v, θ, ϕ) =
1√

2πr−

∫
R

∑
|m|≤`

iωT(ω, `)FHA(ΨA)(ω,m, `)Ym`(θ, ϕ)eiωvdω

+
1√

2πr−

∫
R

∑
|m|≤`

iωR̄(ω, `)FHB (ΨB)(ω,m, `)Ym`(θ, ϕ)eiωvdω (1.3.25)
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as well as ΦA ∈ ETCHA
∼= Ḣ1(R;L2(S2)),ΦB ∈ ETCHB

∼= Ḣ1(R;L2(S2)) can be represented
by regular distributions as

ΦA(u, θ, ϕ) =
1√

2πr−
p. v.

∫
R

∑
|m|≤`

R(ω, `)FHA(ΨA)(ω,m, `)Ym`(θ, ϕ)e−iωudω

+
1√

2πr−
p. v.

∫
R

∑
|m|≤`

T̄(ω, `)FHB (ΨB)(ω,m, `)Ym`(θ, ϕ)e−iωudω (1.3.26)

and

ΦB(v, θ, ϕ) =
1√

2πr−
p. v.

∫
R

∑
|m|≤`

T(ω, `)FHA(ΨA)(ω,m, `)Ym`(θ, ϕ)eiωvdω

+
1√

2πr−
p. v.

∫
R

∑
|m|≤`

R̄(ω, `)FHB (ΨB)(ω,m, `)Ym`(θ, ϕ)eiωvdω. (1.3.27)

Proof. This is a direct consequence of Theorem 1.1, Theorem 1.2 and (1.5.30), (1.5.31) in
the proof of Proposition 1.5.1.

From the previous representation of the scattered solution we can draw a link between
the boundedness of the scattering map and the fact that compactly supported incoming
data will lead to solutions which vanish on the future bifurcation sphere B+. This is the
content of the following

Corollary 1.3.1. Let Ψ = (ΨA, 0) ∈ ETHA⊕E
T
HB be purely incoming smooth data. Assume

further that ΨA is supported away from the past bifurcation sphere B− and future timelike
infinity i+.

Then, the Cauchy evolution ψ arising from ΨA vanishes at the future bifurcation sphere
B+.

On the other hand, if Ψ, as above, led to a solution which does not vanish at the future
bifurcation sphere B+, then the scattering map ST : ETH → ETCH could not be bounded.

Proof. The first claim is a direct consequence of (1.3.27) in Theorem 1.3.

For the second statement let ΨA be compactly supported data on the event horizon
and assume that its Cauchy evolution ψ does not vanish at the future bifurcation sphere
B+. Now take data Ψ̃A which is supported away from the past bifurcation sphere B− and
satisfies T Ψ̃A = ΨA. Then, Ψ̃A ∈ ET but its Cauchy evolution ψ̃ satisfies ψ̃ �CH /∈ ETCH
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since

‖ψ̃ �CHB ‖
2
ETCHB

=

∫
R×S2

|ψ �CHB (v, θ, ϕ)|2dv sin θdθdϕ =∞, (1.3.28)

as ψ �CHB= T ψ̃ �CHB does not vanish at the future bifurcation sphere B+. By cutting
off smoothly, one can construct normalized (in ETH-norm) smooth compactly supported
initial data on ETH such that its Cauchy evolution has arbitrary large norm ETCH-norm at
the Cauchy horizon.

Remark 1.3.4. For convenience we have stated the second statement of Corollary 1.3.1
only for the interior of Reissner–Nordström. However, note that it holds true for more
general black hole interiors (e.g. subextremal (anti-) de Sitter–Reissner–Nordström) with
Penrose diagram as depicted in Fig. 1.5.

1.3.4 Injectivity of the reflection map

In this section, we define the reflection operator of purely incoming radiation (cf. Fig. 1.6)
and prove that it is has trivial kernel as an operator from ETHA → E

T
CHA .

HA
H
B

CH
A

CH
B

i+i+

B+

B−

R

Figure 1.6: Reflection R of purely incoming radiation.

Definition 1.3.5 (Reflection operator). For purely incoming radiation (ΨA, 0) ∈ ETHA ⊕
ETHB , define the reflection operator

R : ETHA → E
T
CHA (1.3.29)
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as

R(ΨA) = ΦA := prA

(
ST

(
ΨA

0

))
, (1.3.30)

where prA : ETCHB ⊕ E
T
CHA → E

T
CHA is the orthogonal projection.

Theorem 1.4. The reflection operator R defined in Definition 1.3.5 has trivial kernel.

Proof. Assume R(ΨA) = 0 for some ΨA ∈ ETHA . Then, in view of Theorem 1.3,

R(ω, `)FHA(ΨA)(ω,m, `) = 0 (1.3.31)

for all m, `, and a.e. ω ∈ R. Moreover, since R(ω, `) only vanishes on a discrete set (cf.
Proposition 1.2.5), we obtain that FHA(ΨA)(ω,m, `) = 0 for all m, `, and a.e. ω ∈ R.
Again, in view of Theorem 1.3, we conclude ΨA = 0 as an element of ETHA .

1.3.5 C1-blow-up on the Cauchy horizon

In this section, we shall revisit and discuss the seminal work [14] of Chandrasekhar and
Hartle. The Fourier representation of the scattered data on the Cauchy horizon in The-
orem 1.3 serves as a good framework to provide a completely rigorous framework for the
C1-blow-up at the Cauchy horizon studied in [14].

Theorem 1.5 (C1-blow-up on the Cauchy horizon [14]). There exist smooth, compactly
supported and purely incoming data ΨA on the event horizon HA for which the Cauchy
evolution of (1.1.1) fails to be C1 at the Cauchy horizon CH. More precisely, the solution ψ
arising from ΨA fails to be C1 at every point on the Cauchy horizon CHA∪B+. Moreover,
the incoming radiation can be chosen to be only supported on any angular parameter `0
which satisfies `0(`0 + 1) 6= r2

+(r+ − 3r−).

Proof. Let `0 be fixed and satisfy `0(`0 + 1) 6= r2
+(r+ − 3r−). Define purely incoming

smooth data ΨA(v, θ, ϕ) = f(v)Y`00(θ, ϕ) on HA, where f(v) is smooth and compactly
supported. Moreover, assume that the entire function f̂ satisfies f̂(iκ+) 6= 0. In view
of the representation formula (1.3.27) from Theorem 1.3, the degenerate derivative of its
Cauchy evolution ΦB on the Cauchy horizon CHB reads

∂vΦB(v, θ, ϕ) =
r+√
2πr−

∫
R
iωT(ω, `0)f̂(ω)eiωvdωY`00(θ, ϕ). (1.3.32)

53



Since T(ω, `) has a simple pole at ω = iκ+ (cf. Proposition 1.8.2 in the appendix), we pick
up the residue at iκ+ when we deform the contour of integration in (1.3.32) from the real
line to the line Im(ω) = κ++δ for some κ+ > δ > 0. Here we use that the compact support
of f(v) implies the bound |f̂(ω)| ≤ e| Im(ω)| sup | supp(f)|f̂(Re(ω)) and that, in addition, by
Proposition 1.8.2, the transmission coefficient T remains bounded as |Re(ω)| → ∞. This
ensures that the deformation of the integration contour is valid. Hence,

∂vΦB(v, θ, ϕ) =
ir+√
2πr−

2πi(iκ+)f̂(iκ+)e−κ+vY`00(θ, ϕ) Res(T(ω, `0), iκ+)

+ i
r+e

−(κ++δ)v

√
2πr−

∫
R

[
(ωR + i(κ+ + δ))T(ωR + i(κ+ + δ))

f̂(ωR + i(κ+ + δ))eiωRvY`00(θ, ϕ)
]
dωR

= Ce−κ+vY`00(θ, ϕ) + o
(
e−(κ++δ)v

)
(1.3.33)

as v →∞, where

C = −iκ+
r+

r−

√
2πf̂(iκ+) Res(T(ω, `0), ω = iκ+) 6= 0 (1.3.34)

by construction. Thus, ΦB is not in C1 at the future bifurcation sphere as the non-
degenerate derivative diverges as v →∞:

∂

∂VCH
ΦB = e−κ−v∂vΨB(v, θ, ϕ) = Ce−(κ++κ−)v(1 + o(1)), (1.3.35)

where we recall that κ− < −κ+ < 0. Finally, propagation of regularity gives that the
solution is not in C1 at each point on the Cauchy horizon CHA. More precisely, expressing
(1.1.1) is (u, v) coordinates gives

∂u∂vψ =
−∆

2r3
(∂vψ + ∂uψ) +

∆

4r4
`0(`0 + 1)ψ, (1.3.36)

where ∆ is as in (1.2.5) and where we have used that ∆S2ψ = −`0(`0 + 1)ψ. Now, note
that |ψ|, |∂uψ| and |∂vψ| are uniformly bounded in the interior by a higher order norm of
ΨA. This follows from [51], commuting with T and angular momentum operators as well
as elliptic estimates. Finally, integrating (1.3.36) in u, using the estimate |∆| . eκ−(u+v)

for r∗ ≥ 0 (see (1.8.7)) and using the non-degenerate coordinate VCH gives the C1 blow-up
also everywhere on CHA.
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1.3.6 Breakdown of T energy scattering for cosmological constants Λ 6= 0

Interestingly, the analogous result to Theorem 1.1 on the interior of a subextremal (anti-)
de Sitter–Reissner–Nordström black hole does not hold for almost all cosmological con-
stants Λ. In the presence of a cosmological constant it is also natural to consider the
Klein–Gordon equation with conformal mass µ = 3

2Λ. We will consider in fact a general
mass term of the form µ = νΛ, where ν ∈ R. Note that ν = 3

2 corresponds to the conformal
invariant Klein–Gordon equation. To be more precise, we prove that for generic subex-
tremal black hole parameters (M,Q,Λ), there exists a normalized (in ETH-norm) sequence
of Schwartz initial data on the event horizon for which the ETCH-norm of the evolution
restricted to the Cauchy horizon blows up.

We define a black hole parameter triple (M,Q,Λ) to be subextremal if

(M,Q,Λ) ∈ Pse := PΛ=0
se ∪ PΛ>0

se ∪ PΛ<0
se , (1.3.37)

where

PΛ=0
se :={(M,Q,Λ) ∈ R+ × R× {0} :

∆(r) := r2 − 2Mr +Q2 has two positive simple roots satisfying 0 < r− < r+.},
(1.3.38)

PΛ>0
se :={(M,Q,Λ) ∈ R+ × R× R+ :

∆(r) := r2 − 2Mr − 1

3
Λr4 +Q2 has three positive simple roots satisfying

0 < r− < r+ < rc}, (1.3.39)

PΛ<0
se :={(M,Q,Λ) ∈ R+ × R× R− :

∆(r) := r2 − 2Mr − 1

3
Λr4 +Q2 has two positive roots satisfying 0 < r− < r+}.

(1.3.40)

Theorem 1.6. Let ν ∈ R be a fixed Klein–Gordon mass parameter. (In particular, we
may choose ν = 3

2 to cover the conformal invariant case or ν = 0 for the wave equation
(1.1.1).) Consider the interior of a subextremal (anti-) de Sitter–Reissner–Nordström
black hole with generic parameters (M,Q,Λ) ∈ Pse \ D(ν). (Here, D(ν) ⊂ Pse is a set
with measure zero defined in Proposition 1.6.1 (see Section 1.6). Moreover D(ν) satisfies
PΛ=0

se ⊂ D(ν) and U ∩D(ν) = PΛ=0
se for some open set U ⊂ Pse.)

Then, there exists a sequence (Ψn)n∈N of purely ingoing and compactly supported data
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on HA with

‖Ψn‖ETH = 1 for all n (1.3.41)

such that the solution ψn to the Klein–Gordon equation with mass µ = νΛ

�gM,Q,Λψ − µψ = 0 (1.3.42)

arising from Ψn has unbounded T energy at the Cauchy horizon

‖ψn �CH ‖ETCH →∞ as n→∞. (1.3.43)

Proof. See Section 1.6.

Remark 1.3.5. Note that from Theorem 1.6 it also follows that for fixed 0 < |Q| < M , the
T energy scattering breaks down (in sense of Theorem 1.6) for all cosmological constants
0 < |Λ| < ε, where ε = ε(M,Q) > 0 is small enough.

1.3.7 Breakdown of T energy scattering for the Klein–Gordon equation

Finally, we will also prove that the T energy scattering theory does not hold for the Klein–
Gordon equation for a generic set of masses µ, even in the case of vanishing cosmological
constant Λ = 0.

Theorem 1.7. Consider the interior of a subextremal Reissner–Nordström black hole.
There exists a discrete set D̃(M,Q) ⊂ R with 0 ∈ D̃ such that the following holds true.
For any µ ∈ R \ D̃ there exists a sequence (Ψn)n∈N of purely ingoing and compactly
supported data on HA with

‖Ψn‖ETH = 1 for all n (1.3.44)

such that the solution ψn to the Klein–Gordon equation with mass µ

�gM,Q,Λψ − µψ = 0 (1.3.45)

arising from Ψn has unbounded T energy at the Cauchy horizon

‖ψn �CH ‖ETCH →∞ as n→∞. (1.3.46)

Proof. See Section 1.7.
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The above Theorem 1.6 and Theorem 1.7 show that the existence of a T energy scat-
tering theory for the wave equation (1.1.1) on the interior of Reissner–Nordström is in
retrospect a surprising property. Implications of the non-existence of a T energy scatter-
ing map and in particular, the unboundedness of the scattering map in the cosmological
setting Λ 6= 0, are yet to be understood.

1.4 Proof of Theorem 1.2: Uniform boundedness of the
transmission and reflection coefficients

This section is devoted to the proof of Theorem 1.2. We will analyze solutions to the o.d.e.
(recall from (1.2.34))

∆
d

dr

(
∆

d

dr
R

)
−∆`(`+ 1)R+ r4ω2R = 0.

This o.d.e. can be written equivalently (recall from (1.2.36)) as

u′′ + (ω2 − V`)u = 0,

in the r∗ variable, where u = rR.
For the convenience of the reader we recall the statement of Theorem 1.2.

Theorem 1.2. The reflection and transmission coefficients R(ω, `) and T(ω, `) are uni-
formly bounded, i.e. they satisfy

sup
ω∈R,`∈N0

(|R(ω, `)|+ |T(ω, `)|) . 1. (1.3.7)

The proof of Theorem 1.2 will involve different arguments for different regimes of
parameters. Also, note that in view of (1.2.56) and (1.2.57) it is enough to assume ω 6= 0.

The first regime for bounded frequencies (|ω| ≤ ω0, ` arbitrary) requires the most
work. One of its main difficulties is to obtain estimates which are uniform in the limit
`→∞. We shall use that the o.d.e. (1.2.36) with ω = 0, which reads

u′′ − V`u = 0, (1.4.1)

can be solved explicitly in terms of Legendre polynomials and Legendre functions of second
kind. The specific algebraic structure of the Legendre o.d.e. leads to the feature that
solutions which are bounded at r∗ = −∞ are also bounded at r∗ = +∞. For generic
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perturbations of the potential this property fails to hold. Nevertheless, for perturbations
of the form as in (1.2.36) for ω 6= 0 and |ω| ≤ |ω0|, this behavior survives and most
importantly, can be quantified. To prove this we will essentially divide the real line R 3 r∗
into three regions.

The first region will be near the event horizon (r∗ = −∞), where we will consider the
potential V` as a perturbation. The second region will be the intermediate region, where
we will consider the term involving ω as a perturbation. Finally, in the third region near
the Cauchy horizon (r∗ = +∞), we consider the potential V` as a perturbation again. This
eventually allows us to prove the uniform boundedness of the reflection and transmission
coefficients R and T in the bounded frequency regime |ω| < ω0.

The second regime will be bounded angular momenta and ω-frequencies bounded from
below (|ω| ≥ ω0, ` ≤ `0). For this parameter range we will consider V` as a perturbation
of the o.d.e. since V` might only grow with `, which is, however, bounded in that range.
Again, this allows us to show uniform boundedness for the transmission and reflection
coefficients T and R.

The third regime will be angular momenta and frequencies both bounded from below
(|ω| ≥ ω0, ` ≥ `0). To prove boundedness of reflection and transmission coefficients R and
T, we will consider 1

` as a small parameter to perform a WKB-approximation.

1.4.1 Low frequencies (|ω| ≤ ω0)

We first analyze the o.d.e. for the special case of vanishing frequency. Then, we will sum-
marize properties of special functions, which we will need to finally prove the boundedness
of reflection and transmission coefficients in the low frequency regime. Let

0 < ω0 ≤
1

2
(1.4.2)

be a fixed constant.

1.4.1.1 Explicit solution for vanishing frequency (ω = 0)

For ω = 0 we can explicitly solve the o.d.e. with special functions. In that case the o.d.e.
reads

d

dr

(
∆

dR

dr

)
− `(`+ 1)R = 0. (1.4.3)
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We define the coordinate x(r) as

x(r) := − 2r

r+ − r−
+
r+ + r−
r+ − r−

(1.4.4)

or equivalently,

r(x) = −r+ − r−
2

x+
r+ + r−

2
. (1.4.5)

Then, we can write

∆(x) =

(
r+ − r−

2

)2

(x+ 1)(x− 1) =

(
r+ − r−

2

)2

(x2 − 1). (1.4.6)

Hence, Eq. (1.4.3) reduces to the Legendre o.d.e.

d

dx

(
(1− x2)

dR

dx

)
+ `(`+ 1)R = 0. (1.4.7)

We will denote by P`(x) and Q`(x) the two independent solutions, the Legendre polyno-
mials and the Legendre functions of second kind, respectively [119, 39]. We will prove
later in Proposition 1.4.2 that ũ1 and ũ2 from Definition 1.2.3 satisfy

ũ1(r∗) = w1(r∗) := (−1)`
r(r∗)

r+
P`(x(r∗)), (1.4.8)

ũ2(r∗) = w2(r∗) := (−1)`
r(r∗)

k+r+
Q`(x(r∗)). (1.4.9)

These are a fundamental pair of solutions for the o.d.e. in the case ω = 0. We will perturb
these explicit solutions for the regime of low frequencies (|ω| ≤ ω0). To do so, we will need
properties about special functions which will be considered first.

In view of the fact that ω0 is fixed, constants appearing in . and & may also depend
on ω0. Before we begin, we shall summarize the special functions we will use and list their
relevant properties in the case |ω| ≤ ω0.

1.4.1.2 Special functions

Good references for the following discussion are [1, 119, 39]. First, we shall recall the
definition of the Gamma and Digamma function.

Definition 1.4.1. For z ∈ C with Re(z) > 0 we denote the Gamma function with Γ(z)

59



and will also make use of the Digamma function z(z) defined as

z(z) :=

∫ ∞
0

(
e−x

x
− e−zx

1− e−x

)
dx. (1.4.10)

Note that

z(z + 1)−z(z) =
1

z
(1.4.11)

and

z(n) =

n−1∑
k=1

1

k
− γ = log(n) +O(n−1), (1.4.12)

where γ is the Euler–Mascheroni constant.

As we mentioned above, we shall use the Legendre polynomials and the Legendre
functions of second kind. We will express them in terms of the hypergeometric function
F(a, b; c;x) for x ∈ (−1, 1), a, b, c ∈ R as defined in [119, Equation (9.3)].

Definition 1.4.2 (Legendre functions of first and second kind). We use the standard
conventions which are used in [119, 39].

For x ∈ (−1, 1), we define the associated Legendre polynomials by

Pm` (x) =

(
1 + x

1− x

)m
2

F

(
`+ 1,−`; 1−m;

1− x
2

)
(1.4.13)

and the associated Legendre functions of second kind by

Qm` (x) = −1

2
π sin

(
1

2
π(`+m)

)
w1(`, x) +

1

2
π cos

(
1

2
(`+m)π

)
w2(`, x). (1.4.14)

Here,

w1(`, x) =
2mΓ( `+m+1

2 )

Γ(1 + `
2)

(1− x2)−
m
2 F

(
−`+m

2
,
1 + `−m

2
;
1

2
;x2

)
, (1.4.15)

w2(`, x) =
2mΓ(1 + `+m

2 )

Γ( `−m+1
2 )

x(1− x2)−
m
2 F

(
1− `−m

2
, 1 +

`−m
2

;
3

2
;x2

)
. (1.4.16)
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We shall also use the convention P` = P 0
` and Qm` = Q0

` . Also, recall the symmetry

P`(x) = (−1)`P`(−x), (1.4.17)

Q`(x) = (−1)`+1Q`(−x). (1.4.18)

In the asymptotic expansion in the parameter ` for the Legendre polynomials and functions
we will make use of Bessel functions which we define in the following.

Definition 1.4.3 (Bessel functions of first and second kind). Recall the Bessel functions
of first kind

J0(x) :=
∞∑
k=0

x2k

(−4)kk!2
, (1.4.19)

J1(x) :=
x

2

∞∑
k=0

x2k

(−4)kk!(k + 1)!
, (1.4.20)

and the Bessel functions of second kind

Y0(x) :=
2

π
J0(x)

(
log
(x

2

)
+ γ
)
− 2

π

∞∑
k=1

Hk
x2k

(−4)k(k!)2
, (1.4.21)

Y1(x) :=− 1

2πx
+

2

π
log
(x

2

)
J1(x)

− x

2π

∞∑
k=0

(z(k + 1) + z(k + 2))
x2k

(−4)kk!(k + 1)!
, (1.4.22)

where Hk =
∑k

n=1 n
−1 is the k-the harmonic number. We have the asymptotic expansions

J0(x) = 1 +O(x2), (1.4.23)

J1(x) =
x

2
+O(x3), (1.4.24)

Y0(x) =
2

π
log
(x

2

)
+O(1), (1.4.25)

Y1(x) = − 1

2πx
+ o(1) as x→ 0. (1.4.26)

Note that bounds deduced from (1.4.23) – (1.4.26) hold uniformly on any interval (0, a] of
finite length. We shall also use the bounds

|J0(x)| ≤ 1, |Y0(x)| . 1 + | log(x)| (1.4.27)

61



for 0 < x ≤ 1 and

|J0(x)| . 1√
x
, |Y0(x)| . 1√

x
(1.4.28)

for x ≥ 1 [1, p. 360, p. 364].

In the proof we will also use the following asymptotic formulae for P` and Q` for large
` in terms of Bessel functions.

Lemma 1.4.1. [39, §14.15(iii)] We have

P`(cos θ) =

(
θ

sin θ

) 1
2
(
J0

(
θ(2`+ 1)

2

)
+ e1,`(θ)

)
, (1.4.29)

Q`(cos θ) = −π
2

(
θ

sin θ

) 1
2
(
Y0

(
θ(2`+ 1)

2

)
+ e2,`(θ)

)
, (1.4.30)

Q1
` (cos θ) = − π

2`

(
θ

sin θ

) 1
2
(
Y1

(
θ(2`+ 1)

2

)
+ e3,`(θ)

)
, (1.4.31)

where the error terms can be estimated by

|e1,`(θ)|, |e2,`(θ)| .
1

1 + `

[∣∣∣∣J0

(
θ(2`+ 1)

2

)∣∣∣∣+

∣∣∣∣Y0

(
θ(2`+ 1)

2

)∣∣∣∣] , (1.4.32)

|e3,`(θ)| .
1

1 + `

[∣∣∣∣J1

(
θ(2`+ 1)

2

)∣∣∣∣+

∣∣∣∣Y1

(
θ(2`+ 1)

2

)∣∣∣∣] (1.4.33)

for θ ∈ (0, π − δ) and for any fixed δ > 0. In particular, this holds uniformly as θ → 0.

We shall use the following asymptotic formulae for the Legendre functions at the
singular endpoints.

Lemma 1.4.2. [39, §14.8] For 0 < x < 1 we have

P`(x) = 1 + f1(x), (1.4.34)

Q`(x) =
1

2
(log(2)− log(1− x))− γ −z(`+ 1) + f1(x), (1.4.35)

where |f1(x)| .` (1 − x). Moreover, analogous results hold true for −1 < x < 0 due to
symmetry.

Now, we will estimate the derivatives of the Legendre polynomials and Legendre func-
tions of second kind.

62



Lemma 1.4.3. For x ∈ (−1, 1) we have∣∣∣∣dP`dx

∣∣∣∣ ≤ `2. (1.4.36)

For xα,` := 1− α
1+`2

with 0 < α < 1 and ` ∈ N we have

(1− (±xα,`)2)

∣∣∣∣dQ`dx
(±xα,`)

∣∣∣∣ . 1. (1.4.37)

Proof. Inequality (1.4.36) is known as Markov’s inequality and is proven in [11, Theorem
5.1.8]. We only have to prove (1.4.37) for x = +xα,` due to symmetry. From the recursion
relation [39, §14.10] we have

(`+ 1)−1(1− x2
α,`)

dQ`
dx

(xα,`) = xα,`Q`(xα,`)−Q`+1(xα,`)

= (xα,` − 1)Q`(xα,`) + (Q`(xα,`)−Q`+1(xα,`)). (1.4.38)

We will consider both summands separately.

Part 1: Summand (xα,` − 1)Q`(xα,`)

First, consider 1− xα,` = α
1+`2

, where we implicitly define cos(θα,`) = xα,`. Note that we
have

θα,`(x) =
√

2(1− xα,`) +O((1− xα,`)
3
2 ) =

√
2α

1 + `2
+O

((
α

1 + `2

) 3
2

)

=

√
2α

1 + `2

(
1 +O

(
α

1 + `2

))
. (1.4.39)

In particular, we have θα,`` . 1. This gives

−Q`(xα,`) = −Q`(cos θα,`) =
π

2

(
θα,`

sin θα,`

) 1
2
(
Y0

(
θα,`(2`+ 1)

2

)
+ e2,`(θα,`)

)
. (1.4.40)
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Again, we will look at the two terms independently. First, note that

π

2

(
θα,`

sin θα,`

) 1
2
(
Y0

(
θα,`

(
`+

1

2

)))
=
π

2

(
θα,`

sin θα,`

) 1
2
(

2

π
log

(
θα,`(2`+ 1)

4

)
+O(1)

)
=
(
1 +O(θ2

α,`)
)(

log(θα,`) + log

(
`+

1

2

)
+O(1)

)
=

(
1 +O

(
α

1 + `2

))(
1

2
log

(
α

1 + `2

)
+ log

(
`+

1

2

)
+O(1)

)
=

(
1 +O

(
α

1 + `2

))(
1

2
log(α) +

1

2
log

(
1 +

`− 3
4

`2 + 1

)
+O(1)

)
=

1

2
log(α) +O(1). (1.4.41)

In order to estimate e2,`(θα,`) we shall recall inequality (1.4.32). It works analogously to
the previous estimate up to a good term of 1

1+` . In particular, this shows

|Q`(xα,`)| . | log(α)|+ 1 (1.4.42)

and

|(xα,` − 1)Q`(xα,`)| .
α

1 + `2
(| log(α)|+ 1) .

1

1 + `2
. (1.4.43)

Part 2: Summand (Q`(xα,`)−Q`+1(xα,`))

Using the recursion relation for the difference of two Legendre function [39, §14.10], we
have

(`+ 1)(Q`(xα,`)−Q`+1(xα,`) = −(1− x2
α,`)

1
2Q1

` (xα,`) + (1− xα,`)Q`(xα,`). (1.4.44)

We estimate the term (1− xα,`)Q`(xα,`) by what we have done above as

|(1− xα,`)Q`(xα,`)| .
α

1 + `2
(| log(α)|+ 1) . 1. (1.4.45)
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For the term −(1− x2
α,`)

1
2Q1

` (xα,`) we use (1.4.31) to get∣∣∣−(1− x2
α,`)

1
2Q1

` (xα,`)
∣∣∣

.

√
α

`2 + 1

1

1 + `

(
1 +O

(
α

1 + `2

))(
Y1

((
`+

1

2

)
θα,`

)
+ e2,`(θα,`)

)
. (1.4.46)

As before, we shall start estimating the first term using (1.4.26) and (1.4.39) to obtain√
α

`2 + 1

1

1 + `

(
1 +O

(
α

1 + `2

))
Y1

((
`+

1

2

)
θα,`

)
=

√
α

`2 + 1

1

1 + `

(
1 +O

(
α

1 + `2

))(
− 1

π(2`+ 1)θα,`
+O(1)

)
.

√
α

`2 + 1

1

1 + `

(
1√
α

+ 1

)
. 1. (1.4.47)

We estimate the second term using (1.4.33), (1.4.24), (1.4.26), and (1.4.39) to obtain∣∣∣∣√ α

`2 + 1

1

1 + `

(
1 +O

(
α

1 + `2

))
e2,`(θα,`)

∣∣∣∣
.

√
α

`2 + 1

1

1 + `2

(
1√
α

+ 1

)
. 1. (1.4.48)

We have estimated that |Q`(xα,`)−Q`+1(xα,`)| . 1
1+` which proves the claim in view

of (1.4.38).

Finally, we prove asymptotics for the derivatives of the Legendre of functions of second
kind near the singular points.

Lemma 1.4.4. For 0 < x < 1 and x→ 1 we have

(1− x2)
dQ`
dx

= 1 +O`((1− x) log(1− x)). (1.4.49)

By symmetry this also yields for −1 < x < 0 and x→ −1

(1− x2)
dQ`
dx

= (−1)` +O`((1 + x) log(1 + x)). (1.4.50)
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Proof. From the recursion relation [39, §14.10] and (1.4.35) we obtain

(1− x2)
dQ`
dx

= (`+ 1)(xQ` −Q`+1)

= (`+ 1)(x− 1)Q` + (`+ 1)(Q` −Q`+1)

= (`+ 1)(Q` −Q`+1) +O`((1− x) log(1− x))

= (`+ 1)(z(`+ 2)−z(`+ 1)) +O`((1− x) log(1− x))

= 1 +O`((1− x) log(1− x)). (1.4.51)

Having reviewed the required facts about special functions, we shall now proceed to
prove the uniform boundedness of the reflection and transmission coefficients.

1.4.1.3 Boundedness of the reflection and transmission coefficients

As mentioned before, we will consider three different regions: a region near the event
horizon, an intermediate region, and a region near the Cauchy horizon. In r∗ coordinates
we separate these regions at

R∗1(ω, `) :=
1

2κ+
log

(
ω2

1 + `2

)
(1.4.52)

and

R∗2(ω, `) :=
1

2κ−
log

(
ω2

1 + `2

)
(1.4.53)

for 0 < |ω| < ω0 and ` ∈ N0. Note that −∞ < R∗1(ω, `) < 0 < R∗2(ω, `) <∞.

Region near the event horizon.

Proposition 1.4.1. Let 0 < |ω| < ω0 and ` ∈ N0. Then, we have

‖u′1‖L∞(−∞,R∗1) . |ω|, (1.4.54)

‖u1‖L∞(−∞,R∗1) . 1. (1.4.55)

Proof. Recall the defining Volterra integral equation for u1 from Definition 1.2.3

u1(r∗) = eiωr∗ +

∫ r∗

−∞

sin(ω(r∗ − y))

ω
V (y)u1(y)dy. (1.4.56)
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with integral kernel

K(r∗, y) :=
sin(ω(r∗ − y))

ω
V (y). (1.4.57)

From Lemma 1.8.3 in the appendix, we obtain for r∗ ≤ R∗1

|V (r∗)| . e2k+r∗(1 + `2) (1.4.58)

and in particular,

|V (R∗1)| . e2k+R∗1(1 + `2) = ω2. (1.4.59)

This implies for r∗ ≤ R∗1

|K(r∗, y)| ≤ 1

|ω|
|V (y)| . 1

|ω|
(1 + `2)e2k+y (1.4.60)

and thus, ∫ R∗1

−∞
sup

y<r∗<R∗1

|K(r∗, y)|dy . `2 + 1

|ω|
e2k+R∗1 . 1. (1.4.61)

The claim follows now from Proposition 1.2.3.

Now, we would like to consider ω as a small parameter and perturb the explicit solu-
tions for the ω = 0 case in order to propagate the behavior of the solution through the
intermediate region, where V` is large compared to ω. In particular, V` can be arbitrarily
large since ` is not bounded above in the considered parameter regime.

Intermediate region. First, recall the following fundamental pair of solutions which
is based on the Legendre functions of first and second kind

w1(r∗) := (−1)`
r(r∗)

r+
P`(x(r∗)), (1.4.62)

w2(r∗) := (−1)`
r(r∗)

k+r+
Q`(x(r∗)), (1.4.63)

where P` and Q` are the Legendre polynomials and Legendre functions of second kind,
respectively. Our first claim is that we have constructed this fundamental pair (w1, w2) to
have unit Wronskian and moreover ũ1 = w1 and ũ2 = w2 holds true.

Proposition 1.4.2. We have w1 = ũ1 and w2 = ũ2 and the Wronskian of u1 and u2
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satisfies

W(w1, w2) = W(ũ1, ũ2) = 1. (1.4.64)

Similarly, we also have ṽ1 = (−1)` r+r−w1 = (−1)` r+r− ũ1.

Proof. We first prove that W(w1, w2) = 1. Since the Wronskian is independent of r∗, we
will compute its value in the limit r∗ → −∞. In this proposition ` is fixed and we shall
allow implicit constants in . to depend on `. Clearly,

w1(r∗)→ 1 as r∗ → −∞. (1.4.65)

Moreover, we have that for r∗ ≤ 0∣∣∣∣ d

dr∗
w1(r∗)

∣∣∣∣ . e2k+r∗ |P`(x(r∗))|+
∣∣∣∣dP`(x)

dx
(r∗)

dx

dr∗
(r∗)

∣∣∣∣ . e2k+r∗ , (1.4.66)

where we have used (1.4.36). This, in particular, also shows that w1 satisfies the same
boundary conditions (w1 → 1, w′1 → 0 as r∗ → −∞) as ũ1 defined in Definition 1.2.3 and
thus, w1 and ũ1 have to coincide. Similarly, we can deduce ṽ1 = (−1)` r+r−w1.

For w2, we use (1.4.35) to obtain

|w2(r∗)− r∗| .
(
− r(r∗)
k+r+

(
1

2
log

(
2

1 + x(r∗)

)
− γ −z(`+ 1)

)
− r∗

)
+ e2k+r∗ . (1.4.67)

For an intermediate step, we compute log(1 + x(r∗)) from (1.4.4) near r∗ = −∞. In
particular, for the limit r∗ → −∞, we can assume that r∗ ≤ 0 and thus, r− r− & r+− r−.
Hence,

log(1 + x(r∗)) = log

(
1 +

(r+ − r) + (r− − r)
r+ − r−

)
= log

(
1 +

f(r∗)

r+ − r−
e2k+r∗ +

r− − r
r+ − r−

)
= log

(
2f(r∗)

r+ − r−
e2k+r∗

)
= 2k+r∗ + log(2f(r∗)(r+ − r−)−1), (1.4.68)

where f is defined in (1.8.11). Thus, this directly implies

|w2(r∗)− r∗| . r∗e2k+r∗ + 1 . 1. (1.4.69)
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Finally, we claim that w′2 → 1 as r∗ → −∞. We shall use estimate (1.4.50) near x(r∗) = −1

to obtain

|w′2(r∗)− 1| . e2k+r∗(|r∗|+ 1) +

∣∣∣∣(−1)`
r(r∗)

k+r+

dQ`(x)

dx

dx

dr∗
− 1

∣∣∣∣
. e2k+r∗ +

∣∣∣∣ r(r∗)k+r+
[1 +O ((1 + x(r∗)) log(1 + x(r∗)))]

1

1− x2(r∗)

dx

dr∗
− 1

∣∣∣∣ . (1.4.70)

Now, in order to conclude that

|w′2(r∗)− 1| → 0 as r∗ → −∞, (1.4.71)

it suffices to check that

1

1− x2(r∗)

dx

dr∗
→ k+ as r∗ → −∞. (1.4.72)

But this holds true because

1

1− x2(r∗)

dx

dr∗
=

1

1− x2(r∗)

−2

r+ − r−
∆

r2
=
r+ − r−

2r2
→ k+ as r∗ → −∞. (1.4.73)

Now, this implies that

W(w1, w2) = lim
r∗→−∞

(
w1w

′
2 − w′1w2

)
= 1, (1.4.74)

and moreover, that w2 = ũ2 as they satisfy the same boundary conditions at r∗ = −∞.

Having proved the Wronskian condition we are in the position to define the perturba-
tions of ũ1 and ũ2 to non-zero frequencies.

Definition 1.4.4. Define perturbations ũ1,ω and ũ2,ω of ũ1 and ũ2 (cf. (1.4.8) and (1.4.9))
in the intermediate region by the unique solutions to the Volterra equations

ũ1,ω(r∗) = ũ1(r∗) + ω2

∫ r∗

R∗1

(ũ1(r∗)ũ2(y)− ũ1(y)ũ2(r∗)) ũ1,ω(y)dy (1.4.75)

and

ũ2,ω(r∗) = ũ2(r∗) + ω2

∫ r∗

R∗1

(ũ1(r∗)ũ2(y)− ũ1(y)ũ2(r∗)) ũ2,ω(y)dy. (1.4.76)
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Proposition 1.4.3. Let 0 < |ω| < ω0 and ` ∈ N0, then we have for r∗ ∈ [R∗1, R
∗
2]

u1(ω, r∗) = A(ω, `)ũ1,ω(r∗) +B(ω, `)ωũ2,ω(r∗), (1.4.77)

where

|A(ω, `)|+ |B(ω, `)| . 1. (1.4.78)

Proof. First, note that by construction in Definition 1.4.4 we have

ũ1,ω(R∗1) = ũ1(R∗1), (1.4.79)

ũ′1,ω(R∗1) = ũ′1(R∗1), (1.4.80)

ũ2,ω(R∗1) = ũ2(R∗1), (1.4.81)

ũ′2,ω(R∗1) = ũ′2(R∗1). (1.4.82)

Now, we want to estimate the previous terms. By construction, we directly have that

|ũ1(R∗1)| ≤ 1. (1.4.83)

Then, note that

ω2

`2 + 1
. 1 + x(R∗1) .

ω2

`2 + 1
. (1.4.84)

Hence, from (1.4.35), we obtain

|ũ2(R∗1)| . 1 +

∣∣∣∣−1

2
log(1 + x(R∗1))−z(`+ 1)

∣∣∣∣ . 1 + | log(|ω|)| . log

(
1

|ω|

)
, (1.4.85)

where we have used that for ` ≥ 1 we have z(`+ 1) = log(`) + γ+O(`−1). For ũ′2(R∗1) we
have the estimate

|ũ′2(R∗1)| . |∆(R∗1)Q`(x(R∗1))|+
∣∣∣∣dQ`dx

(R∗1)
dx

dr∗
(R∗1)

∣∣∣∣ . 1, (1.4.86)

where we have used (1.4.37) and (1.4.84) as well as the fact that

dx

dr∗
(1− x(r∗)

2)−1 . 1. (1.4.87)
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Now, we can express A via the Wronskian as

|A| =
∣∣∣∣ W(u1, ũ2,ω)

W(ũ1,ω, ũ2,ω)

∣∣∣∣ . (1.4.88)

By construction, we have W(ũ1,ω, ũ2,ω) = W(ũ1, ũ2) = 1. Hence, using Proposition 1.4.1
we conclude

|A| ≤ |u1(R∗1)ũ′2,ω(R∗1)|+ |u′1(R∗1)ũ2,ω(R∗1)| . |ũ′2(R∗1)|+ |ωũ2(R∗1)|. (1.4.89)

Thus, we conclude

|A| . 1. (1.4.90)

Note that from (1.4.36), we have

|ũ′1(R∗1)| .
∣∣∣∣(1 +

dP`
dx

)
dx

dr∗

∣∣∣∣ . (1 + `2)
ω2

1 + `2
≤ ω2. (1.4.91)

Hence, we can also estimate B by

|B| = 1

|ω|
|W(u1, ũ1,ω)| . 1

|ω|
(
|ũ′1(R∗1)|+ |ωũ1(R∗1)|

)
. 1 +

1

|ω|
|ũ′1(R∗1)| . 1, (1.4.92)

where we used Proposition 1.4.1 again.

For the intermediate region we will need the following result in order to get uniform
bounds for the Volterra iteration.

Lemma 1.4.5. Let 0 < |ω| < ω0 and ` ∈ N0, then∫ R∗2

R∗1

|ũ1(r∗)|dr∗ . log2

(
1

|ω|

)
, (1.4.93)∫ R∗2

R∗1

|ũ2(r∗)|dr∗ . log2

(
1

|ω|

)
. (1.4.94)

Proof. We first prove (1.4.93). We shall split the integral in two regions. The first region
is from r∗ = R∗1 to r∗ = 0. In that region we define θ ∈ (0, π2 ] such that cos(θ) = −x(r∗).
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Using also Lemma 1.4.1 we obtain

|ũ1(r∗)| . |P`(x(r∗))| = |P`(−x(r∗))| = |P`(cos θ)|

.

∣∣∣∣∣
(

θ

sin θ

) 1
2

J0((`+
1

2
)θ)

∣∣∣∣∣+ |e1,`(θ)|. (1.4.95)

The last term shall be treated as an error term. Thus,∫ 0

R∗1

|ũ1(r∗)|dr∗ .
∫ 0

x(R∗1)
|P`(x)| 1

1 + x
dx ≤

∫ 0

−1+C ω2

1+`2

|P`(−x)| 1

1 + x
dx

.
∫ π

2

arccos(1−C ω2

1+`2
)
|P`(cos θ)| 1

1− cos θ
sin θ dθ

≤
∫ π

2

C1
|ω|
1+`

|P`(cos θ)| sin θ

1− cos θ
dθ. (1.4.96)

Here, C and C1 are positive constants only depending on the black hole parameters. We
further estimate using equation (1.4.95)∫ 0

R∗1

|ũ1(r∗)|dr∗

.
∫ π

2

C1
ω

1+`

(
θ

sin θ

) 1
2
∣∣∣∣J0((`+

1

2
)θ)

∣∣∣∣ sin θ

1− cos θ
dθ + Error, (1.4.97)

where we will take care of the term

Error =

∫ π
2

C1
ω

1+`

|e1,`(θ)| (1.4.98)
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later. First, we look at the term

∫ π
2

C1
ω

1+`

(
θ

sin θ

) 1
2
∣∣∣∣J0

((
`+

1

2

)
θ

)∣∣∣∣ sin θ

1− cos θ
dθ

.
∫ π

2

C1
ω

1+`

1

θ

∣∣∣∣J0

((
`+

1

2

)
θ

)∣∣∣∣ dθ
.
∫ π

2
(`+1)

C1ω

1

θ

∣∣∣∣∣J0

(
`+ 1

2

`+ 1
θ

)∣∣∣∣∣dθ
.
∫ 1

C1ω

∣∣∣J0

(
`+ 1

2
`+1 θ

)∣∣∣
θ

dθ +

∫ ∞
1

∣∣∣J0

(
`+ 1

2
`+1 θ

)∣∣∣
θ

dθ

.
∫ 1

C1ω

1

θ
dθ +

∫ ∞
1

1

θ
3
2

dθ . | log(|ω|)|, (1.4.99)

where we have used equation (1.4.27) and (1.4.28). Now, we are left with the error term

Error ≤ 1

1 + `

∫ π
2

C1
ω
`+1

sin θ

1− cos θ
(|J0((`+

1

2
)θ)|+ |Y0((`+

1

2
)θ)|)dθ

.
1

1 + `

∫ π
2

C1
ω
`+1

sin θ

1− cos θ
(1 + | log(|ω|)|)dθ . | log(|ω|)|

1 + `

∫ π
2

C1
ω
`+1

1

θ
dθ

.
log2(|ω|) + log(1 + `)

1 + `
. log2

(
1

|ω|

)
. (1.4.100)

Thus, ∫ 0

R∗1

|ũ1(r∗)|dr∗ . log2

(
1

|ω|

)
. (1.4.101)

Completely analogously, we can compute

∫ R∗2

0
|ũ1(r∗)|dr∗ . log2

(
1

|ω|

)
. (1.4.102)

The proof of equation (1.4.93) is completely similar up to a term which involves

∫ 1

C1ω

∣∣∣Y0

(
`+ 1

2
`+1 θ

)∣∣∣
θ

dθ . log2

(
1

|ω|

)
(1.4.103)

appearing in the estimate analogous to (1.4.99).
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With the help of the previous lemma we can now bound our solution u1 at R∗2. This
results in

Proposition 1.4.4. Let 0 < |ω| < ω0 and ` ∈ N0, then

‖u1‖L∞(R∗1 ,R
∗
2) . 1 and |u′1|(R∗2) . |ω|. (1.4.104)

Proof. Recall that we have from Proposition 1.4.3 for r∗ ∈ [R∗1, R
∗
2]

u1(ω, r∗) = A(ω, `)ũ1,ω(r∗) + ωB(ω, `)ũ2,ω(r∗) (1.4.105)

for some uniformly bounded (in |ω| ≤ ω0 and `) constants A,B. In particular, from
Proposition 1.2.3 and Remark 1.2.1 we obtain the bound

‖ũ1,ω‖L∞(R∗1 ,R
∗
2) ≤ eα‖ũ1‖L∞(R∗1 ,R

∗
2) (1.4.106)

for

α = ω2

∫ R∗2

R∗1

sup
{r∗|y≤r∗≤R∗2}

|ũ1(r∗)ũ2(y)− ũ1(y)ũ2(r∗)|dy. (1.4.107)

First, we have the bound

‖ũ1‖L∞(R∗1 ,R
∗
2) ≤ 1. (1.4.108)

Secondly, for r∗ ∈ [R∗1, R
∗
2] we have

1− x(r∗) &
ω2

1 + `2
(1.4.109)

and

1 + x(r∗) &
ω2

1 + `2
. (1.4.110)

Consider the case x(r∗) ≥ 0 first and implicitly define θ(r∗) by cos θ(r∗) = x(r∗). Then,
in view of (1.4.30) and θ(x(r∗)) =

√
2− 2x(r∗) +O((1− x(r∗)

3
2 )), we estimate

|ũ2(r∗)| . |Q`(cos(θ(r∗)))| .
∣∣∣∣Y0

(
θ(r∗)(2`+ 1)

2

)∣∣∣∣ . |Y0 (C|ω|)| (1.4.111)

for a C = C(M,Q) > 0. Analogously, this also holds for x(r∗) < 0 such that (1.4.27) and
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(1.4.28) imply

‖ũ2‖L∞(R∗1 ,R
∗
2) . log

(
1

|ω|

)
. (1.4.112)

Together with Lemma 1.4.5 we obtain

α . 1. (1.4.113)

Hence,

‖ũ1,ω‖L∞(R∗1 ,R
∗
2) . 1 (1.4.114)

and similarly,

‖ũ2,ω‖L∞(R∗1 ,R
∗
2) . log

(
1

|ω|

)
. (1.4.115)

This shows ‖u1‖L∞(R∗1 ,R
∗
2) . 1 in view of (1.4.105).

Now, we are left with the derivative u′1(R∗2). To do so, we start by estimating ũ′1(R∗2)

and ũ′2(R∗2). Using the analogous estimate as we did for R∗1 in (1.4.86) and (1.4.91), we
obtain

|ũ′2(R∗2)| . 1 and |ũ′1(R∗2)| . ω2. (1.4.116)

Note that

ũ′2,ω(R∗2) = ũ′2(R∗2) + ω2

∫ R∗2

R∗1

(
ũ′1(R∗2)ũ2(y)− ũ1(y)ũ′2(R∗2)

)
ũ2,ω(y)dy (1.4.117)

and thus in view of Lemma 1.4.5, (1.4.116), (1.4.115), (1.4.112), and (1.4.108) we estimate

|ũ′2,ω(R∗2)| ≤ |ũ′2(R∗2)|+ ω2 log

(
1

|ω|

)∫ R∗2

R∗1

|ũ′1(R∗2)ũ2(y)|+ |ũ1(y)ũ′2(R∗2)|dy

. 1 + ω2 | log(|ω|)| (ω2 log2(|ω|) + log2(|ω|)) . 1. (1.4.118)
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Similarly, we obtain

|ũ′1,ω(R∗2)| ≤ |ũ′1(R∗2)|+ ω2

∫ R∗2

R∗1

|ũ′1(R∗2)ũ2(y)|+ |ũ1(y)ũ′2(R∗2)|dy

. ω2 + ω2(ω2 log2(|ω|) + log2(|ω|)) . |ω| (1.4.119)

which concludes the proof in the light of (1.4.105).

Region near the Cauchy horizon. Completely analogously to Proposition 1.4.1,
we have

Proposition 1.4.5. Let 0 < |ω| < ω0 and ` ∈ N0. Then, we have

‖v′1‖L∞(R∗2 ,∞) . |ω|, ‖v1‖L∞(R∗2 ,∞) . 1 (1.4.120)

and

‖v′2‖L∞(R∗2 ,∞) . |ω|, ‖v2‖L∞(R∗2 ,∞) . 1. (1.4.121)

Boundedness of the scattering coefficients. Finally, we conclude that the reflec-
tion and transmission coefficients are uniformly bounded for parameters 0 < |ω| < ω0 and
` ∈ N0.

Proposition 1.4.6. We have

sup
0<|ω|<ω0,`∈N0

(|R(ω, `)|+ |T(ω, `)|) . 1. (1.4.122)

Proof. Let 0 < |ω| < ω0 and ` ∈ N0 and recall Definition 1.2.4. Then, Proposition 1.4.4
and Proposition 1.4.5 imply

|T| . |W(u1, v2)|
|ω|

≤ |u1(R∗2)v′2(R∗2)|+ |u′1(R∗2)v2(R∗2)|
|ω|

. 1 (1.4.123)

and

|R| . |W(u1, v1)|
|ω|

≤ |u1(R∗2)v′1(R∗2)|+ |u′1(R∗2)v1(R∗2)|
|ω|

. 1. (1.4.124)
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1.4.2 Frequencies bounded from below and bounded angular momenta
(|ω| ≥ ω0, ` ≤ `0)

Now, we will consider parameters of the form |ω| ≥ ω0 and ` ≤ `0, where ω0 is small and
determined from Section 1.4.1. Also, the upper bound on the angular momentum `0 will
be determined from Section 1.4.3. As before, constants appearing in . and & may depend
on ω0.

Proposition 1.4.7. We have

sup
ω0≤|ω|,`≤`0

(|R(ω, `)|+ |T(ω, `)|) . 1. (1.4.125)

Proof. Recall the definition of u1 as the unique solution to

u1(ω, r∗) = eiωr∗ +

∫ r∗

−∞

sin(ω(r∗ − y))

ω
V (y)u1(ω, y)dy. (1.4.126)

Note that in the regime ` ≤ `0 we have a bound of the form

|V (r∗)| . e−2 min(k+,|k−|)|r∗| (1.4.127)

which implies the following bound on the integral kernel of the perturbation in (1.4.126)

|K(r∗, y)| =
∣∣∣∣sin(ω(r∗ − y))

ω
V (y)

∣∣∣∣ . |V (y)| (1.4.128)

in view of |ω| ≥ ω0. Thus,∫ ∞
−∞

sup
r∗∈R
|K(r∗, y)|dy .

∫ ∞
−∞
|V (y)|dy . 1. (1.4.129)

Hence, from Proposition 1.2.3 we deduce

‖u1‖L∞(R) . 1 (1.4.130)

and

‖u′1‖L∞(R) . |ω|. (1.4.131)

Note that we have obtained similar, indeed even stronger bounds for u1 as in Proposi-
tion 1.4.4. An argument completely similar to Proposition 1.4.6 allows us to conclude.

77



1.4.3 Frequencies and angular momenta bounded from below (|ω| ≥ ω0,
` ≥ `0)

In this regime we assume ω ≥ ω0 and ` ≥ `0, where we choose `0 large enough such that
V` < 0 everywhere. Note that such an `0 can be chosen only depending on the black hole
parameters.

We write the o.d.e. as

u′′ = −(ω2 − V`)u (1.4.132)

and will represent the solution of the o.d.e. via a WKB approximation. For concreteness
we will use the following theorem which is a slight modification of [116, Theorem 4].

Lemma 1.4.6 (Theorem 4 of [116]). Let p ∈ C2(R) be a positive function such that

F (x) =

∣∣∣∣∫ x

−∞
p−

1
4

∣∣∣∣ d2

dx2

(
p−

1
4

)∣∣∣∣dy∣∣∣∣ (1.4.133)

satisfies supx∈R F (x) <∞. Then, the differential equation

d2u(x)

dx2
= −p(x)u(x) (1.4.134)

has conjugate solutions u and ū such that

u(x) = p−
1
4

(
exp

(
i

∫ x

0

√
p(y)dy

)
+ ε

)
, (1.4.135)

u′(x) = ip
1
4

[
exp

(
i

∫ x

0

√
p(y)dy

)
− iη +

ip′

4p
3
2

(
exp

(
−i
∫ x

0

√
p(y)dy

)
+ ε

)]
, (1.4.136)

where

|η(x)|, |ε(x)| ≤ exp (F (x))− 1. (1.4.137)

Proposition 1.4.8. Let ω0 ≤ |ω| and ` ≥ `0. Assume without loss of generality that
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ω > 0. Then,

u1(ω, r∗) = Aω
1
2 (ω2 − V (r∗))

− 1
4

(
exp

(
i

∫ r∗

0
(ω2 − V`(y))

1
2 dy

)
+ ε(r∗)

)
, (1.4.138)

u′1(ω, r∗) = Aω
1
2 i(ω2 − V (r∗))

1
4

[
exp

(
i

∫ r∗

0
(ω2 − V`(y))

1
2 dy

)
− iη(r∗)

− iV ′(r∗)

4(ω2 − V )
3
2 (r∗)

(
exp

(
i

∫ r∗

0
(ω2 − V`(y))

1
2 dy

)
+ ε(r∗)

)]
, (1.4.139)

where

|A| = 1, sup
r∗∈R

(|ε|(r∗) + |η|(r∗)) . 1 (1.4.140)

and

lim
r∗→−∞

η(r∗) = lim
r∗→−∞

ε(r∗) = 0. (1.4.141)

In particular, this proves

lim sup
r∗→∞

|u(r∗)| . 1, (1.4.142)

lim sup
r∗→∞

|u′(r∗)| . |ω|, (1.4.143)

and uniform bounds on the reflection and transmission coefficients

sup
ω0≤|ω|,`≥`0

(|R(ω, `)|+ |T(ω, `)|) . 1. (1.4.144)

Proof. We will apply Lemma 1.4.6. First, we set

p = (ω2 − V`) (1.4.145)

which is positive and smooth. Then, the o.d.e. reads

u′′ = −pu. (1.4.146)

Now we have to show that F is uniformly bounded on the real line. Note that we have
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the following bounds on the potential and its derivatives

|V`(r∗)|, |V ′` (r∗)|, |V ′′` (r∗)| . `2e2κ+r∗ and `2e2κ+r∗ . |V`(r∗)| for r∗ ≤ 0, (1.4.147)

|V`(r∗)|, |V ′` (r∗)|, |V ′′` (r∗)| . `2e2κ−r∗ and `2e2κ−r∗ . |V`(r∗)| for r∗ ≥ 0. (1.4.148)

Here, we might have to choose `0(M,Q) even larger (r2
+(r+ − 3r−) + `(` + 1) > 0, cf.

(1.8.16)) in order to assure the lower bounds on the potential. Finally, we can estimate F
by

sup
r∗∈R

F (r∗) ≤
∣∣∣∣∫ ∞
−∞

p−
1
4

∣∣∣∣ d2

dx2

(
p−

1
4

∣∣∣) dy

∣∣∣∣
=

∫ ∞
−∞

p−
1
4

(
p−

9
4 p′

2
+ p−

5
4 |p′′|

)
dy

.
1

`

∫ ∞
0

(
e4κ−y

(`−2 + e2κ−y)
5
2

+
e2κ−y

(`−2 + e2κ−y)
3
2

)
dy

+
1

`

∫ 0

−∞

(
e4κ+y

(`−2 + e2κ+y)
5
2

+
e2κ+y

(`−2 + e2κ+y)
3
2

)
dy, (1.4.149)

where we have used the bounds from (1.4.147) and (1.4.148). We shall estimate both
terms independently. After a change of variables y 7→ 1

2κ−
log(y), we can estimate the first

term by

1

`

∫ ∞
0

(
e4κ−y

(`−2 + e2κ−y)
5
2

+
e2κ−y

(`−2 + e2κ−y)
3
2

)
dy

.
1

`

∫ 1

0

(
y

(`−2 + y)
5
2

+
1

(`−2 + y)
3
2

)
dy

. `2
∫ 1

0

`2y

(1 + `2y)
5
2

+
1

(1 + `2y)
3
2

dy

.
∫ ∞

0

y

(1 + y)
5
2

+
1

(1 + y)
3
2

dy . 1. (1.4.150)

Completely analogously, we get the bound for the second integral. In particular, this
shows

sup
R
F . 1. (1.4.151)

This implies the bounds on η and ε in the statement of the theorem (cf. (1.4.140)) using
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(1.4.137).
The limits in equation (1.4.141) follow from the fact that F (r∗) → 0 as r∗ → −∞ by

construction.
The bound on the reflection and transmission coefficients follows now from

|R| .
∣∣∣∣W(u1, v1)

ω

∣∣∣∣ ≤ 1

|ω|
lim sup
r∗→∞

(
|u′1v1|+ |u1v

′
1|
)
. 1 (1.4.152)

and analogously for T.
Finally, A can be determined from the asymptotic behaviour u → eiωr∗ as r∗ → −∞

and it is given by

A = lim
r∗→−∞

exp

(
iωr∗ − i

∫ r∗

0
(ω2 − V (y))

1
2 dy

)
= lim

r∗→−∞
exp

(
−i
∫ r∗

0

(
(ω2 − V (y))

1
2 − ω

)
dy

)
(1.4.153)

which converges since V tends to zero exponentially fast. In particular, this also shows
that |A| = 1.

Finally, Theorem 1.2 is a consequence of Proposition 1.4.6, Proposition 1.4.7, and
Proposition 1.4.8.

1.5 Proof of Theorem 1.1: Existence and boundedness of
the T energy scattering map

Having performed the analysis of the radial o.d.e. and having in particular proven uniform
boundedness of the transmission coefficient T and the reflection coefficients R, we shall
prove Theorem 1.1 in this section.

1.5.1 Density of the domains DTH and DTCH

We start by proving that the domains DTH and DTCH are dense.

Lemma 1.5.1. The domains of the forward and backward evolution DTH and DTCH are
dense in ETH and ETCH, respectively.

Proof. We will only prove that the domain of the forward evolution is dense since the
other claim is analogous.
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Recall that by definition C∞c (H) is dense in ETH. Now, let Ψ ∈ C∞c (H) be arbitrary
and denote by ψ its forward evolution. We will show that we can approximate Ψ with
functions of DTH arbitrarily well. To do so, fix rred < r0 < r+. Then, using the red-shift
effect (see Lemma 1.8.1 in the appendix) the N energy of ψ �r=r0 will have exponential
decay towards i+. Hence, it can be approximated with smooth functions φn of compact
support on the hypersurface r = r0 w.r.t. the norm induced by the non-degenerate N
energy (see Remark 1.8.1 in the appendix). More precisely, on Σr0 = {r = r0} define a
sequence φn ∈ C∞c (Σr0) by

φn(t, θ, φ) = ψ �r=r0 (t, θ, φ)χ(n−1t), (1.5.1)

where (θ, φ) ∈ S2 and χ : R → [0, 1] is smooth with suppχ ⊆ [−2, 2], χ �[−1,1]= 1. Then,
we obtain that

∫
Σr0

JNµ [ψ − φn]nµΣr0
dvol→ 0 as n→∞. By construction, the restriction

to the event horizon of the backward evolution, Φn of each φn will lie in DTH. Finally, we
can conclude the proof by applying Lemma 1.8.2 from the appendix, which yields

‖Ψ− Φn‖2ETH =

∫
H
JTµ [Ψ− Φn]Tµdvol .

∫
r=r0

JNµ [ψ − φn]nµΣr0
dvol→ 0 (1.5.2)

as n→∞.

1.5.2 Boundedness of the scattering and backward map on DTH and DTCH

In the following proposition we shall lift the boundedness of the transmission and reflection
coefficients (Theorem 1.2) to the physical space picture on the dense domains DTH and DTCH.

Proposition 1.5.1. Let ψ be a smooth solution to (1.1.1) on MRN such that ψ �H∈ DTH
(or equivalently, ψ �CH∈ DTCH). Then,

‖ψ �CHA ‖
2
ETCHA

+ ‖ψ �CHB ‖
2
ETCHB

≤ B
(
‖ψ �HA ‖

2
ETHA

+ ‖ψ �HB ‖
2
ETHB

)
(1.5.3)

and

‖ψ �HA ‖
2
ETHA

+ ‖ψ �HB ‖
2
ETHB
≤ B̃

(
‖ψ �CHA ‖

2
ETCHA

+ ‖ψ �CHB ‖
2
ETCHB

)
(1.5.4)

for constants B and B̃ only depending on the black hole parameters.

Proof. Set φ := Tψ and note that φ �H∈ DTH and φ also solves (1.1.1). Since ψ ∈ DTH ⊂ ETH,
we have that φ �HA= Tψ �HA∈ L2(HA) with respect to the unique volume form induced
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by the normal vector field T . Analogously, we also have φ �HB= Tψ �HB∈ L2(HB). Thus,
we can define the Fourier transform on the event horizon with the charts (1.2.15) and
(1.2.16) as

aHA(ω, θ, φ) :=
1√
2π

∫
R
φ �HA (v, θ, φ)e−iωvdv (1.5.5)

and

aHB (ω, θ, φ) :=
1√
2π

∫
R
φ �HB (u, θ, φ)eiωudu. (1.5.6)

We can further decompose the Fourier coefficients in spherical harmonics to obtain

a`,mHA(ω) = 〈Y`m, aHA〉L2(S2) and a`,mHB (ω) = 〈Y`m, aHB 〉L2(S2). (1.5.7)

From Plancherel’s theorem, we obtain

‖ψ �HA ‖
2
ETHA

=
∑

|m|≤`,`≥0

∫
R
|a`,mHA(ω)|2dω, (1.5.8)

‖ψ �HB ‖
2
ETHb

=
∑

|m|≤`,`≥0

∫
R
|a`,mHB (ω)|2dω. (1.5.9)

Similarly, since φ �CH∈ DTCH, we define

bCHA(ω, θ, φ) :=
1√
2π

∫
R
φ �CHA (v, θ, φ)e−iωvdv (1.5.10)

and

bCHB (ω, θ, φ) :=
1√
2π

∫
R
φ �CHB (u, θ, φ)eiωudu. (1.5.11)

We can further decompose the Fourier coefficients in spherical harmonics to obtain

b`,mCHA(ω) = 〈Y`m, bCHA〉L2(S2) and b`,mCHB (ω) = 〈Y`m, bCHB 〉L2(S2). (1.5.12)
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Again, in view of Plancherel’s theorem

‖ψ �CHA ‖
2
ETCHA

=
∑

|m|≤`,`≥0

∫
R
|b`,mCHA(ω)|2dω, (1.5.13)

‖ψ �CHB ‖
2
ETCHB

=
∑

|m|≤`,`≥0

∫
R
|b`,mCHB (ω)|2dω. (1.5.14)

and similarly for CHB. We shall also decompose φ on a constant r slice. Fix r ∈ (r−, r+),
then set

φ̂m`(ω, r) =
1√
2π

∫
R

∫
S2

Ym`(θ, φ)φ(t, r, θ, φ)e−iωt sin θdθdφdt (1.5.15)

such that

φ(t, r, θ, φ) =
1√
2π

∑
|m|≤`,`≥0

∫
R
φ̂m`(ω, r)Ym`(θ, φ)eiωtdω. (1.5.16)

This is well-defined since φ(t, r, θ, φ) is compactly supported on each r = const. slice.

Since φ is smooth, we also know that φ̂m` satisfies the radial o.d.e. (1.2.34) and can be
expanded as

φ̂m`(ω, r(r∗)) = α`,mHA(ω)
r+

r
u1(ω, r∗) + α`,mHB (ω)

r+

r
u2(ω, r∗), (1.5.17)

where

|u1 − eiωr∗ | .` e2κ+r∗ ∼ (r+ − r), (1.5.18)

|u2 − e−iωr∗ | .` e2κ+r∗ ∼ (r+ − r) (1.5.19)

for r∗ ≤ 0. Note that this holds uniformly in ω. We shall show in the following that indeed
α`,mHA = a`,mHA and α`,mHB = a`,mHB . To do so, note that for r(r∗) with r∗ ≤ 0 we have for fixed
(m, `) that

φ`,m(t, r) = 〈φ, Ym`〉L2(S2)

=

∫
R

(
α`,mHA(ω)

r+

r
u1(ω, r∗(r)) + α`,mHB (ω)

r+

r
u2(ω, r∗(r))

)
eiωt

dω√
2π
. (1.5.20)

We want to interchange the limit r → r+ with the integral. In order to use Lebesgue’s
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dominated convergence theorem we will estimate α`,mHA and α`,mHB . Note that

|α`,mHA | =

∣∣∣∣∣W( r
r+
φ̂m`, u2)

W(u1, u2)

∣∣∣∣∣ =

∣∣∣∣∣W( r
r+

ˆTψm`, u2)

W(u1, u2)

∣∣∣∣∣ ≤ |ωW( r
r+
ψ̂m`, u2)|

2|ω|
≤
∣∣∣∣W(

r

r+
ψ̂m`, u2

)∣∣∣∣ ,
(1.5.21)

which is independent of r(r∗) and integrable since ω 7→ ψ̂m`(ω, r∗) is a Schwartz function.
Now, we shall fix v = r∗ + t and let r → r+ such that r∗ → −∞. Then, using Lebesgue’s
dominated convergence theorem, we obtain

φ`,m =

∫
R

(
α`,mHA(ω)eiωv + α`,mHB (ω)e−2iωr∗eiωv

) dω√
2π

+O(r+ − r)

as r → r+. Finally, for v fixed and letting r → r+ (or r∗ → −∞), we obtain

φ`,m �HA (v) =

∫
R
α`,mHA(ω)eiωv

dω√
2π

(1.5.22)

in view of the Riemann–Lebesgue lemma. Also, by definition of a`,mHA ,

φ �HA (v, θ, φ) =
∑

|m|≤`,`≥0

∫
R
a`,mHA(ω, θ, φ)eiωvY`m(θ, φ)

dv√
2π
. (1.5.23)

In view of the Fourier inversion theorem and the fact that the spherical harmonics form a
basis we conclude that

α`,mHA = a`,mHA and analogously, α`,mHB = a`,mHB . (1.5.24)

Similarly to (1.5.17), we can expand ψ̂m` in a fundamental pair of solutions corre-
sponding to both Cauchy horizons CHA and CHB. In particular, we can write

φ̂m`(ω, r(r∗)) = β`,mCHA(ω)
r+

r
v1(ω, r∗) + β`,mCHA(ω)

r+

r
v2(ω, r∗), (1.5.25)

where

|v1 − e−iωr∗ | .` e2κ−r∗ ∼ (r − r−), (1.5.26)

|v2 − eiωr∗ | .` e2κ−r∗ ∼ (r − r−). (1.5.27)
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for r∗ ≥ 0. Similarly to (1.5.24), we can prove

r+

r−
β`,mCHA(ω) = b`,mCHA(ω) and

r+

r−
β`,mCHB (ω) = b`,mCHB (ω). (1.5.28)

Moreover, from the uniform boundedness of the reflection and transmission coefficients
(cf. Theorem 1.2) we have the estimate

|b`,mCHA(ω)|+ |b`,mCHB (ω)|

=
r+

r−
|β`,mCHA(ω)|+ r+

r−
|β`,mCHB (ω)| = r+

r−

(∣∣∣Rα`,mHA + T̄α`,mHB

∣∣∣+
∣∣∣R̄α`,mHB + Tα`,mHA

∣∣∣)
≤ C(|α`,mHA(ω)|+ |α`,mHB (ω)|) = C(|a`,mHA(ω)|+ |a`,mHB (ω)|) (1.5.29)

for a constant C which only depends on the black hole parameters. Here, we have used
the fact that (

β`,mCHB
β`,mCHA

)
=

(
T R̄

R T̄

)(
α`,mHA
α`,mHB .

)
. (1.5.30)

In view of 1 = |T|2 − |R|2, we also have(
α`,mHA
α`,mHB

)
=

(
T̄ −R̄
−R T

)(
β`,mCHB
β`,mCHA

)
(1.5.31)

from which we deduce

|a`,mHA(ω)|+ |a`,mHB (ω)| . |b`,mCHA(ω)|+ |b`,mCHB (ω)|. (1.5.32)

Estimate (1.5.29) and (1.5.32) show the claim in view of (1.5.8), (1.5.9), (1.5.13), and
(1.5.14). Finally, in view of the Fourier inversion theorem, note that the previous also jus-
tifies the Fourier representation of scattering map (1.3.20), and the Fourier representations
(1.3.24) and (1.3.25).

1.5.3 Completing the proof

Having proven Lemma 1.5.1 and Proposition 1.5.1, we can finally show Theorem 1.1 in
the following.

Proof of Theorem 1.1. Since DTH ⊂ ETH is dense (Lemma 1.5.1) and ST0 : DTH ⊂ ETH →
DTCH ⊂ ETCH is a bounded injective map (Remark 1.3.2, Proposition 1.5.1), we can uniquely
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extend ST0 to the bounded injective scattering map

ST : ETH → ETCH. (1.5.33)

Analogously, in view of Proposition 1.2.2, Remark 1.3.1, Remark 1.3.2, and Proposi-
tion 1.5.1, we can uniquely extend the bounded injective map BT

0 : DTCH ⊂ ETCH → DTCH ⊂
ETH to the bounded injective backward map BT : ETCH → ETH (Lemma 1.5.1).

Since BT
0 ◦ ST0 = IdDTH

and ST0 ◦BT
0 = IdDTCH

on dense sets, it also extends to ETH and
ETCH from which (1.3.5) follows. Similarly, it suffices to check (1.3.6) for ψ ∈ DTH. Indeed,
(1.3.6) holds true for ψ ∈ DTH in view of the T energy identity.

1.6 Proof of Theorem 1.6: Breakdown of T energy scatter-
ing for cosmological constants Λ 6= 0

In the presence of a cosmological constant Λ, the situation regarding the T energy scatter-
ing problem is changed radically. In this section we will consider the subextremal (anti-)
de Sitter–Reissner–Nordström black hole interior (M(a)dSRN, gQ,M,Λ) which is completely
analogous to (MRN, gQ,M ). We will assume that (M,Q,Λ) ∈ Pse as defined in Sec-
tion 1.3.6. Also, recall that in the presence of a cosmological constant it is natural to look
at the Klein–Gordon equation

�gψ − µψ = 0 (1.6.1)

with mass µ = 3
2Λ for the conformal invariant equation or more general µ = νΛ for fixed

ν ∈ R.
This section is devoted to prove Theorem 1.6 which relies on the fact that solutions

of the corresponding radial o.d.e. in the vanishing frequency limit ω = 0 generically map
bounded solutions at r∗ = −∞ to unbounded solutions at r∗ = +∞. More precisely, for
Λ 6= 0 we obtain—after separation of variables for (1.6.1) and setting dr∗ = h−1dr—the
o.d.e.

−u′′ + V`,Λu = ω2u (1.6.2)

for u(r∗) = r(r∗)R(r∗), where

V`,Λ = h

(
hh′

r
+
`(`+ 1)

r2
− µ

)
= h

(
dh
dr

r
+
`(`+ 1)

r2
− µ

)
(1.6.3)
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and

h =
∆

r2
= 1− 2M

r
− 1

3
Λr2 +

Q2

r2
. (1.6.4)

Here, consider r(r∗) as a function r∗ and recall that ′ denotes the derivative with respect
to r∗. The presence of the mass and the cosmological constant leads to a modification of
the potential V`,Λ.

Nevertheless, the potential V`,Λ still decays exponentially at ±∞ and we can define
asymptotic states u(Λ)

1 , u
(Λ)
2 , and v(Λ)

1 , v
(Λ)
2 for ω 6= 0 and ũ(Λ)

1 , ũ(Λ)
2 , and ṽ(Λ)

1 , ṽ
(Λ)
2 for ω = 0

just as in the case where Λ = µ = 0 in Definition 1.2.3. In particular, ũ(Λ)
1 and ṽ(Λ)

1 remain
bounded as r∗ → −∞ and r∗ → +∞, respectively. In contrast to that, ũ(Λ)

2 and ṽ
(Λ)
2

grow linearly in their respective limits. The next proposition states that in the presence
of a cosmological constant, solutions to (1.6.1) in the case ω = 0 which are bounded at
r∗ = −∞ do not need to be bounded at r∗ = +∞.

Proposition 1.6.1. Fix ν ∈ R (e.g. ν = 3
2 for the conformal invariant mass) and fix

subextremal black hole parameters (M,Q,Λ) ∈ Pse. Assume moreover that (M,Q,Λ) /∈
D(ν), where D(ν) ⊂ Pse is defined in the proof and has measure zero. Then, there exists
an `0 = `0(ν) ∈ N0 such that we have

ũ
(Λ)
1 = A(`0,Λ,M,Q)ṽ

(Λ)
1 +B(`0,Λ,M,Q)ṽ

(Λ)
2 , (1.6.5)

with B = B(`0,Λ,M,Q) 6= 0. Moreover, PΛ=0
se ⊂ D(ν) for all ν ∈ R and there exists an

open subset U with PΛ=0
se ⊂ U ⊂ Pse and Pse ∩ U = PΛ=0

se .

Proof. Let ν ∈ R be fixed. In the case Λ = 0 we can represent ũ1 with Legendre polyno-
mials and in particular we have that B(`,Λ = 0,M,Q) = 0 for all ` and 0 < |Q| < M .
Note that we can write B as

B(Λ, `,M,Q) =
W(ṽ

(Λ)
2 , ũ

(Λ)
1 )

W(ṽ
(Λ)
1 , ṽ

(Λ)
2 )

= W(ṽ
(Λ)
2 , ũ

(Λ)
1 ) (1.6.6)

for all Λ such that (M,Q,Λ) ∈ Pse.

Step 1: Pse ⊂ R3 is open and has two connected components where either
Q > 0 or Q < 0. For the sake of completeness we will give a proof of Step 1, although
this seems a quite well-known fact. Note that Pse = PΛ>0

se ∪ PΛ<0
se ∪ PΛ=0

se is open which
can be inferred from its definition.

For the second statement, first note that {Q = 0} ∩ Pse = ∅. We will now show
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that {Q > 0} ∩ Pse is connected. In Proposition 1.8.3 in the appendix we show that
PΛ>0

se ∩ {Q > 0} and PΛ<0
se ∩ {Q > 0} are path-connected. To conclude, note that for

every (M0, Q0,Λ0 = 0) ∈ PΛ=0
se , there exist paths from (M0, Q0,Λ0) to both (M0, Q0, ε) ∈

PΛ>0
se and (M0, Q0,−ε) ∈ PΛ<0

se for some ε(M0, Q0) > 0. Together with the fact that
PΛ=0

se ∩ {Q > 0} is path-connected, this shows that {Q > 0} ∩ Pse is path-connected and
similarly that {Q < 0} ∩ Pse is path-connected which proves the claim.

Step 2: Pse 3 (M,Q,Λ) 7→ B(`,Λ,M,Q) is real analytic. To show Step 2 we
first express (1.6.5) in r coordinates. Note that for (M,Q,Λ) ∈ Pse equation (1.6.5) is
equivalent to

r+

r−
(−1)`P

(Λ)
` (x(r)) = A(`,Λ)P̃

(Λ)
` (x(r)) +B(`,Λ)Q̃

(Λ)
` (x(r)), (1.6.7)

where r ∈ (r−, r+),

x(r) := − 2r

r+ − r−
+
r+ + r−
r+ − r−

, (1.6.8)

r(x) = −r+ − r−
2

x+
r+ + r−

2
(1.6.9)

and 0 < r− < r+. Now, note that Pse 3 (M,Q,Λ) 7→ r− and Pse 3 (M,Q,Λ) 7→ r+

are real analytic. Moreover, we can write ∆ = (r − r−)(r − r+)p(r) for a second order
polynomial p(r), where Pse 3 Λ 7→ p(r) is also real analytic for fixed r. Now, P (Λ)

` , P̃ (Λ)
`

and Q̃(Λ)
` appearing in (1.6.7) are defined as the unique solutions of

d

dx

(
(1− x2)p(r(x))

dR

dx

)
+ `(`+ 1)R− r(x)2νΛR = 0 (1.6.10)
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satisfying

P
(Λ)
` = (−1)` +O`(1 + x) as x→ −1, (1.6.11)

dP
(Λ)
`

dx
= O`(1) as x→ −1, (1.6.12)

P̃
(Λ)
` = 1 +O`(1− x) as x→ 1, (1.6.13)

dP̃
(Λ)
`

dx
= O`(1) as x→ 1, (1.6.14)

Q̃
(Λ)
` = −1

2
log(1− x) +O`(1) as x→ 1, (1.6.15)

dQ̃
(Λ)
`

dx
=

1

2(1− x)
+O`((1− x) log(1− x)) as x→ 1. (1.6.16)

Note that (1.6.10) depends real analytically on (M,Q,Λ) ∈ Pse such that P (Λ)
` (x), P̃ (Λ)

` (x),
Q̃

(Λ)
` (x) are real analytic functions of (M,Q,Λ) ∈ Pse for x ∈ (−1, 1). Hence, Pse 3

(M,Q,Λ) 7→ B(`,Λ,M,Q) is real analytic.

Step 3: B(`0(ν),Λ,M,Q) only vanishes on a set D(ν) ⊂ Pse of measure
zero. The claim follows from

∂B(`,Λ,M0, Q0)

∂Λ

∣∣∣∣
Λ=0

6= 0 (1.6.17)

for some 0 < |Q0| < M0. Throughout Step 2 we fix 0 < |Q0| < M0 and avoid writing their
explicit dependence. First note that that for Λ = 0 we obtain the Legendre functions of
first and second kind, i.e. P (0)

` = P̃
(0)
` = P` and Q̃

(0)
` = Q` and B(0, `) = 0. Now, define

coefficients Ã(`,Λ) and B̃(`,Λ) to satisfy

P
(Λ)
` = Ã(`,Λ)P̃

(Λ)
` + B̃(`,Λ)Q̃

(Λ)
` , (1.6.18)

and note that (1.6.17) is equivalent (use that B(`, 0) = B̃(`, 0) = 0) to

∂B̃(`,Λ)

∂Λ

∣∣∣
Λ=0
6= 0. (1.6.19)

By construction, P (Λ)
` solves (1.6.10). Multiplying

d

dx

(
(1− x2)p(r(x))

dP
(Λ)
`

dx

)
+ `(`+ 1)P

(Λ)
` − r(x)2νΛP

(Λ)
` = 0 (1.6.20)
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by P (0)
` and integrating from x = −1 to x = 1 yields

0 =

∫ 1

−1
P

(0)
`

(
d

dx

(
(1− x2)p(r(x))

dP
(Λ)
`

dx

)
+ `(`+ 1)P

(Λ)
` − r(x)2νΛP`(Λ)

)
dx.

(1.6.21)

Using the expansion (1.6.18) and the properties (1.6.11) – (1.6.16) at the end points x = −1

and x = 1 gives after an integration by parts

0 =

∫ 1

−1
P

(Λ)
`

(
d

dx

(
(1− x2)p(r(x))

dP
(0)
`

dx

)
+ `(`+ 1)P

(0)
` − r(x)2νΛP

(0)
`

)
dx

+ p(r(1))B̃(`,Λ). (1.6.22)

Now, taking ∂Λ

∣∣
Λ=0

and integrating by parts once again yields

p(r(1))∂Λ

∣∣
Λ=0

B̃(`,Λ)

=

∫ 1

−1

∣∣∣∣∣dP
(0)
`

dx

∣∣∣∣∣
2

(1− x2)∂Λ

∣∣
Λ=0

(p(r(x))) +
∣∣∣P (0)
`

∣∣∣2 ∂Λ

∣∣
Λ=0

(νr(x)2Λ)

dx

=

∫ 1

−1

∣∣∣∣∣dP
(0)
`

dx

∣∣∣∣∣
2

(1− x2)∂Λ

∣∣
Λ=0

(p(r(x))) + ν
∣∣∣P (0)
`

∣∣∣2 r(x)2|Λ=0

dx. (1.6.23)

Recall that we are in the subextremal range which guarantees that p(r(1)) 6= 0. We will
now distinguish two cases, ν = 0 and ν 6= 0.

Part I: ν = 0. In the case ν = 0 we have

p(r(1))∂Λ|Λ=0B̃(`,Λ) = ∂Λ|Λ=0

∫ 1

−1

∣∣∣∣dP`dx

∣∣∣∣2 (1− x2)p(r(x))dx (1.6.24)
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In the case ν = 0 we will choose ` = 1 such that

p(r(1))∂Λ|Λ=0B̃(1,Λ)

=∂Λ|Λ=0

∫ 1

−1
(1− x2)p(r(x))dx

=∂Λ|Λ=0

∫ 1

−1
−∆(r(x))

4

(r+ − r−)2
dx

=∂Λ|Λ=0

(
−8

(r+ − r−)3

∫ r+

r−

∆(r)dr

)

=− 8 ∂Λ|Λ=0

 r3
+−r3

−
3 −M0(r2

+ − r2
−) +Q2

0(r+ − r−)− 1
15Λ(r5

+ − r5
−)

(r+ − r−)3


=

8(r5
+ − r5

−)

15(r+ − r−)3

∣∣∣
Λ=0

+ 8

r3
+−r3

−
3 −M0(r2

+ − r2
−) +Q2

0(r+ − r−)

(r+ − r−)5
(r4

+ + r4
−)
∣∣∣
Λ=0

− 8

3

r6
+ + r6

− − 2M0(r5
+ + r5

−) +Q2
0(r4

+ + r4
−)

(r+ − r−)4

∣∣∣
Λ=0

=
−8

15

(
3r3

+ + 3r2
− + 4r+r−

) ∣∣∣
Λ=0

=
−8

15

(
6M2

0 −Q2
0

)
< −24M2

0 .

The last step is a long but direct computation using that ∆ = r2 − 2M0r+Q2
0 − Λ

3 r
4 and

r±|Λ=0 = M0 ±
√
M2

0 −Q2
0, i.e. Q

2
0 = r+r−|Λ=0 and 2M0 = r+|Λ=0 + r−|Λ=0. Moreover,

in view of the inverse function theorem we have

∂Λ|Λ=0r+ =
r4

+

3(r+ − r−)

∣∣∣
Λ=0

(1.6.25)

and

∂Λ|Λ=0r− = −
r4
−

3(r+ − r−)

∣∣∣
Λ=0

. (1.6.26)
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Part II: ν 6= 0. In this case we choose ` = 0 such that P (0)
` = 1 and dP

(0)
`

dx = 0. Hence,

p(r(1))∂Λ|Λ=0B̃(`,Λ) = ∂Λ|Λ=0

∫ 1

−1
r(x)2νΛdx

= ν∂Λ|Λ=0

∫ 1

−1

(
−r+ − r−

2
x+

r+ + r−
2

)2

Λdx (1.6.27)

= ν

(
1

6
(r+ − r−)2 +

1

2
(r+ + r−)2

) ∣∣∣
Λ=0
6= 0. (1.6.28)

This shows that Pse 3 (M,Q,Λ) 7→ B(`0(ν),M,Q,Λ) is a non-trivial real analytic
function which zero set D(ν) has zero measure. The proof also shows that PΛ=0

se ⊂ D(ν)

and that there exists an open set U ⊂ Pse with PΛ=0
se ⊂ U and D(ν) ∩ U = PΛ=0

se .

Proposition 1.6.2. Let ν ∈ R be fixed. Let ω 6= 0, (M,Q,Λ) ∈ Pse, and ` ∈ N0. Then,
define completely analogously to Definition 1.2.4 transmission and reflection coefficients
T(ω, `,Λ) and R(ω, `,Λ) as the unique coefficients such that

u
(Λ)
1 = T(ω, `,Λ)v

(Λ)
1 + R(ω, `,Λ)v

(Λ)
2 (1.6.29)

holds.

Now, assume further that (M,Q,Λ) ∈ Pse \ D(ν), where D(ν) is defined in Proposi-
tion 1.6.1. Then, there exists an `0 = `0(ν) such that

lim
ω→0
|R(ω, `0)| = lim

ω→0
|T(ω, `0)| = +∞. (1.6.30)

This shows that T and R have a simple pole at ω = 0.

Proof. Fix `0 = `0(ν) from Proposition 1.6.1 and (M,Q,Λ) ∈ Pse such that

B(`0,Λ,M,Q) 6= 0.

Now, note that the o.d.e. implies that d
dr∗

Im(ūu′) = 0 which shows that 1 = |T|2 − |R|2.
In particular, either |T| and |R| are both bounded or both unbounded as ω → 0. Also
note that as ω → 0, we have that u(Λ)

1 → ũ
(Λ)
1 pointwise.

Now, assume for a contradiction that there exists a sequence ωn → 0 such that |T(ωn)|
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and |R(ωn)| remain bounded. Thus,

lim sup
ωn→0

‖u(Λ)
1 ‖L∞(R) ≤ lim sup

ωn→0
‖u(Λ)

1 ‖L∞((−∞,0))

+ lim sup
ωn→0

‖Rv(Λ)
1 + Tv

(Λ)
2 ‖L∞((0,∞)) ≤ C (1.6.31)

for some constant C > 0. Now, using that B(`0,Λ,M,Q) 6= 0 in Proposition 1.6.1, we
can choose a r∗0 ∈ R such that |ũ(Λ)

1 (r∗0)| > C which contradicts the fact that u(Λ)
1 → ũ

(Λ)
1

pointwise as ωn → 0.

Finally, this allows us to prove Theorem 1.6 which we restate in the following for the
convenience of the reader.

Theorem 1.6. Let ν ∈ R be a fixed Klein–Gordon mass parameter. (In particular, we
may choose ν = 3

2 to cover the conformal invariant case or ν = 0 for the wave equation
(1.1.1).) Consider the interior of a subextremal (anti-) de Sitter–Reissner–Nordström
black hole with generic parameters (M,Q,Λ) ∈ Pse \ D(ν). (Here, D(ν) ⊂ Pse is a set
with measure zero defined in Proposition 1.6.1 (see Section 1.6). Moreover D(ν) satisfies
PΛ=0

se ⊂ D(ν) and U ∩D(ν) = PΛ=0
se for some open set U ⊂ Pse.)

Then, there exists a sequence (Ψn)n∈N of purely ingoing and compactly supported data
on HA with

‖Ψn‖ETH = 1 for all n (1.3.41)

such that the solution ψn to the Klein–Gordon equation with mass µ = νΛ

�gM,Q,Λψ − µψ = 0 (1.3.42)

arising from Ψn has unbounded T energy at the Cauchy horizon

‖ψn �CH ‖ETCH →∞ as n→∞. (1.3.43)

Proof. Fix `0 = `0(ν) from Proposition 1.6.2 such that the reflection and transmission
coefficients blow up as ω → 0. Define a sequence of compactly supported functions Ψn on
HA by Ψn(v, θ, ϕ) = fn(v)Y0`(θ, ϕ), such that fn ∈ C∞c (R),

∫
R
ω2|f̂n(ω)|2dω = 1 and

∫ 1
n

− 1
n

ω2|f̂n(ω)|2dω ≥ ε
∫

R
ω2|f̂n(ω)|2dω = ε (1.6.32)
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for some ε > 0.6 Imposing vanishing data on HB, this gives rise to a unique smooth
solutions ψn up to but excluding the Cauchy horizon. Arguments completely analogous
to those given in the proof of Proposition 1.5.1 show that

‖ψn �CH ‖2ETCH =
r2

+

r2
−

∫
R
ω2(|R(ω, `)|2 + |T(ω, `)|2)|f̂n(ω)|2dω. (1.6.34)

Thus,

‖ψn �CH ‖2ETCH ≥
r2

+

r2
−

∫ 1
n

− 1
n

ω2(|R(ω, `)|2 + |T(ω, `)|2)|f̂n(ω)|2dω

≥ ε
r2

+

r2
−

inf
ω∈[− 1

n
, 1
n

]

(
|R|2 + |T|2

)
. (1.6.35)

Since |R|, |T| → ∞ as ω → 0, also infω∈[ 1
2n
, 1
n

] |R| → ∞ and infω∈[ 1
2n
, 1
n

] |T| → ∞ as n→∞.
Thus, as n→∞, we have

‖ψn �CH ‖2ETCH →∞. (1.6.36)

1.7 Proof of Theorem 1.7: Breakdown of T energy scatter-
ing for the Klein–Gordon equation

In this last section we will prove that for a generic set of Klein–Gordon masses, there does
not exist a T scattering theory on the interior of Reissner–Nordström for the Klein–Gordon
equation. For the convenience of the reader, we have restated Theorem 1.7.

Theorem 1.7. Consider the interior of a subextremal Reissner–Nordström black hole.
There exists a discrete set D̃(M,Q) ⊂ R with 0 ∈ D̃ such that the following holds true.
For any µ ∈ R \ D̃ there exists a sequence (Ψn)n∈N of purely ingoing and compactly

6Such a function can be constructed by setting fn(v) := c√
n
f( v

n
) for smooth f : R → [0, 1] with

supp(f) ⊂ [−2, 2], f �[−1,1]= 1 and some normalization constant c > 0. Indeed,∫ 1
n

− 1
n

ω2|f̂n(ω)|2dω =

∫ 1
n

− 1
n

ω2|
√
nf̂(nω)|2dω =

∫ 1

−1

ω2|f̂(ω)|2 =: ε > 0 (1.6.33)

in view of f̂(0) =
∫

R f(v)dv > 0.
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supported data on HA with

‖Ψn‖ETH = 1 for all n (1.3.44)

such that the solution ψn to the Klein–Gordon equation with mass µ

�gM,Q,Λψ − µψ = 0 (1.3.45)

arising from Ψn has unbounded T energy at the Cauchy horizon

‖ψn �CH ‖ETCH →∞ as n→∞. (1.3.46)

Proof. The proof of this statement is easier than and similar to the proof of Theorem 1.6
and the proofs of the propositions leading up to it. More precisely, similar to Section 1.6
we define asymptotic states ũ(µ)

1 , ṽ(µ)
1 and ṽ

(µ)
2 and define A(`, µ) and B(`, µ) by ũ(µ)

1 =

A(`, µ)ṽ
(µ)
1 +B(`, µ)ṽ

(µ)
2 . As in Section 1.6, R 3 µ 7→ B(`, µ) is real analytic and from the

o.d.e. −u′′ + V`,µu = 0 we obtain

∂B(`, µ)

∂µ

∣∣∣∣
µ=0

=

∫ ∞
−∞

∂V`,µ
∂µ

∣∣∣∣
µ=0

ũ2
1dr∗, (1.7.1)

where

V`,µ = h

(
hh′

r
+
`(`+ 1)

r2
− µ

)
= h

(
dh
dr

r
+
`(`+ 1)

r2
− µ

)
(1.7.2)

and

h = 1− 2M

r
+
Q2

r2
(1.7.3)

as in (1.2.5). Now, note that

∂V`,µ
∂µ

∣∣∣∣
µ=0

= −h > 0 (1.7.4)

which is manifestly positive from which we can infer, by analyticity, that B(`, µ) 6= 0 for
all µ ∈ R \ D̃, where D̃ = D̃(M,Q) ⊂ R is a discrete set. This proves the analogous
statements to Proposition 1.6.1 and Proposition 1.6.2. The claim of Theorem 1.7 follows
now as in the proof of Theorem 1.6.
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1.8 Appendix

Energy estimates in the interior.

Lemma 1.8.1. Let Ψ ∈ C∞c (H) and denote by ψ its evolution in the interior. Then,
the non-degenerate N energy of Ψ decays exponentially towards i+ on every {r = r0}
hypersurface for rred < r0 < r+. Here, rred only depends on the black hole parameters.

Proof. This argument is very similar to [51, Proposition 4.2]. We only prove it for the
right component of i+ and clearly only have to look at a neighborhood of i+. First, recall
the existence of the celebrated redshift vector field N satisfying KN [ψ] ≥ bJNµ [ψ]nµv for
r+ ≥ r ≥ rred, where nv is the normal to a v = const. hypersurface.7

We set

E(v0) =

∫
v=v0,rred≤r≤r+

JNµ n
µ
vdvol, (1.8.1)

and apply the energy identity with the redshift vector field N in the region R = {r ∈
[rred, r+], v ∈ [v0, v1]}, where v0 is large enough such that v0 > sup supp(Ψ). This gives in
view of the coarea formula that

E(v1)− E(v0) + b̃

∫ v1

v0

E(v)dv ≤ 0 (1.8.2)

for every v1 ≥ v0 > sup supp(Ψ). Inequality (1.8.2), smoothness of v 7→ E(v) and a further
application of the energy identity in the region {v ≥ v0, r+ ≥ r ≥ rred} finally shows∫

v≥v0,r=rred

JNµ n
µ
rdvol ≤ C exp(−b̃v0), (1.8.3)

where C is a constant depending on Ψ. This concludes the proof.

Remark 1.8.1. By cutting off smoothly we can clearly approximate Ψ on a {r = const.}
hypersurface with compactly supported functions for any fixed r ∈ (rred, r+).

Lemma 1.8.2. Let ψ be a smooth solution of the wave equation on MRN such that its
restriction to the event horizon has compact support and let r0 ∈ (rred, r+). Then,∫

H
JTµ n

µdvol .
∫
{r=r0}

JNµ n
µdvol. (1.8.4)

7The normal is fixed by making a choice of a volume form on the null hypersurface
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Proof. We shall use the vector field S = r−2∂r∗ . By potentially making rred larger, we
can assure that the bulk term KS := ∇µJSµ of the vector field S has a fixed negative sign
in r0 ∈ (rred, r+). This current is analogous to the current introduced in [51, par. 4.1.3.2].
Moreover, applying the energy identity in the region R = {r0 ≤ r ≤ r+} and noting that
JN [ψ]µn

µ|r=r0 ∼ JS [ψ]µn
µ|r=r0 as well as JT [ψ]µn

µ|H ∼ JS [ψ]µn
µ|H yields∫

{r=r0}
JN [ψ]µn

µdvol +

∫
R
KSdvol &

∫
H
JTµ n

µdvol. (1.8.5)

This concludes the proof.

Analytic properties of the potential and the scattering coefficients. In the
following we would like to summarize analytic properties of the potential V`(r) and u1,u2,
v1 and v2 as functions of ω. This is similar to parts of [14].

First, however we will show the the exponential decay of the potential V` as r∗ → ±∞.

Lemma 1.8.3. We have

|∆(r∗)| . e2k+r∗ for r∗ ≤ 0 (1.8.6)

and

|∆(r∗)| . e2k−r∗ for r∗ ≥ 0. (1.8.7)

Moreover, we have

|V`(r∗)|, |V ′` (r∗)|, |V ′′` (r∗)| . (1 + `(`+ 1))e2k+r∗ for r∗ ≤ 0 (1.8.8)

and

|V`(r∗)|, |V ′` (r∗)|, |V ′′` (r∗)| . (1 + `(`+ 1))e2k−r∗ for r∗ ≥ 0. (1.8.9)

Proof. Note that

r+ − r = C̃ (r − r−)
k−
k+ e−2k+re2k+r∗ (1.8.10)

for a constant C̃ only depending on the black hole parameters. Thus, for r∗ ≤ 0, we have

r+ − r(r∗) = f(r∗)e
2k+r∗ (1.8.11)
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for a smooth function f(r∗), which is uniformly bounded below and above for r∗ ≤ 0.
Moreover, we have f ′(r∗), f ′′(r∗) → 0 exponentially fast as r∗ → −∞. The estimates
(1.8.8) and (1.8.9) are now straightforward applications of the chain rule and the fact that
dr
dr∗

= ∆
r2 and ∆ = (r − r−)(r − r+).

Proposition 1.8.1. The potential V` can be expanded as

V`(r∗) =
∑
m∈N

Cme
2κ+mr∗ , (1.8.12)

where |Cm| .` e−σm for a σ > 0.

Proof. Define the variable

z(r) := e2κ+r∗(r) = Ce2κ+r(r+ − r)(r − r−)
κ+
κ− , (1.8.13)

where C > 0 is such that z( r++r−
2 ) = 1. From the inverse function theorem it follows that

V`(z) = V`(r(z)) can be analytically continued in a neighborhood of z = 0 and thus, there
exists a Taylor expansion around z = 0 such that

V`(z) =
∞∑
n=1

Cmz
m. (1.8.14)

Hence,

V`(r∗) =
∞∑
n=1

Cme
2κ+mr∗ , (1.8.15)

where

C1 =
dV`
dz

∣∣∣∣
z=0

=
dV`
dr

∣∣∣∣
r=r+

dr

dz

∣∣∣∣
z=0

=
r+ − r−
r4

+

(
r2

+(r+ − 3r−) + `(`+ 1)
)
. (1.8.16)

Note that the coefficients Cm decay exponentially fast in m. To see this, remark that we
can re-define r̃∗ := r∗ − ρ for some constant ρ > 0. Similarly to (1.8.15), we expand V` as

V` =
∞∑
m=1

Dme
2κ+mr̃∗ (1.8.17)

which shows Cm = Dme
−2κ+mρ. By analyticity we have |Dm| ≤ |C̃|m+1 for some C̃ > 0
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and thus,

|Cm| .` e−σm (1.8.18)

for a fixed σ > 0.

Proposition 1.8.2. Let ` ∈ N be fixed. Then,

sup
{|Re(ω)|>1}

|R(ω, `)|+ |T(ω, `)| .` 1. (1.8.19)

Moreover, T(ω, `) has a pole of order one at ω = iκ+ given that `(`+ 1) 6= r2
+(r+ − 3r−).

Proof. Recall, that u1 is the unique solution to

u1(r∗) = eiωr∗ +

∫ r∗

−∞

sin(ω(r∗ − y))

ω
V (y)u1(y)dy. (1.8.20)

In [14] it is shown that the Volterra iteration has the form

u1(r∗) = eiωr∗

(
1 +

∞∑
n=1

u
(n)
1 (r∗)

)
, (1.8.21)

where

u
(n)
1 (r∗) =

∑
mn...m1∈N
mn>···>m1

Cmn−mn−1Cmn−1−mn−2 . . . Cm1dmn . . . dm1e
2κ+mnr∗ (1.8.22)

with dm = −(4mκ+(mκ+ + iω))−1. Note that in view of the bound in (1.8.18) one can
check that the Volterra iteration for u1 converges on ω ∈ C\{imκ+ : m ∈ N} and moreover,

sup
{|Re(ω)|>1}

|u1(r∗ = 0)| .` 1, (1.8.23)

sup
{|Re(ω)|>1}

|u′1(r∗ = 0)| .` |ω|. (1.8.24)

Analogously, we have that v1 is analytic on ω ∈ C \ {imκ− : m ∈ N} and v2 is analytic on

100



ω ∈ C \ {−imκ− : m ∈ N}. Moreover,

sup
{|Re(ω)|>1}

|v1(r∗ = 0)| .` 1, (1.8.25)

sup
{|Re(ω)|>1}

|v′1(r∗ = 0)| .` |ω|. (1.8.26)

and

sup
{|Re(ω)|>1}

|v2(r∗ = 0)| .` 1, (1.8.27)

sup
{|Re(ω)|>1}

|v′2(r∗ = 0)| .` |ω|. (1.8.28)

This finally shows (1.8.19) in view of the definition of the transmission and reflection
coefficients T and R using Wronskians, cf. Definition 1.2.4.

Now, we prove that T(ω, `) has a pole of order one at ω = iκ+ assuming that `(`+1) 6=
r2

+(r+ − 3r−). First note that

u
(1)
1 (r∗) =

∑
m1∈N

Cm1dm1e
2κ+m1r∗ (1.8.29)

has a pole of order one at ω = iκ+ since C1 6= 0, see (1.8.16). Since for n 6= 1 there is
no term of the form e2κr∗ in (1.8.22) as mn ≥ n, the pole at ω = iκ+ cannot be canceled
by the other terms and must occur in u1. Moreover, this pole of u1 at ω = iκ+ is not of
higher order that one since d1 does not occur at higher powers than one in the Volterra
iteration. This implies that T(ω, `) has a pole of order one at ω = iκ+.

Connectedness of the subextremal parameter range.

Proposition 1.8.3. Let the subextremal parameter space PΛ>0
se and PΛ<0

se be defined as in
(1.3.39) and (1.3.40), respectively. Then, PΛ>0

se ∩{Q > 0}, PΛ<0
se ∩{Q > 0}, PΛ>0

se ∩{Q < 0}
and PΛ<0

se ∩ {Q < 0} are path-connected.

Proof. The claim follows for PΛ>0
se ∩ {Q > 0} and PΛ>0

se ∩ {Q > 0} from the following
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continuous parametrizations

PΛ>0
se ∩ {Q > 0} =

{
(M,Q,Λ) ∈ R× R× R :

Λ = 3(r2
+ + r2

− + r2
c + r+rc + rcr− + r+r−)−1,

6M = Λ(r+ + r−)(r+ + rc)(r− + rc),

Q =

(
Λ

3
(r+ + r− + rc)(r−r+rc)

) 1
2

for 0 < r− < r+ < rc

}
(1.8.30)

and

PΛ<0
se ∩ {Q > 0} =

{
(M,Q,Λ) ∈ R× R× R : Λ = 3

(
3

4
(r+ + r−)2 − r+r− − ξi

)−1

,

6M = −Λ

(
1

4
(r+ + r−)2 + ξi − r+r−

)
(r+ + r−),

Q =

(
−Λ

3
r+r−

(
3

4
(r+ + r−)2 + ξi

)) 1
2

,

for 0 < r− < r+ and ξi >
(

3

4
(r+ + r−)2 − r+r−

) 1
2 }

(1.8.31)

in view of the fact that {0 < r− < r+ < rc} and {0 < r− < r+, ξi > (3
4(r++r−)2−r+r−)

1
2 }

are path-connected as subsets of R3. In the following we will show (1.8.30) and (1.8.31).
First, in the case Λ > 0, note that (1.8.30) follows from comparing coefficients of

−3

Λ
(r2 − 2Mr +Q2 − 1

3
Λr4) = (r − r−)(r − r+)(r − rc)(r − r0)

for r0 < 0 < r− < r+ < rc. Indeed, we obtain r0 = −(r− + r+ + rc) and (1.8.30) can be
deduced.

In the case Λ < 0, note that −3
Λ (r2 − 2Mr + Q2 − 1

3Λr4) only has two real roots
0 < r− < r+ such that we compare coefficients of

−3

Λ
(r2 − 2Mr +Q2 − 1

3
Λr4) = (r − r−)(r − r+)(r − ξ)(r − ξ̄)

with ξ = ξr + iξi. We obtain 2ξr = −(r+ + r−) and ξi >
(

3
4(r+ + r−)2 − r+r−

) 1
2 to

guarantee Λ < 0. Now, a direct computation shows (1.8.31).
Completely analogously we can show path-connectedness for PΛ>0

se ∩ {Q < 0} and
PΛ<0

se ∩ {Q < 0}.
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Chapter 2

Uniform boundedness and
continuity at the Cauchy horizon
for linear waves on
Reissner–Nordström–AdS black
holes

2.1 Introduction

We initiate the study of (massive) linear waves satisfying on the interior of asymptotically
Anti-de Sitter (AdS) black holes (M, g). We will consider Reissner–Nordström–AdS (RN–
AdS) black holes [13] which can be viewed as the simplest model in the context of the
question of stability of the Cauchy horizon. We consider the massive linear wave equation

�gRNAdS
ψ +

α

l2
ψ = 0 (2.1.1)

for AdS radius l2 := − 3
Λ on a fixed subextremal Reissner–Nordström–AdS black hole with

mass parameter M > 0 and charge parameter 0 < |Q| < M . Moreover, we assume the so-
called Breitenlohner–Freedman bound [12] for the Klein–Gordon mass parameter α < 9

4 ,
which includes the conformally invariant case for α = 2. This bound is required to obtain
well-posedness [73, 144, 142] of (2.1.1).

Recall from the discussion in the introduction of the thesis that solutions with fixed
angular momentum ` actually decay exponentially in the exterior region. For such solutions
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with fixed `, uniform boundedness with upper bound C = C` in the interior and continuity
at the Cauchy horizon can be shown using the methods involving the vector field S =

|u|p∂u + |v|p∂v. Note however that this does not imply that a general solution remains
bounded in the interior as the constant C` is not summable:

∑L
`=0C` ∼ eL → +∞ as

L → ∞. Note in particular that, as a result of this, one cannot study the new non-
trivial aspect of this problem restricted to spherical symmetry. (Nevertheless, see [8] for
a discussion of the Ori model for Reissner–Nordström–AdS black holes.)

Main theorem: Uniform boundedness and continuity at the Cauchy hori-
zon. We now state a rough version of our main result. See Theorem 2.3 for the precise
statement.

Theorem 2.1 (Rough version of Theorem 2.3). Let ψ be a solution to (2.1.1) arising from
smooth and compactly supported initial data (ψ0, ψ1) posed on a spacelike hypersurface Σ0

as depicted in Fig. 1. Then, ψ remains uniformly bounded in the black hole interior

|ψ| ≤ C,

where C is constant depending on the parameters M,Q, l, α, the choice of Σ0 and on
some higher order Sobolev norm of the initial data (ψ0, ψ1). Moreover, ψ can be extended
continuously across the Cauchy horizon.

As we have explained in the introduction of the thesis, the main difficulty compared to
the asymptotically flat case, where the analysis was carried out entirely in physical space
and requires inverse polynomial decay in the exterior [51], is the slow decay of ψ along the
event horizon. Our strategy is to decompose the solution ψ in a low and high frequency
part ψ = ψ[ + ψ] with respect to the Killing field T = ∂

∂t and treat each term separately.
For the low frequency part ψ[, we will show a superpolynomial decay rate in the

exterior, see already Proposition 2.4.7. For this part we also use integrated energy decay
estimates for bounded angular momenta ` established in [75]. This superpolynomial decay
in the exterior is sufficient so as to follow the method of [51] with vector fields of the form
like S == |u|p∂u+|v|p∂v to show boundedness and continuity at the Cauchy horizon, up to
the additional difficulty caused by the fact that we allow a possibly negative Klein–Gordon
mass parameter. The violation of the dominant energy condition due to the presence of a
negative mass term can be overcome with twisted derivatives [12, 144, 78], which provide
a useful framework to replace Hardy inequalities for the lower order terms in this context.

For the high frequency part ψ], which is exposed to stable trapping and does in general
only decay at a sharp logarithmic rate in the exterior, the key ingredient is the scattering
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theory developed in [82] (see discussion above). More specifically, the uniform bounds
for the transmission and reflections coefficients T and R for |ω| ≥ ω0 proved in [82] turn
out to be useful for the high frequency part ψ]. These bounds allow us to control |ψ]| at
the Cauchy horizon by the T -energy norm on the event horizon commuted with angular
derivatives. The T -energy flux on the event horizon is in turn bounded from initial data by
a simple application of the T -energy identity in the exterior. In particular, no quantitative
decay along the event horizon is used for the high frequency part ψ]. This is what allows
us to overcome the problem of slow logarithmic decay.

Outline. This chapter is organized as follows. In Section 2.2 we set up the spacetime
and summarize relevant previous work. In Section 2.3 we state and prove our main result
Theorem 2.3. Parts of the proof require a separate analysis which are treated in Section 2.4
and Section 2.5.

2.2 Preliminaries

We start by setting up the Reissner–Nordström–AdS spacetime (see [13]) and defining
relevant norms and energies. We will also introduce useful coordinate systems.

2.2.1 The Reissner–Nordström–AdS black hole

We are ultimately interested in the behavior of solutions to (2.1.1) to the future of a
spacelike hypersurface Σ0 as depicted in Fig. 1. For technical reasons (Fourier space
decompositions are non-local operations) we will however construct also parts to the past
of Σ0. In the following will define the spacetime pictured in Fig. 2.1.

2.2.1.1 Construction of the spacetime (MRNAdS, gRNAdS)

First, for black hole parameters M > 0, Q 6= 0, l2 6= 0 define the polynomial

∆M,Q,l(r) := r2 − 2Mr +
r4

l2
+Q2 (2.2.1)

and define the non-degenerate set

P := {(M,Q, l) ∈ (0,∞)× R× (0,∞) :

∆M,Q,l(r) has two postive roots satisfying 0 < r− < r+}. (2.2.2)
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Figure 2.1: Penrose diagram of the constructed spacetime (MRNAdS, gRNAdS)

Note that P defines black hole parameters in the subextremal range. From now on, we
will consider fixed parameters M,Q, l, α, where

(M,Q, l) ∈ P and α <
9

4
. (2.2.3)

Note thatM is the mass parameter, Q the charge parameter of the black hole and l =
√
− 3

Λ

is the Anti-de Sitter radius. For this specific choice of parameters we will also write
∆(r) := ∆M,Q,l(r) and denote by 0 < r− < r+ the positive roots of ∆.

Now, let the two exterior regions RA, RB and the black hole region B be smooth four
dimensional manifolds diffeomorphic to R2 × S2. On RA,RB and B we introduce global1

coordinate charts:

(rRA , tRA , θRA , ϕRA) ∈ (r+,∞)× R× S2,

(rRB , tRB , θRB , ϕRB ) ∈ (r+,∞)× R× S2, (2.2.4)

(rB, tB, θB, ϕB) ∈ (r−, r+)× R× S2.

If it is clear from the context which coordinates are being used, we will omit their sub-
scripts throughout the chapter. Again, on the manifolds RA,RB and B we define—using

1Up to the known degeneracy of spherical coordinates at the poles of the sphere.
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the coordinates (t, r, θ, ϕ) on each of the patches—the Reissner–Nordström–Anti-de Sitter
metric

g := −∆(r)

r2
dt⊗ dt+

r2

∆(r)
dr ⊗ dr + r2(dθ ⊗ dθ + sin2 θdϕ⊗ dϕ). (2.2.5)

On each of RA,RB and B, we define time orientations using the vector field ∂tRA on RA,
−∂tRB on RB and −∂rB on B.

We will also define the tortoise coordinate r∗ by

dr∗
dr

:=
r2

∆
(2.2.6)

in RA, RB and B independently. This defines r∗ up to an unimportant constant. Then,
in each of the regions RA, RB and B, we define null coordinates by

v = r∗ + t and u = r∗ − t, (2.2.7)

where for example for the v coordinate on RA, we will use the notation vRA and analo-
gously for the other regions. Note that throughout the chapter we will use the notation ′

for derivatives ∂
∂r∗

.

Patching the regions RA,RB and B together. Now, we patch the regions RA, RB
and B together. We begin by attaching the future (resp. past) event horizon H+

A (resp.
H−A) to RA by formally2 setting

H+
A := {uRA = −∞} and H−A := {vRA = −∞}. (2.2.8)

Similarly, we attach H+
B := {vRB = −∞} and H−B := {uRB = −∞} to RB. In the

(uB, vB) coordinates associated to B we make the identifications H+
A = {uB = −∞} and

H+
B = {vB = −∞}. Then, we attach the Cauchy horizon CHA := {vB = +∞} and
CHB := {uB = +∞} to B.

Finally, we attach the past (resp. future) bifurcation sphere B− (resp. B+) to B as

B− := {uB = −∞, vB = −∞} and B+ := {uB = +∞, vB = +∞}. (2.2.9)

We shall also set CH := CHA ∪ CHB ∪B+. Note that all horizons H+
A,H

−
A,H

+
B,H

−
B, CHA,

and CHB are diffeomorphic to R× S2 and the past (future) bifurcation sphere B− (B+) is

2This can be made rigorous using ingoing Eddington–Finkelstein coordinates (r, v, ϕ, θ) adapted to the
event horizon. Since this is well-known, we avoid introducing yet another coordinate system.
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diffeomorphic to S2. Moreover, we identify B− with {uRA = −∞, vRA = −∞} and also
with {uRB = −∞, vRB = −∞}. The resulting manifold will be calledMRNAdS. Note that,
g extends to a smooth Lorentzian metric on MRNAdS which we will call gRNAdS and in
particular, (MRNAdS, gRNAdS) is a time oriented smooth Lorentzian manifold with corners.
We illustrate the constructed spacetime as a Penrose diagram in Fig. 2.1. Note that the
vector field ∂t defined on RA, RB and B, respectively, extends to a smooth Killing field on
MRNAdS, which we will from now on call T . Moreover, the standard angular momentum
operators Wi for i = 1, 2, 3, the generators of so(3) defined as

W1 = sinϕ∂θ + cot θ cosϕ∂ϕ,W2 = − cosϕ∂θ + cot θ sinϕ∂ϕ,W3 = −∂ϕ (2.2.10)

are Killing vector fields. It shall be noted that Wi for i = 1, 2, 3 are spacelike every-
where, whereas T is future-directed timelike on RA, spacelike on B and past-directed
timelike on RB. Moreover, T is future-directed null on H−A,H

+
A, CHB, past-directed null

on H−B,H
+
B, CHA and vanishes on B−,B+. Finally, note that one can attach conformal

timelike boundaries IA and IB corresponding to {rRA = +∞} and {rRB = +∞}, respec-
tively.3

2.2.1.2 Initial hypersurface Σ0

We will impose initial data on a spacelike hypersurface Σ0 to be made precise in the fol-
lowing. Note that we can choose for convenience that the spacelike hypersurface Σ0 lies
to the future of the past bifurcation sphere B−. Indeed, by general theory (an energy
estimate in a compact region) this can be assumed without loss of generality [27]. More
precisely, let Σ0 be a 3 dimensional connected, complete and spherically symmetric space-
like hypersurface extending to the conformal infinity I = IA ∪IB. Moreover, assume that
B− ⊂ J−(Σ0) \ Σ0.

A possible choice of Σ0 is denoted in Fig. 2.2. We are ultimately interested in the
shaded region to the future of Σ0. For the rest of the chapter, we will consider such a Σ0

to be fixed.

2.2.2 Conventions

With a . b for a ∈ R and b ≥ 0 we mean that there exists a constant C(M,Q, l, α,Σ0)

with a ≤ Cb. If C(M,Q, l, α,Σ0) depends on an additional parameter, say `, we will write
a .` b. We also use a ∼ b for some a, b ≥ 0 if there exist constants C1(M,Q, l, α,Σ0) > 0

3Note that IA and IB are not contained inMRNAdS.
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Figure 2.2: The shaded region of interest lies in the future of Σ0.

C2(M,Q, l, α,Σ0) > 0 with C1a ≤ b ≤ C2a. We shall also make use of the standard Landau
notation O and o [119]. To be more precise, let X be a point set (e.g. X = R, [a, b],C)
with limit point c. As x → c in X, f(x) = O(g(x)) means |f(x)|

|g(x)| ≤ C(M,Q, l, α) holds in
a fixed neighborhood of c. We write O`(g(x)) if the constant C depends on an additional
parameter `. For the standard volume form in spherical coordinates (ϕ, θ) on the sphere
S2 we will use the notation dσS2 := sin θdϕdθ. Finally, let the Japanese symbol be defined
as 〈x〉 :=

√
1 + x2 for x ∈ R.

2.2.3 Norms and Energies

We are interested in solutions to the massive wave equation (2.1.1) associated to the
metric gRNAdS on a subextremal Reissner–Nordström AdS black hole with black hole
parametersM,Q, l as in (2.2.3). In view of the timelike boundaries IA and IB, we need to
specify boundary conditions on IA and IB in addition to prescribing data on the spacelike
hypersurface Σ0, cf. Fig. 2.2. We will use Dirichlet (reflecting) boundary conditions which
can be viewed as the most natural conditions in the context of stability of the Cauchy
horizon. In principle, however, in view of [144], we could also use more general boundary
conditions like Neumann or Robin conditions. We will now introduce an appropriate
foliation and norms in order to state the well-posedness statement in Section 2.2.4.

We will foliate RA ∪RB ∪H+
A ∪H

+
B ∪B with spacelike hypersurfaces. To do so, we let
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T be a smooth future-directed causal vector field on RA ∪ RB ∪ H+
A ∪ H

+
B ∪ B with the

properties that

T =

T on RA ∪H+
A

−T on RB ∪H+
B

and that T is a future-directed timelike vector field on B. Now, define the leaves

Σt∗ := ΦT (t∗)[Σ0], (2.2.11)

where ΦT is the flow generated by T and t∗ ∈ R is its affine parameter. We have illustrated
some leaves in Fig. 2.3.

CH
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B−

Σ0
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Στ2

B

Στ−1

i− i−

Figure 2.3: Illustration of the foliation with leaves Στ defined in (2.2.11).

2.2.3.1 Further coordinates in the exterior region

In the region RA ∪H+
A, we moreover define a global (up to the well-known degeneracy on

S2) coordinate system (t∗, r, ϕ, θ), where t∗ is the affine parameter of the flow generated
by T . Note that on RA ∪H+

A we have ∂t∗ = T such that t∗(t2, r)− t∗(t1, r) = t2 − t1 and
t(t∗2, r)− t(t∗1, r) = t∗2 − t∗1. Similarly, we can define such a coordinate system on RB.
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2.2.3.2 Norms on hypersurfaces Σt∗

By construction Σt∗ intersects RA, RB and B. We will now define norms on Σt∗ which
are adaptations of the norms introduced in [73]. We define

‖ψ‖2
Hk,s

RNAdS(Σt∗ )
:= ‖ψ‖2Hk(Σt∗∩B) + ‖ψ‖2

Hk,s
AdS(Σt∗∩(RA∪H+

A))
+ ‖ψ‖2

Hk,s
AdS(Σt∗∩(RB∪H+

B))

(2.2.12)

and

CH2
RNAdS := C2(Rt∗ ;H

0,−2
RNAdS(Σt∗)) ∩ C1(Rt∗ ;H

1,0
RNAdS(Σt∗)) ∩ C0(Rt∗ ;H

2,0
RNAdS(Σt∗)),

(2.2.13)

where each of the terms appearing in (2.2.12) will be defined in the following.

Norms in the interior region. We begin by defining the first term in (2.2.12). We
define ‖ · ‖2

Hk(Σt∗∩B)
as the standard Sobolev norm of order k on the Riemannian manifold

(Σt∗ ∩ B, gRNAdS �Σt∗∩B).

Norms in the exterior region. Due to the symmetry of the regions RA and RB, we
will only define the norms on RA in the following. The norms on RB are be constructed
analogously. We use the coordinates (t∗, r, θ, ϕ) in RA to define the norms

‖ψ‖2
H0,s

AdS(Σt∗∩RA)
:=

∫
Σt∗∩RA

rs|ψ|2r2dr sin θdθdϕ

‖ψ‖2
H1,s

AdS(Σt∗∩RA)
:= ‖ψ‖2

H0,s
AdS(Σt∗∩RA)

+

∫
Σt∗∩RA

rs
(
r2|∂rψ|2 + | /∇ψ|2

)
r2dr sin θdθdϕ

‖ψ‖2
H2,s

AdS(Σt∗∩RA)
:= ‖ψ‖2

H1,s
AdS(Σt∗∩RA)

+

∫
Σt∗∩RA

rs
(
r4|∂2

rψ|2 + r2| /∇∂rψ|2 + | /∇ /∇ψ|2
)
r2dr sin θdθdϕ

and similarly for higher order norms. Here and in the following we denote with /∇ and /g the
induced covariant derivative and the induced metric, respectively, on spheres of constant
(t∗, r). We will also use the notation | /∇ψ|2 := /g( /∇ψ, /∇ψ). Now having defined (2.2.12),
we will define energies in the following.
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2.2.3.3 Energies on hypersurfaces Σt∗

We set

Ei[ψ](t∗) := EAi [ψ](t∗) + EBi [ψ](t∗) + EBi [ψ](t∗) (2.2.14)

for i = 1, 2, where all terms in (2.2.14) will be defined in the following.

Energies in the interior region. In the interior region we are not concerned with
r-weights and define the energies as

EB1 [ψ](t∗) := ‖ψ‖2H1(Σt∗∩B) + ‖∂t∗ψ‖2L2(Σt∗∩B), (2.2.15)

EB2 [ψ](t∗) := ‖ψ‖2H2(Σt∗∩B) + ‖∂t∗ψ‖2H1(Σt∗∩B) + ‖∂2
t∗ψ‖2L2(Σt∗∩B). (2.2.16)

Energies in the exterior region. To define the energies in the exterior region, it is
convenient to start with defining the following energy densities

e1[ψ] :=
1

r2
|∂t∗ψ|2 + r2|∂rψ|2 + | /∇ψ|2 + |ψ|2

e2[ψ] := e1[ψ] + e1[∂t∗ψ] +
3∑
i=1

e1[Wiψ] + r4|∂r∂rψ|2 + r2| /∇∂rψ|2 + | /∇ /∇ψ|2

and their integrals as

EAi [ψ](t∗) :=

∫
Σt∗∩(RA∪H+

A)
ei[ψ]r2dr sin θdθdϕ (2.2.17)

for i = 1, 2. Note that we will write EBi for the analogous energy restricted to RB.
Also remark the following relation between the norms and energies defined above

EA1 [ψ] = ‖ψ‖2
H1,0

Ads(Σt∗∩RA)
+ ‖∂t∗ψ‖2H0,−2

AdS (Σt∗∩RA)
,

EA2 [ψ] ∼
∑
i

‖Wiψ‖2H1,0
Ads(Σt∗∩RA)

+ ‖∂t∗ψ‖2H1,0
Ads(Σt∗∩RA)

+ ‖ψ‖2
H2,0

Ads(Σt∗∩RA)
+ ‖∂2

t∗ψ‖2H0,−2
AdS (Σt∗∩RA)

.

2.2.4 Well-posedness and mixed boundary value Cauchy problem

Having set up the spacetime and the norms, we will restate the well-posedness result for
(2.1.1) as a mixed boundary value-Cauchy problem. For asymptotically AdS spacetimes,
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well-posedness was first proved in [73].

Theorem 2.1 ([73]). Let the Reissner–Nordström–AdS parameters (M,Q, l) and the Klein–
Gordon mass α < 9

4 be as in (2.2.3). Let initial data (ψ0, ψ1) ∈ C∞c (Σ0) × C∞c (Σ0) be
prescribed on the spacelike hypersurface Σ0 and impose Dirichlet (reflecting) boundary
conditions on I = IA ∪ IB.

Then, there exists a smooth solution ψ ∈ C∞(MRNAdS \ CH) of (2.1.1) such that
ψ �Σ0= ψ0, T ψ �Σ0= ψ1. The solution ψ is also unique in the class C(Rt∗ ;H

1,0
RNAdS(Σt∗))∩

C1(Rt∗ ;H0,−2(Σt∗)).

Remark 2.2.1. The well-posedness statement in Theorem 2.1 holds true for a more gen-
eral class of initial data, called a H2

AdS initial data triplet which give rise to a solution in
CH2

RNAdS, see [73].

2.2.5 Energy identities and estimates

In order to prove energy estimates, it turns out to be useful to introduce two types of
energy-momentum tensors. Besides the standard energy-momentum tensor associated
to (2.1.1), a suitable twisted energy-momentum tensor plays an important role in our
estimates. Indeed, due to the negative mass term, the standard energy-momentum tensor
does not satisfy the dominant energy condition. However, the dominant energy condition
can be restored for the twisted energy-momentum tensor introduced in [12, 144]. In
particular, these twisted energies will be used in the interior region, whereas in the exterior
region we will work with the standard energy-momentum tensor. We will first review the
energy estimates in the exterior.

2.2.5.1 Energy estimates in the exterior region

Energy-momentum tensor. For a smooth function φ we define

Tµν [φ] := Re(∂µφ∂νφ)− 1

2
gµν

(
∂αφ∂

αφ− α

l2
|φ|2

)
. (2.2.18)

For a smooth vector field X we also define

JX [φ] := T[φ](X, ·) and KX [φ] := XπµνTµν [φ], (2.2.19)
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where Xπ := LXg is the deformation tensor. The term KX is often referred to as the
“bulk term” and satisfies

KX [φ] = ∇µJXµ [φ] (2.2.20)

if φ is a solution to (2.1.1). Note that if X is Killing, then KX vanishes. More generally,
integrating (2.2.20) one obtains an energy identity relating boundary and bulk terms.
For more details about the energy-momentum tensor and its usage for standard energy
estimates we refer to [27].

Boundedness and decay in the exterior region. In the exterior regions RA and
RB we have energy decay and boundedness results which have been proved in [73, 72, 75,
77]4. To state them we make the following choice of volume forms and normals on the event
horizon. We set dvolH+

A
= r2dt∗dσS2 and nH+

A
= T and similarly for H+

B. Moreover, we
denote by dvolΣt∗ ∼ rdr sin θdθdϕ the induced volume form on the spacelike hypersurface
Σt∗∩RA and by nµΣ∗t its future-directed unit normal. We summarize these energy identities
and estimates in the following.

Proposition 2.2.1 ([73]). A solution ψ to (2.1.1) arising from smooth and compactly
supported data on Σ0 as in Theorem 2.1 satisfies∫

Σt∗2
∩RA

JTµ [ψ]nµΣt∗2
dvolΣt∗2

+

∫
H+
A(t∗1,t

∗
2)
JTµ [ψ]nµH+

A

dvolH+
A

=

∫
Σt∗1
∩RA

JTµ [ψ]nµΣt∗1
dvolΣt∗1

,

(2.2.21)

where t∗1 ≤ t∗2 and H+
A(t∗1, t

∗
2) := H+

A ∩ {t∗1 ≤ t∗ ≤ t∗2}. The analogous energy identity holds
in RB. In particular, (2.2.21) shows that the T -energy flux through I = IA ∪IB vanishes.

Moreover, the T -energy flux through the event horizon is bounded by initial data∫
H+
A

JTµ [ψ]nµH+
A

dvolH+
A

+

∫
H+
B

JTµ [ψ]nµH+
B

dvolH+
B
. E1[ψ](0). (2.2.22)

Finally, note that∫
Σt∗∩RA

JTµ [ψ]nµΣt∗dvolΣt∗ ∼
∫

Σt∗∩RA
[r−2|∂t∗ψ|2 +

∆

r2
|∂rψ|2

+ | /∇ψ|2 + |ψ|2]r2dr sin θdθdϕ. (2.2.23)

4Strictly speaking, in [75] this has been only explicitly proved for Kerr–AdS which includes
Schwarzschild–AdS. However, the same proof as for Schwarzschild–AdS works completely analogously for
Reissner–Nordström–AdS and we shall not repeat these arguments here.
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Remark that (2.2.23) follows from a Hardy inequality (see [72, Equation (50)]) which is
used to absorb the (possibly) negative contribution from the Klein–Gordon mass term.

Theorem 2.2 ([77, Theorem 1.1], [75, Section 12]). A solution ψ to (2.1.1) arising from
smooth and compactly supported data on Σ0 as in Theorem 2.1 satisfies∫

Σt∗∩RA
e1[ψ]r2 sin θdrdθdϕ .

∫
Σ0∩RA

e1[ψ]r2 sin θdrdθdϕ, (2.2.24)∫
Σt∗∩RA

e2[ψ]r2 sin θdrdθdϕ .
∫

Σ0∩RA
e2[ψ]r2 sin θdrdθdϕ, (2.2.25)

and similarly for higher order norms. Moreover, we have the energy decay statements∫
Σt∗∩RA

e1[ψ]r2 sin θdrdθdϕ .
1

[log(2 + t∗)]2

∫
Σ0∩RA

e2[ψ]r2 sin θdrdθdϕ (2.2.26)

for t∗ ≥ 0 and the pointwise decay

sup
Σt∗∩RA

|ψ|2 . 1

[log(2 + t∗)]2

∫
Σ0∩RA

(e2[ψ] + e2[∂t∗ψ])r2 sin θdrdθdϕ (2.2.27)

for t∗ ≥ 0 in the exterior region RA and similarly in RB. Moreover, just like for
Schwarzschild–AdS (cf. [75]), fixed angular frequencies decay exponentially. More pre-
cisely, let Y`m denote the spherical harmonics and let ψ be a solution to (2.1.1) aris-
ing from smooth and compactly supported data on Σ0. If there exists an L ∈ N with
〈ψ, Ym`〉L2(S2) = 0 for ` ≥ L, then∫

Σt∗∩RA
e1[ψ]r2 sin θdrdθdϕ . exp

(
−e−C(M,Q,l,α)Lt∗

)∫
Σ0∩RA

e1[ψ]r2 sin θdrdθdϕ,

(2.2.28)

for t∗ ≥ 0 and a constant C(M,Q, l, α) > 0 only depending on the parameters M,Q, l, α.

Remark 2.2.2. Note that (2.2.28) also implies pointwise exponential decay for ψ (assum-
ing 〈ψ, Y`m〉L2(S2) = 0 for ` ≥ L) and all higher derivatives of ψ using standard techniques
like commuting with T and Wi, elliptic estimates as well as applying a Sobolev embed-
ding. Moreover, the previous estimates above also hold true for a the more general class
of solutions CH2

RNAdS. See [73] or [75, Theorem 4.1] for more details.

Remark 2.2.3. The previous decay estimates have only been stated to the future of Σ0 in
the region RA, nevertheless, they also hold in RB. Moreover, they also hold true to the
past of Σ0 for an appropriate foliation for which the leaves intersect H−A and H−B, and are
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transported along the flow of −T for RA ∪H−A and along the flow of T for RB ∪H−B.

We now turn to the energy estimates in the interior region B.

2.2.5.2 Energy estimates in the interior region

Twisted energy-momentum tensor. We begin by defining twisted derivatives.

Definition 2.2.1 (Twisted derivative). For a smooth and nowhere vanishing function f

we define the twisted derivative

∇̃µ := f∇µ
(
·
f

)
(2.2.29)

and its formal adjoint

∇̃∗µ := − 1

f
∇µ(f ·). (2.2.30)

We shall refer to f as the twisting function.

Remark 2.2.4. Note that we can rewrite the Klein–Gordon equation (2.1.1) in terms of
the twisted derivatives as

−∇̃∗µ∇̃µψ − Vψ = 0, (2.2.31)

where the potential V is given by

V = −
(
α

l2
+
�gf
f

)
. (2.2.32)

Now, we also associate a twisted energy-momentum tensor to the twisted derivatives.

Definition 2.2.2 (Twisted energy-momentum tensor). Let f be smooth and nowhere van-
ishing and ∇̃ as defined in Definition 2.2.1. We define the twisted energy-momentum
tensor associated to (2.1.1) and f as

T̃µν [φ] := Re
(
∇̃µφ∇̃νφ

)
− 1

2
gµν(∇̃σφ∇̃σφ+ V|φ|2), (2.2.33)

where V is as in (2.2.32) and φ is any smooth function.

We will now compute the divergence of the twisted energy-momentum tensor.
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Proposition 2.2.2 ([78, Proposition 3]). Let φ be a smooth function and f be a smooth
nowhere vanishing twisting function. Then,

∇µT̃µ
ν [φ] = Re

((
−∇̃∗µ∇̃µφ− Vφ

)
∇̃νφ

)
+ S̃ν [φ], (2.2.34)

where

S̃ν [φ] =
∇̃∗ν(fV)

2f
|φ|2 +

∇̃∗νf
2f
∇̃σφ∇̃σφ. (2.2.35)

Now, assume that φ moreover satisfies (2.1.1) and X is a smooth vector field. Set

J̃Xµ [φ] := T̃µν [φ]Xν and K̃X [φ] := XπµνT̃
µν [φ] +Xν S̃ν [φ]. (2.2.36)

Then,

∇µJ̃Xµ [φ] = K̃X [φ]. (2.2.37)

Finally, note that if the twisting function f associated to ∇̃ is chosen such that V ≥ 0, then
T̃µν satisfies the dominant energy condition, i.e. if X is a future pointing causal vector
field, then so is −J̃X .

We will make use of the twisted energy-momentum tensor in the interior region B for
which we use null coordinates (uB, vB) introduced in Section 2.2.1. For the rest of the
subsection we will drop the index B. Then, setting

Ω2(u, v) := −
(

1− 2M

r
+
Q2

r2
+
r2

l2

)
, (2.2.38)

where r = r(u, v), we write the metric in the interior region B as

gRNAdS = −Ω2(u, v)

2
(du⊗ dv + dv ⊗ du) + r2(u, v)dσS2 . (2.2.39)

Note that in the interior we have r− < r(u, v) < r+ and dr∗ = r2

∆ dr. In Proposition 2.6.1
in the appendix we have written out the components of the twisted energy-momentum
tensor, the twisted 1-jets J̃X and the twisted bulk term K̃X in null components. We will
use the notation Cu1 := {u = u1}, Cv1

= {v = v1} for null cones and Σr1 = {r = r1} for
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spacelike hypersurfaces in the interior. Furthermore, we set (in mild abuse of notation)

Cu1(v1, v2) := {u = u1} ∩ {v1 ≤ v ≤ v2}, (2.2.40)

Cu1(r1, r2) := {u = u1} ∩ {r1 ≤ r ≤ r2} (2.2.41)

and analogously for Σ and C. We will also make use of the following notation. For any
r̃ ∈ (r−, r+) we set

vr̃(u) := 2r∗(r̃)− u,

ur̃(v) := 2r∗(r̃)− v

and for hypersurfaces with constant u, v, r we denote nCu , nCv , nΣr as their normals.5

Red-shift vector field.

Proposition 2.2.3. There exist a rred ∈ (r−, r+), a constant b(M,Q, l, α) > 0, a nowhere
vanishing smooth function f associated to the twisted energy momentum tensor and a
future directed timelike vector field N such that

0 ≤ J̃Nµ [φ]nµCv
≤ bK̃N [φ] (2.2.42)

for Rred := {rred ≤ r ≤ r+} ∩ {v ≥ 1} and any smooth solution φ to (2.1.1).

Proof. This is proven in Section 2.6.2.

We will now prove the main estimate which we will use in the red-shift region in the
interior.

Proposition 2.2.4. Let φ be a smooth solution to (2.1.1) and let r0 ∈ [rred, r+). Then,
for any 1 ≤ v1 ≤ v2 we obtain∫
Cv2 (r0,r+)

J̃Nµ [φ]nµCv
dvolCv +

∫
Σr0 (v1,v2)

J̃Nµ [φ]nµΣrdvolΣr +

∫ v2

v1

∫
Cv(r0,r+)

J̃Nµ [φ]nµCv
dvolCvdv

.
∫
Cv1 (r0,r+)

J̃Nµ [φ]nµCv
dvolCv +

∫
H(v1,v2)

J̃Nµ [φ]nµH+dvolH+ .

(2.2.43)
5For null hypersurfaces there does not exist a unit norm normal vector, however, for a fixed volume

form, there exists a canonical normal vector which we will choose here. Our choice of volume forms and
the corresponding normals can be found in Section 2.6.1.
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Proof. We apply the energy identity (spacetime integral of (2.2.37)) in the regionR(v1, v2) :=

{r0 ≤ r ≤ r+} ∩ {v1 ≤ v ≤ v2} to obtain∫
Cv2 (r0,r+)

J̃Nµ [φ]nµCv
dvolCv +

∫
Σr0 (v1,v2)

J̃Nµ [φ]nµΣrdvolΣr +

∫
R(v1,v2)

K̃N [φ]dvol

=

∫
Cv1 (r0,r+)

J̃Nµ [φ]nµCv
dvolCv +

∫
H(v1,v2)

J̃Nµ [φ]nµH+dvolH+ . (2.2.44)

Finally, the claim follows from Proposition 2.2.3.

No-shift vector field. In this region we propagate estimates towards i+ from the
red-shift region to the blue-shift region using a T = ∂t invariant vector field X and a t-
independent twisting function f . Take rred fixed from Proposition 2.2.3 and let rblue > r−

be close to r−. We will use the no-shift vector field in two different parts of the chapter:
First, we will use it in the proof of Proposition 2.6.2 in the appendix in order to prove
well-definedness of the Fourier projections. In this case we will choose rblue in principle
arbitrarily close to r−. The estimate degenerates as we take rblue → r−, however for the
purpose of Proposition 2.6.2 such an estimate is sufficient. Our second application of the
no-shift vector field is to propagate decay of the low-frequency part ψ[ in the interior (see
already Section 2.4.2). Here, we will take rblue = rblue(M,Q, l) only depending on the
black hole parameters as determined in Proposition 2.4.12.

In either case, we will choose

X = Xns := ∂u + ∂v (2.2.45)

as our vector field. (Indeed, any future directed and T invariant vector field would work.)
We define our twisting function as

fns(r) = eβnsr (2.2.46)

for some βns = βns(rblue) > 0 large enough such that

V = −�gfns

fns
− α

l2
= Ω2β2

ns + βns∂r(Ω
2) +

2βns

r
Ω2 − α

l2
& 1 (2.2.47)

uniformly in [rblue, rred]. In particular, since r ∈ [rblue, rred] is bounded away from r+, r−,
we have

J̃Xµ [φ]nµΣr & |∇̃uφ|
2 + |∇̃vφ|2 + | /∇φ|2 + |φ|2 (2.2.48)
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for a smooth function φ. Our main estimate in the no-shift region is

Proposition 2.2.5. Let φ be a smooth solution to (2.1.1) and r0 ∈ [rblue, rred]. Then for
any v∗ ≥ 1 we have∫

Σr0 (v∗,2v∗)
J̃Xµ [φ]nµΣrdvolΣr .

∫
Σrred

(vrred
(ur0 (v∗)),2v∗)

J̃Xµ [φ]nµΣrdvolΣr , (2.2.49)

where we remark that v∗ − vrred
(ur0(v∗))) = const.

Proof. We apply the energy identity (spacetime integral of (2.2.37)) with X = ∂u + ∂v

(cf. (2.2.45)) and fns as in (2.2.46) in the region {r0 ≤ r ≤ rred} ∩ {u < urblue
(v∗)} ∩ {v ≤

2v∗}. The choice of fns guarantees the twisted dominated energy condition for the twisted
energy-momentum tensor. Together with the coarea formula as well as the facts that
[r∗(r0), r∗(rred)] is compact and X is T invariant, we conclude∫

Σr0 (v∗,2v∗)
J̃Xµ [φ]nµΣrdvolΣr ≤B1

∫
r0≤r̄≤rred

∫
Σr̄(vr̄(ur0 (v∗)),2v∗)

J̃Xµ [φ]nµΣr̄dvolΣr̄dr̄

+

∫
Σrred

(vrred
(ur0 (v∗)),2v∗)

J̃Xµ [φ]nµΣrred
dvolrred

(2.2.50)

for a constant B1 = B1(M,Q, l, α,Σ0, rred, rblue). Similarly, after setting

E(ṽ, r̃) :=

∫
Σr̃(ṽ,2v∗)

J̃Xµ [φ]nµΣrdvolΣr (2.2.51)

for r̃ ∈ [r0, rred], we also have

E(vr̃(ur0(v∗)), r̃) ≤ B̃1

∫
r̃≤r̄≤rred

E(vr̄(ur0(v∗)), r̄)dr̄ + E(vrred
(ur0(v∗)), rred) (2.2.52)

for a constant B̃1 = B̃1(M,Q, l, α,Σ0). An application of Grönwall’s inequality yields

E(vr̃(ur0(v∗)), r̃) . E(vrred
(ur0(v∗)), rred) (2.2.53)

which implies the result.

We will use an additional vector field in the interior in the blue-shift region (r−, rblue].
We will however only define it later in the chapter in Section 2.4.2.3 when we actually use
it to propagate estimates for the low-frequency part ψ[ all the way to the Cauchy horizon.

Notation. In the main part of the chapter we will makes use of the Fourier transform
and convolution associated to the coordinate t in (t, r, θ, ϕ) coordinates as in (2.2.4). We
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denote FT as the Fourier transform (and F−1
T as its inverse) defined as

FT [f ](ω, r, θ, ϕ) :=
1√
2π

∫
R
e−iωtf(t, r, θ, ϕ)dt (2.2.54)

in the coordinates (t, r, ϕ, θ) of RA,RB and B, respectively. Here, we assume that t 7→
f(t, r, θ, ϕ) is (at least) a tempered distribution and (2.2.54), in general, is to be understood
in the distributional sense. Moreover, the convolution ∗ associated to the coordinate t is
defined as

(f ∗ g)(t, r, θ, ϕ) :=

∫
R
f(t− s, r, θ, ϕ)g(s, r, θ, ϕ)ds, (2.2.55)

where we again assume that t 7→ f(t, r, θ, ϕ) is a tempered distribution and t 7→ g(t, r, θ, ϕ)

is a Schwartz function. Here, (2.2.55), in general, is to be understood in the distributional
sense.

2.3 Main theorem and frequency decomposition

Now, we are in the position to state our main result

Theorem 2.3. Let the Reissner–Nordström–AdS parameters (M,Q, l) and the Klein–
Gordon mass α < 9

4 be as in (2.2.3). Let ψ ∈ C∞(MRNAdS \ CH) be a solution to
(2.1.1) arising from smooth and compactly supported initial data (ψ, T ψ) �Σ0= (ψ0, ψ1) ∈
C∞c (Σ0) × C∞c (Σ0) on Σ0 with Dirichlet (reflecting) boundary conditions imposed at IA
and IB (cf. Theorem 2.1). Then, ψ is uniformly bounded in the interior region B
satisfying

sup
B
|ψ| . D[ψ]

1
2 , (2.3.1)

where D[ψ] is defined as

D[ψ] := E1[ψ](0) +

3∑
i,j=1

E1[WiWjψ](0). (2.3.2)

Moreover, ψ extends continuously to the Cauchy horizon, i.e. ψ ∈ C0(MRNAdS).

Remark 2.3.1. The data term D[ψ] in (2.3.2) can be controlled by the initial data (ψ0, ψ1)
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such that (2.3.1) can be written in terms of initial data as

sup
B
|ψ| ≤ C(M,Q, l, α,Σ0)

(
‖ψ0‖H1,0

RNAdS(Σ0)
+ ‖ψ1‖H0,−2

RNAdS(Σ0)

+
3∑

i,j=1

‖WiWjψ0‖H1,0
RNAdS(Σ0)

+
3∑

i,j=1

‖WiWjψ1‖H0,−2
RNAdS(Σ0)

)
(2.3.3)

for a constant C(M,Q, l, α,Σ0) only depending on the parametersM,Q, l, α and the choice
of initial hypersurface Σ0.

Remark 2.3.2. Theorem 2.3 can be extended to a more general class of initial data using
standard density arguments. In the context of uniform boundedness and continuity at the
Cauchy horizon, it is enough to consider smooth and localized initial data. Nevertheless,
note that for more general initial data in appropriate Sobolev spaces, already well-posedness
becomes more delicate [73].

Proof of Theorem 2.3. We split up the proof in four steps, where Step 3 and Step 4 are
the main parts relying on Section 2.4 and Section 2.5.

Step 1: Decomposition into low and high frequencies. Let

ψ ∈ C∞(MRNAdS \ CH) (2.3.4)

be as in the assumption of Theorem 2.3. Now, in RA, RB and in B, define the low
frequency part ψ[ and the high frequency part ψ] as

ψ[ :=
1√
2π
F−1
T [χω0 ] ∗ ψ and ψ] := ψ − ψ[, (2.3.5)

where

χω0 ∈ C∞c (R) such that χω0(ω) = 0 for |ω| ≥ ω0 and χω0(ω) = 1 for |ω| ≤ 1

2
ω0. (2.3.6)

From Proposition 2.6.3 in the appendix we know that the low and high frequency parts ψ[
and ψ] in (2.3.5) are well-defined and ψ[ and ψ] extend to smooth solutions of (2.1.1) on
MRNAdS \ CH. The cut-off frequency ω0 = ω0(M,Q, l, α) > 0 will be chosen in the proof
of Proposition 2.4.4 only depending on M,Q, l, α. For convenience we can also assume
that χω0 is a symmetric function which implies that ψ[ and ψ] will be real-valued as long
as ψ was real valued. This concludes Step 1.
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Having decomposed the solution in low and high frequency parts ψ[ and ψ], we shall
now see how the initial data D[ψ[] and D[ψ]], respectively, can be bounded by the initial
data D[ψ] of ψ.

Step 2: Estimating the initial data of the decomposed solution. This step is
the content of the following proposition.

Proposition 2.3.1. Let ψ be as in (2.3.4) and ψ[, ψ] be as in (2.3.5) and recall the
definition of D[·] from (2.3.2). Then,

D[ψ[] . D[ψ] and D[ψ]] . D[ψ]. (2.3.7)

Proof. Since ψ = ψ[+ψ], it suffices to obtain a bound of the typeD[ψ[] . D[ψ], where D[·]
is defined in (2.3.2). Because of the Dirichlet conditions imposed at infinity, the energy
fluxes through IA and IB vanish (see (2.2.21)), and we estimate

D[ψ[] . D̃[ψ[],

where D̃[ψ[] is a higher order energy on the hypersurface

Σ̃0 := (RA ∩ {tRA = 0}) ∪ B− ∪ (RB ∩ {tRB = 0})

to be made precise in the following. Note also that the normal vector field on RA ∩ Σ̃0 is
nΣ̃0

= r√
∆
∂t.

More precisely, due to the support properties of the initial data, there exists a relatively
compact 3-dimensional spherically symmetric submanifold6 K ⊂ Σ̃0 with B− ⊂ K and
such that

D[ψ[] . D̃[ψ[] := ‖ψ[‖2H1(K) + ‖nΣ̃0
ψ[‖2L2(K) +

3∑
i,j=1

‖WiWjψ[‖2H1(K)

+

3∑
i,j=1

‖WiWjnΣ̃0
ψ[‖2L2(K) +

∫
Σ̃0∩RA\K

e1[ψ[] +

3∑
i,j=1

e1[WiWjψ[]

 r2 sin θdrdθdϕ

+

∫
Σ̃0∩RB\K

e1[ψ[] +

3∑
i,j=1

e1[WiWjψ[]

 r2 sin θdrdθdϕ. (2.3.8)

Estimate (2.3.8) follows from general theory [27], that is a (higher order) energy estimate

6We introduce K just for a technical reason: The energy density e1[·] defined on Σ̃0 ∩RA degenerates
at the bifurcation sphere B−.
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followed by an application of Grönwall’s lemma. In order to estimate the energy on the
compact hypersurface K we decompose K in K∩RA and K∩RB and estimate the energy
on each of those slices independently. Again, in view of the fact that RA and RB can be
treated analogously, we only show the estimate in RA. Note that all the terms of

‖ψ[‖2H1(K∩RA) + ‖nΣ̃0
ψ[‖2L2(K∩RA) +

3∑
i,j=1

‖WiWjψ[‖2H1(K∩RA)

+

3∑
i,j=1

‖WiWjnΣ̃0
ψ[‖2L2(K∩RA) +

∫
Σ̃0∩RA

e1[ψ[] +

3∑
i,j=1

e1[WiWjψ[]

 r2 sin θdrdθdϕ

are of the form ∫
{t=0}∩RA

f |∂kψ[|2 sin θdrdθdϕ

for appropriate T invariant weight functions f ≥ 0 and T invariant coordinate derivatives
∂ ∈ {∂t, ∂r, ∂θ, ∂ϕ} of order k = 0, 1, 2, 3. Using that

ψ[ =
1√
2π
F−1
T [χω0 ] ∗ ψ,

where F−1
T [χω0 ] =: η is a fixed Schwartz function, we conclude—again since T is Killing—

that∫
{t=0}∩RA

f(r)|∂kψ[|2(0, r, ϕ, θ)drdσS2 =

∫
{r≥r+}×S2

f(r)|η ∗ ∂kψ|2(0, r, ϕ, θ)drdσS2

=

∫
{r≥r+}×S2

f(r)

∣∣∣∣∫
R
η(−s)∂kψ(s, r, ϕ, θ)ds

∣∣∣∣2 drdσS2

≤
∫

R
|η(s)|ds

∫
R
|η(−s)|

∫
{r≥r+}×S2

f(r)|∂kψ(s, r, ϕ, θ)|2drdσS2ds

. sup
s∈R

∫
R
f(r)|∂kψ(s, r, ϕ, θ)|2dσS2

.
∫
{t=0}∩RA

f(r)|∂kψ|2(0, r, ϕ, θ)drdσS2 . D̃[ψ],

where we have used boundedness of higher order energies in the exterior which are proved
in [72] and restated in Theorem 2.2. Also note that we can interchange the derivatives
with the convolution since T is a Killing vector field. Thus, we conclude that D̃[ψ[] . D̃[ψ]

and again by Cauchy stability and the vanishing of the energy flux at I (see (2.2.21)),
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we can bound D̃[ψ] . D[ψ] which finally shows D[ψ[] . D[ψ]. Hence, D[ψ]] . D[ψ] also
holds true.

The previous analysis in Step 1 and Step 2 allows us to treat the low and high frequency
parts ψ[ and ψ] completely independently.

Step 3: Uniform boundedness for ψ[ and ψ]. This step is at the heart of the
chapter and will be proved in Section 2.4 and Section 2.5. According to Proposition 2.4.13
and Proposition 2.5.1,

sup
B
|ψ[|2 . D[ψ[] (2.3.9)

and

sup
B
|ψ]|2 . D[ψ]]. (2.3.10)

Thus, in view of Step 2, we conclude

sup
B
|ψ|2 . sup

B
|ψ[|2 + sup

B
|ψ]|2 . D[ψ[] +D[ψ]] . D[ψ] (2.3.11)

which shows (2.3.1).

Step 4: Continuous extendibility beyond the Cauchy horizon. Again, this is
proved Section 2.4 and Section 2.5. In particular, in Proposition 2.4.14 and Proposi-
tion 2.5.2 it is proved that ψ[ and ψ], respectively, are continuously extendible beyond
the Cauchy horizon. Thus, ψ = ψ[ +ψ] can be continuously extended beyond the Cauchy
horizon which concludes the proof.

2.4 Low frequency part ψ[

We will begin this section by showing that ψ[ decays superpolynomially in the exterior
regions RA and RB (Section 2.4.1). This strong decay in the exterior regions then leads
to uniform boundedness of ψ[ in the interior B and continuous extendibility of ψ[ beyond
the Cauchy horizon. This will be shown in Section 2.4.2. In the following, it suffices to
only consider RA because the region RB can be treated completely analogously.
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2.4.1 Exterior estimates

We will now consider ψ[ in the exterior region RA and show an integrated energy decay
estimate which will eventually lead to the superpolynomial decay for ψ[. First, however,
we review the separation of variables for solutions to (2.1.1).

Definition 2.4.1. Let φ ∈ CH2
RNAdS be a solution to (2.1.1) satisfying

∑
0≤i,j≤2

∫
R
|∂it∂jr〈φ, Y`m〉S2(r, t)|dt <∞ (2.4.1)

for r ∈ (r−, r+), r ∈ (r+,∞) and every |m| ≤ `. In the regions B and RA, respectively,
set

u[φ](r, ω, `,m) :=
r√
2π

∫
R
e−iωt〈φ, Y`m〉L2(S2)dt, (2.4.2)

where (Y`m)|m|≤` are the standard spherical harmonics.

Proposition 2.4.1. Let ψ be as in (2.3.4) and ψ[, ψ] be as in (2.3.5). Then, u[ψ](r, ω, `,m),
u[ψ[](r, ω, `,m) and u[ψ]](r, ω, `,m) as in Definition 2.4.1 are well-defined and smooth
functions of r, ω in RA and B.

Proof. First, note that ψ`m := 〈ψ, Y`m〉Y`m is a solution to (2.1.1), supported on the fixed
angular parameter tuple (`,m). Thus, in view of Theorem 2.2 and Proposition 2.6.4,
ψ`m(t, r, θ, ϕ) and all its derivatives decay exponentially in t in RA and in B on any
{r = const.} slice.

Proposition 2.4.2. Let φ ∈ CH2
RNAdS be a C2-solution to (2.1.1) satisfying (2.4.1). Let

u[φ] be defined as in (2.4.2). Then, u[φ] solves the radial o.d.e. (in B and RA)

−u′′ + (V` − ω2)u = 0, (2.4.3)

where ′ = d
dr∗

,

V`(r) = h

(
dh
dr

r
+
`(`+ 1)

r2
− α

l2

)
(2.4.4)

and

h =
∆

r2
= 1− 2M

r
+
r2

l2
+
Q2

r2
. (2.4.5)
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Moreover, in the exterior region RA we have limr→∞ |r
1
2u[φ]| = 0, limr→∞ |r−

1
2u[φ]′| = 0.

Finally, note that

dV`
dr

=
dh

dr

(
dh
dr

r
+
`(`+ 1)

r2
− α

l2

)
+ h

(
−

dh
dr

r2
+

d2h
dr2

r
− 2`(`+ 1)

r3

)
. (2.4.6)

Proof. The fact that u[φ] solves the radial o.d.e. is a direct computation. For the de-
cay statement as r → ∞, note that u[φ](r, ω, `,m) = u[φ`m](r, ω, `,m), where φ`m :=

〈φ, Y`m〉S2Y`m. In particular, (2.2.28) (together with Remark 2.2.2) then implies

∫ ∞
−∞

(∫ ∞
r+

r2|〈φ, Y`m〉S2 |2dr

) 1
2

dt <∞. (2.4.7)

Thus,

(∫ ∞
r+

|u[φ]|2dr

) 1
2

.

(∫ ∞
r+

(∫ ∞
−∞

r2|〈φ, Y`m〉S2 |dt
)2

dr

) 1
2

≤
∫ ∞
−∞

(∫ ∞
r+

r2|〈φ, Y`m〉S2 |2dr

) 1
2

dt <∞. (2.4.8)

Since u[φ] solves (2.4.3), analyzing the indicial equation at the regular singularity r =∞

(see [40, Section 2.2.2]), shows that |r
1
2u[φ]| = O(r

−
√

9
4
−α

) and |r−
1
2u[φ]′| = O(r

−
√

9
4
−α

)

as r →∞ in order to satisfy (2.4.8).7

Next, we prove that the potential V` has a local maximum for large enough angular
parameter `0.

Proposition 2.4.3. There exists an ˜̀
0(M,Q, l, α) ∈ N such that for all ` ≥ ˜̀

0, the
potential V` has a local maximum r`,max > r+ and V ′` ≥ 0 for r+ ≤ r ≤ r`,max. Moreover,

r`,max → rmax := 3
2M +

√
9
4M

2 − 2Q2 as `→∞.

Proof. Note that for ` large enough, V` is non-negative in a neighborhood of r+ with
r ≥ r+. Also, V` vanishes at r = r+. Hence, it suffices to show that dV`

dr is negative
somewhere for r ≥ r+. But note that

dV`
dr

= F (r) + r−3`(`+ 1)

(
r

dh

dr
− 2h

)
= F (r) + 2r−3`(`+ 1)

(
3M

r
− 1− 2Q2

r2

)
(2.4.9)

7The integrability condition (2.4.8) corresponds to the Dirichlet boundary condition at infinity on the
level of the o.d.e.
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for some function F (r) which is independent of `. Now, first choose r > r+ large enough
only depending on M,Q such that the last term is negative. Then, choose ` large enough
such that it dominates the first term which proves that a r`,max as in the statement exists.

The limiting behavior r`,max → 3
2M +

√
9
4M

2 − 2Q2 as ` → ∞ also follows from (2.4.9).
This concludes the proof.

Now, we are in the position to prove a frequency localized integrated decay estimate
in the exterior region for the bounded frequencies |ω| ≤ 2ω0.

Proposition 2.4.4. Let u(r∗) = u(ω,m,`)(r∗) solve the radial o.d.e. (2.4.3) in the exterior
RA and assume that limr→∞ |r

1
2u| = 0 and limr→∞ |r−

1
2u′| = 0. Moreover, let |ω| ≤ 2ω0,

where ω0(M,Q, `, α) > 0 small enough will be fixed in the following proof. Then, we have∫ r=∞

R−∞∗

∆

r4

(
|u′|2 + |u|2(`(`+ 1) + r2)

)
dr∗ . −Q̃(R−∞∗ ) (2.4.10)

for all R−∞∗ small enough such that r(R−∞∗ ) < r0, where r0 = r0(M,Q, l, α) > r+ is
determined in the following proof. Here, the boundary term Q̃(R−∞∗ ) satisfies

|Q̃(R−∞∗ )| . (|ω|2|u|2 + |u′|2)(1 +O`(r − r+)) as R−∞∗ → −∞. (2.4.11)

Proof. We will first argue that it suffices to prove (2.4.10) for ` ≥ `0(M,Q, l, α) for some
fixed `0(M,Q, l, α) ∈ N0. Note that (2.4.10) for ` ≤ `0 is an easier variant of []. Indeed,
we perform the same steps in [] but instead take a = 0, ω+ = 0 and H = 0 throughout [].
This leads to [] with L replaced by `0. The estimate on the boundary term follows from
[].

We will now consider ` ≥ `0, where `0 is determined below. Let r0, r1 depending only on
M,Q, l, α be such that r+ < r0 < r1 < rmax−δ, where rmax is defined in Proposition 2.4.3.
Here, δ = δ(`0) > 0 is such that V ′ ≥ 0 for all r+ ≤ r ≤ rmax − δ, cf. Proposition 2.4.3.
We can make δ(`0) as small as we want by choosing `0 sufficiently large. Now, we choose
ω0(M,Q, l, α) > 0 small enough and `0 large enough such that

V − ω2 +
∆

4l2r2
& `(`+ 1) +

∆

r2
for r ≥ r0,

V − ω2 ≥ 0 for r0 ≤ r ≤ r1,

(2.4.12)
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and for all |ω| ≤ 2ω0, ` ≥ `0. For smooth f(r∗) and h̃(r∗), we define the currents

Qf := f
[
|u′|2 + (ω2 − V )|u|2

]
+ f ′Re(u′ū)− 1

2
f ′′|u|2, (2.4.13)

Qh̃ := h̃Re(ūu′)− 1

2
h̃′|u|2 (2.4.14)

with

Qf
′
=

dQf

dr∗
= 2f ′|u′|2 − fV ′|u|2 − 1

2
f ′′′|u|2, (2.4.15)

Qh̃
′
=

dQh̃

dr∗
= h̃

[
|u′|2 + (V − ω2)|u|2

]
− 1

2
h̃′′|u|2, (2.4.16)

where we recall that ′ denotes the derivative d
dr∗

. Thus,

Qf
′
+Qh̃

′
= |u′|2(2f ′ + h̃)+|u|2

(
−fV ′ − 1

2
f ′′′ + h̃(V − ω2)− 1

2
h̃′′
)
.

We choose a smooth f ≤ 0 such that

• f is monotonically increasing,

• f = −1/r2 in a neighborhood of r = r+,

• f ≤ −c1 for r+ ≤ r ≤ r1 and some c1(M,Q, l) > 0,

• ∆ . f ′ . ∆ for r+ ≤ r ≤ r1,

• |f ′′′| . ∆,

• f = 0 for r ≥ rmax − δ.

and a smooth h̃ ≥ 0 such that

• h̃ = 0 for r ≤ r0,

• |h̃′′| . 1 for r0 < r1,

• h̃ = 1 for r ≥ r1.

Then, we have

Qf
′
+Qh̃

′
≥


2f ′|u′|2 + |u|2(−fV ′ − 1

2f
′′′) for r+ ≤ r ≤ r0,

2f ′|u′|2 + |u|2(−fV ′ − 1
2f
′′′ − 1

2 h̃
′′) for r0 ≤ r ≤ r1,

|u′|2 + |u|2(−1
2f
′′′ + (V − ω2)) for r ≥ r1.

(2.4.17)
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Thus, choosing `0(M,Q, l, α) large enough (and ω0(M,Q, l, α) > 0 possibly smaller) and
using (2.4.17), (2.4.12), (2.4.9) and the properties of f and h̃, we have

Qf
′
+Qh̃

′
&

∆

r4

(
|u′|2 + |u|2(`(`+ 1) + r2)

)
(2.4.18)

for r+ ≤ r ≤ rmax − δ and

Qf
′
+Qh̃

′
& |u′|2 + (V − ω2)|u|2 ≥ |u′|2 − |u|2 ∆

4l2r2
+ c̃

(
`(`+ 1) +

∆

r2

)
|u|2 (2.4.19)

for r ≥ rmax − δ and some c̃(M,Q, l, α) > 0. Integrating Qf ′ + Qh̃
′
in the region r∗ ∈

(R−∞∗ , r∗(r = +∞)) and applying the following Hardy inequality (see [72, Lemma 7.1])∫ r=∞

r=rmax−δ
|u′|2dr∗ ≥

∫ r=∞

r=rmax−δ

∆

4l2r2
|u|2dr∗ (2.4.20)

to control the negative signed term in (2.4.19), yields∫ r=+∞

R−∞∗

∆

r4

(
|u′|2χ{r≤rmax−δ} + |u|2(`(`+ 1) + r2)

)
dr∗ . −Qf (R∗(−∞)). (2.4.21)

Note that we use limr→∞ |r
1
2u| = 0 and limr→∞ |r−

1
2u′| = 0 to apply the Hardy inequality.

To obtain control of |u′|2 in the region r ≥ rmax− δ in (2.4.21) we just add a small portion
of the integral over (2.4.19). This proves∫ r=+∞

R−∞∗

∆

r4

(
|u′|2 + |u|2(`(`+ 1) + r2)

)
dr∗ . −Qf (R∗(−∞)), (2.4.22)

where |Qf (R−∞∗ )| . (|ω|2|u|2 + |u′|2)(1 + O`(r − r+) as R−∞∗ → −∞ is satisfied by the
construction of f .

With the frequency localized integrated energy decay estimate of Proposition 2.4.4 we
will now prove a local integrated energy decay estimate in physical space. Indeed, a naive
application of Plancherel’s theorem to (2.4.10) gives a global integrated energy estimate.
However, localizing this energy decay requires some sort of cut-off which does not respect
the compact frequency support. Nevertheless, by carefully choosing a localization, we can
show that the error term decays superpolynomially in time. At this point we shall remark
that we do expect ψ[ to decay exponentially. However, for our problem, superpolynomial
decay in the exterior is (more than) sufficient.
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Proposition 2.4.5. Let ψ[ be as in (2.3.5). Then, for any q > 1, τ1 ≥ 0 and in view of
(2.2.23), we have the integrated energy decay estimate∫

RA∩{t∗≥2τ1}

[
r−2|∂t∗ψ[|2 + r−2|∂r∗ψ[|2 + | /∇ψ[|2 + |ψ[|2

]
r2dt∗dr sin θdθdϕ

.
∫

Στ1∩RA
JTµ [ψ[]n

µ +
C(q)

1 + τ q1

∫
Σ0

JTµ [ψ[]n
µ
Σ0

dvolΣ0 , (2.4.23)

where C(q) > 0 is a constant only depending on q. Moreover, for any τ2 ≥ 2τ1, this
directly implies∫

Στ2∩RA
JTµ [ψ[]n

µ
Στ2

dvolΣτ2

+

∫
RA∩{t∗≥2τ1}

[
r−2|∂t∗ψ[|2 + r−2|∂r∗ψ[|2 + | /∇ψ[|2 + |ψ[|2

]
r2dt∗dr sin θdθdϕ

.
∫

Στ1∩RA
JTµ [ψ[]n

µ +
C(q)

1 + τ q1

∫
Σ0∩RA

JTµ [ψ[]n
µ
Σ0

dvolΣ0 (2.4.24)

for the T -energy.

Proof. In order to show (2.4.23) we will first construct an auxiliary solution Ψ of (2.1.1).
We set initial data for Ψ on Στ1 as (Ψ0,Ψ1) := (ψ[, T ψ[) �Στ1∩RA . Then, we will define
data Ψ2 on H+

A ∩ {t∗ ≤ τ1} such that the data can be extended to a Ck function in a
neighborhood of H+

A ∩ {t∗ = τ1} for some finite regularity k. Choosing the regularity k
large enough will guarantee well-posedness. More precisely, in local coordinates (t∗, r, θ, ϕ)

and for r = r+, we define

Ψ2(t∗, r+, ϕ, θ) :=
k∑
j=1

λjψ[ �{t∗≥τ1} (−j(t∗ − τ1) + τ1, r+, ϕ, θ) (2.4.25)

for t∗ ≤ τ1 and some uniquely determined (λj)1≤j≤k such that

R× S2 3 (t∗, ϕ, θ) 7→

Ψ2(t∗, r+, ϕ, θ) for t∗ ≤ τ1

ψ[(t
∗, r+, ϕ, θ) for t∗ > τ1

(2.4.26)

is Ck. Indeed, the function is smooth everywhere except at t∗ = τ1. Now, we consider the
mixed boundary value-Cauchy-characteristic problem, where we impose data as follows.
On the null hypersurface H+

A ∩ {t∗ ≤ τ1} we impose Ψ2. This null cone intersects the
spacelike hypersurface Στ1 on which we have prescribed (Ψ0,Ψ1) as data. As before, we
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i+

B−
IA

Στ1

Ψ = ψ[

Ψ 2
=

R
efl

(ψ
[
)

H−A

(Ψ0,Ψ1) = (ψ[, T ψ[) �Στ1

ψ [

Στ1

i−

Figure 2.4: In the darker shaded region J+(Στ1) ∩ RA we have that Ψ = ψ[ and in the
lighter shaded region we can estimate the energy of Ψ in terms of ψ[. This holds true as
Ψ2 is the Ck reflection of ψ[ from H+

A ∩ {t∗ ≥ τ1} to H+
A ∩ {t∗ < τ1}.

assume the Dirichlet condition on IA. For fixed k > 0 large enough, this is a well-posed
problem and can be solved backwards and forwards in RA [111, Theorem 2]. We will call
the arising solution Ψ and by uniqueness note that Ψ = ψ[ on (RA ∪ H+

A) ∩ J+(Στ1).
Indeed, analogously to ψ[, we have Ψ ∈ CH2

RNAdS and by choosing k large enough, we
can make Ψ arbitrarily regular, in particular C2. Moreover, Ψ decays logarithmically and
〈Ψ, Y`m〉Y`m decays exponentially towards i+ and i− on a {r = const.} hypersurface.8

Refer to Fig. 2.4 for a visualization of the Cauchy-characteristic problem with Dirichlet
boundary conditions.

Analogously to ψ = ψ[ + ψ], we decompose the new solution Ψ in low and high
frequencies Ψ = Ψ[ + Ψ]: We define

Ψ[ :=
1√
2π
F−1
T [χ2ω0 ] ∗Ψ, and Ψ] := Ψ−Ψ[, (2.4.27)

where χ2ω0 is a smooth cutoff function such that χ2ω0 = 1 for |ω| ≤ ω0 and χ2ω0 = 0 for
|ω| ≥ 2ω0. Now, note that from the T -energy identity (2.2.21) we have∫

H+
A(τ1,∞)

JTµ [ψ[]n
µ
HdvolH =

∫
Στ1∩RA

JTµ [ψ[]n
µ
Στ1

dvolΣτ1 (2.4.28)

as the flux through IA vanishes in view of the Dirichlet boundary condition at IA. Here,
we use the notation H+

A(a, b) := H+
A ∩{a < t∗ < b}. Moreover, from the T energy identity,

8We will use this statement only in a qualitative way such that u[Ψ[] is well-defined in (2.4.31) and
satisfies (2.4.10).
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we have∫
H−A

JTµ [Ψ]nµHdvolH =

∫
Στ1∩RA

JTµ [ψ[]n
µ
Στ1

dvolΣτ1 +

∫
H+
A(−∞,τ1)

JTµ [Ψ]nµHdvolH

.
∫

Στ1∩RA
JTµ [ψ[]n

µ
Στ1

dvolΣτ1 +

∫
H+
A(τ1,∞)

JTµ [ψ[]n
µ
HdvolH

.
∫

Στ1∩RA
JTµ [ψ[]n

µ
Στ1

dvolΣτ1 . (2.4.29)

We have used the estimate∫
H+
A(−∞,τ1)

JTµ [Ψ]nµHdvolH .
∫
H+
A(τ1,∞)

JTµ [ψ[]n
µ
HdvolH

which follows from our construction of the initial data. Thus,∫
H−A

JTµ [Ψ]nµHdvolH +

∫
H+
A

JTµ [Ψ]nµHdvolH .
∫

Στ1∩RA
JTµ [Ψ]nµΣτ1

dvolΣτ1 . (2.4.30)

Now, note that u[Ψ[] defined as

u[Ψ[](r, ω, `,m) =
r√
2π

∫
R
e−iωt〈Ψ[, Y`m〉L2(S2)dt (2.4.31)

satisfies the assumptions of Proposition 2.4.4 such that (2.4.10) holds true for u[Ψ[]. We
now integrate the frequency localized energy estimate (2.4.10) associated to u[Ψ[] in ω

and sum over all spherical harmonics. There are two main terms appearing and we will
estimate them in the following. This step is similar to [] so we will be rather brief. An
application of Plancherel’s theorem for the integrated left hand side of (2.4.10) yields∫
RA

[
|∂tΨ[|2 + |∂r∗Ψ[|2 + r2| /∇Ψ[|2 + r2|Ψ[|2

]
dt∗dr sin θdθdϕ

. lim
R−∞∗ →−∞

∑
m`

∫
R

dω

∫ r=∞

R−∞∗

dr∗
∆

r4

[
ω2|u[Ψ[]|2 + |u[Ψ[]

′|2 + `(`+ 1)|u[Ψ[]|2 + r2|u[Ψ[]|2
]
.

(2.4.32)

To estimate the boundary term on the right hand side of (2.4.10), we first decompose u[Ψ[]

as u[Ψ[] = a(ω,m, `)u1 + b(ω,m, `)u2, where u1, u2 are defined as the unique solutions to
the radial o.d.e. (2.4.3) in the exterior satisfying u1 = eiωr∗+O`(r−r+) and u2 = e−iωr∗+

O`(r − r+) as r → r+ (r∗ → −∞). Here, a = a(ω, `,m) and b = b(ω, `,m) are the unique
coefficients of the decomposition. Then, in view of (2.4.11) and u′1 = iωu1 + O`(r − r+),
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u′2 = −iωu2 +O`(r − r+), we estimate

|Q̃| .
(
|ω|2|a(ω)|2|u1|2 + |ω|2|b(ω)|2|u2|2

)
(1 +O`(r − r+))

=
(
|ω|2|a(ω)|2 + |ω|2|b(ω)|2

)
(1 +O`(r − r+)) (2.4.33)

as r → r+. Now, using that ωa(ω), ωb(ω) are in L1
ω(R) and in L2

ω(R) (note that they have
compact support), an application of the Riemann–Lebesgue Lemma, the Fourier inversion
theorem and Plancherel’s theorem shows that

∑
m`

∫
R |ω|

2(|a(ω, `,m)|2+|b(ω, `,m)|2)dω .∫
H+
A
|TΨ[|2 +

∫
H−A
|TΨ[|2 ≤ 2

∫
H+
A
|TΨ[|2, where the last inequality follows from the T

energy identity
∫
H+
A
|TΨ[|2 =

∫
H−A
|TΨ[|2 in the region RA. Thus, we conclude the global

integrated energy decay statement∫
RA

[
1

r2
|∂tΨ[|2 +

1

r2
|∂r∗Ψ[|2 + | /∇Ψ[|2 + |Ψ[|2

]
dvol .

∫
H+
A

|TΨ[|2. (2.4.34)

Hence, in view of ψ[ = Ψ in {t∗ ≥ τ1} ∩ RA we have∫
RA∩{t∗≥2τ1}

[
1

r2
|∂tψ[|2 +

1

r2
|∂r∗ψ[|2 + | /∇ψ[|2 + |ψ[|2

]
dvol

=

∫
RA∩{t∗≥2τ1}

[
1

r2
|∂tΨ|2 +

1

r2
|∂r∗Ψ|2 + | /∇Ψ|2 + |Ψ|2

]
dvol

.
∫
RA∩{t∗≥2τ1}

[
1

r2
|∂tΨ[|2 +

1

r2
|∂r∗Ψ[|2 + | /∇Ψ[|2 + |Ψ[|2

]
dvol

+

∫
RA∩{t∗≥2τ1}

[
1

r2
|∂tΨ]|2 +

1

r2
|∂r∗Ψ]|2 + | /∇Ψ]|2 + |Ψ]|2

]
dvol

.
∫
H+
A

|TΨ[|2 +

∫
t∗≥2τ1

∫
Σt∗∩RA

JTµ [Ψ]]n
µ
Σt∗

dvolΣt∗dt
∗

.
∫
H+
A

|TΨ|2 +

∫
t∗≥2τ1

∫
Σt∗∩RA

JTµ [Ψ]]n
µ
Σt∗

dvolΣt∗dt
∗

.
∫

Στ1∩RA
JTµ [Ψ]nµΣτ1

dvolΣτ1 +

∫
t∗≥2τ1

∫
Σt∗∩RA

JTµ [Ψ]]n
µ
Σt∗

dvolΣt∗dt
∗

=

∫
Στ1∩RA

JTµ [ψ[]n
µ
Στ1

dvolΣτ1 +

∫
t∗≥2τ1

∫
Σt∗∩RA

JTµ [Ψ]]n
µ
Σt∗

dvolΣt∗dt
∗. (2.4.35)

Here, we have also used (2.4.34), (2.2.23) and the fact that
∫
H+
A
|TΨ[|2 .

∫
H+
A
|TΨ|2.

Moreover, the estimate
∫
H+
A
|TΨ|2 .

∫
Στ1∩RA

JTµ [Ψ]nµΣτ1
dvolΣτ1 follows from (2.4.30).

Finally, we are left with the term
∫
t∗≥2τ1

∫
Σt∗∩RA

JTµ [Ψ]]n
µ
Σt∗

dvolΣt∗dt
∗. We will show

that this term decays at a superpolynomial rate. First, introduce χ] := 1 − χ2ω0 and
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set ˇχ2ω0 := F−1
T (χ2ω0), χ̌] := F−1

T (χ]), which are well-defined in the distributional sense.
Then,

Ψ] =
1√
2π
χ̌] ∗Ψ =

1√
2π
χ̌] ∗ (Ψ− ψ[) (2.4.36)

since χ̌] ∗ ψ[ = 0 in view of their disjoint Fourier support. In particular, for t∗ ≥ τ1 we
have

Ψ] =
1√
2π
χ̌] ∗ (Ψ− ψ[) =

1√
2π

(
√

2πδ − ˇχ2ω0) ∗ (Ψ− ψ[) = − 1√
2π

ˇχ2ω0 ∗ (Ψ− ψ[)

(2.4.37)

as δ ∗ (Ψ − ψ[) = Ψ − ψ[ = 0 for t∗ ≥ τ1. To make notation easier we define φ :=

− 1√
2π

(Ψ− ψ[) which is only supported for t∗ ≤ τ1 and satisfies Ψ] = ˇχ2ω0 ∗ φ. Now, as a
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result of the T invariance of dvolΣt∗ and JTµ [·]nµΣt∗ , as well as (2.2.23), we have that∫
t∗≥2τ1

∫
Σt∗∩RA

JTµ [Ψ]]n
µ
Σt∗

dvolΣt∗dt
∗

.
∫
t∗≥2τ1

∫
(r+,∞)×S2

(
1

r2
|∂t∗Ψ]|2 +

∆

r2
|∂rΨ]|2 + | /∇Ψ]|2

)
r2dσS2drdt∗

≤
∫
t∗≥2τ1

∫
(r+,∞)×S2

[
r−2

∣∣∣∣∣
∫ t(τ1,r)

−∞
ˇχ2ω0(t(t∗, r)− s)(∂t∗φ)(s)ds

∣∣∣∣∣
2

+
∆

r2

∣∣∣∣∣
∫ t(τ1,r)

−∞
ˇχ2ω0(t(t∗, r)− s)(∂rφ)(s)ds

∣∣∣∣∣
2

+

∣∣∣∣∣
∫ t(τ1,r)

−∞
| ˇχ2ω0(t(t∗, r)− s)|| /∇φ|(s)ds

∣∣∣∣∣
2 ]
r2dσS2drdt∗

≤
∫ ∞
−∞
| ˇχ2ω0(s)|ds

∫
t∗≥2τ1

∫
(r+,∞)×S2

[∫ τ1

−∞
| ˇχ2ω0(t∗ − s∗)|r−2|∂t∗φ|2(s∗)ds∗

+

∫ τ1

−∞
| ˇχ2ω0(t∗ − s∗)|∆

r2
|∂rφ|2(s∗)ds∗ +

∫ τ1

−∞
| ˇχ2ω0(t∗ − s∗)|| /∇φ|2(s∗)ds∗

]
r2dσS2drdt∗

.
∫
t∗≥2τ1

∫ τ1

−∞
| ˇχ2ω0(t∗ − s∗)|

×

(∫
(r+,∞)×S2

[
r−2|∂t∗φ|2(s∗) +

∆

r2
|∂rφ|2(s∗) + | /∇φ|2(s∗)

]
r2dσS2dr

)
ds∗dt∗

.
∫

Σ0∩RA
JTµ [φ]nµΣ0

dvolΣ0

∫
t∗≥2τ1

∫ τ1

−∞
| ˇχ2ω0(t∗ − s∗)|ds∗dt∗

.q

∫
Σ0∩RA

JTµ [ψ[]n
µ
Σ0

dvolΣ0

∫
t∗≥2τ1

∫ τ1

−∞

1

|t∗ − s∗|q+2
ds∗dt∗

.q

∫
Σ0∩RA J

T
µ [ψ[]n

µ
Σ0

dvolΣ0

1 + τ q1
.

Here, we have used the boundedness of the T -energy (cf. (2.2.22)), i.e.∫
Σt∗∩RA

JTµ [φ]nµΣt∗dvolΣt∗ ≤
∫

Σ0∩RA
JTµ [φ]nµΣ0

dvolΣ0 .
∫

Σ0∩RA
JTµ [ψ[]n

µ
Σ0

dvolΣ0 .

(2.4.38)

Finally, we have also used that the Schwartz function ˇχ2ω0 decays superpolynomially at
any power q > 1. This concludes the proof in view of (2.4.35).

In order to remove the degeneracy of the T -energy at the event horizon, we will use
the by now standard red-shift vector field [27]. As usual, the red-shift vector field N is a
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future-directed T invariant timelike vector field which has a positive bulk term KN ≥ 0

near the event horizon. In a compact r region bounded away from the event horizon H+
A,

the bulk termKN of N is sign-indefinite but this will be absorbed in the spacetime integral
of the T current in Proposition 2.4.5. Also, note that N = T for large enough r. In the
negative mass AdS setting, we refer to [72, Section 4.2] for an explicit construction of the
red-shift vector field N . Note that the red-shift vector field N has the property that∫

Σt∗∩RA
JNµ [ψ[]n

µ
Σt∗

dvolΣt∗ ∼
∫

Σt∗∩RA
e1[ψ[]r

2dr sin θdθdϕ (2.4.39)

for ψ[ as in (2.3.5).

Proposition 2.4.6. Let ψ[ be as in (2.3.5). Then for any τ2 ≥ 2τ1 ≥ 0, we have∫
Στ2∩RA

JNµ [ψ[]n
µ
Στ2

dvolΣτ2 +

∫
H+
A∩{2τ1≤t∗≤τ2}

(
|∂t∗ψ[|2 + | /∇ψ[|2 + |ψ[|2

)
dt∗dσS2

+

∫ τ2

2τ1

∫
Σt∗∩RA

JNµ [ψ[]n
µ
Σt∗

dvolΣt∗dt
∗ .q

∫
Στ1∩RA

JNµ [ψ[]n
µ +

∫
Σ0∩RA J

T
µ [ψ[]n

µ
Σ0

dvolΣ0

1 + τ q1

(2.4.40)

and in particular,∫
Στ2∩RA

JNµ [ψ[]n
µ
Στ2

dvolΣτ2 +

∫ τ2

2τ1

∫
Σt∗∩RA

JNµ [ψ[]n
µ
Σt∗

dvolΣt∗dt
∗

.q

∫
Στ1∩RA

JNµ [ψ[]n
µ +

∫
Σ0∩RA J

N
µ [ψ[]n

µ
Σ0

dvolΣ0

1 + τ q1

.
∫

Στ1∩RA
JNµ [ψ[]n

µ +
EA1 [ψ[](0)

1 + τ q1
. (2.4.41)

Proof. We apply the energy identity (the spacetime integral of (2.2.19)) with the red-shift
vector field N for ψ[ in the region RA∩{2τ1 ≤ t∗ ≤ τ2}, where 2τ1 ≤ τ2. After taking care
of the negative lower order term via a Hardy inequality and absorbing the sign-indefinite
bulk of N away from the horizon (in the region {r ≥ r0} for some r0 > r+) in the spacetime
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integral of JT on the right hand side (see [72, Section 4] for further details), we arrive at∫
Στ2∩RA

JNµ [ψ[]n
µ
Στ2

dvolΣτ2 +

∫
H+
A∩{2τ1≤t∗≤τ2}

JNµ [ψ[]n
µ
HdvolH

+

∫ τ2

2τ1

∫
Σt∗∩RA

JNµ [ψ[]n
µ
Σt∗

dvolΣt∗dt
∗

.
∫ τ2

2τ1

∫
Σt∗∩RA∩{r≥r0}

JTµ [ψ[]n
µ
Σt∗

dvolΣt∗dt
∗ +

∫
Σ2τ1∩RA

JNµ [ψ[]n
µ
Στ1

dvolΣτ1 .

(2.4.42)

First, note that the integrated energy term∫ τ2

2τ1

∫
Σt∗∩RA∩{r≥r0}

JTµ [ψ[]n
µ
Σt∗

dvolΣt∗dt
∗

on the right-hand side of (2.4.42) can be controlled by the left-hand side of Proposi-
tion 2.4.5. Then, remark that the integral along the horizon

∫
H+
A∩{2τ1≤t∗≤τ2}

JNµ [ψ[]n
µ
HdvolH

is sign-indefinite due to the (possible) negative mass. However, this can be absorbed in
the bulk term using an ε of the integrated bulk term of the red-shift vector field N and
some of the bulk term of the integrated energy estimate in Proposition 2.4.5, cf. [72, Equa-
tion (70)]. Finally, using the integrated energy estimate from Proposition 2.4.5 again, we
conclude∫

Στ2∩RA
JNµ [ψ[]n

µ
Στ2

dvolΣτ2 +

∫
H+
A∩{2τ1≤t∗≤τ2}

(
|∂t∗ψ[|2 + | /∇ψ[|2 + |ψ[|2

)
dt∗dσS2

+

∫ τ2

2τ1

∫
Σt∗∩RA

JNµ [ψ[]n
µ
Σt∗

dvolΣt∗dt
∗ .q

∫
Στ1∩RA

JNµ [ψ[]n
µ
Στ1

+

∫
Σ0∩RA J

T
µ [ψ[]n

µ
Σ0

dvolΣ0

1 + τ q1
.

(2.4.43)

Now we obtain

Proposition 2.4.7. Let ψ[ be defined as in (2.3.5). Then, for any q > 1 and τ ≥ 0 we
have∫

Στ∩RA
JNµ [ψ[]n

µ
Στ
.q

1

1 + τ q

∫
Σ0∩RA

JNµ [ψ[]n
µ
Σ0

dvolΣ0 .q
1

1 + τ q
EA1 [ψ[](0) (2.4.44)
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and ∫
H(τ,+∞)

|∂t∗ψ[|2 + (| /∇ψ[|2 + |ψ[|2) .q
1

1 + τ q

∫
Σ0∩RA

JNµ [ψ[]n
µ
Σ0

dvolΣ0

.q
1

1 + τ q
EA1 [ψ[](0). (2.4.45)

Proof. In view of Proposition 2.4.6 it suffices to prove (2.4.44). Upon setting

f(s) :=

∫
Σs∩RA

JNµ [ψ[]n
µ
Σs

dvolΣs ,

we have from Proposition 2.4.6 that

f(t2) +

∫ t2

2t1

f(s)ds .q f(t1) +
f(0)

1 + tq1

for any t2 ≥ 2t1 ≥ 0. The claim follows now from Lemma 2.4.1 below.

Lemma 2.4.1. Let f : [0,∞)→ [0,∞) be a continuous function satisfying

f(t2) +

∫ t2

2t1

f(s)ds ≤ α(q)

(
f(t1) +

f(0)

1 + tq1

)
(2.4.46)

for any q > 1, 0 ≤ 2t1 ≤ t2 and some α(q) > 0 only depending on q. Then, for all q > 1,
there exists a constant C(α(q), q) > 0 only depending on α and q such that

f(t) ≤ C(α(q), q)

1 + tq
f(0) (2.4.47)

for all t ≥ 0.

Proof. Fix q > 1. First, note that from (2.4.46) we have for any t2 ≥ 2t1 > 0

f(t2) ≤ α(q)

(
f(t1) +

f(0)

1 + tq1

)
.

Without loss of generality, let t > 10 be arbitrary. Then, take a dyadic sequence τk+1 =

2τk, where τ0 = 1. Now, there exists a n ∈ N0 such that t ∈ [τn+3, τn+4]. Then, again
from (2.4.46) we have ∫ τn+2

τn+1

f(s)ds ≤ α(q)

(
f(τn) +

f(0)

1 + τ qn

)
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from which we conclude that there exists a ξ ∈ [τn+1, τn+2] such that

f(ξ) ≤ α(q)

(
f(τn)

τn+1
+

f(0)

1 + τ q+1
n

)
.

Hence, since 2ξ ≤ τn+3 ≤ t ≤ τn+4,

f(t) ≤ α(q)

(
f(ξ) +

f(0)

1 + τ qn+1

)
≤ α(q)

(
α(q)

(
f(τn)

τn+1
+

f(0)

1 + τ q+1
n

)
+

f(0)

1 + τ qn+1

)
.

(2.4.48)

Now, note that τn ∼ t and hence, f(t) ≤ C(1, α(q)) 1
1+t . This improved decay can now be

fed into (2.4.48) to obtain a decay of the form f(t) ≤ C(2, α(q)) 1
1+t2

. This procedure can
be iterated until one obtains

f(t) ≤ C(q, α(q))

1 + tq
f(0). (2.4.49)

2.4.2 Interior estimates

Having obtained the superpolynomial decay for ψ[ in the exterior and in particular on
the event horizon, we will now use this to show uniform boundedness in the black hole
interior. We will first propagate the superpolynomial decay on the horizon established in
Proposition 2.4.7 further into the interior. To do so we will make use of the red-shift.

2.4.2.1 Red-shift region

With the help of the constructed red-shift current in Proposition 2.2.3, we obtain

Proposition 2.4.8. Let r0 ∈ [rred, r+). Let ψ[ defined as in (2.3.5) and recall that from
Proposition 2.4.7 we have∫

H(v1,v2)
J̃Nµ [ψ[]n

µ
H+dvolH+ .q

1

1 + vq1
EA1 [ψ[](0) (2.4.50)

for 1 ≤ v1 ≤ v2. Then,∫
Cv1 (r0,r+)

J̃Nµ [ψ[]n
µ
Cv

dvolCv ∼
∫ ur0 (v1)

−∞

∫
S2

1

Ω2
|∇̃uψ[|2 + Ω2(| /∇ψ[|2 + V|ψ[|2)dσS2du

.q
1

1 + vq1
E1[ψ[](0), (2.4.51)
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∫
Σr0 (v1,v2)

J̃Nµ [ψ[]n
µ
Σr

dvolΣr ∼
∫ v2

v1

∫
S2

1√
Ω2
|∇̃uψ[|2

+
√

Ω2
(
|∇̃vψ[|2 + | /∇ψ[|2 + V|ψ[|2

)
dvdσS2 .q

E1[ψ[](0)

1 + vq1
(2.4.52)

for any 1 ≤ v1 ≤ v2.

Proof. From Proposition 2.2.4, estimate (2.4.45) in Proposition 2.4.7 and upon defining

Ẽ(v) :=

∫
Cv(r0,r+)

J̃Nµ [ψ[]n
µ
Cv

dvolCv , (2.4.53)

we obtain

Ẽ(v2) +

∫ v2

v1

Ẽ(v)dv .q Ẽ(v1) +
EA1 [ψ[](0)

1 + vq1
, (2.4.54)

for any 1 ≤ v1 ≤ v2. This implies

Ẽ(v) .q (Ẽ(v = 1) + EA1 [ψ[](0))
1

1 + vq
(2.4.55)

for any v ≥ 1. This follows from an argument very similar to Lemma 2.4.1. Note that we
have by general theory [27] that Ẽ(v = 1) . E1[ψ[](0). Thus,

Ẽ(v) .q E1[ψ[](0)
1

1 + vq
(2.4.56)

for v ≥ 1 which proves (2.4.51). The estimate (2.4.52) now follows from (2.4.51) and
Proposition 2.2.4.

2.4.2.2 No-shift region

Now, we will propagate the decay towards i+ further into the black hole for r ∈ [rred, rblue],
where rblue > r− is determined in the proof of Proposition 2.4.12.

Proposition 2.4.9. Let ψ[ defined as in (2.3.5). For any r0 ∈ [rblue, rred], q > 1 and any
v∗ ≥ 1 we have ∫

Σr0 (v∗,2v∗)
J̃Xµ [ψ[]n

µ
Σr

dvolΣr .q
E1[ψ[](0)

1 + vq∗
. (2.4.57)
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Moreover, for any 1 < p < q we also have∫
Σr0 (v∗,+∞)

(〈v〉p + 〈u〉p)J̃Xµ [ψ[]n
µ
Σr

dvolΣr .q,p E1[ψ[](0). (2.4.58)

Proof. Applying Proposition 2.2.5 with φ = ψ[ we have (2.2.49) for ψ[. To estimate
the right-hand side of (2.2.49) we use Proposition 2.4.8 and the fact that the difference
v∗ − vrred

(ur0(v∗))) = const. to obtain∫
Σrred

(vrred
(ur0 (v∗)),2v∗)

J̃Xµ [ψ[]n
µ
Σr

dvolΣr .q
E1[ψ[](0)

1 + vq∗
(2.4.59)

from which (2.4.57) follows. Finally, (2.4.58) is a consequence of the fact that 〈v〉p ∼ 〈u〉p

(using rblue ≤ r ≤ rred) and the following well-known lemma.

Lemma 2.4.2. Let f : [1,∞)→ R≥0 be continuous and assume that there exists a q ∈ R,
q > 1 such that

∫ 2x
x f(s)ds ≤ D

xq for all x ≥ 1 and some constant D > 0. Let 1 < p < q be
fixed. Then,

∫∞
1 spf(s)ds < C(q, p)D for a constant C(p, q) > 0 only depending on p and

q.

Proof. Set xi := 2i. Then,
∫∞

1 spf(s)ds =
∑∞

i=0

∫ xi+1

xi
spf(s)ds ≤ 2pD

∑∞
i=0 2ip−iq <

C(q, p)D.

Remark 2.4.1. From now on we will consider p and q as fixed and constants appearing
in ., & and ∼ can additionally depend on 1 < p < q.

By doing the analogous analysis in the neighborhood of the left component of i+ we
obtain

Proposition 2.4.10. Let ψ[ defined as in (2.3.5). Then, for any r0 ∈ [rblue, r+) we have∫
Σr0

(〈v〉p + 〈u〉p)
(
|∇̃uψ[|2 + |∇̃vψ[|2 + | /∇ψ[|2 + |ψ[|2

)
dvolΣr . E1[ψ[](0). (2.4.60)

Commuting with angular momentum operators (Wi)1≤i≤3, an application of the Sobolev
embedding H2(S2) ↪→ L∞(S2) and using the fact that p > 1, we also conclude

Proposition 2.4.11. Let ψ[ defined as in (2.3.5). Then,

sup
B∩{rblue≤r<r+}

|ψ[|2 . E1[ψ[](0) +

3∑
i,j=1

E1[WiWjψ[](0). (2.4.61)
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Finally, we will use the decay towards i+ to show uniform boundedness in the interior
and continuity all the way up to and including the Cauchy horizon for ψ[.

2.4.2.3 Blue-shift region

We will now introduce the twisting function and vector field which we will use in the
blue-shift region. Recall that we look for a twisting function f which satisfies V & 1,
where

V = −
(
�gf
f

+
α

l2

)
. (2.4.62)

To do so, we set f := eβbluer and obtain

V = −�gf
f
− α

l2
= β2

blueΩ
2 + βblue∂r(Ω

2) +
2

r
βblueΩ

2 − α

l2
. (2.4.63)

Note that for rblue > r− close enough to r−, we have

∂rΩ
2 ≥ cblue (2.4.64)

for all rblue ≥ r ≥ r− and some constant cblue > 0 only depending on the black hole
parameters. Thus, we obtain V & 1 uniformly in the blue-shift region rblue ≥ r ≥ r− by
choosing βblue > 0 large enough and rblue close enough to r−. In the blue-shift region we
define the vector field

SN := rN (〈u〉p∂u + 〈v〉p∂v) (2.4.65)

for some potentially large N > 0 and p > 1 as in Remark 2.4.1. We will show in the follow-
ing that supθ,ϕ |ψ[(u0, v0, θ, ϕ)| is uniformly bounded from initial data D[ψ[] independently
of (u0, v0) ∈ J+(Σrblue

)∩B. To do so, we will apply the energy identity (spacetime integral
of (2.2.37)) in the region

Rf = Rf (u0, v0) = J+(Σrblue
) ∩ J−(v0, u0) = J+(Σrblue

) ∩ {u ≤ u0} ∩ {v ≤ v0} (2.4.66)

which we depict in Fig. 2.5.
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Σrblue

Figure 2.5: Illustration of the regionRf as the darker shaded region in the Penrose diagram
of the interior B. The lighter shaded region is the blue-shift region.

This leads to∫
Cu0 (vrblue

(u0),v0)
J̃SNµ [ψ[]n

µ
Cu0

dvolCu0
+

∫
Cv0 (urblue

(v0),u0)
J̃SNµ [ψ[]n

µ
Cv0

dvolCv0

+

∫
Rf

K̃SN [ψ[]dvol =

∫
Σrblue

∩J−(v0,u0)
J̃SNµ [ψ[]n

µ
Σrblue

dvolΣrblue
, (2.4.67)

where ψ[ is defined in (2.3.5). In the following we will show, that after choosing N > 0

large enough and an appropriate integration by parts to control error terms, we can control
the flux terms by initial data. This gives

Proposition 2.4.12. Let ψ[ defined as in (2.3.5). Then,∫
Cu0 (vrblue

(u0),v0)
J̃SNµ [ψ[]n

µ
Cu0

dvolCu0
+

∫
Cv0 (urblue

(v0),u0)
J̃SNµ [ψ[]n

µ
Cv0

dvolCv0

.
∫

Σrblue
∩J−(v0,u0)

J̃SNµ [ψ[]n
µ
Σrblue

dvolΣrblue
. E1[ψ[](0) (2.4.68)

and ∫
Cu0 (vrblue

(u0),v0)

(
〈v〉p|∂vψ[|2 + (| /∇ψ[|2 + |ψ[|2)Ω2

)
dvdσS2

+

∫
Cv0 (urblue

(v0),u0)

(
〈u〉p|∂uψ[|2 + (| /∇ψ[|2 + |ψ[|2)Ω2

)
dvdσS2

.
∫

Σrblue
∩J−(v0,u0)

J̃SNµ [ψ[]n
µ
Σrblue

dvolΣrblue
. E1[ψ[](0) (2.4.69)
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for any (u0, v0) ∈ J+(Σrblue
). Commuting with the angular momentum operators (Wi)1≤i≤3

also gives

∫
Cu0 (vrblue

(u0),v0)
〈v〉p

(
|∂vψ[|2 +

∑
i,j

|∂vWiWjψ[|2
)
dvdσS2 . E1[ψ[](0) +

3∑
i,j=1

E1[WjWiψ[](0).

(2.4.70)

Proof. The general strategy of the proof is to apply (2.4.67) and to show that∫
Rf

K̃SNdvol ≥ 0 + boundary terms, (2.4.71)

where the boundary terms are small (lower orders in Ω) and by choosing rblue closer to
r−, can be absorbed in the positive flux terms on the left hand side of (2.4.67). In the
first part, we compute the flux terms for our vector field SN defined in (2.4.65). Then, in
the second part, we will estimate the bulk term and indeed show (2.4.71). From this we
will then deduce (2.4.68).

Part I: Flux terms of SN . We obtain three flux terms from (2.4.67). The future
flux terms read (cf. Proposition 2.6.1)∫
Cu0 (vrblue

(u0),v0)
J̃SNµ [ψ[]n

µ
Cu0

dvolCu0

=

∫
Cu0 (vrblue

(u0),v0)

(
〈v〉p|∇̃vψ[|2 + Ω2 〈u〉p

4
(| /∇ψ[|2 + V|ψ[2|)

)
rN+2dvdσS2

(2.4.72)

and∫
Cv0 (urblue

(v0),u0)
J̃SNµ [ψ[]n

µ
Cv0

dvolCv0

=

∫
Cv0 (urblue

(v0),u0)

(
〈u〉p|∇̃uψ[|2 + Ω2 〈v〉p

4
(| /∇ψ[|2 + V|ψ[|2)

)
rN+2dudσS2 .

(2.4.73)

The past flux term on the spacelike hypersurface Σrblue
is uniformly bounded by initial

data from Proposition 2.4.10:∫
Σrblue

∩J−(v0,u0)
J̃SNµ [ψ[]n

µ
Σrblue

dvolΣrblue
. E1[ψ[](0). (2.4.74)
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Part II: Bulk term of SN . We will now estimate the bulk term∫
Rf

K̃SNdvol

appearing in the energy identity (2.4.67). The terms appearing in K̃SN can be read off
in (2.6.4) with SuN = Xu = rN 〈u〉p and SvN = Xv = rN 〈v〉p. To estimate all terms, we
will also integrate by parts and substitute terms of the form ∂u∂vψ[ using the equation
�gψ[ = 0. The boundary terms arising from the integration by parts will then be absorbed
in the future flux terms appearing in Part I: Flux terms of SN . In the following we shall
treat each terms of K̃X as in (2.6.4) with X = SN individually.

First term of (2.6.4). The first term of (2.6.4) is non-negative:

− 2

Ω2

(
〈v〉p∂u(rN )|∇̃vψ[|2 + 〈u〉p∂v(rN )|∇̃uψ[|2

)
= NrN−1(〈v〉p|∇̃vψ[|2 + 〈u〉p|∇̃uψ[|2).

(2.4.75)

This means that—by choosing N > 0 large enough—we will be able to absorb sign-
indefinite terms of the form rN−1〈v〉p|∇̃vψ[|2 and rN−1〈u〉p|∇̃uψ[|2. This will be used in
the following.

Before we treat the second term appearing in (2.6.4), which is sign-indefinite, we look
at the angular and potential term in the second line of (2.6.4).

Angular and potential term: Second line of (2.6.4). Now, we look at the term
involving angular derivatives. In the region Rf we have

−
(

1

2
(∂v(r

N 〈v〉p) + ∂u(rN 〈u〉p))− rN

4

(
∂rΩ

2
)

(〈v〉p + 〈u〉p)
)(
| /∇ψ[|2 + V|ψ[|2

)
& rN (〈v〉p + 〈u〉p)

(
| /∇ψ[|2 + V|ψ[|2

)
. (2.4.76)

The terms arising when ∂v hits 〈v〉p and when ∂u hits 〈u〉p are sign-indefinite and of the
form

−p
2
rN
(
〈v〉p−2v + 〈u〉p−2u

) (
| /∇ψ[|2 + V|ψ[|2

)
. (2.4.77)

They are absorbed in rN (〈v〉p+〈u〉p)
(
| /∇ψ[|2 + V|ψ[|2

)
. Indeed, for any fixed ε = ε(p) > 0,

we can choose rblue even closer to r− (depending on ε) such that |v|〈v〉p−2 ≤ 〈v〉p−1 ≤
ε(〈v〉p+〈v−2r∗〉p) holds in Rf and similarly for |u|〈u〉p−2. Also recall that we have chosen
the twisting function such that V & 1.
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Second, sign-indefinite term of (2.6.4). Now, note that the second term in the
first line of (2.6.4)

−2rN−1(〈v〉p + 〈u〉p) Re
(
∇̃vψ[∇̃uψ[

)
(2.4.78)

is sign-indefinite, however, we can absorb it in other positive terms after integrating by
parts in the region Rf as we will see in the following. In order to integrate by parts, it
is useful to express the twisted derivatives with ordinary derivatives. The integration by
parts will generate boundary terms. As mentioned above, we estimate these boundary
terms with the fluxes in the energy identity. This will be done later in (2.4.84) and we
will not write the boundary terms explicitly in the following. We will also have to control
(sign-indefinite) ordinary derivatives by positive terms in (2.4.75) and (2.4.76). Note that
this is possible since

〈v〉p|∂vψ[|2 = 〈v〉p|∇̃vψ|2 − 〈v〉pΩ2 Re
(
ψ[∂vψ[

)
− 1

4
〈v〉pΩ4|ψ[|2, (2.4.79)

where the right hand side of (2.4.79) is controlled by (2.4.75), (2.4.76) and potentially
choosing rblue closer to r−. The analogous statement holds true for 〈u〉p|∂uψ[|2.

The integrated term we have to estimate reads∫
Rf
− 2rN−1(〈v〉p + 〈u〉p) 1

f2
Re
(
∂v(fψ[)∂u(fψ[)

)
Ω2r2dudvdσS2 . (2.4.80)

We only look at ∣∣∣ ∫
Rf
rN+1〈v〉p 1

f2
Re
(
∂v(fψ[)∂u(fψ[)

)
Ω2dudvdσS2

∣∣∣
as the term in (2.4.80) involving 〈u〉p is estimated in an analogous manner. Using the
explicit form of f and noting that we have control over (〈v〉p + 〈u〉p)Ω4|ψ[|2 from (2.4.76),
it suffices to estimate∣∣∣ ∫

Rf
rN+1〈v〉p Re

(
∂vψ[∂uψ[

)
Ω2dudvdσS2

∣∣∣+
∣∣∣ ∫
Rf

Ω2〈v〉p Re
(
ψ[(∂vψ[)

)
Ω2dudvdσS2

∣∣∣
+
∣∣∣ ∫
Rf

Ω2〈v〉p Re
(
ψ[(∂uψ[)

)
Ω2dudvdσS2

∣∣∣. (2.4.81)

Now, note that the second term of (2.4.81) (excluding the factor Ω2 appearing in the
volume form) reads r−2Ω2〈v〉p Re

(
ψ[(∂vψ[)

)
and is controlled by (2.4.75) and (2.4.76)

using Cauchy’s inequality and by potentially choosing rblue even closer to r−. Now, in
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both terms, the first and third term of (2.4.81), we integrate by parts in u. We also use
Re
(
ψ[∂uψ[

)
= 1

2∂u(|ψ[|2). Then, it follows that—up to boundary contributions which will
be dealt with below in (2.4.84)—we have to control the terms∣∣∣ ∫
Rf

NrN 〈v〉p Re
(
ψ[∂vψ[

)
Ω4dudvdσS2

∣∣∣+
∣∣∣ ∫
Rf

rN+1〈v〉p Re
(
ψ[(∂u∂vψ[)

)
Ω4dudvdσS2

∣∣∣
+
∣∣∣ ∫
Rf
〈v〉p|ψ[|2Ω4dudvdσS2

∣∣∣. (2.4.82)

The first and third term (excluding Ω2 as above) of (2.4.82) are controlled by (2.4.75),
(2.4.76) and by potentially choosing rblue even closer to r−. For the second term of (2.4.82)
we will use (2.1.1) which reads

0 = �gRNAdS
ψ[ +

α

`2
ψ[ =

−4

Ω2
(∂u∂vψ[) +

2

r
(∂vψ[ + ∂uψ[) +

1

r2
/∆S2ψ[ +

α

`2
ψ[

to substitute ∂u∂vψ[. Replacing ∂u∂vψ[ and integrating by parts on the sphere, we estimate
all but one term of (2.4.82) using (2.4.76) and (2.4.75). The term which we cannot estimate
with (2.4.76) and (2.4.75) is of the form∣∣∣ ∫

Rf
rN 〈v〉p Re

(
ψ[(∂uψ[)

)
Ω6dudvdσS2

∣∣∣ =
1

2

∣∣∣ ∫
Rf

rN 〈v〉p∂u(|ψ[|2)Ω6dudvdσS2

∣∣∣. (2.4.83)

This is of a similar form as the third term in (2.4.81), which we control—as before—via
an integration by parts in u. Finally we have controlled all terms except for boundary
terms arising from the integration by parts.

The first boundary terms arose from integrating by parts the first term in (2.4.81). It
consists of two parts and is of the form∣∣∣ ∫

Cu0∩{vrblue
(u0)≤v≤v0}

rN+1〈v〉p Re
(
ψ[(∂vψ[)

)
Ω2dvdσS2

∣∣∣ (2.4.84)

+
∣∣∣ ∫

Σrblue
∩J−(v0,u0)

rN+1〈v〉p Re
(
ψ[(∂vψ[)

)
Ω2dvdσS2

∣∣∣. (2.4.85)

The second term (2.4.85) is absorbed in the past flux term on the spacelike hypersurface
Σrblue

by choosing rblue possibly closer to r− and noting that dvolΣrblue
=
√

Ω2r2dvdσS2 .
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The first term (2.4.84) is controlled as follows∣∣∣ ∫
Cu0∩{vrblue

(u0)≤v≤v0}
rN+1〈v〉p Re

(
ψ[(∂vψ[)

)
Ω2dvdσS2

∣∣∣
≤
∣∣∣ ∫
Cu0∩{vrblue

(u0)≤v≤v0}
rN+1〈v〉p|∂vψ[|2

√
Ω2dvdσS2

∣∣∣
+
∣∣∣ ∫
Cu0∩{vrblue

(u0)≤v≤v0}
rN+1〈v〉p|ψ[|2(Ω2)

1
4 (Ω2)

1
4 Ω2dvdσS2

∣∣∣. (2.4.86)

Now, note that

〈v〉p(Ω2)
1
4 . 〈r∗ − u〉p(Ω2)

1
4 . 1 + 〈u〉p(Ω2)

1
4 , (2.4.87)

where we have used that rp∗(Ω2)
1
4 . 1 for r∗ ≥ r∗(rblue) which holds true since Ω2 decays

exponentially as r∗ → ∞. Using (2.4.87) we absorb (2.4.86) in the flux term (2.4.72) by
potentially choosing rblue closer to r− such that Ω2 is uniformly small in the blue-shift
region. Completely analogously, we control the other boundary terms which arose from
integrating by parts.

Now, we are left with the terms of the last two lines in (2.6.4).

Terms from last two lines of (2.6.4). We will only look at the terms with v

weights as the terms involving u weights are estimated completely analogously. It suffices
to estimate the terms

rN
∣∣∣Ω2

2r
〈v〉pV|ψ[|2

∣∣∣+ rN
∣∣∣〈v〉p∂v(f2V)

2f2
|ψ[|2

∣∣∣ (2.4.88)

and

−rN 〈v〉p∂vf
2

2f2
∇̃σψ[∇̃σψ[. (2.4.89)

Since
∣∣∣∂v(f2V)

2f2

∣∣∣ . Ω2, we control the terms in (2.4.88) using (2.4.76) and by potentially
choosing rblue closer to r−. Expanding (2.4.89) yields

−rN 〈v〉p∂vf
2

2f2
∇̃σψ[∇̃σψ[ = −2βbluer

N 〈v〉pRe
(
∇̃uψ[∇̃vψ[

)
+
βblue

2
rN 〈v〉pΩ2| /∇ψ[|2.

(2.4.90)

The second term on the right-hand side is estimated by (2.4.76) and potentially choosing
rblue closer to r−. The first term on the right-hand side of (2.4.90) has the same from as
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(2.4.78) and is estimated in the same way as (2.4.78).
Finally, we have estimated and absorbed all sign-indefinite terms in the energy identity

to obtain (2.4.71). Thus, we have proved (2.4.68), which concludes the first part of the
proof.

Part III: Proof of (2.4.69) and (2.4.70). Now, observe that the estimate (2.4.69)
follows from (2.4.68) and (2.4.79). More precisely, the error arising from interchanging the
twisted derivatives with partial derivatives on Cu are estimated as

〈v〉p|∂vψ[|2 = 〈v〉p|∇̃vψ|2 + 〈v〉pΩ2 Re
(
ψ[∂vψ[

)
− 1

4
〈v〉pΩ4|ψ[|2

≤ 〈v〉p|∇̃vψ|2 + |〈v〉pΩ2 Re
(
ψ[∂vψ[

)
|.

Finally, note that the error term on the right hand side is controlled as in (2.4.84). This
works for Cv completely analogously which concludes the proof.

2.4.2.4 Uniform boundedness and continuity at the Cauchy horizon for bounded
frequencies

Now, Proposition 2.4.12 allows us to prove the uniform boundedness.

Proposition 2.4.13. Let ψ[ be as defined in (2.3.5). Then,

sup
B∩J+(Σ0)

|ψ[|2 . E1[ψ[](0) +
3∑

i,j=1

E1[WiWjψ[](0) . D[ψ[]. (2.4.91)

Proof. In view of Proposition 2.4.11, it suffices to prove (2.4.91) only in J+(Σrblue
) ∩ B.

Let (u0, v0) ∈ J+(Σrblue
)∩B be arbitrary. Then, by Proposition 2.4.11, Proposition 2.4.12

and the Sobolev embedding on the sphere H2(S2) ↪→ L∞(S2), we have

|ψ[(u0, v0, ϕ, θ)|2 .

(∫ v0

vrblue
(u0)
|∂vψ[(u0, v, ϕ, θ)|dv

)2

+ |ψ[(u0, vrblue
(u0), ϕ, θ)|2

.
∫
Cu0 (vrblue

(u0),v0)
〈v〉p|∂vψ[|2dvdσS2

+
∑
i,j

∫
Cu0 (vrblue

(u0),v0)
〈v〉p|∂vWiWjψ[|2dvdσS2

+ E1[ψ[](0) +
3∑

i,j=1

E1[WiWjψ[] . E1[ψ[](0) +
3∑

i,j=1

E1[WiWjψ[](0),

(2.4.92)
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where (Wi)i=1,2,3 are the angular momentum operators. This shows (2.4.91).

Proposition 2.4.14. Let ψ[ be as defined in (2.3.5). Then, ψ[ is continuously extendible
beyond the Cauchy horizon CH.

Proof. Similarly to (2.4.92) we have

|ψ[(u0, v2, ϕ, θ)− ψ[(u0, v1, ϕ, θ)|2 .
∫ v2

v1

〈v〉−pdv
∫ v2

v1

〈v〉p|∂vψ[(u0, v, ϕ, θ)|2dv

.
∫ v2

v1

〈v〉−pdv

E1[ψ[] +

3∑
i,j=1

E1[WiWjψ[]

 (2.4.93)

uniformly in u0, ϕ, θ. The same estimate holds after interchanging the roles of u and v.
After commuting the equation with W3, we have from (2.4.91)

sup
B
|∂ϕψ|2 . E1[∂ϕψ[](0) +

3∑
i,j=1

E1[WiWj∂ϕψ[](0) < C̃ <∞ (2.4.94)

for some constant C̃ < ∞ depending on the initial data. (Recall that we assumed our
initial data to be smooth and compactly supported.) Thus, for ϕ1 ≤ ϕ2, we have

|ψ[(u0, v0, ϕ2, θ)− ψ[(u0, v0, ϕ1, θ0)|2 .
∫ ϕ2

ϕ1

sup
B
|∂ϕψ[| ≤ C̃|ϕ2 − ϕ1| (2.4.95)

uniformly in u0, v0, θ0. A similar estimate holds true for θ. Applications of the fundamental
theorem of calculus and a triangle inequality finally yield the continuity result for ψ[.

2.5 High frequency part ψ]

In the previous section we have shown the uniform boundedness for the low frequency part
ψ[. Now, we turn to ψ], the high frequency part. The key ingredient for the proof of the
uniform boundedness for |ψ]| in the interior is (a) the uniform boundedness of transmission
and reflection coefficients associated to the radial o.d.e. (2.4.3) which is proved in [82] for
Λ = 0, together with (b) the finiteness of the (commuted) T -energy flux on the event
horizon given by (2.2.22).

Now, recall the radial o.d.e. (2.4.3) which reads −u′′ + V`u = ω2u in the interior,
where V` decays exponentially as r∗ → +∞(r → r−) and r∗ → −∞(r → r+). For
ω 6= 0, so in particular for |ω| > ω0

2 , the radial o.d.e. admits the following pairs of mode
solutions (u1, u2) and (v1, v2), where u1 and u2 are solutions to (2.4.3) satisfying u1 =
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eiωr∗ +O`(r− r+) and u2 = e−iωr∗ +O`(r− r+) as r∗ → −∞. Similarly, v1 and v2 satisfy
v1 = eiωr∗ + O`(r − r−) and v2 = e−iωr∗ + O`(r − r−) as r∗ → +∞. Now, for ω 6= 0,
the transmission and reflection coefficients T(ω, `) and R(ω, `) are defined as the unique
coefficients satisfying

u1 = T(ω, `)v1 + R(ω, `)v2. (2.5.1)

See [82] for more details. In the following we will state the uniform boundedness of T(ω, `)

and R(ω, `) for |ω| ≥ ω0
2 . In [82, Proposition 4.7, Proposition 4.8] this has been proven

for Λ = 0. However, the proof of Proposition 4.7 and Proposition 4.8 in [82] also applies
if we include a non-vanishing cosmological constant.9

Lemma 2.5.1 ([82, Proposition 4.7, Proposition 4.8]). Fix subextremal Reissner–Nordström–
AdS black hole parameters (M,Q, l), a constant ω0 > 0 and a Klein–Gordon mass param-
eter α < 9

4 . Then, the scattering coefficients T(ω, `) and R(ω, `) as defined above satisfy

sup
|ω|≥ω0

2
,`∈N0

(|T(ω, `)|+ |R(ω, `)|) .M,Q,l,ω0,α 1 (2.5.2)

and the mode solutions u1, u2 and v1, v2 are uniformly bounded

sup
|ω|≥ω0

2
,`∈N0

‖u1‖L∞(R) .M,Q,l,ω0,α 1, sup
|ω|≥ω0

2
,`∈N0

‖u2‖L∞(R) .M,Q,l,ω0,α 1, (2.5.3)

sup
|ω|≥ω0

2
,`∈N0

‖v1‖L∞(R) .M,Q,l,ω0,α 1, sup
|ω|≥ω0

2
,`∈N0

‖v2‖L∞(R) .M,Q,l,ω0,α 1. (2.5.4)

Proof. Since we are the regime |ω| ≥ ω0
2 , the proof for Λ < 0 works exactly as for Λ = 0

as shown in [82, Proposition 4.7, Proposition 4.8]. Thus, we will be very brief.

We first consider the case ` ≤ `0, where `0 is chosen sufficiently large later in the second
part. Note that u1 solves the Volterra equation

u1(r∗) = eiωr∗ +

∫ r∗

−∞

sin(ω(r∗ − y))

ω
V (y)u1(y)dy. (2.5.5)

As |ω| ≥ ω0
2 and since the potential V is uniformly bounded (in the regime ` ≤ `0) and

decays exponentially as r∗ → ±∞ , standard estimates for Volterra integral equations (see
[82, Proposition 2.3]) yield (2.5.3) for u1 and similarly for u2, v1 and v2.

9Note that for Λ 6= 0 the scattering coefficients R and T have a pole at ω = 0. However, for frequencies
bounded away from ω = 0, so in particular for |ω| ≥ ω0

2
as in the present case, T and R are uniformly

bounded for both cases Λ = 0 and Λ 6= 0. See [82] for more details.
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For the regime ` ≥ `0, we will use a WKB approximation. Indeed, choosing `0 suffi-
ciently large, we have that p := ω2 − V is positive for r∗ ∈ R and smooth. Now, u1 is
a solution of the radial o.d.e. u′′ = −pu. Just like in [82, Equation (4.149)] we control
the error term F (r∗) =

∫ r∗
−∞ p

− 1
4 | d2

dy2 p
− 1

4 |dy of the WKB approximation and conclude that
u1 remains uniformly bounded. Similarly, this holds true for u2, v1 and v2 and for the
scattering coefficients R and T which concludes the proof.

Another result which we will use from [82] is the representation formula for ψ] in the
separated picture. It is essential that |ω| ≥ ω0

2 to apply the same steps as in [82, Proof of
Proposition 5.1].

Lemma 2.5.2 ([82, Proof of Proposition 5.1]). Let ψ] as in (2.3.5). Then, we have

ψ](t, r, ϕ, θ) =
1√
2πr

∑
`∈N0

∑
|m|≤`

Y`m(θ, ϕ)

∫
|ω|≥ω0

2

FH+
A

[
ψ] �H+

A

]
(ω,m, `)u1(ω, `, r)eiωtdω

+
1√
2πr

∑
`∈N0

∑
|m|≤`

Y`m(θ, ϕ)

∫
|ω|≥ω0

2

FH+
B

[
ψ] �H+

B

]
(ω,m, `)u2(ω, `, r)eiωtdω,

(2.5.6)

where

FH+
A

[φ](ω,m, `) :=
r+√
2π

∫
R
e−iωv〈φ, Y`m〉S2dv (2.5.7)

and

FH+
B

[φ](ω,m, `) :=
r+√
2π

∫
R
eiωu〈φ, Y`m〉S2du. (2.5.8)

Proof of Lemma 2.5.2. This proof is very similar to [82, Proof of Proposition 5.1] so we
will be rather brief.

Let ψ] as in (2.3.5). Since the expansion in spherical harmonics converges pointwise,
it suffices to prove (2.5.6) for ψ`m] := 〈ψ], Y`m〉S2Y`m for fixed m, `. Now, define u[ψ`m] ] as
in (2.4.2) such that

ψ`m] =
1√
2πr

Y`m

∫
|ω|≥ω0

2

u[ψ`m] ]eiωtdω. (2.5.9)

This is well-defined in the interior in view of Proposition 2.4.1. Moreover, u[ψ`m] ] solves
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the radial o.d.e. and can be expanded in the basis u1 and u2 (|ω| > ω0
2 ):

u[ψ`m] ](r∗, ω,m, `) = a(ω,m, `)u1(r∗, `, ω) + b(ω,m, `)u2(r∗, `, ω). (2.5.10)

Now, first note Proposition 2.6.4 implies that ω 7→ u[ψ`m] ](r, ω) is a Schwartz function for
r ∈ (r−, r+). Since

|a(ω,m, `)| =

∣∣∣∣∣W(u[ψ`m] ], u2)

W(u1, u2)

∣∣∣∣∣ =

∣∣∣∣∣W(u[ψ`m] ], u2)

2ω

∣∣∣∣∣ . ∣∣∣W(u[ψ`m] ], u2)
∣∣∣ (2.5.11)

in view of |ω| ≥ ω0
2 , we conclude that ω 7→ a(ω,m, `) is in L1(R) for fixed `,m. Recall that

the Wronskian W(f, g) := f ′g − fg′ is independent of r∗ for two solutions of the radial
o.d.e. (2.4.3). We have also used that ‖u2‖L∞ . 1 and ‖u′2‖L∞ .` 1 + |ω| for |ω| ≥ ω0

2

(cf. [82, Proposition 4.7 and Proposition 4.8]). Similarly, we have that ω 7→ b(ω,m, l) is in
L1(R). Using

ψ`m] = Y`m
1√
2πr

∫
|ω|≥ω0

2

(a(ω,m, `)u1(r, ω, `) + b(ω,m, `)u2(r, ω, `)) eiωtdω (2.5.12)

and a direct adaptation of [82, Proof of Proposition 5.1] finally shows a(ω,m, `) = FH+
A

[ψ`m] �H+
A

](ω,m, `), b(ω,m, `) = FH+
B

[ψ`m] �H+
B

](ω,m, `).10 This shows the representation formula
(2.5.6) for ψ].

We will now prove the uniform boundedness for ψ].

Proposition 2.5.1. Let ψ] be as defined in (2.3.5). Then,

sup
B∩J+(Σ0)

|ψ]|2 . E1[ψ]](0) +

3∑
i,j=1

E1[WiWjψ]](0) . D[ψ]]. (2.5.13)

Proof. We start with the representation of ψ] as in (2.5.6). For convenience, we will only
estimate the term involving FH+

A
[φ](ω,m, `) and assume without loss of generality that

FH+
B

[φ](ω,m, `) = 0. Indeed the term FH+
B

[φ](ω,m, `) can be treated analogously. Now,

10More precisely, following the lines starting from equation (5.20) in [82, Proof of Proposition 5.1] which
contain an application of Lebesgue’s dominated convergence, the Riemann–Lebesgue lemma and the inverse
Fourier transform yields the result.

154



in view of (2.5.3), we conclude

|ψ](r, t, ϕ, θ)|2 .

∣∣∣∣∣∣
∑
`∈N0

∑
m∈Z,|m|≤`

Y`m(ϕ, θ)

∫
|ω|≥ω0

2

FHA
[
ψ] �H+

A

]
(ω,m, `)dω

∣∣∣∣∣∣
2

≤
∑
`∈N0

∑
m∈Z,|m|≤`

∫
|ω|≥ω0

2

(1 + `)3ω2
∣∣∣FHA [ψ] �H+

A

]
(ω,m, `)

∣∣∣2 dω

·
∑
`∈N0

∑
m∈Z,|m|≤`

|Y`m(ϕ, θ)|2

(1 + `)3

∫
|ω|≥ω0

2

1

ω2
dω

.
∑
`∈N0

∑
m∈Z,|m|≤`

∫
|ω|≥ω0

2

(1 + `)3ω2
∣∣∣FHA [ψ] �H+

A

]
(ω,m, `)

∣∣∣2 dω

.
∫
H+
A

|Tψ]|2dvdσS2 +

3∑
i,j=1

∫
H+
A

|TWiWjψ]|2dvdσS2 . (2.5.14)

Here, we have used that

∑̀
m=−`

|Y`m(ϕ, θ)|2 =
2`+ 1

4π
(2.5.15)

which is known as Unsöld’s Theorem [138, Eq. (69)].

Finally, on the right hand side of (2.5.14) we only see the commuted T -energy flux. An
application of the T -energy identity in the exterior and an energy estimate in a compact
spacetime region shows that the commuted T -energy flux on the event horizon is controlled
from the initial data (cf. (2.2.22) in Theorem 2.1). Thus, in view of (2.5.14) we conclude

|ψ](r, t, ϕ, θ)|2 . E1[ψ]](0) +
3∑

i,j=1

E1[WiWjψ]](0). (2.5.16)

Proposition 2.5.2. Let ψ] be as defined in (2.3.5). Then, ψ] is continuously extendible
across the Cauchy horizon CH.

Proof. Let (un, vn, θn, ϕn) → (ũ, ṽ, θ̃, ϕ̃) be a convergent sequence. We will also allow
ũ = +∞ and ṽ = +∞ as limits which correspond to limits to the Cauchy horizon. We
represent ψ] again as in (2.5.6). Similar to the proof of Proposition 2.5.1, it is enough to

155



consider the case where FH+
B

[ψ] �H+
B

] vanishes. Hence,

ψ](t, r, ϕ, θ) =
1√
2πr

∑
`∈N0

∑
|m|≤`

Y`m(θ, ϕ)

∫
|ω|≥ω0

2

FH+
A

[
ψ] �H+

A

]
(m, `, ω)u1(ω, `, r)eiωtdω.

(2.5.17)

First from (2.5.15) we have supϕ,θ |Y`m(ϕ, θ)| . 1 + ` and from (2.5.3) we have that

sup
u,v
|u1e

iωt(u,v)| = sup
t,r
|u1e

iωt| . 1.

Then, a similar estimate as in (2.5.14) and an application of Lebesgue’s dominated con-
vergence theorem allow us to interchange the limit n → ∞ with the sum

∑
`∈N0

∑
|m|≤`.

Since Y`m(θn, ϕn)→ Y`m(θ̃, ϕ̃) pointwise as n→∞, it remains to show that∫
|ω|≥ω0

2

FH+
A

[
ψ] �H+

A

]
(m, `, ω)u1(ω, `, r(un, vm))eiωt(un,vn)dω

=

∫
|ω|≥ω0

2

FH+
A

[
ψ] �H+

A

]
(m, `, ω)

(
T(ω, `)v1(ω, `, r(un, vn))

+ R(ω, `)v2(ω, `, r(un, vn))
)
eiωt(un,vn)dω

converges as n→∞ for fixed angular parameters m, `. But, in view of (2.5.2), depending
on whether ṽ = +∞ or ũ = +∞, we can deduce the continuity using Lebesgue’s dominated
convergence and the Riemann–Lebesgue lemma. Both are justified by a slight adaptation
of the steps which resulted in (2.5.12). This concludes the proof.

2.6 Appendix

2.6.1 Twisted energy-momentum tensor in null coordinates in the inte-
rior

We will write out the components of the twisted energy-momentum tensor in the interior.

Proposition 2.6.1. Consider null coordinates (u, v, θ, ϕ) in the interior region B. Recall
that the metric is given by (2.2.39). Let f ∈ C∞(B) be a spherically symmetric nowhere
vanishing real valued function and X be a smooth vector field of the form X = Xu∂u +

Xv∂v.
The components of the twisted energy-momentum tensor (2.2.33) associated to f are
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given by

T̃uu = |∇̃uφ|2 = f2

∣∣∣∣∂u(φf
)∣∣∣∣2 , T̃vv = |∇̃vφ|2 = f2

∣∣∣∣∂v (φf
)∣∣∣∣2 ,

T̃uv = T̃vu =
Ω2

4

(
| /∇φ|2 + V|φ|2

)
,

T̃θθ = |∂θφ|2 +
2r2

Ω2
Re
(
∇̃uφ∇̃vφ

)
− r2

2

(
| /∇φ|2 + V|φ|2

)
,

T̃ϕϕ = |∂ϕφ|2 +
2r2 sin2 θ

Ω2
Re
(
∇̃uφ∇̃vφ

)
− r2 sin2 θ

2

(
| /∇φ|2 + V|φ|2

)
.

The deformation tensor Xπ := 1
2LXg is given by

Xπvv = − 2

Ω2
∂uX

v,Xπuu = − 2

Ω2
∂vX

u,

Xπuv = − 1

Ω2
(∂uX

u + ∂vX
v)− 2

Ω2

(
∂v
√

Ω2

√
Ω2

Xv +
∂u
√

Ω2

√
Ω2

Xu

)
,

Xπθθ = − Ω2

2r3
(Xv +Xu),Xπϕϕ = − Ω2

2r3 sin2 θ
(Xv +Xu).

In the following we explicitly write down future-directed normals and induced volume
forms for hypersurfaces of constant r values Σr and for null cones Cu and Cv of constant
u and v values, respectively.

nΣr =
1√
Ω2

(∂u + ∂v), dvolΣr = r2
√

Ω2dσS2du = r2
√

Ω2dσS2dv,

nCv =
2

Ω2
∂u,dvolCv =

r2

2
Ω2dσS2du,

nCu =
2

Ω2
∂v,dvolCu =

r2

2
Ω2dσS2dv.

Then, the fluxes of X are given by

J̃Xµ [φ]nµCu =
2Xv

Ω2
|∇̃vφ|2 +

Xu

2

(
| /∇φ|2 + V|φ|2

)
, (2.6.1)

J̃Xµ [φ]nµCv
=

2Xu

Ω2
|∇̃uφ|2 +

Xv

2

(
| /∇φ|2 + V|φ|2

)
, (2.6.2)

J̃Xµ [φ]nµΣr =
1√
Ω2

(
Xu|∇̃uφ|2 +Xv|∇̃vφ|2 +

Ω2

4
(Xu +Xv)(| /∇φ|2 + V|φ|2)

)
. (2.6.3)
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The twisted bulk term associated to the twisting function f reads (cf. [144])

K̃X = Xπµν T̃
µν +Xν S̃ν ,

where

S̃ν =
∇̃∗ν(fV)

2f
|φ|2 +

∇̃∗νf
2f
∇̃σφ∇̃σφ.

In coordinates we have

K̃X =− 2

Ω2

(
∂uX

v|∇̃vφ|2 + ∂vX
u|∇̃uφ|2

)
− 2

r
(Xu +Xv) Re(∇̃uφ∇̃vφ)

−
(

1

2
(∂vX

v + ∂uX
u)− ∂rΩ

2

4
(Xv +Xu)

)(
| /∇φ|2 + V|φ|2

)
+

Ω2

2r
(Xv +Xu)V|φ|2 +Xu

(
−∂u(f2V)

2f2
|φ|2 − ∂uf

2

2f2
∇̃σφ∇̃σφ

)
+Xv

(
−∂v(f

2V)

2f2
|φ|2 − ∂vf

2

2f2
∇̃σφ∇̃σφ

)
. (2.6.4)

2.6.2 Construction of the red-shift vector field

In this section we will give the proof of Proposition 2.2.3.

Proof of Proposition 2.2.3. We choose the ansatz N = Nu∂u + Nv∂v for our red-shift
vector field. We will first estimate the twisted 1-jet J̃ and then the twisted bulk term K̃.

J̃ current. From (2.6.2), we have

J̃Nµ [φ]nµCv
=

2Nu

Ω2
|∇̃uφ|2 +

Nv

2

(
| /∇φ|2 + V|φ|2

)
, (2.6.5)

where

V = −
(
�gf
f

+
α

l2

)
. (2.6.6)

First, if f = f(r) we have

−�gf
f

= Ω2 f̈

f
+

(
2Ω2

r
+ ∂r(Ω

2)

)
ḟ

f
, (2.6.7)
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where ḟ := df
dr . Thus, choosing f = e−βredr gives

V = −
(
�gf
f

+
α

l2

)
= β2

redΩ2 − ∂r(Ω2)βred −
2βred

r
Ω2 − α

l2
. (2.6.8)

Note that for rred < r+ close enough to r+, we have

−∂rΩ2 ≥ cred (2.6.9)

for all rred ≤ r ≤ r+ and some constant cred > 0 only depending on the black hole
parameters. The constant cred > 0 does not decrease, when we choose rred even closer
r+. Now, by choosing βred > 0 large enough to absorb the negative contribution from − α

l2

and by choosing rred close enough to r+, we ensure that V & 1 in rred ≤ r ≤ r+. This
finally shows that if we take N as a future directed vector field, the 1-jet J̃Nµ n

µ
Cv

is positive
definite. We will construct the explicit form of N in the bulk term estimate.

Bulk term K̃N . Now, we will estimate the bulk term. We will choose the components
of the timelike vector field N = Nu∂u +Nv∂v as

Nu :=
1

Ω2
− 1

δ1
and Nv := 1− Ω2

δ2
. (2.6.10)

Note that N is smooth in Rred. Moreover, for fixed δ1, δ2 > 0 (only depending on the black
hole parameters), we can choose rred close enough to r+ such that N is future directed in
Rred. Then, note that

K̃N [φ] =
(
−∂rΩ2

)( 1

δ2
|∇̃vφ|2 +

1

Ω4
|∇̃uφ|2

)
− 2

r

(
1

Ω2
− 1

δ1
+ 1− 1

δ2
Ω2

)
Re(∇̃uφ∇̃vφ)

(2.6.11)

+
1

4

(
−dΩ2

dr

)(
1

δ1
− 1 +

2Ω2

δ2

)
(| /∇φ|2 + V|φ|2) (2.6.12)

+
1

2r

(
1 +

(
1− 1

δ1

)
Ω2 − 1

δ2
Ω4

)
V|φ|2 (2.6.13)

+

(
1

Ω2
− 1

δ1

)
−∂u(f2V)

2f2
|φ|2 +

(
1

Ω2
− 1

δ1

)
−∂u(f2)

2f2
∇̃σφ∇̃σφ (2.6.14)

+

(
1− Ω2

δ2

)
−∂v(f2V)

2f2
|φ|2 +

(
1− Ω2

δ2

)
−∂v(f2)

2f2
∇̃σφ∇̃σφ. (2.6.15)
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In the following we will show that

K̃N [φ] &
1

Ω4
|∇̃uφ|2 + |∇̃vφ|2 + (| /∇φ|2 + V|φ|2). (2.6.16)

We will start with the sign-indefinite term appearing in (2.6.11). We estimate it as follows∣∣∣− 2

r

(
1

Ω2
− 1

δ1
+ 1− 1

δ2
Ω2

)
Re(∇̃uφ∇̃vφ)

∣∣∣ . ε

Ω4
|∇̃uφ|2 +

1

ε
|∇̃vφ|2, (2.6.17)

where we have applied an ε-weighted Young’s inequality. We have also used that—by
choosing rred closer to r+—we can make Ω2 uniformly smaller than any constant, in
particular smaller than δ1 and δ2 once those are fixed. Choosing ε small enough, we absorb
the term ε

Ω4 |∇̃uφ|2 of (2.6.17) in the first term of (2.6.11). Then, choosing δ2(δ1, ε) small
enough, we can also absorb the term 1

ε |∇̃vφ|
2 in the first term of (2.6.11). Completely

analogously and by potentially choosing δ2 and δ1 even smaller, we estimate the terms of
the form 1

Ω2 Re(∇̃uφ∇̃vφ) arising from (2.6.14) and (2.6.15).

Next, note that, in view of V & 1 and
∣∣∣−∂v(f2V)

2f2

∣∣∣ . Ω2, we choose δ1 small enough such
that we absorb error terms coming from (2.6.14) and (2.6.15) in the term with the good
sign in (2.6.12). By doing so we also have to make δ2(ε, δ1) > 0 small enough. Finally, once
δ1 and δ2 are fixed, note that we can make terms involving higher orders of Ω2 arbitrarily
small by choosing rred close to r+. This finally shows (2.6.16) and concludes the proof.

2.6.3 Well-definedness of the Fourier projections ψ[ and ψ]

Proposition 2.6.2. Let ψ ∈ C∞(MRNAdS \ CH) be as in (2.3.4) and let r ∈ (r−, r+),
(ϕ, θ) ∈ S2 be fixed. Then, t 7→ ψ(t, r, θ, ϕ) is a tempered distribution. Moreover, higher
derivatives t 7→ ∂kψ(t, r, θ, ϕ), where ∂ ∈ {∂t, ∂r, ∂θ, ∂ϕ} are also tempered distributions.

Proof. Fix r ∈ (r−, r+), (ϕ, θ) ∈ S2. We will first prove that t 7→ ψ(t, r, ϕ, θ) is slowly
growing.11 Since ψ ∈ C∞(MRNAdS \ CH) and in view of the facts that �g commutes with
T = ∂t and our initial data are smooth and compactly supported, it suffices to obtain a
polynomial bound for ψ(t, r, ϕ, θ). To do this we will propagate mild polynomial growth
from the exterior region in the interior. (Note that this growth is far from being sharp
but it will be sufficient for the purpose of proving well-definedness of ψ[ and ψ].)

From Theorem 2.2 and Remark 2.2.2 we infer that ψ and its derivatives remain bounded

11With slowly growing we mean that t 7→ ψ(t, r, ϕ, θ) and all its ∂t derivatives have at most polynomial
growth as |t| → ∞.
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along the event horizon H. A direct integration yields∫
H(v1,v2)

J̃Nµ [ψ]nµH+dvolH+ .ψ0,ψ1 〈v2〉, (2.6.18)

where 〈v2〉 denotes the Japanese bracket and 0 ≤ v1 ≤ v2. The constant appearing in
.ψ0,ψ1 depends on some higher Sobolev norm of the initial data.

Then, using the red-shift vector field (more precisely, applying Proposition 2.2.4) yields∫
Σr0 (v1,v2)

J̃Nµ [ψ]nµΣrdvolΣr .ψ0,ψ1 〈v2〉 (2.6.19)

for any r0 ∈ [rred, r+). If r ∈ (r−, r+) as fixed above lies in the red-shift region [rred, r+),
we directly conclude (2.6.21) after commuting with the angular momentum operators Wi

and a Sobolev embedding on S2. If however r ∈ (r−, rred), we choose rblue = rblue(r) small
enough such that r ∈ [rblue, rred], i.e. r lies in the no-shift region. Then, Proposition 2.2.5
yields∫

Σr(v,2v)
J̃Xµ [ψ]nµΣrdvolΣr .r

∫
Σrred

(vrred
(ur(v)),2v)

J̃Xµ [ψ]nµΣrdvolΣr .ψ0,ψ1,r 〈v〉 (2.6.20)

for any v ≥ 1. After commuting with angular momentum operators Wi and a Sobolev
embedding on S2 we obtain∫ t

0
|ψ(t, r, ϕ, θ)|2 + |∂tψ(t, r, ϕ, θ)|2dt .ψ0,ψ1,r 〈t〉 (2.6.21)

from which we can deduce that t 7→ ψ(t, r, ϕ, θ) is slowly growing (where we recall that
r, ϕ, θ are fixed). Similarly, as t→ −∞, we obtain the same conclusion.

Now, commuting with ∂t, the angular momentum operators Wi and using elliptic
estimates it follows that higher order derivatives are also slowly growing which concludes
the proof.

Corollary 2.6.1. The Fourier projections ψ[ and ψ] in the interior B as in (2.3.5) are
well-defined and are smooth solutions of (2.1.1).

Proof. From Proposition 2.6.2 we know that t 7→ ψ(t, r, ϕ, θ) is a tempered distribution
in the interior for fixed r, ϕ, θ. Thus, ψ[ defined in (2.3.5) is well defined as F−1

T [χω0 ] is
a Schwartz function. Moreover, ψ[ is smooth because ψ is smooth itself and by Proposi-
tion 2.6.2 we have that all higher derivatives t 7→ ∂kψ(t, r, ϕ, θ) are tempered distributions,
too. Now, this also implies that ψ[ ∈ C∞(B) solves (2.1.1) which concludes the proof in
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view of ψ = ψ[ + ψ].

Proposition 2.6.3. Let ψ ∈ C∞(MRNAdS \ CH) be defined as in (2.3.4). Then, there
exist ψ[ ∈ C∞(MRNAdS \ CH) and ψ] ∈ C∞(MRNAdS \ CH), two solutions of (2.1.1) with

ψ[ =
1√
2π
F−1
T [χω0 ] ∗ ψ and ψ] = ψ − ψ[, (2.6.22)

where χω0 is defined in (2.3.6) and

ψ[(t, r, ϕ, θ) =

∫
R

1√
2π
F−1
T [χω0 ](s)ψ(t− s, r, ϕ, θ)ds (2.6.23)

in all coordinate patches (tRA , rRA , θRA , ϕRA), (tRB , rRB , θRB , ϕRB ) and (tB, rB, θB, ϕB)

in the regions RA, RB and B, respectively.

Proof. First, from Theorem 2.2 we know that ψ and all higher derivatives decay loga-
rithmically on the exterior regions RA and RB.12 Hence, ψ and all higher derivatives
are smooth tempered distributions (for fixed r, ϕ, θ) in the exterior regions RA and RB
as functions of tRA and tRB , respectively. Thus, the Fourier projections ψ[ (2.6.23) is
well-defined in RA and RB and it follows by Lebesgue’s dominated convergence that ψ[
is a smooth solution of (2.1.1). Moreover, from Corollary 2.6.1 we deduce that ψ[ is also
a well-defined smooth solution of (2.1.1) in the interior B.

Finally, ψ[, defined a priori only in RA, RB and B, extends to a smooth solution of
(2.1.1) onMRNAdS \ CH. This follows from using regular coordinates near the respective
event horizons (outgoing Eddington–Finkelstein coordinates (v, r, θ, ϕ), where v(t, r) = t+

r∗, r(t, r) = r, θ = θ, ϕ = ϕ near HA and ingoing Eddington–Finkelstein coordinates near
HB) and writing ψ[ again as a convolution in this coordinate system ψ[ = 1√

2π
F−1
T [χω0 ]∗ψ.

Note that T = ∂v in this coordinate system. This concludes the proof in view of ψ =

ψ[ + ψ].

Proposition 2.6.4. Assume that ψ ∈ C∞(MRNAdS \ CH) is a solution of (2.1.1) arising
from smooth and compactly supported initial data as in Theorem 2.1. Assume further that
there exists an L ∈ N with 〈ψ, Ym`〉L2(S2) = 0 for ` ≥ L. Then, for every r ∈ (r−, r+)

and (θ, ϕ) ∈ S2, the function t 7→ ψ(t, r, ϕ, θ) is a Schwartz function. Moreover, higher
derivatives t 7→ ∂kψ(t, r, θ, ϕ), where ∂ ∈ {∂t, ∂r, ∂θ, ∂ϕ} are also Schwartz functions.

Proof. The proof follows the same lines as the proof Proposition 2.6.2 with the difference

12This decay is only used in a qualitative way.
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that we have exponential decay on the event horizon∫ v2

v1

J̃Nµ [ψ]nµH+
A

dvolH+
A
. D[ψ] exp

(
−e−C(M,Q,l,α)Lv1

)
, (2.6.24)

where D[ψ] is as in (2.3.2). Note that (2.6.24) follows from []. Analogously to the proof
of Proposition 2.6.2 we can propagate this decay to any {r = const.} hypersurface in the
interior. This is very similar to [20]. As before, by commuting with ∂t and Wi as well as
using elliptic estimates, we see that on {r = const.}, ψ and higher derivatives ∂kψ decay
exponentially towards both components of i+. This concludes the proof.
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Chapter 3

Diophantine approximation as
cosmic censor for AdS black holes

3.1 Introduction

We consider perturbations ψ solving the conformal scalar wave equation

�gψ −
2

3
Λψ = 0 (3.1.1)

on Kerr–AdS black holes (M, g), see already (3.2.11) for the metric. We restrict to subex-
tremal parameters satisfying the Hawking–Reall bound (3.2.8) and assume a 6= 0. We
further consider reflecting boundary conditions at infinity. Our main result Theorem 3.1
shows that perturbations ψ solving (3.1.1) blow up everywhere at the Cauchy horizon
on Kerr–AdS if the dimensionless black hole parameters mass m = M

√
−Λ and angu-

lar momentum a = a
√
−Λ satisfy certain Diophantine properties. We show that such

black holes are Baire-generic but Lebesgue-exceptional . This is in sharp contrast to
the analogous result [81] on Reissner–Nordström–AdS black holes in Chapter 2, where it
was shown that such perturbations remain bounded and extend continuously across the
Cauchy horizon.

We also conjecture that, if the dimensionless black hole parameters mass m = M
√
−Λ

and angular momentum a = a
√
−Λ do not satisfy the Diophantine conditions, linear per-

turbations remain bounded at the Cauchy horizon. This would then hold for Lebesgue-
generic but Baire-exceptional black hole parameters.

Since the black hole parameters satisfy the Hawking–Reall bound, superradiance is
absent. In particular, the instability in Theorem 3.1 originates from an intricate resonance
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phenomenon of stable trapping in the exterior coupled to the zero-frequency resonances
associated to the Killing generator of the Cauchy horizon in the interior. In order to
present our main theorem and the connection of the linear scalar analog of the Strong
Cosmic Censorship conjecture (Conjecture 3) on Kerr–AdS to Diophantine approximation,
we will first outline the behavior of waves on the black hole exterior in Section 3.1.1 and
then focus on the interior in Section 3.1.2. Finally, putting both insights together, the

Σ

I

initial data

CH
R

CH
L

(I)

(II)

H
L

HR

Figure 3.1: (I): Exterior propagation, (II): Interior propagation

connection to Diophantine approximation becomes transparent in Section 3.1.3. This
will lead to a new expectation that transcends Conjecture 3 and Conjecture 4 which we
formulate in Section 3.1.4 in terms of Conjecture 5 and Conjecture 6. In Section 3.1.5
we state the our main result Theorem 3.1, which resolves Conjecture 5 in the affirmative.
Then, in Section 3.1.6 we give an outlook on Conjecture 6. We briefly describe our proof
of Theorem 3.1 in Section 3.1.7 and give an outline of Chapter 3 in Section 3.1.8.

3.1.1 Exterior: log-decay, resonances and semi-classical heuristics

We recall from the discussion in the introduction of the thesis the result by Holzegel–
Smulevici [75, 77] that perturbations ψ solving (3.1.1) decay at a sharp inverse logarithmic
rate

|ψ| ≤ C

log(t)
(3.1.2)

on the Kerr–AdS exterior. The reason for the slow decay is a stable trapping phenomenon
near infinity. One manifestation of this phenomenon is the existence of so called quasi-
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modes and resonances (quasinormal modes) which are “converging exponentially fast” to
the real axis. While our proof of Theorem 3.1 does not make use of a quasinormal mode
construction or decomposition, they do provide good intuition—paired with the interior
analysis in Section 3.1.2—how the relation to Diophantine approximation arises. Our dis-
cussion of quasi(normal) modes starts with the property that (3.1.1) is formally separable
as shown in [13].

Separation of Variables. With the fixed-frequency ansatz

ψ =
u(r)√
r2 + a2

Sm`(aω, cos θ)eimφe−iωt, (3.1.3)

the wave equation (3.1.1) reduces to a coupled system of o.d.e’s (see already (3.2.36)).
The radial o.d.e. reads

− u′′(r∗) + V (r∗, ω, λm`)u = 0 (3.1.4)

for a rescaled radial variable r∗ ∈ (−∞, π2 ) with r∗(r = r+) = −∞, r∗(r = +∞) = π
2 . The

radial o.d.e (3.1.4) couples to the angular o.d.e. through the potential V which depends
on the eigenvalues λm`(aω) of the angular o.d.e.

P (aω)Sm`(aω, cos θ) = λm`(aω)Sm`(aω, cos θ), (3.1.5)

where P (aω) a self-adjoint Sturm–Liouville operator. The radial o.d.e. (3.1.4) is equipped
with suitable boundary conditions at r∗ = −∞ and r∗ = π

2 which stem from imposing reg-
ularity for ψ at the event horizon and Dirichlet boundary conditions at infinity. This leads
to the concept of a mode solution ψ of (3.1.1) defined to be of the form (3.1.3) such that
u solves (3.1.4) and Sm` solves (3.1.5) with the appropriate boundary conditions imposed.
If such a solution ψ were to exist for ω ∈ R, this would correspond to a time-periodic solu-
tion. Such a solutions are however incompatible with the fact that all admissible solutions
decay. Nevertheless, there exist “almost solutions” which are time-periodic. This leads us
to the concept of

Quasimodes. In [77] it was shown that there exists a set of real and axi-symmetric
frequencies (ωn,mn = 0, `n)n∈N such that the corresponding functions ψn “almost” solve
(3.1.1) in the sense that �gψn + 2

3Λψn = Fn with |Fn| . exp(−n). These almost-solutions
are called quasimodes and their existence actually implies that the logarithmic decay is
sharp as shown in [77]. These quasimodes are equivalently characterized through the
condition that the Wronskian W[uH+ , u∞] of solutions uH+ , u∞ of (3.1.4) adapted to the
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boundary conditions satisfies

|W[uH+ , u∞](ωn,mn, `n)| . e−cn. (3.1.6)

The reason why there exist such quasimodes is the fact that in the high frequency limit,
the potential in (3.1.4) admits a region of stable trapping, see already Fig. 3.2.

Quasinormal modes. Although the Wronskian W[uH, u∞] does not have any real
zeros, W[uH, u∞] 6= 0, it might very well have zeros in the lower half-plane with Im(ω) < 0.
These zeros correspond to so-called quasinormal modes, i.e. finite energy solutions of the
form (3.1.3) which decay at an exponential rate. For a more precise definition, construction
and a more detailed discussion of quasinormal modes in general we refer to the introduction
of [58]. Turning back to Kerr–AdS, we note that the bound (3.1.6) implies the existence
of zeros of W[uH+ , u∞] exponentially close to the real axis as shown in [59], see also [145].
More precisely, it was shown that there exist axisymmetric, finite energy solutions to
(3.1.1) of the form (3.1.3) with frequencies m = 0 and (ω, `) = (ωn, `n)n∈N satisfying

c`n ≤ |Re(ωn)| ≤ C`n, (3.1.7)

0 < − Im(ωn) ≤ C exp(−c`n). (3.1.8)

While the previous results were proved in axisymmetry to simplify the analysis, in princi-
ple, they also extend to non-axisymmetric solutions as remarked in [59].

Semi-classical heuristics. We turn to the heuristic distribution of quasinormal
mode frequencies in the semi-classical (high frequency) limit. For large m ∈ Z, ` ≥ |m|, we
expect a quasinormal mode with frequencies m, `, ω = ωR + iωI to exists, if the potential
V (r∗, ωR,m, λm`(aω)) appearing in the radial o.d.e. (3.1.4) satisfies (see Fig. 3.2)

• V (r∗, ωR,m, λm`(aωR)) > 0 for r1 < r∗ < r2,

• V (r∗, ωR,m, λm`(aωR) < 0 for r2 < r∗.

Note that the conditions above are satisfied for a range of ωR of the form c` < |ωR| < C`.
In addition, the potential has to satisfy the Bohr–Sommerfeld quantization condition, i.e.
the phase space volume

1

2π
vol
{

(r∗, ξ) : ξ2 + V (r∗, ωR,m, λm`(aωR)) < 0, r∗ > r2

}
(3.1.9)

should be an integer multiple modulo the Maslov index. Heuristically, we expect that for
given but large |m|, ` ≥ |m|, there exist N(m, `) quasinormal modes with N(m, `) ∼ ` and
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r∗2r∗1

V (r∗, ω,m, λm`(aω))

π
2 l

Figure 3.2: Potential V with parameters for which we expect quasimodes. The grey area
is a suitable projection of the phase space volume.

(ωm`n)n=1,··· ,N(m,`) satisfying

c` ≤ |Re(ωm`n)| ≤ C`, (3.1.10)

0 < − Im(ωm`n) ≤ C exp(−`). (3.1.11)

For our heuristic analysis we will now consider a solution ψ of (3.1.1) which consists
of a sum of quasinormal modes. (Warning: A general solution cannot be written as a sum
of quasinormal modes.) We denote with ψm`n the quasinormal mode associated to the
frequencies (ωm`n,m, `) and formally consider the sum

ψ(t, r, θ, φ) =
∑
m∈Z

∑
`≥|m|

N(m,`)∑
n=1

ψm`n(t, r, θ, φ). (3.1.12)

Restricting ψ to the event horizon yields

ψ �H (v, θ, φ̃+) =
∑
m∈Z

∑
`≥|m|

N(m,`)∑
n=1

a(m, `, n)e−iωm`nvSm`(aωm`n, cos θ)eimφ̃+ (3.1.13)

for suitable weights a(m, `, n). Since ψ �H has finite energy and finite L2 norm along the
horizon, we infer that

∑
m∈Z

∑
`≥|m|

∑N(m,`)
n=1 |a(m, `, n)|2 1

|2 Im(ωm`n)| < ∞. This is true if
the weights satisfy (see (3.1.11))

|a(m, `, n)|2 ∼ exp(−`). (3.1.14)
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3.1.2 Interior: scattering from event to Cauchy horizon

CH
R

CH
L

SHR→CHR

H
L

HR

Figure 3.3: Interior scattering SHR→CHR from event horizon H to Cauchy horizon CH

We now turn to the interior problem and we will view some aspects of the propagation
of ψ from the event horizon to the Cauchy horizon as a scattering problem as visualized in
Fig. 3.3. We refer to Chapter 1 for a detailed discussion of the scattering problem on black
hole interiors. Unlike Chapter 1, we will not develop a scattering theory for Kerr–AdS,
but rather make use of a key insight from Chapter 1 adapted to our context. Recall from
Proposition 1.6.2 that on Reissner–Nordström–AdS, the scattering operator SHR→CHR in
the interior has a zero-frequency resonance. This zero frequency, however, has to measured
with respect to the Killing generator of the Cauchy horizon. In the present case for Kerr–
AdS, the vector field K− := T +ω−Φ generates the Cauchy horizon. One thus expects the
analog of the scattering operator SHR→CHR on the interior of Kerr–AdS to have the form

SHR→CHR = F−1 ◦R(ω,m, `) ◦ F = F−1 ◦ r(ω,m, `)
ω − ω−m

◦ F (3.1.15)

with the zero frequency resonance ω−ω−m = 0. At this point, we also refer to Fig. 3.4 for
an illustration of the main difference of the behavior of linear perturbations on Reissner–
Nordström–AdS and Kerr–AdS.

3.1.3 Heuristics and relation to Diophantine approximation

We now connect the exterior analysis from Section 3.1.1 to the interior analysis in Sec-
tion 3.1.2. The following analysis will be purely formal but illustrates the connection to
Diophantine approximation. From the exterior analysis, we assume that our solution ψ is
a sum of quasinormal modes as in (3.1.13). Now, we have to apply the scattering operator

169



Σ

I

initial data

CH
R

CH
L

(I)

(II)

H
L

HR

(II) Interior: Low frequency resonance ω = 0

(I) Exterior: High frequency stable trapping |ω|, |m|, `→ +∞

Decouple

Uniform boundedness: |ψ| < C

Σ

I

initial data

CH
R

CH
L

(I)

(II)

H
L

HR

(II) Interior: Low frequency resonance ω − ω−m = 0

(I) Exterior: High frequency stable trapping |ω|, |m|, `→ +∞

Coupling possible for ω ∼ ω−m and ω,m→ +∞

Boundedness |ψ| < C or Blow-up |ψ| → +∞?

⇒ Diophantine approximation

Figure 3.4: Reissner–Nordström–AdS (top): High frequency stably trapped perturbations
decouple from low frequency resonance ω = 0.
Kerr–AdS (bottom): High frequency stably trapped perturbations couple to low fre-
quency resonance ω = ω−m.

(3.1.15) to obtain the behavior at the Cauchy horizon. First, we may formally think of
the Fourier transform along the event horizon to be only supported on the quasinormal
frequencies to obtain

F [ψ �H] ∼
∑
m∈Z

∑
`≥|m|

N(m,`)∑
n=1

a(m, `, n)δ(ω − ωm`n). (3.1.16)

Now, we multiply the reflection coefficient

R(ω,m, `) =
r(ω,m, `)

ω − ω−m
(3.1.17)
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in Fourier space. Then, taking the inverse Fourier transform and neglecting r yields
formally

ψ �CH ∼ F−1 ◦R ◦ F [ψ �H]

∼
∑
m∈Z

∑
`≥|m|

N(m,`)∑
n=1

∫
R

a(m, `, n)δ(ω − ωm`n)

ω − ω−m
e−iωueimφ̃−Sm`(aω)dω. (3.1.18)

Finally, we consider the L2(S2)-norm of the sphere such that we formally obtain

‖ψ �CH (u0)‖2L2(S2) ∼
∑
m∈Z

∑
`≥|m|

N(m,`)∑
n=1

|a(m, `, n)|2

|ωm`n − ω−m|2
, (3.1.19)

where we recall that a(m, `, n) decay exponentially as in (3.1.14). To resolve Conjecture 3,
we have to determine whether for such exponentially decaying coefficients a(m, `, n), the
sum (3.1.19) remains uniformly bounded or whether this sum can become infinite.

Small divisors and Diophantine approximation. The convergence of (3.1.19)
is an example par excellence of a small divisor problem . Indeed, if |ωm`n − ω−m|
is also exponentially small in m, `, n, the sum in (3.1.19) becomes infinite for general
a(m, `, n). More precisely, for the sum in (3.1.19) to become infinite, it suffices that there
exist infinitely many (m, `, n) such that |ωm`n − ω−m| decays exponentially. Thus, we
conjecture blow-up if

|ωm`n − ω−m| < exp(−`) for infinitely many admissible (m, `, n), (3.1.20)

where (m, `, n) are admissible if m ∈ Z, ` ≥ |m|, n = 1, . . . , N(m, `).

Conditions like (3.1.20) lie at the heart of Diophantine approximation . Indeed,
semi-classical heuristics suggest that ωm`n are uniformly distributed and we assume for a
moment that ωm`n = c(`+ n

` ) for n = 0, 1, . . . , ` for a constant c = c(M,a,Λ). Then, the
ratio r(m, a) := ω−

c , which is dimensionless and only depends on the dimensionless black
hole parameters (m = M

√
−Λ, a = a

√
−Λ), has to satisfy the Diophantine condition

r(M,a,Λ) ∈ R :=

{
x ∈ R :

∣∣∣∣`+ n
`

m
− x
∣∣∣∣ < exp(−`) for ∞-many admissible (m, `, n)

}
.

(3.1.21)

Thus, from our heuristic derivation, we conjecture that linear perturbations blow up
on the Cauchy horizon of Kerr–AdS with mass M = m/

√
−Λ and angular momentum
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a = a/
√
−Λ if the ratio r = r(m, a) satisfies the Diophantine condition (3.1.21).

The set R is Baire-generic and Lebesgue-exceptional. The set R can be written
as a lim sup set as

R =
⋂

m0∈N

⋃
|m|≥m0

⋃
`≥|m|

⋃
0≤n≤`

{
x ∈ R :

∣∣∣∣`+ n
`

m
− x
∣∣∣∣ < exp(−`)

}
. (3.1.22)

It is a countable intersection of open and dense sets such that R is of second category in
view of Baire’s theorem. Thus, the set R is generic from a topological point of view, which
we refer to as Baire-generic. On the other hand, from a measure-theoretical point of
view, the set R is exceptional. Indeed, an application of the Borel–Cantelli lemma shows
that the Lebesgue measure of R vanishes. This is the easy part of the famous theorem by
Khintchine [84] stating that for a decreasing function φ, the set

W [φ] :=

{
x ∈ R :

∣∣∣∣x− p

q

∣∣∣∣ < φ(q)

q
for ∞-many rationals

p

q

}
(3.1.23)

has full Lebesgue measure if and only if the sum
∑

q φ(q) diverges. Thus, R is Lebesgue-
exceptional .

More refined measure: The Hausdorff and packing measures. This naturally
leads us to consider the more refined versions of measure, the so-called Hausdorff and
packing measures Hf , P f together with their associated dimensions dimH , dimP

(see Section 3.2.1). The Hausdorff and packing measure generalize the Lebesgue measure
to non-integers. In a certain sense, they can be considered to be dual to each-other:
The Hausdorff measure approximates and measures sets by a most economical covering,
whereas the packing measure packs as many disjoint balls with centers inside the set. While
for all sufficiently nice sets these notions agree, they indeed turn out to give different results
in our context.

We first consider the Hausdorff dimension. A version of the Borell–Cantelli lemma
(more precisely the Hausdorff–Cantelli lemma) and using the natural cover for R shows
that the set R is of Hausdorff dimension zero. This again can be seen as a consequence
of a theorem going back to Jarník [79] and Besicovitch [7] which states the set W [φ] as in
(3.1.23) has Hausdorff measure

Hs(W [φ]) =

0 if
∑

q q
1−sψs(q) <∞

+∞ if
∑

q q
1−sψs(q) =∞

(3.1.24)
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for s ∈ (0, 1). However, measuring also logarithmic scales, i.e. considering the Hausdorff
measure Hf for f = logt(r) for some t > 0, it follows that the set R is of logarithmic
Hausdorff dimension . On the other hand, using the dual notion of packing dimension,
it turns out that R has full packing dimension , a consequence of the fact that it is a
set of second category (Baire-generic) [46].

Summary of properties of R. To summarize, we obtain that

• R is Baire-generic,

• R is Lebesgue-exceptional,

• R has zero Hausdorff dimension dimH(R) = 0,

• R is of logarithmic Hausdorff dimension,

• R has full packing dimension dimP (R) = 1.

The above heuristics will enter in our revised conjectures, Conjecture 5 and Conjecture 6,
which transcend Conjecture 3 and Conjecture 4 for Λ < 0. Before we turn to that in
Section 3.1.4, we briefly discuss other aspects of PDEs and dynamical systems for which
Diophantine approximation plays a crucial role.

Diophantine approximation in dynamical systems and PDEs. Most promi-
nently, Diophantine approximation and the small divisor problem are intimately tied to
the problem of the stability of the solar system [110] and more generally, the stability of
Hamiltonian systems in classical mechanics. We refer to the discussion in the prologue
of the thesis. The small divisor problem and Diophantine approximation are ubiquitous
in modern mathematics and arise naturally in many other aspects of PDEs and dynam-
ical systems. We refer to [47, 114] and for a connection to wave equations with periodic
boundary conditions and to the more general results in [61] as well as the monograph
[130]. Similar results have been obtained for the Schrödinger equation on the torus in [86,
80, 45]. Further applications of Diophantine approximation include the characterization
of homeomorphisms on S1 by the Diophantine properties of their rotation numbers or
analyzing the Lyapunov stability of vector fields, see the discussion in [87].

3.1.4 Conjecture 5 and Conjecture 6 replace Conjecture 3 and Conjec-
ture 4 for AdS black holes

With the above heuristics at hand, we now transcend Conjecture 3 and Conjecture 4
for subextremal Kerr–AdS black holes below the Hawking–Reall bound in terms of the
following two conjectures.
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Conjecture 5. Linear scalar perturbations ψ satisfying (3.1.1), and arising from generic
smooth data on a spacelike hypersurfaces with Dirichlet boundary conditions at infinity,
blow up

‖ψ‖L2(S2)(u, r)→ +∞ (3.1.25)

at the Cauchy horizon of Kerr–AdS for a set PBlow-up of dimensionless black hole param-
eters mass m = M

√
−Λ and angular momentum a = a

√
−Λ with the following properties

• PBlow-up is Baire-generic (of second category),

• PBlow-up is Lebesgue-exceptional (zero Lebesgue measure).

Remark 3.1.1. Remark that Conjecture 5 is an instability result for a linear equation.
Thus, it suffices to show that there exists one admissible set of initial data (ψ0, ψ1) leading
to a solution ψ which blows up in the sense of (3.1.25). Indeed, if true, this shows that
data (ψ̃0, ψ̃1) for which the arising solution does not blow up are exceptional in the sense
that they obey the following co-dimension 1 property: The solution arising from the per-
turbed data (ψ0 + cψ̃0, ψ1 + cψ̃1) blows up for each c ∈ R \ {0}. This is analogous to the
notion of genericity used by Christodoulou in his proof of weak cosmic censorship for the
spherically symmetric Einstein-scalar-field system [16, 15]. It is an interesting question
to find further, more refined genericity conditions for the set of initial data leading to
solutions which blow up as in (3.1.25).

Remark 3.1.2. Moreover, we conjecture that the set PBlow-up has

• Hausdorff dimension dimH(PBlow-up) = 1 + log,

• full packing dimension dimP (PBlow-up) = 2.

Moreover, in view of our discussion we additionally conjecture

Conjecture 6. (A) Linear perturbations ψ satisfying (3.1.1), and arising from generic
smooth data on a spacelike hypersurfaces with Dirichlet boundary conditions at infinity,
remain uniformly bounded

‖ψ‖L2(S2)(u, r) ≤ C, (3.1.26)

yet, blow up in energy

‖ψ‖H1
loc
→ +∞ (3.1.27)
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at the Cauchy horizon of Kerr–AdS for a set PBounded of dimensionless black hole param-
eters mass m = M

√
−Λ and angular momentum a = a

√
−Λ with the following properties

• PBounded is Baire-exceptional (of first category),

• PBounded is Lebesgue-generic (full Lebesgue measure).

(B) Linear perturbations ψ satisfying (3.1.1), and arising from generic smooth data on a
spacelike hypersurfaces with Dirichlet boundary conditions at infinity blow up in energy

‖ψ‖H1
loc
→ +∞ (3.1.28)

at the Cauchy horizon of Kerr–AdS for all subextremal parameters below the Hawking–
Reall bound.

Blow-up in amplitude. Note that in Conjecture 5 (and Conjecture 6) we have re-
placed the statement of blow-up in amplitude from Conjecture 3 with statement about the
blow-up of the L2-norm on the sphere. Indeed, the blow of the L2-norm in Conjecture 5, if
true, implies that ‖ψ‖L∞(S2) → +∞. In this sense, if Conjecture 5 is true, the amplitude
also blows up.

It is however an interesting and open question of whether one may actually replace the
L∞(S2) blow-up statement in (3.1.25) with the pointwise blow-up

lim
r→r−

|ψ(u, r, θ, φ∗−)| → +∞ (3.1.29)

for every (θ, φ∗−) ∈ S2. One may even speculate about the geometry of the set of
(θ, φ∗−) ∈ S2 for which pointwise blow-up holds. It appears that ultimately one has to
quantitatively understand the nodal domains associated to the generalized spheroidal har-
monics Sm`(aω−m, cos θ) at the resonant frequency.

More general boundary conditions. The above conjectures are both stated for
Dirichlet conditions at infinity. Neumann conditions are also natural to consider and
indeed well-posedness was proved in [144, 78]. For Neumann conditions we also expect
the same behavior as for the case of Dirichlet boundary conditions. For other more general
conditions, it may be the case that linear waves grow exponentially (as for suitable Robin
boundary conditions [78]) or on the other hand even decay superpolynomially as in the
case for purely outgoing conditions [74]. For even more general boundary conditions, even
well-posedness may be open.
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3.1.5 Main result: Conjecture 5 is true

Our main result of Chapter 3 is the following resolution of Conjecture 5.

Theorem 3.1. Conjecture 5 is true.

The proof of Theorem 3.1 will be given in Section 3.8.3.

Remark 3.1.3. We also prove in Section 3.8.3 the statement about the packing dimension
of PBlow-up as conjectured in Remark 3.1.2. The statement concerning the Hausdorff
dimension, however, remains open.

Remark 3.1.4. While we only consider Dirichlet boundary conditions at infinity, in prin-
ciple, our proof is expected to also apply to Neumann boundary conditions.

3.1.6 Outlook on Conjecture 6

We also expect that our methods provide a possible framework for the resolution of Con-
jecture 6.

We have already remarked in the introduction to the present thesis that our methods
may in principle also show the statement of energy blow-up Conjecture 6(B). Indeed, we
expect that a quasinormal mode which decays at sufficiently slow exponential decay rate
compared to the surface gravity of the Cauchy horizon will indeed lead to blow up in
energy at the Cauchy horizon.

Towards Conjecture 6(A), we note that our proof, particularly the formula (3.8.100),
reveals the main obstruction for boundedness which can serve as a starting point for a
resolution of Conjecture 6(A).

3.1.7 Brief description of the proof

We will give a brief description of the key ideas of our proof. First, we mention that
compared to the heuristic discussion above, we will not make use of quasinormal modes.
Our proof will be based on frequency analysis on the real axis, i.e. with ω ∈ R.

We start with the interior analysis. We recall from our previous discussion that the
analog of a scattering operator (3.1.15) from the event to the Cauchy horizon has a singu-
larity at the resonant frequency ω − ω−m. In reality, this singularity becomes evident in
the formula (3.8.100) which roughly translates to the statement that, as r → r−, we have

‖ψ(u0, r)‖2L2(S2) ∼
∑
m`

|m|2 |FH[ψ �H](ω = ω−m)|2 + Err(D), (3.1.30)
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where Err(D) is uniformly bounded by an (higher order) energy of the initial data. Both,
the proof and the use of formula (3.8.100) lie at the heart of the proof of Theorem 3.1. The
proof of (3.8.100) is technical and combines physical space methods with techniques from
harmonic analysis. One of the key technical steps (see Proposition 3.3.3) is a quantitative
bound (see already (3.3.67)) on the derivative of the generalized spheroidal harmonics

sup
|aω−aω−m|< 1

m

‖∂ωSm`(aω)‖2L2 . m

near the resonant frequency. This is shown in Section 3.3.3 and the proof relies on uniform
bounds (in m, ` and ω ≈ ω−m) on the resolvent of the associated singular Sturm–Liouville
operator, see the discussion in Section 3.3.3. These bounds are shown by constructing the
associated integral kernel using suitable approximations with parabolic cylinder functions
and Airy functions. The analogous resolvent bounds and estimates for solutions of the
radial o.d.e. in the interior are shown in Section 3.8.1. The proofs in Section 3.8.1 rely on
WKB approximations and estimates on Volterra integral equations.

In what follows, we will connect the aforementioned interior analysis and in particular
the formula (3.1.30) to the exterior. A key step is to characterize the generalized Fourier
transform along the event horizon FH[ψ �H] in terms of the initial data which is the content
of Section 3.7. While in the actual proof (see already Proposition 3.7.1), we will make use
of suitable cut-offs in time and space, we may think of FH[ψ �H] as having the form

FH[ψ �H](ω,m, `) ∼ 1

W[uH, u∞]

∫
Σ0

u∞H(ψ0, ψ1)dvolΣ0 , (3.1.31)

where H(ψ0, ψ1) depends on the initial data which will be chosen to be smooth and
compactly supported. A consequence of the work by Holzegel–Smulevici [75] is that for
our choice of initial data, higher order energy fluxes along the event horizon are bounded.
Thus, |∂iv /∇

j
ψ �H |/g ∈ L2(H) for all i, j ≥ 0 which corresponds in Fourier space to the

statement that

|ω|i`j1 |m|j2FH[ψ �H] ∈ L2(Rω × Zm × Z`≥|m|) for all i, j1, j2 ≥ 0. (3.1.32)

In view of the above and (3.1.30), in order to show blow-up, it is necessary that the
Wronskian (cf. Section 3.1.1 before) evaluated at the resonant frequency W[uH, u∞](ω =

ω−m) decays (at least) superpolynomially for infinitely many (m, `). In our proof, we
actually require that the Wronskian even decays exponentially |W[uH, u∞](ω = ω−m)| ≤
e−`e−|m| for infinitely many (m, `). (Connecting this to our previous heuristic discussion

177



with quasinormal modes in Sections 3.1.1–3.1.3, this can be interpreted as the statement
that there exist infinitely many quasinormal mode frequencies exponentially close to the
resonant frequencies ω = ω−m.)

Before we address this question of whether the Wronskian actually decays exponen-
tially |W[uH, u∞](ω = ω−m)| ≤ e−`e−|m| for infinitely many (m, `), we will assume for a
moment that this is indeed the case. Then, with carefully chosen initial data (see already
Section 3.6), the decay of the Wronskian |W[uH, u∞](ω = ω−m)| ≤ e−`e−|m| for infinitely
many (m, `) corresponds to peaks in FH[ψ �H] at the resonant frequencies (see already
Lemma 3.6.2) which are however consistent with the integrability properties of FH[ψ �H]

as in (3.1.32). Since these peaks appear for infinitely many (m, `), infinitely many sum-

mands of (3.1.30) are greater than em
1
4 , see already (3.8.137), from which the blow-up

result follows.

Finally, this leaves us to address the question of whether the Wronskian satisfies
|W[uH, u∞](ω = ω−m)| ≤ e−`e−m for infinitely many (m, `). Similar to our previous
heuristic discussion, we will show that this Diophantine conditions holds true for a set
of dimensionless black hole parameters (m, a) = (M

√
−Λ , a

√
−Λ) ∈ PBlow-up which is

Baire-generic but Lebesgue-exceptional. We specify this set PBlow-up in Definition 3.5.3.

3.1.8 Outline of Chapter 3

In Section 3.2 we set up the Kerr–AdS spacetime and recall the decay statement on
the exterior as well as Carter’s separation of variables. Section 3.3 and Section 3.4 are
devoted to the analysis of the angular and radial o.d.e., respectively. Then, in Section 3.5
we define the set PBlow-up and show its topological and metric properties. Then, for fixed
parameters in PBlow-up we define suitable compactly supported initial data in Section 3.6.
In Section 3.7 we treat the exterior problem and estimate the behavior of the solution
along the horizon. Finally, in Section 3.8 we propagate the solution from the event to the
Cauchy horizon and eventually show the blow-up result.

3.2 Preliminaries

3.2.1 Fractal measures and dimensions

3.2.1.1 Hausdorff and Packing measures

We begin by introducing the Hausdorff and packing measure. We refer to the monograph
[46] for a more detailed discussion. For an increasing dimension function f : [0,∞) →
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[0,∞) we define the Hausdorff measure Hf (A) of a set A as

Hf (A) := sup
δ>0

Hf
δ (A), (3.2.1)

where

Hf
δ (A) := inf{

∞∑
i=1

f(diam(Ui)) : {Ui}∞i=1 countable cover of A, diam(Ui) ≤ δ}. (3.2.2)

If f(r) = rs, we write Hs = Hrs and for s ∈ N, the measure Hs reduces to the Lebesgue
measure up to some normalization. While the Hausdorff measure quantifies the size of a set
by approximation it from outside via efficient coverings, we also recall the dual notation:
The packing measure quantifies the size of sets by placing as many disjoint balls with
centers contained in the set. Again, for a dimension function f , we define the pre-measure

P f0 (A) := lim sup
δ→0

{ ∞∑
i=1

f(diam(Bi)) : {Bi}∞i=1 collection of closed,

pairwise disjoint balls with diam(Bi) ≤ δ and centers in A
}

(3.2.3)

and finally the packing measure as

P f (A) := inf

{ ∞∑
i=1

P f0 (Ai) : A ⊂
∞⋃
i=1

Ai

}
. (3.2.4)

3.2.1.2 Hausdorff and Packing dimensions

For f(r) = rs Hausdorff and Packing dimensions dimH and dimP are now characterized
as the jump value, where the respective measure jumps from 0 to ∞, more precisely

dimH(A) = sup{s : Hs(A) = 0}, dimP (A) = sup{s : P s(A) = 0}. (3.2.5)

We also say that a set A has Hausdorff dimension dimH(A) = s+ log if the jump appears
for the dimension function f(r) = rs logt(r) for some t > 0.

3.2.2 Kerr–AdS spacetime

3.2.2.1 Parameter space

We let the value of the cosmological constant Λ < 0 be fixed throughout the paper. For
convenience and as it is convention, we re-parametrize the cosmological constant by the
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AdS radius

l :=

√
−3

Λ
. (3.2.6)

We consider Kerr–AdS black holes which are parametrized by their mass M > 0 and
their angular momentum a 6= 0. Moreover, without loss of generality we will only consider
a > 0 and require 0 < a < l for the spacetime to be regular. For M > 0, 0 < a < l, we
consider the polynomial

∆(r) := (a2 + r2)

(
1 +

r2

l2

)
− 2Mr. (3.2.7)

We are interested in spacetimes without naked singularities. To ensure this, we define a
parameter tuple (M,a) ∈ R2

>0 to be non-degenerate if 0 < a < l and ∆(r) defined in (3.2.7)
has two real roots satisfying 0 < r− < r+. Finally, to exclude growing mode solutions (see
[40]) we assume the Hawking–Reall (non-superradiant) bound

r2
+ > al. (3.2.8)

This leads us to the definition of the dimensionless black hole parameter space

P := {(m, a) ∈ R2
>0 : (M,a) := (ml/

√
3, al/

√
3) is non-degenerate and r2

+ > al}.

Note that in view of (3.2.6), we have M = m/
√
−Λ = ml/

√
3 and a = a/

√
−Λ = al/

√
3.

Finally, remark that P is a Baire space as a (non-empty) open subset of R2. In
particular, this allows us to speak about the notion of Baire-exceptional and Baire-generic
subsets. Recall that a subset is Baire-meager if it is a countable union of nowhere dense
sets and a subset is called Baire-generic if it is a countable intersection of open and dense
sets. Note that if a subset is Baire-generic then its complement is meager and vice versa.
Finally, in a Baire space every Baire-generic subset is dense.

3.2.2.2 Kerr–AdS spacetime

Fixed manifold. We begin by constructing the Kerr–AdS spacetime. We define the
exterior region R and the black hole interior B as smooth four dimensional manifolds
diffeomorphic to R2×S2. On R and on B we assume to have global (up to the well-known
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degeneracy on S2) coordinate charts

(tR, rR, θR, φR) ∈ R× (r+,∞)× S2, (3.2.9)

(tB, rB, θB, φB) ∈ R× (r−, r+)× S2. (3.2.10)

These coordinates (t, r, φ, θ) are called Boyer–Lindquist coordinates. If it is clear from the
context which coordinates are being used, we will omit their subscripts throughout the
chapter.

The Kerr–AdS metric. For (m, a) ∈P and M = ml/
√

3 and a = al/
√

3, we define
the Kerr–AdS metric on R and B in terms of the Boyer–Lindquist coordinates as

gKAdS :=− ∆−∆θa
2 sin2 θ

Σ
dt⊗ dt+

Σ

∆
dr ⊗ dr +

Σ

∆θ
dθ ⊗ dθ

+
∆θ(r

2 + a2)2 −∆a2 sin2 θ

Ξ2Σ
sin2 θdφ⊗ dφ

− ∆θ(r
2 + a2)−∆

ΞΣ
a sin2 θ(dt⊗ dφ+ dφ⊗ dt), (3.2.11)

where

Σ := r2 + a2 cos θ, ∆θ := 1− a2

l2
cos2 θ, Ξ := 1− a2

l2
(3.2.12)

and ∆ is as in (3.2.7). We will also write ∆x := 1− a2

l2
x2 which arises from the substitution

x = cos θ in ∆θ. At this point we define

ω+ :=
aΞ

r2
+ + a2

, ω− :=
aΞ

r2
− + a2

, ωr :=
aΞ

r2 + a2
. (3.2.13)

Now, we time-orient the patches R and B with −∇tR and −∇rB, respectively. We also
note that ∂t and ∂φ are Killing fields in each of the patches. The inverse metric reads

g−1
KAdS =

(
−(r2 + a2)2

Σ∆
+
a2 sin2 θ

Σ∆θ

)
∂t ⊗ ∂t +

∆

Σ
∂r ⊗ ∂r +

∆θ

Σ
∂θ ⊗ ∂θ

+

(
Ξ2

Σ∆θ sin2 θ
− Ξ2a2

Σ∆

)
∂φ ⊗ ∂φ +

(
Ξa(r2 + a2)

∆Σ
− Ξ

∆θΣ

)
(∂t ⊗ ∂φ + ∂φ ⊗ ∂t).

(3.2.14)
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On R and B, we define the tortoise coordinate r∗(r) by

dr∗

dr
(r) :=

r2 + a2

∆(r)
, (3.2.15)

where ∆ is as in (3.2.7). For definiteness we set r∗(r = +∞) := π
2 l on R and r∗(1

2(r+ +

r−)) = 0 on B.

Eddington–Finkelstein-like coordinates. We also define outgoing Eddington–Finkel-
stein-like coordinates (v, r, θ, φ̃+) in the exterior R as

v(t, r) := t+ r∗χv(r), φ̃+(φ, r) := φ+ ω+r
∗(r)χv(r) mod 2π, (3.2.16)

where χv(r) is a smooth monotone cut-off function with χv(r) = 1 for r ≤ r+ + η and
χv(r) = 0 for r ≥ r+ + 2η for some η > 0 small enough such that J+({r > 2r+} ∩ {tR =

0}) ∩ {v = 0} = ∅ 1 and η < r+
4 . In these coordinates the spacetime (R, gKAdS) can

be extended (see [75] for more details) to a time-oriented Lorentzian manifold (D, gKAdS)

defined as D := {(r, v, θ, φ̃+) ∈ (r−,∞)× R× S2}. Moreover, the Lorentzian submanifold
(D ∩ {r− < r < r+}, gKAdS) coincides (up to time-orientation preserving isometry) with
(B, gKAdS). We identify these regions and denote the (right) event horizon as HR := {r =

r+}. The Killing null generator of the event horizon is

K+ := ∂v + ω+∂φ̃+
. (3.2.17)

The Killing field K+ is called the Hawking vector field and is future-directed and timelike
in R, a consequence the Hawking–Reall bound r+ > al.

To attach the (left) Cauchy horizon CHL we introduce in B further coordinates (v, r, θ, φ̃−),
as

v = t+ r∗, φ̃−(φ, r) := φ+ ω−r
∗ mod 2π, r = r, θ = θ. (3.2.18)

In these coordinates, the Lorentzian manifold extends smoothly to r = r− and the null
hypersurface CHL := {r = r−} is the left Cauchy horizon with null generator

K− := ∂v + ω−∂φ̃− . (3.2.19)

Note that ∂v = ∂t and ∂φ̃− = ∂φ in B.

1Note that ∇v is not timelike everywhere on R, in particular g(∇v,∇v) = a2 sin2 θΣ−1∆−1
θ for r ∈

[r+, r+ + η].
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To attach the left event horizon HL we introduce new coordinates on B defined as
(u, r, θ, φ∗+) ∈ R× (r−, r+)× S2 by

u(t, r) := −t+ r∗, φ∗+ := φ− ω+r
∗ mod 2π, r = r, θ = θ (3.2.20)

on B and attach HL as HL = {r = r+}. Similarly, introduce (u, r, θ, φ∗−) as

u(t, r) := −t+ r∗, φ∗− := φ− ω−r∗ mod 2π, r = r, θ = θ (3.2.21)

on B and attach the right Cauchy horizon CHR as CHR = {r = r−} in this coordinate
system. Indeed, K+ and K− extend to Killing vector fields expressed as K+ := −∂u +

ω+∂φ∗+ and K− := −∂u + ω−∂φ∗− . They are past directed Killing generators of HL and
CHR, respectively. Finally, we attach the past and future bifurcation spheres BH and BCH.
Formally, they are defined as BH := {v = −∞} × {r = r+} × S2 = {u = −∞} × {r =

r+} × S2 respectively in the coordinates systems (v, r, θ, φ̃+) and (u, r, θ, φ∗+). Similarly,
we have BCH := {v = +∞} × {r = r−} × S2 = {u = +∞} × {r = r−} × S2. Finally, we
define the Cauchy horizon CH := CHL ∪ CHR ∪ BCH. This is standard and we refer to
the preliminary section of [30] for more details. The metric gKAdS extends to a smooth
Lorentzian metric on BH, BCH and we define (MKAdS, gKAdS) as the Lorentzian manifold
constructed above. Moreover, T := ∂t and Φ := ∂φ extend to smooth Killing vector fields
onMKAdS with K+ = T + ω+Φ and K− = T + ω−Φ.

Kerr–AdS-star coordinates. On the exterior region R we define an additional sys-
tem of coordinates (t∗, r, θ, φ∗) from the Boyer–Lindquist coordinates through

t∗ := t+A(r) , r = r, θ = θ, φ∗ := φ+B(r) (3.2.22)

where dA
dr = 2Mr

∆(1+ r2

l2
)
and dB

dr = aΞ
∆ and A = B = 0 at r = +∞. As shown in [75,

Section 2.6], these coordinates extend smoothly to the event horizon HR and we call the
coordinates (t∗, r, θ, φ∗) covering R∪HR Kerr–AdS-star coordinates. Note that the event
horizon is characterized as HR = {r = r+} in these coordinates.

Foliations and Initial Hypersurface. We foliate the region R∪HR with constant
t∗ hypersurfaces Σt∗ which are spacelike and intersect the event horizon at r = r+. We
also foliate the region R with constant t hypersurfaces Σt which are also spacelike and
terminate at the bifurcation sphere BH as r → r+. For the initial data we will consider
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the axially symmetric spacelike hypersurface

Σ0 := Σt=0 = R∩ {tR = 0}. (3.2.23)

Note that Σ0 does not contain the bifurcation sphere BH. We will impose initial data on
Σ0 ∪ BH ∪ HL. We will choose the support of our initial data to lie in a compact subset
K ⊂ Σ0 ∩ {r ≥ 2r+}. Thus, we assume vanishing data on HL ∪ BH. This will be made
precise in Section 3.6.

Boundary conditions. Note that the conformal boundary I, expressed formally as
{r = +∞}, is timelike such that (MKAdS, gKAdS) is not globally hyperbolic. Additional
to Cauchy data for (3.1.1), we will also impose Dirichlet boundary conditions at I = {r =

+∞}.

3.2.3 Conventions

If X and Y are two (typically non-negative) quantities, we use X . Y of Y & X to
denote that X ≤ C(M,a, l)Y for some constant C(M,a, l) > 0 only depending on the
black hole parameters (M,a, l) unless stated explicitly otherwise. We also use X = O(Y )

for |X| . Y . We use X ∼ Y for X . Y . X and if the constants appearing in .,&,∼ or
O depend on additional parameters ai we include those as a subscript, e.g. X .a1a2 Y .

In Section 3.6 we will fix parameter (m, a) ∈PBlow-up and all constants appearing in .
and & throughout Section 3.6 Section 3.7, Section 3.8 will only depend on this particular
choice and on l > 0 as defined in (3.2.6).

3.2.4 Norms and energies

To state the well-posedness result of (3.1.1) and the logarithmic decay result on the Kerr–
AdS exterior, we define the following norms and energies in the exterior region R ∪ HR.
These are based on the works [73, 75, 77], where more details can be found. In the
region R ∪ HR we let /g and /∇ be the induced metric and induced connection of the
spheres S2

t∗,r of constant t∗ and r. For a smooth function ψ we denote | /∇ . . . /∇ψ|2 =

/gAA
′ · · · gBB′ /∇A . . . /∇Bψ̄ /∇A′ . . . /∇B′ψ. Now, we define energy densities in Kerr–AdS-star

coordinates as

e1[ψ] :=
1

r2
|∂t∗ψ|2 + r2|∂rψ|2 + | /∇ψ|2 + |ψ|2, (3.2.24)

e2[ψ] := e1[ψ] + e1[∂t∗ψ] +
3∑
i=1

e1[Ωiψ] + r4|∂r∂rψ|2 + r2|∂r /∇ψ|2 + | /∇ /∇ψ|2, (3.2.25)
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and similarly for higher order energy densities. Here, (Ωi)i=1,2,3 denote the angular mo-
mentum operators on the unit sphere in θ, φ∗ coordinates. We also define the energy norms
on constant t∗ hypersurfaces as

‖ψ‖2
H0,s
AdS(Σt∗ )

=

∫
Σt∗

rs|ψ|2r2dr sin θdθdφ∗, (3.2.26)

‖ψ‖2
H1,s
AdS(Σt∗ )

=

∫
Σt∗

rs
(
r2|∂rψ|2 + | /∇ψ|2 + |ψ|2

)
r2dr sin θdθdφ∗, (3.2.27)

‖ψ‖2
H2,s
AdS(Σt∗ )

=‖ψ‖2
H1,s
AdS(Σt∗ )

+

∫
Σt∗

rs
(
r4|∂r∂rψ|2 + r2| /∇∂rψ|2

+ | /∇ /∇ψ|2
)
r2dr sin θdθdφ∗. (3.2.28)

We now denote the space Hk,s
AdS(Σt∗) as the space of functions with ∇iψ ∈ L2

loc(Σt∗) for i =

0, . . . , k and such that ‖ψ‖2
Hk,s
AdS(Σt∗ )

<∞ and we denote with CHk
AdS the space of functions

ψ on R∪HR such that ψ ∈
⋂
q=0,...,k C

q(Rt∗ ;H
k−q,sq
AdS (Σt∗)), where sk = −2, sk−1 = 0 and

sj = 0 for j = 0, . . . , k − 2.

3.2.5 Well-posedness and log-decay on the exterior region

In the following we state well-posedness and decay for (3.1.1) with Dirichlet boundary
conditions. The following theorem is a summary of several results by Holzegel, Smulevici
and Warnick shown in [73, 75, 77, 78].

Theorem 3.2 ([73, 75, 77, 78]). Let the initial data Ψ0,Ψ1 ∈ C∞c (Σ0). Assume Dirichlet
boundary conditions at I and vanishing incoming data on HL ∪ BH. Then, there exists
a unique solution ψ ∈ C∞(MKAdS \ CH) of (3.1.1) such that ψ|Σ0 = Ψ0, nΣ0ψ|Σ0 = Ψ1,
ψ �HL∪BH= 0. The solutions satisfies ψ �R∪HR∈ CHk

AdS for every k ∈ N. We also have
boundedness of energy as∫

Σt∗2

e1[ψ]r2 sin θdrdθdφ∗ .
∫

Σt∗1

e1[ψ]r2 sin θdrdθdφ∗ .
∫

Σ0

e1[ψ]r2 sin θdrdθdφ (3.2.29)

for t∗2 ≥ t∗1 ≥ 0 as well as for all higher order energies. Similarly, the energy along the
event horizon is bounded by the initial energy as

∑
0≤i1+i2≤k

∫
HR
| /∇i1∂i2v ψ|2r2 sin θdvdθdφ̃+ .k

∫
Σ0

ek[ψ]r2 sin θdrdθdφ. (3.2.30)
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Moreover, the energy of ψ decays∫
Σt∗

e1[ψ]r2 sin θdrdθdφ∗ .
1

[log(2 + t∗)]2

∫
Σ0

e2[ψ]r2 sin θdrdθdφ (3.2.31)

for all t∗ ≥ 0 and similar estimates hold for all higher order energies. Similarly, by
commuting and applications of the Soboelv embeddings, ψ and its derivatives also decay
pointwise

∑
0≤i1+i2+i3≤k

| /∇i1∂i2t∗∂
i3
r ψ|2 .k

1

[log(2 + t∗)]2

∫
Σ0

ek+3[ψ]r2 sin θdrdθdφ. (3.2.32)

3.2.6 Separation of variables

The wave equation (3.1.1) is formally separable [13] and we can consider pure mode solu-
tion in the Boyer–Lindquist coordinates of the form

ψ(t, r, θ, φ) =
u(r)√
r2 + a2

e−iωtSm`(aω, cos θ)eimφ (3.2.33)

for two unknown functions u(r) and Sm`(aω, cos θ). Plugging this ansatz into (3.1.1) leads
to a coupled system of o.d.e’s. The angular o.d.e. is the eigenvalue equation of the operator
P (aω) which reads

P (aω)Sm`(aω, cos θ) = λm`(aω)Sm`(aω, cos θ), (3.2.34)

where

P (ξ)f = Pm(ξ)f =− 1

sin θ
∂θ(∆θ sin θ∂θf) +

Ξ2m2

∆θ sin2 θ
− Ξξ2∆−1

θ cos2 θf

− 2mξ
Ξ

∆θ

a2

l2
cos2 θ +

2

l2
a2 sin2 θ. (3.2.35)

The operator (3.2.35) is realized as a self-adjoint operator on some suitable domain in
L2((0, π); sin θdθ). As a Sturm–Liouville operator, the spectrum of P (aω) consists of
simple eigenvalues λm`(aω), where ` ∈ Z≥|m| labels the eigenvalue in ascending order.
The eigenvalue λm`(aω) of P (aω) couples the angular o.d.e. to the radial o.d.e.

−u′′ + (V − ω2)u = 0, (3.2.36)
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where ′ := d
dr∗ . Here, the potential is given by

V = V0 + V1 (3.2.37)

with purely radial part

V1 :=
−∆23r2

(r2 + a2)4
−∆

5 r
4

l2
+ 3r2

(
1 + a2

l2

)
− 4Mr + a2

(r2 + a2)3
− 2∆

l2
1

r2 + a2
(3.2.38)

and frequency dependent part

V0 :=
∆(λm`(aω) + ω2a2)− Ξ2a2m2 − 2mωaΞ(∆− (r2 + a2))

(r2 + a2)2
. (3.2.39)

We will be particularly interested in the case where the frequency parameter ω excites
the resonance at the Cauchy horizon at ω = ω−m. Moreover, in order to be in the regime
of trapping in the exterior we also want ω and m to be large. Hence, we will think of 1

m as
a small semiclassical parameter. In particular, setting ω = ω−m in (3.2.36) and separating
out the m2 we obtain

−u′′ + (m2Vmain + V1)u = 0, (3.2.40)

where V1 is as in (3.2.38) and

Vmain :=
V0(ω = ω−m)

m2
=

∆

(r2 + a2)2

(
λm`(aω−m)

m2
+ ω2

−a
2 − 2aω−Ξ

)
− (ω− − ωr)2.

(3.2.41)

We will prove the main theorem, Theorem 3.1, in Section 3.8.3. Before that, we
first have to show various properties of the angular o.d.e. and the radial o.d.e. for fixed
frequencies (ω,m, `). We start by considering the angular o.d.e. (3.2.34).

3.3 The angular o.d.e.

For the operator P (ξ) as in (3.2.35) we change variables to x = cos θ. This is a unitary
transformation and thus, the eigenvalues of P (ξ) are equal to the eigenvalues of Px given
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by

Px(ξ) := − d

dx

(
∆x(1− x2)

d

dx
·
)

+
Ξ2m2

∆x(1− x2)
− Ξξ2 x

2

∆x
− 2mξ

Ξ

∆x

a2

l2
x2 +

2

l2
a2(1− x2).

(3.3.1)

The Sturm–Liouville operator Px is realized as a self-adjoint operator acting on a domain
D ⊂ L2(−1, 1) which can be explicitly characterized as

D = {f ∈ L2(−1, 1) : f ∈ AC1(−1, 1), Pxf ∈ L2(−1, 1), lim
x→±1

(1− x2)f ′(x) = 0 if m = 0}.

(3.3.2)

Having the same spectrum as P , the operator Px has eigenvalues (λm`)`≥|m| with corre-
sponding real-analytic eigenfunctions Sm` = Sm`(ξ, x) which satisfy

PxSm` = λm`Sm` and ‖Sm`(ξ)‖L2(−1,1) = 1. (3.3.3)

We note that for ξ = a = 0, the eigenvalues (λm`)`≥|m| reduce to the eigenvalues of the
Laplacian on the sphere λm`(a = ξ = 0) = `(`+ 1). We also define the shifted eigenvalues

Λm`(ξ) := λm`(ξ) + ξ2. (3.3.4)

A computation (see [75, Proof of Lemma 5.1]) shows that

Px(ξ) + ξ2 − 2

l2
a2(1− x2) ≥ Ξ2Px(ξ = 0, a = 0) (3.3.5)

in the sense of self-adjoint operators acting on D ⊂ L2(−1, 1). Hence,

Λm`(ξ) ≥ Ξ2`(`+ 1) ≥ Ξ2|m|(|m|+ 1). (3.3.6)

Having recalled basic properties of the angular problem we now focus on the resonant
frequency ω = ω−m. We assume that m 6= 0 for the rest of Section 3.3. This will simplify
the notation as 1

m is well-defined.
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3.3.1 Analysis of the angular potentialW1 at resonant frequency in semi-
classical limit

In the current Section 3.3.1 and in Section 3.3.2 we consider the operator

Pω− := Px(ξ = amω−) =− d

dx

(
∆x(1− x2)

d

dx
·
)

+
Ξ2m2

∆x(1− x2)
− Ξa2m2ω2

−
x2

∆x

− 2m2aω−
Ξ

∆x

a2

l2
x2 +

2

l2
a2(1− x2) (3.3.7)

with corresponding eigenvalues λm` := λm`(aω−m). We re-write the eigenvalue problem

Pω−f = λf (3.3.8)

as

P̃ω−f = 0, (3.3.9)

where

P̃ω− := ∆x(1− x2)
d

dx

(
∆x(1− x2)

d

dx
·
)

+m2W1(x) + Perror, (3.3.10)

Perror := ∆x(1− x2)
2

l2
a2(1− x2) (3.3.11)

and

W1 := Ξ2 −
[
Ξa2ω2

− + 2aω−Ξ
a2

l2

]
x2(1− x2)− λ̃∆x(1− x2), (3.3.12)

with

λ̃ :=
λ

m2
. (3.3.13)

In the semi-classical limitm2 →∞ we consider Perror as a perturbation andW1 determines
the leading order terms of the eigenvalues and eigenfunctions. Consequently, our analysis
focuses on W1 which we analyze in the following lemma.

Lemma 3.3.1. Let W1 be the potential defined in (3.3.12).

1. For λ̃ < Ξ2, we have W1 > 0 for x ∈ [0, 1].

2. For λ̃ = Ξ2, we have W1 > 0 on (0, 1] and W1(x = 0) = 0.
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3. For λ̃ > Ξ2, the potential W1 has exactly one root in x ∈ [0, 1] and satisfies

dW1

dx
& λ̃x (3.3.14)

for x ∈ [0, 1]. We call this root x0 which also satisfies x0 ∈ (0, 1).

Proof. We start by expanding W1 and obtain

W1(x) = Ξ2 − λ̃+ a1x
2 + a2x

4 (3.3.15)

with

a1 = λ̃

(
1 +

a2

l2

)
−
a4(a2 − l2)2(a2 + l2 + 2r2

−)

l6(a2 + r2
−)2

= Ξ2

(
1 +

a2

l2

)
−
a4(a2 − l2)2(a2 + l2 + 2r2

−)

l6(a2 + r2
−)2

+ (λ̃− Ξ2)

(
1 +

a2

l2

)
=

(a− l)2(a+ l)2(2a2l2r2
− + (a2 + l2)r4

−)

l6(a2 + r2
−)2

+ (λ̃− Ξ2)

(
1 +

a2

l2

)
(3.3.16)

and

a2 =
a4(a2 − l2)2(a2 + l2 + 2r2

−)

l6(a2 + r2
−)2

− a2

l2
λ̃. (3.3.17)

We also note that

W1(x = 0) = Ξ2 − λ̃. (3.3.18)

We now consider the case λ̃ ≥ Ξ2 and remark that

dW1

dx
= 2a1x+ 4a2x

3. (3.3.19)

We look at two cases now, a2 ≥ 0 and a2 < 0. If a2 ≥ 0, then we directly infer that
dW1
dx ≥ 2a1x. If a2 < 0, then we use that x3 < x and estimate

dW1

dx
= 2a1x+ 4a2x

3 ≥ (2a1 + 4a2)x. (3.3.20)

Now, a direct computation yields

2a1 + 4a2 = 2Ξ

(
Ξ
a2

l2
a2 + l2 + 2r2

−
(a2 + r2

−)2
+ λ̃

)
& λ̃. (3.3.21)
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Note that this shows (3.3.14) for x ∈ [0, 1] and we conclude 3. Together with (3.3.18), this
also shows that W1(x) > 0 for x ∈ (0, 1] and λ̃ = Ξ2 such that we have 2.

Finally for λ̃ < Ξ2, we have W1 > 0 everywhere because for each fixed x ∈ [0, 1), the
function λ̃ 7→W1(x) is strictly decreasing and W1(x = 1) = Ξ2 > 0.

3.3.2 Existence of sequence of angular eigenvalues at resonant frequency
with λmi`i = λ̃m2

i +O(1)

For our proof later on, we will use that there exists a sequence of eigenvalues of the
form λmi`i = λ̃m2

i + O(1) at the resonant frequency. To show such a result we state the
following theorem on semi-classical distribution of eigenvalues. This is also referred to as
Bohr–Sommerfeld quantization. Its proof relies on suitable connection formulas of Airy
functions and can be found in [119, Chapter 13, §9.1]. We denote the total variation of a
function f : R→ R in the interval (a, b) with Va,b(f).

Proposition 3.3.1 ([119, Chapter 13, §9.1]). Let f, g ∈ C2(R) and assume that f(x)/[(x−
x̂0)(x − x0)] is positive, i.e. f has two simple roots at x̂0 < x0. Define the error-control
function

z(x) :=

∫
1

|f |
1
4

d2

dx2

(
1

|f |
1
4

)
− g

|f |
1
2

dx (3.3.22)

for some irrelevant normalization and further assume that for some large c > 0,

• the error-control function satisfies V−∞,−c(z),Vc,+∞(z) <∞,

•
∫ x
c

√
f diverges as x→ +∞ and

∫ −c
x

√
f diverges as x→ −∞.

Then, there exists an error function ϑ satisfying |ϑ| .f,g u−2 such that for all u large
enough the following holds true. There exists a bound state w (i.e. a solution which is
recessive at both ends x→ ±∞) of the differential equation

w′′ = (u2f + g)w, (3.3.23)

if and only there exists a positive integer n ∈ N such that

2

π

∫ x0

x̂0

√
−fdx+ ϑ =

2n+ 1

u
. (3.3.24)

With the above proposition at hand we proceed to the main proposition of this sub-
section, where we recall that we still consider the case ω = ω−m.
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Proposition 3.3.2. Let p0 ∈ P be arbitrary but fixed. Then, for almost every λ̃0 ∈
(Ξ2,∞) (more precisely, for every λ̃0 ∈ (Ξ2,∞) \ Np0 for some Lebesgue null set Np0),
there exists a strictly increasing sequence of natural numbers (mi)i∈N such that for every
i ∈ N, the operator Pω− admits an eigenvalue λi := λmi`i = λmi`i(ω = ω−m) satisfying

λ̃i := λim
−2
i = λ̃0 + λ(i)

errorm
−2
i , (3.3.25)

where |λ(i)
error| .λ̃0,p0

1 as mi →∞. Here, mi ∼ `i and particularly `i ≤ m2
i for i sufficiently

large.

Proof. We consider the equivalent formulation of the angular o.d.e. in (3.3.9) and moreover
change coordinates

y(x) =

∫ x

0

1

∆x̃(1− x̃2)
dx̃ (3.3.26)

such that

dx

dy
= ∆x(1− x2). (3.3.27)

This yields the equivalent eigenvalue problem

− 1

m2

d2

dy2
g + (W1 +

1

m2
Perror)g = 0 (3.3.28)

for g in a dense domain of L2(R, w(y)dy) with weight

w(y) := ∆x(1− x2) = ∆x(y)(1− x(y)2). (3.3.29)

From Lemma 3.3.1 we infer thatW1 has a unique positive root for λ̃ > Ξ2 which we denote
with y0(λ̃) := y(x0(λ̃)). We also define

ξ(λ̃) :=

∫ y0(λ̃)

−y0(λ̃)

√
−W1dy, (3.3.30)

where we recall that W1 is symmetric around the origin. For the potential W1, we have
(e.g. [48, p. 118]) that ξ : (Ξ2,∞) → R, λ̃ 7→ ξ(λ̃) is a strictly increasing smooth (even
real-analytic) function. Further note that

dξ

dλ̃
=

∫ y0(λ̃)

−y0(λ̃)

∆θ(1− x(y)2)

2
√
−W1

dy > 0 (3.3.31)
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so by the inverse function theorem, ξ has a smooth inverse.

Now, by a standard result on Diophantine approximation (see e.g. [66, Theorem 6.2]),
we have that for each x ∈ R \ N , where N is a Lebesgue null set, there exist sequences of
natural numbers (ni)i∈N and (mi)i∈N with ni+1 > ni and mi+1 > mi such that∣∣∣ 2

π
x− 2ni + 1

mi

∣∣∣ ≤ 1

m2
i

(3.3.32)

for all i ∈ N. Now, since ξ has a smooth inverse, there exists a Lebesgue null set Np0 :=

ξ−1(N ) ⊂ (Ξ2,∞) such that for each λ̃0 ∈ (Ξ2,∞) \ Np0 we have∣∣∣ 2
π
ξ(λ̃0)− 2ni + 1

mi

∣∣∣ ≤ 1

m2
i

(3.3.33)

for a sequence of natural numbers (ni)i∈N and (mi)i∈N with ni+1 > ni and mi+1 > mi.

Now, we will apply Proposition 3.3.1. First, we see that for all λ̃ in a small neighbor-
hood of λ̃0 ∈ (Ξ2,∞) \ Np0 , the potential W1(y) and Perror satisfy the assumptions of the
proposition: Indeed, both W1 and Perror are smooth. Moreover, W1 has two simple roots
which do not coalesce and

∫ y
0

√
|W1|dỹ diverges as y → ±∞. Finally, for |y| → ∞, we

have

W1 ≥
Ξ2

2
, and

∣∣∣∣dW1

dy

∣∣∣∣ , ∣∣∣∣d2W1

dy2

∣∣∣∣ . dx

dy
(3.3.34)

as well as

|Perror| .
dx

dy
. (3.3.35)

Thus, we infer

Vc,∞(z),V−∞,−c(z) <∞ (3.3.36)

for some c > 0 large enough, where

z(y) :=

∫
1

|W1|
1
4

d2

dy2

(
1

|W1|
1
4

)
− Perror

|W1|
1
2

dy. (3.3.37)

From Proposition 3.3.1 we now conclude that the eigenvalues λ = λ̃m2 for λ̃ in a neigh-
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borhood of λ̃0 are characterized by

2

π
ξ(λ̃) + ϑλ̃0

=
2n+ 1

m
(3.3.38)

for n ∈ N, where |ϑλ̃0
| .λ̃0

m−2.

Now, for fixed λ̃0 ∈ (Ξ2,∞), let the sequence (mi, ni)i∈N as above be such that (3.3.33)
holds. Then, we obtain associated eigenvalues from (3.3.38) which satisfy

λ̃i = ξ−1

(
π

2

2ni + 1

mi
− π

2
ϑλ̃0

)
= ξ−1

(
ξ(λ̃0) +Oλ̃0

(m−2
i )
)

= λ̃0 +Oλ̃0
(m−2

i ). (3.3.39)

The last equality holds due Taylor’s theorem and (3.3.31).

3.3.3 Bounds on ∂ξλm` and ∂ξSm` near resonant frequency

For the main proof in Section 3.8.3 we need to bound the quantities ∂ωλm`(aω) and
∂ωSm`(aω) near the resonant frequency, i.e. for ω ≈ ω−m with m sufficiently large. We
will choose our initial data in Section 3.6 to be supported on angular modes m > 0 which
are large and positive. This is just done to make the notation easier. Thus, for the rest of
the subsection, we assume that m > 0.

We first note that a direct computation shows that

∂ξSm` =
∂Sm`(ξ, x)

∂ξ
(3.3.40)

solves the inhomogeneous o.d.e.

(Px − λm`)∂ξSm` = (∂ξPx − ∂ξλm`)Sm` (3.3.41)

with Dirichlet boundary conditions at x = ±1, where

∂ξPx =
∂Px(ξ)

∂ξ
= −2Ξξ

x2

∆x
− 2m

Ξ

∆x

a2

l2
x2. (3.3.42)

We will first consider ∂ξλm`.

Lemma 3.3.2. The eigenvalues λm`(ξ) satisfy

|∂ξλm`(ξ)| ≤ |〈Sm`, ∂ξPxSm`〉L2(−1,1)| (3.3.43)
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and thus,

sup
ξ∈(amω−− 1

m
,amω−+ 1

m
)

|∂ξλm`(ξ)| . |m|. (3.3.44)

Proof. Taking the L2-inner product of (3.3.41) with Sm` and using that Px is self-adjoint,
as well as ξ 7→ 〈Sm`, Sm`〉L2(−1,1) = 1, we see that

|∂ξλ| ≤ |〈Sm`, ∂ξPxSm`〉L2(−1,1)| ≤ ‖∂ξPx‖. (3.3.45)

Now, the claim follows from the fact that ‖∂ξPx‖ . |ξ|+ |m|.

It is far more difficult to estimate ∂ξSm` which we express as

∂ξSm` = Res(λm`;Px)Π⊥Sm`H,

where H = (∂ξPx− ∂ξλm`)Sm` is the inhomogeneous term of (3.3.41), Res(λm`;Px) is the
resolvent and Π⊥Sm` is the orthogonal projection on the orthogonal complement of Sm`. A
possible way to control the resolvent operator Res(λm`;Px)Π⊥Sm` , is to show lower bounds
on the spectral gaps |λm,`(aω)− λm,`+1(aω)| uniformly in m, `→∞ and ω ≈ ω−m. Our
formally equivalent approach is based on an explicit construction of the resolvent kernel
via suitable approximations with parabolic cylinder functions and Airy functions.

We begin by noting that from standard results on solutions to Sturm–Liouville prob-
lems, each eigenfunction Sm` is either symmetric or anti-symmetric around x = 0. More-
over, ∂ξSm` admits the same symmetries as Sm`. If Sm` is antisymmetric around x = 0

we have Sm`(x = 0) = 0, i.e. Dirichlet boundary conditions at x = 0. Similarly, if Sm`
is symmetric, we have Neumann boundary conditions at x = 0, i.e. d

dxSm`(x = 0) = 0.
Hence, the problem reduces to studying the interval x ∈ [0, 1) with Dirichlet/Neumann
boundary conditions at x = 0 and Dirichlet boundary conditions at x = 1. We moreover
recall that

〈Sm`, Sm`〉L2(−1,1) =

∫ 1

−1
S2
m`dx = 1 (3.3.46)

such that ∫ 1

0
S2
m`dx =

1

2
. (3.3.47)
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Now, any solution of the inhomogeneous o.d.e. (3.3.41) can be written as

∂ξSm` = Sp + c1Sm` + c2S̃m`, (3.3.48)

where S̃m` is a solution to the homogeneous o.d.e. which is linearly independent from Sm`

and Sp is any particular solution to (3.3.41). Also, c1 and c2 are constants depending on
the choice of S̃m` and the choice of particular solution Sp.

Now, we remark that

S̃m` /∈ L2 (3.3.49)

as S̃m` is linearly independent of Sm`. Indeed, analyzing the singularity x = 1 with the
Frobenius method, we directly infer that all solutions which are in L2 at x = 1 are multiples
of Sm`. (Here, we recall that m 6= 0.)

In Lemma 3.3.3 below we will construct a particular solution which is bounded at
x = 1. Since ∂ξSm` is bounded at x = 1, we have that for such a choice of particular
solution, necessarily c2 = 0. Hence, for Sp as in Lemma 3.3.3 we have

∂ξSm` = Sp + c1Sm`. (3.3.50)

Now, as ∂ξSm` is orthogonal to Sm` in L2(−1, 1) and both of them are either symmetric
or anti-symmetric around x = 0, we conclude that they are also orthogonal with respect
to L2(0, 1). Hence, multiplying (3.3.50) with ∂ξSm` and applying the Cauchy–Schwarz
inequality yields

‖∂ξSm`‖L2(0,1) ≤ ‖Sp‖L2(0,1). (3.3.51)

In the language of spectral theory and in view of our previous discussion, the bound
(3.3.51) shows that

‖∂ξSm`‖L2 = ‖Res(λm`;Px)Π⊥Sm`H‖L2 ≤ ‖Sp‖L2 .

Lemma 3.3.3. Let m ∈ N be sufficiently large. In the parameter range ξ ∈ (aω−m −
1
m , aω−m+ 1

m) there exists a particular solution Sp to (3.3.41) satisfying

‖Sp‖L2(0,1) . |m|
1
2 . (3.3.52)

Proof. We let |ε| < 1 such that ξ = amω− + ε
m . We now construct a particular solution
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Sp of (3.3.41) which satisfies

[
− d

dx

(
∆x(1− x2)

d

dx
·
)

+
Ξ2m2

∆x(1− x2)
− Ξm2a2ω2

−
x2

∆x
− 2m2aω−

Ξ

∆x

a2

l2
x2

+
2

l2
a2(1− x2)− Ξ(2εaω− + ε2m−2)

x2

∆x
− 2ε

Ξ

∆x

a2

l2
x2 − λ

]
Sp

=

[
∂ξλ+ 2Ξ(amω− +

ε

m
)
x2

∆x
+ 2m

Ξ

∆x

a2

l2
x2

]
Sm`. (3.3.53)

Again we introduce new variables y(0) = 0 and dy
dx = 1

∆(1−x2)
which can be computed

explicitly as

y(x) =
1

2Ξ

(
log(1 + x)− log(1− x) +

a

l
log(1− a

l
x)− a

l
log(1 +

a

l
x)
)
. (3.3.54)

Note that

e2Ξy =
1 + x

1− x

(
1− a

l x

1 + a
l x

)a
l

. (3.3.55)

We define

s1(y) := Sm`(x(y)), (3.3.56)

such that ∫ ∞
0

s2
1(y)∆x(1− x2(y))dy =

∫ 1

0
S2
m`dx =

1

2
. (3.3.57)

We also write

gp(y) = Sp(x(y)). (3.3.58)

Then, in these variables we re-write (3.3.53) as

− d2

dy2
g +m2

(
Ξ2 −

[
Ξa2ω2

− + 2aω−Ξ
a2

l2

]
x2(1− x2)− λ̃∆x(1− x2)

)
gp

+∆x(1− x2)

(
2

l2
a2(1− x2)− Ξ(2εω− + ε2m−2)

x2

∆x
− 2ε

Ξ

∆x

a2

l2
x2

)
gp

= ∆x(1− x2)

[
∂ξλ+ 2Ξ(amω− +

ε

m
)
x2

∆x
+ 2m

Ξ

∆x

a2

l2
x2

]
s1. (3.3.59)
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We recall the definition of W1 in (3.3.12) and define

W2(y) := ∆x(1− x2)

(
2

l2
a2(1− x2)− Ξ(2εaω− + ε2m−2)

x2

∆x
− 2ε

Ξ

∆x

a2

l2
x2

)
(3.3.60)

and

F (y) := ∆x(1− x2)

[
∂ξλ+ 2Ξ(amω− +

ε

m
)
x2

∆x
+ 2m

Ξ

∆x

a2

l2
x2

]
. (3.3.61)

Thus, we are interested in construction a particular solution gp satisfying the inhomoge-
neous second order o.d.e.

− d2

dy2
gp + (m2W1 +W2)gp = Fs1. (3.3.62)

A direct computation shows that gp, which we define as

gp := s2(y)

∫ ∞
y

s2
1(ỹ)F (ỹ)dỹ + s1(y)

∫ y

0
s2(ỹ)s1(ỹ)F (ỹ)dỹ, (3.3.63)

solves (3.3.62), where s2 is a suitable solution of

− d2

dy2
g + (m2W1 +W2)g = 0 (3.3.64)

which we will construct in Lemma 3.3.4 below. Moreover, we will choose s2 such that the
integrals in (3.3.63) converge, W(s1, s2) = 1, and∫ ∞

0
gp(y)2(1− x(y))∆xdy . m. (3.3.65)

We state the existence of such a particular solution gp in the following and refer to Sec-
tion 3.3.4 for its proof. More precisely, Lemma 3.3.4 follows from Lemma 3.3.13 and
Lemma 3.3.18.

Remark 3.3.1. By construction, the solution to the inhomogeneous o.d.e. satisfies gp(y(x)) =

∂ξSm` as gp(y(x)) = Res(λm`;Px)Π⊥Sm`(H).

Lemma 3.3.4. Let m ∈ N sufficiently large as in Section 3.3.4. For ξ ∈ (aω−m −
1
m , aω−m+ 1

m), there exists a solution s2 to (3.3.64) with W(s1, s2) = 1 such that gp as in
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(3.3.63) satisfies ∫ ∞
0

gp(y)2(1− x(y)2)∆xdy . m. (3.3.66)

With Lemma 3.3.4 at hand, we conclude the proof of Lemma 3.3.3.

Finally, combing (3.3.51) and Lemma 3.3.3 we have proved the main proposition of
this subsection.

Proposition 3.3.3. For all m ∈ N sufficiently large, the eigenfunctions Sm`(ξ, cos θ) of
the operator P defined in (3.2.35) satisfy

sup
ω∈(ω−m− 1

am
,ω−m+ 1

am
)

‖∂ωSm`(aω, ·)‖L2([0,π];sin θdθ) . m
1
2 . (3.3.67)

3.3.4 Proof of Lemma 3.3.4

Throughout this subsection (Section 3.3.4) we assume that

ξ ∈
(
aω−m−

1

m
, aω−m+

1

m

)
(3.3.68)

and m > 0. We first argue that for sufficiently large m, we only need to consider the cases
λ̃ > Ξ2.

Lemma 3.3.5. For sufficiently large m, we have infy∈R
(
m2W1(y) +W2(y)

)
> 0 for any

λ̃ ≤ Ξ2.

Proof. Choosing m sufficiently large, recalling (3.3.68) and in view of Lemma 3.3.1, the
result follows from

W2(x = 0) =
2a2

l2
> 0. (3.3.69)

Lemma 3.3.6. For ξ as in (3.3.68) and for sufficiently large m as in Lemma 3.3.5, any
eigenvalue λ = m2λ̃ of Px satisfies λ̃ > Ξ2.

Proof. This is immediate as for λ̃ ≤ Ξ2 and sufficiently large m, the operator − d2

dy2 +

m2W1 +W2 is strictly positive in view of Lemma 3.3.5.

Thus, it suffices to show Lemma 3.3.4 for λ̃ > Ξ2 and we consider the case λ̃ ∈
(Ξ2,Ξ2 + 1] in Section 3.3.4.1 and the case λ̃ ∈ (Ξ2 + 1,∞) in Section 3.3.4.2.
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3.3.4.1 The case Ξ2 < λ̃ ≤ Ξ2 + 1

Let λ̃ ∈ (Ξ2,Ξ2 + 1]. In this range, λ̃ can be arbitrarily close to Ξ2. As λ̃ → Ξ2, the
root y0 > 0 of the potential W1(y) coalesces with y = 0. Thus, our estimates need to
be uniform in this limit and the appropriate approximation is given by parabolic cylinder
functions. To do so we will introduce the following Liouville transform which is motivated
by [118]. We define a new variable2

ξ = ξ(y) (3.3.70)

to satisfy (
dξ

dy

)2

=
W1(y)

ξ2 − α2
, (3.3.71)

where we choose α > 0 such that ξ(y0) = α > 0 and ξ(y = 0) = 0. By construction, this
defines ξ = ξ(y) as a smooth (even real-analytic) increasing function with values in [0,∞),
see also [118, Section 2.2]. Note that this holds true as the right hand side satisfies

W1(y)

ξ2 − α2
> 0 (3.3.72)

for y > 0. Equivalently, the function ξ(y) can be expressed as∫ y0

y
(−W1)

1
2 dỹ =

∫ α

ξ(y)
(α2 − τ2)

1
2 dτ for y ≤ y0, (3.3.73)∫ y

y0

W
1
2

1 dỹ =

∫ ξ(y)

α
(τ2 − α2)

1
2 dτ for y0 ≤ y <∞. (3.3.74)

We also consider y = y(ξ) as a function ξ and define

σ1 :=

(
dy

dξ

)− 1
2

s1. (3.3.75)

In this new variable ξ, the function σ1 = σ1(ξ) satisfies

−d2σ

dξ2
+
[
m2(ξ2 − α2) + Ψ

]
σ = 0, (3.3.76)

2Here and in the following, ξ is not to mixed up with ξ appearing in (3.3.1).
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where the error function Ψ is given by

Ψ =
dy

dξ
W2 +

(
dy

dξ

) 1
2 d2(y−

1
2 )

dξ2
. (3.3.77)

Since W1 is analytic and non-increasing in λ̃, we apply [118, Lemma 1] to conclude that Ψ

is continuous for (ξ, λ̃) ∈ [0,∞) × [Ξ2,Ξ2 + 1]. Now, we define the error-control function
(see (6.3) of [118])

F1 :=

∫ ξ

0

Ψ

Ω(ξ
√

2m)
dξ (3.3.78)

with Ω(x) = |x|
1
3 . We will now bound the total variation of the error-control function F1

in (3.3.78). To do so we first show

Lemma 3.3.7. The smooth and monotonic functions ξ = ξ(y) and y = y(ξ) as defined in
(3.3.71) satisfy

ξ2(y) ∼ y (3.3.79)
dy

dξ
∼ ξ (3.3.80)∣∣∣∣d2y

dξ2

∣∣∣∣ . 1 (3.3.81)

for all ξ sufficiently large.

Proof. We estimate

dξ

dy
.

√
Ξ2

ξ2 − α2
.

1

ξ
(3.3.82)

for all ξ large enough, where we have used that W1 ∼ Ξ2 for large ξ. Similarly,

dξ

dy
&

1

ξ
(3.3.83)

for ξ large which shows (3.3.80). Upon integrating the inequalities, we obtain (3.3.79).
For (3.3.81), we differentiate (3.3.71) to obtain

∣∣∣∣d2y

dξ2

∣∣∣∣ =

∣∣∣∣∣ d

dξ

√
ξ2 − α2

W1(y(ξ))

∣∣∣∣∣ .
√

W1

ξ2 − α2

∣∣∣∣ ξW1
+

ξ2

W 2
1

dW1

dx

dx

dy

dy

dξ

∣∣∣∣ . 1, (3.3.84)
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where we have used that

W1 ∼ 1,
dW1

dx
. 1,

dx

dy
. e−2Ξy . e−ξ, and

dy

dξ
. ξ (3.3.85)

for ξ large enough.

This allows us now to estimate the total variation of the error control function F1.

Lemma 3.3.8. The error control function F1 satisfies

V0,∞(F1) .
1

m
1
6

. (3.3.86)

Proof. As Ψ is continuous on [0,∞), it suffices to control the integral for large ξ. We
control both terms of

Ψ =
dy

dξ
W2 +

(
dy

dξ

) 1
2 d2(y−

1
2 )

dξ2
(3.3.87)

independently. For large ξ, we estimate the first term as

∣∣∣∣dydξ
W2

∣∣∣∣ ≤ |W2|

√
ξ2 − α2

|W1|
. ξ|W2| (3.3.88)

in view of

W1 ≥
Ξ2

2
(3.3.89)

for ξ large enough. Moreover, we note that

|W2| . e2Ξy (3.3.90)

for y large enough. Hence, for ξ large enough we have

ξ|W2| . ξe−2Ξy(ξ) . e−ξ (3.3.91)

in view of Lemma 3.3.7. For the second term, we have

∣∣∣∣∣
(

dy

dξ

) 1
2 d2(y−

1
2 )

dξ2

∣∣∣∣∣ .
∣∣∣∣∣

dy
dξ

y

∣∣∣∣∣
5
2

+

∣∣∣∣∣∣
d2y
dξ2 (dy

dξ )
1
2

y
3
2

∣∣∣∣∣∣ . 1

ξ
5
2

(3.3.92)
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for ξ sufficiently large. Hence,

|Ψ| . (1 + ξ)−
5
2 (3.3.93)

for ξ sufficiently large. Recall that Ψ is continuous everywhere and Ω = |x|
1
3 such that

V0,∞(F1) .
∫ ∞

0

|Ψ|
ξ

1
3m

1
6

dξ . m−
1
6 . (3.3.94)

Having controlled the error terms we now proceed to the definition of our fundamental
solutions based on appropriate parabolic cylinder functions.

Proposition 3.3.4. There exist solutions w1 and w2 of (3.3.76) satisfying

w1 = U

(
−1

2
mα2, ξ

√
2m

)
+ η̃1 (3.3.95)

w2 = Ū

(
−1

2
mα2, ξ

√
2m

)
+ η̃2, (3.3.96)

where U and Ū are parabolic cylinder functions defined in Definition 3.9.2. The error
terms satisfy

η̃1 = E−1
U

(
−1

2
mα2, ξ

√
2m

)
MU

(
−1

2
mα2, ξ

√
2m

)
O(m−

2
3 ) (3.3.97)

η̃2 = EU

(
−1

2
mα2, ξ

√
2m

)
MU

(
−1

2
mα2, ξ

√
2m

)
O(m−

2
3 ) (3.3.98)

∂ξη̃1 = E−1
U

(
−1

2
mα2, ξ

√
2m

)
NU

(
−1

2
mα2, ξ

√
2m

)
O(m−

1
6 ) (3.3.99)

∂ξη̃2 = EU

(
−1

2
mα2, ξ

√
2m

)
NU

(
−1

2
mα2, ξ

√
2m

)
O(m−

1
6 ) (3.3.100)

uniformly in λ̃ ∈ [Ξ2,Ξ2 + 1] and ξ ∈ [0,∞), where the weight function EU , the modulus
functions MU and NU are defined in Section 3.9.2.

Proof. This follows from [118, Theorem 1]. The error bounds hold in view of Lemma 3.3.8
and [118, Section 6.3].

Remark 3.3.2. For large x > 0, the function U is recessive, whereas Ū is dominant.
Hence, w1 is recessive and w2 is dominant.
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Lemma 3.3.9. The Wronskian W(w1, w2) satisfies

|Wξ(w1, w2)| ∼
√
mΓ

(
1

2
+

1

2
mα2

)
. (3.3.101)

for m sufficiently large.

Proof. For U(b, x) and Ū(b, x) we have the Wronskian identity W(U, Ū) =
√

2
πΓ(1

2−b), see
[118, Equation (5.8)]. The result follows now from the chain rule and the error estimates
in Proposition 3.3.4.

Lemma 3.3.10. The function σ1 defined in (3.3.75) has the form

σ1 = A1w1, (3.3.102)

where w1 is as in Proposition 3.3.4 and A1 6= 0 is a real constant.

Proof. Both functions σ1 and w1 are non-trivial solutions to (3.3.76) which are recessive
as ξ →∞ (or y →∞). The claim follows now as the space of solutions of (3.3.76) which
are recessive as ξ →∞ is one-dimensional.

Using the parabolic cylinder functions, we now define a solution σ2 which is linearly
independent of σ1.

Definition 3.3.1. We define the solution σ2 of (3.3.76) as

σ2 :=
1

A1W(w1, w2)
w2 (3.3.103)

and the solution s2 to (3.3.64) as

s2(y) :=

(
dy

dξ

) 1
2

σ2(ξ(y)). (3.3.104)

A direct computation shows

Lemma 3.3.11. We have

Wy(s1, s2) = Wξ(σ1, σ2) = 1. (3.3.105)

Here, Wy and Wξ denote the Wronskians with respect to the y and ξ variable.
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Lemma 3.3.12. With σ1 and σ2 as defined in (3.3.75) and (3.3.103) we have

|σ1| . |A1|E−1
U

(
−1

2
mα2, ξ

√
2m

)
MU

(
−1

2
mα2, ξ

√
2m

)
(3.3.106)

|σ2| .
∣∣∣∣ 1

A1W(w1, w2)

∣∣∣∣EU (−1

2
mα2, ξ

√
2m

)
MU

(
−1

2
mα2, ξ

√
2m

)
(3.3.107)

|σ1(ξ)σ2(ξ)| . 1

|W(w1, w2)|
M2
U

(
−1

2
mα2, ξ

√
2m

)
. (3.3.108)

Proof. We estimate

|σ1| = |A1w1| = |A1|
∣∣∣∣U (−1

2
mα2, ξ

√
2m

)
+ η̃1

∣∣∣∣
. |A1|E−1

U

(
−1

2
mα2, ξ

√
2m

)
MU

(
−1

2
mα2, ξ

√
2m

)
(3.3.109)

and

|σ2| =
∣∣∣∣ 1

A1W(w1, w2)

∣∣∣∣ |w2| ≤
∣∣∣∣ 1

A1W(w1, w2)

∣∣∣∣ ∣∣∣∣Ū (−1

2
mα2, ξ

√
2m

)
+ η̃2

∣∣∣∣
.

∣∣∣∣ 1

A1W(w1, w2)

∣∣∣∣EU (−1

2
mα2, ξ

√
2m

)
MU

(
−1

2
mα2, ξ

√
2m

)
. (3.3.110)

Now, we recall the definition of gp in (3.3.63) as

gp := s2(y)

∫ ∞
y

s2
1(ỹ)F (ỹ)dỹ + s1(y)

∫ y

0
s1(ỹ)s2(ỹ)F (ỹ)dỹ. (3.3.111)

for s1 as in (3.3.56) and where we take s2 as in (3.3.104). Now, we are in the position to
show the main lemma of Section 3.3.4.1.

Lemma 3.3.13. Let λ̃ ∈ (Ξ2,Ξ2 + 1] and let s2 as in (3.3.104). Then, gp satisfies∫ ∞
0

gp(y)2(1− x(y)2)∆xdy . m. (3.3.112)

Proof. We plug (3.3.111) into (3.3.112) and we will estimate both terms which appear
independently.

For the first term, we change variables from y to ξ, use that x 7→ EU (b, x) is non-
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decreasing, as well as Lemma 3.3.12 to estimate∫ ∞
0

s2
2(y)

(∫ ∞
y

s2
1(ỹ)F (ỹ)dỹ

)2

(1− x(y)2)∆xdy

=

∫ ∞
0

σ2
2(ξ)

(∫ ∞
ξ

σ2
1(ξ̃)F (ξ̃)dξ̃

)2

(1− x(ξ)2)∆x(ξ)dξ

.
∫ ∞

0

[∣∣MU

(
−1

2mα
2, ξ
√

2m
)∣∣2

|W(w1, w2)|2
(∫ ∞

ξ
|σ1(ξ̃)F (ξ̃)|

|MU (−1

2
mα2, ξ̃

√
2m)|dξ̃

)2
(1− x(ξ)2)∆x(ξ)

]
dξ.

(3.3.113)

Now, we use the bounds on MU and W(w1, w2) from Proposition 3.9.1 and Lemma 3.3.9
to deduce∫ ∞

0
s2

2(y)

(∫ ∞
y

s2
1(ỹ)F (ỹ)dỹ

)2

(1− x(y)2)∆xdy

.
1

m

∫ ∞
0

(1− x(ξ)2)∆x(ξ)dξ

(∫ ∞
0
|σ1(ξ̃)||F (ξ̃)|dξ̃

)2

.
1

m

∫ ∞
0
|s1|2(1− x(y)2)∆x(y)dy

∫ ∞
0

|F |2

∆x(1− x(y)2)

dξ

dy
dy

.
1

m

∫ ∞
0

∆x(1− x2)

[
∂ξλ+ 2Ξ(amω− +

ε

m
)
x2

∆x
+ 2m

Ξ

∆x

a2

l2
x2

]2
dξ

dy
dy

. m, (3.3.114)

where we used the Cauchy–Schwarz inequality and the fact that s1 satisfies (3.3.57) as
well as (3.3.44).
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For the second term we argue similarly and obtain∣∣∣∣∣
∫ ∞

0
s2

1(y)

(∫ y

0
s2(ỹ)s1(ỹ)F (ỹ)dỹ

)2

(1− x(y)2)∆xdy

∣∣∣∣∣
.
∫ ∞

0
s2

1(1− x(y)2)∆xdy

(∫ ∞
0

s2(ỹ)s1(ỹ)F (ỹ)dỹ

)2

.

(∫ ∞
0

M2
U

(
−1

2mα
2, ξ
√

2m
)

|W(w1, w2)|
|F (ξ)|dξ

)2

.
1

m

(∫ ∞
0

∆x(1− x(y)2)

∣∣∣∣∂ξλ+ 2Ξ(amω− +
ε

m
)
x2

∆x
+ 2m

Ξ

∆x

a2

l2
x2

∣∣∣∣ dξ

dy
dy

)2

. m. (3.3.115)

3.3.4.2 The case λ̃ ∈ (Ξ2 + 1,∞)

For the parameter range λ̃ ∈ (Ξ2 + 1,∞) we consider λ = m2λ̃ as a large parameter and
re-write the o.d.e. (3.3.62) as

− d2

dy2
gp +m2λ̃W̃1gp +W2gp = Fs1, (3.3.116)

where

W̃1 = W̃1(y) :=
W1

λ̃
=

Ξ2

λ̃
−
[
Ξa2ω2

− + 2aω−Ξ
a2

l2

]
x2(1− x2)

λ̃
−∆x(1− x2). (3.3.117)

We also recall the homogeneous o.d.e. (3.3.64)

− d2

dy2
g +m2λ̃W̃1g +W2g = 0. (3.3.118)

Recall also that s1 as defined in (3.3.56) is a solution of (3.3.118). As before, we define y0

as the unique non-negative root of W̃1(y). It satisfies

y0 ∼
1

2Ξ
log(λ̃). (3.3.119)

which becomes arbitrarily large for λ̃→∞. Our estimates have to take care of this limit.
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Lemma 3.3.14. In the region 0 ≤ y ≤ y0 − 1 we have

1

λ̃
. −W̃1 . 1,

dW̃1

dy
. |W̃1|,

∣∣∣∣∣d2W̃1

dy2

∣∣∣∣∣ . dW̃1

dy
+ (1− x(y)2)|W̃1|. (3.3.120)

For y0 − 1 ≤ y ≤ y0 + 1, we have

|y − y0|
λ̃

. |W̃1| .
1

λ̃
,

dW̃1

dy
∼ 1

λ̃
,

∣∣∣∣∣d2W̃1

dy2

∣∣∣∣∣ . 1

λ̃
,

∣∣∣∣∣d3W̃1

dy3

∣∣∣∣∣ . 1

λ̃
. (3.3.121)

For y0 + 1 ≤ y <∞, we have

W̃1 ∼
1

λ̃
and

dW̃1

dy
,

∣∣∣∣∣d2W̃1

dy2

∣∣∣∣∣ . dx

dy
.

1

λ̃
. (3.3.122)

Proof. From Lemma 3.3.1 we have that W̃1 is increasing on y ∈ [0,∞) and moreover, for
y ∈ [y0 − 1, y0 + 1] we have that

dW̃1

dy
=

dW̃1

dx

dx

dy
& x(y)

dx

dy
&

1

λ̃
. (3.3.123)

Thus, for y ≤ y0 − 1 we have

−W̃1(y) ≥ −W̃1(y0 − 1) ≥
∫ y0

y0−1

dW̃1

dy
dỹ &

1

λ̃
. (3.3.124)

Moreover, for 0 ≤ y ≤ y0 − 1 we have

dW̃1

dy
.

dx

dy
= ∆x(1− x2) . |W̃1|+

1

λ̃
. |W̃1| (3.3.125)

using the definition of W̃1 and |W̃1| & 1
λ̃
. Similarly, we obtain

∣∣∣∣∣d2W̃1

dy2

∣∣∣∣∣ . (1− x(y)2)
dW̃1

dx
+ (1− x(y)2)2

∣∣∣∣∣d2W̃1

dx2

∣∣∣∣∣ . dW̃1

dy
+ (1− x(y)2)|W̃1|. (3.3.126)

In the region y ∈ [y0 − 1, y0 + 1], recall from (3.3.123) that dW̃1
dy &

1
λ̃
. Moreover, just
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as in (3.3.126), we obtain ∣∣∣∣∣dW̃1

dy

∣∣∣∣∣ ,
∣∣∣∣∣d2W̃1

dy2

∣∣∣∣∣ ,
∣∣∣∣∣d3W̃1

dy3

∣∣∣∣∣ . dx

dy
.

1

λ̃
. (3.3.127)

In the region y ∈ (y0 + 1,∞), analogous to (3.3.124), we have

1

λ̃
. W̃1 .

1

λ̃
(3.3.128)

and moreover,

dW̃1

dy
,

∣∣∣∣∣d2W̃1

dy2

∣∣∣∣∣ . dx

dy
.

1

λ̃
. (3.3.129)

With the estimates of Lemma 3.3.14 at hand we will define the variable ς as

2

3
ς

3
2 =

∫ y

y0

√
W̃1(y)dy (3.3.130)

for y ≥ y0 and

2

3
(−ς)

3
2 =

∫ y0

y

√
−W̃1(y)dy (3.3.131)

for y ≤ y0. We denote

ς0 := ς(y = 0) = −
(

3

2

∫ y0

0

√
−W̃1(y)dy

) 2
3

. (3.3.132)

We further introduce the error control function

H(y) :=

∫ y

y0

1

|W̃1|
1
4

d2

dy2

(
|W̃1|−

1
4

)
− W2

|W̃1|
1
2

− 5|W̃1|
1
2

16ς(y)3
dy. (3.3.133)

The fact that H is absolutely continuous is a standard result and follows from [117,
Lemma, Section 4], see also [119, Lemma 3.1, Chapter 11]. In the following we establish
a quantitative version of this.

Lemma 3.3.15. The error-function H defined in (3.3.133) satisfies

V0,∞(H) . λ̃
1
2 . (3.3.134)
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Proof. Since H is absolutely continuous we compute

V0,∞(H) =

∫ y0−1

0

∣∣∣∣∣ 1

|W̃1|
1
4

d2

dy2

(
|W̃1|−

1
4

)
− W2

|W̃1|
1
2

− 5|W̃1|
1
2

16ς(y)3

∣∣∣∣∣dy
+

∫ y0+1

y0−1

∣∣∣∣∣ 1

|W̃1|
1
4

d2

dy2

(
|W̃1|−

1
4

)
− W2

|W̃1|
1
2

− 5|W̃1|
1
2

16ς(y)3

∣∣∣∣∣dy
+

∫ +∞

y0+1

∣∣∣∣∣ 1

|W̃1|
1
4

d2

dy2

(
|W̃1|−

1
4

)
− W2

|W̃1|
1
2

− 5|W̃1|
1
2

16ς(y)3

∣∣∣∣∣ dy
=: I + II + III (3.3.135)

and estimate each term independently relying on Lemma 3.3.14.

Term I. We estimate term I as

I .
∫ y0−1

0

1

|W̃1|
5
2

(
dW̃1

dy

)2

+
1

|W̃1|
3
2

∣∣∣∣∣d2W̃1

dy2

∣∣∣∣∣+
|W2|
|W̃1|

1
2

+
|W̃1|

1
2

ς3
dy. (3.3.136)

We consider the first term appearing in (3.3.136) and in view of Lemma 3.3.14 we obtain

∫ y0−1

0

1

|W̃1|
5
2

(
dW̃1

dy

)2

dy .
∫ y0−1

0

dW̃1
dy

|W̃1|
3
2

dy .
1

|W̃1|
1
2

∣∣∣y0−1

0
. λ̃

1
2 . (3.3.137)

For the second term involving the second derivative, we use (3.3.120) to conclude that

∫ y0−1

0

1

|W̃1|
3
2

∣∣∣∣∣d2W̃1

dy2

∣∣∣∣∣ dy .
∫ y0−1

0

dW̃1
dy

|W̃1|
3
2

+
1− x(y)2

|W̃1|
1
2

dy . λ̃
1
2 . (3.3.138)

For the third term we use that |W2| . 1− x(y)2 such that∫ y0−1

0

|W2|
|W̃1|

1
2

. λ̃
1
2

∫ ∞
0

(1− x(y)2)dy . λ̃
1
2 . (3.3.139)

For the last term in (3.3.136), we have

∫ y0−1

0

|W̃1|
1
2

ς3
dy .

∫ y0−1

0

√
−W̃1(∫ y0

y

√
−W̃1dỹ

)2 dy .
1∫ y0

y0−1

√
−W̃1dỹ

.
1∫ y0

y0−1

√
|ỹ − y0|λ̃−1dỹ

. λ̃
1
2 . (3.3.140)
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Term II. For this term, we use Taylor’s theorem around the point y = y0 and a
lengthy but direct computation shows that∣∣∣∣∣ 1

|W̃1|
1
4

d2

dy2

(
|W̃1|−

1
4

)
− W2

|W̃1|
1
2

− 5|W̃1|
1
2

16ς(y)3

∣∣∣∣∣
.

1

|y − y0|
1
2

sup
y∈(y0−1,y0+1)


∣∣∣∣9(d2W̃1

dy2

)2
− 10d3W̃1

dy3
dW̃1
dy

∣∣∣∣
140

(
dW̃1
dy

) 5
2

+
|W2|
dW̃1
dy

 . λ̃
1
2

|y − y0|
1
2

(3.3.141)

uniformly in y ∈ [y0 − 1, y0 + 1] from which we conclude that |II| . λ̃
1
2 .

Term III. In the region y ∈ [y0 + 1,∞) we first have

ς3(y) &

(∫ y0+1

y0

√
W̃1dỹ

)2

+

(∫ y

y0+1

√
W̃1dỹ

)2

&
1

λ̃
+ (y − y0 − 1)2 1

λ̃
(3.3.142)

such that

|W̃1|
1
2

ς3
.

λ̃
1
2

1 + (y − y0 − 1)2
(3.3.143)

which is integrable at y =∞. Moreover, we have∣∣∣∣∣ 1

|W̃1|
1
4

d2

dy2

(
|W̃1|−

1
4

)
− W2

|W̃1|
1
2

∣∣∣∣∣ . dx

dy

 dW̃1
dy

W̃
3
2

1

+
1

W̃
1
2

1

 . dx

dy
λ̃

1
2 . (3.3.144)

Combining the estimates (3.3.143) and (3.3.144) we obtain that |III| . λ̃
1
2 which con-

cludes the proof.

Finally, we also introduce

Ŵ1 :=
W̃1

ς
or equivalently Ŵ1 =

(
dς

dy

)2

(3.3.145)

which we will bound from below in the following.

Lemma 3.3.16. We have

MAi(λ
1
3 ς(y))

Ŵ
1
4

1

. λ̃
1
6 . (3.3.146)
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Proof. First, for y0 − 1 ≤ y ≤ y0 we have

2

3
(−ς)

3
2 =

∫ y0

y

√
|W̃1|dỹ ≤ (y0 − y)

√
−W̃1(y) (3.3.147)

and for y0 ≤ y ≤ y0 + 1 we have

2

3
ς

3
2 =

∫ y

y0

√
W̃1dỹ ≤ (y − y0)

√
W̃1(y), (3.3.148)

where we have used the monotonicity of W̃1. Hence,

Ŵ1 =
W̃1

ς
&

(
W̃1

y − y0

) 2
3

& λ̃
2
3 (3.3.149)

for |y − y0| ≤ 1. Now, using MAi(x) . 1 we conclude that for |y − y0| ≤ 1 we have

MAi(λ
1
3 ς(y))

Ŵ
1
4

1

.
1

Ŵ
1
4

1

. λ̃
1
6 . (3.3.150)

For |y − y0| ≥ 1, we use that MAi(x) . |x|−
1
4 to obtain

MAi(λ
1
3 ς(y))

Ŵ
1
4

1

.
|ς|

1
4

|ς|
1
4λ

1
12 |W̃1|

1
4

.
λ̃

1
4

λ
1
12

. λ̃
1
6m−

1
6 . λ̃

1
6 . (3.3.151)

Now, we are in the position to define the following fundamental solutions.

Proposition 3.3.5. There exist solutions w1 and w2 of (3.3.118) satisfying

w1 =
1

Ŵ
1
4

1

(
Ai(λ

1
3 ς(y)) + ηAi(λ, y)

)
(3.3.152)

w2 =
1

Ŵ
1
4

1

(
Bi(λ

1
3 ς(y)) + ηBi(λ, y)

)
, (3.3.153)
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where

|ηAi(λ, y)|
MAi(λ

1
3 ς)

,
|∂yηAi(λ, y)|

λ
1
3NAi(λ

1
3 ς)Ŵ

1
2

1

. E−1
Ai (λ

1
3 ς)m−1, (3.3.154)

|ηBi(λ, y)|
MAi(λ

1
3 ς)

,
|∂yηBi(λ, y)|

λ
1
3NAi(λ

1
3 ς)Ŵ

1
2

1

. EAi(λ
1
3 ς)m−1. (3.3.155)

Moreover, the Wronskian of w1 and w2 satisfies

|W(w1, w2)| ∼ λ
1
3 . (3.3.156)

Proof. This follows from [119, Chapter 11, Theorem 3.1] and the error bounds follow from
the bounds on V0,∞(H) in Lemma 3.3.15. The Wronskian identity is a direct consequence
of the chain rule.

Lemma 3.3.17. There exists a constant A2 6= 0 such that s1 = A2w1, where w1 is defined
in (3.3.152) and s1 is defined in (3.3.56).

Proof. Note that both, w1 and s1 are recessive as y → ∞. Since the space of solutions
which are recessive at y →∞ is one-dimensional, we conclude that s1 and w1 are linearly
dependent.

In view of Lemma 3.3.17 we define

s2 :=
1

A2W(w1, w2)
w2, (3.3.157)

where w2 is as in (3.3.153). Note that this implies that

W(s1, s2) = 1. (3.3.158)

Lemma 3.3.18. Let λ̃ ∈ [Ξ2 + 1,∞) and let s2 as in (3.3.157). Then, gp defined as

gp := s2(y)

∫ ∞
y

s2
1(ỹ)F (ỹ)dỹ + s1(y)

∫ y

0
s1(ỹ)s2(ỹ)F (ỹ)dỹ. (3.3.159)

satisfies ∫ ∞
0

gp(y)2(1− x(y)2)∆xdy . m. (3.3.160)
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Proof. Analogous to the proof of Lemma 3.3.13 we first estimate∫ ∞
0

s2
2(y)

(∫ ∞
y

s2
1(ỹ)F (ỹ)dỹ

)2

(1− x(y)2)∆xdy

=

∫ ∞
0

w2
2(y)

W(w1, w2)2

(∫ ∞
y

w1(ỹ)s1(ỹ)F (ỹ)dỹ

)2

(1− x(y)2)∆x(y)dy. (3.3.161)

Now, we use Proposition 3.3.5 and standard bounds on Airy functions from Section 3.9.1,
as well as Lemma 3.3.16 to obtain

|w1(y)| .

∣∣∣∣∣∣E−1
Ai (λ

1
3 ς(y))

MAi(λ
1
3 ς(y))

Ŵ
1
4

1 (y)

∣∣∣∣∣∣ . E−1
Ai (λ

1
3 ς(y))λ̃

1
6 , (3.3.162)

|w2(y)| .

∣∣∣∣∣∣EAi(λ
1
3 ς(y))

MAi(λ
1
3 ς(y))

Ŵ
1
4

1 (y)

∣∣∣∣∣∣ . EAi(λ
1
3 ς(y))λ̃

1
6 . (3.3.163)

Now, plugging these estimates into (3.3.161) and using that E−1(λ
1
3 ς(y)) is a decreasing

function, we conclude∫ ∞
0

s2
2(y)

(∫ ∞
y

s2
1(ỹ)F (ỹ)dỹ

)2

(1− x(y)2)∆xdy

.
∫ ∞

0

λ̃
2
3

W(w1, w2)2

(∫ ∞
y

s1(ỹ)F (ỹ)dỹ

)2

(1− x(y)2)∆xdy.

.
λ̃

2
3

W(w1, w2)2

∫ ∞
0

(1− x(y)2)∆xdy

×
∫ ∞

0
s2

1(y)(1− x(y)2)∆xdy

∫ ∞
0

F 2(y)
1

(1− x(y)2)∆x
dy

.
λ̃

2
3m2

W(w1, w2)2
. (3.3.164)
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For the second term, we argue similarly and estimate∫ ∞
0

s2
1(y)

(∫ y

0
s2(ỹ)s1(ỹ)F (ỹ)dỹ

)2

(1− x(y)2)∆xdy

≤
(∫ ∞

0
|s2(ỹ)s1(ỹ)F (ỹ)|dỹ

)2 ∫ ∞
0

s2
1(y)(1− x(y)2)∆xdy

=
1

2

(∫ ∞
0
|s2(ỹ)s1(ỹ)F (ỹ)|dỹ

)2

.
λ̃

2
3

W(w1, w2)2

(∫ ∞
0
|F |dỹ

)2

.
λ̃

2
3m2

W(w1, w2)2
. (3.3.165)

Thus, we conclude∫ ∞
0

gp(y)2(1− x(y)2)∆xdy .
λ̃

2
3m2

W(w1, w2)2
.
λ̃

2
3m2

λ
2
3

. m
2
3 . m. (3.3.166)

3.4 The radial o.d.e. on the exterior

We will now derive for which frequency parameters (ω,m, `) the resonant frequencies
ω = ω−m in the interior are excited by frequency parameters which are exposed to stable
trapping in the black hole exterior. This allows us then to define the set PBlow-up in
Section 3.5.1. Thus, we will analyze the radial o.d.e. at frequency ω = ω−m.

3.4.1 Radial o.d.e. at resonant frequency admits stable trapping

We now construct the range of angular eigenvalues λm`(amω−) at the resonant frequency
ω = ω−m for which the radial o.d.e. admits trapping. Recall from (3.2.41) that the
normalized high frequency part of the potential is given by

Vmain =
∆

(r2 + a2)2

(
λm`(aω−m)

m2
+ ω2

−a
2 − 2aω−Ξ

)
− (ω− − ωr)2. (3.4.1)

Note that

Vmain → −(ω− − ω+)2 < 0 as r∗ → −∞. (3.4.2)

For the potential Vmain to admit stable trapping, we require that Vmain has two roots
r1 < r2, see already Fig. 3.5. This is the case if the angular eigenvalues λm`(aω−m)m−2
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lie in an interval (σ1(p), σ2(p)), where σ1 and σ2 depend continuously on the black hole
parameters p = (m, a). In order to define σ1 and σ2, we set

E :=
⊔
p∈P

{p} × Ep =
⊔
p∈P

{p} × (µ0(p), µ1(p)), (3.4.3)

where

Ep :=

{
µ > Ξ2 :

(
µ+ ω2

−a
2 − 2aω−Ξ

)
− l2ω2

− < 0,(
1 + 3

M2

Ξ
l2
(9M2

Ξ2
+ a2

)−2) (
µ+ ω2

−a
2 − 2aω−Ξ

)
− l2ω2

− > 0

}
(3.4.4)

is a bounded open interval and µ0(p) := inf Ep, µ1(p) := supEp. Again, Ep is well-defined
as the conditions only depend on p. We will show that E is a fiber bundle. To do so we
first show that Ep is indeed non-empty.

Lemma 3.4.1. For any p ∈ P, the set Ep defined in (3.4.4) is non-empty, hence a
bounded open interval.

Proof. By continuity, it suffices to show that

1

l2
(
Ξ2 + a2ω2

− − 2aω−Ξ
)
− ω2

− < 0 (3.4.5)

which in turn follows from

r2
− < al. (3.4.6)

To see that r2
− < al holds true, we write ∆(r) in terms of r− as

∆(r) = l−2(r − r−)(r3 + r2r− + r(r2
− + a2 + l2)− a2l2r−1

− ). (3.4.7)

Hence,

0 > ∂r∆(r−) = l−2r−1
− (3r4

− + r2
−a

2 + r2
−l

2 − a2l2) (3.4.8)

implies

3r4
− < a2l2 (3.4.9)
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from which

r2
− < al (3.4.10)

follows.

From (3.4.4) it also follows that µ0 and µ1 are manifestly continuous functions on P.
Hence, E is a (topological) fiber bundle. Now, also note that E is trivial with global
trivialization ϕE : E → P × (0, 1), (p, µ) 7→ (p, µ

µ1−µ0
− µ0

µ1−µ0
) and we find (using this

trivialization) two global sections

σ1 ∈ Γ(E) and σ2 ∈ Γ(E) with σ1(p) < σ2(p) (3.4.11)

for all p ∈ P (in mild abuse of notation). Having constructed σ1 and σ2, we will now
show the existence of turning points r1 < r2 of Vmain.

Lemma 3.4.2. Let m−2λm`(aω−m) ∈ (σ1, σ2) as chosen in (3.4.11). Then, Vmain has a
maximum rmax ∈ (r+,∞), and two roots r1, r2 with r+ < r1 < rmax < r2 <∞ such that

Vmain > 0 for r ∈ (r1, r2), (3.4.12)

Vmain < 0 for r ∈ [r+,∞) \ [r1, r2] (3.4.13)

and r2 − r1 &σ1,σ2 1.

Proof. By construction of σ1 and σ2, for any m−2λm` ∈ (σ1, σ2), the potential Vmain has
a maximum and satisfies

lim
r→∞

Vmain < 0, Vmain(r = r+) < 0 and Vmain(r = rcut) > 0, (3.4.14)

where rcut = 3M
Ξ . See also [77, Lemma 3.1].

We will show now that Vmain has exactly two roots in [r+,∞) from which (3.4.12) and
(3.4.13) follow. Indeed, in view of the above, Vmain either has two or four roots in [r+,∞).
To exclude the case of four roots, it suffices to exclude the case of three critical points in
[r+,∞). To see this, note that

dVmain

dr
=

(−2Ξr3 + 6Mr2 − 2Ξa2r − 2Ma2)m−2λm`(aω−m) + 4aΞ(ωr − ω−)(r2 + a2)

(r2 + a2)3

(3.4.15)

217



has at most three real roots, one of which is in [r+,∞) in view of the construction above.
Indeed, one other root has to lie in (−∞, r−] as

lim
r→−∞

dVmain

dr
> 0 and

dVmain

dr
(r = r−) =

∂r∆(r−)

(r2
− + a2)2

< 0. (3.4.16)

Thus, Vmain has at least one and at most two critical points in [r+,∞) from which we
deduce (3.4.12) and (3.4.13).

3.4.2 Fundamental pairs of solutions

We will now define various solutions to the radial o.d.e. associated to the boundary and to
the turning points. Recall that the turning points define the transition from the trapping
region to the semiclassically forbidden region.

3.4.2.1 Solutions associated to the boundary

We first define the associated solution to the radial o.d.e. (3.2.36) which satisfies the
Dirichlet boundary conditions at r∗ = π

2 l. Throughout Section 3.4.2.1 we consider all
frequency parameters ω,m, `.

Definition 3.4.1. We define the solution u∞ as the unique solution to (3.2.36) satisfying

u∞

(π
2
l
)

= 0 (3.4.17)

u′∞

(π
2
l
)

= 1, (3.4.18)

where we recall that ′ = d
dr∗ .

Definition 3.4.2. We also define uH+ and uH− as the unique solutions to (3.2.36) satis-
fying

uH+ = e−i(ω−ω+m)r∗ as r∗ → −∞, (3.4.19)

uH− = ei(ω−ω+m)r∗ as r∗ → −∞. (3.4.20)

3.4.2.2 Solutions associated to turning points at resonant frequency

For the solutions associated to the turning points we are only interested in the resonant
frequency so we are now considering the radial o.d.e. for ω = ω−m. We define solutions
associated to the turning point r∗1 and r∗2 as illustrated in Fig. 3.5. In view of Lemma 3.4.2,
we define solutions to the radial o.d.e. as follows.
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r∗2r∗1

V (r∗, ω,m, λm`(aω))

π
2 l

Figure 3.5: Rough shape of the potential and the turning points r∗1 and r∗2.

Definition 3.4.3. Assume that σ1 ≤ λm`m
−2 ≤ σ2 and denote the turning points of

Vmain with r∗1 := r∗(r1) < r∗(r2) =: r∗2. Then, for some fixed ε > 0 sufficiently small only
depending on the black hole parameters, define

ξ1(r∗,m) :=


−
(

3
2

∫ r∗1
r∗ |Vmain|

1
2 dy
) 2

3
r∗ ∈ (−∞, r∗1)(

3
2

∫ r∗
r∗1
V

1
2
maindy

) 2
3

r∗ ∈ [r∗1, r
∗
2 − ε]

(3.4.21)

ξ2(r∗,m) :=


(

3
2

∫ r∗2
r∗ V

1
2
maindy

) 2
3

r∗ ∈ (r∗1 + ε, r∗2)

−
(

3
2

∫ r∗
r∗2
|Vmain|

1
2 dy
) 2

3
r∗ ∈ [r∗2,

π
2 l]

(3.4.22)

f̂1 :=
Vmain

ξ1
for r∗ ∈ (−∞, r∗2 − ε], (3.4.23)

f̂2 :=
Vmain

ξ2
for r∗ ∈ [r∗1 + ε,

π

2
l] (3.4.24)

and the error control functions

H1(r∗) :=

∫ r∗

r∗1

{
1

|Vmain|
1
4

d2

dr∗2

(
1

|Vmain|
1
4

)
− V1

|Vmain|
1
2

− 5|Vmain|
1
2

16|ξ1|3

}
dy, (3.4.25)

H2(r∗) :=

∫ r∗

r∗2

{
1

|Vmain|
1
4

d2

dr∗2

(
1

|Vmain|
1
4

)
− V1

|Vmain|
1
2

− 5|Vmain|
1
2

16|ξ2|3

}
dy. (3.4.26)
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Lemma 3.4.3. The error control functions H1 and H2 satisfy

V−∞,r∗2−ε (H1) .ε,σ1,σ2 1 (3.4.27)

Vr∗1+ε,lπ
2

(H2) .ε,σ1,σ2 1. (3.4.28)

Proof. We will use [119, Chapter 11, Lemma 3.1] to show the bounds on the total variation
of H1 and H2.

We begin with H2. From

σ1 < λm`(aω−m) < σ2 (3.4.29)

we have that

Vmain

r∗ − r∗2
(3.4.30)

is a positive smooth function on [r1 + ε, π2 l]. Moreover, V1 is a smooth function. Thus, we
can apply [119, Chapter 11, Lemma 3.1] and since the interval [r1 + ε, π2 l] is compact, we
conclude that (3.4.28) holds true.

For H1, we have to deal with the unbounded region r∗ ∈ (−∞, r∗2 + ε). We decompose

V−∞,r∗2−ε (H1) = V−∞,r∗1−1 (H1) + Vr∗1−1,r∗2−ε (H1) . (3.4.31)

Completely analogous to the proof of the bound on H2 we have

Vr∗1−1,r∗2−ε (H1) .ε,σ1,σ2 1. (3.4.32)

For the term V−∞,r∗1−1 (H1) we remark that

−Vmain ∼σ1,σ2 1, |V ′main|, |V ′′main| .σ1,σ2 e
2κ+r∗ and |V1| . e2κ+r∗ (3.4.33)

for r∗ ∈ (−∞, r∗1 − 1). Using the lower bound −Vmain, we infer from (3.4.21) that

−ξ1(r∗) & (−r∗)
2
3 (3.4.34)
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for r∗ ∈ (−∞, r∗1 − 1). Hence,

V−∞,r∗1−1 (H1) .σ1,σ2

∫ r∗1−1

−∞

∣∣∣∣∣ V ′′main

|Vmain|
3
2

∣∣∣∣∣+

∣∣∣∣∣ V ′2main

|Vmain|
5
2

∣∣∣∣∣+

∣∣∣∣∣ V1

|Vmain|
1
2

∣∣∣∣∣+
|Vmain|

1
2

|ξ1|3
dr∗

.σ1,σ2

∫ r∗1−1

−∞
e2κ+r∗ +

1

|r∗|2
dr∗ .σ1,σ2 1. (3.4.35)

With the bounds in Lemma 3.4.3 at hand, we apply [119, Chapter 11, Theorem 3.1]
which allow us to define the following. In particular, the error bounds (3.4.40)–(3.4.46)
hold due to Lemma 3.4.3.

Definition 3.4.4. We define solutions to the radial o.d.e. (3.2.36) for ω = ω−m as

uAi1(r∗,m) := f̂
1
4

1 (r∗1)f̂
− 1

4
1 (r∗)

{
Ai(m

2
3 ξ1) + εAi1(m, r∗)

}
for r∗ ∈ (−∞, r∗2 − ε], (3.4.36)

uBi1(r∗,m) := f̂
1
4

1 (r∗1)f̂
− 1

4
1 (r∗)

{
Bi(m

2
3 ξ1) + εBi1(m, r∗)

}
for r∗ ∈ (−∞, r∗2 − ε], (3.4.37)

uAi2(r∗,m) := f̂
1
4

2 (r∗2)f̂
− 1

4
2 (r∗)

{
Ai(m

2
3 ξ2) + εAi2(m, r∗)

}
for r∗ ∈ [r∗1 + ε,

π

2
l], (3.4.38)

uBi2(r∗,m) := f̂
1
4

2 (r∗2)f̂
− 1

4
2 (r∗)

{
Bi(m

2
3 ξ2) + εBi2(m, r∗)

}
for r∗ ∈ [r∗1 + ε,

π

2
l]. (3.4.39)

Moreover,

|εAi1| .ε MAi(m
2
3 ξ1)E−1

Ai (m
2
3 ξ1)m−1, (3.4.40)

|ε′Ai1| .ε f̂
1
2

1 NAi(m
2
3 ξ1)E−1

Ai (m
2
3 ξ1)m−

1
3 , (3.4.41)

|εBi1| .ε MAi(m
2
3 ξ1)EAi(m

2
3 ξ1)m−1, (3.4.42)

|ε′Bi1| .ε f̂
1
2

1 NAi(m
2
3 ξ1)EAi(m

2
3 ξ1)m−

1
3 , (3.4.43)

|εAi2| .ε MAi(m
2
3 ξ2)E−1

Ai (m
2
3 ξ2)m−1, (3.4.44)

|ε′Ai2| .ε f̂
1
2

2 NAi(m
2
3 ξ2)E−1

Ai (m
2
3 ξ2)m−

1
3 , (3.4.45)

|εBi2| .ε MAi(m
2
3 ξ2)EAi(m

2
3 ξ2)m−1, (3.4.46)

|ε′Bi2| .ε f̂
1
2

2 NAi(m
2
3 ξ2)EAi(m

2
3 ξ2)m−

1
3 , (3.4.47)

where (3.4.40)–(3.4.43) hold uniformly in r∗ ∈ (−∞, r∗2 − ε] and (3.4.44)–(3.4.47) hold
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uniformly in r∗ ∈ [r∗1 + ε, π2 l]. Finally, we choose the initialization such that

|εAi2(r∗)| .ε MAi(m
2
3 ξ2)E−1

Ai (m
2
3 ξ2)

(
exp

[
2Vr∗1+ε,r∗(H2)m−1

]
− 1
)
, (3.4.48)

|εBi2(r∗)| .ε MAi(m
2
3 ξ2)EAi(m

2
3 ξ2)

(
exp

[
2Vr∗,lπ

2
(H2)m−1

]
− 1
)

(3.4.49)

and in particular, |εAi2(π2 l)| .ε m
− 7

6 , εBi2(π2 l) = 0.

3.5 Definition and properties of PBlow-up

With the fundamental solutions from Section 3.4.2, we are now in the position to define
the set of black hole parameters PBlow-up.

3.5.1 Definition of PBlow-up

We first define Wronskians of solutions of the radial o.d.e. which will play a fundamental
role in the estimates.

Definition 3.5.1. We define W1 : P ×Zm×Z`≥|m| → C and W2 : P ×Zm×Z`≥|m| → C

as

W1(p,m, `) := W[uH+ , u∞](m, `, ω = ω−m, p), (3.5.1)

W2(p,m, `) := W[uAi2, u∞](m, `, ω = ω−m, p). (3.5.2)

Note that this is well-defined as the Wronskians W1 and W2 only depend on P (by con-
struction). Moreover, they are manifestly continuous functions on P for fixed m, `.

Remark 3.5.1. Note that the Wronskian W1 does not vanish as discussed in the intro-
duction. Nevertheless, W1 can be very small (as m→∞) which corresponds to frequency
parameters associated to stable trapping. On the other hand, W2 may vanish and this in-
deed corresponds to stable trapping. In particular, if W2 vanishes, then the solution u∞ is
a multiple of the uAi2 which is exponentially damped in the semi-classical forbidden region.
In this case, we infer that W1 is exponentially small and indeed, we are in the situation of
stable trapping. This intuition leads to the definition of PBlow-up in Definition 3.5.2 and
Definition 3.5.3 below.

Before we define the set PBlow-up, we parametrize the level sets {a = const.} ⊂P by

ϑ = ϑ(p) := aω−(p).
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That is, for each a0, there exists an interval (ϑ1, ϑ2) and a real-analytic embedding
γa0 : (ϑ1, ϑ2) → P, γa0(ϑ) = (m(ϑ), a0) with γa0 ((ϑ1, ϑ2)) = {a = a0} ∩P. This em-
bedding depends smoothly on a0 and thus, the vector field defined by

Γ(p) := γ̇a(p) (3.5.3)

is smooth and tangential to the level sets {a = const.}. The flow generated by Γ will be
denoted by ΦΓ

τ .

Definition 3.5.2. For m0 ∈ N we define

Um0 :=
⋃

m≥m0
m∈N

⋃
m≤`≤m2

`∈N

U(m, `), (3.5.4)

where

U(m, `) :=
{
p ∈P : |W1| < e−

√
m, σ1(p) < λm`(aω−(p)m) < σ2(p), |W2| < e−`e−m,

|ΓW2| > 1, |W2(ΦΓ
τ (p))| > e−`e−m for all |τ | ∈ [e−`e−m,

1

m2
]
}
. (3.5.5)

Definition 3.5.3. We define

PBlow-up :=
⋂

m0∈N

Um0 (3.5.6)

While a priori the set PBlow-up could be empty, we will show in the following that it
is dense in P and Baire-generic, i.e. a countable intersection of open and dense sets.

3.5.2 Topological genericity: PBlow-up is Baire-generic

We will first show that each Um0 is dense. To do so, we let m0 and p0 = (m0, a0) ∈ P

be arbitrary and fixed. Also, let U ⊂ P be an open neighborhood of p0. We will show
that there exists an element of Um0 which is contained in U . We now define a curve of
parameters through p0 as follows.

Definition 3.5.4. For δ = δ(p0,U) > 0 sufficiently small, we define the real-analytic
embedded curve γδ(p0) ⊂ U through p0 as

γδ(p0) := {p = (m, a) ∈P : a = a0, |ϑ(p)− ϑ(p0)| ≤ δ}. (3.5.7)
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Throughout Section 3.5.2 we will only consider

p ∈ γδ(p0). (3.5.8)

We parameterize γδ(p0) with ϑ ∈ (ϑ0 − δ, ϑ0 + δ), where ϑ0 = ϑ(p0).

Remark 3.5.2. Note that the expression Ξ is (by construction) constant on γδ(p0). A di-
rect computation shows that the eigenvalues satisfy Γ(λm`(aω−m)+a2ω2

−m
2−2aω−m

2Ξ) ∈
(−2m2, 0).

Remark 3.5.3. From Proposition 3.3.2 and Remark 3.5.2 we have that for almost every
λ̃0 > Ξ2, there exist sequences (mi)i∈N and (`i)i∈N (mi ≤ `i ≤ m2

i ) with mi →∞, `i →∞
as i→∞ such that the angular eigenvalues satisfy

λi = λmi`i(ω = ω−m) = λ̃im
2 = λ̃0m

2
i + λ(i)

error, (3.5.9)

where |λ(i)
error| .λ̃0,p0

1 at p0 and |λ(i)
error| .λ̃0,p0

1 + |ϑ0 − ϑ|m2
i . 1 + δm2

i uniformly on
γδ(p0) as mi →∞ . Moreover, we assume without loss of generality that mi+1 > mi and
note that the choice of subsequence mi, `i depends on p0.

Lemma 3.5.1. Let λ1 := supp∈γδ(p0) σ1(p) and λ2 := infp∈γδ(p0) σ2(p) and choose δ > 0

potentially smaller such that λ1 < λ2. Then, there exists a λ̃0 ∈ (λ1, λ2) \ Np0 (see
Remark 3.5.3) with the following properties.

Let λ̃i = λ̃0 + λ
(i)
errorm−2 be the associated angular eigenvalues from Proposition 3.3.2.

Then, for all p ∈ γδ(p0), and for all i ∈ N sufficiently large, we have

|Γξ∞| ≥ c(δ, p0), (3.5.10)

where ξ∞ : γδ(p0)→ R is defined as

ξ∞(ϑ) :=

∫ π
2
l

r∗2

√
|Vmain|dr∗ =

∫ ∞
r2

√
−(r2 + a2)2

∆2
Vmaindr (3.5.11)

and c(δ, p0) > 0 only depends on δ > 0 and p0.

Proof. Note that to highest order in r/l, the function Γ
(

(r2+a2)2

l2∆2 Vmain

)
has a sign. Thus,

by choosing δ > 0 sufficiently small and r2/l = r2/l(p0, λ̃i) sufficiently large (choose
λ̃i ∈ (λ1, λ2) \Np0 sufficiently close to σ2 and potentially increase σ2), we have that for all
i ∈ N, |Γξ∞| > c(δ, p0) for all parameters in γδ(p0).

Recall the definition of W1 and W2 from Definition 3.5.1.
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Proposition 3.5.1. Let m0 ∈ N. Then, there exist a parameters

pBlow-up ∈ γδ(p0) ⊂ U

and an i ∈ N such that m0 ≤ mi ≤ `i ≤ m2
i with

σ1(pBlow-up) < λmi`i < σ2(pBlow-up) (3.5.12)

and

|W1(ϑBlow-up)| < e−
√
mi (3.5.13)

as well as

|W2(ϑBlow-up)| = 0 and |ΓW2(ϑBlow-up)| > 1,

|W2(ϑ)| > e−`ie−mi for all e−`ie−mi < |ϑBlow-up − ϑ| <
1

m2
i

. (3.5.14)

The proof of Proposition 3.5.1 relies on the following two lemmata and will given
thereafter. First, we will start by showing that for every mi ≥ m0 large enough, there
exists a pBlow-up ∈ γδ(p0) such that W2 = 0 and |ΓW2| > 1. We will state this as the
following Lemma.

Lemma 3.5.2. For every m̃0 > 0 there exists an i ∈ N with mi > m̃0 and a parameter
ϑBlow-up with |ϑBlow-up − ϑ(p0)| ≤ δ such that

1. W2(ϑBlow-up,mi) = 0,

2. uAi2 = α∞f̂
1
2

2 (π2 l)u∞ for ϑ = ϑBlow-up with |α∞(ϑBlow-up)| ∼ m
5
6
i ,

3. |ΓW2(ϑBlow-up,mi)| > 1,

4. For all ϑ with e−`ie−mi < |ϑ− ϑBlow-up| < 1
m2
i
, we have |W2(ϑ)| > e−`ie−mi.

Proof. Throughout the proof we use the convention that all constants appearing in ., &,
∼ and O only depend on p0, l and δ > 0.
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Let m̃0 > 0. We begin by showing 1. From Lemma 3.4.3 and (3.5.11) we have

W[uAi2, u∞](mi, ϑ) = uAi2(r∗ = lπ/2,mi) = f̂
1
4

2 (r∗2)f̂
− 1

4
2 (π/2)

{
Ai(m

2
3
i ξ2(π/2)) + εAi2(mi, lπ/2)

}
= f̂

1
4

2 (r∗2)f̂
− 1

4
2 (π/2)

{
Ai

(
−
(

3

2
miξ∞

) 2
3

)
+O(m

− 7
6

i )

}
(3.5.15)

on γδ(p0). Now, for all mi > m̃0 sufficiently large, we use the asymptotics for the Airy
functions as shown in Lemma 3.9.1 to conclude that

Ai

(
−
(

3

2
miξ∞

) 2
3

)
+O(m

− 7
6

i ) =
1√
π

(
3

2
miξ∞

)− 1
6 (

cos
(
miξ∞ −

π

4

)
+O(m−1

i )
)
.

(3.5.16)

Thus, in order to conclude that W[uAi2, u∞](mi, ϑ) = 0 for some value on γδ(p0), we have
to vary p(ϑ) ∈ γδ(p0) such that miξ∞ goes through a period of 2π. Thus, it suffices to let
ξ∞ go through a period of 2πm−1

i . From (3.5.10) we have

|Γξ∞| ≥ c(δ, p0) > 0 (3.5.17)

on γδ(p0). Thus, by potentially choosing mi > m̃0 even larger, there exists a parameter
ϑBlow-up with

|ϑBlow-up − ϑ(p0)| . 1

mi
(3.5.18)

such that

W2(ϑBlow-up,mi) = 0 and p(ϑBlow-up) ∈ γδ(p0). (3.5.19)

Having found mi and ϑBlow-up, we will now prove 2. We again use Lemma 3.9.1,
(3.4.45) and an analogous computation as in (3.5.15) to conclude that for ϑ = ϑBlow-up we
have

|u′Ai2(r∗ = lπ/2,mi)| ∼ f̂
1
2

2 (lπ/2)m
5
6
i . (3.5.20)
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Thus, for ϑ = ϑBlow-up we have

uAi2 = f̂
1
2

2 (lπ/2)α∞u∞ with |α∞| ∼ m
5
6
i . (3.5.21)

To show 3, we recall that

|Γξ∞| ≥ c(δ, p0) (3.5.22)

on γδ(p0) in view of (3.5.10). Now, we take the derivative of (3.5.15) with respect to Γ.

Since |l2ΓVmain| . 1 and |l2ΓV1| . 1, we have that ΓO(m
− 7

6
i ) = O(m

− 1
6

i ) in (3.5.15). Note
that this follows from [119, Chapter 11, Proof of Theorem 3.1]. Thus, for ϑ = ϑBlow-up we
infer

|ΓW2| ∼ m
5
6
i (3.5.23)

which shows 3. We also have the estimate (3.5.23) for all ϑ with |ϑ− ϑBlow-up| < m−2
i for

mi large enough which upon integration shows 4.

Lemma 3.5.3. There exists a constant c > 0 (only depending on p0 and δ > 0) such that
for p ∈ γδ(p0) we have

|W(uAi2, uBi1)| . f̂
1
2

1 (r∗1)e−cmi and |W(uAi2, uAi1)| . f̂
1
2

1 (r∗1)e−cmi (3.5.24)

for all mi sufficiently large. Moreover, there exist constants α1 = α1(mi) ∈ R and β1 =

β1(mi) ∈ R satisfying |α1| . e−cmi and |β1| . e−cmi such that uAi2 = α1uAi1 + β1uBi1.

Proof. We start by proving |W(uAi2, uBi1)| . f̂
1
2

1 (r∗1)e−cmi . Choose ε > 0 sufficiently small
but fixed and evaluate the Wronskian at r∗ := r∗1 + ε. Then, using standard bounds on
Airy functions from Lemma 3.9.1 we obtain

|uAi2(r∗1 + ε)| .ε
1

m
1
6
i ξ

1
4
2 (r∗1 + ε)

e−
2
3
miξ

3
2
2 (r∗1+ε), (3.5.25)

|u′Ai2(r∗1 + ε)| .ε m
1
6
i ξ

1
4
2 (r∗1 + ε)f̂

1
2

2 (r∗2)e−
2
3
miξ

3
2
2 (r∗1+ε), (3.5.26)

|uBi1(r∗1 + ε)| .ε
1

m
1
6
i ξ

1
4
1 (r∗1 + ε)

e
2
3
miξ

3
2
1 (r∗1+ε), (3.5.27)

|u′Bi1(r∗1 + ε)| .ε m
1
6
i ξ

1
4
1 (r∗1 + ε)f̂

1
2

1 (r∗1)e
2
3
miξ

3
2
1 (r∗1+ε). (3.5.28)
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Now, choosing ε > 0 sufficiently small only depending on p0 and δ, there exists a constant
c > 0 such that

ξ
3
2
2 (r∗1 + ε)− ξ

3
2
1 (r∗1 + ε) > c (3.5.29)

from which the first estimate follows by evaluating the Wronskian W(uAi2, uBi1) at r∗ =

r∗1 + ε and the fact that f̂1(r∗1)/f̂2(r∗2) ∼ 1. The second estimate of (3.5.24) follows in the
same manner but it is easier as uAi2 is already exponentially small in the region between
the turning points r∗1 and r∗2 since

|uAi1(r∗1 + ε)| .ε
1

m
1
6
i ξ

1
4
1 (r∗1 + ε)

e−
2
3
miξ

3
2
1 (r∗1+ε), (3.5.30)

|u′Ai1(r∗1 + ε)| .ε m
1
6
i ξ

1
4
1 (r∗1 + ε)f̂

1
2

1 (r∗1)e−
2
3
miξ

3
2
1 (r∗1+ε). (3.5.31)

For the second part we first note that

α1 =
W(uAi2, uBi1)

W(uAi1, uBi1)
, β1 =

W(uAi2, uAi1)

W(uBi1, uAi1)
. (3.5.32)

To conclude it suffices to show that

W(uAi1, uBi1) ∼ f̂
1
2

1 (r∗1)m
2
3
i . (3.5.33)

In view of the error bounds from (3.4.40)–(3.4.43) and the chain rule, we infer that

|Wr∗(uAi1, uBi1)| ∼ f̂
1
2

1 (r∗1)m
2
3
i Wx(Ai(x),Bi(x)) ∼ f̂

1
2

1 (r∗1)m
2
3
i (3.5.34)

for all mi sufficiently large.

Now, we are in the position to prove Proposition 3.5.1.

Proof of Proposition 3.5.1. Let m0 ∈ N be arbitrary. Using Lemma 3.5.2, we let mi > m0

and fix pBlow-up ∈ γδ(p0) ⊂ U such that W2 = 0 and |ΓW2| > 1 as well as |W2(ϑ)| >
e−`ie−mi for e−`ie−mi < |ϑ− ϑBlow-up| < 1

m2
i
. We moreover have

u∞ = α−1
∞ f̂

− 1
2

2 (lπ/2)uAi2 = α−1
∞ f̂

− 1
2

2 (lπ/2) (α1uAi1 + β1uBi1) , (3.5.35)
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where |α∞| ∼ m
5
6
i . Thus, in view of Lemma 3.5.3 we have

|W[u∞, uH+ ]| = |α−1
∞ f̂

− 1
2

2 (lπ/2) (α1W[uAi1, uH+ ] + β1W[uBi1, uH+ ]) |

. f̂
− 1

2
2 (lπ/2)m

− 5
6

i e−cmi (|W[uAi1, uH+ ]|+ |W[uBi1, uH+ ]|) (3.5.36)

for some constant c = c(p0) > 0. To estimate W[uAi1, uH+ ] and W[uBi1, uH+ ] we infer
from Lemma 3.9.1 and (3.4.36), (3.4.37) together with the associated error bounds, that

|uAi1| . m
− 1

6
i , |u′Ai1| . f̂

1
2

1 (r∗1)m
5
6
i , |uBi1| . m

− 1
6

i , |u′Bi1| . f̂
1
2

1 (r∗1)m
5
6
i (3.5.37)

for all r∗ sufficiently small and particularly as r∗ → −∞. Moreover, as r∗ → −∞, we have
that

uH+ ∼ e−i(ω−−ω+)mr∗ (3.5.38)

such that

|W[uAi1, uH+ ]|, |W[uBi1, uH+ ]| . f̂
1
2

1 (r∗1)m
5
6
i . (3.5.39)

Thus, by potentially choosing mi even larger (i.e. choose m̃0 larger in Lemma 3.5.2) and

noting that f̂
1
2

2 (π2 l) ∼ (ω− − ω+) ∼ f̂
1
2

1 (r∗1), we have

|W[u∞, uH+ ]| . m−
5
6

i m
5
6
i e
−cmi = e−cmi < e−

√
mi . (3.5.40)

Now, we can conclude

Proposition 3.5.2. The set PBlow-up is a Baire-generic subset of P.

Proof. Since p0 ∈ P and U ⊂ P, U 3 p0 were arbitrary, Proposition 3.5.1 shows that
for any m0 ∈ N large enough, the set Um0 as defined in Definition 3.5.2 is dense in P.
Since W1, W2, σ1 and σ2 are continuous, Um0 is manifestly open. Thus, in view of Baire’s
theorem, PBlow-up is Baire-generic and in particular dense.

3.5.3 Metric genericity: PBlow-up is Lebesgue-exceptional and 2-packing
dimensional

Proposition 3.5.3. The set PBlow-up is a Lebesgue null set.
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Proof. It suffices to show that PBlow-up ∩C has vanishing Lebesgue measure (denoted by
| · |) for any closed square C contained in P with side length less than unity. Throughout
the proof, all constants appearing in .,&,∼ and O will only depend on the cube C. We
start by estimating U(m, `) ∩ C with the co-area formula: We have

|U(m, `) ∩ C| =
∫
ã∈(a1,a2)

H1(U(m, `) ∩ C ∩ {a = ã})dã. (3.5.41)

We recall that H1 denotes the one dimensional Hausdorff measure. As |a2 − a1| ≤ 1, it
suffices to estimate H1(U(m, `) ∩ C ∩ {a = ã}) uniformly for ã ∈ (a1, a2).

For each ã ∈ (a1, a2) we claim that U(m, `) ∩ C ∩ {a = ã} can be decomposed into at
most O(m2) many subsets, each of which with length at most O(e−`e−m). More precisely,
for ϑ1 < ϑ2 let γã(ϑ1), γã(ϑ2) be elements of U(m, `) ∩ C ∩ {a = ã}. Then, we claim that
either, |ϑ2 − ϑ1| ≤ 2e−`e−m or |ϑ2 − ϑ1| > 1

m2 .
Indeed, note that γã(ϑ2) = ΦΓ

|ϑ2−ϑ1|(γã(ϑ1)). Thus, from the definition of U(m, `) and
since both, γã(ϑ1), γã(ϑ2) ∈ U(m, `), we conclude that

|ϑ2 − ϑ1| < 2e−`e−m or
1

m2
< |ϑ2 − ϑ1|. (3.5.42)

Hence, we decompose U(m, `) ∩C ∩ {a = ã} into O(m2) many subsets, each of which has
length O(e−me−`). Thus,

H1(U(m, `) ∩ C ∩ {a = ã}) . m2e−`e−m (3.5.43)

which implies

|U(m, `) ∩ C| . m2e−`e−m. (3.5.44)

Now,

Um,C :=
⋃

m≤`≤m2

U(m, `) ∩ C (3.5.45)

satisfies |Um,C | . e−m. Since PBlow-up ∩ C = lim supm→∞ Um,C , we conclude

|PBlow-up ∩ C| = 0 (3.5.46)

in view of Borel–Cantelli lemma.

Proposition 3.5.4. The set PBlow-up has full packing dimension, i.e. dimP (PBlow-up) =
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2.

Proof. This follows from Proposition 3.5.2 and [46, Corollary 3.10].

3.6 Construction of the initial data

We will now define our initial data and show first properties of the corresponding solution,
particularly a quantitative description of the (generalized) Fourier transform of the solution
along the event horizon. We begin by fixing an arbitrary parameter

p = (m, a) ∈PBlow-up. (3.6.1)

which we keep fixed through the rest of the chapter, i.e. throughout Section 3.6, Sec-
tion 3.7, Section 3.8. This also fixes the mass M = ml/

√
3 and angular momentum

a = al/
√

3. As stated in the conventions in Section 3.2.3, all constants appearing in .,
&, ∼ and O will now depend on p as fixed in (3.6.1) (and on l > 0 as fixed in (3.2.6))
throughout Section 3.6, Section 3.7, Section 3.8.

By construction of PBlow-up and since p ∈PBlow-up, there exists an infinite sequence

mi →∞, `i →∞ (3.6.2)

with

|W[uH+ , u∞](ω = ω−mi,mi, `i)| < e−
√
mi , (3.6.3)

λmi`i(aω−mi)

m2
i

∈ (σ1(p), σ2(p)). (3.6.4)

Lemma 3.6.1. There exists a compact interval K =⊂ (−∞, π2 l), an ε > 0 and a constant
c > 0 such that for every i ∈ N large enough, there exists a subinterval Ki = [r∗i − c

mi
, r∗i +

c
mi

] ⊂ K with

uω−∞ := u∞(ω = ω−mi,mi, `i, r
∗) >

ε

mi
. (3.6.5)

Moreover, we choose K such that inf K > 3r+.

Proof. By Definition 3.4.1, uω−∞ = u∞(ω = ω−mi,mi, `i, r
∗) is a solution to (3.2.40), i.e. a
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solution to

−u′′ + (m2
iVmain + V1)u = 0, (3.6.6)

where

Vmain =
∆

(r2 + a2)2

(
λm`(aω−mi)

m2
i

+ ω2
−a

2 − 2aω−Ξ

)
− (ω− − ωr)2, (3.6.7)

V1 =
−∆23r2

(r2 + a2)4
−∆

5 r
4

l2
+ 3r2

(
1 + a2

l2

)
− 4Mr + a2

(r2 + a2)3
− 2∆

l2
1

r2 + a2
(3.6.8)

with uω−∞ (lπ/2) = 0 and uω−∞
′
(lπ/2) = 1. Since

λmi`i(aω−mi)

m2
i

∈ (σ1(p), σ2(p)), (3.6.9)

there exists an δ > 0 and a r̃∗2 such that

Vmain < −δ for r∗ ∈
[
r̃∗2, l

π

2

)
, (3.6.10)

see Lemma 3.4.2. Without loss of generality we can assume that r̃∗2 > r∗(r = 3r+). In
particular, for mi sufficiently large, we have that

Vmain + V1m
−2
i < −δ (3.6.11)

for r∗ ∈ [r̃∗2,
π
2 l). Now, let K =:= [r̃∗2, r

∗
3] ⊂ (r̃∗2,

π
2 l) be a compact subinterval. In the

region [r̃∗2,
π
2 l), the smooth potential Vmain satisfies

Vmain < −δ, |V ′main| . 1 and |V ′′main| . 1. (3.6.12)

Moreover, |V1| . 1 uniformly in [r̃∗2,
π
2 l). This allows us to approximate uω−∞ via a WKB

approximation. First, we introduce the error-control function

F∞(r∗) :=

∫ π
2
l

r∗
|Vmain|−

1
4

d2

dy2

(
|Vmain|−

1
4

)
− V1

|Vmain|
1
2

dy (3.6.13)

and note that F∞(π2 l) = 0. In view of the above bounds on Vmain and V1 we obtain

Vr̃∗2 ,π2 l(F∞) . 1. (3.6.14)
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Hence, from [119, Chapter 6, §5] the solution uω−∞ is given as

uω−∞ =
A

mi|Vmain|
1
4

sin

(
−mi

∫ π
2
l

r∗

√
|Vmain|dy

)
(1 + εu∞), (3.6.15)

where A = |V −
1
4

main(r∗ = lπ2 )| satisfies |A| ∼ 1 and εu∞ satisfies εu∞
(
π
2 l
)

= 0 as well as

|εu∞ |,
|ε′u∞ |

2mi|Vmain|
1
2

.
Vr̃∗2 ,π2 l(F∞)

mi
.

1

mi
. (3.6.16)

Now, since uω−∞ oscillates with period proportional tomi, there exists a compact subinterval
Ki ⊂ K of the form Ki = [r∗i − c

mi
, r∗i + c

mi
] for some c > 0 such that for all r∗ ∈ Ki, we

have

uω−∞ (r∗,mi, `i, ) >
ε

mi
. (3.6.17)

We are now in the position to define our initial data which will be supported in the
compact set K as defined in Lemma 3.6.1. We assume without loss of generality that all
mi are large enough such that we can apply Lemma 3.6.1. First, let χ : R → [0, 1] be a
smooth bump function satisfying χ = 0 for |x| ≥ 1 and χ = 1 for |x| ≤ 1

2 . Then, for i ∈ N

we set

χi : (−∞, π/2)→ [0, 1], r∗ 7→ χ(c−1mi(r
∗ − r∗i )). (3.6.18)

Definition 3.6.1. Let mi, `i be as in (3.6.2). For each i ≥ i0 for some i0 ∈ N sufficiently
large, let Ki ⊂ K be the associated subinterval as specified in Lemma 3.6.1 and let χi
defined as in (3.6.18). Then, we define initial data on Σ0 as

ψ �Σ0= Ψ0 := 0, (3.6.19)

nΣ0ψ �Σ0 (r, θ, φ) = Ψ1(r, θ, φ) :=
∑
i≥i0

e−m
1
5
i ψi(r, θ, φ), (3.6.20)

where

ψi(r, θ, φ) =

√
r2 + a2χi(r

∗(r))

−Σ
√
−gtt(r, θ)uω−∞ (r∗(r))

Smi`i(aω−mi, cos θ)eimiφ. (3.6.21)

233



Having set up the initial data we proceed to

Definition 3.6.2. Throughout the rest of Section 3.7 and Section 3.8 we define ψ ∈
C∞(MKerr–AdS \ CH) to be the unique smooth solution to (3.1.1) of the mixed Cauchy-
boundary value problem with vanishing data on HL∪BH, Dirichlet boundary conditions at
infinity and the initial data (Ψ0,Ψ1) ∈ C∞c (Σ0) posed on Σ0 specified in Definition 3.6.1.
This is well-posed in view of Theorem 3.2.

Remark 3.6.1. We note that our initial data are only supported on the positive azimuthal
frequencies m = mi for i ≥ i0. The same will apply to the arising solution ψ.

In the following we define the quantity aH which will turn out to be the (generalized)
Fourier transform of the solution ψ along the event horizon.

Definition 3.6.3. For the initial data Ψ0,Ψ1 as in Definition 3.6.1 we define

aH(ω,m, `) :=
1√

2πW[uH+ , u∞]

∫ ∞
r+

∫
S2

{
Σ√

r2 + a2
u∞e

−imφSm`(aω, cos θ)

×
(
−
√
−gttΨ1 − iωgttΨ0 + gtφ∂φΨ0

)}
dσS2dr.

(3.6.22)

Now, we show that the (generalized) Fourier transform of our initial data has “peaks”
at the resonant frequencies ω = ω−m for infinitely many m. This is a consequence of our
choice of initial data. We formulate this in

Lemma 3.6.2. For aH as in Definition 3.6.1 we have

aH(ω = ω−m,m, `) = aH(ω = ω−mi,mi, `i)δmmiδ``i , (3.6.23)

where

|aH(ω = ω−mi,mi, `i)| & em
1
4
i (3.6.24)

for (mi, `i) large enough as in (3.6.2).

Proof. As Ψ0 = 0, we compute∫ ∞
r+

∫
S2

Σ√
r2 + a2

uω−∞ e−imφSm`(aω−m, cos θ)(−
√
−gtt)Ψ1dσS2dr

= e−m
1
5
i δmmiδ``i

∫ ∞
r+

χi(r)dr ∼ e−m
1
5
i m−1

i δmmiδ``i . (3.6.25)
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To conclude we use that from (3.6.3) we have

|W[uH+ , u∞](ω = ω−mi,mi, `i)| < e−
√
mi . (3.6.26)

3.7 Exterior analysis

3.7.1 Cut-off in time and inhomogeneous equation

We will now consider the ψ as defined in Section 3.6. The goal of this section is to
determine the Fourier transform of ψ along the event horizon. To do so we will first take
of a time cut-off of ψ. Let χ : R→ [0, 1] be a smooth and monotone cut-off function with
χ(x) = 0 for x ≤ 0, χ(x) = 1 for x ≥ 1. Now, define χRε (v) := χ(v/ε)χ(R − v) such
χRε → 1(0,∞) pointwise as ε→ 0 and R→∞. Moreover,

∂v(χ(v/ε))→ δ0(v) and ∂2
v(χ(v/ε))→ δ′0(v) (3.7.1)

as ε→ 0 in the sense of distributions. On R∪HR we set

ψRε (v, r, θ, φ̃+) := ψ(v, r, θ, φ̃+)χRε (v) and ψR := ψ(v, r, θ, φ̃+)χ(R− v) (3.7.2)

and note that ψRε is smooth and compactly supported in v and satisfies the inhomogeneous
equation

�gKerr–AdSψ
R
ε +

2

l2
ψRε = FRε := 2(∂vχ

R
ε )(∇v)ψ + ψ�gKerr–AdSχ

R
ε . (3.7.3)

Analogously, ψR satisfies the inhomogeneous equation with

�gKerr–AdSψ
R +

2

l2
ψR = FR := 2(∂vχ

R)(∇v)ψ + ψ�gKerr–AdSχ
R. (3.7.4)

As in [75, Section 5.1] we have

|FR|2r2 .
1

r2
|∂vψ|2 + r2|∂rψ|2 + | /∇ψ|2 + |ψ|2, (3.7.5)

|FRε |2r2 .
1

ε2r2
|∂vψ|2 + r2|∂rψ|2 + | /∇ψ|2 + |ψ|2. (3.7.6)

In view of our coordinates, we also have that ψRε (t, r, θ, φ) is a compactly supported func-
tion in Rt with values in C∞((r+,∞) × S2). This allows us to apply Carter’s separation
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of variables to express ψRε as

ψRε (t, r, θ, φ) =
1√
2π

∫
R
F[ψRε ](ω, r, θ, φ)e−iωtdω, (3.7.7)

where

F[ψRε ](ω, r, θ, φ) :=
1√
2π

∫
R
ψRε (t, r, θ, φ)eiωtdt (3.7.8)

is smooth and a Schwartz function on Rω with values in C∞((r+,∞) × S2). We further
decompose F[ψRε ](ω, r, θ, φ) in (generalized) spheroidal harmonics

F[ψRε ](ω, r, θ, φ) =
∑
m`

ψ̂Rε (ω,m, `, r)Sm`(aω, cos θ)eimφ, (3.7.9)

where

ψ̂Rε (ω,m, `, r) :=

∫
S2

F[ψRε ](ω, r, θ, φ)e−imφSm`(aω, cos θ)dσS2 (3.7.10)

is smooth in ω and r for fixed m and ` and moreover

ψ̂Rε ∈ L2(Rω × Zm × Z`≥|m|;C
∞(r+,∞)) (3.7.11)

in view of Plancherel’s theorem. Equivalently, we have

ψ̂Rε (ω,m, `, r) =
1√
2π

∫
R

∫
S2

ψRε (t, r, θ, φ)eiωte−imφSm`(aω, cos θ)dσS2dt. (3.7.12)

Note that ψRε (v, r, θ, φ̃+) is smooth and compactly supported on Rv and takes values in
C∞([r+,∞)r × S2

θ,φ̃+
) which shows after a change of coordinates in (3.7.12) that

ψ̂Rε (ω, r,m, `)ei(ω−ω+m)r∗ (3.7.13)

extends smoothly to r = r+ (r∗ → −∞). Similarly to the above, we have

Σ̂FRε (ω,m, `, r) =
1√
2π

∫
R

∫
S2

ΣFRε (t, r, θ, φ)eiωte−imφSm`(aω, cos θ)dσS2dt. (3.7.14)

Now, we define

uRε = uRε (ω,m, `, r) := (r2 + a2)
1
2 ψ̂Rε (ω,m, `, r) (3.7.15)
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and

HR
ε (ω,m, `, r) :=

∆

(r2 + a2)
3
2

Σ̂FRε (ω,m, `, r). (3.7.16)

Then, since ψRε satisfies (3.7.3), we have that uRε satisfies the inhomogeneous radial o.d.e.

−uRε
′′

+ (V − ω2)uRε = HR
ε (3.7.17)

pointwise for each ω,m, ` on r∗ ∈ (−∞, π2 ], where we recall that ′ = d
dr∗ .

3.7.2 Estimates for the inhomogeneous radial o.d.e.

Lemma 3.7.1. The solution uRε as defined in (3.7.15) satisfies the boundary conditions

uRε → 0 as r∗ → π

2
, (3.7.18)

uRε
′
+ i(ω − ω+m)uRε = Oψ(∆) as r∗ → −∞ (3.7.19)

and in the inhomogeneity HR
ε defined in (3.7.17) also satisfies

HR
ε = 0 as r∗ →∞, HR

ε
′
+ i(ω − ω+m)HR

ε = Oψ(∆) as r∗ → −∞. (3.7.20)

Proof. To see (3.7.18) note that

|uRε | ≤ (r2 + a2)
1
2 |ψ̂Rε | =

∣∣∣∣∫
R

∫
S2

(r2 + a2)
1
2ψRε (r, t, θ, φ)eiωtSm`(aω, cos θ)e−imφdσdt

∣∣∣∣ .
(3.7.21)

In view of the compact support of ψRε in t, it suffices to show that the pointwise limit

lim
r→∞

rψRε (t, r, θ, φ) = 0 (3.7.22)

holds true. But this follows from the fact that ψRε ∈ CH1
AdS.

For (3.7.19), we use (3.7.13) to see that ∂r(ψ̂Rε (ω, r,m, `)ei(ω−ω+m)r∗) extends smoothly
to r = r+. Thus, using ∂r = r2+a2

∆ ∂r∗ , we infer that

uRε
′
+ i(ω − ω+m)uRε = Oψ(∆) as r∗ → −∞. (3.7.23)

Analogously, we obtain (3.7.20).
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Lemma 3.7.2. We represent uRε as

uRε (r∗) =
1

W[uH+ , u∞]

{
uH+

∫ π
2

r∗
u∞H

R
ε dy + u∞

∫ r∗

−∞
uH+HR

ε dy

}
. (3.7.24)

Moreover,

lim
r∗→−∞

uRε (r∗)ei(ω−ω+m)r∗ = aRε,H, (3.7.25)

where aRε,H is defined as

aRε,H :=
1

W[uH+ , u∞]

∫ π
2

−∞
u∞H

R
ε dy. (3.7.26)

Proof. First, since there do not exist pure mode solutions as shown in [75, Theorem 1.3],
the Wronskian W[uH+ , u∞] never vanishes. Thus, (3.7.24) is well-defined and in view of
the boundary conditions of uRε and HR

ε as shown in Lemma 3.7.1, a direct computation
shows (3.7.24). To show (3.7.25) we note that

lim sup
r∗→−∞

∣∣∣∣∣
∫ r∗

−∞
uH+HR

ε dy

∣∣∣∣∣
2

≤ lim sup
r∗→−∞

(∫ r(r∗)

r+

|Σ̂FRε |2

r2 + a2
dr

∫ r∗

−∞
|uH+ |2 ∆

r2 + a2
dy

)
= 0 (3.7.27)

because ∫ r(r∗)

r+

|Σ̂FRε |2

r2 + a2
dr <∞ and sup

r∗∈(−∞,r1)
|uH+ | <∞. (3.7.28)

Lemma 3.7.3. The inhomogeneous term HR
ε has the pointwise limit

HR := lim
ε→0

HR
ε

=
∆

(r2 + a2)
3
2

1√
2π

∫
S2

Σe−imφSm`(aω)
(
−
√
−gttΨ1 − iωgttΨ0 + gtφ∂φΨ0

)
dσS2

(3.7.29)

+
∆

(r2 + a2)
3
2

e−i(ω−ω+m)r∗

√
2π

∫ R

R−1

∫
S2

ΣFR(v, r, θ, φ̃+)eiωve−imφ̃+Sm`(aω)dσS2dv.
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In addition,

aRε,H → aRH :=
1

W[uH+ , u∞]

∫ π
2

−∞
u∞H

Rdr∗ (3.7.30)

pointwise as ε→ 0.

Moreover, we have

HR → H :=
∆

(r2 + a2)
3
2

1√
2π

∫
S2

Σe−imφSm`(aω)(
−
√
−gttΨ1 − iωgttΨ0 + gtφ∂φΨ0

)
dσS2 (3.7.31)

and

aRH → aH (3.7.32)

pointwise as R→∞.

Proof. We start with the decomposition FRε = Fε + FR, where the support of Fε is in
{0 ≤ t ≤ ε} ∩ {r ≥ 2r+} for ε > 0 small enough and the support of FR is in the set
{R − 1 ≤ v ≤ R}. This decomposition is well-defined in view of the finite speed of
propagation.

We first consider Fε and write its (generalized) Fourier transform as

Σ̂Fε(ω,m, `, r) =
1√
2π

∫
S2

∫
R
Fε(t, r, θ, φ)eiωtdt Σe−imφSm`(aω, cos θ)dσS2 . (3.7.33)

Recall that for all ε > 0 sufficiently small, we have that v(t, r, θ, φ) = t on the support of
Fε. Thus,

Fε → F0 := −
√
−gttδt=0Ψ1 + gttδ′t=0Ψ0 + gtφδt=0∂φΨ0 (3.7.34)

as ε → 0 in the sense of distributions (compactly supported distributions) on Rt with
values in C∞((r+,∞)× S2). Hence,

Σ̂Fε(ω,m, `, r) =
1√
2π

∫
S2

∫
R
e−imφSm`(aω, cos θ)Fεe

iωte−iωφdtdσS2

→ 1√
2π

∫
S2

e−imφSm`(aω, cos θ)
(
−
√
−gttΨ1 − iωgttΨ0 + gtφ∂φΨ0

)
dσS2 (3.7.35)
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pointwise. Thus,

HR = lim
ε→0

HR
ε =

=
∆

(r2 + a2)
3
2

1√
2π

∫
S2

Σe−imφSm`(aω)
(
−
√
−gttΨ1 − iωgttΨ0 + gtφ∂φΨ0

)
dσS2

+
∆

(r2 + a2)
3
2

e−i(ω−ω+m)r∗

√
2π

∫ R

R−1

∫
S2

ΣFR(v, r, θ, φ̃+)eiωve−imφ̃+Sm`(aω)dσS2dv

(3.7.36)

pointwise.

Now, to show that aRε,H → aRH it suffices to show

∫ π
2

−∞
u∞

∆

(r2 + a2)
3
2

Σ̂Fεdy →
∫ π

2

−∞
u∞

∆

(r2 + a2)
3
2

Σ̂F0dy (3.7.37)

pointwise as ε→ 0. But recall that Fε is compactly supported in (r+,∞) for all 0 < ε < ε0

sufficiently small and sup0<ε<ε0 supr∗ |Σ̂Fε| < ∞ so we can interchange the integral with
the limit ε→ 0.

Now, we will show that HR → H as R→∞. As ψ and its derivatives decay pointwise
at a logarithmic rate (see Theorem 3.2), we infer that

sup
r∈(r+,∞),θ,φ̃+∈S2

|Fr|(v, r, θ, φ̃+)→ 0 (3.7.38)

as R→∞. Thus, we have∣∣∣∣∫ R

R−1

∫
S2

ΣFR(v, r, θ, φ̃+)eiωve−imφ̃+Sm`(aω)dσS2dv

∣∣∣∣
. r2 sup

v∈(R−1,R)

r∈(r+,∞),θ,φ̃+∈S2

|Fr|(v, r, θ, φ̃+)→ 0 (3.7.39)

pointwise as R→∞. This shows HR → H pointwise.
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Finally, to show that aRH → aH as R→∞, we estimate∣∣∣∣∣
∫ π

2

−∞
u∞

∆

(r2 + a2)
3
2

e−i(ω−ω+m)r∗

√
2π

∫ R+1

R

∫
S2

ΣFR(v, r, θ, φ̃+)eiωve−imφ̃+Sm`(aω)dσS2dvdr∗

∣∣∣∣∣
2

.
∫ π

2

−∞
|u∞|2

1

r2

∆

r2 + a2
dr∗ sup

v∈(R,R+1)

∫ ∞
r+

∫
S2

Σ2|FR|2
1

r2 + a2
r2dσS2dr

.
∫ π

2

−∞
C2
m`ω|r∗|2

1

r2

∆

r2 + a2
dr∗ sup

v∈(R,R+1)

∫ ∞
r+

∫
S2

r2|FR|2r2dσS2dr

. C2
m`ω sup

v∈(R,R+1)

∫ ∞
r+

∫
S2

e1[ψ]r2dσS2dr → 0 (3.7.40)

as R→∞. Here, we have used that |u∞| ≤ Cm`ω|r∗| which holds true as for each ω,m, `
there exist constants as, ac only depending on the ω,m, ` such that u∞ = asus + acuc,

where us and uc are solutions to the radial o.d.e. satisfying us ∼ sin((ω−ω+m)r∗)
ω−ω+m

and
uc ∼ cos((ω − ω+m)r∗) as r∗ → −∞. In the case ω = ω+m, this reduces to us ∼ r∗

and uc ∼ 1 as r∗ → −∞. Hence, aRH → aH as R→∞ pointwise for each ω,m, `.

3.7.3 Representation formula for ψ at the event horizon

Proposition 3.7.1. Let aRH be as defined in (3.7.30). Then, on the event horizon HR we
have

ψR(v, r+, θ, φ̃+) =
1√

2π(r2
+ + a2)

∑
m`

∫
R
aRHSm`(aω, cos θ)eimφ̃+e−iωvdω, (3.7.41)

in L2(Rv × S2). Moreover,

aRH =

√
r2

+ + a2

2π

∫
R×S2

ψR(v, r+, θ, φ̃+)Sm`(aω, cos θ)e−imφ̃+eiωvdσS2dv (3.7.42)

pointwise and in L2(Rω × Zm × Z`≥|m|).

Proof. We have

ψRε (v, r, θ, φ̃+) =
1√

2π(r2 + a2)

∑
m`

∫
R
ei(ω−ω+m)r∗uRε Sm`(aω, cos θ)eimφ̃+e−iωvdω

(3.7.43)
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and

ei(ω−ω+m)r∗uRε =

√
r2 + a2

2π

∫
R×S2

ψRε (v, r, θ, φ̃+)Sm`(aω, cos θ)e−imφ̃+eiωvdσS2dv

(3.7.44)

for r+ < r < r+ + η. Now, since ψRε is compactly supported in v uniformly as r∗ → −∞,
we can interchange the limit r∗ → −∞ with the integral over v. Thus, sending r → r+

(r∗ → −∞) yields in view Lemma 3.7.2

aRε,H =

√
r2

+ + a2

2π

∫
R×S2

ψRε (v, r+, θ, φ̃+)Sm`(aω, cos θ)e−imφ̃+eiωvdσS2dv, (3.7.45)

where aRε,H is given in (3.7.26). Now we will perform the limit ε → 0. First, from
Lemma 3.7.3 we have that

aRε,H → aRH =
1

W[u1, u∞]

∫ π
2

−∞
u∞H

Rdy (3.7.46)

as ε→ 0 pointwise. Moreover, ψRε has compact support uniformly as ε→ 0 and ψRε → ψR

pointwise and in L2(Rv × S2) as ε → 0. Thus, the right hand side of (3.7.45) converges
pointwise and due to Plancherel also in L2(Rω×Zm×Z`≥|m|) as ε→ 0. Hence, aRε,H → aRH
also holds in L2(Rω × Zm × Z`≥|m|) and we conclude

aRH =

√
r2

+ + a2

2π

∫
R×S2

ψR(v, r+, θ, φ̃+)Sm`(aω, cos θ)e−imφ̃+eiωvdσS2dv (3.7.47)

which holds pointwise and in L2(Rω × Zm × Z`≥|m|). And by Plancherel we also have

ψR(v, r+, θ, φ̃+) =
1√

2π(r2
+ + a2)

∑
m`

∫
R
aRHSm`(aω, cos θ)eimφ̃+e−iωvdω (3.7.48)

in L2(Rv × S2).

3.8 Interior analysis

Having established the behavior of our solution ψ in the exterior R, we will now consider
the interior region B characterized by r ∈ (r−, r+). We first consider the radial o.d.e. in
the interior which allow us to represent our solution ψ as a suitable generalized Fourier
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transform. We also recall that in the interior region the tortoise coordinate is defined in
(3.2.15) as

dr∗

dr
=

∆

r2 + a2
, (3.8.1)

where r∗( r++r−
2 ) = 0 and that ∆ < 0 in the whole interior region.

Remark 3.8.1. As our initial data are only supported on azimuthal modes m which are
large and positive, we only need to consider this frequency range in the following estimates.

3.8.1 Definitions and estimates for the radial o.d.e. in the interior

We recall the radial o.d.e. (3.2.36) and write it in the interior r− < r < r+ as

−u′′ +
(

∆L

(r2 + a2)2
− (mωr − ω)2 + V1

)
u = 0, (3.8.2)

where

L := λm` + a2ω2 − 2mωaΞ (3.8.3)

and V1 is defined in (3.2.38). Note that L ≥ 0 follows from [75, Lemma 5.4]. Also note
that V1 = O(|∆|) uniformly for r∗ ∈ (−∞,∞). We will mainly treat V1 as a perturbation
and recall that the high-frequency part of the potential is given by

V] :=
∆L

(r2 + a2)2
− (mωr − ω)2. (3.8.4)

We now define fundamental pairs of solutions to the radial o.d.e. corresponding to the
event and Cauchy horizon, respectively.

Definition 3.8.1. We define solutions uHR , uHL to (3.8.2) in the interior as

uHR = e−i(ω−ω+m)r∗ (3.8.5)

uHL = ei(ω−ω+m)r∗ (3.8.6)

for r∗ → −∞. For ω 6= ω+m, they form a fundamental pair. For ω = ω+m the solutions
uHL and uHR are linear dependent. Analogously, we define

uCHL = e−i(ω−ω−m)r∗ (3.8.7)

uCHR = ei(ω−ω−m)r∗ (3.8.8)
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as r∗ → +∞. For ω 6= ω−m, they form a fundamental pair. For ω = ω−m the solutions
uCHL and uCHR are linearly dependent.

We moreover define reflection and transmission coefficients.

Definition 3.8.2. For ω 6= ω−m define the transmission coefficient T = T(ω,m, `) and
the reflection coefficient R = R(ω,m, `) as the unique coefficients such that

uHR = TuCHL + RuCHR . (3.8.9)

Equivalently, we have

T =
W[uHR , uCHR ]

W[uCHL , uCHR ]
=

W[uHR , uCHR ]

2i(ω − ω−m)
, (3.8.10)

R =
W[uHR , uCHL ]

W[uCHR , uCHL ]
=

W[uHR , uCHL ]

−2i(ω − ω−m)
. (3.8.11)

They satisfy the Wronskian identity

|T|2 = |R|2 +
ω − ω+m

ω − ω−m
. (3.8.12)

Further, we define the renormalized transmission and reflection coefficient

t := (ω − ω−m)T =
1

2i
W[uHR , uCHR ], (3.8.13)

r := (ω − ω−m)R = − 1

2i
W[uHR , uCHL ] (3.8.14)

which satisfy

tω− := t(ω = ω−m) = −r(ω = ω−m) =: rω− . (3.8.15)

Lemma 3.8.1. There exists a constant εcut > 0 only depending on the black hole pa-
rameters such that the following holds true. Assume that |ω − ωrm| ≤ εcutm for some
r ∈ [r−, r+], then L & m2.

Proof. Note that L is larger than the lowest eigenvalue of the operator P (aω) + a2ω2 −
2aΞωm, where P is as in (3.2.34). Since

P (aω) + a2ω2 − 2aΞωm =− 1

sin θ
∂θ(∆θ sin θ∂θ·)

+
1

∆θ

(
m

Ξ

sin θ
− aω sin θ

)2

+ 2
a2

l2
sin2 θ, (3.8.16)
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it suffices to show that the second term is bounded from below by O(m2). To do so, let
r ∈ [r−, r+] such that |ω − ωrm| ≤ εcutm. Then, in view of

aωr = Ξ
a2

r2 + a2
, (3.8.17)

we conclude(
m

Ξ

sin θ
− aω sin θ

)2

=

(
m

Ξ

sin θ
− aωrm sin θ + a(ωrm− ω) sin θ

)2

≥ m2Ξ2

sin2 θ

(
1− a2

a2 + r2
sin2 θ −

∣∣∣∣ aΞ ωrm− ω
m

sin2 θ

∣∣∣∣)2

& m2

(3.8.18)

for sufficiently small εcut > 0 only depending on the black hole parameters M,a, l.

Lemma 3.8.2. Assume that |ω − ωrm| ≥ εcutm for all r ∈ [r−, r+]. Then,

‖uHR‖L∞(R) . 1, ‖uHR
′‖L∞(R) . |ω|+ |m|+ L

1
2 , (3.8.19)

‖uCHL‖L∞(R) . 1, ‖uCHL
′‖L∞(R) . |ω|+ |m|+ L

1
2 , (3.8.20)

‖uCHR‖L∞(R) . 1, ‖uCHR
′‖L∞(R) . |ω|+ |m|+ L

1
2 . (3.8.21)

Proof. We first assume that ω − ωrm ≥ εcutm for all r ∈ [r−, r+]. Moreover, from our
assumption, we have that the principle part of the potential V] satisfies

−V] & m2 and

∣∣∣∣∣V ′]V]
∣∣∣∣∣ ,
∣∣∣∣∣V ′′]V]

∣∣∣∣∣ . |∆| (3.8.22)

and the error term satisfies |V1| . |∆|. Thus, the error control function

FuHR1
(r∗) :=

∫ r∗

−∞

1

|V]|
1
4

d2

dy2

(
|V]|−

1
4

)
− V1

|V]|
1
2

dy (3.8.23)

satisfies V−∞,∞(FuHR1
) . 1

m . This allows us to apply standard estimates on WKB ap-
proximation such as [119, Chapter 6, Theorem 2.2] and deduce that

uHR = AuHR
|V](−∞)|

1
4

|V](r∗)|
1
4

exp

(
−i
∫ r∗

0
|V](y)|

1
2 dy

)(
1 + εuHR (r∗)

)
, (3.8.24)

245



for some AuHR with |AuHR | = 1. Moreover,

sup
r∗∈R
|εuHR (r∗)| . 1

m
, sup
r∗∈R

∣∣∣∣∣ε
′
uHR

(r∗)

|V]|
1
2

∣∣∣∣∣ . 1

m
and εuHR (−∞) = ε′uHR

(−∞) = 0. (3.8.25)

This shows that

‖uHR‖L∞(R) . 1 and ‖uHR
′‖L∞(R) . ‖|V]|

1
2 ‖L∞(R) . |ω|+ |m|+ L

1
2 . (3.8.26)

Similarly, we show that the above holds for ωrm − ω ≥ εcutm. This shows (3.8.19).
The bounds (3.8.20) and (3.8.21) are shown completely analogously and their proofs are
omitted.

In the rest of the section we will make use of

Definition 3.8.3. We define

˜uHR := ei(ω−ω−m)r∗uHR , (3.8.27)

˜uHL := e−i(ω−ω−m)r∗uHL , (3.8.28)

˜uCHR := e−i(ω−ω−m)r∗uCHR , (3.8.29)

˜uCHL := ei(ω−ω−m)r∗uCHL . (3.8.30)

Lemma 3.8.3. Assume that |ω − ωrm| ≤ εcutm for some r ∈ [r−, r+] and assume that
m ∈ N is sufficiently large. Let R1 := − 1

2κ+
log(L) and R2 := 1

2|κ−| log(L). Then,

‖uHR‖L∞(−∞,R2] . 1, ‖uHR
′‖L∞(−∞,R2] . |ω|+ |m|+ L

1
2 , (3.8.31)

‖uCHL‖L∞[R1,∞) . 1, ‖uCHL
′‖L∞[R1,∞) . |ω|+ |m|+ L

1
2 , (3.8.32)

‖uCHR‖L∞[R1,∞) . 1, ‖uCHR
′‖L∞[R1,∞) . |ω|+ |m|+ L

1
2 , (3.8.33)

and

|∂ωuHR |(R1) . log(L), |∂ωuHR
′|(R1) . log(L)(|ω|+ |m|), (3.8.34)

|∂ωuCHR |(R2) . log(L), |∂ωuCHR
′|(R2) . log(L)(|ω|+ |m|), (3.8.35)

|∂ωuCHL |(R2) . log(L), |∂ωuCHL
′|(R2) . log(L)(|ω|+ |m|). (3.8.36)
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Moreover,

‖∂ω ˜uHR‖L∞(−∞,R1) . 1, ‖∂ω ˜uHR
′‖L∞(−∞,R1) . 1, (3.8.37)

‖∂ω ˜uCHR‖L∞(R2,∞) . 1, ‖∂ω ˜uCHR
′‖L∞(R2,∞) . 1, (3.8.38)

‖∂ω ˜uCHL‖L∞(R2,∞) . 1, ‖∂ω ˜uCHL
′‖L∞(R2,∞) . 1. (3.8.39)

Proof. From Lemma 3.8.1 we know that L & m2. Now, we write uHR as the solution to
the Volterra equation

uHR = e−i(ω−ω+m)r∗ +

∫ r∗

−∞
K(r∗, y)(1 +R1 − y)Ṽ (y)uHR(y)dy, (3.8.40)

where the kernel is given by

K(r∗, y) =
1

1 +R1 − y
sin((ω − ω+m)(r∗ − y))

ω − ω+m
(3.8.41)

and Ṽ := V] + V1 + (ω − ω+m)2. For y ∈ (−∞, R1), a direct computation shows

(1 +R1 − y)|Ṽ (y)| . (1 +R1 − y)Le2κ+y,

∫ R1

−∞
(1 +R1 − y)|Ṽ (y)|dy . 1

and

sup
y≤r∗≤R1

|K(r∗, y)| . 1. (3.8.42)

Standard estimates on Volterra integral equations (apply [119, Chapter 6, Theorem 10.1]
to the term uHR − e−i(ω−ω+m)r∗) yield

‖uHR‖L∞(−∞,R1) . 1 (3.8.43)

‖uHR
′‖L∞(−∞,R1) . 1 + |ω − ω+m| . 1 + |ω − ωR1m|+m|ωR1 − ω+|

. 1 + |ω − ωR1m|+m|∆(R1)| . 1 + |ω − ωR1m|. (3.8.44)

Now, for the region r∗ ∈ [R1, R2] we approximate uHR with a WKB approximation. To
do so we remark that for r∗ ∈ [R1, R2] we have

−V] & 1 and

∣∣∣∣∣V ′]V]
∣∣∣∣∣ ,
∣∣∣∣∣V ′′]V]

∣∣∣∣∣ . |∆| (3.8.45)
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and the error term satisfies |V1| . |∆|. Thus, the error control function

FuHR2
(r∗) :=

∫ r∗

R1

1

|V]|
1
4

d2

dy2

(
|V]|−

1
4

)
− V1

|V]|
1
2

dy (3.8.46)

is bounded as VR1,R2(FuHR2
) . 1. This allows us to apply [119, Chapter 6, Theorem 2.2]

to deduce that

uHR = AuHRuWKBA +BuHRuWKBB

= AuHR
|V](R1)|

1
4

|V](r∗)|
1
4

exp

(
−i
∫ r∗

R1

|V](y)|
1
2 dy

)(
1 + εuHRA

(r∗)
)

+BuHR
|V](R1)|

1
4

|V](r∗)|
1
4

exp

(
i

∫ r∗

R1

|V](y)|
1
2 dy

)(
1 + εuHRB

(r∗)
)
, (3.8.47)

for

AuHR =
W(uWKBB , uHR)

W(uWKBB , uWKBA)
and BuHR =

W(uWKBA , uHR)

W(uWKBA , uWKBB )
. (3.8.48)

Moreover,

sup
r∗∈[R1,R2]

|εuHRA(r∗)| . 1, (3.8.49)

sup
r∗∈[R1,R2]

|ε′uHRA(r∗)| . sup
r∗∈[R1,R2]

|V]|
1
2 . L

1
2 + |m|+ |ω|, (3.8.50)

εuHRA
(R1) = ε′uHRA

(R1) = 0, (3.8.51)

and analogously for εuHRB . Evaluating the Wronskians at r∗ = R1, we obtain

|AuHR |, |BuHR | . 1 (3.8.52)

in view of (3.8.43) and (3.8.44). This shows that

‖uHR‖L∞(−∞,R2) . 1, (3.8.53)

‖uHR
′‖L∞(−∞,R2) . |ω|+ |m|+ L

1
2 . (3.8.54)

To show the bound on ∂ωuHR we consider ˜uHR . Then, ˜uHR satisfies the Volterra equation

˜uHR = 1 +

∫ r∗

−∞

K̃(r∗, y)

1 +R1 − y
(1 +R1 − y)Ṽ (y) ˜uHR(y)dy, (3.8.55)
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where K̃(r∗, y) = ei(ω−ω+m)(r∗−y) sin((ω−ω+m)(r∗−y))
ω−ω+m

. Completely analogous to before, it
follows that

‖ ˜uHR‖L∞(−∞,R1) . 1 and ‖ ˜uHR
′‖L∞(−∞,R1) . 1. (3.8.56)

Now ∂ω ˜uHR solves

∂ω ˜uHR =

∫ r∗

−∞

(
∂ωK̃(r∗, y)Ṽ (y) + K̃(r∗, y)∂ωṼ (y)

)
˜uHR(y)dy

+

∫ r∗

−∞

K̃(r∗, y)

1 +R1 − y
(1 +R1 − y)Ṽ (y)∂ω ˜uHR(y)dy. (3.8.57)

As |∂ωλm`(aω)| . |m| from Lemma 3.3.2, we conclude that

|∂ωṼ | . |∆|m and |∂ωK̃(r∗, y)| . (r∗ − y)2 (3.8.58)

such that ∫ R1

−∞

∣∣∣(∂ωK̃(r∗, y)Ṽ (y) + K̃(r∗, y)∂ωṼ (y)
)

˜uHR(y)
∣∣∣dy . 1. (3.8.59)

Again, by standard bounds on Volterra integral equations [119, Chapter 6, §10] and using
(3.8.53), (3.8.53), we obtain

‖∂ω ˜uHR‖L∞(−∞,R1) . 1 (3.8.60)

and

‖∂ω ˜uHR
′‖L∞(−∞,R1) . 1. (3.8.61)

This shows (3.8.37)–(3.8.39). Now, we write

∂ωuHR = ∂ω(e−i(ω−ω+m)r∗ ˜uHR) = −ir∗uHR + e−i(ω−ω+m)r∗∂ω ˜uHR (3.8.62)

and

∂ωuHR
′ = −iuHR − ir

∗uHR
′ − i(ω − ω+m)e−i(ω−ω+m)r∗∂ω ˜uHR + e−i(ω−ω+m)r∗∂ω ˜uHR

′.

(3.8.63)
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Evaluating this at r∗ = R1 we obtain

|∂ωuHR |(R1) . |R1| . log(L). (3.8.64)

and

|∂ωuHR
′|(R1) . log(L)(|m|+ |ω|). (3.8.65)

This shows (3.8.34)–(3.8.36). The proofs for uCHL and uCHR are completely analogous.

Lemma 3.8.4. The renormalized transmission and reflection coefficients satisfy

2|t| = |W[uHR , uCHR ]| . |m|+ |ω|+ L
1
2 (3.8.66)

2|r| = |W[uHR , uCHL ]| . |m|+ |ω|+ L
1
2 (3.8.67)

and

sup
ω∈(ω−m−1,ω−m+1)

2 |∂ωt| = sup
ω∈(ω−m−1,ω−m+1)

|∂ωW[uHR , uCHR ]| . (|m|+ L
1
2 ) log(L)

(3.8.68)

sup
ω∈(ω−m−1,ω−m+1)

2 |∂ωr| = sup
ω∈(ω−m−1,ω−m+1)

|∂ωW[uHR , uCHL ]| . (|m|+ L
1
2 ) log(L).

(3.8.69)

Moreover, we have

|W[∂ωuHR , uCHR ](r∗)|+ |W[∂ωuHR , uCHL ](r∗)| . log(L)(|ω|+ |m|+ L
1
2 ), (3.8.70)

|W[uHR , ∂ωuCHR ](r∗)|+ |W[uHR , ∂ωuCHL ](r∗)| . log(L)(|ω|+ |m|+ L
1
2 ) (3.8.71)

uniformly for r∗ ∈ [R1, R2].

Proof. The bounds (3.8.66) and (3.8.67) follow directly from Lemma 3.8.2 and Lemma 3.8.3.
To show (3.8.68) we evaluate the Wronskian at r∗ = 0 and write

∂ωW[uHR , uCHR ] = ∂ωW[uHR , uCHR ](r∗ = 0)

= W[∂ωuHR , uCHR ](r∗ = 0) + W[uHR , ∂ωuCHR ](r∗ = 0). (3.8.72)

Hence, (3.8.68) follows from (3.8.70). To show (3.8.70), we apply the fundamental theorem
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of calculus for R1 ≤ r∗ ≤ R2 and obtain

|W[∂ωuHR , uCHR ](r∗)| ≤
∫ r∗

R1

|∂r∗W[∂ωuHR , uCHR ]|dr∗ + |W[∂ωuHR , uCHR ](R1)|.

(3.8.73)

Since ∂r∗W[∂ωuHR , uCHR ] = −uHRuCHR∂ω(V] + V1), we conclude in view of Lemma 3.8.3
that

sup
r∗∈[R1,R2]

|∂r∗W[∂ωuHR , uCHR ]| . |m|+ |ω|. (3.8.74)

From the proof of Lemma 3.8.3 we also have

|W[∂ωuHR , uCHR ](R1)| . log(L)(|ω|+ |m|+ L
1
2 ) (3.8.75)

such that

sup
r∗∈[R1,R2]

|W[∂ωuHR , uCHR ](r∗)| . log(L)(|ω|+ |m|+ L
1
2 ) (3.8.76)

follows. Similarly, we obtain

sup
r∗∈[R1,R2]

|W[uHR , ∂ωuCHR ](r∗)| . log(L)(|ω|+ |m|) (3.8.77)

leading to (3.8.68) and (3.8.70). Completely analogously we obtain (3.8.69) as well as
(3.8.71).

With the above lemma in hand we conclude

Lemma 3.8.5. Let m ∈ N be sufficiently large and let ε > 0 be sufficiently small only
depending on the black hole parameters. Then,

sup
|ω−ω+m|≤ε

‖∂ω ˜uHR‖L∞(−∞,0) . L
1
2 log(L), (3.8.78)

sup
|ω−ω−m|≤ε

‖∂ω ˜uCHR‖L∞(0,∞) . L
1
2 log(L), (3.8.79)

sup
|ω−ω−m|≤ε

‖∂ω ˜uCHL‖L∞(0,∞) . L
1
2 log(L). (3.8.80)

Proof. We again only show the claim for ˜uHR as the other cases are completely analogous.
Assume that |ω − ω+m| ≤ ε for some ε > 0 sufficiently small. In view of Lemma 3.8.3 it
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suffices to consider the region r∗ ∈ [R1, 0]. Now, note that

∂ωuHR =
1

W[uCHR , uCHL ]

(
uCHL

∫ r∗

R1

uCHRuHR∂ω(−V] − V1)

− uCHR
∫ r∗

R1

uHRuCHL∂ω(−V] − V1)
)

+
W[∂ωuHR , uCHL ](R1)

W[uCHR , uCHL ]
uCHR +

W[∂ωuHR , uCHR ](R1)

W[uCHL , uCHR ]
uCHL . (3.8.81)

Hence, using Lemma 3.8.3, Lemma 3.8.4,

sup
r∗∈[R1,R2]

|∂ω(V] + V1)| . |m|, (3.8.82)

as well as the lower bound |W[uCHR , uCHL ]| & |m|, we obtain

sup
r∗∈[R1,0]

|∂ωuHR | . L
1
2 log(L). (3.8.83)

In view of ˜uHR = ei(ω−ω+m)r∗uHR and the chain rule, the claim follows.

Lemma 3.8.6. The renormalized transmission and reflection coefficients satisfy

|tω− | & |m| and |rω− | & |m|. (3.8.84)

Proof. Throughout the proof we assume that ω = ω−m. As uCHR = uCHL for ω = ω−m,
it suffices to bound the Wronskian |W[uHR , uCHR ]| from below. To do so, let A and B be
the unique coefficients satisfying uCHR = AuHR + BuHL . From uCHR = uCHR it follows
that uCHR = 2Re(AuHR). Now, for ε > 0 to be chosen later, define

Rε2 :=
1

2|κ−|
log(L) +

1

ε
. (3.8.85)

Now, uCHR − 1 is a solution to the Volterra equation

uCHR − 1 =

∫ ∞
r∗

y − r∗

y −Rε2
(y −Rε2)Ṽ (y) [(uCHR − 1) + 1] dy, (3.8.86)

where Ṽ = V1 + V](ω = ω−m). We have∫ ∞
Rε2

(y −Rε2)Ṽ (y) . Le−2|κ−|Rε2 . e−
2|κ−|
ε . (3.8.87)
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Using bounds on solutions to Volterra integral equations as before (see [119, Chapter 6,
§10]), we obtain that

‖uCHR − 1‖L∞(Rε2,∞) <
1

2
(3.8.88)

for ε > 0 small enough depending on the choice of parameters M,a, l. Thus,

1

2
< uCHR(Rε2) = 2Re(AuHR(Rε2)) . 2|A|‖uHR‖L∞(−∞,Rε2). (3.8.89)

Note that (3.8.31) also holds if we replace R2 by Rε2 for some fixed value of ε > 0. Thus,
we conclude that |B| = |A| & 1 which shows

|W[uHR , uCHR ]| & (ω− − ω+)|m| & |m|. (3.8.90)

This concludes the proof.

3.8.2 Representation formula for ψ on the interior

Proposition 3.8.1. Let ψ0 ∈ C∞c (HR) and let ψ̃ ∈ C∞(B) be the arising solution of
(3.1.1) with vanishing data on HL. Then,

ψ̃(v, r, θ, φ̃+) =
1√

2π(r2 + a2)

∫
R

∑
m`

e−iω(v−r∗)eim(φ̃+−ω+r∗)Sm`(aω, cos θ)FH[ψ0]uHRdω,

(3.8.91)

where uHR is defined in (3.8.1) and

FH[ψ0](ω,m, `) :=

√
r2

+ + a2

√
2π

∫
S2

∫
R
ψ0(v, θ, φ̃+)eiωve−imφ̃+Sm`(aω, cos θ)dσS2dω.

(3.8.92)
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Moreover, in B we have

ψ̃(v, r, θ, φ̃−) =
1√

2π(r2 + a2)

∑
m`

p.v.
∫

R
e−iω(v−r∗)eim(φ̃−−ω−r∗)

Sm`(aω, cos θ)FH[ψ0]
t(ω,m, `)

ω − ω−m
uCHLdω

+
1√

2π(r2 + a2)

∑
m`

p.v.
∫

R
e−iω(v−r∗)eim(φ̃−−ω−r∗)

Sm`(aω, cos θ)FH[ψ0]
r(ω,m, `)

ω − ω−m
uCHRdω (3.8.93)

as well as

ψ̃(u, r, θ, φ∗−) =
1√

2π(r2 + a2)

∑
m`

p.v.
∫

R
eiω(u−r∗)eim(φ∗−+ω−r∗)

Sm`(aω, cos θ)FH[ψ0]
t(ω,m, `)

ω − ω−m
uCHLdω

+
1√

2π(r2 + a2)

∑
m`

p.v.
∫

R
eiω(u−r∗)eim(φ∗−+ω−r∗)

Sm`(aω, cos θ)FH[ψ0]
r(ω,m, `)

ω − ω−m
uCHRdω. (3.8.94)

Proof. Note that FH[ψ0](ω,m, `) is rapidly decaying and smooth which follows from the
fact that ψ0 ∈ C∞c (H). Moreover, in view of Lemma 3.8.2 and Lemma 3.8.3, we have
that the right hand side of (3.8.91) is a smooth solution to (3.1.1) in the interior region
B. Now, the claims follows from the uniqueness of the characteristic problem and the fact
that the right hand side of (3.8.91) converges to ψ0 as r → r+. The other formulas follow
from a change of coordinates.

Before we prove the blow-up result, we need one more final ingredient which is a
consequence of the domain of dependence.

Lemma 3.8.7. Let ψ̃ ∈ C∞(B) be a solution to (3.1.1) arising from vanishing data on
HL and smooth data ψ0 ∈ C∞(HR) posed on HR. Then, ψ̃(u0, r0, θ0, φ

∗
−) only depends on

ψ0 �{v≤2r∗(r0)−u0+c̃}, where c̃ > 0 is a constant only depending on the black hole parameters.

Proof. In coordinates (v, r, θ, φ̃−) (or equivalently in coordinates (v, r, θ, φ̃+)) define the
function ṽ := v + f(r) on B and choose f to satisfy df

dr = −
√

a2

Ξ
1
|∆| with initial condition

f(r+) = 0. This is well defined as 1√
|∆|

is integrable at the event and Cauchy horizons.

Now f is non-negative and satisfies supr∈(r−,r+) f ≤ c̃ for a constant c̃ > 0 only depending
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on the black hole parameters. A computation also shows that, uniformly on B, we have

gKAdS(∇ṽ,∇ṽ) =
a2 sin2

Σ∆θ
− a2

ΣΞ
< 0 and gKAdS(∇ṽ,−∇r) < 0. (3.8.95)

This means that ∇ṽ is a future-directed timelike vector field. Thus, level sets of the
function ṽ are spacelike.

Now, consider

ψ̃(u0, r0, θ0, φ
∗
−). (3.8.96)

Since ∇ṽ is future directed and timelike, it follows from the domain of dependence that
(3.8.96) only depends on

ψ0 �{ṽ(v,r+)≤ṽ(v(r0,u0),r0)}= ψ0 �{v≤2r∗(r0)−u0+f(r0)}, (3.8.97)

since ṽ(v(r0, u0), r0) = 2r∗(r0)− u0 + f(r0) . This concludes the proof.

3.8.3 Proof of Theorem 3.1

We recall that the cosmological constant Λ < 0 (and thus l =
√
−3/Λ > 0) was arbitrary

but fixed as in (3.2.6).

Theorem 3.1. Conjecture 5 holds true.
More precisely, let the dimensionless black hole parameters (m, a) ∈PBlow-up be arbi-

trary but fixed as in (3.6.1), where PBlow-up is defined in Definition 3.5.3.
Let ψ ∈ C∞(MKAdS \ CH) be the unique solution to (3.1.1) arising from the smooth

and compactly supported data specified in Definition 3.6.2 on Kerr–AdS with parameters
(M,a) = (m/

√
−Λ, a/

√
−Λ).

Then, for each u0 ∈ R, the solution ψ blows up at the Cauchy horizon CHR as

lim
r→r−

‖ψ(u0, r)‖2L2(S2) = +∞. (3.8.98)

Moreover, PBlow-up ⊂P has the following properties:

• PBlow-up is Baire-generic,

• PBlow-up is a Lebesgue-exceptional (PBlow-up has zero Lebesgue measure),

• PBlow-up has full packing dimension dimP (PBlow-up) = 2.
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Remark 3.8.2. The above statement shows that generic data (i.e. data which do not
satisfy the co-dimension 1 property as described in Remark 3.1.1) lead to solutions which
blow up as in (3.8.98). Thus, the above statement indeed proves that Conjecture 5 holds
true.

Proof of Theorem 3.1. The stated properties of PBlow-up on the Baire-genericity, the zero
Lebesgue measure and the full packing dimension follow from Proposition 3.5.2, Proposi-
tion 3.5.3 and Proposition 3.5.4, respectively.

We now turn to the proof of (3.8.98). First, we write ψ0 := ψ �HR and note that

D :=
∑

0≤i+j≤4

∫
R×S2

| /∇iKj
+ψ0(v, θ, φ̃+)|2dσS2dv <∞ (3.8.99)

in view of Theorem 3.2. Now, let u0 ∈ R be fixed and let r∗n → ∞ be a sequence with
r∗n > r∗0 for sufficiently large r∗0. We will first prove that as r∗n →∞, we have that

‖ψ(u0, r
∗
n)‖2L2(S2) =

∑
m`

∣∣∣∣∣π tω− ˜uCHL
ω−(r∗n)√

r2
n + a2

aRnH (ω = ω−m)

∣∣∣∣∣
2

+ Err(D), (3.8.100)

where |Err(D)| .u0 D uniformly for all r∗n ≥ r∗0 and Rn := 2r∗n − u0 + c̃. Also recall the
definition of aRH in (3.7.30). Here we also introduced the notation ˜uCHL

ω− := ˜uCHL(ω =

ω−m). Once we have established (3.8.100), the blow-up result of (3.8.98) will be proved.

Thus, we now turn to the proof of (3.8.100). In view of Lemma 3.8.7 we have that
ψ(u0, r

∗
n, θ, φ

∗
−) only depends on ψ0 �{v≤2r∗n−u0+c̃}. Consider now

ψn0 (v, θ, φ̃+) := ψRn0 (v, θ, φ̃+), (3.8.101)

where ψRn0 (v, θ, φ̃+) = ψ0(v, θ, φ̃+)χ(Rn − v) is defined in (3.7.2) with Rn = 2r∗n − u0 + c̃.
Now, ψ(u0, r

∗
n, θ, φ

∗
−) only depends on ψn0 .
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Using the representation formula (3.8.94) in Proposition 3.8.1 we write

ψ(u0, r
∗
n, θ, φ

∗
−) =

1√
2π(r2

n + a2)

∑
m`

p.v.
∫

R
eiω(u0−r∗n)eim(φ∗−+ω−r∗n)

× Sm`(aω, cos θ)FH[ψn0 ]
t(ω,m, `)

ω − ω−m
uCHLdω

+
1√

2π(r2
n + a2)

∑
m`

p.v.
∫

R
eiω(u0−r∗n)eim(φ∗−+ω−r∗n)

× Sm`(aω, cos θ)FH[ψn0 ]
r(ω,m, `)

ω − ω−m
uCHRdω

=: I + II. (3.8.102)

We consider both terms individually and start with the term I. Moreover, we split the
term I into |aω − aω−m| < 1

m and |aω − aω−m| ≥ 1
m and call the terms Ires and Inon-res,

respectively, such that I = Ires + Inon-res. First, we claim that the spherical L2-norm of
the term

Inon-res =
1√

2π(r2
n + a2)

∑
m`

p.v.
∫
|ω−m−ω|≥ 1

am

eiω(u0−r∗n)eim(φ∗−+ω−r∗n)

× Sm`(aω, cos θ)FH[ψn0 ]
t(ω,m, `)

ω − ω−m
uCHLdω

(3.8.103)

is controlled by D uniformly as r∗n →∞.

Lemma 3.8.8. We have ‖Inon-res‖2L2(S2)(r
∗
n, u0) . D for all r∗n large enough.

Proof. Using | 1
ω−ω−m | ≤ am in the integrand of (3.8.103) and

∫ 2π
0 ei(m−m̃)φdφ = 2πδmm̃

we estimate

‖Inon-res‖2L2(S2) .
∑
m

m2

∫ π

0

∣∣∣∣∣∣
∑
`≥|m|

∫
R
|Sm`(aω, cos θ)FH[ψn0 ] tuCHL |dω

∣∣∣∣∣∣
2

sin θdθ.

(3.8.104)

From the Cauchy–Schwarz inequality as well as Lemma 3.8.2, Lemma 3.8.3 and Lemma 3.8.4,

257



we obtain

‖Inon-res‖2L2(S2) .
∑
m

[ ∫ π

0

∑
˜̀≥|m|

∫
R

|Sm˜̀(aω, cos θ)|2

(1 + ω2)(1 + Λm˜̀)
dω sin θdθ

×
∑
`≥|m|

∫
R
(1 + ω2)(1 + Λm`)m

2(1 + ω2 + Λm`)|FH[ψn0 ]|2dω
]

.
∑
m

∑
`≥|m|

∫
R
(1 + ω2)(1 + Λm`)m(1 + ω2 + Λm`)|FH[ψn0 ]|2dω . D,

(3.8.105)

where we have used that Λm` ≥ Ξ2`(`+ 1) such that
∑

˜̀≥|m|
1

1+Λm˜̀
. 1

m .

Now, we turn to the term Ires:

Ires =
1√

2π(r2
n + a2)

∑
m`

p.v.
∫ ω−m+ 1

am

ω−m− 1
am

eiω(u0−r∗n)eim(φ∗−+ω−r∗n)

× Sm`(aω, cos θ)FH[ψn0 ]
t(ω,m, `)

ω − ω−m
uCHLdω

(3.8.106)

and write uCHL = e−i(ω−ω−m)r∗ ˜uCHL . Then,

Ires = Iares + Ibres =
1√

2π(r2
n + a2)

∑
m`

p.v.
∫ ω−m+ 1

am

ω−m− 1
am

e−2i(ω−ω−m)r∗neiωu0FH[ψn0 ]

ω − ω−m
dω

× eimφ∗−Sm`(aω−m, cos θ)t(ω−m,m, `) ˜uCHL
ω−

+
1√

2π(r2
n + a2)

∑
m`

∫ ω−m+ 1
am

ω−m− 1
am

e−2i(ω−ω−m)r∗neiωu0FH[ψn0 ]eimφ
∗
−

×
[
Sm`(aω−m, cos θ)∂ω (t(ω,m, `) ˜uCHL) (ξ̃)

+ t(ω,m, `) ˜uCHL
Sm`(aω, cos θ)− Sm`(aω−m, cos θ)

ω − ω−m

]
dω (3.8.107)

for some ξ̃(ω) ∈ (ω−m− 1
am , ω−m+ 1

am). We also use the notation

˜uCHL
ω−(r∗) = ˜uCHL(ω = ω−m, r

∗). (3.8.108)

Again, we consider both terms Iares and Ibres individually and begin with term Ibres.

Lemma 3.8.9. We have ‖Ibres‖2L2(S2)(r
∗
n, u0) . D for all r∗n ≥ r∗0.
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Proof. We decompose the term Ibres = Ib1res + Ib2res further into the two summands appearing
in the ω-integral. We will estimate each of them individually. We begin with Ib1res and
estimate

‖Ib1res‖2L2(S2) .
∑
m

∫ π

0

∣∣∣∣∣∣
∑
`≥|m|

∫ ω−m+ 1
am

ω−m− 1
am

|FH[ψn0 ]Sm`(aω−m)∂ω (t ˜uCHL) (ξ̃)|dω

∣∣∣∣∣∣
2

sin θdθ

.
∑
m

∑
`≥|m|

∫ π

0

∫
R
(1 + Λ3

m`)|FH[ψn0 ]|2|Sm`(aω−m)|2dω sin θdθ


×

 1

m

∑
`≥|m|

sup
|ξ̃−aω−m|< 1

m

|∂ω(t ˜uCHL)(ξ̃)|2

1 + Λ3
m`(ξ̃)


.
∑
m

∑
`≥|m|

∫
R
(1 + Λ3

m`)|FH[ψn0 ]|2dω

∑
`≥|m|

Λ2
m`(aω−m) log2(Λm`(aω−m))

1 + Λ3
m`(aω−m)

 . D.
(3.8.109)

Here we have used Lemma 3.8.3, Lemma 3.8.4, Lemma 3.8.5 and the fact that

Λω−,m` := Λm`(aω−m) ∼ Λm`(aξ) (3.8.110)

for all |ξ − ω−m| < 1
m which in turn is a consequence of Lemma 3.3.2.

We now control the second term Ib2res and estimate

‖Ib2res‖2L2(S2) .
∑
m

∫ π

0

∣∣∣∣∣∣
∑
`≥|m|

∫ ω−m+ 1
am

ω−m− 1
am

∣∣∣∣FH[ψn0 ]
Sm`(aω)− Sm`(aω−m)

ω − ω−m
t ˜uCHL

∣∣∣∣ dω
∣∣∣∣∣∣
2

sin θdθ

.
∑
m

∑
`≥|m|

∫
R
(1 + Λ3

m`)|FH[ψn0 ]|2dω


×

∑
`≥|m|

∫ ω−m+ 1
am

ω−m− 1
am

|t ˜uCHL |2

1 + Λ3
m`

∫ π

0

∣∣∣∣Sm`(aω)− Sm`(aω−m)

ω − ω−m

∣∣∣∣2 sin θdθdω


.
∑
m

∑
`≥|m|

∫
R
(1 + Λ3

m`)|FH[ψn0 ]|2dω


×

∑
`≥|m|

Λω−,m`

1 + Λ3
ω−,m`

∫ ω−m+ 1
am

ω−m− 1
am

sup
|ξ̃−ω−m|≤ 1

m

∫ π

0
|∂ωSm`|2(aξ̃) sin θdθdω

 . D,
(3.8.111)
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where we have used the mean value property, Lemma 3.8.3, Lemma 3.8.4 and Proposi-
tion 3.3.3.

Now, we proceed with Iares, i.e. the first term in (3.8.107). We begin by recalling the
definition of FH[ψn0 ]:

FH[ψn0 ] =

√
r2

+ + a2

√
2π

∫
R

∫
S2

eiωvψn0 (v, θ, φ̃+)Sm`(aω, cos θ)e−imφ̃+dvdσS2 . (3.8.112)

Similar to Lemma 3.8.9 we will replace the Sm`(aω) appearing in (3.8.112) with Sm`(aω−m).
In order to do so, we introduce

Îares :=
1√

2π(r2
n + a2)

∑
m`

p.v.
∫ ω−m+ 1

am

ω−m− 1
am

e−2i(ω−ω−m)r∗neiωu0F̃H[ψn0 ]

ω − ω−m
dω

× eimφ∗−Sm`(amω−, cos θ)t(ω−m,m, `) ˜uCHL
ω− , (3.8.113)

F̃H[ψn0 ] :=

√
r2

+ + a2

√
2π

∫
R
ψn0m`(v)eiωvdv =

√
r2

+ + a2F[ψn0m`], (3.8.114)

and3

ψn0m`(v) :=

∫
S2

ψn0 (v, θ, φ̃+)Sm`(aω−m, cos θ)e−imφ̃+dσS2 . (3.8.115)

Lemma 3.8.10.

‖Îares − Iares‖2L2(S2) . D, (3.8.116)

Proof. Similarly to the proof of Lemma 3.8.9, we write

Sm`(aω) = Sm`(aω−m) + (ω − ω−m)
Sm`(aω)− Sm`(aω−m)

ω − ω−m
. (3.8.117)

for frequencies |ω−ω−m| ≤ 1
am in (3.8.112). Then, using a Cauchy–Schwarz inequality on

the sphere, sup|ξ−aω−m|≤ 1
m
|∂ξΛ(ξ)| . |m|, sup|ξ−aω−m|≤ 1

m
|∂ξP (ξ)| . |m| (see (3.3.42)),

3Recall that F denotes the standard Fourier transform F[f ](ξ) := 1√
2π

∫
R f(x)eiξxdx.
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Proposition 3.3.3 as well as elliptic estimates, we control the error term as

(1 +m2Λ2
ω−,m`)

∣∣∣∣∣FH − F̃Hω − ω−m

∣∣∣∣∣
2

. m
[ ∫

S2

∣∣∣∣∫
R
eiωvψn0 (v, θ, φ̃+)dv

∣∣∣∣2 dσS2

+

∫
S2

∣∣∣∣∫
R
eiωv /∇3

ψn0 (v, θ, φ̃+)dv

∣∣∣∣2 dσS2

]
. (3.8.118)

Now, from Lemma 3.8.3 and Lemma 3.8.4 we conclude after an application of the Cauchy–
Schwarz inequality and Plancherel’s theorem that

‖Îares − Iares‖2L2(S2) . D. (3.8.119)

Note that the function ω 7→ F[ψn0m`](ω) is a L2(Zm×Z`≥|m|)-valued Schwartz function
since v 7→ ψn0m`(v) is a L2(Zm × Z`≥|m|)-valued Schwartz function. We also define

Ĩares :=
1√

2π(r2
n + a2)

∑
m`

p.v.
∫

R

e−2i(ω−ω−m)r∗neiωu0F̃H[ψn0 ]

ω − ω−m
dω

× eimφ∗−Sm`(amω−, cos θ)t(ω−m,m, `) ˜uCHL
ω− . (3.8.120)

Lemma 3.8.11. We have ‖Îares − Ĩares‖2L2(S2) . D for all r∗n ≥ r∗0.

Proof. We use that the spheroidal harmonics Sm`(amω−, cos θ)eimφ
∗
− form an orthonormal

basis of L2(S2) to estimate

‖Ĩares − Îares‖2L2(S2) .
∑
m`

|m|2
∣∣∣∣∣
(∫ ω−m− 1

am

−∞
+

∫ +∞

ω−m+ 1
am

)
|F̃H[ψn0 ][ψn0 ]|dω| ˜uCHL

ω−tω− |

∣∣∣∣∣
2

.
∑
m`

|m|2Λm`(aω−m)

∣∣∣∣∫
R
|F̃H[ψn0 ]|dω|

∣∣∣∣2 . D, (3.8.121)

where we used the Cauchy–Schwarz inequality in the last step.

Now, we turn to Ĩares as defined in (3.8.120) and first only consider the ω-integral

Intares :=
1√

2π(r2
n + a2)

p.v.
∫

R

e−2i(ω−ω−m)r∗neiωu0F̃H[ψn0 ]

ω − ω−m
dω. (3.8.122)
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We have

Intares =

√
r2

+ + a2√
r2
n + a2

1√
2π

p.v.
∫

R

F[ψn0m`(· − u0 + 2r∗n)eiω−m·]

ω
e2iω−mr∗ndω

=

√
r2

+ + a2√
r2
n + a2

1√
2π
e2iω−mr∗np.v.

(
1

ω

)[
F[ψn0m`(· − u0 + 2r∗n)eiω−m·]

]

=

√
r2

+ + a2√
r2
n + a2

1√
2π
e2iω−mr∗niπ sgn

[
ψn0m`(· − u0 + 2r∗n)eiω−m·

]
, (3.8.123)

where sgn has to be understood as a Schwartz distribution. We have used that F
[
p.v.

(
1
ω

)]
=

iπsgn in the sense of distributions. Now, since ψ0 is smooth, the function v 7→ ψn0m` is
a Schwartz function with values in the space of superpolynomially decaying sequences in
m, ` as a subspace of L2(Zm × Z`≥|m|). Particularly, this implies that

tω− ˜uCHL
ω−Intares ∈ L2(Zm × Z`≥|m|;L

∞(r∗0,∞)), (3.8.124)

so we can project Ĩares on e
imφ∗−Sm`(amω−, cos θ). Indeed, this yields

〈eimφ̃∗−Sm`(amω−, cos θ), Ĩares〉L2(S2)

=

√
r2

+ + a2√
r2
n + a2

tω− ˜uCHL
ω−

√
2π

e2iω−mr∗niπ sgn
[
ψn0m`(· − u0 + 2r∗n)eiω−m·

]
. (3.8.125)

To summarize, we have decomposed I as

I = Ires + Inon-res = Ires + Inon-res = Ĩares + (Iares − Îares) + (Îares − Ĩares) + Ibres + Inon-res,

(3.8.126)

where Ĩares satisfies (3.8.125) and

‖(Iares − Îares) + (Îares − Ĩares) + Ibres + Inon-res‖L2(S2) . D
1
2 . (3.8.127)

Completely analogous to the the analysis before, we also decompose II as

II = IIres + IInon-res = IIres + IInon-res

= ĨI
a
res + (IIares − ÎI

a
res) + (ÎI

a
res − ĨI

a
res) + IIbres + IInon-res,

(3.8.128)
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where

‖(IIares − ÎI
a
res) + (ÎI

a
res − ĨI

a
res) + IIbres + IInon-res‖L2(S2) . D

1
2 (3.8.129)

and ĨI
a
res satisfies

〈eimφ∗−Sm`(amω−, cos θ), ĨI
a
res〉L2(S2) =

√
r2

+ + a2√
r2
n + a2

rω− ˜uCHR
ω−

√
2π

iπ sgn
[
ψn0m`(· − u0)eiω−m·

]
.

(3.8.130)

Hence, using

rω− = −tω− and ˜uCHR
ω− = ˜uCHL

ω− , (3.8.131)

we obtain

〈eimφ∗−Sm`(amω−, cos θ), Ĩares + ĨI
a
res〉L2(S2)

= iπ

√
r2

+ + a2√
r2
n + a2

tω− ˜uCHL
ω−

√
2π

eiω−mu0

∫ 2r∗n−u0

−u0

ψn0m`(v)eiω−mvdv.

(3.8.132)

Now, by construction of ψn0 , we have that ψn0m`(v) = 0 for v ≥ 2r∗n − u0 + c̃, where c̃ is a
constant only depending on the black hole parameters. In particular, this implies that

∑
m`

∣∣∣∣∣∣iπ
√
r2

+ + a2√
r2
n + a2

tω− ˜uCHL
ω−

√
2π

eiω−mu0

(∫ −u0

−∞
+

∫ +∞

2r∗n−u0

)
ψn0m`(v)eiω−mvdv

∣∣∣∣∣∣
2

.u0 D

(3.8.133)

which allows us to—up to a term bounded by D
1
2—replace the integral in (3.8.132) with

an integral on the whole real line v ∈ R. Finally, from Proposition 3.7.1 (more precisely
(3.7.42)), we obtain

‖ψ‖2L2(S2)(u0, r
∗
n) =

∑
m`

∣∣∣∣∣∣π
√
r2

+ + a2√
r2
n + a2

tω− ˜uCHL
ω−

√
2π

∫
R
ψn0m`(v)eiω−mvdv

∣∣∣∣∣∣
2

+ Err(D)

=
∑
m`

∣∣∣∣∣π tω− ˜uCHL
ω−√

r2
n + a2

aRnH (ω = ω−m)

∣∣∣∣∣
2

+ Err(D), (3.8.134)
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where |Err(D)| .u0 D uniformly for all r∗n ≥ r∗0. This established the claim (3.8.100) at
the beginning of the proof.

Now, from Lemma 3.7.3 we have that aRnH → aH pointwise for fixed ω,m, ` as Rn →∞.
We also have the pointwise limit

˜uCHL
ω− → 1 as r∗n →∞. (3.8.135)

Hence, applying Fatou’s lemma yields

lim inf
r∗n→∞

‖ψ‖2L2(S2)(u0, r
∗
n) ≥ π2

r2
− + a2

∑
m`

|tω− |2|aH(ω = ω−m)|2 − Cu0D, (3.8.136)

where Cu0 > 0 is a constant depending on u0. Since

|tω− | & |m| and |aH(ω = ω−mi,mi, `)| & em
1
4
i (3.8.137)

for infinitely many mi as shown in Lemma 3.8.6 and Lemma 3.6.2, respectively, we obtain

lim
r∗n→∞

‖ψ‖2L2(S2)(u0, r
∗
n) = +∞. (3.8.138)

Since the sequence r∗n →∞ was arbitrary we conclude (3.8.98).

3.9 Appendix

3.9.1 Airy functions

We recall the definition of the Airy functions of first and second kind Ai and Bi as follows.

Definition 3.9.1. For x ∈ R, we define Ai(x) and Bi(x) via the improper Riemann
integrals

Ai(x) :=
1

π

∫ ∞
0

cos

(
t3

3
+ xt

)
dt, (3.9.1)

Bi(x) :=
1

π

∫ ∞
0

[
exp

(
− t

3

3
+ xt

)
+ sin

(
t3

3
+ xt

)]
. (3.9.2)

Equivalently, the Airy functions are the unique solutions of

u′′ = xu (3.9.3)
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with

Ai(0) =
1

3
2
3 Γ(2

3)
,Ai′(0) =

−1

3
1
2 Γ(1

3)
, (3.9.4)

Bi(0) =
1

3
1
6 Γ(2

3)
,Bi′(0) =

3
1
6

Γ(1
3)

(3.9.5)

such that Wx(Ai(x),Bi(x)) = 1
π . Further, we define the constant c as the largest negative

root of Ai(x) = Bi(x). Then, we introduce the error-control functions

EAi(x) :=

(Bi(x)/Ai(x))
1
2 x ≥ c

1 x ≤ c
and MAi(x) :=

(2Ai(x)Bi(x))
1
2 x ≥ c

(Ai2(x) + Bi2(x))
1
2 x ≤ c

(3.9.6)

and E−1
Ai (x) := 1

EAi(x) . From [119, Chapter 11, §2] we remark that EAi is a monotonically
increasing function of x which is never less than 1 and moreover,

|Ai(x)| ≤ MAi(x)

EAi(x)
as well as |Bi(x)| ≤MAi(x)EAi(x). (3.9.7)

The Airy functions obey the following asymptotics.

Lemma 3.9.1 ([119, Chapter 11, §1], [39, §9.7]). For large x > 0, the asymptotic behaviors
of the Airy functions are

Ai(−x) =
1

√
πx

1
4

cos

(
2

3
x

3
2 − π

4

)
+ ε̃Ai(x), Ai′(−x) =

x
1
4

√
π

sin

(
2

3
x

3
2 − 1

4
π

)
+ ε̃Ai′(x),

(3.9.8)

Bi(−x) =
−1
√
πx

1
4

sin

(
2

3
x

3
2 − π

4

)
+ ε̃Ai(x), Ai′(−x) =

x
1
4

√
π

cos

(
2

3
x

3
2 − 1

4
π

)
+ ε̃Ai′(x),

(3.9.9)

where |ε̃Ai| . x−
7
4 and |ε̃Ai′ | . x−

5
4 . In particular, we have

|Ai(−x)|, |Bi(−x)| . 1

1 + x
1
4

and |Ai′(−x)|, |Bi′(−x)| . 1 + x
1
4 (3.9.10)
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for x ≥ 0. Moreover, for x > 0 we have

Ai(x) ≤ e−
2
3
x

3
2

2
√
πx

1
4

, (3.9.11)

|Ai′(x)| ≤ x
1
4 e−

2
3
x

3
2

2
√
π

(
1 +

7

48x
3
2

)
, (3.9.12)

Bi(x) ≤ e
2
3
x

3
2

√
πx

1
4

(
1 +

(
χAi

(
7

6

)
+ 1

)
5

48x
3
2

)
, (3.9.13)

Bi′(x) ≤ x
1
4 e

2
3
x

3
2

√
π

(
1 +

(π
2

+ 1
) 7

48x
3
2

)
, (3.9.14)

where χAi(x) =
√
π

Γ( 1
2
x+1)

Γ( 1
2
x+ 1

2
)
.

3.9.2 Parabolic cylinder functions

We define the parabolic cylinder functions U and Ū in the following.

Definition 3.9.2. For b ≤ 0 and x ≥ 0 we recall the definition of the parabolic cylinder
functions

U(b, x) =
π

1
2 e−

1
4

(2b+1)e−
1
4
x2

Γ(3
4 + 1

2b)
1F1

(
1

2
b+

1

4
;
1

2
;
1

2
x2

)
− π

1
2 2−

1
4

(2b−1)

Γ(1
4 + 1

2b)
e−

1
4
x2
x1F1

(
1

2
b+

3

4
;
3

2
;
1

2
x2

)
, (3.9.15)

Ū(b, x) =π−
1
2 2−

1
4

(2b+1)Γ

(
1

4
− 1

2
b

)
sin

(
3

4
π − 1

2
bπ

)
e−

1
4
x2

1F1

(
1

2
b+

1

4
;
1

2
;
1

2
x2

)
− π−

1
2 2−

1
4

(2b−1)Γ

(
3

4
− 1

2
b

)
sin

(
5

4
π − 1

2
bπ

)
e−

1
4
x2
x1F1

(
1

2
b+

3

4
;
3

2
;
1

2
x2

)
,

(3.9.16)

where 1F1(a; b; z) :=
∑∞

n=0
a(n)zn

b(n)n!
denotes the confluent hypergeometric function. Here, we

use the notation a(n) := x(x+ 1)(x+ 2) · · · (x+ n) for the rising factorial.

Remark that W(U, Ū) =
√

2
πΓ(1

2 − b).
We define auxiliary functions to control error terms in terms of parabolic cylinder

functions. We first define ρ(b) as the largest real root of the equation Ū(b, x) = U(b, x).
Note that ρ(b) ≥ 0 for b ≤ 0.
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Definition 3.9.3. For b ≤ 0, we set

EU (b, x) =

1 for 0 ≤ x ≤ ρ(b)√
Ū(b,x)
U(b,x) for x ≥ ρ(b)

(3.9.17)

For fixed b, the function EU (b, x) is continuous and non-decreasing in 0 ≤ x <∞. We
denote E−1

U := 1
EU

.

Definition 3.9.4. For b ≤ 0, x ≥ 0, we also define functions MU and NU by

MU (b, x) :=


√
U2 + Ū2 for 0 ≤ x ≤ ρ(b)
√

2UŪ for ρ(b) ≤ x.
(3.9.18)

NU (b, x) :=


√
U ′2 + Ū ′2 for 0 ≤ x ≤ ρ(b)√
U ′2Ū2+Ū ′2U2

UŪ
for ρ(b) ≤ x.

(3.9.19)

Definition 3.9.5. We define the function ζU as

ζU (t) :=

−
(

3
2

∫ 1
t (1− τ2)

1
2 dτ

) 2
3 for 0 ≤ t ≤ 1,(

3
2

∫ t
1 (τ2 − 1)

1
2 dτ

) 2
3 for t ≥ 1.

(3.9.20)

Note that we manifestly have

|U | ≤ E−1MU , |Ū | ≤ EMU and |UŪ | ≤M2
U (3.9.21)

for x ≥ 0 and b ≤ 0.

Proposition 3.9.1. The envelope function MU satisfies

M2
U

(
−1

2
µ2, µy

√
2

)
.

1

µ
1
3

1

1 + |ζU (y)|
1
4

1

1 + µ
2
3 |ζU (y)|

1
2

Γ

(
1

2
+

1

2
µ2

)
(3.9.22)

uniformly in µ ≥ 1 and y ≥ 0 and

M2
U

(
−1

2
µ2, µy

√
2

)
.

1

1 +
√
µy

(3.9.23)

uniformly in 0 ≤ µ ≤ 1 and y ≥ 0. In particular, MU satisfies∣∣∣∣MU

(
−1

2
µ2, µy

√
2

)∣∣∣∣2 . Γ

(
1

2
+

1

2
µ2

)
. (3.9.24)
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Proof. These estimates follow from [118, Equation (5.23), (6.12) and Section 6.2].
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