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Abstract
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havior and then argues that social and economic pressures facilitate the formation of

heterogenous networks. Thus networks can play an important role in understanding the
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1 Introduction and Overview

Social, economic and infrastructure networks are an important feature of an economy. Em-

pirical research has highlighted the presence of great heterogeneity in these networks. We see

this heterogeneity in Twitter (the number of followers ranges from less than ten to well over

a million), in production networks (where real estate and finance form hubs), and in trans-

port networks (airlines typically operate hub-spoke routes). This heterogeneity in connections

raises two questions: one, how does network structure shape behavior at an individual and

at the system level and two, what are the processes that give rise to such unequal networks?

In this chapter I will argue one, that networks can have large and differentiated effects on

behavior and two, that social and economic pressures facilitate the formation of heterogenous

networks. Thus networks can play an important role in understanding the diversity in eco-

nomic outcomes that is observed empirically. I will draw heavily on two recent survey papers,

Goyal (2016, 2017). Bramoulle, Galeotti, and Rogers (2016) provide a panoramic overview

of recent research on the economics of networks. Easley and Kleinberg (2010) offer a broad

inter-disciplinary introduction to the study of networks.

The key methodological innovation of the early research on the economics of networks in

the 1990’s was the introduction of graph theory alongside purposeful agents. Two ideas were

central: the study of how the network architecture shapes human behavior and the study

of how purposeful individuals form links and thereby create networks. Over the past two

decades, economists have developed a sophisticated understanding of the scope of these ideas

and they are increasingly being used to address a wide range of applied questions.

To develop the main arguments in a straightforward way, I will concentrate on covering

four research papers in some detail: a model of local strategic substitutes on a network

Bramoulle and Kranton (2007), a model of trading in networks Choi, Galeotti and Goyal

(2017), a model of simultaneous network formation and behavioral choice with local strategic

substitutes Galeotti and Goyal (2010), and finally, a model of network formation where payoffs

are determined by trade and intermediation benefits Goyal and Vega-Redondo (2006). In the

first two papers the network is exogenous, and the latter two papers should be seen as a

generalization in which the network is treated as endogenous.

The rest of the paper is organized as follows. Section 2 presents basic notation and ter-

minology on networks. Section 3 discusses the theory of network formation, while section 4

examines the effects of networks on behavior by presenting a framework that combines in-

dividual choice, networks and markets. Section 5 presents a discussion of models in which
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individuals choose actions as well as choose links, while Section 6 concludes.

2 Networks: Terminology

I begin by introducing some notation and a few basic concepts about networks. For a general

overview of graph theory, see Bollobas (1998); for an introduction of network concepts to

economics, see Goyal (2007), Jackson (2008) and Vega-Redondo (2007).

A network g comprises a collection of nodes N = {1, 2, ...n} with n ≥ 2, and the links

(gij), i, j ∈ N , between them. A node may be an individual, a firm, a project, a city or a

country, or even a collection of such entities. A link between them signifies a relation. In

some instances it is natural to think of the link as bidirectional: examples include friendship,

research collaboration and defence alliance. In other instances, a link is unidirectional: exam-

ples include investment in a project, citation, a web link, listening to a speech or following a

tweet. In this section I will focus on undirected graphs; the concepts and terminology extend

naturally to directed networks.

In case gij = 0 in g, g + gij adds the link gij = 1, while if gij = 1 in g then g + gij = g.

Similarly, if gij = 1 in g, g− gij deletes the link gij, while if gij = 0 in g, then g− gij = g. Let

Ni(g) = {j|gij = 1} denote the nodes with whom node i has a link; this set will be referred

to as the neighbors of i. Let ηi(g) = |Ni(g)| denote the number of connections/neighbors of

node i in network g. Moreover, for any integer d ≥ 1, let N d
i (g) be the d-neighborhood of i

in g: this is defined inductively, N 1
i (g) = Ni(g) and N k(g) = N k−1

i (g) ∪ (∪j∈N k−1
i

Nj(g)). So

the 2-neighborhood of i includes the neighbors of i and the neighbours of the neigbbours of i.

There is a path from i to j in g either if gij = 1 or there exist distinct nodes j1, · · · , jm
different from i and j such that gi,j1 = gj1,j2 = .... = gjm,j = 1. A component is a maximal

collection of nodes such that there is a path between every pair of nodes. A network g is said

to be connected if there exists only one component, i.e., there is a path from any node i to

every other node j.

Let Nk1(g),Nk2(g), ...,Nkm(g) be a partition of nodes: two nodes belong to the same group

if and only if they have the same degree. A network is said to be regular if every node has

the same number of links i.e., ηi(g) = η ∀i ∈ N (and so all nodes belong to one group in

the partition). The complete network, gc, is a regular network in which η = n− 1, while the

empty network, ge, is a regular network in which η = 0. Figure 1 presents regular networks.

Once we step outside the class of regular networks, a wide variety of networks arise. A
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Figure 3: Differences in networks

core-periphery network contains two groups: the periphery,N1(g), and the core, N2(g). Nodes

in the periphery have a link only with nodes in the core; nodes in the core are fully linked

with each other and have links with a subset of nodes in the periphery. The star (or hub-

spoke) network is a special case in which the core contains a single node. The nested split

graph is a partition of nodes {N1, ...,Nm} into two or more sets such that for j ∈ Nm−s,

s = {0, 1, ..,m − 1}, gj,k = 1 if and only if k ∈ Nl, where l > s. Figure 2 presents a range of

such networks.

It is important to note that networks allow for a very rich range of possibility, that go

beyond degrees. To bring out this point in a simple way, consider a degree-2 regular network

and a (generalized) star network with the same number of links. This is presented in Figure

3.

Now observe that as the number of nodes increases, ‘distance’ between the nodes is un-

bounded in the ring but it is bounded above by 2 in the star network. In the regular network,

all nodes are essentially symmetric, while in the core-periphery network the hub nodes clearly

have many more connections and are more ‘central’ than the other nodes.

3 The Theory of Network Formation

The finding that the social structure has large effects on individual behavior and payoffs

suggests that individuals have an incentive to create networks that are advantageous to them-

selves. This observation has inspired the theory of network formation. In this section I briefly
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sketch the building blocks of the theory. The exposition borrows heavily from Goyal (2016,

2017).

The beginnings of the theory of network formation can be traced back to the work of

Boorman (1975), Aumann and Myerson (1988) and Myerson (1991). The general framework

and a systematic theory of network formation was first presented in Bala and Goyal (2000)

and in Jackson and Wolinsky (1996). The two papers present complementary approaches to

the process of network formation.1

I first take up the approach of unilateral link formation. This approach was introduced

in Goyal (1993) and systematically studied in Bala and Goyal (2000). Consider a collection

of individuals, each of whom can form a link with any subset of the remaining players. Link

formation is unilateral: an individual can decide to form a link with another individual by

paying for the link. It takes time and effort to sustain a link. A link with another individ-

ual allows access, in part and in due course, to the benefits available to the latter via his

own links. Thus individual links generate externalities whose value depends on the level of

decay/delay associated with indirect links. As links are created on an individual basis, the

network formation process can be analyzed as a noncooperative game. The paper allows for

general payoffs: utility increases in the number of people accessed and it decreases in the

number of maintained links

There are interesting practical examples of this type of link formation – hyper-links across

web-pages, citations, ‘following’ relations on Twitter, and gifts. But the principal appeal of

this model is its simplicity. This simplicity allows for a systematic study of a number of central

questions concerning social and economic networks.

Bala and Goyal (2000) provide a characterization of the architecture of equilibrium net-

works. The equilibrium networks have simple architectures: star (hub-spoke) networks and

the cycle are salient. This prediction of great heterogeneity in connections and the presence

of highly connected ‘hub’ nodes is an important theoretical contribution. In the star network,

the central hub node will generally earn much larger payoffs as compared to the peripheral

nodes. Thus, the theory provides a foundation for the idea that social structures may sustain

great inequality.2

1In these models, nodes themselves create links; for an early analysis of firms creating networks see the
work on airline routing networks and pricing by Hendricks, Piccione and Tan (1995, 1999).

2The processes leading to unequal connections have also been studied by statistical physicists and other
scientists. In particular, physicists have been developed a model to derive a scale-free or power law degree
distribution. (A power law degree distribution takes the form f(k) = αk−β , with α > 0 and β > 0). Barabasi
and Albert (1999) formulate a dynamic model of network formation in which, at every point in time, a new node
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I turn next to two-sided or bilateral link formation. This approach was introduced and de-

veloped in Jackson and Wolinsky (1996). A link between two players requires the approval of

both the players involved. This is the natural way to think about link formation in a number

of social and economic contexts such as the formation of friendship ties, co-authorship, collab-

orations between firms, trading links between buyers and sellers, and free trade agreements

between nations.

The simplest way to think of two sided link formation is to imagine an announcement

game along the lines of the game sketched by Myerson (1991). Each player announces a set of

intended links. A link between two individuals A and B is formed if both A and B announce

an intention to create a link. In a context where links are two sided there are elements of

“cooperation” involved in the formation of a link, and so solving such games calls for new

concepts.

It is useful to begin the discussion with the familiar notion of Nash equilibrium as this

will illustrate some of the conceptual issues that arise in the study of network formation with

two-sided links. If every player announces that she wants to form no links then a best response

is to announce no links. In other words, the empty network is a Nash equilibrium for any

network formation game. To overcome this type of coordination failure, Jackson and Wolinsky

(1996) propose the concept of pairwise stable networks.

A network is said to be pairwise stable if no individual wishes to delete a link and if no

two unlinked individuals wish to form a link: Pairwise stability looks at the attractiveness of

links in a network g, one at a time. Formally, every link present in a stable network must be

profitable for the players involved in the link. For every link not present in the network it

must be the case that if one player strictly gains from the link then the other player must be

strictly worse off.

The second important contribution of the Jackson and Wolinsky (1996) paper was the

finding that there is typically a tension between the requirement of strategic stability and of

social efficiency. This highlights the presence of externalities in linking activity and remains

a recurring theme in the subsequent research in this area.

The great attraction of pairwise stability is its simplicity. For any network it is relatively

arrives and forms new links with existing nodes. The probability that the new node connects to an existing
node is proportional to the number of links the existing node has. This is referred to as preferential attachment.
This model yields power law degree distributions under suitable assumptions. Strategic models of network
formation, like Bala and Goyal (2000) and Jackson and Wolinsky (1996), show that unequal networks arise
when rational agents form links based on calculations of costs and benefits of links. In addition, the explicit
consideration of costs and benefits permits an analysis of social welfare and the role of policy interventions.
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easy to check whether the two conditions are satisfied. The theoretical properties of this

solution concept have been developed systematically and the solution concept has been widely

applied. For a survey of this work, see Bloch and Dutta (2012) and Jackson (2008).

The theory of network formation has been and remains a very active field of research;

for book length overviews, see Goyal (2007) and Jackson (2008). For a recent overview on

network formation models and their applications, see Bramoulle, Galeotti and Rogers (2016).

4 Networks and Individual Behavior

This section introduces a framework for the study of behavior in networks. It will develop

the argument that behavior in networks is shaped both by the nature of strategic interaction

and by the structure of the network. These two forces can lead to significant heterogeneity

in behavior and in payoffs for individuals, who are otherwise identical. I will draw heavily on

Goyal (2007); for related surveys of this field, see Jackson and Zenou (2014) and Bramoulle

and Kranton (2016).3

Games on networks consist of the set of players, the actions each of the players can choose,

a description of the network of relationships between the players and a specification of how

the actions and the network together define the payoffs accruing to each player.

The formulation of the strategies of players located in a network raises a number of consid-

erations. Perhaps the first issue that needs to be discussed is whether players are obliged to

choose the same action for all links or whether they have the freedom to choose link specific

actions. It is reasonable to model individuals as choosing a single action in some contexts

– such as consumer search about product prices or other characteristics. However, in some

other contexts – an example would be effort in research projects – it is clear that individuals

have the choice of putting different amounts of resources in different projects and frequently

do exercise this option. However, the single action for all links model has the great merit of

being very simple to work with and indeed most applications to date have worked with this

formulation.

Suppose each player i takes an action si in S, where S is a compact subset of R+. The

payoff (utility or reward) to player i under the profile of actions s = {s1, ..., sn} is given by

Πi : Sn × G → R+. In what follows, s−i = {s1, s2, .., si−1, si+1, ..., sn} refers to the profile of

3In this chapter I will restrict attention to static models. Network structure can have profound effects on
learning and contagion dynamics. For an early paper on learning dynamics, see Bala and Goyal (1998), and
for a survey of how networks affect macroeconomic volatility, see Carvalho (2014).
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strategies of all players, other than player i.

We now turn to the role of networks in mediating effects of actions across players. A

network has a number of different attributes – such as neighborhood size, distance, degree

distribution – and it is clear that these attributes will play more or less important roles

depending on the particular context under study. So there are many different ways in which

network structure can be brought into the payoff function.

4.1 Local interactions

Individuals are more affected by the actions of those who are “close by” – such as neighbors,

friends, partners, and colleagues. The simplest case arises when only actions of neighbors

matter and the actions of non-neighbors have no effects on an individual’s payoffs. This is the

case of pure local effects.4 This subsection studies a game with local effects. The next section

takes up more general network effects.

A game with pure local effects exhibits positive externality if the payoffs are increasing in

actions of neighbors, and it exhibits negative externality if they are decreasing in actions of

neighbors. Turning next to strategic relations, a game with pure local effects is said to exhibit

strategic complements or strategic substitutes depending on whether the marginal returns to

own action for player i are increasing or decreasing in the efforts of her neighbors.

I now present a simple game on networks with local effects. Suppose each player chooses

an action si ∈ S, where S is a compact interval in R+. Following Bramoulle and Kranton

(2007), suppose that the payoffs to a player i, in a network g, faced with a profile of efforts

s = {s1, s2, ..., sn}, are given by:

Πi(s|g) = f(si +
∑

j∈Ni(g)

sj)− csi (1)

where c > 0 is the marginal cost of effort. Assume that f(0) = 0, f ′(·) > 0 and f ′′(·) < 0.

Define ŝ to be such that f ′(ŝ) = c. Moreover, the payoffs are an increasing function of others

actions and the marginal payoffs are a decreasing function of others actions. Therefore, this

is a game of positive externalities and strategic substitutes. ‘Local public goods’ is perhaps

the natural interpretation of actions in this model.

4While the actions of direct neighbors have an effect on my payoff, the actions of the neighbors of my
neighbors will also typically matter: as they change actions, their neighbors will react and this will affect my
payoffs. So, there is a chain of indirect affects working through the different paths of connections.
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The action set is compact, the payoffs are continuous in the actions of all players, and

strictly concave in own action, and so it follows from standard considerations that a Nash

equilibrium in pure strategies exists. We now examine how an equilibrium is sensitive to the

structure of the network.

Define the sum of efforts of neighbors to be:

s̄i =
∑

j∈Ni(g)

sj.

From the strict concavity of f(·), it follows that if s̄i ≥ ŝ then marginal returns to effort

are lower than the marginal cost and so optimal effort is 0, while if s̄i < ŝ, then marginal

returns from effort to player are strictly larger than marginal costs c and so optimal effort is

positive, and given by ŝ− s̄i.

Proposition 1 A profile of actions s∗ = {s∗1, s∗2, ..., s∗n} is a Nash equilibrium if and only if

for every player i either

1. s̄∗i ≥ ŝ and s∗i = 0 or

2. s̄∗i ≤ ŝ and s∗i = ŝ− s̄∗i .

So in equilibrium there are potentially two types of players: one, those who receive ag-

gregate effort from their neighbors in excess of ŝ and exert no effort on their own, and two,

players who receive less than ŝ aggregate effort from their neighbors and contribute exactly

the difference between what they receive and ŝ. An implication is that an individual will

choose ŝ if and only if each of her neighbors choose 0. So we start by examining specialized

equilibria, i.e., outcomes in which every player chooses either ŝ or 0.

We will use the concept of independent sets. An independent set of a network g is a set

of players I ⊆ N such that for any i, j ∈ I, gij 6= 1, i.e., no two players in I are directly

linked. A maximal independent set is an independent set that is not contained in any other

independent set.

Every network contains a maximal independent set: number the players 1, 2, ....n. Now

start by placing player 1 in I, and look for players j /∈ N1(g). If player 2 /∈ N1(g), then

include her in the independent set, I, if not then include her in the complement set Ic.

Suppose, to fix ideas that, 1, 2 ∈ I. Next consider player 3: if player 3 /∈ N1(g) ∪N2(g), then

include her in I, while if she is then include her in Ic. Move next to player 4 and proceed
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likewise until you reach player n. At each stage, a player is included in the set if she is not

a neighbor of any player who is already included in the set. This process is well defined, and

will lead to a maximal set of players I such that for any pair of players i, j ∈ I, gij 6= 1.

Observe that in the empty network there exists a unique maximal independent set and

this is the set of all players N . In the complete network, on the other hand, there are n

distinct maximal sets, each of which contains a single player. In the star network, there are

two maximal independent sets: a set that contains only the central player and a set that

contains all the peripheral players.

Maximal independent sets have an intimate connection with specialized Nash equilibria:

assign the action ŝ to every member of a maximal independent set and assign action 0 to every

player who is not a member of this maximal independent set. This configuration constitutes

an equilibrium in view of the characterization provided in Proposition 1.

Moreover, it is immediate that in any non-empty network, a maximal independent set

must be a strict subset of the set of players N . Thus every such network is characterized by

extreme heterogeneity in effort levels – with some players being experts and contributing ŝ

while others contribute 0 – across otherwise identical individuals.

Proposition 2 There exists a specialized equilibrium in every network. In the empty network

the unique equilibrium is specialized and every player chooses ŝ, so there is no free riding. In

any non-empty network there exists a specialized equilibrium with experts and free riders.

This result gives us a first impression of how networks matter: when we move from the

empty network to any non-empty network this gives rise to the possibility of significant free

riding, with a subset of players exerting maximal effort while others exert no effort at all.

For instance, in the star network there are two specialized equilibria: one, where the central

player chooses ŝ and all the peripheral players choose 0; two, every peripheral player chooses

ŝ, and the central player chooses 0. Figure 4 illustrates these equilibria.

We now turn to the possibility of outcomes in which everyone contributes positively. Define

an equilibrium strategy profile in which all players choose positive effort as a distributed

equilibrium. It is easy to see that there does not always exist such an equilibrium. Take

the star network. In a distributed equilibrium it must be the case that for every player i,

si > 0 and si + s̄i = ŝ. Let sc denote the central player’s effort. For any peripheral player

l, Proposition 1 says that sl + sc = ŝ, while for the central player, sc +
∑

j 6=c sj = ŝ. These

equalities cannot be simultaneously satisfied since sl > 0 for every peripheral player in a

distributed equilibrium.
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Figure 4: Heterogeneity in a star network

Distributed equilibria, however, arise naturally in regular networks: there exists a symmet-

ric distributed equilibrium s∗ such that f ′(s∗+ ks∗) = c. Every player chooses s∗i = ŝ/(k+ 1).

Turning next to the distribution of payoffs: in a specialized equilibrium the active players

will earn f(ŝ)− cŝ, while the free riders will earn at least f(ŝ). If c is large then networks can

give rise to large heterogeneity in payoffs.

This subsection focused on games of pure local effects: we showed how networks can

generate large behavioral heterogeneity and correspondingly large payoff inequality. The study

of games with local effects remains an active field of research, see e.g., Gagnon and Goyal

(2017). We now turn to an example of general network effects.

4.2 Trading in networks

Supply, service and trading chains are a defining feature of the modern economy. They are

prominent in agriculture, in transport and communication networks, in international trade,

and in finance. The routing of economic activity, the allocation of surplus and the efficiency

of the system depend on the prices set by these different intermediaries. The goal here is to

propose a simple model of price setting in a network of intermediaries.

By way of motivation, consider a tourist who wishes to travel by train from London to see

the Louvre in Paris. The first leg of the journey is from home to St. Pancras Station. There

are a number of different taxi companies, bus services and the Underground. Once at St.
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Pancras Station, the only service provider to Paris Nord Station is Eurostar. Upon arriving

at Paris Nord, there are a number of alternatives (bus, Metro and taxi) to get to the Louvre.

The network consists of alternative paths each constituted of local transport alternatives in

London and in Paris and the Eurostar Company. Each of the service providers sets a price.

The traveler picks the cheapest ‘path’. Figure 5 represents this example.

Building on this example, Choi, Galeotti and Goyal (2017) propose the following model:

there is a source node, S, and a destination node, D. A path between the two is a sequence of

interconnected nodes, each occupied by an intermediary. The source node and the destination

node and all the paths between them together define a network. The passage from source

to destination generates a surplus. First let us consider the simple case where this surplus is

known and set it equal to 1. Intermediaries (who have zero cost) simultaneously post a price.

The prices determine a total cost for every path between S and D. The tourist moves along

a least cost path: so an intermediary earns payoffs only if she is located on it. This completes

the description of a game on a network.

To build some intuition for how networks matter, let us consider two simple networks. The

first network has two paths between S and D, each with a distinct intermediate node. The

two intermediaries compete in price: this is a simple game of strategic complements. Standard

arguments – a la Bertrand – tell us that both firms will set a price equal to 0. The second

network contains a single line with two nodes between S and D. The two intermediaries are

now engaged in bilateral Nash Bargaining and the strategies are strategic substitutes (assum-
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ing that the sum of demands must equal the value of surplus). As in the Nash bargaining

model, there are a number of possible outcomes.

Turning to the general model, every intermediary i simultaneously posts a price pi ≥ 0.

Let p = {p1, p2, ..., pn} denote the price profile. The network g and the price profile p define

a cost for every path q between S and D:

c(q, p) =
∑
i∈q

pi. (2)

Let Q be the set of all paths between S and D. Payoffs arise out of active intermediation:

an intermediary i obtains pi only if he lies on a feasible least cost path. A least cost path q′

is one such that c(q′, p) = minq∈Q c(q, p). Define c(p) = minq∈Q c(q, p). A path q is feasible if

c(q, p) ≤ v, where v is the value of economic ‘good’ generated by the path. All paths generate

the same value v. If there are multiple least cost paths, one of them is chosen randomly to be

the active path. Given g, p and v, denote by Qv = {q ∈ Q : c(q, p) = c(p), c(p) ≤ v} the set

of feasible least cost paths, and intermediary i’s payoff is given by:

πi(p, v) =

{
0 if i 6∈ q, ∀ q ∈ Qv
ηvi
|Qv |pi if i ∈ q, q ∈ Qv,

(3)

where ηvi is the number of paths in Qv that contain intermediary i.

A node is said to be critical if it lies on all paths between S and D. Choi, Galeotti and

Goyal (2017) develop the following characterization of equilibrium pricing.

Theorem 1 In every network, there exists an equilibrium. In any equilibrium p∗, c(p∗) /∈
(0, v). Thus there is either complete or zero surplus extraction by intermediaries.

Observe that if there is trade and there exist critical traders then intermediaries must

extract all surplus: if not then a critical trader can raise its price and increase profits strictly.

However, critical traders are not necessary for surplus extraction. This is because of possible

coordination failures along chains of traders that enhance the market power of non-critical

traders. These coordination problems give rise to multiple equilibria.5

This multiplicity and the possibility of very different allocations of surplus motivates an

experimental study of pricing. Choi, Galeotti and Goyal (2017) choose networks that allow

5To see this, note that in a cycle a path may price itself out of the market (by traders setting very high
prices) and then the other path can extract full surplus.
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Figure 6: Networks in the laboratory

us to examine the roles of coordination, competition and market power. These networks are

depicted in Figure 6.

The ring networks with four, six and ten traders allow us to focus on coordination and

competition. For every choice of S and D, there are always two competing paths of interme-

diaries. In Ring 4, for any non-adjacent pair, there are two paths with a single intermediary

each. Ring 6 and Ring 10 allow for situations with a higher (and possibly unequal) number

of intermediaries on either path.

The Ring with Hubs and Spokes network allows for a study of the impact of market power:

for instance, if S is located at a1 and D is located at a2, intermediary A is a pure monopolist,

while if D is b1 instead, then the intermediaries A and B play a symmetric Nash demand game.

This network also creates the space for both market power and competition to come into play.

For instance, if S is located at a1 and D is located at e1, then there are two competing paths: a

shorter path (through A, F , and E) and a longer path (through A, B, C, D, and E). Traders

A and E are the only critical intermediaries.

Figure 7 presents intermediation costs in different treatments. To put these experimental

variations into perspective, observe that in Ring 4, there is a unique equilibrium that corre-
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Figure 7: Costs of intermediation

sponds to the Bertrand outcome. In every other network, whenever there are at least two

intermediaries on every path, there exist both efficient and inefficient equilibria.6

In Ring 4, intermediation costs are around five percent of the surplus. In the other rings,

intermediation costs vary between ten and twenty percent of the surplus. The overall conclu-

sion is that intermediation costs in all ring networks are modest and, between the two efficient

equilibria, are much closer to the one with zero intermediation cost, especially in the smaller

rings.

In the Ring with Hubs and Spokes, when S and D are served by a sole critical intermediary,

the authors find a surplus extraction of 99 percent! Finally, when there are two competing

paths and critical traders, the intermediation cost ranges between 62 percent and 83 percent.

In the case without critical intermediaries, this cost falls sharply to around 28 percent, which

is comparable to the low-cost outcome found in Rings. These observations are summarized as

follows:

Finding 1: The presence of critical traders is both necessary and sufficient for large surplus

extraction by intermediaries. In Rings with four, six, and ten traders, intermediation costs

are small (ranging from 5 percent to 20 percent). In the Ring with Hubs and Spokes, with

critical traders, intermediation costs are large (ranging from 60 percent to over 95 percent).

I turn now to the issue of how surplus is divided between critical and non-critical inter-

mediaries. Table 1 presents the average fraction of intermediation costs charged by critical

6Observe that an equilibrium is inefficient if no trade takes place, and this happens if the cost of using any
path exceeds the value v.
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1 ~ 20 21 ~ 41 41 ~ 60

0.56 0.68 0.72

(20) (26) (25)

0.48 0.56 0.67

(16) (13) (10)

0.73 0.77 0.80

(16) (19) (24)

0.65 0.67 0.74

(8) (8) (11)

Notes. The number in a cell is the average fraction of costs charged by critical traders. The

number of observations is reported in parentheses. #Cr denotes the number of critical

intermediaries, #Paths denotes the number of paths connecting buyer and seller, d(q) denotes

the length of path q beween buyer and seller.

Network (#Cr,#Paths, d(q),d(q'))
Rounds

Ring with

Hubs and

Spokes

(1, 2, 3, 5)

(1, 2, 4, 4)

(2, 2, 4, 6)

(2, 2, 5, 5)

Table 1: Surplus division among intermediaries

traders, conditional on exchange. The number within parentheses is the number of group

observations. Looking at the last 20 rounds, we observe that 67 percent to 80 percent of

intermediation costs go to the critical trader(s). In all the cases, regardless of whether an

exchange takes place along the shorter or longer path, the number of non-critical traders is at

least as large as the number of critical traders. This is consistent with the pricing behavior of

different intermediaries, as reported in Figure 8.7 This leads to:

Finding 2: In the Ring with Hubs and Spokes, critical intermediaries set higher prices and

earn a much higher share of surplus than non-critical intermediaries.

The experiments establish that subjects avoid coordination problems. As a result, trade

always takes place, critical traders make large profits while non-critical traders make very

little profits.

The results are sharp but it is possible to argue that criticality is too demanding: a node

that lies on most (but not all) paths has the same status as compared to a node that lies

on only one path. Moreover, all critical paths have equal status in the model. It may be

argued that the location in the path – upstream or downstream – should matter. Related

work with alternative pricing protocols develops these points. For auctions, see Kotowski and

Leister (2014) and Gottardi and Goyal (2012); for bargaining, see Condorelli, Galeotti and

Renou (2016), Gofman (2011), and Manea (2017); for bid-and-ask prices, see Acemoglu and

Ozdaglar (2007), Blume et al. (2007) and Gale and Kariv (2009).8

7The numbers along the x-axis indicate the length of the two shortest paths between S and D in the
different treatments.

8For an extended discussion on trading outcomes under different pricing protocols, see Choi, Galeotti and
Goyal (2016).
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Figure 8: Price behavior across intermediary types

In this section I have considered games with local and global effects. For a general dis-

cussion on the nature of strategic interaction in networks, see Goyal (2007). An early paper

that consider games on a network with a combination of local and global (market) effects is

Goyal and Moraga-Gonzalez (2001). For more recent surveys on the subject, see Jackson and

Zenou (2014) and Bramoulle and Kranton (2016). An important message from this literature

is that, by varying the strategic structure of payoffs, we can bring different elements of net-

works into play. The two examples discussed in this section illustrate this general point. In

the public goods game, maximal independent sets are important for understanding behavior,

while in the pricing game it is criticality (and related notions of betweenness centrality) that

are relevant. Moreover, the discussion also shows how heterogeneity in network properties can

have powerful effects on choice, on payoffs, and on welfare.

5 Combining actions and link formation

This section will present models that combine choices on actions and linking. I will draw

upon original papers by Galeotti and Goyal (2010) and Goyal and Vega-Redondo (2007), and

a recent survey paper by Vega-Redondo (2016).

We invest time in acquiring information ourselves, but we also link with others and learn

from them. I start with some general observations on patterns of communication. The clas-
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sical early work of Lazarsfeld, Berelson, and Gaudet (1948) and Katz and Lazersfeld (1955)

found that personal contacts play a dominant role in disseminating information which in turn

shapes individuals decisions. In particular, they identified 20 percent of their sample of 4,000

individuals as the primary source of information for the rest. The Law of the Few subsumes

these empirical findings: in social groups, a majority of individuals get most of their informa-

tion from a very small subset of the group, viz., the influencers. Moreover, research suggests

that there are minor differences between the observable economic and demographic charac-

teristics of the influencers and the others. This suggests that individual interactions may play

an important role in sustaining such high levels of heterogeneity.

5.1 The Law of the Few

Motivated by these observations, and building on Bala and Goyal (2000) and Bramoulle

and Kranton (2007), Galeotti and Goyal (2010) propose the following model of activity and

interactions. Suppose individuals choose to personally acquire information and to form con-

nections with others to access the information these contacts acquire. Their main finding is

that every (strict) equilibrium of the game exhibits the ‘Law of the Few’. The network has a

core-periphery architecture; the players in the core acquire information personally, while the

peripheral players acquire no information personally but form links and get all their informa-

tion from the core players. The core group is small relative to the number of individuals.9

Figure 9 presents a collection of core-periphery networks.

As usual, let N = {1, 2, .., n} with n ≥ 3 be the set of players and let i and j be typical

members of this set. Each player i chooses a level of personal information acquisition xi ∈ X
and a set of links with others to access their information, which is represented as a (row) vector

gi = (gi1, ..., gii−1, gii+1, ..., gin), where gij ∈ {0, 1}, for each j ∈ N \ {i}. We will suppose that

X = [0,+∞) and that gi ∈ Gi = {0, 1}n−1. We say that player i has a link with player j if

gij = 1. A link between player i and j allows both players to access the information personally

acquired by the other player. The set of strategies of player i is denoted by Si = X × Gi.

Define S = S1× ...×Sn as the set of strategies of all players. A strategy profile s = (x,g) ∈ S
specifies the personal information acquired by each player, x = (x1, x2, ..., xn), and the network

of relations g = (g1,g2, ...,gn).

The network of relations g is a directed graph; let G be the set of all possible directed

9A number of subsequent papers have explored models that combine behavior and formation of structure;
see e.g., Baetz (2014) and Hiller (2012).
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Figure 9: Core-Periphery Networks.

graphs on n vertices. Define Ni(g) = {j ∈ N : gij = 1} as the set of players with whom i

has formed a link. Let ηi(g) = |Ni(g)|. The closure of g is an undirected network denoted

by ḡ = cl(g), where ḡij = max{gij, gji} for each i and j in N . In words, the closure of a

directed network involves replacing every directed edge of g by an undirected one. Define

Ni(ḡ) = {j ∈ N : ḡij = 1} as the set of players directly connected to i. The undirected link

between two players reflects bilateral information exchange between them.

The payoffs to player i under strategy profile s = (x,g) are:

Πi(s) = f

xi +
∑

j∈Ni(ḡ)

xj

− cxi − ηi(g)k, (4)

where c > 0 reflects the cost of information and k > 0 is the cost of linking with one other

person. As in section 3, assume that f(y) is twice continuously differentiable, increasing, and

strictly concave in y. Also assume that there is a ŷ > 0 such that f ′(ŷ) = c.

It is easy to see, using arguments from Section 3, that every player must access at least

ŷ information. Moreover, the perfect substitutability of own and neighbors’ information and
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the linearity in the costs of acquiring information imply that if a player personally acquires

information then the sum of the information he acquires and the information acquired by his

neighbors must equal ŷ. We next observe that if some player acquires ŷ, and if k < cŷ, then

it is optimal for all other players to acquire no information personally and to form a link with

this player. For a strategy profile s = (x,g), let us define I(s) = {i ∈ N |xi > 0} as the set

of players who acquire information personally, and let yi(ḡ) =
∑

j∈Ni(ḡ) xj be the information

that i accesses from his neighbors. So we know how much information everyone must access.

Now we turn to the distribution of personal information acquisition, the aggregate information

acquired in a social group and the structure of social communication. Galeotti and Goyal

(2010) establish:

Proposition 3 Suppose payoffs are given by (4) and k < cŷ. In every strict equilibrium

s∗ = (x∗,g∗): (1).
∑

i∈N x
∗
i = ŷ, (2). the network has a core-periphery architecture, hubs

acquire information personally and spokes acquire no information personally, and (3). for

given c and k, the ratio |I(s∗)|/n→ 0 as n→∞.

Galeotti and Goyal (2010) provide the following intuitive explanation for this result. In

this model, returns from information are increasing and concave while the costs of personally

acquiring information are linear. This implies that on his own an individual would acquire

a certain amount of information, which for the purposes of this discussion is normalized so

that ŷ = 1. The second element in this model is the substitutability of information acquired

by different individuals. This implies that if A acquires information on his own and receives

information from player B then in the aggregate he must have access to 1 unit of information

(else he could strictly increase his payoff by modifying personal information acquisition). The

third and key element is that links are costly and rationally chosen by individuals. The

implication of this is that if A finds it optimal to maintain a link with B then so must every

other player. Hence, the group of individuals who acquire information must be completely

linked and the aggregate information acquired in the society must equal exactly 1. Moreover,

since linking is costly, A will only link with B if B acquires a certain minimum amount of

information. Since total information acquired is 1, it follows that there is an upper bound to

the number of people who will acquire information: this upper bound is independent of the

number of players n. And so the proportion of information acquirers will be negligible in a

large group. Finally, we observe that since the aggregate information acquired in the group

is 1, everyone who does not personally acquire information must be linked to all those who

acquire information, yielding the core-periphery network.
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The result mentioned above is derived in a setting where individuals are ex-ante iden-

tical. A recurring theme in the empirical work is that influencers have have demographic

characteristics which are similar to those of others. But this work also finds that they have

distinctive attitudes which include higher attention to general market information and enjoy-

ment in acquiring information, see e.g., Feick and Price (1987). This motivates a study of the

consequences of small heterogeneity in individual characteristics. Our main finding is that if

an individual has a slight cost advantage in acquiring information (or a greater preference for

information) then in equilibrium this person is always the unique hub. Small heterogeneities

thus help select individuals who play dramatically different roles in social organization.

A natural way to model this difference is to suppose that some players have slightly lower

costs of acquiring information. Galeotti and Goyal (2010) consider a situation where ci = c for

all i 6= 1, while c1 = c− ε > 0, where ε > 0 is a small number. Let ŷ1 = arg maxy f(y)− c1y.

Clearly, as long as ε > 0, ŷ1 > ŷ, and ŷ1 → ŷ as ε→ 0. They establish the following result on

strict Nash equilibria:

Proposition 4 Suppose payoffs are given by (4), ci = c for all i 6= 1 and c1 = c − ε, where

ε > 0. If k < f(ŷ1)− f(ŷ) + cŷ then in a strict equilibrium s∗ = (x∗,g∗): (1).
∑

i∈N x
∗
i = ŷ1.

(2). the network is a periphery-sponsored star and player 1 is the hub, and (3). either x∗1 = ŷ1

and spokes choose x∗ = 0, OR, x∗1 = [(n− 1)ŷ − ŷ1]/[n− 2] and x∗ = [ŷ1 − ŷ]/[n− 2].

This result shows that a very small difference in the cost of acquiring information is

sufficient to separate the player who will acquire information and act as a hub from those

who will acquire little or no information personally and will only form connections.

Following on Galeotti and Goyal (2010) the intuition for this result may be explained as

follows: First, observe that for the low cost player the optimal information level is greater than

the optimal information level for other players, i.e., ŷ1 > ŷ. From the arguments developed in

Proposition 2 we know that aggregate information acquired by all players other than player

1 will be at most ŷ. This implies that in equilibrium, player 1 must acquire information

personally, x1 > 0. If x1 = ŷ1, the best reply of every other player is to acquire no information

and to form a link with player 1. In case x1 < ŷ1 we know, from arguments in Proposition 1,

that x1 + y1 = ŷ1 and so there is a player i 6= 1 with xi > 0 and xi + yi(ḡ) = ŷ. If some player

wants to link with i then so must everyone else. But then player i accesses all information

ŷ1; since ŷ1 > ŷ, this contradicts Proposition 1. Thus no player must have a link with player

i 6= 1 in equilibrium. Hence, i must form a link with player 1, and, from the optimality of

linking, so must every other player. Finally, since every player is choosing positive effort, the
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equilibrium values of x1 and xi can be derived from the two equations x1 + (n− 1)xi = ŷ1 and

x1 + xi = ŷ.

We briefly note that payoffs may be very unequal in the core-periphery networks: so in the

case of a single hub for instance the central player earns f(ŷ)− cŷ, while the spokes each earn

f(ŷ) − k. In the event that cŷ is much larger than k, the payoff of the hub players is much

smaller than the spokes. On the other hand in the case of multiple hubs, it is possible the

hubs earn a great deal more than the spokes. So information investment activity and linking

can lead to very specialized patterns of behavior and very heterogeneous networks.

5.2 Intermediation Rents and Network Formation

In the trading game, we showed that intermediaries earn large payoffs if and only if they are

‘critical’. In this section, we consider a network formation game in which traders seek to link

with each other to carry out exchange and also to extract intermediation rents by becoming

critical. We wish to understand whether criticality is sustainable in such an environment and

how the payoffs are distributed.

The discussion here is based on Goyal and Vega-Redondo (2007). Suppose traders can

exchange goods and that this creates a surplus of 1. Networks are relevant because this

exchange can be undertaken only if these traders know each other personally or there is a

sequence of personal connections which indirectly link the two traders. In the case where

traders know each other they each get one-half of the surplus. If they are linked indirectly

then the allocation of the surplus depends on the competition between the intermediary agents.

Following the discussion in Section 3, suppose that competition between paths between any

two players j and k leads to full dissipation of market power: in other words intermediaries

only make money if they are critical. We have thus combined the model of trading in networks

above with a model of network formation.

We will consider a game of network formation in which players propose links. So a strategy

for player i is si = {si,1, ...., si,n}, where si,j ∈ {0, 1}. A link is formed between players i and j

if both propose a link to each other, i.e., sij = sji = 1. Denote by C(j, k; g) the set of players

who are critical to connect j and k in network g and let c(j, k; g) = |C(j, k; g)|. Then, for any

strategy profile s = (s1, s2, ..., sn), the (net) payoffs to player i are given by:

Πi(si, s−i) =
∑

j∈Ci(g)

1

c(i, j; g) + 2
+

∑
j,k∈N

I{i∈C(j,k)}

c(j, k; g) + 2
− ηdi (g)c, (5)
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where I{i∈C(j,k)} ∈ {0, 1} stands for the indicator function specifying whether i is critical for j

and k, ηdi (g) = |{j ∈ N : j 6= i, gij = 1}| refers to the number of players with whom player

i has a link, and c > 0 is the cost per link. Ci(g) refers to the component of individual i in

network g.

I now discuss the incentives to form and delete links and the nature of pairwise stable

networks. It is easily seen that the star, the cycle containing all players and hybrid cycle-

stars (in which there is a cycle and all players outside the cycle have a single link to a

single node in the cycle) are all pairwise stable. In the star the center earns a payoff of

(n − 1)[1/2 + ((n − 2)/6) − c], and has no incentive to a delete a single link so long as

c < 1/2 + (n − 2)/3. Two spokes have no incentive to form a link between them if c > 1/6,

while no spoke has an incentive to delete a link if c < 1/2 + (n− 2)/3. Thus a star is pairwise

stable so long as 1/6 < c < 1/2 + (n− 2)/3.

In a cycle every player gets a payoff of (n − 1)/2 − 2c. An additional link is clearly not

attractive since it does not create any extra surplus while it increases costs. Deleting one

link is not attractive for an individual player as it makes a neighboring player critical for all

transactions, which lowers individual payoffs by at least (n − 2)/6. This clearly exceeds the

cost c, for large enough n. Similar arguments can be used to show that hybrid cycle-star

networks are pairwise stable (for some range of costs).

I now turn to deviations that involve greater coordination. Consider the case of two players

choosing to add a link between themselves and delete a subset of links with others. To see how

this may have large effects, consider the cycle network containing all players. Consider two

players that are far apart in the cycle and establish a direct link. By simultaneously breaking

one link each, they can produce a line and become central in it. In a line, they must pay

intermediation costs to a number of others, but at the same time they both occupy prominent

centrality positions in the line network. This deviation is illustrated in Figure 10.

Under some circumstances such deviations may be profitable and they have the effect of

sharply restricting the set of ‘equilibrium’ networks. This possibility leads to a consideration

of strict bilateral equilibrium networks. Goyal and Vega-Redondo (2007) propose the following

definition.10

Definition 1 A network g∗ can be supported in a strict bilateral equilibrium (SBE) if the

10For a more detailed discussion of solution concepts in network formation games, see Goyal (2007).
Here the strictness refers to the requirement that for every player the proposed strategy profile is strictly
better than any network the player can attain on his own, given the strategy profile of all other players. This
is the second condition in the definition.

23



Cycle Line 

Deviation  
1 & 2 2 

1 

2 

1 

Figure 10: Bilateral deviations from cycle

following conditions hold:

• There exists a strategy profile s∗ which supports g* as a bilateral equilibrium.

• For any i ∈ N , and every si ∈ Si such that:

g(si, s
∗
−i) 6= g(s∗),

Πi(g(s∗)) > Πi(g(si, s
∗
−i))

;

• For any pair of players, i, j ∈ N and every strategy pair (si, sj) with g(si, sj, s
∗
−i−j) 6=

g(s∗),

Πi(g(si, sj, s
∗
−i−j)) ≥ Πi(g(s∗i , s

∗
j , s
∗
−i−j))⇒ Πj(g(si, sj, s

∗
−i−j)) < Πj(g(s∗j , s

∗
j , s
∗
−i−j)).

(6)

Goyal and Vega-Redondo (2007) provide the following (partial) characterization of strict

bilateral equilibrium networks.

Proposition 5 Suppose payoffs satisfy (5) and that n is large. If 1/6 < c < 1/2 then the

unique strict bilateral equilibrium network is the star, while if 1/2 < c < 1/2 + (n − 2)/6
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Figure 11: Incentives in minimal networks

then the star and the empty network are the only strict bilateral equilibrium networks. If

c > 1/2 + (n− 2)/6 then the empty network is the unique strict bilateral equilibrium network.

There are four arguments in the proof. The first argument exploits access and interme-

diation advantages to show that an equilibrium network is either connected or empty. The

second argument demonstrates agglomeration pressures: a minimal network with long paths

cannot be sustained. This is because players located at the ‘end’ of the network benefit from

connecting to a central player in order to save on intermediation costs (cutting path lengths)

while a central player is ready to incur the cost of an additional link because this enhances her

intermediation payoffs because she shares the intermediation rents with fewer other players.

This deviation is illustrated in Figure 11.

The third argument builds on the above example of bilateral deviations to show that a cycle

or a hybrid cycle-star network is not sustainable. The fourth argument rules out networks

with two or more cycles. It is here that the requirement of strictness is invoked. Figure 12

illustrates how players 1 and 2 are indifferent between the network with two cycles and a

network in which there is only one cycle.

Proposition 5 covers large societies and assumes that c > 1/6. Goyal and Vega-Redondo

(2007) show that in small societies too strategic pressures will create the potential for a

‘structural hole’ and there will be players who earn large intermediation payoffs by spanning

them. In case c < 1/6, the star is not an equilibrium, since peripheral players have a strict
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Figure 12: Instability in networks with two cycles

incentive to link up. For large societies, the above arguments show that no other network is

a strict bilateral equilibrium. Thus if c < 1/6 then there exist no strict bilateral equilibria.

I conclude this discussion with a comment on payoff inequality. In the star network the

central player earns (n− 1)[1/2 + ((n− 2)/6)− c] while each of the peripheral players makes

[1/2 + ((n − 2)/3 − c]. The payoff difference between the central player and the peripheral

player is large, and in particular, the ratio of the two payoffs is unbounded, as n gets large.

The discussion above shows that strategic linking pushes toward an extreme form of market

power with a single critical node. One ingredient of the model that plays a important role

in the analysis is that only a critical node can earns intermediation rents. In a recent paper,

van der Leij, Veld and Hommes (2016) extend this model to allow for smoother competition

between paths: here multiple paths may earn intermediation rents depending on a competition

parameter δ, that allows in the one extreme for full collusion and in the other extreme for

Bertrand competition (as in the model above). They also show that small initial differences

in size of banks can feedback to create a core-periphery network with large banks in the core.

In particular, their model can reproduce the observed core-periphery structure in the Dutch

interbank market for reasonable parameter values.
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5.3 Related work

For a more extensive survey of games with actions and linking, see Vega-Redondo (2016).

Here I would like to briefly mention the closely related line of work on link formation in a

setting where actions are strategic complements, Koenig, Tessone, and Zenou (2014). The

basic game has linear quadratic payoffs, as in the paper by Ballester, Calvo-Armengol and

Zenou (2006). I briefly discuss this paper now.

Konig, Teasone and Zenou (2014) show that if individuals form links to maximize cen-

trality, then the linking process leads to nested split graphs : these are networks with a clear

hierarchical structure (for an illustration, see Figure 2). There is a top group of high effort

players, who are linked to all players choosing efforts below them. The second level effort

players are in turn linked to all players choosing effort below them, and so forth. For an early

derivation of nested graphs in a model of network formation, see Goyal and Joshi (2003). A

similar structure is also identified in related papers by Hiller (2012) and Baetz (2014), who

study a setting like Galeotti and Goyal (2010), except that actions are strategic complements

(and not substitutes).

An important general message from this literature is that, in a rich variety of settings,

purposeful linking activity leads to sharply structured networks with significant heterogeneity

in degree, in behaviour across nodes, and in individual payoffs.

6 Concluding remarks

We started with the observation that heterogeneity is a defining feature of real world social,

economic and infrastructure networks. I have tried to argue, with the help of simple models,

how heterogeneous networks give rise to very widely varying forms of behavior and potentially

significant inequality. Furthermore, I have presented models that combine activity in networks

with linking behavior to show how heterogeneous network structures are a natural outcome in

a wide range of circumstances. Thus networks are important for understanding the diversity

in economic outcomes that has been empirically noted.
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