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We consider the time-dependence of a hierarchy of scaled L2m-norms Dm,ω and Dm,θ

of the vorticity ω = ∇ × u and the density gradient ∇θ, where θ = log(ρ∗/ρ∗0), in a
buoyancy-driven turbulent flow as simulated by Livescu & Ristorcelli (2007). ρ∗(x, t)
is the composition density of a mixture of two incompressible miscible fluids with fluid
densities ρ∗2 > ρ∗1 and ρ∗0 is a reference normalisation density. Using data from the publicly
available Johns Hopkins Turbulence Database, we present evidence that the L2-spatial
average of the density gradient ∇θ can reach extremely large values at intermediate
times, even in flows with low Atwood number At = (ρ∗2 − ρ∗1)/(ρ

∗
2 + ρ∗1) = 0.05, implying

that very strong mixing of the density field at small scales can arise in buoyancy-driven
turbulence. This large growth raises the possibility that the density gradient ∇θ might
blow up in a finite time.

1. Introduction

The irreversible mixing at a molecular level of two fluids of different densities ρ∗2 > ρ∗1
is a fluid dynamical process of great fundamental interest and practical importance, espe-
cially when the fluids are turbulent. Such turbulent mixing flows occur in many different
circumstances. A particularly important class arises when the buoyancy force associated
with the effects of statically unstable variations in fluid density in a gravitational field
actually drives both the turbulence and the ensuing mixing itself. Such flows, commonly
referred to as ‘Rayleigh-Taylor instability’ (RTI) flows due to the form of the initial linear
instability (Rayleigh 1900; Taylor 1950), have been very widely studied (see Sharp (1984);
Youngs (1984, 1989); Glimm et al. (2001); Dimonte et al. (2004); Dimotakis (2005); Lee
et al. (2008); Hyunsun et al. (2008); Andrews & Dalziel (2010)), not least because of
their relevance in astrophysics (Cabot & Cook 2006) and fusion (Petrasso 1994).

A key characteristic of RTI flows is that the developing turbulence is not driven by some
external forcing mechanism, but rather is supplied with kinetic energy by the conversion
of ‘available’ potential energy stored in the initial density field. This kinetic energy natu-
rally drives turbulent disorder and a cascade to small scales, with an attendant increase
in the dissipation rate of kinetic energy. Such small scales also lead to ‘filamentation’,
i.e. enhanced surface area of contact between the two miscible fluids and, crucially, sub-
stantially enhanced gradients in the density field, which thus also leads to irreversible
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mixing, and hence modification in the density distribution. There has been an explosion
in interest in investigating the ‘efficiency’ of this mixing, i.e. loosely, the proportion of
the converted available potential energy which leads to irreversible mixing, as opposed
to viscous dissipation, (see the recent review of Tailleux (2013)), although the actual
definition and calculation of the efficiency is subtle and must be performed with care –
see for example Davies-Wykes & Dalziel (2014) for further discussion.

Nevertheless, there is accumulating evidence that buoyancy-driven turbulence is par-
ticularly efficient in driving mixing (Lawrie & Dalziel 2011; Davies-Wykes & Dalziel 2014)
and certainly more efficient than externally forced turbulent flow. This evidence poses
the further question whether there are distinguishing characteristics of the buoyancy-
driven turbulent flow that are different from the flow associated with an external forcing,
in particular whether these characteristics can be identified as being responsible for the
enhanced and efficient mixing.

The situation is further complicated by the observation that, even when the two flu-
ids undergoing mixing are themselves incompressible, since molecular mixing generically
changes the specific volume of the mixture, the velocity fields of such ‘variable density’
(VD) flows, (following the nomenclature suggested by Livescu & Ristorcelli (2007)) are,
in general, not divergence-free. This is certainly the case when the two densities are suffi-
ciently different such that the Boussinesq approximation may not be applied. Commonly,
the Boussinesq approximation is applied when the Atwood number At, defined as

At =
ρ∗2 − ρ∗1
ρ∗2 + ρ∗1

, (1.1)

is small ; i.e, At ≪ 1. However, as discussed in detail in Livescu & Ristorcelli (2007), non-
Boussinesq effects may occur when gradients in the density field become large. Following
Cook & Dimotakis (2001) and Livescu & Ristorcelli (2007), the composition density
ρ∗(x, t) of a mixture of two constant fluid densities ρ∗1 and ρ∗2 (ρ∗2 > ρ∗1) is expressed in
dimensionless form by

1

ρ∗(x, t)
=

Y1(x, t)

ρ∗1
+

Y2(x, t)

ρ∗2
, (1.2)

where Yi(x, t) (i = 1, 2) are the mass fractions of the two fluids and Y1 + Y2 = 1. (1.2)
shows that the composition density ρ∗ is bounded by ρ∗1 6 ρ∗(x, t) 6 ρ∗2. Assuming that
there is Fickian diffusion, the mass transport equations for the two species are

∂t (ρYi) +∇ · (ρ∗Yiu) = Pe−1
0 ∇ · (ρ∇Yi) , (1.3)

where Pe0 is the Péclet number : the dimensionless Reynolds, Schmidt and Péclet num-
bers are defined in table 1. Since the specific volume 1/ρ∗ changes due to mixing, a
non-zero divergence is induced in the velocity field which affects the conventional conti-
nuity equation for mass conservation

∂tρ
∗ +∇ · (ρ∗u) = 0 , (1.4)

which is derived from the sum over the two species in (1.3). In Appendix A, it is shown
that the full equations for ρ∗ derived from (1.2) and (1.3) take the form (see (A 6) and
(A 7))

(∂t + u ·∇) ρ∗ = Pe−1
0 ρ∗∆(ln ρ∗) . (1.5)

∇ · u = −Pe−1
0 ∆(ln ρ∗) . (1.6)

As discussed in Livescu & Ristorcelli (2007), the Boussinesq approximation leads to the
requirement that the velocity field is divergence-free ∇ · u = 0, in which case the mass
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conservation equation becomes

∂tρ
∗ + u ·∇ρ∗ = Pe−1

0 ∆ρ∗ . (1.7)

This relies on the requirement that the second (nonlinear) term on the right hand side
of (1.5) can be ignored compared to the first term, i.e. that

|∇ρ∗|2 ≪ ρ∗|∆ρ∗| . (1.8)

As noted by Livescu & Ristorcelli (2007), this condition may be violated if substantial
gradients develop in the density field. It is not a priori clear, even when the Atwood
number is very small, that the non-divergence-free nature of the velocity field qualitatively
changes the properties of the turbulent flow in ways which are significant to the mixing,
and specifically whether regions in the flow may develop where the condition (1.8) is
violated. This issue can be explored by careful numerical simulation, as reviewed by
Livescu (2013), with a key observation (see Livescu & Ristorcelli (2007) for more details)
being that the pressure distribution is substantially modified by non-Boussinesq effects.
Furthermore, the central role played by intermittency and anisotropy, as discussed in
Livescu & Ristorcelli (2008), suggests that it would be instructive to focus carefully
on the time-dependent evolution of nonlinearity within such buoyancy-driven, variable
density flows using the full equations (1.5) and (1.6) without the approximation (1.8).

Indeed, using a normalization density ρ∗0 = 1
2 (ρ

∗
1 + ρ∗2), an interesting observation is

that with

θ(x, t) = ln ρ ρ =
ρ∗

ρ∗0
, (1.9)

(1.5) becomes a diffusion-like equation coupled to a u-field whose divergence is linked to
two derivatives in θ

(∂t + u ·∇) θ = Pe−1
0 ∆θ , with ∇ · u = −Pe−1

0 ∆θ . (1.10)

While ρ∗ itself is bounded above and below, the two gradients ∇ρ or ∇θ are of much
greater interest. Mathematically, understanding the properties of these gradients may
reveal something about the regularity or otherwise of solutions of the governing equa-
tions. Conversely, physically, the magnitudes of these gradients are central to the rate of
irreversible mixing within the flow.

Following Livescu & Ristorcelli (2007), there is another way of looking at the growth
of these gradients. Consider the equation for θ and introduce a new velocity field v =
u+Pe−1

0 ∇θ. The Hopf-Cole-like transformation θ = ln ρ in (1.9) then leads to an exact
cancellation of the nonlinear terms in (1.10) to give

(∂t + v ·∇) ρ = Pe−1
0 ∆ρ , with ∇ · v = 0 . (1.11)

This is the linear advection diffusion equation driven by a divergence-free velocity field.
Note that ω = curlu = curlv. However, the fact that v is actually an (explicit) function
of ∇θ makes (1.11) less simple than it first appears. Nevertheless, this equation provides
a hint as to how we might look at the dynamics in a descriptive way. Consider a one-
dimensional horizontal section through a rightward moving wave of ρ at a snapshot in
time : in the frame of the advecting velocity u the relevant component of v is greater
on the back face of any part of the wave (where ∇ρ > 0) than on the front face (where
∇ρ < 0). Thus in the advecting frame, (1.11) implies that not only is there the usual
advection and diffusion but also a natural tendency for the back of a wave to catch up
with the front, thus leading to a natural and inevitable steepening of ∇ρ.
While our explanation of this steepening process is heuristic, it is consistent with exper-

imental observations, and raises several questions. To explore these, we have undertaken
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a re-analysis of a dataset of D. Livescu, arising from the simulation of a buoyancy-driven
flow very similar to that reported in Livescu & Ristorcelli (2007), which is freely available
at the Johns Hopkins Turbulence Database (JHTDB). Using this re-analysis, there are
three central questions which we wish to explore as the primary aims of this paper.

(i) First, can the growth of gradients in the density field be bounded or controlled in
any meaningful way? Such bounds could yield valuable insights into the structure and
regularity of the density field and the uniform validity of the Boussinesq approximation
for flows with At ≪ 1, which may explain the ‘efficiency’ of mixing associated with
buoyancy-driven turbulence?

(ii) Alternatively, if the growth of density gradients fails to saturate and instead ac-
celerates by drawing on available kinetic energy, is it fast enough for a singularity to
form in a finite time? The rapid growth observed by Luo & Hou (2014a,b) in the vortic-
ity field of a symmetric incompressible Euler flow in a cylinder (with u · n̂ = 0 on the
boundary) provides strong evidence of a singularity in that system. It is possible that
buoyancy-driven variable density turbulence is another example, despite the difference in
boundary conditions and the presence of diffusion. However, it ought to be pointed out
that neither the data nor the methods used here are sufficient to answer this question
definitively.

(iii) Does the nonlinear ‘depletion’ (a concept we define below) in three-dimensional
Navier-Stokes turbulence survive when it is coupled to the density field? In tandem with
question (i), is there any nonlinear depletion in this density field?

The method of analysis used to address these questions is based on that used to
analyze multiple data-sets generated from the incompressible three-dimensional Navier-
Stokes equations (Donzis et al. (2013); Gibbon et al. (2014); Gibbon (2015)) on a cubical
domain [0, L]3. Here, we review this method for completeness. The method involves
taking higher Lp-norms of the vorticity

Ωm =

(

L−3

∫

V

|ω|2m dV

)1/2m

, for m > 1 , (1.12)

which are, in effect, higher moments of the enstrophy field, each having the dimensions of
a frequency. Symmetry considerations in the three-dimensional Navier-Stokes equations
suggest that the following scaling is appropriate (̟0 = νL−2)

Dm =
(

̟−1
0 Ωm

)αm
, where αm =

2m

4m− 3
. (1.13)

In most theoretical analyses it is impossible to avoid gradients of ω in expressions for
the higher moments Ωm thus causing great difficulties with closure. It has been shown in
Gibbon (2015) that the sequence of Dm can be connected with D1 in the following way
(m > 2)

Dm = CmD
Am,λ

1 , and Am,λ =
λm(t)(m− 1) + 1

4m− 3
, (1.14)

where the set of exponents {λm(t)}, subject to 1 6 λm 6 4, are time-dependent, and the
Cm a set of positive constants. One way of explaining the use of the relation in (1.14) is
this : instead of using higher L2m-norms in the sequence {D1 ; Dm(t)}, one examines the
sequence {D1 ; λm(t) ;Cm}. Thus, the enstrophy D1 is taken as the main variable and the
exponents {λm(t)} are then monitored numerically. Following how these exponents vary
in time thus captures how the scaled moments Dm vary in time. The lower bound λm > 1

comes from the fact that Ω1 6 Ωm which can be shown to be equivalent to D
αm/2
1 6 Dm.
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The case λm = 1 lies at the lower bound. At λm = 4, Am = 1, and so Dm = CmD1

in (1.14). In this situation, it is apparent that the Navier-Stokes nonlinearity is fully
saturated. Computations in Donzis et al. (2013) and Gibbon et al. (2014) have shown
that the λ-parameter used there lies in the range 1.15 6 λ 6 1.5. It is this that we refer
to as ‘nonlinear depletion’, because the higher order, appropriately scaled moments Dm

do not ‘saturate’ nonlinearly.
As shown in §3.1, in the buoyancy-driven flow considered here, it is possible to define

not only equivalent higher Lp-norms of the vorticity Ωm and hence Dm to those defined
in (1.12) and (1.13), (which we relabel as Ωm,λ and Dm,ω to make the dependence
on vorticity explicit) but also equivalent norms of ∇θ, which we refer to as Ωm,θ and
Dm,θ. We can then investigate the equivalent nonlinear depletion in the density gradients
through considering the rate of growth of D1,θ and then monitoring the evolution of the
exponents λm,θ(t) in the nonlinear growth terms, while also taking into account D1,ω.
While it is not currently possible to answer definitively the question posed about blow-up
of the density gradients at intermediate times, before diffusive mixing might be presumed
to smooth out the density distribution, this paper is meant to set the scene as a way of
analyzing and interpreting future computations.

The rest of the paper is organized as follows. In section 2, we describe in detail the
properties of the simulation data set which we re-analyse, and we then present the results
of this re-analysis in section 3. Finally, we draw our conclusions in section 4.

2. Description of the database

As noted in the introduction, we use the Johns Hopkins Turbulence Database (JHTDB)
(Livescu et al. 2014), a publicly available direct numerical simulation (DNS) database,
to explore nonlinear depletion in buoyancy-driven turbulence. We have used the homo-
geneous buoyancy driven turbulence dataset for our study. For more information, please
see http://turbulence.pha.jhu.edu/datasets.aspx.

The equations used for this problem are the miscible two-fluid incompressible Navier-
Stokes equations given by :

∂tρ
∗ + (ρ∗uj),j = 0 (2.1)

∂t(ρ
∗ui) + (ρ∗uiuj),j = −p,i + τij,j +

1

Fr2
ρ∗gi (2.2)

uj,j = −
1

Re0Sc
(ln ρ∗),jj (2.3)

τij = ρ∗Re−1
0 (ui,j + uj,i −

2

3
δijuk,k) (2.4)

(2.5)

where ρ∗ is the non-dimensional density of the mixture.
The individual densities of the two components, ρ∗1 and ρ∗2, are constant, but due to

changes in mass fractions of each species, the density of the mixture can change (1.2).
For this reason, the divergence of velocity is dependent on the density as seen in equation
(2.3). The value of the Atwood number, At, that characterizes the density difference, is
0.05 and represents a small departure from the Boussinesq approximation. Some of the
other important simulation parameters are displayed in table 1, where L0 is the non-
dimensionalization length, U0 is the reference velocity scale, µ0 is the dynamic viscosity
and D is the mass diffusivity.
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Reynolds number Re0 = ρ∗0L0U0/µ0 12500
Froude number Fr = U0/

√
gL0 1

Schmidt number Sc = µ0/Dρ∗0 1
Peclét number Pe0 = Re0Sc 12500
Atwood number At = (ρ∗2 − ρ∗1)/(ρ

∗

2 + ρ∗1) 0.05
Domain 2π × 2π × 2π
Domain Length L 2π
Non-dimensionalization Length L0 1

Table 1. Simulation parameters

In the simulation run by Livescu and colleagues, the fluids are initialized as random
blobs with periodic boundaries in each direction and an initial diffusion layer at the
interface. At sufficiently late time, the statistically homogeneous turbulent flow generated
by such conditions resembles the interior of the mixing layer (away from the edge effects)
of the Rayleigh-Taylor instability at the turbulent stage (see Livescu & Ristorcelli (2007)
for further discussion).

The inhomogeneities in the transport terms are important only at the edge and thus,
it is safe to assume that the homogeneous simulation data under consideration describes
the core of a fully-developed mixing layer. Eventually, the turbulent behaviour dies out
as the fluids become sufficiently mixed at the molecular level.

The variable-density version of the petascale CFDNS code (Livescu et al. 2009) was
used with an ideal-gas equation of state to carry out the direct numerical simulation on
10243 grid points (for more information on a similar numerical study, refer to Livescu &
Ristorcelli (2007)). The solution algorithm in the code is based on the pseudo-spectral
method. The pressure is computed from the Poisson equation using the projection method.
Time integration is achieved using the third order predictor-corrector Adams-Bashforth-
Moulton method. The resultant high resolution data has been stored as a sequence of
1015 files, starting from t = 0 to t = 40.56, each representing time-step data for 323

spatial points.
The velocity gradients in the database are calculated as a post-processing step us-

ing a fourth order central finite differencing approximation. In general, for calculating
the gradients or the state variables at a particular spatial location between the stored
grid points, either a fourth order spatial interpolation (for gradients) or a sixth order
Lagrangian interpolation (for state variables) is used. To get the temporal values other
than those which are stored in the database, a piecewise cubic Hermite interpolation is
employed. For more information on the specific dataset functions used for interpolation
and calculation of the gradients, please refer to Appendix B.

3. Results

3.1. Definitions

It is clear from (1.2) that the composition density ρ∗ is bounded by ρ∗1 6 ρ∗ 6 ρ∗2.
Moreover, in Appendix C it is also shown that every ‖ρ∗‖L2m is bounded above by its
initial data provided the advecting u-field is regular. However, our interest lies more in
∇ρ∗, both mathematically through its analogy with the vorticity field ω, and physically
through its central role in irreversible mixing, although it is difficult to work with this
quantity alone. To circumvent this problem, the variable θ introduced in (1.9) and satis-
fying (1.10) is an easier variable with which to work. The idea is to consider both ∇θ and
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ω = curlu in the higher (unscaled) norms L2m (V), (analogously, but slightly differently
to those defined in (1.12) and (1.13)) defined for (1 6 m < ∞) by

Ωm,θ =

(
∫

V

|∇θ|2mdV

)1/2m

, (3.1)

Ωm,ω =

(
∫

V

|ω|2mdV

)1/2m

, (3.2)

where L0 is the non-dimensionalization length in the the database which rescales the
volume of integration here to be V = [0, L/L0]

3. The natural sequence of Hölder inequal-
ities

Ωm,θ 6

(
∫

V

|∇θ|2(m+1)dV

)
1

2(m+1)
(
∫

V

1dV

)
1

2m(m+1)

=

(

L

L0

)
3

2m(m+1)

Ωm+1,θ , (3.3)

has a multiplicative factor which is only unity when L = L0. Remembering the definition
of αm from (1.13),

αm =
2m

4m− 3
(3.4)

then the exponent on L/L0 in (3.3) is related to αm and αm+1 by

3

2m(m+ 1)
=

1

αm+1
−

1

αm
. (3.5)

In turn, this leads us to define a natural dimensionless length

ℓm = (L/L0)
1/αm , (3.6)

which turns (3.3) into ℓmΩm,θ 6 ℓm+1Ωm+1,θ. Use of these length scales allows us to
investigate the relationship between the various moments of the density gradients in the
most natural fashion, to allow us to determine whether they exhibit nonlinear depletion
(or not). The aim is to assume there exists a solution of (1.10) in tandem with the
vorticity field ω. Motivated by the depletion properties studied in Donzis et al (2013)
and Gibbon et al (2014) for the Navier-Stokes equations, the following definitions are
made

Dm,θ = (ℓmΩm,θ)
αm ; Dm,ω = (ℓmΩm,ω)

αm . (3.7)

In the JHT-database the dimensionless domain size is 2π thus indicating that L/L0 = 2π.
The αm-scaling in (3.7) has its origins in scaling properties of the three-dimensional
Navier-Stokes equations (see Gibbon et al. (2014)). Then, as in (1.13) above, we consider

Dm,θ(t) = D
Am,θ(t)
1,θ , (3.8)

where the multiplicative set of constants Cm have here been taken as unity. Following
this, the JHT-database shows that the relation between Dm,θ and D1,θ takes the form
of (3.8). The data are consistent with Am,θ(t) being expressed as

Am,θ(t) =
λm,θ(t)(m− 1) + 1

4m− 3
, 1 6 λm,θ 6 4 , (3.9)

The Dm,θ(t) are thus defined in terms of the set {D1,θ(t), λm,θ(t)}. There is also an
equivalent formula for Dm,ω in terms of the set {D1,ω(t), λm,ω(t)}. There is a lower
bound λm,θ > 1 for the same reasons given in the introdcution for the equivalent
quantities Dm and D1, as defined in (1.13). Numerically the λm,θ(t) can be calculated
from the JHT-database by considering lnDm,θ/ lnD1,θ. Note that the ordering observed
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Figure 1. Time variation of: (a) lmΩm,θ(t), as defined in (3.2) ; (b) Dm,θ(t), as defined in
(3.7) ; (c) Am,θ(t) as defined in (3.8).
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Figure 2. Time variation of: (a) λm,θ(t), as defined in (3.9), which fan out and grow with
time ; (b) β(t) as defined in (3.12).

in (3.3) does not necessarily hold for the Dm,θ or the Dm,ω because αm decreases with
m.

3.2. The evolution of D1,θ

Formally consider the time evolution of
∫

V
|∇θ|2dV using (1.10) and the relation for ∇·u

in (1.10)

1

2

d

dt

∫

V

|∇θ|2dV =

∫

V

∇θ ·
(

Pe−1
0 ∆−∇u

)

·∇θ dV +
1

2

∫

V

|∇θ|2(∇ · u) dV (3.10)

6 −Pe−1
0

∫

V

|∆θ|2dV +

∫

V

|∇θ|2|∇u| dV +
1

2
Pe−1

0

∫

V

|∇θ|2|∆θ| dV .

Using the fact that D1,θ = 2πΩ2
1,θ together with the Dm,θ −D1,θ relation in (3.8) and
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(3.9), Appendix D shows how this can be manipulated into the differential inequality

d

dt
D1,θ 6 −

D2
1,θ

4πPe0‖θ‖22
+ 4πcmPe−1

0 D
1+λm,θ(t)
1,θ + 2πPe0D1,ω , (3.11)

where the λm,θ(t) appear in the exponent of the middle term on the right hand side. Plots
of ℓmΩm,θ(t), Dm,θ(t) and Am,θ are shown in figure 1, with plots of the corresponding
λm,θ(t) in figure 2a : the relevant constants have not been estimated. Note that the set
{λm,θ(t)} fan out with time with no tendency to coincide. Nonlinear depletion occurs
when Am,θ < 1, which figure 1 shows is the case. Because λm,θ(t) > 1, the exponent
1 + λm,θ(t) > 2. Given the values of λm,θ(t) in figure 2a, it is clear that despite the
boundedness of ‖θ‖22, the negative D2

1,θ-term will always be smaller than the middle

nonlinear term Pe−1
0 D

1+λm,θ

1,θ for all non-small values of D1,θ.

There is also the issue of the size of the additive 2πPe0D1,ω-term in (3.11). To turn
this term into a term depending on D1,θ alone requires a relation between D1,θ and
D1,ω, with the latter representing the fluid vorticity. Analytically, we have been unable
to establish a relation between them but the JHT data-base provides us with a relation
with a further exponent which we call β(t)

D1,ω = D
β(t)
1,θ , (3.12)

where the growth in the exponent β(t) is shown in figure 2b. Figure 3 shows that the

Pe0D
β(t)
1,θ -term (plotted with green squares) in (D 6) is dominant over the Pe−1

0 D
1+λm,θ(t)
1,θ -

term (plotted with red triangles), even when λm,θ(t) is chosen to be the maximum across
m at each particular time step. The plots of 1 + λm,θ and β(t) both show that the val-
ues of these two quantities are both greater than two and thus cannot be controlled by
the −D2

1,θ term in (3.11). The conclusion is that these estimates do not point to any

mechanism of saturation and so the possibility of exponential growth in, or even blow-up

of D1,θ in a finite time, cannot be discounted. It is important to stress that this is not
inconsistent with the physical intuition that at late times, diffusion should smooth out all
density gradients. This analysis only points to the possibility that at intermediate times
it is possible that the density gradients may become extremely large. Furthermore, the
“fanning out” of the λm,θ(t) for various m suggests a highly complex time-dependent fine
structure in the density field, although figure 3 shows that this variation is not essential
to our central conclusion concerning the time dependence of D1,θ.

Finally, figure 4 shows the equivalent set of plots of the time variation of ℓmΩm,ω(t),
Dm,ω(t) and Am,ω(t) defined as

Am,ω(t) = lnDm,ω/ lnD1,ω. (3.13)

In figure 5, we also show the time variation of the corresponding λm,ω(t), calculated using
the analogous relationship

Am,ω(t) =
λm,ω(t)(m− 1) + 1

(4m− 3)
. (3.14)

It is apparent that the turbulent fluid part of the problem, which drives and dominates
the system, has corresponding λm,ω(t) that are flat in time and sit in the range 1 <
λm,ω < 2. This is consistent with the behaviour found in three-dimensional Navier-
Stokes flow described in Donzis et al (2013), Gibbon et al (2014) and Gibbon (2015).
Note that this contrasts strongly with the behaviour of the θ-variable where the λm,θ

fan out and grow in time, as shown in figure 2, and suggests, in some as yet unexplored
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(plotted with red triangles) where λm,θ(t) is chosen to be the maximum value over m at each
time step with Pe0 = 12, 500.

0 10 20 30 40
Time

100

102

l m
Ω

m
,ω
(t
)

0 10 20 30 40
Time

100

105

D
m
,ω
(t
)

0 10 20 30 40
Time

-2.5

-1.5

-0.5

0.5

A
m
,ω
(t
)

m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9

Figure 4. Time variation of: (a) lmΩm,ω(t) as defined in (3.2) ; (b) Dm,ω(t), defined in (3.7) ;
(c) Am,ω(t), as defined in (3.14).

sense, that the density gradient field is even more complex than the vorticity field in this
buoyancy-driven flow, in particular that the nonlinear depletion is appreciably weaker in
the density gradient field.

4. Conclusions

We have studied the growth of D1,θ = 2π
∫

V
|∇θ|2dV (and D1,ω = 2π

∫

V
|ω|2dV ) based

on the evolution of∇θ with θ = ln(ρ∗/ρ∗0) as expressed in equation (1.10). The differential
inequality for D1,θ shown in (3.11) contains the set of exponents λm,θ (m = 2, ..., 8)
together with β(t), which is the exponent that connects D1,θ with D1,ω. These have
been calculated directly from the JHTDB-database data which has been employed in



Nonlinear effects in buoyancy-driven variable density turbulence 11

0 10 20 30 40
Time

-12

-10

-8

-6

-4

-2

0

2

λ
m
,ω
(t
)

Figure 5. Time variation of λm,ω(t), calculated using the relation (3.14).

this paper. The fan-like shape of the set λm,θ (m = 2, ..., 8) and its growth in time is
shown in figure 2a while the growth of β is shown in figure 2b.
The extraction of statistics for the higher moments Dm for m > 2 raises a similar

question to that addressed in Donzis et al (2013) for the three-dimensional Navier-Stokes
equations which was based on four data-sets. In three of them (a 2048× 10242 and two
5123 calculations) statistics were able to be reliably extracted for up to m = 9 but not
beyond. In the 40963 calculation reliable extraction only up to m = 6 was achievable.
Likewise, only reliable extraction up to m = 9 was achievable from the JHTDB-database.
In the three-dimensional Navier-Stokes calculations a strong degree of convergence was
observed for m > 4 suggesting, but not proving, that this set might ultimately converge
to a finite D∞. Given the fan-like separation of the λm,θ in Fig. 2 it is not clear one way
or the other whether convergence ultimately occurs to a finite D∞.
In tandem with the numerical evidence in figure 2a consistent with strong growth in

∇ρ∗, varying degrees of nonlinear depletion are also observed in the sense that Am,θ < 1,
and Am,ω < 1 (as in figures 4c and 5). Depletion in Am,θ reduces as the growth of λm,θ

to the value 3.5 in the final stages attests. Indeed, note that λm,θ = 4 would give a linear
relation and be equivalent to a full estimate of the nonlinearity. Depletion in D1,ω is quite
severe, as shown in figures 4c and 5, which is consistent with the same effect observed in
Navier-Stokes flows. Despite this, the cross-effect of the turbulent fluid flow driving the

growth of D1,θ through the exponent β(t) swamps the term D
1+λm,θ

1,θ in (3.11).

The fact that 1 + λm,θ > 2, with β(t) growing rapidly up to a value of 6, leaves open
the possibility that D1,θ could blow up in a finite time. The rapid growth observed by
Luo & Hou (2014a,b) in their computations of the symmetric Euler equations with a
boundary, with a clear indication of the formation of a finite time singularity, suggests
that the problem in this paper should be analyzed in this light, despite the differences in
boundary conditions, the presence of diffusion and the limited grid-size. While the blow-
up question cannot be directly answered with the available data, the growth is sufficiently
strong that the mixing could be driven down to near molecular scales where the validity
of the model fails. Interestingly, λm,ω simultaneously saturates as in figure 5 showing
that the turbulent fluid component is not amplified by the density growth. This hints
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that buoyancy-driven turbulence may well be more intense in some real physical and
mathematical sense than constant-density turbulence, which may explain the observed
extremely efficient mixing possible in such flows.
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Appendix A. The equations for the composite density

Following Cook & Dimotakis (2001) and Livescu & Ristorcelli (2007) the composition
density ρ∗(x, t) of a mixture of two constant fluid densities ρ∗1 and ρ∗2 (ρ∗2 > ρ∗1) is
expressed by (1.2) where Y (x, t) = Y2 is the mass fraction of the heavier fluid. It is
important to stress that the two fluids are assumed to be incompressible, yet we do not
make the Boussinesq approximation and so the difference between the two densities is
allowed to take arbitrary values. Under the transport of a (dimensionless) velocity field
u(x, t), ρ∗ obeys the equation of conservation of mass

∂tρ
∗ +∇ · (ρ∗u) = 0 , (A 1)

and the species transport equation

∂t(ρ
∗Y ) +∇ · (ρ∗Y u+ jF ) = 0 , (A 2)

where the divergence of the flux jF represents Fickian diffusion, i.e.

jF = −Pe−1
0 ρ∗∇Y . (A 3)

The Péclet number has been defined in table 1. Given that the solution of (1.2) shows
that ρ∗Y is linear in ρ∗ such that

ρ∗Y = aρ∗ + b , a =
ρ∗2

ρ∗2 − ρ∗1
, b = −

ρ∗1ρ
∗
2

ρ∗2 − ρ∗1
, (A 4)

equation (A 2) simplifies to

b∇ · u = Pe−1
0 ∇ · (ρ∗∇Y ) . (A 5)

Noting from (A4) that ρ∗∇Y = −b∇(ln ρ∗) the coefficient b cancels to make (A 5) and
(A 1) into :

∇ · u = −Pe−1
0 ∆(ln ρ∗) . (A 6)

(∂t + u ·∇) ρ∗ = Pe−1
0 ρ∗∆(ln ρ∗) , (A 7)

which are equations (1.5) and (1.6).



Nonlinear effects in buoyancy-driven variable density turbulence 13

Function Spatial Differentiation Spatial Interpolation Temporal Interpolation

GetDensity() FD4_DIFF_LAG4_INT LAG6_INT PCHIP_INT

GetDensityGradient() FD4_DIFF_LAG4_INT FD4_DIFF_LAG4_INT PCHIP_INT

GetVelocityGradient() FD4_DIFF_LAG4_INT FD4_DIFF_LAG4_INT PCHIP_INT

Table 2. Function names in the database corresponding to the interpolation of various
quantities used for data analysis in the paper.

Appendix B. Details of Database

We have used the matlab analysis tools provided at the webpage http://turbulence.
pha.jhu.edu/matlabanalysistools.aspx, to fetch the data from the database. For
details regarding the computational domain, boundary conditions, numerical method,
etc., please refer to http://turbulence.pha.jhu.edu/docs/README-HBDT.pdf.

Appendix C. Every ‖ρ∗‖L2m(V) decays in time

To prove the boundedness of each ‖ρ∗‖L2m(V) under a sufficiently regular advecting
field u we write

1

2m

d

dt

∫

V

|ρ∗|2mdV = −

∫

V

ρ∗(2m−1)
∇ · (ρ∗u) dV , (C 1)

and

ρ∗(2m−1)
∇ · (ρ∗u) =

(

1−
1

2m

)

ρ∗2m ∇ · u+
1

2m
∇ · (ρ∗2mu) . (C 2)

(C 1) then becomes

1

2m

d

dt

∫

V

|ρ∗|2mdV = −

(

1−
1

2m

)
∫

V

ρ∗2m ∇ · u dV (C 3)

where the volume integral of the second term in (C 2) is zero through the divergence
theorem. Using (2.3), (C 3), becomes

1

2m

d

dt

∫

V

|ρ∗|2mdV = Pe−1
0

(

1−
1

2m

)
∫

V

ρ∗2m ∆(ln ρ∗) dV

= −Pe−1
0 (2m− 1)

∫

V

ρ∗2(m−1)|∇ρ∗|2 dV

= −Pe−1
0

(2m− 1)

m2

∫

V

|∇ρ∗m|2 dV 6 0 . (C 4)

Thus, every L2m-norm decays in time. �

Appendix D. The differential inequality for D1,θ

Let us repeat (3.10) and proceed from there :

1

2

d

dt

∫

V

|∇θ|2dV 6 −Pe−1
0

∫

V

|∆θ|2dV +

∫

V

|∇θ|2|∇u| dV +
1

2
Pe−1

0

∫

V

|∇θ|2|∆θ| dV .

(D 1)
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Before going further it should be noted that a standard result connects ∇u, ω and divu
∫

V

|∇u|2 dV =

∫

V

|ω|2 dV +

∫

V

|divu|2 dV

=

∫

V

|ω|2 dV + Pe−2
0

∫

V

|∆θ|2 dV (D 2)

For m > 2, and noting that m−2
2(m−1) +

m
2(m−1) = 1, consider the term

∫

V

|∇θ|2|∇u| dV 6 c1,mΩ
m−2
m−1

1,θ Ω
m

m−1

m,θ

[

Ω1,ω + Pe−1
0 ‖∆θ‖2

]

6 c2,m D
m−2

2(m−1)

1,θ D
m

αm(m−1)

m,θ

[

(2π)−1/2D
1/2
1,ω + Pe−1

0 ‖∆θ‖2

]

, (D 3)

where the factors of ℓm have been absorbed into the dimensionless constants c1,m and
c2,m. Now we turn to the idea introduced in §3.1 that connects Dm,θ with D1,θ by using
the formula (3.8) and (3.9) for Am,θ and the set {λm,θ(t)}. Inserting (3.8) into the right
hand side of (D 3) gives (factors of 2π have also been absorbed into the constants)

∫

V

|∇θ|2|∇u| dV 6 c2,mD
(1+λm,θ)/2
1,θ

[

(2π)−1/2D
1/2
1,ω + Pe−1

0 ‖∆θ‖2

]

6
1

2
Pe0D1,ω + c3,mPe−1

0 D
1+λm,θ

1,θ +
1

2
Pe−1

0 ‖∆θ‖22 , (D 4)

where the use of a Hölder inequality has split up the terms of the right hand side of
(D 3). The same idea is used on the last term in (D 1) with |∇u| replaced by |∆θ| :

Pe−1
0

∫

V

|∇θ|2|∆θ| dV 6
(

Pe−1
0 ‖∆θ‖22

)1/2
(

c3,mPe−1
0 D

1+λm,θ

1,θ

)1/2

6
1

2
Pe−1

0 ‖∆θ‖22 + c4,mPe−1
0 D

1+λm,θ

1,θ . (D 5)

Altogether, (D 1) becomes

1

4π
Ḋ1,θ 6 −

1

4
Pe−1

0 ‖∆θ‖22 + c5,mPe−1
0 D

1+λm,θ

1,θ +
1

2
Pe0D1,ω . (D 6)

A simple integration by parts shows that

‖∇θ‖22 6 ‖∆θ‖2‖θ‖2 (D 7)

which leads to (3.11) in which the constant c5,m has been re-labelled as cm.
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