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ABSTRACT 

 
A large fraction of eukaryotic genomes consists of mobile, repetitive elements called 

transposons. Since their uncontrolled mobilisation is a potentially harmful event, several 

molecular mechanisms have evolved to counteract transposon activation and thus safeguard 

genome integrity. Among these is the piRNA pathway, a gonad-specific system based on small 

non-coding RNAs that recognise active transposons and instruct their silencing. Ultimately, 

piRNAs trigger epigenetic silencing of transposon loci. The work in this thesis investigates the 

molecular mechanisms by which piRNAs are produced from the correct substrates and how 

piRNAs can induce silencing of target loci in Drosophila melanogaster. 

 

First, I investigated how piRNA precursors are selected for processing and how they are 

transported to mitochondria, where piRNA production occurs. I explored the role of an 

uncharacterised Drosophila gene previously implicated in germline transposon control: 

CG10880/Daedalus (Daed). I found that Daed is an essential component of the mitochondrial 

piRNA biogenesis machinery and that it recruits the RNA helicase Armitage (Armi) to 

mitochondria. If Armi fails to be recruited, piRNA biogenesis cannot occur since Armi’s role 

is that of delivering piRNA precursors to the mitochondrial processing machinery. Secondly, I 

investigated how the major piRNA precursor in somatic cells, namely flamenco (flam) 

transcript, is exported and specified for downstream piRNA production. I uncovered that flam 

export is closely linked to the assembly of peri-nuclear condensates of the helicase fs(1)Yb 

(Yb). Furthermore, some subunits of the Nuclear Pore Complex (NPC) are also required for the 

production flam-derived piRNAs, thus suggesting the evolution of a specialised machinery that 

couples nuclear export and processing of this transcript. Finally, I set out to understand how 

piRNAs trigger silencing of active transposons. I found that Panoramix (Panx), the central 

effector of piRNA-guided epigenetic silencing, assembles into a complex with two other 

proteins: Nxf2 and Nxt1. We characterised the dependencies within the complex and found that 

all three components are essential to initiate silencing. Intriguingly, Nxf2 and Nxt1 belong to 

the family of nuclear export factors, thus suggesting that the piRNA pathway has co-opted 

proteins involved in RNA export and repurposed them for transposon control. 

 

Overall, this work provides new insights on the molecular mechanisms of piRNA-guided 

transposon silencing in Drosophila and shows evidence that transposon control pathways can 

exploit cellular factors for novel functions. 
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CHAPTER I 
 

 

INTRODUCTION 
 

 

I.1 Transposable elements: genomic threats and drivers for evolution 

 

Transposable Elements (TEs) are mobile repetitive genomic elements that widely populate 

eukaryotic genomes, constituting up to 40% of the mouse genetic material and 30% of that of 

the fruit fly, Drosophila melanogaster (Adams et al., 2000; Mouse Genome Sequencing et al., 

2002). These genomic “parasites” feature the ability to mobilise and colonize novel locations 

of the genome they reside in. TEs are often called “selfish” genomic elements (Doolittle, 1980; 

Orgel, 1980) because they aim to spread within the host, both horizontally (from one organism 

to another) (Gilbert and Feschotte, 2018) and vertically (across generations) (Blumenstiel, 

2019). Vertical propagation of TEs necessitates their mobilisation in germ cells, whose genome 

will give rise to an entire new organism, and indeed transposition is frequent during germline 

development in animals. However, uncontrolled TE mobilisation poses a severe threat to 

genomic integrity, since it could disrupt essential genes and eventually impair the fitness of the 

host (Payer and Burns, 2019). This is especially critical in the germline, where any de novo 

mutation would be inherited by the offspring. Hence, several defence mechanisms have 

emerged to tame transposon activity. Such mechanisms must be easily adaptable to novel 

transposon challenges and must co-evolve with the “parasites” they fight, as in a genomic arms 

race. This can be formalised by the Red Queen model (Van Valen, 1973), which postulates that 

in any host-pathogen interaction, one must evolve as fast as possible to escape the other and 

survive. In the context of transposon-host interactions, this implies that the host will be under 

selective pressure to evolve mechanisms that dampen TE activity. On the other hand, if a host 

defence mechanism completely suppresses a particular transposon, this will force the TE to 

evolve new ways to evade it (Cosby et al., 2019). In fact, many transposon-response 

mechanisms show signs of rapid diversification and evolution, implying that they are engaged 

in an active conflict against TEs (Daugherty and Malik, 2012; Jacobs et al., 2014; Vermaak et 

al., 2005). Genes involved in transposon control often manifest signs of positive selection, 

which consists of an insurgence of many more nonsynonymous mutations compared to 

synonymous over time, thus leading to a faster adaptation. 
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Despite their seemingly threatening nature, active TEs have persisted within eukaryotic 

genomes during evolution. This represents an intriguing paradox, suggesting that TEs somehow 

provide benefits to the host and therefore have been maintained and allowed activation at 

specific times and places. Indeed, transposon sequences are a unique source of genetic variation 

that has often been co-opted by the host into endogenous regulatory networks (Cosby et al., 

2019; Fedoroff, 2012). An example of this is the maintenance of telomeres in Drosophilids. 

Unlike most eukaryotes, Drosophila species lack a telomerase, therefore an alternative 

mechanism must be in place to ensure continuous replication of chromosomal ends. Notably, 

telomeric repeats in these species consist of arrays of active retroelements (HeT-A, TAHRE and 

TART in D. melanogaster) which continuously retro-transpose head to tail to prevent the 

shortening of chromosome ends (Pardue and DeBaryshe, 2008). In this case, controlled TE 

mobilisation provides an unequivocal advantage to the host genome and can be seen as a 

representative example of host-TE mutualism. Another example can be found in mammalian 

pre-implantation embryogenesis, where a burst in the expression of various TE families has 

been documented (Rodriguez-Terrones and Torres-Padilla, 2018). This TE upregulation is 

concomitant with the activation of zygotic transcription and with the epigenetic reprogramming 

of the embryo, which involves global erasure of repressive marks. Emerging evidence suggests 

that, in this time window, TE expression is not a mere by-product of epigenetic reprogramming 

but instead actively contributes to shape chromatin architecture and totipotency of the embryo 

(J. Yuyang Lu, 2019; Kruse, 2019; Zhang et al., 2019).  

 

TE expression is overall tightly regulated throughout the life of animals and their 

overactivation must be prevented. The arms race of TEs against their host genomes is often at 

an equilibrium, whereby TEs inhabit the host without compromising its survival, as this would 

impair their own propagation, and the host exploits controlled TE expression for cellular 

functions (Cosby et al., 2019). Understanding transposon defence mechanisms is therefore 

primarily important because of their role in safeguarding genomic integrity. Furthermore, it 

advances our understanding of how genomes evolve in response to external cues.   
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I.2 RNA-interference 

 

I.2.1 The discovery of RNAi 

 

The biological phenomenon known as RNA interference (RNAi) is a molecular response to 

double-stranded RNA that modulates the expression of genes or mediates the defence against 

endogenous and exogenous parasitic nucleic acids. RNAi was first discovered in the nematode 

Caenorhabditis elegans by Fire and Mello, who observed that injection of dsRNA in the worm 

elicited potent and specific silencing of the corresponding sequences (Fire et al., 1998). RNAi 

soon emerged as a remarkably conserved mechanism, and not a peculiarity of nematodes, and 

other gene silencing events previously observed in different organisms were recognised as 

manifestations of the same phenomenon (Baulcombe, 1996; Ecker and Davis, 1986; Napoli et 

al., 1990; Romano and Macino, 1992). In fact, small RNAs can trigger gene silencing also in 

mammals without causing any unwanted immune response (Caplen et al., 2001; Elbashir et al., 

2001a). The discovery of RNAi has had enormous consequences on our understanding of how 

gene expression is regulated as well as on how cellular machineries can be harnessed as research 

tools. Over the past two decades, RNAi has unlocked a vast array of possibilities to modulate 

gene expression, thus revolutionising approaches to study gene function and paving the way for 

novel therapeutic applications (Hannon and Rossi, 2004). 

 

I.2.2 The Argonaute protein family 

 

RNAi is widely spread across the plant and animal kingdoms and requires two components: a 

small RNA, which provides the sequence specificity, and an effector protein, which executes 

the silencing. Small RNAs differ in length, protein partners and biogenesis modes and are 

classified accordingly into small-interfering RNAs (siRNAs), microRNAs (miRNAs) and Piwi-

interacting RNAs (piRNAs). While siRNAs and miRNAs are ubiquitous, piRNAs are 

predominantly expressed in animal gonads. The effectors of RNAi belong to the family of 

Argonaute proteins, which are highly conserved and can be found in almost all eukaryotes 

(Meister, 2013), with the notable exception of the budding yeast Saccaromyces cerevisiae 

(Drinnenberg et al., 2009). Argonaute proteins serve as binding modules for the small RNAs, 

which in turn guide them towards their targets. Argonaute proteins act on substrate RNAs either 

directly via their endonuclease activity (hereafter referred to as “slicing”) or indirectly by 

recruiting other effector proteins (Meister, 2013). Structural studies have revealed specific 

domains of the Argonaute family proteins that are necessary to bind small RNAs and to perform 
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slicing (Jinek and Doudna, 2009). The PAZ and the MID domains accommodate the 3’ and 5’ 

end of the small RNA, respectively, leaving the central nucleotides free to base-pair with the 

target (Lingel et al., 2003; Ma et al., 2004; Ma et al., 2005; Parker et al., 2005; Song et al., 

2003; Yan et al., 2003). An un-structured amino-terminus participates to the loading of the 

small RNA while the PIWI domain contains a tetrad of amino acids (DEDX, where X can be 

D or H) that confers the slicing activity to some members of the family (Liu et al., 2004; Meister 

et al., 2004; Nakanishi et al., 2012). Several Argonaute proteins have lost the catalytic activity 

or do not require it for gene silencing (e.g. D. melanogaster Piwi, which will be discussed later) 

(Darricarrere et al., 2013), whilst for others it is the main mode of action (e.g. mammalian 

Ago2) (Liu et al., 2004). The Argonaute family comprises two main clades: AGO proteins, 

which resemble Arabidopsis thaliana AGO1, and PIWI proteins, which are related to D. 

melanogaster Piwi (P-element-induced wimpy testes) (hereafter PIWI will indicate the protein 

clade whereas Piwi will refer to the Drosophila protein). While AGO proteins predominantly 

bind to siRNAs and miRNAs and are ubiquitously expressed, PIWI proteins appear to be mostly 

restricted to the gonads and only load piRNAs. Furthermore, C. elegans possesses an amazingly 

expanded array of 27 Argonaute proteins, most of which belong to a third clade known as 

WAGO and differ significantly from both AGO and PIWI proteins (Yigit et al., 2006; 

Youngman and Claycomb, 2014). 

 

I.2.3 RNAi in Drosophila melanogaster 

 

The genome of D. melanogaster encodes five members of the Argonaute family: two AGO 

proteins (Argonaute-1 [Ago1] and Argonaute-2 [Ago2]) and three PIWI proteins (Piwi, 

Aubergine [Aub] and Argonaute-3 [Ago3]), each bound to a specific subset of small RNAs 

(Brennecke et al., 2007; Czech et al., 2008; Forstemann et al., 2007; Gunawardane et al., 2007; 

Okamura et al., 2008; Tomari et al., 2007). As characteristic of the respective clade, Drosophila 

Ago1 and Ago2 are ubiquitously expressed throughout the fly lifespan, whereas the three PIWIs 

are restricted to the reproductive tissues.  

Ago1 predominantly binds to ~22- to 23-nt long miRNAs originated from long RNA 

polymerase II (pol II) transcripts (pri-miRNAs), which are temporally and spatially regulated 

similarly to protein-coding genes (Kim, 2005). Pri-miRNAs fold into characteristic hairpin 

structures recognised by the nuclear miRNA processing machinery, namely the Microprocessor 

complex, which consists of the RNase III endonuclease Drosha and its cofactor DGCR8, also 

known as Pasha (Denli et al., 2004; Gregory et al., 2004). The Microprocessor cleaves the pri-

miRNA to release an approximately 70-nt long hairpin (pre-miRNA, Figure 1.1A top) which 



 5 

is exported to the cytoplasm by Exportin-5 and RanGTP (Lund et al., 2004). A second 

conserved RNase III-type nuclease, Dicer (Dicer-1 in Drosophila), together with its co-factor 

Loquacious (Loqs), performs the cytoplasmic maturation of pre-miRNAs by cleaving off the 

hairpin loop and releasing a ~22- to 23-nt RNA duplex (Bernstein et al., 2001; Ketting et al., 

2001; Lee et al., 2004; Macrae et al., 2006)(Figure 1.1A, middle). Only one strand of this 

duplex (the “miR” or “guide” strand) is loaded into an Argonaute protein, a decision guided by 

well-defined thermodynamic rules (Czech et al., 2009; Khvorova et al., 2003; Okamura et al., 

2009). The other strand, called “miR*” or “passenger”, is usually degraded (Figure 1.1A 

bottom). Ultimately, the sequence of the mature miRNA that is released from each pri-miRNA 

is determined by the distinctive cleavage patterns of Drosha and Dicer-1 (Park et al., 2011). 

Mature miRNAs loaded into Ago1 constitute an active RNA-induced silencing complex (RISC, 

generally referred to an Argonaute protein in complex with a small RNA). miRNA-RISCs 

typically recognise their targets via imperfect base-pairing which leads to slicer-independent 

mRNA destabilisation (Bagga et al., 2005; Eichhorn et al., 2014; Filipowicz et al., 2008; Liu et 

al., 2005; Rehwinkel et al., 2005). The base-pairing between the miRNA and target transcripts 

engages only the nucleotides between position 2 and 7 of the miRNA, known as the “seed” 

sequence (Lewis et al., 2003; Parker et al., 2005). miRNAs processed from different precursors 

but sharing the same “seed” are grouped into families. Some miRNA families appear to be 

extremely conserved across evolution, such as the let-7 family of key developmental regulators 

(Pasquinelli et al., 2000; Roush and Slack, 2008), further supporting a fundamental regulatory 

role for these small molecules. Altogether, miRNAs act as critical regulators of cellular 

functions by fine-tuning the expression of protein-coding genes at the post-transcriptional level.  

Drosophila Ago2 mainly associates with 21-nt siRNAs, which are processed from long 

dsRNAs arising either from convergent transcriptional units or from genomic loci that contain 

long inverted repeats (Figure 1.1B top). siRNA precursors can originate from endogenous loci 

transcribed into long stem-loops (endo-siRNAs) or from ectopically introduced dsRNAs of 

various lengths (exo-siRNAs). siRNAs are generated via consecutive cleavages of dsRNA 

precursors by Dicer-2 together with its co-factor Loqs-PD, an isoform different from the one 

required in miRNA biogenesis (Czech et al., 2008; Ghildiyal et al., 2008; Kawamura et al., 

2008; Lee et al., 2004; Liu et al., 2003; Okamura et al., 2008; Zhang et al., 2004; Zhou et al., 

2009) (Figure 1.1B middle).   
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Figure 1.1. Simplified model of small RNA biogenesis pathways in Drosophila 
A) Pri-miRNA transcripts are processed into pre-miRNAs by the Microprocessor complex (Drosha and 
DGCR8). Pre-miRNA hairpins are cleaved by Dicer-1 and loaded by Ago1. B) Long dsRNAs are 
cleaved by Dicer-2 into strings of siRNA duplexes, loaded by Ago2. C) Long ssRNA precursors are 
cleaved by Aub or Ago3 during the ping-pong cycle and then consumed by Zuc, resulting in Piwi-loaded 
piRNAs. All small RNA biogenesis pathways produce a functional RNA-induced Silencing Complex 
(RISC, at the bottom). 
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Similarly to miRNAs, siRNA duplexes are asymmetrically loaded into a silencing-competent 

RISC in a process that requires Dicer-2 and the dsRNA-binding protein R2D2 (Liu et al., 2003) 

(Figure 1.1B bottom). However, unlike miRNAs, siRNAs usually bind their target with a 

(near) perfect match and do not possess any seed sequence preferences (Elbashir et al., 2001b; 

Hutvagner and Zamore, 2002). In fact, siRNAs are produced as pools by subsequent Dicer 

cleavages and are not identifiable by a unique sequence nor by families. The perfect match 

between siRNAs and complementary transcripts releases the slicing activity of Ago2, hence 

siRNA silencing happens via substrate cleavage and subsequent degradation (Hutvagner and 

Zamore, 2002; Matranga et al., 2005). Endo-siRNAs in Drosophila mostly target genes and 

transposable elements whereas exo-siRNAs provide an anti-viral defence by targeting 

exogenous viral RNAs (Czech et al., 2008; Ghildiyal et al., 2008; Kawamura et al., 2008; 

Okamura et al., 2008; Wang et al., 2006). 

 

Contrary to microRNAs and siRNAs, the third class of fly small RNAs, piRNAs, follows a 

different and unique biogenesis route, which will be extensively discussed in Chapter I.3 

(Figure 1.1C). Among the main differences with the other small RNA pathways, piRNA 

production does not involve any dsRNA intermediate nor structured transcript. Secondly, 

Argonaute PIWI proteins are directly involved in a self-amplification loop that can trigger and 

sustain piRNA production. Thirdly, piRNA biogenesis only initiates after precursor RNAs 

leave the nucleus and requires a wide range of factors, some of which share a conserved 

mitochondrial localisation. 

 

The extensive characterisation of the molecular mechanisms underlying small RNA production 

and silencing activity has been fundamental to enable their exploitation as research tools. 

Notably, artificial expression of both miRNAs and siRNAs is now routinely used to down-

regulate the expression of genes and infer their function. The introduction of RNAi as a research 

tool has paved the way to genome-wide loss-of-function genetic screens (Boutros and Ahringer, 

2008), which have uncovered key players of the most diverse cellular processes and aided drug 

discovery. The RNAi toolkit available to Drosophila geneticists is quite remarkable and 

includes several strategies to achieve down-regulation of any gene of interest in the desired 

tissue. A first generation of transgenic fly lines has been built by the Institute of Molecular 

Biotechnology of the Austrian Academy of Sciences (IMBA) and by the Drosophila Transgenic 

RNAi Project (TRiP) at Harvard Medical School and is based on long dsRNAs (Dietzl et al., 

2007; Ni et al., 2009; Ni et al., 2008; Perkins et al., 2015). These collections contain genome-

wide libraries of extended inverted repeats that are transcribed into ~300 to 500 nt long double-
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stranded RNAs recognised by the endogenous siRNA processing machinery. Such strategy 

achieved successful knockdowns in somatic tissues, but proved less effective in the germline 

(Ni et al., 2011). Subsequent strategies involved a short hairpin (shRNA) structure mimicking 

a miRNA precursor which is efficiently processed by the Microprocessor complex and gives 

rise to potent sequence-specific silencers (Ni et al., 2011). A different vector design combined 

with the over-expression of Dicer-2 have enabled knockdowns also in the fly germline (Wang 

and Elgin, 2011). The advancements in target prediction algorithms allow efficient design of 

shRNAs against any desired gene, thus constituting an extremely powerful resource to study 

gene function.  

 

I.3 Piwi-interacting RNAs: guardians of the genome 

 

piRNAs are the third class of animal small RNAs and are generally defined by their length (23-

30nt) and association with PIWI clade Argonaute proteins. In flies, piRNAs constitute the core 

of a germline-specific molecular system that counteracts TE mobilisation: the piRNA pathway. 

TEs mobilise frequently in the germline, where they have lower chances of immediately 

affecting the host fitness while increasing their probability of propagating vertically across 

generations. However, from the host perspective, TE propagation in the germline is most 

catastrophic, since genomic information must be faithfully transmitted to offspring. Hence, the 

piRNA pathway is in place to safeguard the genomic integrity of germ cells. piRNAs can be 

found across the animal kingdom, from Cnidarians to humans (Aravin et al., 2006; Brennecke 

et al., 2007; Gainetdinov et al., 2018; Houwing et al., 2007) and, in most organisms in which 

they have been studied, failure in the piRNA pathway causes sterility. Nonetheless, piRNAs 

are also found in the somatic tissues of many animals. An example of this is the arthropod 

phylum, whose phylogenetic analysis shows that the last common ancestor likely had piRNAs 

in both somatic and gonadal tissues (Lewis et al., 2018). Most of the studied arthropods still 

possess both but a few have lost somatic piRNAs, as is the case in D. melanogaster. The 

nematode C. elegans does not have a direct correspondent of the fly piRNA pathway, but does 

recapitulate some of its features in various small RNA pathways. Nematode piRNAs are 

therefore mainly defined by their size profile and association with PIWI-clade Argonautes 

(Almeida et al., 2018). PRG-1 is a worm PIWI protein that binds to 21U RNAs and has been 

historically referred to as the piRNA pathway in C.elegans. PRG-1 is expressed in germ cells 

and mutants for this gene show progressive fertility defects across generations (Wang and 

Reinke, 2008). Mammalian piRNAs are mostly restricted to male gonads and mutants in murine 

PIWI homologs fail to complete spermatogenesis. Despite some components of the piRNA 
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pathway being detected in the brain of flies and mice (Ross et al., 2014), there is yet no clear 

evidence that a fully functional pathway exists in those tissues. Although the specificity to the 

germline cannot be invoked as a universal feature of the piRNA pathway, there are many 

examples beyond the fruit fly where piRNA-mediated genome defence is inextricably linked to 

the ability to generate offspring. Throughout this thesis, I will primarily discuss the function of 

piRNAs in relation to transposon control in the germline of D. melanogaster. 

 

The piRNA pathway is an example of the arms race between transposons and their host genome. 

The system has evolved to be flexible and easily adaptable to new transposon challenges, and 

in fact signs of positive selection can be found in many of the involved genes. For instance, 

several Drosophila genes involved in piRNA precursor transcription appear to be evolving fast, 

leading to functional incompatibilities between proteins of two species as closely related as D. 

melanogaster and D. simulans (Parhad et al., 2017). Furthermore, inter-species hybrids between 

D. simulans and D. melanogaster phenocopy mutations in the piRNA pathway (Kelleher et al., 

2012). Although no evidence of transposon mechanisms that evade silencing has been found 

yet, it is hypothesized that the quick evolutionary pace of fly piRNA pathway genes depends 

on the selective pressure posed by transposon mobilisation. Notably, the piRNA pathway is 

often described as a “molecular immune system” because of two of its features: firstly, it can 

detect and neutralise non-self, unwanted nucleic acids; secondly, it comprises an innate and an 

adaptive branch, like mammalian systemic immunity. The two branches cooperate to dampen 

the activity of transposons that are already present within the genome (“innate immunity”) but 

also of new invading elements, which are rapidly recognised and integrated into the silencing 

process (“adaptive immunity”), though the latter is much less understood. 

 

The piRNA pathway has been extensively characterised in D. melanogaster, where it 

predominantly acts in the ovary. PIWI proteins are also expressed in testes, but their role in this 

tissue has not been deeply investigated (Nagao et al., 2010). A female fruit fly has two ovaries, 

each comprising approximately 18 ovarioles. The ovariole represents the functional unit of the 

ovary and consists of a series of interconnected egg chambers, each stemming from a few stem 

cells and ultimately giving rise to a mature egg (Bastock and St Johnston, 2008) (Figure 1.2). 

At the anterior tip of the ovariole lies the germarium (Figure 1.2, left), which contains a pool 

of actively dividing germline stem cells (GSCs) that bud off into individual egg chambers. Egg 

chambers move towards the posterior pole as they undergo maturation, with the mature egg at 

the posterior tip of the ovariole (Figure 1.2, right). At the inside of each egg chamber is a 

syncytium of germline cells, one of which will become the egg (also known as oocyte) while 
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the others (called nurse cells) will remain connected through cytoplasmic bridges and provide 

nutrients, proteins and mRNAs, many of which are deposited in the developing oocyte. Each 

egg chamber is enclosed by a layer of epithelial “follicle cells”, of somatic origin, which also 

support oocyte development and form the egg shell and the extra-embryonic dorsal appendages. 

One key process occurring during oogenesis is the establishment of the Anterior-Posterior axis 

of the oocyte, which in turn determines the body axes of the embryo. This axis is mainly 

established via asymmetric deposition in the oocyte of key mRNAs required for embryonic 

patterning. Overall, an intricate signalling network between soma and germline and between 

different populations of somatic cells sustains ovarian development and oocyte pattern 

formation (Bastock and St Johnston, 2008; Roth and Lynch, 2009). The piRNA pathway 

operates in both compartments of the ovary, although some features are specific to either nurse 

or follicle cells (Li et al., 2009a; Malone et al., 2009). 

 

The three PIWI-clade Argonaute proteins expressed in the Drosophila ovary (Piwi, Aub and 

Ago3) differ in their subcellular localisation, tissue specificity and small RNA partners 

(Brennecke et al., 2007). Piwi is predominantly localised to the nuclei and is expressed in both 

germline and somatic cells (Cox et al., 2000). Piwi is also detectable in the cytosol of the 

developing oocyte with a slight enrichment at the posterior pole, where the germline of the 

future embryo will form (Brennecke et al., 2007; Brennecke et al., 2008). Piwi binds to piRNAs 

that are on average 25 nt long, have a pronounced bias for a uridine at their 5’ end (namely, 

“1U bias”) and are mostly in antisense orientation to transposon sequences. On the other hand, 

Aub and Ago3 are present exclusively in germ cells, where they localise to peri-nuclear, ring-

like structures known as “nuage” (Harris and Macdonald, 2001; Lim and Kai, 2007). Aub, but 

not Ago3, also accumulates at the posterior pole of the egg (Brennecke et al., 2007; Brennecke 

et al., 2008). Both of them bind to piRNAs that are slightly shorter than Piwi’s (on average 24 

nt) but only Aub piRNAs show the same preference for a uridine at position 1. This sequence 

bias is absent from the piRNA population bound to Ago3, which instead is enriched for adenine 

at position 10. Finally, Aub and Ago3 preferentially incorporate piRNAs that match the 

antisense and sense sequence of transposable elements, respectively.  
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Figure 1.2. The fly ovary 
Cartoon of a Drosophila ovariole with somatic cells in blue and germline cells in grey. Modified from 
(Handler et al., 2013) 
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I.3.1 piRNA biogenesis 

 

The biogenesis of piRNAs is fundamentally different from that of other classes of small RNAs. 

The main features of piRNA biogenesis stem directly from the necessity of regulating 

transposons, which are a diverse pool and rapidly evolving. For instance, the piRNA pathway 

targets a wide range of transposon families with variable sequence content, therefore it cannot 

rely on discrete small RNA guides of a fixed sequence. This is substantially different from 

miRNAs, whose activity is directed towards well-defined targets and for which sequence 

changes would profoundly alter target specificity. Hence, unlike miRNAs, piRNAs cannot be 

collapsed to well-defined sequences nor be classified as families sharing the same seed. 

Furthermore, whenever a novel transposon invades the germline, the piRNA pathway must 

rapidly integrate it into the system and produce piRNAs against it. As a consequence, piRNA 

precursors (namely piRNA cluster transcripts) must have the capability to accommodate new 

transposon sequences while still retaining the ability to be recognised and processed. However, 

the molecular details of this process remain obscure. 

 

piRNAs are typically produced as “pools” against the whole sequence of a TE transcript. This 

fuels PIWI proteins with a large reservoir of transposon-targeting small RNA guides that mount 

a robust silencing response (Han et al., 2015; Homolka et al., 2015; Mohn et al., 2015; Senti et 

al., 2015). Furthermore, PIWI proteins themselves sustain a feed forward amplification loop 

that produces more piRNAs against active elements (Brennecke et al., 2007; Gunawardane et 

al., 2007). Although different species adopt slightly dissimilar amplification methods, sequence 

diversification and signal amplification constitute a unifying feature of most known piRNA 

pathways. Fly piRNA biogenesis can be divided into two interconnected branches, each relying 

on a separate subset of proteins. While initially considered independent and dubbed “primary” 

and “secondary” biogenesis, recent work has shown that these two routes are indeed tightly 

interconnected (Han et al., 2015; Homolka et al., 2015; Mohn et al., 2015; Senti et al., 2015). 

Notably, piRNA biogenesis is orchestrated in a way that, if one branch fails, the other will try 

to compensate (Hayashi et al., 2016), further underlining the importance of effective piRNA 

production in the germline.  

 

A first difference with other small RNA production pathways lies in the nature of piRNA 

precursor transcripts, which arise from discrete genomic loci known as “piRNA clusters”. The 

products of piRNA clusters can range from a few to hundreds of kilobases (kb), although the 

precise size has not been determined yet, do not form characteristic secondary structures (e.g. 
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the hairpins of pri-miRNAs or the long dsRNA of siRNA precursors; compare Figure 1.1 A-

C, top) and are processed as single-stranded RNAs (ssRNAs) (Figure 1.1C). The recognition 

of a piRNA precursor does not appear to depend on genetically-encoded features that are 

universally shared among all piRNA precursors, such as secondary structures or sequence 

motifs. Secondly, processing of ssRNA precursors starts after they have left the nucleus and 

mostly occurs on the surface of mitochondria, a very conserved feature in all animals in which 

piRNA biogenesis has been characterised thus far. Thirdly, piRNA biogenesis requires a large 

number of factors (Olivieri et al., 2012), is independent from Dicer proteins (Vagin et al., 2006) 

and, most importantly, involves Argonaute proteins themselves (Brennecke et al., 2007; 

Gunawardane et al., 2007). Therefore, PIWI-clade Argonautes are not only the effectors of 

RNAi but can also participate directly to the production of the small RNAs they associate with. 

 

It has recently become apparent that piRNA production in Drosophilids is deeply connected 

with heterochromatin biology. Eukaryotic DNA is wrapped around histone proteins to form a 

higher-order structure called chromatin, which regulates the accessibility of the genetic 

information. Chromatin is classified into two different states, based on its cytological staining 

properties using basophilic aniline dyes and compaction levels: euchromatin, which appears 

loosely packed and weakly stained, and heterochromatin, which instead appears more 

compacted and strongly stained (Heitz, 1928; Kouzarides, 2007; Trojer and Reinberg, 2007). 

Euchromatin is typically associated with gene-rich, transcriptionally active genomic regions, 

preferentially located at the interior of the nucleus. Hallmarks of euchromatin are high levels 

of RNA pol II, Histone 3 Lysine 4 tri-methylation (H3K4me3) and histone acetylation 

(Kouzarides, 2007). Contrastingly, heterochromatin predominantly encompasses areas that 

contain fewer genes but are rich in repetitive sequences and is often found at the nuclear 

periphery. Heterochromatin is generally hypo-acetylated and can be further classified into 

constitutive heterochromatin, marked by H3K9me2/me3 and mostly covering centromeres, 

telomeres as well as other highly repetitive regions, and facultative heterochromatin, marked 

by H3K27me3 and often associated with developmentally regulated loci (Trojer and Reinberg, 

2007; Wang et al., 2016). Although historically considered as a transcriptionally inert domain, 

heterochromatin has emerged to be dynamically regulated and active (Grewal and Jia, 2007; 

Wang et al., 2016), although often it does not follow the same rules of euchromatic regions. As 

will be discussed in the following paragraphs, flies have evolved a mechanism involving several 

factors not found outside Drosophilids that allows specific transcription from within 

heterochromatin and export of resulting RNA precursors. 
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I.3.1.1 Uni-strand piRNA clusters 

 

piRNA clusters are discrete genomic loci that encode for the vast majority of piRNA precursor 

molecules. These loci are predominantly composed of inactive transposon copies and fragments 

rearranged in various orientations. Whenever a transposon sequence is inserted into a piRNA 

cluster, it can act in trans to silence other copies throughout the genome (Muerdter et al., 2012). 

Hence, these loci encode a genomic long-term memory of past transposon challenges and are 

fundamental components of an “innate”, genetically-encoded immunity against TEs 

(Brennecke et al., 2007). piRNA clusters in Drosophila can be divided into two groups 

primarily based on their mode of transcription: uni-strand clusters and dual-strand clusters. Uni-

strand clusters give rise to piRNAs from only one genomic strand and seem to be the default 

type of clusters in most species (Goriaux et al., 2014; Li et al., 2013). Only two uni-strand 

clusters exist in D. melanogaster: cluster 20A and flamenco (flam), the latter being expressed 

exclusively in somatic follicle cells. Unlike dual-strand clusters, fly uni-strand loci resemble 

canonical RNA pol II transcriptional units in which they possess promoter regions marked by 

H3K4me3 and their transcripts undergo canonical mRNA processing, including capping, 

splicing and poly-adenylation (Goriaux et al., 2014). This allows their export via the canonical 

Nxf1(sbr)/Nxt1 pathway, which only acts on correctly processed transcripts (Dennis et al., 

2016; Dennis et al., 2013; Goriaux et al., 2014; Kohler and Hurt, 2007; Zanni et al., 2013).  

 

Mice and humans possess similar uni-strand clusters bearing the features of RNA pol II-

transcribed genes that are predominantly expressed during the pachytene stage of male meiosis. 

Although some of their promoters can initiate divergent transcription, these clusters are still 

considered as “uni-strand” because the resulting transcripts do not overlap. Intriguingly, all 

these meiotic piRNA clusters are controlled by one conserved transcription factor, namely A-

MYB (Li et al., 2013; Ozata et al., 2020). Since A-MYB promotes its own expression as well 

as that of several proteins participating to the piRNA pathway and that of piRNA clusters, its 

activation generates a feed-forward loop that sustains piRNA production during 

spermatogenesis. No such “master regulator” has been identified in flies thus far. Nematode 

clusters differ from flies and mammals, though they can still be classified as “uni-strand”, 

strictly speaking. In C. elegans, 21U RNAs, which bind to the PIWI-clade Argonaute PRG-1, 

originate from very short transcription units clustered on two regions of chromosome IV. These 

clusters are driven by a conserved sequence motif (the “Ruby motif”), bound by Forkhead 

transcription factors, and are transcribed by RNA pol II with the aid of some specialised factors 

(Weick and Miska, 2014; Almeida et al., 2019). Notably, these piRNA precursor molecules are 
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only ~26nt long, have a conventional 5’ cap but do not possess a 3’ poly-A tail. Processing of 

their 5’ end, including removal of the cap, enables loading into PRG-1, which is followed by 

resection of their 3’ end up to their mature size of 21 nt by the exonuclease PARN-1.  

  

Flam is the main source of piRNAs in fly somatic cells and was genetically characterized in the 

1990s (before piRNAs were discovered), as the master regulator of gypsy retroelements (Figure 

1.3A) (Desset et al., 2008; Mevel-Ninio et al., 2007; Pelisson et al., 1994; Prud'homme et al., 

1995; Sarot et al., 2004). Gypsy is one of the few retroviruses active in flies (Kim et al., 1994) 

and, in permissive strains carrying deficiencies in flam, it can assemble into viral-like particles 

that are capable of infecting the oocyte, leading to catastrophic effects on germline development 

(Lecher et al., 1997; Pelisson et al., 1994). In fact, flies carrying mutations that disrupt flam 

only develop rudimentary ovaries (Mevel-Ninio et al., 2007). Flam is located on the peri-

centromeric heterochromatin of chromosome X and carries several remarkable features. Firstly, 

the locus is entirely covered by the repressive mark H3K9me3, deposited by the methyl-

transferase dSETDB1/Eggless (Egg) (Rangan et al., 2011). Lack of H3K9me3 deposition 

abolishes piRNA production from flam, implying a role for this mark in cluster definition 

(Rangan et al., 2011). Secondly, flam appears to produce an unusually long transcript of at least 

180 kb, which is well above the average transcript length of fly genes (3,058 bp) (Adams et al., 

2000) and that of some of the longest processed transcripts in flies (e.g. ~58 kb of sls mRNA). 

Due to the poor mappability of this highly repetitive locus, we cannot presently rule out that 

flam transcription encompasses the entire ~650 kb of transposon-rich heterochromatin 

downstream of the DIP1 gene. Whether a locus-specific mechanism sustains RNA pol II 

elongation to produce such a long RNA has not been investigated yet. Thirdly, like all piRNA 

clusters flam is entirely composed of transposon fragments, mostly gypsy family elements and 

other somatic transposons (that include gypsy itself, ZAM, idefix, mdg1 and Stalker). However, 

nearly all transposon insertions within the flam locus are located on the minus strand, meaning 

that all piRNAs produced from this cluster will be antisense to active TEs (Brennecke et al., 

2007; Zanni et al., 2013). This peculiar feature raises the question of how such sequence 

arrangement has evolved and whether the locus acts somehow as a strand-specific “trap” for 

active elements. The flam locus bears a canonical RNA pol II promoter whose expression was 

reported to be activated by the transcription factor Cubitus interruptus (ci) (Goriaux et al., 

2014). The resulting transcript is capped, (alternatively) spliced and poly-adenylated. The 

splicing events occurring close to the 5’ end recruit the Nxf1/Nxt1 heterodimer, which mediates 

export of flam transcripts   
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Figure 1.3. piRNA clusters are major piRNA source loci 
A) Flam, the major uni-strand piRNA cluster in Drosophila, encompasses up to 600 kb of peri-
centromeric heterochromatin and is transcribed by RNA pol II. It features a canonical promoter marked 
by H3K4me3, whilst the body of the cluster is decorated by H3K9me3. The vast majority of transposon 
fragments within the cluster are inserted in an antisense orientation. B) Dual-strand piRNA clusters 
(exemplified by 42AB) are decorated by H3K9me3 and are expressed via a specialised machinery. The 
RDC (Rhino-Deadlock-Cutoff) complex licenses the clusters and recruits Moon, which in turn triggers 
non-canonical transcription via pol II. Export of these transcripts relies on UAP56, Boot, Nxf3 and Nxt1. 
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out of the nucleus, via the same route followed by mRNAs (Dennis et al., 2016). Exported flam 

transcripts accumulate in peri-nuclear foci (namely, flam bodies or Dot COM), which are 

adjacent to and partially overlapping with Yb bodies (Dennis et al., 2013; Murota et al., 2014). 

The transcript seems to localise asymmetrically within these foci, with the 5’ end anchored to 

the nuclear lamina and the remainder of the RNA protruding towards the Yb bodies (Sokolova 

et al., 2019). Recent work has established a link between the Yb bodies and flam export (Dennis 

et al., 2019; Hirakata et al., 2019; Sokolova et al., 2019), although a detailed molecular 

understanding of this specificity remains unknown. 

 

I.3.1.2 Dual-strand piRNA clusters 

 

Dual-strand piRNA clusters are the major source of piRNAs in Drosophila germ cells and are 

defined by the production of piRNAs from both genomic strands (Figure 1.3B). Dual-strand 

transcription of small RNA precursors is not unique to Drosophilids and is found for instance 

in yeast and ciliates, where it produces dsRNA substrates for Dicer cleavage (Holoch and 

Moazed, 2015; Noto and Mochizuki, 2017). In other cases, such as plants, nematodes and yeast, 

a double-stranded intermediate is produced by RNA-dependent RNA polymerases (RdRPs) 

(Holoch and Moazed, 2015; Almeida et al. 2019) acting on ssRNA targets. In contrast with 

other small RNA pathways, flies rely neither on RdRPs to produce dsRNA precursors nor on 

Dicer proteins to process them. Nonetheless, dual-strand transcription has a prominent role in 

licensing piRNA fly precursors and this occurs via a dedicated molecular machinery. Unlike 

uni-strand clusters, small RNAs originating from dual-strand precursors can base-pair with the 

original transcript. This property provides the basis for a positive feedback loop that specifies 

the cluster as such and at the same time enables production of additional small RNAs (Holoch 

and Moazed, 2015; Ozata et al., 2019).  

 

Drosophila dual-strand clusters are embedded in heterochromatic regions of the genome and 

are decorated by H3K9me3 (Mohn et al., 2014; Rangan et al., 2011), an environment which is 

typically associated with repeat-rich, highly compacted and often transcriptionally inert areas 

(Wang et al., 2016). Furthermore, dual-strand clusters lack canonical RNA pol II promoters 

marked by H3K4me3. Nonetheless, they are actively transcribed by RNA pol II, thanks to an 

extremely specialised machinery that licenses their transcription and export outside of the 

nucleus. It is interesting to note that key genes involved in dual-strand cluster biology are 

unique to Drosophilids and have undergone strong positive selection, likely due to the selective 

pressure of TE mobilisation (Parhad et al., 2017; Vermaak et al., 2005). A similar intriguing 
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connection between heterochromatin biology and transcription of small RNA precursors can 

also be found in plants and fission yeast. In S. pombe, heterochromatic centromeric repeats are 

transcribed into dual-strand precursors that can be processed by Dicer. This transcription does 

not seem to rely on a specialised machinery but rather exploits global chromatin de-

condensation during G1/S phase of the cell cycle (Chen et al., 2008). On the other hand, plant 

small RNA precursors are transcribed from heterochromatic loci by RNA polymerase IV (pol 

IV), which is recruited by the H3K9me reader SHH1 (Holoch and Moazed, 2015). Small RNAs 

originating from these loci help maintaining the heterochromatic marks, which in turn recruit 

more SHH1 and pol IV. A similar positive feedback loop ensures continuous dual-strand cluster 

licensing and processing in Drosophila. 

 

The specification of dual-strand piRNA cluster loci and transcript licensing centre on 

HP1D/Rhino (hereafter referred to as Rhi), a germline-specific homolog of the ubiquitous 

Heterochromatin Protein 1A (HP1A) (Klattenhoff et al., 2009; Vermaak et al., 2005; Vermaak 

and Malik, 2009; Zhang et al., 2014b). Like all members of the HP1 family, Rhi has an amino-

terminal chromodomain, responsible for binding to H3K9me3 (Bannister et al., 2001; Lachner 

et al., 2001), a central hinge region, and a carboxy-terminal chromoshadow domain, that 

typically mediates homo- and hetero-dimerization (Vermaak and Malik, 2009). Rhi has some 

unique features compared to the other HP1 paralogs in Drosophila (HP1A, B, C and E). It is 

exclusively expressed in the germline and localises to discrete nuclear foci within 

heterochromatin (Klattenhoff et al., 2009; Mohn et al., 2014; Vermaak et al., 2005; Zhang et 

al., 2014b). The amino acid sequence of Rhi shows strong signs of positive selection and thus 

appears to be evolving at an unusually fast pace. This is especially true in its hinge region, 

which cannot be uniquely aligned between different Drosophila species groups (Vermaak et 

al., 2005). Because of these peculiar characteristics, it had been suggested that Rhi is involved 

in the genetic conflict against transposable elements (Vermaak et al., 2005). In fact, Rhi is a 

fundamental player of piRNA-mediated genome defence, since its binding to H3K9me3 is 

necessary and sufficient to identify a certain locus as a dual-strand piRNA cluster (Klattenhoff 

et al., 2009; Mohn et al., 2014; Vermaak et al., 2005; Zhang et al., 2014b). Despite 

heterochromatin representing up to 20% of the fly genome (Hoskins et al., 2002), Rhi is only 

present at very discrete genomic loci (making up ~1-2% of the genome) (Mohn et al., 2014), 

but what drives this specificity remains a mystery. 

 

Rhi is the chromatin-bound core component of a multi-protein complex (namely RDC complex, 

Figure 1.3B), which also includes Deadlock (Del) and Cutoff (Cuff) (Chen et al., 2016; Le 
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Thomas et al., 2014; Mohn et al., 2014; Pane et al., 2011; Zhang et al., 2014b). Within RDC, 

Del appears to function as an adaptor protein recruiting other effectors to Rhi foci. Notably, D. 

simulans Del has been shown to be functionally incompatible with D. melanogaster Rhi, and 

vice-versa, providing another example of the rapid evolutionary turnover of these genes 

(Daugherty and Malik, 2012; Parhad et al., 2017; Yu et al., 2018). A critical effector brought 

to dual strand clusters via RDC is Moonshiner (Moon), an ovary-specific paralog of the 

canonical RNA pol II initiation factor TFIIA-L (Andersen et al., 2017). Moon interacts with 

Del and in turn recruits the TATA-box binding protein-related factor 2 (TRF-2) to dual-strand 

cluster loci, thus allowing RNA pol II transcription initiation within those inaccessible 

heterochromatic loci that lack canonical promoters. Transcription initiation driven by Moon 

can occur from any pyrimidine/purine (YR) dinucleotide within the piRNA cluster and is not 

biased to either genomic strand, thus explaining the bi-directionality of these clusters (Andersen 

et al., 2017). The peculiarities of dual-strand piRNA clusters do not end at transcription 

initiation, as they give rise to ‘non-canonical’ transcripts that are capped but neither undergo 

splicing nor polyadenylation. Cap, splicing and poly-A tails are three hallmarks of correctly 

processed RNA pol II transcripts that are export-competent, hence their lack typically leads to 

RNA clearance via nuclear surveillance systems (Tutucci and Stutz, 2011). However, dual-

strand clusters evade nuclear decay mechanisms via yet another specialised protein complex 

recruited by Del: Nxf3, Nxt1 and Bootlegger (Boot) (ElMaghraby et al., 2019; Kneuss et al., 

2019) (Figure 1.3B). Nxf3 is a homolog of the general mRNA export factor Nxf1 and has been 

co-opted to escort non-canonical piRNA precursor transcripts out of the nucleus, escaping the 

canonical RNA quality-control pathways. Nxt1 binds to the NTF2 fold of NXF family proteins, 

such as Nxf1 and Nxf3, and, at least in the case of Nxf1, mediates their interaction with the 

nuclear pore complex (NPC) (Braun et al., 2001; Fribourg et al., 2001). Boot lacks readily 

identifiable domains and interacts with Del, thus bridging the Nxf3-driven export complex to 

Rhi-bound loci (ElMaghraby et al., 2019; Kneuss et al., 2019). Export of dual-strand piRNA 

clusters also relies on other ubiquitous factors of the mRNA export machinery, such as the 

DEAD-box helicase UAP56 and the THO complex (Zhang et al., 2012; Zhang et al., 2018a). 

Interestingly, all these proteins display the same punctate localisation to Rhi foci within nurse 

cell nuclei. The third component of RDC, Cuff, is a homolog of the yeast de-capping factor 

Rai1 (Pane et al., 2011) and is also recruited via Del. Cuff is thought to perform various 

functions, such as cap binding to shield nascent transcripts from the degradation machinery, 

suppressing the recruitment of the cleavage and poly-adenylation complex as well as that of the 

TREX complex (Chen et al., 2016; Mohn et al., 2014; Pane et al., 2011; Zhang et al., 2012; 

Zhang et al., 2014b). It is noteworthy that the stunning specialisation of the dual-strand cluster 
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transcription machinery has often been achieved via repurposing paralogs of genes involved in 

other cellular pathways. Strikingly, Rhi, Cuff, Moon and Nxf3 are all related to proteins 

involved in the canonical mRNA transcription and export processes but have specialised to 

allow licensing of heterochromatic sites otherwise inaccessible. 

 

Mutants in RDC components are unable to produce piRNAs from dual-strand clusters. 

Nonetheless, in these mutant backgrounds another class of ectopic piRNAs coming from 

mRNAs becomes apparent (Mohn et al., 2015). Studies in Ovarian Somatic Cells (OSCs), a 

cell line derived from the somatic cells of the ovary that possesses a functional piRNA pathway 

(Niki et al., 2006; Saito et al., 2009), have also identified this additional class of piRNA 

precursors. In fact, a fraction of somatic piRNAs derives from the 3’UTR of protein-coding 

genes, among which the most abundant is traffic-jam (tj) (Robine et al., 2009; Saito et al., 2009). 

Interestingly, piRNA production from protein-coding genes does not seem to correlate with 

their expression levels, implying that this is not a spurious processing of abundant transcripts 

but instead is somehow regulated. A sequence in the 3’UTR of tj has been implicated in 

triggering piRNA production (Ishizu et al., 2015), however, no systematic studies have been 

performed to generalise this finding to other transcripts. Furthermore, these so-called “genic 

piRNAs” are not complementary to transposable elements, therefore leaving open the question 

of their functional role. Production of piRNAs from the 3’UTR of coding transcript has been 

reported in other animals, such as mouse, but their function remains equally mysterious (Robine 

et al., 2009). 

 

I.3.1.3 piRNA precursor specification 

 

Recognising self- from non-self nucleic acids and selecting the correct substrates for piRNA 

production is a task of greatest importance. Studies so far have failed to identify one secondary 

structure or sequence motif that is shared among all piRNA precursors and could explain their 

recognition via a unified mechanism. One can reason that a conserved, genetically-encoded 

feature within piRNA clusters can easily be disrupted by novel transposon insertions and is 

therefore unlikely to be an evolutionarily successful strategy. Even though theoretically any 

cellular transcript can be processed into piRNAs, promiscuous processing is relatively rare, 

which implies that a selection step operates somewhere within the piRNA system. Trigger 

sequences able to drive piRNA production from reporters have been identified for flam and tj 

(Homolka et al., 2015; Ishizu et al., 2015; Pandey et al., 2017). However, these signals do not 
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seem to be present in other piRNA source loci such as 20A or dual-strand clusters, suggesting 

that they might be locus-specific features.  

 

The cell’s ability to distinguish piRNA precursors from other cellular transcripts can be partly 

explained by their preferential localisation to specialised peri-nuclear, electron-dense 

structures: the nuage (in germ cells) and the Yb bodies (in somatic cells) (Figure 1.4). The 

nuage is a ring-like structure surrounding nurse cell nuclei that is marked by the presence of the 

PIWI proteins Aub and Ago3 and the germline-specific DEAD-box helicase Vasa (Hay et al., 

1990; Lasko and Ashburner, 1990; Liang et al., 1994; Lim and Kai, 2007; Malone et al., 2009). 

Interestingly, Vasa accumulates in foci on the cytoplasmic side of the nuclear envelope that 

directly face nuclear foci of UAP56, Nxf3 and Boot (where cluster transcripts are exported) and 

overlaps with the cytosolic foci of Nxf3 and Boot (ElMaghraby et al., 2019; Kneuss et al., 2019; 

Zhang et al., 2012). It is noteworthy that mutants for dual-strand cluster factors disrupt Aub and 

Ago3 localisation to nuage (Czech et al., 2013; Klattenhoff et al., 2009; Pane et al., 2011; Zhang 

et al., 2012), implying a direct link between cluster transcription and export and nuage 

assembly. The somatic Yb bodies are instead named after their main component, the DEAD 

box helicase Yb, and are adjacent to the flam bodies (Ishizu et al., 2015; King et al., 2001; 

Murota et al., 2014; Qi et al., 2011; Saito et al., 2010; Szakmary et al., 2009). Similarly to 

nuage, perturbations of flam transcription and export impair the formation of Yb bodies (see 

Chapter IV) (Dennis et al., 2016). The importance of correct subcellular localisation of piRNA 

precursors is confirmed by the fact that tethering of artificial reporter transcripts to nuage/Yb 

bodies components is sufficient to induce processing into bona-fide piRNAs (Pandey et al., 

2017; Rogers et al., 2017). Phase-separated granules of RNA and protein are also found in many 

small RNA pathways and likely improve the efficiency of the associated molecular processes. 

Examples of this are nuage in mice and zebrafish germ cells and P granules in worms (Ozata et 

al. 2019). 

 

The molecular mechanism that links precursor localisation to piRNA production has been 

mostly elucidated in nuage (Figure 1.4, left). Here, Aub and Ago3 in complex with a piRNA 

are thought to scan all transcripts leaving the nucleus, cleaving any with complementary 

sequence (Han et al., 2015; Mohn et al., 2015; Senti et al., 2015; Wang et al., 2015). In this 

way, when a transposable element is actively transcribed and exported through the nuclear 

envelope, it can be readily identified by a complementary piRNA. Similarly, cluster transcripts 

can be immediately recognised via sequence complementarity. This base-pairing triggers the 

slicing activity of target-engaged PIWI proteins (Aub and Ago3) that cleave the transcript and 
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release 3’ products carrying a monophosphate at their 5’ end (5’-P). Generation of a 5’-P 

intermediate seems to be the first step of nearly all piRNA production routes, since only 5’-P 

RNAs can be bound by PIWI proteins. The so-called “ping-pong” looping centred on PIWI 

proteins operates this initial cleavage in mice and flies, and likely in most animals showing a 

ping-pong signature, which will be discussed later. An exception to this is C.elegans, where the 

mechanism removing the 5’ cap from 21-U precursor RNAs to produce 5’-P intermediates is 

not yet fully clarified (Ozata et al., 2019). 

 

Aub- and Ago3-mediated target slicing has two consequences: first, transposon mRNAs are 

cleaved and therefore neutralised immediately after leaving the nucleus (Brennecke et al., 2007; 

Gunawardane et al., 2007). Second, the 5’-P RNA fragment is consumed in the production of 

more piRNAs via the ping-pong cycle and the mitochondrial biogenesis machinery, both 

discussed later (Brennecke et al., 2007; Gunawardane et al., 2007; Han et al., 2015; Homolka 

et al., 2015; Mohn et al., 2015). This specification mechanism has the substantial advantage 

that anything partially complementary to an Aub-/Ago3-bound piRNA can be recognised and 

cleaved. Since transposon sequences are largely repetitive and fast evolving, this confers the 

ability to target even a new invading element that has not yet integrated into a piRNA cluster 

but carries sufficient sequence complementarity to a pre-existing one. The active element itself 

can become a substrate for further piRNA production, thus reinforcing the silencing response. 

This can be defined as an “adaptive” branch of piRNA-mediated immunity, because it can 

identify unknown non-self sequences and mount a silencing response against them. Precursor 

specification in somatic cells is still poorly understood (Figure 1.4, right). Although recent 

work (including that described in Chapter IV) has assigned a pivotal role to Yb, the molecular 

mechanisms are still largely unclear (Hirakata et al., 2019; Ishizu et al., 2015; Ishizu et al., 

2019; Pandey et al., 2017). Since somatic cells lack Aub and Ago3 (Saito et al., 2009), and 

Piwi’s catalytic activity is dispensable for transposon silencing in these cells (Darricarrere et 

al., 2013; Saito et al., 2010; Sienski et al., 2012), PIWI-mediated precursor slicing cannot 

explain substrate selection in this compartment of the ovary. It is likely that 5’-P RNA 

intermediates are equally present in Yb bodies but are generated via a slicing-independent 

mechanism, for example by a yet to be identified endonuclease. Since flam is the predominant 

source of somatic piRNAs, one can hypothesize that a distinct specification mechanism has 

evolved to enable processing of this unique gene.   
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Figure 1.4.  Precursor specification in nuage/Yb bodies 
Long, single-stranded piRNA precursors are specified for piRNA biogenesis in peri-nuclear subcellular 
compartments: nuage (in nurse cells) or Yb bodies (in somatic follicle cells). While the Aub/Ago3 ping-
pong cycle generates 5’-P precursors in nuage, the molecular mechanisms of precursor specification in 
Yb bodies are still unknown. 
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I.3.1.4 Mitochondrial processing of pre-piRNAs 

 

Once recognised in nuage/Yb bodies, 5’-P piRNA precursors (pre-piRNAs) undergo processing 

into ~25-nt long, silencing-competent piRNAs. Processing of long ssRNA precursors into 

mature piRNAs occurs on the outer surface of mitochondria. This distinctive subcellular 

localisation of the piRNA biogenesis machinery is remarkably conserved across animals, 

ranging from the fruit fly, to mosquitoes, silkworm and even mouse (Ipsaro et al., 2012; Nishida 

et al., 2018; Nishimasu et al., 2012; Shiromoto et al., 2013; Watanabe et al., 2011; Zhang et al., 

2016). In Drosophila, several proteins implicated in piRNA biogenesis are anchored to the outer 

membrane of mitochondria and some of them share similarities with mitochondrial lipid-

biosynthesis factors, further underscoring the link between these organelles and transposon 

defence (Czech et al., 2013; Handler et al., 2013; Munafò et al., 2019; Vagin et al., 2013). 

However, it remains unclear why mitochondria have been preferentially chosen for piRNA 

biogenesis and whether they are functionally involved in this process or simply act as physical 

platforms. Mitochondria are physically separated from nuage, where piRNA precursor 

specification occurs (Ge et al., 2019), thus implying that precursor transcripts must be actively 

transported from one site to the other. 

 

Genetic and structural studies have placed the mitochondria-anchored endonuclease Zucchini 

(Zuc) at the heart of the piRNA biogenesis machinery (Haase et al., 2010; Ipsaro et al., 2012; 

Nishimasu et al., 2012; Pane et al., 2007). The crystal structure of mouse and fly Zuc shows 

remarkable similarities to the Phospholipase D (PLD) family of phosphodiesterases, some of 

which can act as nucleases (Selvy et al., 2011). In vitro recombinant Zuc can indeed cleave 

single-stranded nucleic acids, either RNA or DNA, but does not hydrolyse double-stranded 

nucleic acids or lipids (Ipsaro et al., 2012; Nishimasu et al., 2012). PLD family nucleases 

feature two HKD (Histidine-Lysine-Aspartic Acid) motifs that are brought together to assemble 

the catalytic centre. Zuc has one HKD motif and forms a stable dimer in vivo, thus the catalytic 

core is formed inter-molecularly. Mutations in the Histidine (H) of Zuc’s HKD domain abolish 

its catalytic activity and cause a collapse in piRNA production (Haase et al., 2010; Ipsaro et al., 

2012; Nishimasu et al., 2012; Pane et al., 2007). Altogether, these data point towards a two-

step reaction mechanism for dimeric Zuc, resembling that of PLD-family nucleases (Gottlin et 

al., 1998; Stuckey and Dixon, 1999). According to the proposed mechanism, the RNA substrate 

forms a short-lived covalent bond with the Histidine of one Zuc monomer, which is 

subsequently hydrolysed by the Histidine of the other monomer. In vivo, Zuc shows a 

remarkable specificity and processivity, cleaving at regular intervals of ~25 nt and generating 
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strings of adjacent piRNAs (known as “trail piRNAs”, Figure 1.5A-B) from each substrate 

molecule (Han et al., 2015; Mohn et al., 2015). Trail piRNAs are arranged in a tail-to-head 

fashion, meaning that the 3’ end of one piRNA and the 5’ end of the following one are generated 

via the same cleavage event, a signature known as “phasing” (see Figure 1.5B). Since this 

signature has been identified in a broad range of animals, it is likely that coupling of PIWI-

mediated slicing to phased piRNA production is evolutionarily conserved (Gainetdinov et al., 

2018). Furthermore, the vast majority of Zuc-generated piRNAs start with a uridine, a property 

referred to as “1U bias”. Processing of reporter constructs shows that the position of uridines 

within the transcript is predictive of where Zuc cleavages will occur (Figure 1.5B) (Mohn et 

al., 2015). In contrast with what is observed in vivo, cleavage assays with recombinant Zuc fail 

to recapitulate this specificity and instead only produce a ladder of products of variable size, 

lacking any 5’ nucleotide bias (Ipsaro et al., 2012; Nishimasu et al., 2012). A recent study in 

silkworm reports that Zuc-mediated production of piRNAs can be recapitulated in vitro when 

using purified mitochondria extracts, rather than recombinant protein, and is enhanced upon 

over-expression of Armi (Izumi et al., 2020). This strongly suggests the existence of one or 

several “co-factor(s)” that confer the distinctive cleavage periodicity and 1U bias in vivo. 

Various recent studies, including Chapter III of this thesis, have investigated whether PIWI 

proteins or other factors play a role in guiding Zuc cleavages (Gainetdinov et al., 2018; Ge et 

al., 2019; Ishizu et al., 2019; Munafò et al., 2019; Rogers et al., 2017; Stein et al., 2019; 

Yamashiro et al., 2019). The first nucleotide of a small RNA resides in a conserved binding 

pocket of the MID domain of PIWI proteins, known as the Specificity Loop (“SL”). Piwi 

carrying various mutations in the SL displays similar loading of 1U piRNAs (Stein et al., 2019), 

implying that the nucleotide bias is determined upstream of Piwi binding. Another recent study 

has shown that binding of PIWI proteins to the 5’end of a pre-piRNA positions Zuc to cleave 

at the first accessible uridine (Gainetdinov et al., 2018). This implies that the footprint of a 

PIWI protein is predictive of the size of the corresponding piRNAs, and indeed that is the case 

in mice and flies. Likewise in C.elegans generation of mature 21-U RNAs involves trimming 

of their 3’ ends based on the footprint of the PIWI homolog PRG-1 (Tang et al., 2016). 

Furthermore, the work presented in this thesis shows that the RNA helicase Armitage (Armi) 

localises to mitochondria in close proximity to dimeric Zuc, arguing for Armi’s key 

contribution to Zuc cleavage pattern, perhaps via its ATP-dependent helicase activity (Ge et al., 

2019; Ishizu et al., 2019; Izumi et al., 2020; Munafò et al., 2019; Yamashiro et al., 2019). These 

data provide an explanation for the regular spacing of Zuc cleavages, whereas the origin of the 

1U bias remains unclear.  
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Figure 1.5.  Zuc-mediated phased piRNA biogenesis 
A) piRNA precursors are bound by Armi and translocated to mitochondria, where the transmembrane 
nuclease Zuc processes them into mature piRNAs. Piwi binds to the 5’-P of the precursors and Zuc 
cleaves at the first accessible uridine, thus generating a characteristic footprint of ~25nt and 1U bias. B) 
From a single precursor, Zuc releases strings of consecutive tail-to-head piRNAs that are ~25nt long 
and mostly begin with a uridine (trail piRNAs). This characteristic cleavage pattern is referred to as 
“phasing” of piRNA biogenesis. Modified from (Mohn et al., 2015). 
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Genetic screens performed in Drosophila have provided a general framework for piRNA 

biogenesis and have identified most of the involved players (Czech et al., 2013; Handler et al., 

2013; Handler et al., 2011; Muerdter et al., 2013; Olivieri et al., 2010). Nonetheless, the 

mechanistic understanding of the molecular events leading to piRNA production is not 

complete yet. Several piRNA biogenesis factors share Zuc’s localisation to the outer membrane 

of mitochondria. Among these, Gasz, a germ cell protein with ankyrin repeats, a sterile-alpha 

motif and a leucine zipper, and its partner Daedalus (Daed), also carrying a sterile alpha motif 

and a coiled-coil, are implicated in the recruitment of Armi to mitochondria (Handler et al., 

2013; Munafò et al., 2019; Yamashiro et al., 2019) (see Chapter III). Intriguingly, loss of 

either Gasz or Daed affects mitochondrial morphology, thus strengthening the link between the 

piRNA biogenesis machinery and mitochondria. Minotaur is a glycerol-3-phosphate 

acyltransferase whose catalytic activity is dispensable for piRNA biogenesis, yet absence of the 

protein itself abolishes piRNA production (Vagin et al., 2013). Partner of PIWIs (Papi) and 

TDRKH are instead involved in 3’ trimming of piRNAs in mouse and silkworm, yet their 

activity seems neglectable in flies (Hayashi et al., 2016; Honda et al., 2013; Liu et al., 2011; 

Nishida et al., 2018; Zhang et al., 2018b). 

 

In addition to the mitochondrial proteins mentioned above, piRNA production requires a 

plethora of cytosolic factors. Among these is Armi, an RNA helicase of the Upf1 family, which 

binds to piRNA precursors in nuage/Yb bodies and delivers them to mitochondria (Ge et al., 

2019; Ishizu et al., 2019; Munafò et al., 2019; Vourekas et al., 2015). Armi typically shuttles 

between the two compartments and is anchored on the mitochondrial surface via Gasz and Daed 

(Munafò et al., 2019). Armi’s function requires ATP binding and hydrolysis, as mutants 

defective for either activity lose their sub-cellular localisation and are unable to sustain piRNA 

production (Ge et al., 2019; Ishizu et al., 2019; Pandey et al., 2017). Most importantly, ATPase 

mutants show promiscuous RNA binding and inability to recognise the correct substrates. 

Nonetheless, Armi binding to a transcript is necessary and sufficient to feed an RNA to the 

mitochondrial piRNA biogenesis machinery, as shown in vivo and via reporter assays (Ishizu 

et al., 2019; Pandey et al., 2017; Rogers et al., 2017). Overall, Armi is essential both in somatic 

and in germ cells and Zuc-mediated piRNA production collapses in its absence. This, together 

with its mitochondrial localisation in close proximity to the biogenesis machinery, places Armi 

at a critical juncture of piRNA production, possibly contributing to substrate selection and to 

the processivity of Zuc cleavages.  

In contrast to Armi, Yb, another RNA helicase of the DEAD box family carrying a Tudor 

domain, is specifically required in the soma. It has been initially identified as an essential gene 
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for germline and somatic stem cell division (King et al., 2001; Szakmary et al., 2009) and later 

on linked to transposon regulation (Olivieri et al., 2010; Qi et al., 2011; Saito et al., 2010). Yb 

is required for somatic piRNA production and functions upstream of all known mitochondrial 

and cytosolic biogenesis factors (Hirakata et al., 2019). Upon loss of Yb, Zuc-/Armi-driven 

piRNA production still occurs to some extent, but also involves promiscuously selected 

substrates, since Armi binding specificity is lost (Chapter III and IV) (Ishizu et al., 2019). This 

suggests that Yb selects the correct substrates for downstream processing, whereas Armi’s role 

is that of participating in the actual production step in close association to Zuc. Yb typically 

forms discrete peri-nuclear foci, namely Yb bodies, which have originally been identified as 

electron-dense spheres of ~1.5 µm in diameter, often proximal to mitochondria and to RNA-

rich foci of comparable size (Szakmary et al., 2009). More recently, Yb bodies have been show 

to form dynamic, phase-separated condensates thanks to protein-protein and protein-RNA 

interactions (Hirakata et al., 2019). The adjacent RNA-rich foci have instead been shown to 

correspond to flam RNAs, tightly bound by Yb, and therefore termed “flam bodies” (Ishizu et 

al., 2015; Murota et al., 2014). Various lines of evidence point towards an intimate relationship 

between the Yb bodies and the export of flam precursors, which happens via the canonical 

Nxf1/Nxt1 route (Dennis et al., 2016; Dennis et al., 2019; Dennis et al., 2013; Hirakata et al., 

2019; Sokolova et al., 2019). Flam processing specifically depends on the helicase domain 

(HelC) of Yb, whereas all somatic precursors, including flam, require the RNA-binding domain 

and the Tudor domain, with the latter involved in binding to Armi (Hirakata et al., 2019). 

 

Two proteins sharing similar domain structures to Yb, including the Tudor domain, have been 

implicated in somatic and germline piRNA production, namely Sister of Yb and Brother of Yb 

(SoYb, BoYb) (Handler et al., 2011). The Tudor domain, which facilitates protein-protein 

interactions often via the post-translational modification symmetric di-methyl Arginine 

(sDMA), is frequently found in piRNA biogenesis factors. Some fly PIWI-family proteins 

possess sDMA residues (Kirino et al., 2009), therefore Tudor proteins are thought to act as a 

“scaffold” that coordinates molecular interactions within the piRNA pathway (Vagin et al., 

2009a; Vagin et al., 2009b). In addition to the previously cited Tudor domain-containing 

proteins (Papi, Yb, SoYb and BoYb), there are also the germline-specific Spindle-E, Krimper, 

Tapas and Tejas (Kennerdell et al., 2002; Lim and Kai, 2007; Patil et al., 2014; Patil and Kai, 

2010; Sato et al., 2015; Webster et al., 2015), which are involved in the ping-pong cycle. 

Vreteno, also carrying a Tudor domain, is instead active in both compartments of the ovary 

(Handler et al., 2011; Zamparini et al., 2011). 
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The vast majority of Zuc-generated piRNAs are loaded into the effector protein Piwi (Han et 

al., 2015; Mohn et al., 2015; Senti et al., 2015; Wang et al., 2015). Piwi binding to piRNAs 

requires several factors, such as the co-chaperone Shutdown (Shu) (Olivieri et al., 2012; Preall 

et al., 2012), and is necessary to stabilise the protein itself. If mitochondrial piRNA production 

is impaired, unloaded Piwi is unstable and targeted for degradation. Indeed, a hallmark shared 

among all piRNA biogenesis mutants is a striking loss of nuclear Piwi (Malone et al., 2009; 

Olivieri et al., 2012). Once a piRNA is associated with Piwi, the protein is thought to undergo 

a conformational change that exposes a Nuclear Localisation Signal (NLS) and allows 

translocation into the nucleus via Importin-a (Yashiro et al., 2018). Although no crystal 

structure of Drosophila Piwi is available yet, this is the most accredited model to explain Piwi 

shuttling between the two subcellular compartments upon piRNA loading. Once in the nucleus, 

Piwi silences transposons by triggering the deposition of repressive histone marks, as will be 

discussed in the next paragraph. Because Piwi-RISC recognises nascent TE transcripts via base-

pairing, Zuc-generated piRNAs ultimately determine the potency of the transcriptional 

silencing response. The generation of antisense trail piRNAs in a 5’ to 3’ directed fashion 

results in a pool of small RNAs that span a large portion of the locus and are progressively 

closer to the Transcriptional Start Site (TSS). Hence, the sole mechanism of phased biogenesis 

enforces Piwi-guided transposon silencing via diversifying the pool of transposon-targeting 

sequences (Senti et al., 2015; Wang et al., 2015). 

 

I.3.2 piRNA-guided transposon silencing 

 

piRNA-guided silencing targets transposable elements at the transcriptional and post-

transcriptional levels via two different mechanisms. Post-transcriptional gene silencing (or 

PTGS) is a cytosolic event whereby Aub and Ago3 cleave active transposon mRNAs and thus 

prevent their translation into proteins that could drive TE mobilisation. Because Aub and Ago3 

are only expressed in the germline, PTGS is restricted to nurse cells (Li et al., 2009a; Malone 

et al., 2009). As explained earlier, the cleavage products of PTGS directly stream into Zuc-

mediated biogenesis of piRNAs bound to Piwi, which in turn is the key effector of nuclear co-

transcriptional silencing (TGS). TGS is in place in both cell types of the ovary and initiates with 

Piwi-RISC recognising a nascent transposon RNA and inducing a cascade of events that 

culminates in the epigenetic silencing of the locus. Since the production of the germline Piwi-

bound piRNA pool directly depends on Aub and Ago3, PTGS and TGS robustly wire 

transposon sequences into a self-amplified silencing loop. 
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I.3.2.1 The ping-pong cycle 

 

Upon sequencing of D. melanogaster small RNAs bound to each PIWI protein, it was 

immediately apparent that each bound a distinct subset of piRNAs. Aub- and Piwi-loaded 

piRNAs are predominantly antisense to transposon sequences and exhibit a preference for 

uridine at their 5’end. Ago3 instead binds to sense piRNAs and favours an adenine at position 

10 (“10A bias”). Furthermore, Aub and Ago3 piRNAs typically originate from opposite 

genomic strands and overlap by exactly 10-nt, a feature known as the “ping-pong signature” 

(Brennecke et al., 2007; Gunawardane et al., 2007). These characteristics are explained by the 

ping-pong amplification loop, a PTGS mechanism in which a transcript is first cleaved via 

piRNA-guided slicing and then used for piRNA production (Figure 1.6). This self-

amplification loop is a well-conserved hallmark of the piRNA pathway, as a ping-pong 

signature can be readily identified across the animal kingdom (Aravin et al., 2007; Brennecke 

et al., 2007; Gainetdinov et al., 2018; Gunawardane et al., 2007; Houwing et al., 2007). An 

exception is C.elegans, where PRG-1-mediated target repression does not involve slicing but 

instead induces production of more small RNAs via RdRPs. Upon base-pairing with the target, 

PRG-1 stimulates the recruitment of the RdRPs RRF-1 and EGO-1 which, together with the 

Mutator complex, synthesize “secondary” small RNAs complementary to the target (Almeida 

et al., 2019). These RNAs begin with a guanosine and are typically 22 nt-long, hence they are 

called 22G RNAs. Once loaded by cytosolic (such as WAGO-1) or nuclear Argonaute proteins 

(such as HRDE-1 and NRDE-1), the 22-G RNAs elicit PTGS or TGS, respectively. In some 

instances, sustained production of 22-G RNAs becomes independent of the initial 21-U RNA 

trigger and is able to stably maintain silencing across generations (Almeida et al., 2019). While 

mechanistically different, the process of 22-G RNA synthesis will eventually lead to a signal 

amplification similar to that observed in the ping-pong cycle (Ozata et al., 2019). Especially in 

flies, where no RdRP-mediated amplification exists, the ping-pong cycle is key to enhance the 

silencing response against actively invading TEs.  

Ping-pong takes place in nuage and starts with Aub bound to a maternally-deposited or cluster-

derived antisense piRNA. This directs Aub to cleave a complementary sense transposon 

transcript between nucleotide 10 and 11 of the piRNA guide, which in turn defines the 5’end 

of a new, sense piRNA. The Aub-generated 3’ cleavage product is readily loaded by Ago3 and 

its 3’ end processed into a mature piRNA predominantly via the exonuclease Nibbler (Nbr) 

(Hayashi et al., 2016). This new Ago3-piRNA complex will then recognise a complementary 

cluster transcript exiting from the nucleus and cleave it, again generating the 5’ end of an Aub 

piRNA, while the remaining transcript is funnelled into the Zuc-mediated biogenesis route 
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(Figure 1.6). Loss of either Aub or Ago3 individually can be partially compensated by a 

homotypic ping-pong looping centred on the remaining PIWI protein while still feeding some 

substrates to Zuc (Senti et al., 2015). Simultaneous absence of Aub and Ago3 instead causes a 

complete collapse of transposon-targeting piRNA production in the germline and promiscuous 

5’P RNAs become substrate for mitochondrial processing (Senti et al., 2015; Wang et al., 2015). 

Conversely, impaired mitochondrial processing typically results in the appearance of novel 

ping-pong pairs that sustain a certain degree of piRNA production (Hayashi et al., 2016; Mohn 

et al., 2015). Altogether, these two biogenesis pathways are finely orchestrated to provide the 

highest robustness to transposon silencing, especially for elements that have colonised the 

Drosophila genome in ancient times (Senti et al., 2015). Notably, the evolutionarily age of 

transposon insertions correlates with a higher dependency on either TGS or PTGS. The 

sequences of old transposon insertions are robustly integrated into the piRNA-driven silencing 

machinery. As a consequence, old elements are predominantly targeted by Zuc-generated 

piRNAs and are the most robustly silenced by TGS and PTGS. Conversely, young elements 

rely more on heterotypic ping-pong, possibly because they are not yet present within piRNA 

clusters (Senti et al., 2015). Ping-pong looping is maintained by several nuage factors, such as 

Qin, that prevent homotypic ping-pong and smoothly funnel each intermediate into the right 

acceptor protein (Wang et al., 2015; Zhang et al., 2014a; Zhang et al., 2011). 

  



 32 

 

 

 

 

 
 
 

 
 
Figure 1.6. The ping pong cycle 
Aub bound to an antisense piRNA recognizes and cleaves a transposon mRNA or a cluster transcript. 
The resulting 3′ cleavage product is converted into a new sense piRNA that associates with Ago3 and is 
trimmed by Nbr, whilst the rest is consumed by Zuc-mediated phased piRNA production. Ago3 
associated with a sense piRNA can in turn recognize and cleave cluster transcripts. The product of this 
slicing event reinitiates the cycle, becoming an Aub-bound piRNA, whilst the remaining 3′ slicing 
product is consumed by Zuc-mediated phased piRNA production. Specialized loading complexes ensure 
that slicing products are loaded into the correct PIWI protein throughout the cycle. 
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I.3.2.2 Co-transcriptional silencing  

 

The ultimate step of piRNA-guided transposon control occurs in the nucleus, where active 

transposon insertions become epigenetically silenced. Chromatin silencing by nuclear PIWI 

proteins depends on RNA, as opposed to DNA, aiming to specifically target actively transcribed 

TEs (Klenov et al., 2014; Le Thomas et al., 2013; Rozhkov et al., 2013; Sienski et al., 2012). 

Transcription-dependent heterochromatin formation is strikingly conserved throughout the 

eukaryotic domain of life. From fission yeast to mammals, many different organisms exploit 

small RNAs to direct heterochromatin formation towards discrete loci. Although the molecular 

mechanisms may differ, the core concepts of RNAi-mediated epigenetic silencing are 

conserved. TGS typically entails a small RNA guide, either a piRNA or an siRNA, bound to a 

nuclear Argonaute protein. Base-pairing between the small RNA and the target is thought to 

trigger recruitment of epigenetic modifiers to the locus, primarily histone methyl-transferases 

which add the repressive mark tri-methylation of Lysine 9 of Histone 3 (H3K9me3).  

 

Several pioneering studies on TGS have been conducted in fission yeast. In 

Schizosaccharomyces pombe, the Argonaute protein Ago1 bound to an siRNA assembles the 

RNA-induced Transcriptional Silencing complex (RITS) which recognises and silences 

transcripts arising from centromeric repeats (Martienssen and Moazed, 2015; Duempelmann et 

al., 2020). RITS engages with the transcribing RNAs and recruits a protein complex containing 

Clr4, a histone methyl-transferase. Clr4 in turn deposits H3K9me3 which, in a positive feed-

forward loop, promotes recruitment of more RITS, spreading of H3K9me3 and 

heterochromatin formation. This silencing response is further reinforced via the generation of 

secondary siRNAs by an RdRP and the Dicer homolog Dcr1. Studies in fission yeast have 

demonstrated that RITS targeting occurs via siRNA-mediated base-pairing with RNA, thus 

contributing to the paradigm that nuclear Argonautes recognise nascent transcripts via their 

associated small RNAs (Martienssen and Moazed, 2015). In a similar fashion, some of 

C.elegans nuclear WAGOs, such as HRDE-1, bind to small RNAs and trigger transcriptional 

silencing of complementary transcripts. WAGO-associated small RNAs, the so-called 22-G 

RNAs, are produced in response to 21-U RNAs and are continuously amplified by RdRPs, thus 

reinforcing the silencing response (Almeida et al., 2019; Duempelmann et al., 2020). Epigenetic 

silencing in C.elegans can be maintained after the initial trigger (the 21-U RNAs) ceases  to be 

expressed thanks to the continuous production of 22-G RNAs, a process known as ‘RNA-

induced epigenetic silencing’ (RNAe; Duempelmann et al., 2020). Initiation and maintenance 

of silencing in nematodes thus rely on separate Argonaute proteins, whereas how these two 
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processes are orchestrated in other model organisms is still largely unclear. TGS in nematodes 

also entails H3K9 methyltransferases, which play a conserved essential role in initiating the 

silencing cascade (Duempelmann et al., 2020). Mouse TGS instead results in DNA methylation 

of target loci, a prominent form of epigenetic silencing in mammals, along with other repressive 

histone modifications that include H3K9me3 (Aravin et al., 2008; Molaro et al., 2014). In 

mouse, MIWI2 is the nuclear PIWI protein that triggers de-novo DNA methylation of 

retrotransposons during male germ cell development. The factor(s) that connect murine PIWI 

proteins to the epigenetic machinery is not yet known. Small RNA-guided heterochromatin 

formation also extends beyond the animal kingdom and has been extensively characterised in 

Arabidopsis thaliana, where nuclear Argonaute proteins bound to siRNAs trigger de-novo 

DNA methylation to silence TEs. Following DNA methylation, the histone methyl-transferases 

SUVH4/5/6 deposit H3K9me2 and enable a feedback loop that maintains a repressive 

epigenetic state (Duempelmann et al., 2020). Lastly, ciliates also employ small RNA-directed 

heterochromatinisation to mark areas of the genome that undergo rearrangements during sexual 

reproduction (Noto and Mochizuki, 2017). This mechanism has been investigated in 

Tetrahymena termophila, which has a somatic macronucleus (MAC) and a germline 

micronucleus (MIC). Following sexual reproduction, small RNAs produced from the MIC 

direct heterochromatin formation on complementary sequences within the MAC which, as a 

result, are excised and eliminated. In line with the other mechanisms discussed above, 

Tetrahymena also utilises H3K9me3 and a feedback loop producing more “secondary” small 

RNAs, thus providing highest robustness to the system (Noto and Mochizuki, 2017). Similar 

mechanisms exist in other ciliates, such as Paramecium tetraurelia, where small RNAs 

produced from the germline nucleus mark sequences for elimination, or Oxytricha trifallax, 

where instead small RNAs originated from the somatic nucleus mark genomic regions that must 

be retained (Lepère et al., 2008; Fang et al., 2012). Overall, small RNA-guided heterochromatin 

formation employs highly conserved proteins, such as the Argonaute family and H3K9 methyl-

transferases, and conceptually similar mechanisms, involving RNA recognition, priming of the 

silenced state and maintenance across cell division and/or generations, often via an 

amplification loop. 

 

In line with what reported in other organisms, piRNA-dependent TGS in Drosophila occurs via 

the deposition of histone modifications typically associated with heterochromatin and a 

transcriptionally inert state, namely H3K9me3, and the concomitant removal of H3K4me2, 

mostly found at active loci (Le Thomas et al., 2013; Rozhkov et al., 2013; Sienski et al., 2012; 

Wang and Elgin, 2011). Heterochromatin establishment in other organisms, such as yeast, also 
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involves di-methylation of H3K9 (H3K9me2) (Jih et al., 2017) but, since the difference and 

interplay between di- and tri-methylation has not been investigated in the context of the fly 

piRNA pathway, we will hereafter refer to H3K9me3 only. piRNA-guided heterochromatin 

assembly is a step-wise process (Wang et al., 2016) similar to that described earlier for S. pombe 

(Figure 1.7). First, an active transposon insertion is recognised via its nascent RNA (Figure 

1.7A) and chromatin modifiers are recruited to the locus to initiate the deposition of repressive 

marks and concomitant removal of active ones, though the precise hierarchy is yet to be 

established (Figure 1.7B). Heterochromatin then typically spreads from nucleation centres into 

neighbouring regions, until the transposon insertion is entirely covered (Figure 1.7B). The 

newly-deposited histone marks ultimately serve as binding platforms for heterochromatin-

specific proteins that will consolidate the silenced state and compact the chromatin (Figure 

1.7C). At the heart of the Drosophila TGS machinery lies Piwi bound to a Zuc-generated 

piRNA (Sienski et al., 2012). In contrast with slicing-mediated PTGS, the catalytic activity of 

Piwi is dispensable for TGS, since mutations of key residues in the catalytic tetrad do not impact 

silencing nor cause fertility defects (Saito et al., 2010; Sienski et al., 2012). The current model 

of TGS postulates that Piwi scans all nascent transcripts and, upon recognition of transposon 

RNA, primes the corresponding locus for silencing. Although several crucial players 

cooperating with Piwi have been recently unmasked, the precise sequence of events leading 

from target engagement to the establishment of a repressive chromatin state is not entirely 

understood. 

 

The initial event that triggers piRNA-guided TGS is Piwi-RISC binding to a transcript arising 

from an active transposable element (Klenov et al., 2014; Le Thomas et al., 2013; Rozhkov et 

al., 2013; Sienski et al., 2012). Re-activated transposon loci are typically transcribed by RNA 

pol II and carry active histone marks, such as H3K4me3 near the TSS and H3K4me2 at more 

distal regions (Figure 1.7A). Piwi-RISC target engagement is thought to cause a second 

conformational change of Piwi that is permissive for recruitment of downstream silencing 

factors (Yu et al., 2015). In fact, artificial tethering of Piwi to a reporter transcript does not 

induce TGS, thus supporting the hypothesis that only a trimeric Piwi-piRNA-target interaction 

can instruct repression of a locus (Sienski et al., 2015; Yu et al., 2015) (Figure 1.7A). Indirect 

evidence suggests that this is a transient event, since Piwi can hardly be isolated in complex 

with any silencing factor (Batki et al., 2019; Fabry et al., 2019). Because Piwi-piRNA 

complexes are very abundant in the nucleus, the event that initiates TGS has to be tightly 

regulated to avoid promiscuous silencing.  
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Several proteins cooperate with Piwi to convey the silencing response, namely Asterix (Arx), 

Panoramix (Panx) and Maelstrom (Mael). Among these, Panx stands out for being necessary 

and sufficient for TGS (Sienski et al., 2015; Yu et al., 2015). Its artificial recruitment to either 

RNA or DNA elicits potent epigenetic silencing, a property which is in striking contrast with 

Piwi and had initially been ascribed to Panx alone (Sienski et al., 2015; Yu et al., 2015). Recent 

work has uncovered two more proteins that show similar silencing capability and, together with 

Panx, form the PICTS (Panx-induced co-transcriptional silencing) complex: Nxf2 and Nxt1 

(Batki et al., 2019; Fabry et al., 2019; Murano et al., 2019; Zhao et al., 2019) (see Chapter V). 

Absence of any PICTS component causes dramatic transposon re-activation due to the loss of 

repressive histone marks, despite Piwi still localising to the nucleus (Batki et al., 2019; Fabry 

et al., 2019; Murano et al., 2019; Zhao et al., 2019). Hence, PICTS acts downstream of Piwi at 

a critical node of TGS, bridging Piwi-piRNA complexes to the machinery responsible for 

epigenetic modification of target loci. Notably, the silencing activity of PICTS can be narrowed 

down to the amino-terminus of Panx, but how this links to the silencing machinery is still 

unknown. In addition to PICTS, Arx, a small zinc-finger protein with a putative RNA-binding 

domain, also participates in TGS (Donertas et al., 2013; Muerdter et al., 2013; Ohtani et al., 

2013). Arx localises to the nucleus in a Piwi-dependent manner and possibly stabilises its target-

engaged state (Donertas et al., 2013; Ohtani et al., 2013). Finally, Mael is a high-mobility group 

protein that shuttles between the nucleus and nuage thanks to Embargoed (also known as CRM-

1; Chromosomal region maintenance 1), which mediates its nuclear export, and nuage 

components, such as Vasa and Aub, that recruit it to the cytoplasmic side of the nuclear 

envelope (Findley et al., 2003). Mael has a domain that adopts an RNase H-like fold but lacks 

the conserved catalytic residues. Nonetheless, this nuclease activity is dispensable for 

transposon silencing hence Mael likely acts via binding to structured RNAs (Genzor and 

Bortvin, 2015; Matsumoto et al., 2015). Mael has been implicated as a key effector of nuclear 

TGS acting downstream of Piwi and H3K9me3 deposition (Sienski et al., 2012). Its loss only 

modestly affects H3K9me3 levels at transposon loci, but seems to cause its spreading into 

downstream regions (Sienski et al., 2012). Recent work also suggests that Mael plays a role in 

the transcription of dual-strand clusters via suppressing canonical RNA pol II transcription of 

transposon insertions (Chang et al., 2019). 
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Figure 1.7. piRNA-guided Transcriptional Gene Silencing 
A) Piwi-piRNA complexes engage with nascent transposon transcripts arising from active loci, marked 
by H3K4me3 on the promoter and H3K4me2 along the gene body. B) Once engaged with the target, 
Piwi recruits the PICTS complex (Panx, Nxf2, Nxt1), which in turn instructs silencing of the locus via 
recruitment of the histone methyl-transferase Egg and its co-factor Wde. The transposon locus becomes 
progressively covered by H3K9me3. C) Upon establishment of silencing, HP1a covers the entire locus 
and maintains its repressed status.  
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Once an active locus has been primed for repression, it loses H3K4me3/2 and becomes covered 

by H3K9me3 (Le Thomas et al., 2013; Rozhkov et al., 2013; Sienski et al., 2012) (Figure 1.7B). 

The histone methyl-transferase Egg is the most downstream factor of the co-transcriptional 

silencing cascade and, together with its co-factor Windei (Wde), deposits H3K9me3 on Piwi-

targeted loci (Huang et al., 2013; Rangan et al., 2011; Sienski et al., 2015; Yu et al., 2015). 

Genetic studies have implicated Egg in piRNA-guided heterochromatin formation, however, 

what factor(s) directly link Piwi and PICTS to Egg is unknown. Egg is predominantly nuclear 

and becomes monoubiquitinated on conserved residues, a modification that is in turn important 

for its interaction with Wde and its transposon silencing capability (Osumi et al., 2019). Wde 

is instead required for Egg nuclear retention and recruitment onto chromatin (Osumi et al., 

2019). In addition to transposon silencing, Egg participates in both uni- and dual-strand piRNA 

cluster establishment, as they are embedded into heterochromatic regions and mutations in Egg 

abolish piRNA production (Rangan et al., 2011). In contrast with that, studies in OSCs report 

that piRNA production from flam is not affected by knockdown of egg (Sienski et al., 2015), 

leaving its role on uni-strand cluster establishment open for future investigation. Recent reports 

also found an involvement of the SUMO E3 ligase Su(var)2-10 in the TGS process. Su(var)2-

10, in addition to being required for global heterochromatin formation, directly interacts with 

components of the piRNA-guided TGS machinery and induces SUMO-dependent recruitment 

of Egg and Wde (Ninova et al., 2019a; Ninova et al., 2019b). TGS also entails Lsd1/Su(var)3-

3 and its partner CoRest, responsible for removing H3K4me2/3 marks (Yu et al., 2015), and 

ultimately HP1a. HP1a acts downstream of Piwi and is likely required to compact H3K9me3-

marked transposon loci into heterochromatic domains (Sienski et al., 2015; Yu et al., 2015) 

(Figure 7C). Heterochromatin formation in Drosophila occurs via aggregation of liquid-like, 

phase separated compartments centered on HP1a (Larson et al., 2017; Strom et al., 2017). The 

absence of either Egg, Wde, Lsd1 or HP1a severely compromises the ability of PICTS to induce 

heterochromatin formation (Sienski et al., 2015; Yu et al., 2015), further highlighting the 

connection between the piRNA pathway and the general silencing machinery. However, how 

transposon silencing is maintained when PICTS ceases to be expressed remains to be 

investigated. Some organisms, such as yeast and nematodes, possess positive feed-forward 

loops involving RdRPs to maintain a repressed chromatin state after the initial trigger is 

terminated (Duempelmann et al., 2020). Flies, which do not possess RdRPs, amplify the 

silencing response against TEs via the ping-pong cycle and Zuc-mediated phased piRNA 

biogenesis, ultimately fueling Piwi with a wide range of piRNA sequences. If this is implicated 

in silencing maintenance, similarly to RNAe in C.elegans, is yet to be uncovered.  
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CHAPTER II 

 

 

MATERIALS AND METHODS 
 

2.1. Fly stocks and handling 

 

All flies were kept at 25°C on standard cornmeal or propionic (malt extract, molasses, 

cornmeal, yeast, agar, soya powder, water, Propionic acid, Nipagin) food. Control w1118 

flies were a gift from the University of Cambridge Department of Genetics Fly Facility. For 

GLKD we used a stock containing a UAS::Dcr2 transgene and a nos::GAL4 driver (Czech 

et al., 2013) and shRNA lines from the Bloomington Drosophila Stock Center and Vienna 

Drosophila Resource Center.  

 

2.1.1. CRISPR/Cas9 mutant generation 

Frameshift mutant alleles of daed were generated by injecting pCFD4 (Addgene 

plasmid # 49411; (Port et al., 2014)) containing two gRNAs against CG10880 into 

embryos expressing vas-Cas9 (Bloomington stock 51323). The gaszKO allele was 

generated by injecting a plasmid containing two gRNAs against gasz and a donor 

construct with ~1 kb homology arms flanking a 3xP3-RFP cassette into vas-Cas9 flies. 

nxf2 mutant alleles were generated by injecting pCFD4 containing two gRNAs against 

nxf2 into embryos expressing vas-Cas9. Microinjection and fly stock generation was 

carried out by the University of Cambridge Department of Genetics Fly Facility. Mutant 

flies were identified via genotyping PCR and confirmed by Sanger sequencing (carried 

out by GATC/Eurofins). 

 

2.1.2. Transgenic and knock-in fly lines generation  

The shRNA against daed was cloned into pVALIUM20 (Ni et al., 2011), GFP-Daed 

and Zuc-GFP were cloned into an in-house generated transgenesis vector for phiC31-

mediated integration and expressed under the D. melanogaster Ubiquitin promoter 

(pUBI). All plasmids were integrated into the attP40 landing site on chromosome 2 

(Stock 13-20). To generate GFP-Nxf2 fusion knock-in flies, the GFP insert flanked by 

homology arms of approximately 1 kb were cloned into pUC19 by Gibson assembly 

and co-injected with pCFD3 (Addgene plasmid # 49410; (Port et al., 2014)) containing 
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a single guide RNA into embryos expressing vas-Cas9. Microinjection and fly stock 

generation was carried out by the University of Cambridge Department of Genetics Fly 

Facility. Transgenic and knock-in flies were identified via genotyping PCR and 

confirmed by Sanger sequencing (carried out by GATC/Eurofins). 

 

2.1.3. Fly genotyping  

Genomic DNA isolation for genotyping PCR was carried out as follows. Individual flies 

were placed in a 96-well plate and lysed in 100 µl of Squishing buffer (10 mM Tris HCl 

pH8.2, 1 mM EDTA, 25 mM NaCl and 200 µg/ml of Proteinase K) using a Qiagen 

TissueLyzer for 10 min at 28 Hz. The plate was incubated for 2 hrs at 50°C followed 

by 10 min at 95°C. 

Genotyping PCR was performed on 1 µl of gDNA template mixed with 2 µl KOD 

buffer, 2 µl dNTPs, 1.2 µl MgSO4, 0.6 µl DMSO, 0.6 µl of each forward and reverse 

primer, 0.2 µl of KOD polymerase and 11.8 µl of nuclease-free water. Obtained bands 

were analysed on a 1.5% agarose gel or using a QIAxcel instrument (Qiagen) and 

confirmed by Sanger sequencing (carried out by GATC/Eurofins).  

 

2.1.4. Egg laying 

Fertility was scored by crossing ten freshly hatched mutant females to five w1118 males 

and counting the number of eggs laid in 12 hr periods as well as pupae that developed 

following 7 days. 

 

2.2. Cell Culture 

 

2.2.1. S2 cell culture 

Gibco® Drosophila Schneider 2 (S2) cells were purchased from Thermo Fisher 

Scientific (catalog number R69007) and were grown at 26°C in Schneider's Drosophila 

Media (Gibco) supplemented with 10% heat-inactivated FBS. Cell identity was 

characterized by Thermo Fisher Scientific through isozyme and karyotype analysis (see 

product description). S2 cells tested negative for mycoplasma contamination in-house. 

 

2.2.2. S2 cell transfection 

S2 cells were transfected using Effectene (Qiagen), according to the manufacturer’s 

instructions. For one well of a 6-well plate, 2x106 cells were plated ~30 min prior to 

transfection. 2 µg of plasmid were mixed with 182 µl of EC Buffer and 16 µl of 
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Enhancer, vortexed and incubated for 1 min at room temperature. 20 µl of Effectene 

(1:10 ratio between plasmid and Effectene) were added to the samples, vortexed and 

incubated for 15 min at room temperature. The reaction mixture was added dropwise to 

2 ml of cell suspension and cells were harvested for analysis 48 hrs later. 

 

2.2.3. OSC culture 

Drosophila Ovarian Somatic Cells (OSCs) were a gift from Dr Mikiko Siomi and were 

cultured at 26°C in Shields and Sang M3 Insect Medium (Sigma Aldrich) supplemented 

with 0.6 mg/ml Glutathione, 10% FBS, 10 mU/ml insulin and 10% fly extract 

(purchased from DGRC) as described (Niki et al., 2006; Saito, 2014; Saito et al., 2009). 

Cell identity was authenticated by whole genome DNA sequencing in-house. OSCs 

tested negative for mycoplasma contamination in-house. 

 

2.2.3.1. OSC transfections 

OSCs were transfected using Xfect transfection reagent (Takara Bio 631317). For one 

well of a 6-well plate, 5x105 cells were plated one day in advance. On the day of 

transfection, 5 µg of plasmid were diluted with 100 µl of Xfect buffer, vortexed and 

mixed with 100 µl of Xfect buffer supplemented with 1.5 µl of Xfect polymer (0.3 µg 

of Xfect polymer for each µg of plasmid). The transfection mix was vortexed and 

incubated for 10 min at room temperature. Meanwhile, the cells were washed once with 

M3 media and left in 1 ml of M3 media. The transfection mixture was then added to the 

cells drop-wise and incubated for 2 hrs at 26°C. Subsequently the M3 media was 

aspirated and replaced with 2 ml of complete media. Cells were harvested and analysed 

48 hrs after transfection.  

 

2.2.3.2. OSC nucleofections 

OSCs nucleofection was carried out using the Cell Line NucleofectorTM Kit V (Lonza 

VVCA-1003), according to a published protocol (Saito, 2014). 10x106 cells were 

pelleted and resuspended in 100 µl of Nucleofection solution containing the desired 

plasmid or siRNA. The resuspended mixture was transferred to cuvettes and subjected 

to program T-029 in a Nucleofector II device. Cells were then resuspended in 10 ml of 

OSC media and grown at 26°C. In cases where a second pulse of nucleofection was 

required, after 48 hrs 10x106 cells were pelleted and treated exactly as described above. 

 

2.2.3.3. OSC knockdowns  
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siRNAs against the desired genes were designed using DSIR 

(http://biodev.cea.fr/DSIR/DSIR.html) with standard parameters (siRNA 21 nt; score 

threshold 90) and off-targeting was analysed with BLAT. siRNAs were purchased from 

IDT as ssRNAs (100 nm scale, standard desalting) and sense and anti-sense siRNAs 

were annealed prior to nucleofection. The annealing was performed by mixing 25 µl of 

each sense and antisense RNA oligonucleotides (resuspended at 400 µM in RNase-free 

water) with 50 µl of 2x annealing buffer (1x annealing buffer is 100mM HEPES pH7.5 

and 30 mM Potassium Acetate). The siRNAs were boiled for 5 min at 75°C then slowly 

cooled down to 25°C (-0.1°C/second). Annealed siRNAs were stored at -80°C. 

 

For knockdowns, 10x106 OSCs were nucleofected with 2 µl of annealed siRNAs as 

described in 2.2.2.4. Following 48 hrs, 10x106 OSCs were nucleofected again with 2 µl 

of the same siRNA. Cells were harvested and analysed after an additional 48 hrs. For 

knockdown in combination with an expression construct, 2 µl of siRNA were mixed 

with 5 µg of plasmid. 

 

2.2.3.4. OSC stable line generation 

One well of a 6-well plate was transfected as described in 2.2.2.1 with 2.5 µg of the 

desired plasmid and 2.5 µg of a helper plasmid carrying a Puromycin resistance gene 

(pMT-Puro). Cells that have stably integrated the plasmid have been selected by adding 

Puromycin to the media (1:2000 dilution from a 10mg/ml stock). Stable expression of 

the construct was confirmed via western blot. 

 

2.3. RNA isolation and RT-qPCR 

 

OSC or ovary samples were lysed in 1 ml Trizol and RNA was extracted according to 

manufacturer’s instructions. 200 µl of Chloroform were added and, following mixing, the 

samples were spun for 15 min at 12,000g at 4°C. The aqueous phase was collected and 

precipitated for 15 min at room temperature with 500 µl of Isopropanol. Precipitated RNA 

was pelleted via centrifugation for 20 min at top speed at 4°C and the pellet washed once 

with 80% Ethanol. After Ethanol removal, the pellet was air dried for 3 min and resuspended 

in RNase-free water and quantified on a Nanodrop.  

To remove genomic DNA contamination prior to reverse transcription, 1 µg of total RNA 

was incubated with 1 µl of DNaseI (Thermo Fisher Scientific) in 1x DNase buffer for 20 

min at 37°C. The reaction was stopped by adding 1 µl of EDTA. The samples were used 
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directly for reverse transcription with the Superscript III First Strand Synthesis Kit (Thermo 

Fisher Scientific). The DNase-treated RNA was incubated with 1 µl of dNTP Mix (10 mM 

each) and 1 µl of oligo(dT)20 (50 µM) at 65°C for 5 min, then cooled on ice for 2 min. The 

samples were then incubated with 4 µl of 5X First-Strand Buffer, 1 µl of 0.1 M DTT and 1 

µl of RNAse OUT for 5 min at 25°C, 1 hr at 50°C and 15 min at 75°C. The obtained cDNA 

was resuspended in 100 µl final volume with RNase-free water and used directly for 

quantitative PCR (qPCR).  

The qPCR reaction was carried out in a 384-well plate and, for each well, the reaction was 

set up as follows: 2 µl of cDNA, 0.2 µl of pre-mixed oligo pair (10 µM), 5 µl of Fast 

SYBR™ Green Master Mix (Applied Biosystems) and 2.8 µl of water. qPCR experiments 

were performed with a QuantStudio Real-Time PCR Light Cycler (Thermo Fisher 

Scientific). Transposon levels were quantified using the ∆∆CT method (Livak and 

Schmittgen, 2001), normalised to rp49 and fold changes were calculated relative to the 

indicated controls. 

 

2.4. Immunofluorescence 

 

2.4.1. Immunofluorescence in cells 

OSCs were plated one day in advance on Fibronectin-coated coverslips, whereas S2 

cells were plated 1 hr in advance on Concanavalin-A-coated coverslips. Cells were fixed 

for 15 min in 4% PFA, permeabilized for 10 min in PBS, 0.2% Triton and blocked for 

30 min in PBS, 0.1% Tween-20 (PBST) and 1% BSA. Primary antibodies were diluted 

1:500 in PBST and 0.1% BSA and incubated overnight at 4°C. After 3x5 min washes 

in PBST, secondary antibodies were incubated for 1 hr at room temperature. After 3x5 

min washes in PBST, DAPI (1:10,000 dilution in PBST) was incubated for 10 min at 

room temperature and washed twice in PBST. Coverslips were mounted with ProLong 

Diamond Antifade Mountant (Thermo Fisher Scientific #P36961) and imaged on a 

Leica SP8 confocal microscope (100x Oil objective). 

 

2.4.2. Immunofluorescence in cells for STED 

For STED, the same protocol was used with the following modifications: cells were 

plated on Fibronectin-coated 1.5H coverslips, blocking was for 1.5 hrs in PBS, 0.1% 

Tween-20 (PBST) and 1% BSA. Primary and secondary antibodies were diluted 1:150 

in PBST and 1% BSA. Coverslips were mounted using ProLong Glass Antifade 

Mountant (Thermo Fisher Scientific # P36982) and imaged on a Leica SP8 confocal 
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microscope (100x Oil objective). The images were deconvolved using Huygens 

Professional.  

 

2.4.3. Immunofluroescence in fly ovaries 

Fly ovaries were dissected in ice-cold PBS, fixed for 15 min in 4% PFA at room 

temperature and permeabilized with 3x10min washes in PBS with 0.3% Triton (PBS-

Tr). Samples were blocked in PBS-Tr with 1% BSA for 2 hrs at room temperature and 

incubated overnight at 4°C with primary antibodies in PBS-Tr and 1% BSA. After 3x10 

min washes at room temperature in PBS-Tr, secondary antibodies were incubated 

overnight at 4°C in PBS-Tr and 1% BSA. After 4x10min washes in PBS-Tr at room 

temperature (DAPI was added during the third wash; 1:1 000) and 2x5 min washes in 

PBS, samples were mounted with ProLong Diamond Antifade Mountant (Thermo 

Fisher Scientific #P36961) and imaged on a Leica SP8 confocal microscope. Images 

were deconvolved using Huygens Professional. 

 

2.5. RNA FISH 

 

2.5.1. HCR RNA FISH Probe design 

Probes and hairpins for HCR were designed according to the description in (Ang and 

Yung, 2016; Choi et al., 2014). Probes targeting flamenco (7 probes) or ZsGreen 

reporter mRNA (10 probes) were designed as 52-nt long antisense oligos with a GC 

content between 40 and 70%. Off-targeting effects were assessed using BLAST. The 

HCR initiator sequence and a poly-A linker (GCCCTTACTCCCAATTCCaaaaa) were 

added to the 5’ end of each probe sequence. HCR probes were purchased from IDT as 

100 nmoles oligonucleotides with HPLC purification. The hairpins are described in Ang 

and Yung, 2016 and have been purchased from IDT conjugated with AlexaFluor-647. 

 

2.5.2. HCR RNA FISH in OSCs 

RNA FISH was performed with Hybridization Chain Reaction (HCR), similar as 

reported in Ang and Yung, 2016 and Choi et al., 2014. OSCs were seeded on 

Fibronectin-coated coverslips, fixed for 15 min in 4% PFA, washed 2x5 min with PBS 

and permeabilized for at least 24 hrs in 70% Ethanol at -20°C. Ethanol was removed 

and slides were washed 2x5 min in 2x Saline-Sodium Citrate buffer (SSC). Priming for 

hybridization was done by incubating for 10 min in 15% formamide in 2x SSC. HCR 

probes were diluted to 1 nM each in hybridization buffer (15% formamide, 10% dextran 
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sulfate in 2x SSC) and incubated overnight at 37°C in a humidified chamber. Excess 

probes were removed by rinsing twice in 2x SSC and washing once in 30% formamide 

for 10 min at 37°C. HCR hairpins conjugated to AlexaFluor-647 (Hall et al.) were heat-

denatured and diluted to 120 nM in 5x SSC and 0.1% Tween-20 (SSCT). HCR 

amplification was carried out for 2 hrs at room temperature in the dark and washed 3 x 

10 min with 5x SSCT. Nuclei were stained with DAPI (1:10,000 in SSCT) for 10 min, 

followed by 3x10 min washes in 5x SSC. Slides were mounted with ProLong Diamond 

Antifade Mountant (Thermo Fisher Scientific) and imaged on a Leica SP8 confocal 

microscope (100x Oil objective). 

 

2.5.3. Immunofluorescence and HCR RNA FISH in OSCs 

For co-staining of RNA and protein, the immunofluorescence was carried out first as 

described in 2.4.1. After secondary antibody incubation, cells were washed 3x4 min in 

PBST and fixed in 4% PFA for 10 min. Following 2x5 min washes in PBS, cells were 

permeabilised for at least 24 hrs in 70% Ethanol at -20°C. HCR-RNA FISH was then 

carried out as described in 2.5.2. 

 

2.6. DNA FISH 

 

2.6.1. DNA FISH Probe design 

DNA FISH probes were designed against a 10 kb region spanning the DIP1 and 

flamenco genomic loci (chrX:21,624,796-21,634,619) using Oligominer (Beliveau et 

al., 2018). Probes with the desired characteristics were first identified using blockparse 

(settings used -l 31 -L 35 -g 35 -G 80 -S 10) and then aligned to the genome using 

bowtie2 to keep only those mapping to a unique location. Probes were further screened 

for the presence of highly abundant k-mers using jellyfish. The final set of 74 probes 

(half against the sense strand and half against the antisense) were completed with the 

addition of the SABER primer sequences at their 3’ends (tttCAACTTAAC). Each final 

probe is thus structured as follows: 5’-[probe sequence] - TTT - [9-mer primer 

sequence]-3’. All oligo probes were ordered from IDT (25 nmole DNA Plate Oligo; 

Standard Desalting; 200 µM resuspended in IDTE Buffer pH 7.5 (10 mM Tris-HCl, 0.1 

mM EDTA)) as well as the PER hairpin, the imager strand conjugated to ATTO-647 

fluorescent dye and the ‘clean G’ hairpin (as described in Kishi et al., 2019). 

PER amplification was carried out prior to each DNA FISH experiment as described in 

(Kishi et al., 2019). A reaction mix containing 10 µl of 10x PBS, 10 µl of MgSO4 (100 
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mM; NEB), 5 µl of dNTP mix (A,C,T only at 6 µM each; NEB), 10 µl of clean.G haipin 

(1 µM), 0.5 µl of Bst LF Polymerase (NEB), 10 µl of PER hairpin (5 µM) and 44.5 of 

water was incubated for 15 min at 37°C. 10 µl of probe oligo pool (10 µM) were added 

to the mix and the reaction was incubated for 3 hrs at 37°C, followed by 20 min at 80°C 

to inactivate the polymerase. The extended probes were used directly for DNA FISH. 

 

2.6.2. SABER DNA FISH in OSCs 

DNA FISH was carried out as described in (Kishi et al., 2019). OSCs were plated on 

Fibronectin-coated slides and fixed for 10 min in 4% PFA, permeabilized for 10 min in 

PBS, 0.5% TritonX-100 and washed twice in PBS with 0.1% Tween-20 (PBST). If 

necessary, DNase treatment was carried out at this stage by incubation with 4 µl of 

Turbo DNase in 100 µl of 1x Turbo DNase buffer for 30 min at 37°C. Cells were 

incubated 5 min in 0.1 N HCl, washed twice in PBST and incubated in 2x SSCT (2x 

SSC with 0.1% Tween-20) with 50% formamide for 2 hrs at 60°C. Cells were 

hybridised in 80 µl of ISH solution consisting of 2× SSCT, 50% formamide, 10% 

dextran sulfate, 400 ng/µl RNase A and each PER extension at a final concentration of 

~67 nM (1:15 dilution from 1 µM PER). After denaturation for 3 min at 80°C, cells 

were incubated overnight at 44°C in a humidified incubator. Hybridised samples were 

washed 4x5 min in prewarmed 2x SSCT at 60°C and then twice at room temperature. 

80 µl of fluorescent hybridisation solution consisting of 1× PBS and 1 µM fluorescent 

imager strands were added to the samples and incubated for 1 hr at 37°C. Cells were 

washed 3x5 min in prewarmed PBS at 37°C, stained for 10 min at room temperature 

with DAPI (1:1,000 dilution in PBS) and mounted using ProLong Diamond Antifade 

Mountant (Thermo Fisher Scientific #P36961). Samples were imaged on a Leica SP8 

confocal microscope (100x Oil objective). 

 

2.6.3. Immunofluorescence and SABER DNA FISH in OSCs 

For co-staining of DNA and protein, the DNA FISH was carried out first as described 

in 2.6.2. After fluorescent imager strands hybridisation, cells were washed 3x 5 min in 

PBS and then transferred to the blocking solution (PBST+1%BSA). Primary antibodies 

were diluted 1:200 in PBST and 0.1% BSA and incubated 2 hrs at room temperature. 

After 3x5 min washes in PBST, secondary antibodies were incubated for 1 hr at room 

temperature. After 3x5 min washes in PBST, DAPI was incubated for 10 min at room 

temperature (1:1,000 dilution in PBS) and washed twice in PBST. Coverslips were 
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mounted with ProLong Diamond Antifade Mountant (Thermo Fisher Scientific 

#P36961) and imaged on a Leica SP8 confocal microscope (100x Oil objective). 

 

2.7. Image analysis on Fiji 

 

Acquired images were analysed on Fiji using custom scripts. A representative script is 

provided as Appendix VIII.1. Briefly, each channel was converted to a monochromatic 

inverted grey image, the same dynamic range was applied for each channel across different 

samples and then converted to RGB. For the composite image, the same dynamic range was 

applied as in the monochromatic image and the channels merged and converted to RGB. 

The nuclear outline was drawn based on the DAPI signal and merged with the other 

channels using Photoshop. 

 

2.8. RNA-seq 

 

2.8.1. RNA isolation for RNA seq 

RNA samples used for library preparation were extracted using the RNeasy Mini Kit 

(Qiagen 74106). Samples from cells or ovaries were lysed in 1 ml Trizol, then 200 µl 

of Chloroform were added, followed by 15 min centrifugation at 12,000g at 4°C. The 

upper aqueous phase was mixed with 1 volume of 70% Ethanol and directly transferred 

to the RNeasy column, followed by 15 sec spin at 8,000g at room temperature. The resin 

was washed once with 350 µl of RW1 buffer. DNase digestion was performed on the 

column by adding 10 µl of DNase I mixed with 70 µl of RDD1 buffer and incubating 

for 15 min at room temperature. 350 µl of RW1 buffer were added to the resin, incubated 

5 min, followed by 15 sec spin at 8,000g. The resin was washed twice by adding 500 µl 

of RPE buffer followed by 15 sec spin at 8,000g. To elute RNA, 30 µl of nuclease-free 

water were added to the column, incubated for 2 min at room temperature and recovered 

by centrifugation for 1 min at top speed. RNA concentration was measured on a 

NanoDrop Spectrophotometer. 

 

2.8.2. Library preparation 

Ribosomal RNAs were depleted using RiboPOOLs against Drosophila melanogaster 

rRNAs (siTOOLs Biotech). riboPOOLs were first hybridised to 1 µg of RNA by adding 

1 µl of resuspended riboPOOLS (100 µM), 5 µl of Hybridisation buffer (10 mM Tris-

HCl pH 7.5, 1 mM EDTA, 2 M NaCl) and 1 µl of RNAse Inhibitor Plus (Promega), 
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incubating for 10 min at 68°C and cooling down slowly to 37°C. Meanwhile, 80 µl of 

MyOne Streptavidin C1 beads (Thermo Fisher 65001) for each sample were washed 

twice in 100 µl of Beads Resuspension Buffer (0.1 M NaOH, 0.05 M NaCl) and twice 

in 100 µl of Beads Wash Buffer (0.1 M NaCl). The beads were resuspended in 160 µl 

of Depletion buffer (5 mM Tris-HCl pH 7.5, 0.5 mM EDTA, 1 M NaCl) and divided 

into two 80 µl aliquots for two consecutive rounds of rRNA depletion. Hybridised 

riboPOOLs were incubated with 80 µl of washed beads, mixed well and incubated for 

15 min at 37°C, followed by 5 min at 50°C. The supernatant was added to the second 

tube containing 80 µl of washed beads and incubated for 15 min at 37°C, followed by 

5 min at 50°C. The rRNA-depleted RNA samples were then transferred to a fresh tube 

and purified using Agencourt RNAClean XP beads (Beckman Coulter A63987). 2.2x 

Agencourt RNAClean XP beads were added to the sample, vortexed and incubated on 

ice for 15 min. the supernatant was discarded and the beads washed twice in 300 µl of 

freshly prepared 80% Ethanol. The beads were air-dried for 3 min and the RNA 

resuspended in 8 µl of nuclease-free water. 5 µl of cleaned-up RNA were used directly 

for library preparation. 

 

RNAseq libraries were prepared using the NEBNext Ultra Directional Library Prep Kit 

for Illumina (NEB #E7760), according to the manufacturer’s instructions for ribosome-

depleted RNA. 5 µl of rRNA-depleted RNA (see above) were fragmented by mixing 

with 1 µl of Random Primers and 4 µl of NEBNext First Strand Synthesis Reaction 

Buffer and incubated 15 min at 94°C. First Strand cDNA synthesis was performed by 

adding 0.5 µl of Murine RNase Inhibitor, 5 µl of Actinomycin D (0.1 µg/µl), 1 µl of 

ProtoScript II Reverse Transcriptase and 3.5 µl of nuclease-free water followed by 

incubation for 10 min at 25°C, 15 min at 42°C and 15 min at 70°C. 48 µl of nuclease-

free water, 8 µl of Second Strand Synthesis Reaction Buffer and 4 µl of Second Strand 

Synthesis Enzyme mix were added to the sample and second strand cDNA synthesis 

was performed for 1 hr at 16°C. cDNA was purified using 1.8X Agencourt AMPure XP 

beads (Beckman). 1.8X beads were mixed with 20 µl of cDNA, vortexed and incubated 

for 5 min at room temperature. Samples were placed on a magnetic rack, the supernatant 

discarded and the beads washed twice in freshly-prepared 80% Ethanol. Beads were air-

dried for 5 min at room temperature and the cDNA eluted in 60 µl of 0.1X TE Buffer. 

55.5 µl of eluted cDNA were subjected to End-Prep reaction by adding 6.5 µl of 

NEBNext End Repair Reaction Buffer and 3 µl of NEBNext End Prep Enzyme mix and 

incubating for 30 min at 20°C and 30 min at 65°C. Adaptor ligation was performed by 
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adding to 65 µl of End-Prep reaction mix 15 µl of Blunt T/A Ligase Master Mix, 1 µl 

of NEBNext Adaptor (1.5 µM) and 2.5 µl of nuclease-free water and incubating for 15 

min at 20°C. The ligation reaction was purified using 1.0X Agencourt AMPure XP 

Beads (Beckman) as described above and resuspended in 52 µl of 0.1X TE. 50 µl of the 

supernatant were subjected to a second round of clean-up using 1.0X Agencourt 

AMPure XP Beads (Beckman) and resuspended in 19 µl of 0.1X TE. 17 µl of eluted 

library were used for PCR enrichment by adding 3 µl of NEBNext USER enzyme, 25 

µl of NEBNext Q5 Hot Start HiFi PCR Master Mix, 2.5 µl of Universal forward i5 

Primer and 2.5 µl of Indexed Reverse i7 primer. Library enrichment PCR was carried 

out as follows: 

  15 min at 37°C 

  30 sec at 98°C 

  13 cycles: 

   10 sec at 98°C 

   75 sec at 65°C 

  5 min at 65°C 

The amplified library was purified using 45 µl of Agencourt AMPure XP Beads, eluted 

in 23 µl of 0.1X TE and 20 µl were transferred to a new tube. A 2x dilution was analysed 

on a Tapestation instrument (Agilent). DNA libraries were quantified with the KAPA 

Library Quantification Kit for Illumina (Kapa Biosystems) and deep-sequenced with 

Illumina HiSeq 4000 (Illumina). 

 

2.8.3. Data analysis 

Raw fastq files generated by Illumina sequencing were analysed by a pipeline developed 

in-house. In short, for CLIP-seq the first 5 bases of each 50 bp read were removed using 

fastx trimmer (http://hannonlab.cshl.edu/fastx_toolkit/). After removal of reads 

mapping to Drosophila rRNA using STAR, high-quality reads were aligned to the 

Drosophila melanogaster genome release 6 (dm6; downloaded from Flybase) (Hoskins 

et al., 2015) using STAR (Dobin et al., 2013). For transposon-wide analysis, genome 

multi-mapping reads were randomly assigned to one location using option '--

outFilterMultimapNmax 1000 --outMultimapperOrder Random' and non-mapping 

reads were removed. Alignment files were then converted back to fastq format with 

samtools (Li et al., 2009) and re-aligned to the transposon consensus sequences allowing 

multi-mappers that were assigned to a random position. Generated bam alignment files 

were indexed using samtools index. For genome-wide analyses, multi-mapping reads 
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were removed to ensure unique locations of reads. Normalization was achieved by 

calculating rpm (reads per million) using the deepTools2 bamCoverage function with 

10 bp bin sizes (Ramirez et al., 2016). Reads mapping to genes were counted with htseq 

(Anders et al., 2015) and transposon derived reads were calculated using a custom script 

(Appendix VIII.2). Differential expression analysis was performed using custom built 

R scripts (Appendix VIII.3-4). Coordinates used for the piRNA clusters are 

chrX:21631891-22282863 (flam) and chrX:21520428-21556793 (20A). 

 
2.9. small RNA-seq 

 

2.9.1. Library preparation 

15 µg of RNA from OSCs or ovaries were used for small RNA library preparation as 

described in (McGinn and Czech, 2014). RNA samples were mixed with radioactively 

labelled 19- and 28-nt RNA oligos and run on a 15% denaturing polyacrylamide gel for 

size selection. The gel fragment between the 19- and 28-nt markers was excised and the 

RNA eluted by soaking overnight in 0.4 M NaCl. RNA samples were cleaned up from 

residual gel fragments using a Micropore 0.22 µm filter column (Millipore) and 

precipitated for 2 hrs at -20°C with 1.2 ml Ethanol and 1 µl Glycoblue (Ambion). RNA 

was pelleted by centrifugation for 30 min at top speed and resuspended in 10 µl of 

nuclease-free water. 3’ adaptor ligation was carried out by adding 4 µl of PEG, 2 µl of 

10x ATP-free T4 RNA ligase buffer, 1 µl of RNase Inhibitor, 1 µl of 100 µM 3’ adaptor 

(oLig3), and 2 µl of T4 RNA ligase 2 truncated K227Q and incubating 6 hrs at 16°C. 

Ligated RNAs were separated on a 10% denaturing polyacrylamide gel. The gel 

fragment between the 57- and 66-nt size markers (ligated to the 3’ adaptor) was excised 

and the RNA eluted by soaking overnight in 0.4 M NaCl. RNA samples were cleaned 

up from residual gel fragments using a Micropore 0.22 µm filter column and 

precipitated for 2 hrs at -20°C with 1.2 ml EtOH and 1 µl Glycoblue. RNA was pelleted 

by centrifugation for 30 min at top speed and resuspended in 12 µl of nuclease-free 

water. 5’ adaptor ligation was carried out by adding 2 µl of DMSO, 2 µl of 10x T4 RNA 

ligase buffer, 1 µl of RNase inhibitor, 1 µl of 100 µM 5’ adaptor (oLig5), and 2 µl of T4 

RNA ligase and incubating for 2.5 hrs at 37°C. Ligated RNAs were separated on a 8% 

denaturing polyacrylamide gel. The gel fragment between the 90- and 99-nt size 

markers (ligated to the 5’ adaptor) was excised and the RNA eluted by soaking 

overnight in 0.4 M NaCl. RNA samples were cleaned up from residual gel fragments 

using a Micropore 0.22 µm filter column and precipitated for 2 hrs at -20°C with 1.2 ml 
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EtOH and 1 µl Glycoblue. RNA was pelleted by centrifugation for 30 min at top speed 

and resuspended in 11 µl of nuclease-free water. Reverse transcription was carried out 

using Superscript III First Strand Synthesis Kit (Thermo Fisher Scientific). Ligated 

RNAs were mixed with 1 µl of 10mM dNTPmix and 1 µl of 100 µM oRT primer and 

incubated for 3 min at 65°C, then cooled on ice. Reverse Transcription was performed 

by adding 4 µl of 5x First-Strand Buffer, 1 µl of 0.1 M DTT, 1 µl of RNase inhibitor, 

and 1 µl of SuperScript III reverse transcriptase and incubating for 60 min at 50°C, then 

at 70°C for 15 min. 2.5 µl of library cDNA were amplified via PCR by adding 5 µl of 

10X PCR buffer, 5 µl of 2 mM dNTP mix, 3 µl of MgSO4 (25 mM), 0.5 µl of KOD 

Polymerase, 34.25 µl of nuclease-free water, 0.5 µl of 100 µM oPCR5 and 1 µl of 100 

µM indexed oPCR3_x (containing different indices for each libraries). The PCR 

reaction was run as follows: 

95°C for 2 min followed by 5 cycles of: 

95°C for 15 sec 

54°C for 30 sec 

72°C for 15 sec 

Run an additional 17 cycles of:  

95°C for 15 sec 

60°C for 30 sec 

72°C for 15 sec 

followed by: 72°C for 2 min  

4°C forever 

The PCR reaction was purified using the Wizard® SV Gel and PCR Clean-Up System 

(Promega A9285) according to the manufacturer’s instructions and resuspended in 27 

µl of nuclease-free water. Non-ligated oligos were removed by PmeI digestion, via 

adding 3 µl of Cutsmart Buffer (NEB) and 2 µl of PmeI enzyme and incubating for 2 

hrs at 37°C. The samples were run on a 2% agarose gel and the band corresponding to 

~145-154bp was excised and purified using the Wizard® SV Gel and PCR Clean-Up 

System (Promega A9285), then eluted in 30 µl of nuclease-free water. The libraries 

were quantified using a NanoDrop Spectrophotometer, quantified with KAPA Library 

Quantification Kit for Illumina (Kapa Biosystems) and deep-sequenced with Illumina 

HiSeq 4000 (Illumina). 

 

2.9.2. Data analysis 
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For small RNA-seq, adapters were clipped from raw fastq files with fastx_clipper 

(adapter sequence AGATCGGAAGAGCACACGTCTGAACTCCAGTCA) keeping 

only reads with at least 23 bp length. The first and last 4 bases were trimmed using seqtk 

(https://github.com/lh3/seqtk). After removal of cloning markers and reads mapping to 

rRNAs and tRNAs using STAR, high-quality reads were aligned to the Drosophila 

melanogaster genome release 6 (dm6; downloaded from Flybase) using STAR (Dobin 

et al., 2013). For transposon-wide analysis, genome multi-mapping reads were 

randomly assigned to one location using option '--outFilterMultimapNmax 1000 --

outMultimapperOrder Random' and non-mapping reads were removed. Alignment files 

were then converted back to fastq format with samtools (Li et al., 2009) and re-aligned 

to the transposon consensus sequences allowing multi-mappers that were assigned to a 

random position. Generated bam alignment files were indexed using samtools index. 

For genome-wide analyses, multi-mapping reads were removed to ensure unique 

locations of reads. Small RNA-seq reads were normalised to miRNA reads in the control 

library (set to rpm). Only high-quality small RNA reads with a length between 23 and 

29 bp were used for further analysis of small RNA profiles. piRNA distribution was 

calculated and plotted in R. The ping-pong signature was calculated using piPipes (Han 

et al., 2015). 

 

2.10. CLIP-seq 

 

2.10.1. HALO-CLIP 

1x107 OSCs were nucleofected first with 2 µl of siRNA only and, 48 hrs later, with 2 

µl of siRNA and 5 µg of the desired plasmid. 96 hrs later, cells were crosslinked on ice 

with 150 mJ/cm2 at 254 nm. Cell pellets were lysed in 300 µl of Lysis Buffer (50 mM 

Tris-HCl pH 7.5, 150 mM NaCl, 1% Triton® X-100, 0.1% deoxycholate, Protease 

Inhibitor [1:50 Promega] and RNasin Plus [1:500, Promega]), for 30 min at 4°C. For 

CLIP of nuclear proteins, DNase digestion was performed by adding 2 ul (4U) of Turbo 

DNase to the cell lysate and immediately placing the samples at 37°C for 3 min, shaking 

at 1,100 rpm. Samples were transferred to and kept on ice for >3 min, then cleared by 

centrifugation at top speed for 20 min at 4°C. Protein concentration was measured with 

a Direct Detect instrument and equal amounts of cell lysates were diluted up to 1 ml 

with 100 mM Tris-HCl pH 7.5, 150 mM NaCl and incubated with 200 µl of Magne-

HaloTag® (Promega G7282) beads overnight at 4°C. Beads were washed 2x in Wash 

Buffer A (100 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.05% IGEPAL® CA-630), 3x in 
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Wash Buffer B (PBS, 500 mM NaCl, 0.1 % Triton X-100, RNasin Plus 1:2,000), 3x in 

PBS, 0.1% Triton X-100, and rinsed in Wash Buffer A. For release of the bait protein 

from the tag, beads were resuspended in 100 µl of 1X ProTEV Buffer, 1 mM DTT and 

RNasin Plus (1:50) and 25 units of ProTEV Plus Protease (Promega V6101) and 

incubated 2 hrs at 30°C, shaking at 1,300 rpm. The supernatant containing the eluted 

protein and the crosslinked RNA was transferred to a fresh tube and 15 µl Proteinase K 

in 300 µl PK/SDS buffer (100 mM Tris, pH 7.5; 50 mM NaCl; 1 mM EDTA; 0.2% 

SDS) were added to the eluate and incubated 1 hr at 50°C. 400 µl of 

Phenol:Chloroform:Isoamyl alcohol were added to the tube, vortexed thoroughly and 

spun for 10 min at 12,000g at room temperature. The upper aqueous phase was 

precipitated overnight at -20°C with 40 µl of 3M sodium acetate pH 5.5, 1 µl of 

Glycoblue and 1 ml of Ethanol. RNA was pelleted by 30 min centrifugation at 4°C, 

washed once with 80% Ethanol and resuspended in 8 µl of nuclease-free water. The 

recovered RNA was used directly for library preparation. 

 

2.10.2. Library preparation 

Library preparation for deep sequencing was carried out with the SMARTer® Stranded 

RNAseq kit (Takara Bio 634839), according to the manufacturer’s instructions. Prior to 

the first-strand cDNA synthesis, 8 µl of CLIP RNA were fragmented by mixing with 1 

µl of SMART stranded N6 primer and 4 µl of 5x First Strand Buffer and incubating for 

4 min at 94°C, then cooled on ice for 2 min. The first strand reaction master mix 

(containing 0.5 µl DTT, 0.5 µl of RNase Inhibitor, 2 µl of dNTP mix, 2 µl of SMARTer 

Stranded oligo and 2 µl of SMARTScribe Reverse Transcriptase) was immediately 

added to the fragmented RNA and the reaction was incubated for 90 min at 42°C 

followed by 10 min at 70°C. The cDNA was purified AMPure XP beads as follows. 20 

µl of beads were mixed with 20 µl of cDNA, vortexed and incubated for 8 min at room 

temperature. Samples were placed on a magnetic rack, the supernatant discarded and 

the beads washed twice in freshly-prepared 70% Ethanol. Beads were air-dried for 5 

min at room temperature and the cDNA eluted in 20 µl of Nuclease-free water. Library 

PCR amplification reaction was set up by adding to the purified cDNA 25 µl of 2X 

SeqAmp PCR Buffer, 2 µl of pre-mixed Forward and Reverse SMARTer RNA Dual 

Indexes (Clontech 634451), 1 µl of SeqAmp DNA Polymerase and 2 µl of Nuclease-

free water. The PCR reaction was carried out as follows:  

  1 min at 94°C 

  18 cycles: 
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   15 sec at 98°C 

   15 sec at 55°C 

   30 sec at 68°C 

The amplified library was purified with 50 µl of AMPure XP beads as described above. 

The purified library was eluted in 20 µl of Stranded Elution Buffer and a 1:4 dilution 

was analysed on a Bioanalyser or Tapestation instrument (Agilent). DNA libraries were 

quantified with KAPA Library Quantification Kit for Illumina (Kapa Biosystems) and 

deep-sequenced with Illumina HiSeq 4000 (Illumina). 

 

2.10.3. Data analysis 

Raw fastq files generated by Illumina sequencing were analysed by a pipeline developed 

in-house. In short, for CLIP-seq the first 5 bases of each 50 bp read were removed using 

fastx trimmer (http://hannonlab.cshl.edu/fastx_toolkit/). After removal of reads 

mapping to Drosophila rRNA using STAR, high-quality reads were aligned to the 

Drosophila melanogaster genome release 6 (dm6; downloaded from Flybase) using 

STAR (Dobin et al., 2013). For transposon-wide analysis, genome multi-mapping reads 

were randomly assigned to one location using option '--outFilterMultimapNmax 1000 -

-outMultimapperOrder Random' and non-mapping reads were removed. Alignment 

files were then converted back to fastq format with samtools (Li et al., 2009) and re-

aligned to the transposon consensus sequences allowing multi-mappers that were 

assigned to a random position. Generated bam alignment files were indexed using 

samtools index. For genome-wide analyses, multi-mapping reads were removed to 

ensure unique locations of reads. Normalization was achieved by calculating rpm (reads 

per million) using the deepTools2 bamCoverage function with 10 bp bin sizes (Ramirez 

et al., 2016). Reads mapping to genes were counted with htseq (Anders et al., 2015) and 

transposon derived reads were calculated using a custom script (Appendix VIII.2). 

Differential expression analysis was performed using custom built R scripts (Appendix 

VIII.3-4). Coordinates used for the piRNA clusters are chrX:21631891-22282863 

(flam) and chrX:21520428-21556793 (20A). 

 

2.11. RIP-seq 

 

2.11.1. GFP RIP from fly ovaries 

Ovaries from ~100 GFP-Panx or GFP-Nxf2 flies (3-5 days old) were dissected in ice-

cold PBS and fixed with 0.1% PFA for 20 min, followed by quenching with equal 
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volumes of 125 mM Glycine. Fixed ovaries were lysed in 200 µl of RIPA Buffer 

(supplemented with complete protease inhibitors (Roche) and RNasin Plus 40 U/ml) 

and homogenized using a motorized pestle. Lysates were incubated 3 min at 37 °C with 

4 µl of Turbo DNase, incubated 20 min at 4°C on a tube rotator and sonicated with a 

Bioruptor® Pico (Diagenode; 3 cycles of 30 sec on/30 sec off). Lysates were pre-cleared 

using 40 µl of Pierce Protein A/G beads for 1 hr at 4°C and GFP-tagged proteins were 

immunoprecipitated by incubation with 50 µl of GFP-Trap magnetic agarose beads 

(Chromotek) overnight at 4°C. An aliquot of pre-cleared input lysate was saved for 

RNA isolation and library preparation. Following 3 washes in 150 mM KCl, 25 mM 

Tris (pH 7.5), 5 mM EDTA, 0.5% NP40, 0.5 mM DTT (supplemented with protease 

inhibitors and RNasin Plus 1:1,000), IP and input samples were reverse crosslinked in 

1x Reverse Crosslinking buffer (PBS, 2% Nlauroyl sarcosine, 10 mM EDTA, 5 mM 

DTT) and Proteinase K. RNA isolation was performed using Trizol and quantified using 

NanoDrop. 

 

2.11.2. Library preparation 

100 ng of input or IP RNA were used for library preparation using the SMARTer® 

stranded RNA-seq Kit (Takara Bio 634839), as described in 2.10.2. DNA libraries were 

quantified with KAPA Library Quantification Kit for Illumina (Kapa Biosystems) and 

deep-sequenced with Illumina HiSeq 4000 (Illumina). 

 

2.11.3. Data analysis 

Analysis was carried out as described for CLIP-seq in 2.10.3. 

 

2.12. Proximity labelling and Mass Spectrometry (PL-MS) 

 

2.12.1. BASU PL and pulldown 

4x106 OSCs were transfected with 20 µg of plasmid expressing an HA-BASU fusion or 

HA-ZsGreen. After 48 hrs, the media was supplemented with 200 µM Biotin for 1 hr. 

Cell pellets were lysed in 1.8 ml Lysis buffer (50 mM Tris, pH 7.4, 500 mM NaCl, 0.4% 

SDS, 1 mM DTT, 2% Triton-100 with protease inhibitors) and sonicated using a 

Bioruptor Pico (Diagenode, 3x cycles 30 sec on / 30 sec off). Sonicated lysates were 

diluted 2x in 50 mM Tris, pH 7.4 and cleared for 10 min at 16,500g. Following pre-

clearing of the lysate with 100 µl of Protein A/G Dynabeads (Thermo Fischer Scientific 

10015D), biotinylated proteins were isolated by incubation with 200 µl of Dynabeads 



 56 

(MyOne Streptavidin C1; Life Technologies) overnight at 4°C. The beads were washed 

2x in 2% SDS, 2x in Wash Buffer 1 (0.1% deoxycholate, 1% Triton X-100, 500 mM 

NaCl, 1 mM EDTA, and 50 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, 

pH 7.5), 2x with Wash Buffer 2 (250 mM LiCl, 0.5% NP-40, 0.5% deoxycholate, 1 mM 

EDTA, and 10 mM Tris, pH 8), and 2x with 50 mM Tris. Beads were rinsed twice with 

100 mM Ammonium Bicarbonate and submitted for Mass Spectrometry by the CRUK 

CI proteomics core facility. HA-BASU-Daed, Yb, Nup54 and Nup58 pulldowns were 

subjected to TMT-labelling followed by quantitative Mass Spectrometry on a nano-ESI 

Fusion Lumos mass spectrometer (Thermo Fisher Scientific). BASU-Gasz, Armi-

BASU, Zuc-BASU and Zuc-SplitBioID pulldowns were analysed on a Q-Exactive HF 

mass spectrometer (Thermo Fisher Scientific). On bead Trypsin digestion and TMT 

chemical isobaric labelling were performed as described (Papachristou et al., 2018). 

 

2.12.2. Split-BioID PL and pulldown 

4x106 OSCs were transfected with 10 µg of each plasmid expressing Zuc-CBirA*-6xHis 

and Zuc-NBirA*-HA or 20 µg of HA-ZsGreen. After 36 hrs, the growth media was 

supplemented overnight (~18 hrs) with 50 mM Biotin. Harvesting and pulldown of 

biotinylated proteins were performed as stated in 2.12.2. 

 

2.12.3. Data analysis 

Spectral .raw files from PL-MS of BASU-Daed, Yb, Nup54 and Nup58 were processed 

with the SequestHT search engine on Thermo ScientificTM Proteome Discoverer™ 2.1. 

Data was searched against a custom FlyBase database (“dmel-all-translation-r6.24”) at 

1% spectrum level FDR criteria using Percolator (University of Washington). MS1 

mass tolerance was constrained to 20 ppm and the fragment ion mass tolerance was set 

to 0.5 Da. TMT tags on lysine residues and peptide N termini (+229.163 Da) were set 

as static modifications. Oxidation of methionine residues (+15.995 Da), deamidation 

(+0.984) of asparagine and glutamine residues, and biotinylation of lysines and protein 

N-terminus (+226.078) were included as dynamic modifications. For TMT-based 

reporter ion quantitation, we extracted the signal-to-noise ratio for each TMT channel. 

Parsimony principle was applied for protein grouping and the level of confidence for 

peptide identifications was estimated using the Percolator node with decoy database 

search. Strict FDR was set at q-value < 0.01. Downstream data analysis was performed 

on R using the qPLEXanalyzer package (https://doi.org/10.5281/zenodo.1237825) as 
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described (Papachristou et al., 2018). Only proteins with more than one unique peptide 

were plotted. 

Spectral .raw files from PL-MS of BASU-Gasz, Armi-BASU, Zuc-BASU, Zuc Split-

BioID were processed with the SequestHT search engine on Thermo ScientificTM 

Proteome Discoverer™ 2.2. The node for SequestHT included the same parameters as 

above (except Fragment Mass Tolerance set to 0.02 Da) and modifications. The 

Precursor Ion Quantifier node (Minora Feature Detector) included a Minimum Trace 

Length of 5, Max. ΔRT of Isotope Pattern 0.2 minutes. For calculation of Precursor ion 

intensities, Feature mapper was set True for RT alignment (mass tolerance of 10 ppm). 

Precursor abundance was quantified based on intensity and the level of confidence for 

peptide identifications was estimated using the Percolator node with a Strict FDR at q-

value < 0.01. Analysis of label-free quantification protein intensity data was carried out 

in R (v 3.5.1) using the qPLEXanalyzer package (v 1.0.3) (Papachristou et al., 2018). 

Peptides for which all control (ZsGreen) samples lacked measurements or for which 

more than 1 target protein sample lacked measurements were discarded. Remaining 

missing values were then imputed using the nearest neighbour averaging (knn) 

imputation method provided in the R package MSnbase (v 2.8.3) (Gatto and Lilley, 

2012). Differential analysis was carried out by linear modelling using limma based 

methods provided by the qPLEXanalyzer package. Multiple testing correction of p-

values was applied using the Benjamini & Yekutieli method to control FDR (Benjamini 

et al., 2001). Only proteins with more than one unique peptide were plotted. 

 

2.13. Immunoprecipitation and Mass Spectrometry (IP-MS) 

 

2.13.1. GFP IP-MS from fly ovaries 

Ovaries from ~170 GFP-Panx, GFP-Nxf2 and control flies (3-5 days old) were dissected 

in ice-cold PBS and lysed in 300 µl of CoIP Lysis Buffer (20 mM Tris-HCl pH 7.5, 150 

mM NaCl, 2 mM MgCl2, 10% glycerol, 1 mM DTT, 0.1 mM PMSF, 0.2% NP-40 

supplemented with complete protease inhibitors [Roche]) and homogenized using a 

motorized pestle. Lysates were cleared for 5 min at 16,000g and the residual pellet re-

extracted with the same procedure. GFP-tagged proteins were immunoprecipitated by 

incubation with 30 µl of GFP-Trap magnetic beads (Chromotek) for 3 hrs at 4°C on a 

tube rotator. The beads were washed 6x with Lysis Buffer and 2x with 100 mM 

Ammonium Bicarbonate, before TMT-labelling followed by quantitative Mass 
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Spectrometry. TMT chemical isobaric labelling was performed as described 

(Papachristou et al., 2018). 

 

2.13.2. FLAG IP-MS from OSCs 

10x106 OSCs were nucleofected with 2 µl of an siRNA targeting Yb 3’UTR and, two 

days later, again with 2 µl of the same siRNA and 5 µg of plasmid expressing 3xFLAG-

tagged constructs, as described in 2.2.2.3. Cell pellets were lysed in 250 µl of CoIP 

Lysis Buffer (Choi et al.) with cOmplete™ Mini EDTA-free Protease Inhibitor Cocktail 

(Roche; 11836170001) and rotated at 4°C for 30 min. Cell lysates were cleared with 

centrifugation at top speed for 15 min at 4°C and protein concentration measured with 

a Direct Detect Spectrometer (Merck Millipore; DDHW00010-WW). 400 µg of protein 

for each sample were diluted to 1 ml with CoIP Lysis Buffer and incubated with 50 µl 

of anti-FLAG M2 Magnetic Beads (Sigma M8823) overnight at 4°C. The beads were 

washed 3x15 min in TBS with protease inhibitors and a 10% aliquot was saved for 

western blot analysis. The remaining beads were rinsed 2x in PBS and 2x in 100 mM 

Ammonium Bicarbonate, prior to submission for TMT labelling and quantitative Mass 

Spectrometry. TMT chemical isobaric labelling was performed as described 

(Papachristou et al., 2018). 

 

2.13.3. Data analysis 

Spectral .raw files were processed with the SequestHT search engine on Thermo 

ScientificTM Proteome Discoverer™ 2.1. Data was searched against a custom FlyBase 

database (“dmel-all-translation-r6.24”) at a 1% spectrum level FDR criteria using 

Percolator (University of Washington). MS1 mass tolerance was constrained to 20 ppm 

and the fragment ion mass tolerance was set to 0.5 Da. TMT tags on lysine residues and 

peptide N termini (+229.163 Da) were set as static modifications. Oxidation of 

methionine residues (+15.995 Da), deamidation (+0.984) of asparagine and glutamine 

residues, and biotinylation of lysines and protein N-terminus (+226.078) were included 

as dynamic modifications. For TMT-based reporter ion quantitation, we extracted the 

signal-to-noise ratio for each TMT channel. Parsimony principle was applied for protein 

grouping and the level of confidence for peptide identifications was estimated using the 

Percolator node with decoy database search. Strict FDR was set at q-value < 0.01. 

Downstream data analysis was performed on R using the qPLEXanalyzer package 

(https://doi.org/10.5281/zenodo.1237825) as described (Papachristou et al., 2018). Only 

proteins with more than one unique peptide were plotted. 
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2.14. Co-IP from cells 

 

S2 cells or OSCs were transfected with 3xFLAG- and HA-tagged constructs. After 48 hrs, 

cells were lysed in 250 µl of CoIP Lysis Buffer (Choi et al.) with cOmplete™ Mini EDTA-

free Protease Inhibitor Cocktail (Roche; 11836170001). For cross-linking experiments, cell 

pellets were incubated with disuccinimidyl sulfoxide at 1 mM final concentration (diluted 

in PBS) for 10 min at room temperature and 20 min at 4°C followed by lysis in 50 mM Tris, 

pH 7.4, 500 mM NaCl, 0.4% SDS, 1 mM dithiothreitol, 2% Triton-100 with protease 

inhibitors and sonication using a Bioruptor Pico (Diagenode; 3x cycles 30 sec on / 30 sec 

off). 200 µg of proteins for each sample were diluted to 1 ml with CoIP Lysis Buffer and 

incubated with 30 µl of anti-FLAG M2 Magnetic Beads (Sigma M8823) for 2 hrs at 4°C. 

The beads were washed 3x15 min in TBS with protease inhibitors, then resuspended in 2x 

NuPAGE LDS Sample Buffer (Thermo Fisher Scientific) and boiled for 3 min at 90°C to 

elute immunoprecipitated proteins. 2% of input and unbound fractions and 25% of 

immunoprecipitate were used for Western Blot analysis as described in 2.15. 

 

2.15. Western Blot 

 

Ovaries or cell pellets were lysed in Pierce RIPA Buffer (Thermo Fisher Scientific, 89900) 

supplemented with cOmplete™ Mini EDTA-free Protease Inhibitor Cocktail (Roche; 

11836170001). Protein concentration was measured using a Direct Detect Spectrometer 

(Merck Millipore; DDHW00010-WW). 20 µg of protein were mixed with NuPAGE™ LDS 

Sample Buffer (4X; Thermo Fisher Scientific NP0007) and NuPAGE™ Sample Reducing 

Agent (10X; Thermo Fisher Scientific NP0004) and boiled for 10 min at 70°C. proteins 

were separated on NuPAGE™ 4-12% Bis-Tris Protein Gels (Thermo Fisher Scientific) and 

transferred to a nitrocellulose membrane using a dry transfer system (iBlot™ 2 Dry Blotting 

System; Invitrogen IB21001) with program P0 (20 V for 1 minute, 23 V for 4 minutes, 25 

V for 2 minutes). The membrane was blocked for 1hr at room temperature in 1x Odyssey 

Blocking Buffer TBS (LiCor) and incubated overnight at 4°C with primary antibodies 

diluted in 1x Odyssey Blocking Buffer TBS + 0.1% Tween-20 (TBST). Following 3x5 min 

washes in TBST, the membranes were incubated for 45 min at room temperature with the 

infra-red dye-conjugated secondary antibodies (LiCor; 1: 10,000 dilution in 1x Odyssey 

Blocking Buffer TBST) or Streptavidin (LiCor; 1:4,000 dilution in 1x Odyssey Blocking 

Buffer TBST). Following 3x5 min washes at room temperature with TBS, images were 

acquired on an Odyssey CLx scanner (LiCor) Images were processed using Image Studio. 
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2.16. RNA tethering 

 

For RNA tethering, OSCs with a stable integration of the sensor plasmid (pBC392 and 

pBC468) were generated as described in 2.2.2.4. 4x106 cells were nucleofected with 5 µg 

of plasmid expressing λN-tagged constructs, as described in 2.2.2.2. After 48 hrs, 4x106 

cells were nucleofected again with 5 µg of the same plasmid and allowed to grow for an 

additional 48 hrs before the relative expression of the sensor was analyzed. Western Blot 

and qPCR analysis were carried out as described in 2.15 and 2.3, respectively. 
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BACKGROUND 

 

piRNAs originate from long, single-stranded precursors transcribed from piRNA clusters or 

transposon loci (Brennecke et al., 2007). These precursors are exported to specialised peri-

nuclear structures, namely nuage in germ cells and Yb bodies in somatic cells, where they 

become licensed for downstream processing. Their specification involves the formation of a 5’-

P end, via the ping-pong cycle in nuage or a currently unknown mechanism in Yb bodies 

(Gainetdinov et al., 2018; Han et al., 2015; Mohn et al., 2015; Senti et al., 2015; Wang et al., 

2015). 5’-P precursors are processed on the surface of mitochondria, where the conserved 

endonuclease Zuc cleaves them to release phased ~25 nt long piRNAs (Han et al., 2015; 

Homolka et al., 2015; Ipsaro et al., 2012; Mohn et al., 2015; Nishimasu et al., 2012). The 

mitochondrial localisation of the piRNA biogenesis machinery is a remarkably conserved 

feature, found in many animals in which this process has been characterised so far (Ipsaro et 

al., 2012; Nishida et al., 2018; Nishimasu et al., 2012; Watanabe et al., 2011). Several other 

mitochondrial proteins are required for successful piRNA production but, in many cases, lack 

an ascribed function (Czech et al., 2018). Finally, this process also requires cytosolic factors, 

among which is the Upf1-like RNA helicase Armi, previously identified as necessary for 

piRNA production in somatic and germ cells of the fly ovary (Malone et al., 2009; Olivieri et 

al., 2010; Pandey et al., 2017; Rogers et al., 2017; Saito et al., 2010). 

 

Our current model of piRNA production identifies two subcellular compartments as being 

critical for piRNA production: the nuage/Yb bodies, where piRNA precursors are exported and 

specified for processing, and mitochondria, where piRNAs are produced. Nonetheless, these 

two compartments are spatially separated and it is thus unclear how piRNA precursors are 

specifically recognized and directionally trafficked towards the mitochondrial surface.  

 

RESULTS 

 

III.1 CG10880/Daedalus is a mitochondrially localised protein required for piRNA 

biogenesis 

 

Several genetic screens have provided a general framework of how the production of piRNAs 

is orchestrated (Czech et al., 2013; Handler et al., 2013; Muerdter et al., 2013). Yet, a detailed 

understanding of the role of each of the identified factors is still lacking. Among screen hits 

involved in germline transposon control in Drosophila was the uncharacterised gene CG10880 
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(Czech et al., 2013). The CG10880 locus is on the left arm of chromosome 2 and the 

corresponding transcript shows the highest expression levels in the adult fly ovary, similar to 

other piRNA pathway factors (e.g. armi and zuc in Figure 3.1A) (Chintapalli et al., 2007). 

Depletion of CG10880 in the fly germline (hereafter referred to as GLKD) using shRNAs leads 

to transposon de-repression at levels comparable to that caused by loss of zuc or gasz (Figure 

3.1B) (Czech et al., 2013). Furthermore, Piwi is equally de-localised from germline nuclei upon 

zuc, gasz and CG10880 knockdown (Figure 3.1C). This is a hallmark of impaired piRNA 

biogenesis, since Piwi is unstable without associated piRNAs (Olivieri et al., 2012). Hence, I 

set out to investigate the role of the uncharacterised gene CG10880. 

 

Figure 3.1 CG10880 is implicated in germline transposon control. A) Expression levels of 
armi, zuc, gasz and CG10880 in various tissues of the adult fly. B) Fold changes in the steady-state 
RNA levels of transposons from Germline knockdown (GLKD) ovaries. Values are relative to white (w) 
knockdown and normalised to rp49. Error bars indicate standard deviation (n=2). C) Confocal images 
of Piwi in ovaries upon indicated GLKD.  
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CG10880 encodes a 272 amino acid polypeptide which harbours a Sterile Alpha Motif (SAM, 

possibly involved in protein-protein or protein-RNA interaction), a Coiled Coil (CC, often 

involved in protein oligomerization and linked to various cellular functions) and a predicted 

transmembrane domain at its carboxy-terminus (TMM) (cartoon in Figure 3.2A). Interestingly, 

the CG10880 domain structure resembles that of the established piRNA biogenesis factor Gasz 

(Czech et al., 2013; Handler et al., 2013), which carries two series of ankyrin repeats (ANK, 

mostly involved in protein-protein interactions) in addition to a SAM and a TMM, the latter 

mediating its mitochondria localisation (cartoon in Figure 3.2B). To determine the subcellular 

localisation of CG10880 in the fly ovary, I generated flies expressing a GFP-CG10880 fusion 

under the control of the constitutive Drosophila Ubiquitin promoter. The GFP tag was inserted 

at the amino-terminus to preserve the putative TMM domain. As shown in Figure 3.2C, GFP-

CG10880 co-localises with the mitochondrial marker Atp5a, and is adjacent to but separate 

from nuage, marked by Ago3. This pattern is virtually indistinguishable from that of Zuc-GFP 

(also ubiquitously expressed) or GFP-Gasz (driven by its endogenous regulatory elements) 

(Handler et al., 2013). 

 

Triggered by these results, we hypothesized that CG10880 is implicated in mitochondrial 

piRNA biogenesis and decided to generate null mutants using CRISPR/Cas9. We used a pair 

of gRNAs targeting the 5’ proximal region of the CG10880 Open Reading Frame (ORF) to 

generate indels and obtained two mutant alleles (cartoon in Figure 3.3A). One allele harbours 

a deletion disrupting the ORF of CG10880, thus leading to an aberrant out-of-frame polypeptide 

(CG10880oof1), whilst the other carries a deletion causing a premature stop codon that only 

produces a 4 amino acid peptide (CG10880∆2*) (Figure 3.3A). Unless otherwise specified, all 

the following experiments have been carried out by crossing the two alleles and analysing the 

trans-heterozygous offspring (CG10880oof1/∆2*, hereafter referred to as “homozygous 

mutants”). These are compared to their heterozygous sibling, which are a mixed population of 

the two alleles. The phenotype of CG10880 null mutants was also compared to that of a gasz 

mutant line previously generated in the lab and depicted in Figure 3.3B. The Gasz ORF is 

replaced through knock-in of an RFP cassette under the control of the 3xP3-Hsp70 promoter, 

hereafter referred to as gaszKO.  
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Figure 3.2 CG10880 is a mitochondrial protein. A-B) Cartoon representing CG10880 and Gasz 
domain structure. ANK = Ankyrin repeats, SAM = Sterile Alpha Motif, CC = Coiled Coil, TMM = 
transmembrane domain. C) Confocal images of Zuc-GFP, GFP-Gasz or GFP-CG10880 with Atp5a and 
Ago3 in ovaries. Scale bar, 10µm.   
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Figure 3.3  Mutant alleles of CG10880 and gasz. A) Schematic representation of the CG10880 
domain structure and of the two null alleles (CG10880oof1 and CG10880∆2*). Highlighted in red is the 
portion of coding sequence that is out of frame in the mutants. B) Schematic representation of the 
gaszKO allele. 
 
 
I first asked whether mutations in CG10880 affect female fertility. To do so, I crossed control 

flies (w1118), heterozygous or homozygous mutant females with control males and counted the 

number of eggs laid and how many of those developed into adult flies. As expected from a 

mutant defective in the piRNA pathway, CG10880∆2*/∆2* homozygous mutant females laid 

fewer eggs than controls and none of them hatched. Likewise, gaszKO eggs also failed to hatch 

(Figure 3.4A). I then isolated RNA from heterozygous and homozygous mutant ovaries and 

carried out RT-qPCR analysis to probe for transposon levels. Transposon repression was indeed 

impaired in gasz and CG10880 homozygous mutants, with both soma- and germline-specific 

elements being significantly upregulated compared to controls (Figure 3.4B). Piwi nuclear 

localisation was dramatically lost from both somatic and germ cells of the homozygous mutants 

(Figure 3.4C, extended panel in Figure 3.5A), arguing that CG10880, like Gasz, is required 

for piRNA biogenesis in both compartments of the fly ovary. Interestingly, I observed that 

mutations in CG10880 also impacted the localisation of the RNA helicase Armi (Figure 3.4C, 

extended panel in Figure 3.5A), which is a known piRNA biogenesis factor typically localised 

to nuage and mitochondria. CG10880 homozygous mutants showed that Armi was aberrantly 

dispersed in the cytosol (Figure 3.4C, extended panel in Figure 3.5A). Interestingly, the same 

was true upon gasz loss, both in our mutants and in a previously reported germline knockdown 

(Handler et al., 2013) (Figure 3.4C, extended panel in Figure 3.5A), raising the possibility that 

CG10880 and Gasz are performing similar functions. To further characterise the CG10880   
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Figure 3.4  CG10880/Daedalus is a bona-fide piRNA biogenesis factor acting in soma and 
germline. A) Bar graphs showing the egg hatching rates of female flies of the indicated genotypes. B) 
Fold changes in steady-state RNA levels of the indicated soma- and germline-specific transposons from 
ovaries. Values are relative to w1118 flies and normalized to rp49. * = P value < 0.05; ** = P < 0.001 
(unpaired t-test). Error bars indicate standard deviation (n=4). C) Confocal images of Piwi and Armi in 
ovaries of the indicated genotypes (see also Figure 3.5A-C)  
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mutants, I also probed for the localisation of the nuage proteins Aub and Vasa. Neither was 

affected upon loss of gasz or CG10880 (Figure 3.5B), consistent with a function at the level of 

Zuc-mediated piRNA production and downstream of the ping-pong cycle (Olivieri et al., 2012). 

Finally, CG10880 mutants had a highly altered mitochondrial morphology, again resembling 

what was observed in the absence of gasz (Handler et al., 2013) (Figure 3.5C). Taken together, 

these results suggest that CG10880 is a bona-fide piRNA biogenesis factor involved in Zuc-

mediated processing of phased piRNAs on mitochondria and, since it is required for the correct 

assembly of the mitochondrial “labyrinth” in germ cells, I named it Daedalus (Daed). 

 

 
Figure 3.5  Characterisation of daed and gasz mutants. A-C) Confocal images of Piwi, Armi, 
Vasa, Aub and Atp5a in ovaries. Scale bars, 10µm.[continued to the next page]  
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Given the resemblance between daed and gasz mutant phenotypes and the relatively similar 

domain structure, we also asked whether overexpression of one can rescue loss of the other. 

Toward this goal, we expressed the GFP-Gasz transgene in a daed∆2* homozygous mutant 

background. As shown in Figure 3.6, over-expression of GFP-Gasz did not alleviate either Piwi 

nuclear loss nor the distorted mitochondrial morphology caused by daed knockout. Therefore, 

we concluded that both Gasz and Daed are individually required for piRNA production and 

mitochondria assembly.  

 

 

 

Figure 3.5  Characterisation of daed and gasz mutants. 
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Figure 3.6  Gasz overexpression does not rescue daed mutants. Confocal images of Piwi, Atp5a 
and GFP in ovaries of indicated genotypes. Scale bars, 10µm. 
 

 

piRNA biogenesis involves the ping-pong amplification loop in nuage and the downstream 

production of phased piRNAs on mitochondria, catalysed by Zuc (Han et al., 2015; Mohn et 

al., 2015). Aiming to demonstrate which step of piRNA biogenesis is affected by daed loss, I 

cloned and sequenced small RNAs from ovaries of daed and gasz mutant flies. The global levels 

of transposon-mapping piRNA populations was dramatically reduced in daed and gasz 

homozygous mutants compared to controls (Figure 3.7A and 3.8A), whilst the 21-nt long 

siRNAs appeared unaltered, in line with them being processed via an orthogonal pathway 

(Figure 1.1). Closer inspection of piRNA source loci showed that piRNA production was 

compromised from all types of precursors, namely dual-strand clusters (e.g. 42AB in Figure 

3.7B and 3.8B), uni-strand clusters (e.g. flam in Figure 3.7C and 3.8C) and coding genes (e.g. 

traffic-jam [tj] in Figure 3.7D and 3.8D). On the other hand, the characteristic 10 nucleotide 

overlap between piRNAs mapping to opposite genomic strands, known as the ping-pong 

signature (Brennecke et al., 2007), was unaffected, despite globally diminished levels of piRNA 

ping-pong pairs (Figure 3.7E and 3.8E). This, together with the unperturbed nuage localisation 

of Aub and Vasa, demonstrates that Daed is acting downstream of the ping-pong cycle during 

the production of phased piRNAs on mitochondria. 
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Figure 3.7  Daed mutants show a collapse in Zuc-mediated piRNA production. A) Size 
distribution of transposon-mapping small RNAs from ovaries. Sense reads are shown in blue, antisense 
in red. B-D) Coverage plots of small RNA reads uniquely mapped to the dual-strand cluster 42AB (B), 
the uni-strand cluster flamenco (flam) (C) and the coding gene traffic-jam (tj) (D). Shown are normalised 
reads per million (RPM). The mappability for an average 25 bp read length is shown at the bottom. E) 
Ping-pong analysis of transposon-mapping small RNAs from ovaries. 
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Figure 3.8  Gasz mutants show a collapse in Zuc-mediated piRNA production. A) Size 
distribution of transposon-mapping small RNAs from ovaries. Sense reads are shown in blue, antisense 
in red. B-D) Coverage plots of small RNA reads uniquely mapped to the dual-strand cluster 42AB (B), 
the uni-strand cluster flam (C) and the coding gene tj. (D). Shown are normalised RPM. The mappability 
for an average 25 bp read length is shown at the bottom. E) Ping-pong analysis of transposon-mapping 
small RNAs from ovaries. 
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III.2 Establishment of proximity biotinylation assays 

 

To understand the role of Daed in the production of piRNAs, I decided to exploit a cell culture 

system derived from the somatic compartment of the fly ovary, namely Ovarian Somatic Cells 

(OSCs). OSCs harbour a functional somatic piRNA pathway and represent an excellent system 

to investigate the molecular mechanisms of piRNA biogenesis and co-transcriptional silencing 

(Niki et al., 2006; Saito et al., 2009). 3xFLAG-Daed expressed in OSCs co-localises with the 

mitochondrial marker Atp5a, whereas deletion of the TMM domain causes its re-distribution 

throughout the cell (Figure 3.9A). Similarly, 3xFLAG-Daed co-localises with HA-tagged Zuc 

and Gasz (Figure 3.9B). I thus set out to investigate which cellular proteins interact with Daed 

in OSCs. Daed is a transmembrane protein inserted in the outer envelope of mitochondria, 

hence identification of its protein partners via canonical IP-MS (Immunoprecipitation and Mass 

Spectrometry) poses the challenge of successfully extracting Daed from the membrane while  

 

 
Figure 3.9  Daed localises to mitochondria via its TMM A-B) Confocal images of fusion 
constructs and the mitochondrial marker Atp5a in OSCs. Scale bar, 5µm.   
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retaining its endogenous interactors. This is experimentally challenging, as the high detergent 

conditions necessary to solubilise mitochondrial membranes can disrupt native interactions. 

Since several piRNA biogenesis factors are transmembrane proteins, we decided to establish 

an alternative approach that could be broadly applied to study the interaction within the 

biogenesis machinery. 

 

Proximity biotinylation has been successfully used to study protein-protein interactions in 

different cellular contexts and has been applied to transmembrane proteins and components of 

the Nuclear Pore Complex (NPC) (Kim et al., 2014; Kim et al., 2016; Roux et al., 2012). In this 

assay, originally named BioID, a promiscuous prokaryotic biotin ligase, namely BirA* (or 

BASU in Figure 3.10A) generates activated biotin-AMP intermediates which covalently attach 

to the free amine groups of accessible lysines in neighbouring proteins (Roux et al., 2012). 

Fusion of BirA* to a protein of interest (the bait in Figure 3.10A) leads to the preferential 

biotinylation of proteins in close proximity to the bait, including transient interactors. Such 

proteins can be isolated via pull-down with streptavidin beads, taking advantage of the high 

affinity between biotin and streptavidin to remove all contaminants (Figure 3.10A). The 

interaction between biotin and streptavidin resists stringent and denaturing lysis conditions and 

therefore enables solubilisation of membrane proteins without losing native interactors marked 

with biotin. Isolated proteins are subjected to trypsin digestion and are identified by Mass 

Spectrometry. Because biotin is a relatively rare modification only present on a few 

carboxylases, this approach enables selective enrichment and identification of the bait’s vicinal 

proteins. In addition, it also allows the capture of weak or transient interactions that would 

escape detection with standard IP-MS techniques. Hereafter, I will refer to this method as 

Proximity Labelling Mass Spectrometry (PL-MS). 

 

Since the first development of BioID, several improved biotin ligases have been described, such 

as BioID2, TurboID or BASU (Branon et al., 2018; Kim et al., 2016; Ramanathan et al., 2018). 

However, most of them have been optimised in mammalian cells, which grow at 37°C, as 

opposed to fly cells which are kept at 26°C. Therefore, I first tested different biotin ligases 

(BirA*, BioID2 and BASU) for their activity in Drosophila cells and found BASU (the biotin 

ligase from Bacillus subtilis) (Ramanathan et al., 2018)  to yield robust results at 26°C. I also 

tried to grow fly cells in the absence of biotin and instead supplementing it during a brief time 

window to selectively capture a snapshot of interactions. However, neither S2 cells nor OSCs 

seemed to tolerate biotin-depleted media conditions, therefore all the following BASU PL-MS 
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experiments have been performed in standard media supplemented with 200µM biotin for 1 

hour prior to harvesting. 

A representative PL-MS experiment is shown in Figure 3.10B-D, using Daed as bait protein. 

OSCs were transiently transfected with the desired construct and those expressing HA-BASU-

Daed showed a specific pattern of biotinylated proteins (detected with streptavidin, green in 

 Figure 3.10B) when compared to the control expressing ZsGreen. Biotinylated proteins 

include the BASU-Daed fusion (yellow in Figure 3.10B) as well as endogenously-biotinylated 

 

 
Figure 3.10  Establishment of PL-MS and identification of Daed interactors. A) Cartoon 
showing the principle of proximity biotinylation experiments. B) Western blot showing biotinylated 
proteins (in green, detected with streptavidin) upon expression of HA-BASU-Daed compared to the 
HA-ZsGreen control. The arrowhead indicates the size of HA-BASU-Daed fusion. Note that HA-
BASU-Daed fusion biotinylates itself (green and red signal overlap). C) Western blot showing efficient 
isolation of biotinylated proteins. Asterisks indicate endogenously biotinylated proteins, the arrowhead 
indicates the size of HA-BASU-Daed fusion. IN=input; UB=unbound; IP=immunoprecipitate. D) 
Volcano plot showing enrichment and corresponding significance of biotinylated proteins identified via 
quantitative Mass Spectrometry from OSCs expressing BASU-Daed (n=3) versus control (n=2). Black 
dots indicate proteins showing a log2FC > 1.5 and adjusted P value < 0.05 in BASU-Daed. Highlighted 
in red are piRNA pathway factors. See also supplementary Table 1. 
 



 77 

carboxylases that are also present in the control sample (asterisks in Figure 3.10C). 

Biotinylated proteins were efficiently isolated via streptavidin pulldown, as shown in Figure 

3.10C, and subjected to MS (a detailed protocol is provided in Materials and Methods II.12). 

Quantitative MS analysis showed robust enrichment of BASU-Daed itself, consistent with the 

self-biotinylation of the bait protein, along with that of other proteins known to participate to 

the piRNA pathway (Figure 3.10D). Strikingly, Daed PL-MS enriched for both mitochondrial 

(Papi, Mino and Gasz) and cytosolic (SoYb, Piwi and Armi) piRNA biogenesis factors. Similar 

results were also obtained with BASU-Gasz PL-MS, with Armi being one of the most enriched 

proteins (Figure 3.11). These data combined with the delocalisation of Armi in both gasz and 

daed mutants led us to hypothesize the existence of a Daed-Gasz transmembrane complex 

anchoring Armi to the surface of mitochondria. Hence, I proceeded to further dissect the 

interaction(s) between Daed, Gasz and Armi. 

 

 
 
Figure 3.11  Identification of Gasz interactors via PL-MS. Volcano plot showing enrichment and 
corresponding significance of biotinylated proteins identified via PL-MS from OSCs expressing BASU-
Gasz versus control (n=3). Black dots indicate proteins showing a log2FC > 1.5 and adjusted P value < 
0.05 in BASU-Gasz. Highlighted in red are piRNA pathway factors. See also supplementary Table 2. 
 

 

III.3 Investigation of the molecular function of Daed and Gasz domains 

 

Whilst allowing the detection of both stable and transient interactors, proximity labelling data 

does not necessarily imply a direct association between proteins. Aiming to address whether 

Daed, Gasz and Armi interact directly or are simply in close spatial proximity, we generated 

HA- and 3xFLAG-tagged constructs, either full-length or carrying domain deletions, and 

expressed them in various combination in S2 cells. Since S2 cells lack a functional piRNA 

pathway, they only inform on direct protein-protein interactions or those mediated by an 
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ubiquitously expressed adaptor. Armi-HA co-immunoprecipitated with both 3xFLAG-tagged 

Daed and Gasz, but not the negative control ZsGreen (Figure 3.12A). Furthermore, 3xFLAG-

tagged Daed co-immunoprecipitates with Daed itself as well as with Gasz, and vice-versa did 

3xFLAG-tagged Gasz, suggesting both homo- and heterodimer formation on the mitochondrial 

surface (Figure 3.12B), though we cannot rule out the possibility that other proteins act as 

bridges in a larger complex. The mitochondrial marker Atp5a was not enriched in the IPs, 

indicating that this result was not due to isolation of intact mitochondria. To further investigate 

the existence of homodimers of Daed as well as Gasz, I expressed each factor in S2 cells and 

performed chemical crosslinking of the lysates to stabilise protein complexes prior to 

immunoprecipitation. As a positive control, I used a Zuc-3xFLAG construct. Zuc is known to 

exist as a homodimer in vivo, therefore its IP from crosslinked lysates should recover an 

additional band at approximately double the size of the protein itself. Indeed, Figure 3.12C 

shows the presence of a band corresponding to the Zuc:Zuc homodimer in the Zuc-3xFLAG 

immunoprecipitate (light green arrowheads in Figure 3.12C) but not the ZsGreen control. 

Similarly, Daed and Gasz IPs also showed a second band corresponding to the size of a 

homodimer (dark green and purple arrowheads in Figure 3.12C). This interaction appears to 

require their mitochondria localisation, as Gasz and Daed lacking the TMM domain fail to form 

homodimers while retaining the capability to interact as heterodimers (Figure 3.12D). 

 

Next, I aimed to understand which domains of Daed mediate the interaction with Gasz and are 

required for transposon control. To this purpose, I generated expression constructs of HA-

tagged Daed lacking each domain individually (schematic in Figure 3.13A) and tested their 

ability to copurify with 3xFLAG-Gasz in S2 cells. Notably, only Daed lacking the CC domain 

failed to interact with Gasz (Figure 3.13B). Furthermore, I tested whether these same mutants 

can rescue the transposon up-regulation caused by knockdown of daed in OSCs (Figure 3.13C-

D). In line with the loss of interaction with Gasz, Daed∆CC failed to rescue transposon levels. 

Interestingly, deletion of the SAM domain had the same effect, possibly implicating this domain 

in the interaction with Armi or with RNA. Daed lacking the TMM domain was instead able to 

restore transposon expression at baseline levels, thus indicating that this mutant can still 

perform its function to some extent, probably thanks to the interaction with Gasz (Figure 3.12D 

and 3.13B). Finally, I also asked which domains of Gasz mediate the interaction with Daed and 

expressed various HA-tagged Gasz mutants (schematic in Figure 3.13E) in combination with 

3xFLAG-Daed in S2 cells. However, all domain mutants equally co-purified with Daed (Figure 

3.13F), thus indicating that this interaction either involves more than one individual domain of 

Gasz (e.g. both ANK repeats) or one of the other regions.  
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Figure 3.12  Daed and Gasz interact as homo- and heterodimers. A-B, D) Western blots of 
FLAG-tag co-immunoprecipitation from lysates of S2 cells transfected with the indicated constructs. C) 
Western blot of FLAG-tag co-immunoprecipitates from lysates of chemically crosslinked S2 cells. Red 
asterisk indicates an unspecific band from anti-FLAG antibody. Coloured arrowheads indicate the size 
of monomeric and dimeric proteins. 
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Figure 3.13  Daed CC and SAM domain are required for transposon control. A) Schematic 
representation of Daed mutant constructs. B) Western blots of FLAG-tag co-immunoprecipitations from 
lysates of S2 cells transfected with the indicated constructs. C) Fold changes in steady-state RNA levels 
of somatic transposons in OSC knockdown cells. Values are relative to GFP knockdown and normalised 
to rp49. Error bars indicate standard deviation (n=3). D) Fold changes in the steady-state RNA levels of 
somatic transposons in OSCs nucleofected with siRNAs and various rescue constructs. Values are 
relative to GFP control knockdown and normalised to rp49. * = P value < 0.05; ** = P < 0.001 (unpaired 
t-test) (n=4). E) Schematic representation of Gasz mutant constructs. F) Western blots of FLAG-tag co-
immunoprecipitations from lysates of S2 cells transfected with the indicated constructs.  
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III.4 Daedalus is essential for recruitment of Armi to mitochondria 

 

Having established that knockdown of daed in OSCs leads to transposon up-regulation at levels 

comparable to that of zuc and gasz (Figure 3.13B), I decided to use this system to investigate 

its consequences on the subcellular localisation of other piRNA pathway proteins. Light 

microscopy is typically hampered by the phenomenon of diffraction, which makes it impossible 

to distinguish objects closer than ~200nm (Huang et al., 2010). In a cellular context, this is 

approximately the size of a mitochondrion, whereas a single protein is only a few nanometres. 

This means that anything smaller than 200nm cannot be adequately resolved by conventional 

light microscopy techniques. Over the last years, several “super-resolution” imaging methods 

have been devised to overcome the diffraction limit and achieve a better resolution (Huang et 

al., 2010; Sydor et al., 2015). Among these is Stimulated Emission Depletion (STED) 

microscopy (Hell and Wichmann, 1994; Vicidomini et al., 2018) (schematic in Figure 3.14A). 

This system employs two laser beams to illuminate the specimen: the excitation laser and a 

doughnut-shaped depletion laser. The intense depletion laser reverts the excitation of the 

fluorophores to ground state, leaving only that in the centre of the doughnut. As a result, when 

the two lasers are combined the emission is depleted everywhere except from the centre of the 

excitation focus, thus producing sharp, highly-resolved images (Figure 3.14A; the last panel 

compares the same image taken with a standard confocal and with STED). The maximum 

lateral resolution achievable with STED is ~20nm, thus significantly outperforming standard 

confocal imaging (Huang et al., 2010; Vicidomini et al., 2018). 

 

Aiming to get a better understanding of the consequences of daed depletion in OSCs, I exploited 

STED microscopy to investigate the localisation of Piwi and Armi with respect to mitochondria 

(marked with Atp5a). In control cells, treated with siGFP, Piwi was often detected in close 

association with mitochondria (arrows in Figure 3.14B, top panel), whereas upon daed 

knockdown most of the remaining Piwi became confined to discrete Yb-bodies, surrounded by 

morphologically altered mitochondria (Figure 3.14B, bottom panel).  

 
Figure 3.14  In the absence of daed, Armi is retained in Yb bodies. A) Cartoon showing the 
principle of Stimulated Emission Depletion (STED) microscopy. The last panel shows the same picture 
taken with confocal and STED. B-C) STED microscopy of Piwi and Atp5a (B) or Piwi and Armi (C) 
in OSCs from indicated knockdowns. Scale bar, 5µm or 2µm in the zoom-ins (right panels). D-E) 
Confocal images of Piwi and Armi in follicle cells of indicated genotypes. Arrows point at sites of Piwi 
and Armi co-localization. Scale bar, 10µm. 
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Co-staining of Piwi and Armi showed that, when outside of the nucleus, Piwi was generally 

observed in close association with Armi, and this colocalization was enhanced upon loss of 

daed, when most of the remaining Piwi was trapped into Yb bodies (Figure 3.14C). The same 

was observed in the follicle cells of daed and gasz homozygous mutant flies, where residual 

Piwi signal overlapped with Armi in the Yb bodies (arrows in Figure 3.14D-E). Taken together, 

these data suggest a model in which Piwi moves together with Armi onto the mitochondrial 

surface, where the latter is held by Daed and Gasz. In the absence of either daed or gasz, Piwi 

is instead unable to reach the processing centres and remains in Yb bodies. 

 

 

III.5 Armi shuttles from Yb-bodies to mitochondria where it associates with dimeric 

Zuc 

 

Aiming to gain a better understanding of the protein-protein interactions occurring among 

piRNA biogenesis factors, I also carried out PL-MS experiments for Armi-BASU (Figure 

3.15A-B) and Zuc-BASU (Figure 3.15C-D). Armi PL-MS led to enrichment of a large number 

of proteins, in line with it being cytosolic and coming close to more proteins than a 

mitochondrial bait. Among the piRNA pathway factors significantly enriched were Piwi and 

Yb, which have been previously described to interact with Armi (Olivieri et al., 2010; Saito et 

al., 2009), thus validating the specificity of my PL-MS approach. Armi PL-MS also identified 

some mitochondrial factors, in particular Daed and Gasz, thus confirming previous data, but 

also Mino and Papi. Conversely, Zuc PL-MS enriched for all known mitochondrial piRNA 

pathway factors (Daed, Gasz, Mino and Papi) and only two cytosolic ones (Armi and SoYb), 

among which Armi showed the strongest enrichment. Notably, Yb was not significantly 

enriched, indicating that it does not leave Yb bodies to relocate on mitochondria, in contrast 

with Armi (and potentially SoYb). 

 

Zuc is a PLD-family ribonuclease that can cleave its substrates with a remarkable processivity 

and specificity (Ipsaro et al., 2012; Nishimasu et al., 2012). Strikingly, in vitro assays with 

recombinant Zuc fail to recapitulate the cleavage pattern observed in vivo, thus hinting to the 

presence of co-factor(s) that assist Zuc during piRNA precursor processing. I therefore aimed 

to pin-point whether any of the proteins found in Zuc PL-MS was more closely associated to 

Zuc than others and decided to exploit a variant of proximity biotinylation, namely Split BioID 

(Schopp et al., 2017) (cartoon in Figure 3.16A). In this assay, the bacterial biotin ligase BirA*  
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Figure 3.15  Identification of Armi and Zuc interactors via PL-MS. A, C) Volcano plots 
showing enrichment and corresponding significance of biotinylated proteins identified via PL-MS 
from OSCs expressing the indicated constructs against control (n=3). Black dots indicate proteins 
showing a log2FC > 1.5 and adjusted P value < 0.05. Highlighted in red are piRNA pathway factors. 
See also supplementary Tables 3-4. B, D) Western blots showing pulldown of biotinylated proteins 
from OSCs transfected with the indicated constructs. Arrowheads indicate the size of the fusion 
protein. 
 

 

is split into two halves, N-BirA* and C-BirA*, each inactive on their own. N-BirA* and C-

BirA* reconstitute the active enzyme only if fused to two proteins that interact with each 

other in vivo. The reconstituted BirA* can then biotinylate vicinal proteins upon biotin 

supplementation, albeit to a lower extent than the full-length enzyme. Structural studies 

indicate that Zuc cleaves RNA as a dimer (Ipsaro et al., 2012; Nishimasu et al., 2012),   
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thus we decided to exploit this feature to refine further our proteomics analysis and attempt to 

pinpoint which piRNA pathway factor is more closely associated with the “cleavage-

competent” Zuc dimer. Expression of Zuc fused to N- and C-BirA* in OSCs led to protein 

biotinylation only when the two constructs were present together and biotin was supplemented 

in the media (Figure 3.16B). This strategy generated a much smaller number of biotinylated 

proteins compared to BASU (compare 3.15D and 3.16B), in line with a lower activity of the 

split enzyme. Strikingly, Zuc Split-BioID PL-MS revealed enrichment of a limited set of 

proteins, yet still readily identified Armi (Figure 3.16C). This could indicate that Armi has a 

closer association with Zuc than, for instance, SoYb, which was only identified by BASU PL-

MS. In this scenario Armi, once translocated to mitochondria, could be proximal to the site 

where piRNA precursors are being processed by Zuc and could possibly contribute to its 

distinctive cleavage pattern. Interestingly, zuc and armi knockdowns showed a higher 

correlation in the levels of genome-mapped small RNAs (r2=0.782; Figure 3.16D) than zuc and 

yb knockdowns (r2=0.406; Figure 3.16E), further supporting a role for Armi as a putative Zuc 

co-factor. 

 

Based upon this, we envisioned a model in which a Piwi-Armi-pre-piRNA complex is released 

from the sites of precursor specification (nuage in germ cells and Yb-body in follicle 

cells/OSCs) to translocate on mitochondria. There, Armi is held in place by Gasz/Daed and 

engages in piRNA production in close association with Zuc. Consistent with this model, in both 

fly germline and OSCs, loss of zuc caused a dramatic accumulation of Piwi and Armi on 

mitochondria, whereas loss of gasz and daed led to their dispersal in the cytosol or 

concentration in Yb-bodies (Figure 3.17A-B). Based on my proximity labelling results, this 

behaviour appears to be a unique feature of Armi and not, for instance, Yb, which also plays a 

critical role in somatic piRNA production but remains confined to Yb bodies. We therefore 

suggest that Armi shuttles from nuage/Yb-bodies to mitochondria and hypothesize that it is 

involved in the presentation of piRNA precursors to Zuc for downstream processing into phased 

piRNAs. 
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Figure 3.16  Armi closely associates with Zuc. A) Cartoon showing the principle of the Split BioID 
proximity biotinylation assay. B) Western blot showing pulldown of biotinylated proteins from OSCs 
transfected with the Zuc Split-BioID constructs. Arrowheads indicate the size of the fusion protein. C) 
Volcano plots showing enrichment and corresponding significance of biotinylated proteins identified 
via PL-MS from OSCs expressing the indicated constructs against control (n=3). Black dots indicate 
proteins showing a log2FC > 1.5 and adjusted P value < 0.05. Highlighted in red are piRNA pathway 
factors. See also supplementary Table 5. D, E) Scatter plots showing expression levels (normalised 
RPM) of genome-mapped small RNAs in OSCs upon indicated knockdown.  
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Figure 3.17  Armi localisation to mitochondria close to Zuc depends on Gasz and Daed. A) 
Confocal images of Armi in ovaries from indicated GLKD. Scale bar, 10µm. B) STED microscopy of 
Piwi and Atp5a in OSCs. Scale bar, 5µm. 
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III.6 Establishment of CLIP-seq 

 

A broadly used method to study the interactions between protein and RNA is Cross-Linking 

Immuno-Precipitation, followed by sequencing (CLIP-seq) (Lee and Ule, 2018). Although 

several variations of CLIP exist, each with their own specific features, the core concept is shared 

amongst all. The method is based on treating cells or tissue with UV light which induces the 

formation of covalent bonds between protein and RNA. Unlike chemical crosslinking, UV-C 

light only crosslinks protein and RNAs that are in direct contact but does not crosslink proteins 

to each other. The RNA-binding protein (RBP) of interest is then immunoprecipitated in 

stringent conditions, to avoid co-purification of other RBPs, and the crosslinked RNAs are 

isolated and identified via high-throughput sequencing. One of the first methods to combine 

CLIP with sequencing, namely iCLIP, developed a specific library preparation procedure to 

identify crosslink sites at single nucleotide resolution, therefore unveiling sequence motifs 

preferentially bound by a certain protein (Huppertz et al., 2014). Other methods omit some 

steps or provide variations that increase the overall efficiency and/or the convenience of the 

protocol. Regardless of the protocol of choice, there are two key requirements for a successful 

CLIP-seq experiment: a clean immunoprecipitation of the RBP of interest and a library 

preparation procedure that either overcomes or takes advantage of the crosslink sites to achieve 

single-nucleotide resolution. 

 

Armi belongs to the family of Upf1-like RNA helicases and its mouse homolog (MOV10L1) 

has been shown to bind to piRNA precursors (Vourekas et al., 2015). I thus sought to determine 

whether Drosophila Armi performs a similar function and, to do so, I set out to establish a 

CLIP-seq protocol in the lab. Due to the requirement of large quantities of antibody against 

endogenous Armi, which is not commercially available, I decided to carry out the 

immunoprecipitation against a tag and tested various options to find the most suitable one. I 

first tried 3xFLAG, a synthetic peptide of 22 amino acids which is recognised by the 

corresponding antibody pre-immobilised on magnetic agarose beads. 3xFLAG-tagged Armi 

could be robustly immunoprecipitated, however, I also detected a large amount of non-specific 

RNA bound to the beads, which would negatively affect the signal-to-noise ratio of a CLIP-seq 

experiment. Aiming to reduce the background, I tested the StrepTagII system which has been 

developed based on the biotin-streptavidin interaction. It employs an 8 amino acid peptide (the 

StrepTagII) which binds to StrepTactin beads with a nearly covalent affinity. Despite showing 

a much lower background RNA binding, immunoprecipitation with this tag gave scarcely 

reproducible results. This was likely due to the high levels of free biotin present in fly cells, 
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which can saturate the beads and interfere with the capture of the StrepTagII fusion protein. 

Finally, I tested the HALO tag, which has been derived from a bacterial haloalkane 

dehalogenase and can covalently bind to synthetic ligands (Encell et al., 2012). The HALO 

ligands can be conjugated to magnetic beads or functionalised with fluorophores or other 

chemical groups, thus providing a versatile tool for many applications (England et al., 2015). 

This system provides two substantial advantages. First, the irreversible attachment between the 

HALO tag and the ligand resists any type of denaturing condition, thus avoiding co-purification 

of undesired contaminants (Gu et al., 2018). Secondly, the purified bait protein can be 

specifically released in solution by cleaving off the HALO tag, which instead remains 

covalently bound to the beads. This has the advantage of leaving behind any RNA 

unspecifically purified because it crosslinked to the tag rather than the POI. To do this, a TEV 

(Tobacco Etch Virus) protease cleavage site can be placed between the tag and the bait protein. 

An overview of the resulting CLIP-seq workflow is shown in Figure 3.18A-D and a detailed 

protocol is provided in Materials and Methods II.10. The expression constructs used for 

CLIP-seq carry a fusion between a 3xFLAG-tagged bait (e.g. Armi) and the HALO tag, linked 

by three copies of the TEV protease cleavage site (cartoon in Figure 3.18E). In this manner, 

cleavage by TEV protease releases the 3xFLAG-tagged bait which can be detected on a western 

blot using anti-FLAG antibody (Figure 3.18F). OSCs nucleofected with an Armi-3xFLAG-

3xTEV-HALO fusion protein are first crosslinked under UV-C light (Figure 3.18A) and the 

RBP complexes purified with a HALO resin. Following TEV protease-mediated release of the 

bait protein (Figure 3.18B) and proteinase K digestion to only leave the RNA with a small 

peptide at the crosslinking sites (Figure 3.18C), the samples are subjected to library preparation 

for high-throughput sequencing. piRNA precursors typically lack readily identifiable sequence 

motifs, therefore Armi is not expected to have a preferential binding pattern to certain 

sequences. This means that Armi CLIP-seq does not necessarily require identification of the 

crosslinking sites at single-nucleotide resolution. Hence, I decided to use the SMARTer 

(Switching Mechanism At 5’ end of PCR Template) technology to prepare libraries from my 

crosslinked and released RNA samples (Figure 3.18D). This is based on a template-switching 

mechanism during the reverse transcription step, which enables simultaneous addition of the 3’ 

and 5’ sequencing adaptors. When the Reverse Transcriptase (RT) reaches the 5’ end of the 

template molecule, the enzyme adds a few additional nucleotides to the 3’ end of the cDNA. 

The SMARTer Stranded oligo can then base-pair with the non-templated nucleotide stretch, 

creating an extended template that enables the RT to continue  



 90 

 
 
Figure 3.18  Establishment of CLIP-seq. A-D) Cartoon showing the principle of CLIP-seq 
experiments. (A) Cells expressing a HALO-tagged protein of interest (POI) are irradiated with UV-C 
light, inducing the formation of protein-RNA crosslinks. (B) Crosslinked protein-RNA complexes are 
isolated with a resin conjugated with the HALO ligand and the POI is released in solution via TEV 
cleavage. (C) Following Proteinase K digestion which leaves a small peptide at the crosslink sites, (D) 
library preparation is carried out using a template-switching mechanism. E) Schematic representation 
of the construct used for Armi CLIP-seq. The same construct has been used for CLIP-seq described in 
Chapter IV and V, with an inverted arrangement of the tag in case of an amino-terminal tagged POI. 
F) Representative western blot showing pulldown and elution of the Armi-HALO fusion. The size 
difference between IN and IP results from TEV cleavage of the HALO tag. 
 

 

 replicating until the end of the oligo (Chenchik, 1998). The obtained cDNA can then be 

amplified via PCR with Illumina primers. The SMARTer workflow is advantageous because it 

is well optimised for low input samples and because the template-switching mechanism is likely 

to overcome the obstacle of crosslinked peptides, which has been shown to stop some RTs. 

Overall, this HALO tag-based CLIP strategy significantly outperformed FLAG and StrepTagII, 

both in terms of low non-specific binding and efficient capture of the bait protein (a 

representative western blot is shown in Figure 3.18F). Hence, all CLIP-seq experiments 

described here and in Chapter IV and V have been carried out following this procedure.  
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When compared to a mock IP from cells not expressing a HALO fusion protein, Armi CLIP-

seq from OSCs revealed strong enrichment of all types of somatic piRNA precursors, the uni-

strand clusters 20A and flam (red in Figure 3.19A) and coding genes known to give rise to 

piRNAs, such as tj (blue in Figure 3.19A) (Robine et al., 2009; Saito et al., 2009). Armi CLIP-

seq signal is distributed along the entire length of the flam locus, which spans several hundreds 

of kbs (Figure 3.19B). Strikingly, Armi CLIP-seq signal over tj and other genic piRNA source 

loci is instead preferentially enriched on their 3’UTR, which is the region used for piRNA 

production (Figure 3.19C). This might suggest that the 3’UTR of genic piRNA source 

transcripts is cleaved off via an unknown mechanism and preferentially used for piRNA 

production (Li et al., 2003; Saito et al., 2009). In all cases, Armi CLIP-seq enriches for 

transcripts which give rise to piRNAs that are lost upon Armi knockdown (Figure 3.19B-C), 

thus suggesting that Armi binds to transcripts that are funnelled into Zuc-mediated, phased 

cleavages and possibly contributes to their specification as piRNA precursors. Inspection of 

transposon-mapping reads present in Armi CLIP-seq showed a preferential enrichment of 

antisense transposon sequences but not sense (Figure 3.19D-E), in line with the latter being 

generally repressed by the piRNA pathway. More specifically, the Armi CLIP-seq enrichment 

of each transposon family correlates with their copy number within flam (red in Figure 3.19D, 

with dot size proportional to their abundance within flam), thus indicating that this signal 

originates from Armi binding to this somatic piRNA cluster. No 1U bias was detected in Armi 

CLIP-seq, but this is likely a result of the library preparation procedure which involves a 

fragmentation step prior to RT and therefore does not retain information on the 5’ end of the 

crosslinked RNAs. Additionally, this resembles what was reported for MOV10L1 CLIP-seq, 

where the 5’ends of the crosslinked RNAs did not show a 1U bias and were sensitive to nuclease 

treatment (Vourekas et al., 2015). 

 

III.6 Armi binding to piRNA precursors depends on Piwi  

 

The current model of the piRNA production process suggests that Piwi binds to the 5’ end of a 

precursor transcript and directs Zuc to cleave at the first accessible uridine (Gainetdinov et al.). 

This cleavage event simultaneously specifies the 3’ and the 5’ end of two adjacent piRNAs, 

leading to the characteristic phasing signature (Han et al., 2015; Mohn et al., 2015). Based on 

the data discussed so far, Armi appears to participate to this process by bringing piRNA 

precursors to the mitochondria, where it localises in close vicinity to Zuc. To understand 

precisely when Armi RNA binding occurs and whether this process depends on other factors,  
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Figure 3.19  Armi binds to piRNA precursors. (A) Scatter plot showing expression levels (RPM) 
of genes in Armi CLIP-seq (n=4) against a mock IP (n=3). piRNA clusters expressed in OSCs are 
highlighted in red, selected protein coding genes producing piRNAs in blue. (B) UCSC genome browser 
shot displaying Armi CLIP-seq and small RNA-seq reads uniquely mapping to the piRNA cluster flam 
(upper panel) and a zoomed-in view of the first ~50 kb (bottom panel). Shown are normalised RPM. 
The mappability tracks for 50 bp and 25 bp read length, respectively, are shown below. (C) Same as in 
(B) but showing the protein-coding gene tj. (D-E) Scatter plots showing expression levels (RPM) of 
antisense and sense transposon sequences in Armi CLIP-seq against a mock IP. Transposon sequences 
present in flam are highlighted in red with dot size proportional to their abundance within flam according 
to dm6 Repeat Masker annotations.  
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Figure 3.20  Armi binding to piRNA precursors is impaired upon piwi knockdown. (A-C) 
Genome browser shot displaying Armi CLIP-seq profiles from OSCs upon indicated knockdown. 
Shown are normalised RPM. (n=3 for siZuc and relative siGFP control; n=4 for siPiwi and relative 
siGFP control; n=3 for siGasz and relative siGFP control). Below each profile are the mappability tracks 
for 50 bp read length. (D) RPM Log2FC in Armi CLIPseq upon indicated knockdown against their 
relative siGFP for selected regions of tj, flam and 20A (orange boxes in panels A-C). 
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I performed Armi CLIP-seq from cells depleted of piwi, zuc and gasz and examined the changes 

in the interaction with piRNA precursors.  

 

Loss of piwi reduced, but did not completely abolish, Armi binding to tj, flam and 20A (Figure 

3.20A and quantification in 3.20D), indicating that Piwi recognition of the 5’ends of precursor 

transcripts might precede and facilitate the association with Armi. Despite strong reduction in 

Piwi protein levels, residual Piwi might still perform its function and therefore explain why 

Armi CLIP-seq signal is not entirely lost (Figure 3.21). Depletion of zuc showed the opposite 

effect, with substantially increased Armi binding to piRNA precursors (Figure 3.20B and 

quantification in 3.20D). This is in line with a model in which, in the absence of Zuc, Armi 

accumulates on mitochondria bound to RNAs that cannot be processed. Interestingly, the 

increase of Armi footprint on tj mRNA was not even, but instead restricted to the 3’UTR. 

Finally, gasz knockdown did not impact the extent of Armi RNA binding activity, as shown by 

the unchanged CLIP-seq signal (Figure 3.20C and quantification in 3.20D). Taken together, 

these data and those available in the literature (Yamashiro et al., 2019) support a model whereby 

stable Armi binding to piRNA precursors also requires prior recognition of their 5’end by Piwi, 

thereby assembling a trimeric complex of Armi-Piwi-pre-piRNA that is competent for exiting 

the Yb bodies and translocating to mitochondria, where Zuc-mediated piRNA processing will 

take place. 

 

 

 
Figure 3.21  Validation of piwi knockdown for CLIP-seq. Western blot with relative 
quantification showing expression levels of Piwi in siGFP and siPiwi samples used for CLIP-seq in 
Figure 3.20. 
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Aiming to dissect the dependency of the Armi-Piwi-pre-piRNA interaction on other factors, I 

immunoprecipitated 3xFLAG-tagged Armi from OSCs depleted of various piRNA biogenesis 

factors and probed for the presence of endogenous Piwi (Figure 3.22A and quantification in 

3.22B). The same experiment was also carried out upon lysate treatment with RNase I, to 

address the role of RNA in the formation of this complex. In a control knockdown (siGFP), a 

low but reproducible coimmunoprecipitation of Piwi with Armi-3xFLAG was detected and it 

was insensitive to RNase treatment. This is in line with the fact that most Piwi is nuclear and 

only a small fraction is engaged in the biogenesis process. Depletion of Zuc increased the 

fraction of Piwi copurified with Armi-3xFLAG and this interaction was independent from 

RNA, indicating that, once stably anchored on mitochondria, the association between Armi and 

Piwi does not require RNA any more. Finally, Piwi and Armi still interacted in the absence of 

either gasz or daed but this was abolished by RNase A treatment, suggesting that, while in the 

Yb bodies, Armi and Piwi are only held together via RNA, until they reach mitochondria. 

 
 
Figure 3.22  Dependencies of the Armi-Piwi complex. A) Western blots of ZsGreen- or Armi-
3xFLAG co-immunoprecipitation from lysates of OSCs upon indicated knockdown and with/without 
RNase treatment. B) CoIP index showing enrichment of Piwi in Armi-3xFLAG pulldown upon 
indicated knockdowns and with/without RNase treatment.  
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CONCLUSION 

 

Work described in this chapter adds a novel player to the network of proteins involved in piRNA 

production: the mitochondrial protein CG10880/Daedalus (Daed), which is unique to 

Drosophilids (Figure 2.24). We find that Daed is essential for Zuc-mediated, phased piRNA 

production and works in close association with Gasz (Handler et al., 2013). Together, Daed and 

Gasz constitute an “anchoring platform” on the mitochondrial surface that recruits and holds 

the RNA helicase Armi in close proximity to Zuc (model in Figure 3.23). We find that the 

recruitment of Armi to mitochondria is a crucial event, as Armi can bind to piRNA precursors 

in the nuage/Yb bodies and then deliver them to the processing centres. We dissect the 

molecular events underlying Armi binding to piRNA precursors and demonstrate that this 

occurs prior to its translocation to mitochondria and requires Piwi. Our data suggest that an 

Armi-Piwi-pre-piRNA complex is assembled in Yb bodies, licensed and then anchored on the 

outer mitochondrial membrane via Gasz and Daed during the cycles of Zuc cleavages (model 

in Figure 3.23). Taken together, these findings provide an advancement to our understanding 

of the molecular mechanisms underlying piRNA production. 

 

 
Figure 3.23  A model for piRNA biogenesis. In Yb-bodies, Piwi binds to the 5’ phosphate of a 
piRNA precursor, and this in turn recruits Armi [top]. Piwi, Armi, and the pre-piRNA translocate to 
mitochondria where a Daed/Gasz complex stabilizes Armi while Zuc dimers cleave the transcript 
[middle]. Phased piRNA production then requires cycles of Piwi binding positioning Zuc to cleave at 
the first available uridine. While held in place by Daed and Gasz, Armi translocates along the transcript 
to provide the next segment of the RNA for piRNA biogenesis, and again Piwi binding to the newly-
generated 5’-P restarts the process [bottom].  
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Figure 3.24  Daed is unique to Drosophilids. (A) Phylogenetic tree showing conservation of Gasz 
and Daed across species. Shaded in orange are Drosophilidae species. (B) Alignment of Daed amino 
acidic sequence from indicated species. 
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CHAPTER IV 

 

 

Requirement of Nuclear Pore Complex subunits for 

transposon silencing 
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BACKGROUND 

 

The uni-strand piRNA cluster flamenco (flam) is the main source of piRNAs in somatic follicle 

cells (Li et al., 2009; Malone et al., 2009). It is a master regulator of gypsy family retroelements 

and mutations affecting flam expression severely compromise oogenesis (Desset et al., 2008; 

Lecher et al., 1997; Mevel-Ninio et al., 2007; Pelisson et al., 1994; Prud'homme et al., 1995; 

Sarot et al., 2004). Flam is a canonical RNA pol II transcript and as such undergoes capping 

and splicing and is exported by Nxf1/Nxt1 heterodimers (Dennis et al., 2016; Dennis et al., 

2013; Goriaux et al., 2014; Tutucci and Stutz, 2011; Zanni et al., 2013). Nonetheless, flam must 

somehow be distinguished from other cellular transcripts and licensed for piRNA production. 

Although a sequence at the 5’ end of the transcript has been shown to trigger piRNA production 

(Homolka et al., 2015; Ishizu et al., 2015), a complete picture of the transcription, export and 

specification of this unique piRNA cluster is still lacking. The only other uni-strand cluster 

expressed in somatic cells, 20A, does not seem to share the same trigger sequence and is 

substantially smaller and expressed at lower levels, possibly implying that flam relies on a 

specialised molecular machinery. 

 

Somatic cells feature discrete peri-nuclear granules of the DEAD box RNA helicase Yb, namely 

Yb bodies, which enable piRNA production (Murota et al., 2014; Saito et al., 2010). Like 

germline-specific nuage components, Yb is necessary for piRNA precursor specification, 

although the molecular mechanism remains unclear (Hirakata et al., 2019; Murota et al., 2014; 

Saito et al., 2010). Therefore, Yb bodies might be the somatic counterpart of nuage. Mutations 

that disrupt germline dual-strand cluster expression cause a disassembly of nuage (Czech et al., 

2013; Klattenhoff et al., 2009; Pane et al., 2011; Zhang et al., 2012), indicating that expression 

and export of piRNA precursors is directly linked to the assembly of these non-membranous, 

peri-nuclear compartments. Given that flam is the major piRNA precursor expressed in somatic 

follicle cells, we investigated whether the formation of Yb bodies depends on flam and what 

other factor(s) might facilitate the nuclear export of transcripts arising from this unusually large, 

heterochromatic, uni-strand piRNA cluster. 
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RESULTS 

 

IV.1. Yb bodies are the sites of flamenco export 

 

In OSCs, previously described and used as an in vitro model of the somatic piRNA pathway, 

flam RNA localises to peri-nuclear granules, namely flam bodies, which are adjacent to Yb 

bodies (Figure 4.1A) (Murota et al., 2014). Somatic piRNA production is almost exclusively 

centred on flam and takes place in discrete peri-nuclear Yb bodies, thus we reasoned that the 

assembly of Yb bodies might depend on flam transcription and export. It has been shown that 

loss of Yb abolishes the formation of cytosolic flam bodies (Murota et al., 2014), therefore we 

asked whether loss of flam could have the reciprocal effect on Yb aggregation. I thus exploited 

two existing and previously reported mutant alleles (Brennecke et al., 2007; Malone et al., 2009; 

Mevel-Ninio et al., 2007) in which the flam locus is disrupted by P-element insertions near its 

5’ end (dashed blue lines in Figure 4.1B; flamBG refers to the allele P{GT1}lncRNA:flamBG02658; 

flamKG refers to the allele P{SUPor-P}lncRNA:flamKG00476). The flamBG allele carries a P-

element insertion upstream of the annotated TSS, potentially disrupting the binding site of 

cubitus interruptus (ci), a transcription factor reported to drive the expression of flam (Goriaux 

et al., 2014). The flamKG allele instead carries a P-element insertion ~1.5 kb downstream of the 

annotated TSS and is expected to disrupt flam transcription·( (Brennecke et al., 2007; Malone 

et al., 2009) and data described in this chapter). The ovaries are severely malformed in flamBG/BG 

homozygous mutants and completely absent in flamKG/KG. For this reason, I crossed the two 

alleles and analysed their trans-heterozygous offspring, hereafter referred to as flamBG/KG, 

whose phenotype, although still severe, is milder than that of flamKG/KG homozygous flies. 
 

Aiming to determine whether flam is at all transcribed in the mutants or if they only fail to 

process the cluster transcript into piRNAs, I prepared RNA-seq libraries from flamBG 

heterozygous and homozygous (flamBG/+ and flamBG/BG), flamKG heterozygous (flamKG/+) as well 

as trans-heterozygous flamBG/KG ovaries. As shown in the genome browser tracks in Figure 

4.1B, flam transcription is globally unchanged in flamBG/+ with respect to w1118 control flies. 

FlamBG/+ ovaries also showed a normal size and morphology while flamKG/+ were typically 

smaller, hence the former was used as reference for homozygous and trans-heterozygous mutant 

datasets. Both flamBG/BG and flamBG/KG mutants showed a striking reduction in the abundance of 

flam transcripts, with flamBG/KG showing the strongest decrease.  
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 RNA-seq from flamBG/KG shows a few peaks upstream of the KG insertion site, perhaps 

corresponding to weak transcription initiation events from the flamKG allele. Based on RNA-

seq from flamBG/BG, this allelic combination appears to still retain low level of RNA production 

all along the cluster, perhaps explaining the less severe impact on Yb bodies compared to the 

 

 
 
Figure 4.1.  flam mutants do not assemble Yb bodies. A) Confocal images of Yb and flam RNA 
in OSCs. Scale bar, 5µm. B) Coverage plots of small RNA-seq (in grey) and RNA-seq (in black) reads 
from indicated genotypes uniquely mapped to the uni-strand cluster flam. Dashed blue lines indicate the 
location of the insertion of flamBG and flamKG alleles. C) Confocal images of Yb in ovaries. Scale bar, 
10µm.  
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trans-heterozygous (see also Figure 4.1C). Having confirmed that flam RNA is severely 

reduced in the mutants, I asked whether this has consequences on the assembly of Yb bodies. 

Strikingly, while flamBG/+ shows the usual peri-nuclear Yb foci, the signal is completely 

dispersed in flamBG/BG and flamBG/KG ovaries (Figure 4.1C). More specifically, Yb bodies 

become progressively smaller and disorganised in the flamBG/BG mutant and are completely lost 

in flamBG/KG. This might be explained by the residual transcriptional activity in flamBG/BG seen 

in Figure 4.2B, which is instead completely absent in flamBG/KG. Taken together, these data 

indicate that the assembly of Yb bodies is directly linked to the presence of flam transcripts in 

the cell. Since Yb is exclusively present on the outer side of the nuclear envelope, this indirectly 

links Yb bodies to the export of flam.  

 

Next, I analysed the global transcriptome changes occurring in flam homozygous mutants 

compared to flamBG/+. Both homozygous mutants showed a more pronounced gene de-

regulation compared to typical piRNA pathway mutants, possibly due to wide-spread tissue 

damage and propagation of viral-like gypsy particles. 153 out of 7,414 genes (that were above 

the expression threshold of 1 RPM) were de-regulated more than 4-fold in flamBG/BG (r2=0.917) 

and 86 out of 7,413 in flamBG/KG (r2=0.942) (Figure 4.2A-B). Notably, the expression levels of 

Yb were not reduced in either homozygous mutant, indicating that impaired formation of Yb 

bodies is not caused by its decreased abundance. As expected, both flam mutant allelic 

combinations showed a dramatic de-repression of soma-specific and intermediate TEs (Figure 

4.2C-D), with 26 out of 60 transposon families (that were above the expression threshold of 1 

RPM) being de-repressed more than 4-fold in in flamBG/BG (r2=0.061) and 10 in flamBG/KG 

(r2=0.544). Furthermore, the most highly up-regulates TEs are encoded within flam (Figure 

4.2E-F), indicating that most of the TE de-regulation observed is the consequence of impaired 

flam transcription and/or piRNA production. 

 

 
Figure 4.2  flam mutants RNA-seq analysis. A-B) Scatter plot showing expression levels (RPM) 
of genes in ovary RNA-seq from indicated genotypes (n=3). C-D) Scatter plots showing expression 
levels (RPM) of sense transposon sequences in ovary RNAseq from indicated genotypes. Red dots 
correspond to ovarian germline-specific transposons, yellow dots to intermediate transposons and green 
dots to soma-specific ones. E-F) Same plot as in C-D but with transposon sequences present in flam 
highlighted in red. The dot size is proportional to their abundance within flam according to dm6 Repeat 
Masker annotations. 
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OSCs express flam and assemble functional Yb bodies, therefore I decided to use this system 

to investigate whether ablation of flam export impacts the formation of Yb bodies. Previous 

work has demonstrated that flam is exported via the canonical mRNA nuclear export route, 

which requires Nxt1 and Nxf1 heterodimers (Dennis et al., 2016; Dennis et al., 2013; Goriaux 

et al., 2014; Zanni et al., 2013). To confirm this finding, I depleted nxf1 and nxt1, along with 

two other members of the NXF family that were reported as candidate piRNA pathway factors 

(nxf2 and nxf3) (Czech et al., 2013). As expected, both nxf1 and nxt1 knockdown completely 

abolished the formation of Yb bodies, whereas that of nxf2 and nxf3 had no effect (Figure 

4.3).This is in line with recent data, including Chapter V of this thesis, that implicate Nxf2 and 

Nxf3 in TGS and dual-strand piRNA cluster export, respectively (Batki et al., 2019; 

ElMaghraby et al., 2019; Fabry et al., 2019; Kneuss et al., 2019; Murano et al., 2019; Zhao et 

al., 2019). Notably, depletion of nxf1 and nxt1 had a dramatic effect on cell viability and a very 

small number of cells survived until the collection timepoint (96 hrs). In fact, the cells shown 

in Figure 4.3 for siNxf1 were imaged 48 hrs after the first siRNA nucleofection, as they did not 

survive for longer periods. This is expected since both factors are required for bulk mRNA 

export and their loss results in pleiotropic effects that extend beyond transposon control (Herold 

et al., 2001; Herold et al., 2000; Herold et al., 2003). Depletion of piRNA biogenesis factors 

acting downstream of Yb, such as Armi or Zuc, does not affect Yb bodies formation (Ishizu et 

al., 2015; Olivieri et al., 2012). Altogether, these data show that the disassembly of Yb bodies 

can be used as a proxy for impaired flam export and processing. 

 
Figure 4.3  Yb bodies are the sites of flam export. Confocal images of Piwi and Yb in OSCs upon 
indicated knockdown. Unless otherwise specified, knockdowns cells are analysed 96h after the first 
siRNA nucleofection. Scale bar, 5µm.  
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IV.2. Nuclear Pore Complex subunits are required for transposon silencing 

 

Flam is transcribed by RNA pol II and, as such, it has to be distinguished or detected among 

all other cellular RNAs and specifically funnelled to the piRNA production machinery. Data 

presented so far and those available in the literature assign a key role to Yb bodies in the cytosol 

(Dennis et al., 2016; Hirakata et al., 2019; Ishizu et al., 2015; Murota et al., 2014; Pandey et al., 

2017; Qi et al., 2011; Saito et al., 2010). Nonetheless, a complete picture of the molecular events 

underlying flam specification for piRNA production is still missing. I therefore asked whether 

additional factor(s) facilitate flam export across the nuclear envelope.  

 

A genetic screen for genes involved in the somatic piRNA pathway has identified several 

components of the Nuclear Pore Complex (NPC) among the strongest hits (Handler et al., 

2013). The NPC is a large transmembrane selective channel that regulates the nucleo-

cytoplasmic transport of macromolecules but is permeable to the diffusion of ions and other 

small molecules (Beck and Hurt, 2017). It is a cylindrical structure with 8-fold symmetry 

constituted by multiple copies of approximately 30 Nucleoporins (Nups). These Nups are 

gathered into sub-complexes forming higher-order structures called spokes, which in turn 

assemble larger modules within the pore (Kim et al., 2018). Each NPC can be divided into 

different sub-regions (summarized in the cartoon in Figure 4.4A), such as the inner and outer 

rings, the nuclear basket and the cytoplasmic export complexes (Beck and Hurt, 2017; Kim et 

al., 2018). The inner lumen of the pore acts as a barrier with selective permeability, thanks to a 

highly conserved class of “FG Nucleoporins” (FG Nups) (Beck and Hurt, 2017). The FG Nups 

carry multiple repeats of Phenylalanine and Glycine (FG), which form intrinsically disordered 

regions mostly lining the inner channel of the NPC but also present at its periphery. The FG 

repeats inside the lumen form a cohesive mesh that determines the permeability of the pore via 

interaction with nuclear transport receptors, such as Nxf1, various importins and others 

(Hulsmann et al., 2012; Patel et al., 2007). On the other hand, peripheral FG Nups on the nuclear 

basket act as repulsive filaments thanks to a non-cohesive assembly (Patel et al., 2007). FG 

Nups generally have shorter residence times in the NPC and are sometimes considered to be 

transient or shuttling components of the pore (Terry and Wente, 2009). Interestingly, two FG 

repeat Nucleoporins, Nup54 and Nup58, were among the top candidates in the aforementioned 

somatic piRNA pathway screen (Handler et al., 2013). 
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Nup54 and Nup58 are FG Nups that assemble in the highly conserved Nup62•58•54 (Nup62) 

complex, whose yeast counterpart is the Nsp1•Nup49•Nup57 complex (or Nic96 complex) 

(Chug et al., 2015; Finlay et al., 1991; Grandi et al., 1993; Grandi et al., 1995; Guan et al., 1995; 

Schlaich et al., 1997). This complex protrudes towards the inner lumen of the pore and mediates 

the passage of macromolecules via its FG-repeats mesh. It is anchored to the main NPC scaffold 

via Nup93 (or Nic96 in yeast), which does not have FG repeats and also emerged as candidate 

in the piRNA pathway screen (Handler et al., 2013). The Nup62 complex constitutes a 

significant fraction of the total FG repeat mass of the pore and its components are all essential 

for viability (Chug et al., 2015). Intriguingly, knockdown of Nup54 and Nup58 in the 

Drosophila follicle cells did not significantly impact ovarian morphology (Handler et al., 2013). 

This represents a surprising finding, as Nup54 and 58 are core components of the NPC, and 

might indicate that these two proteins carry out specialised functions in the somatic cells of the 

ovary. In addition to Nup54 and Nup58, three other components of the NPC scored in the above-

mentioned screen, although to lower degrees: Nup93-1, Nup214 and Gle1 (Handler et al., 

2013). Interestingly, all three components of the Nup62 complex and Nup93-1 show higher 

expression in the fly ovary (Figure 4.4B) (Chintapalli et al., 2007), which is often predictive of 

an involvement in the piRNA pathway, although in this case it might also result from de novo 

NPC assembly and loading into the growing oocyte (Hampoelz et al., 2019). Nup 93-2, another 

fly homolog of yeast Nic96, is instead expressed at lower levels and does not show a bias for 

the reproductive tissues (Figure 4.4B). Given the specificity of Nup54 and Nup58 to somatic 

transposon control and their involvement in the selective permeability of the NPC, I decided to 

investigate whether they are connected to flam export and processing. 

 

I first performed knockdowns of nup54 and nup58 in OSCs and, in stark contrast with what I 

had observed upon depletion of nxf1 and nxt1, their depletion did not lead to dramatic cell death. 

Strikingly, immunofluorescence of Yb revealed that both knockdowns led to complete dispersal 

of Yb bodies (Figure 4.4C). However, Yb itself was still present in the cell, as shown by the 

same immunofluorescence captured with increased laser power (Figure 4.4C, bottom 

 

 

Figure 4.4  Nup54 and Nup58 are required for Yb bodies formation. A) Cartoon representing 
the NPC and Nup62 components domain structure (adapted from Kim et al., 2018). B) Expression levels 
of Nup54, 58, 62, 93-1 and 93-2 in different tissues of the adult fly. C) Confocal images of Yb in OSCs 
upon indicated knockdown. Scale bar, 5µm. D) Western blot with relative quantification showing 
expression levels of Piwi and Yb upon different knockdowns. (n=1)  
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Figure 4.5  Nup54 and Nup58 are involved in transposon control. A) Fold changes in the steady-
state RNA levels of somatic transposons in OSCs upon indicated knockdowns. Values are relative to 
GFP control knockdown and normalised to rp49. * = P value < 0.05; ** = P < 0.001 (unpaired t-test) 
(n=5). B-D) Scatter plot showing expression levels (RPM) of genes in OSC RNAseq from indicated 
knockdowns (n=4). E) r2 values for OSC RNA-seq upon indicated knockdowns, calculated based on 
gene RPMs.  



 111 

panel) and via western blot (Figure 4.4D and relative quantification). In contrast to knockdown 

of yb, Piwi protein levels were not dramatically reduced by siNup54 and siNup58, indicating 

that piRNA production as a whole is not compromised. Furthermore, knockdown of nup54 and 

nup58 in OSCs led to de-repression of somatic transposons, although to a lesser extent than that 

caused by yb loss (Figure 5.5A).  

 

Intrigued by these results, I performed RNA-seq to understand the transcriptome-wide changes 

caused by yb, nup54 and nup58 depletion (Figure 4.5B-D). Surprisingly, depletion of the two 

FG Nups did not substantially affect global gene expression (Figure 4.5C-D), with only 32 out 

of 7,826 genes (that were above the expression threshold of 1 RPM) showing de-regulation 

more than 4-fold in siNup54 (r2=0.979) and 31 out of 7,831 in siNup58 (r2=0.981). The changes 

in gene expression between siNup54 and siNup58 were nearly identical (r2=0.996) and very 

similar to those caused by siYb (r2=0.969 and 0.970, respectively) (Figure 4.5E). These results 

imply that, despite being core components of the NPC, they only have modest effects on global 

gene expression. In striking contrast, all three knockdowns led to specific up-regulation of 

somatic and intermediate TEs (yellow and green dots in Figure 4.6 A-C), with the majority of 

them being under the control of flam (Brennecke et al., 2007). The transposon families that 

showed de-repression upon loss of the either Nup were nearly identical to those up-regulated 

in siYb, although the overall changes were milder as observed via qPCR (Figure 4.5A). Finally, 

inspection of somatic piRNA source loci revealed that flam showed reduced RNA levels in all 

three knockdowns (Figure 4.6D), whereas 20A or tj did not (nor did other genic piRNA 

precursors) (Figure 4.6E-F). This unexpected finding might underscore the existence of a link 

between the transcription of flam and its export to Yb bodies. The transcriptome-wide changes 

observed upon Nup54 and Nup58 loss in OSCs closely resemble a typical phenotype of 

impaired piRNA-mediated transposon control and are remarkably different from what would 

be expected by depletion of core NPC components or bulk mRNA export factors (Herold et al., 

2003). These data, together with the results obtained in flam mutants, suggests that Yb bodies 

can only form when flam is transcribed and exported to the cytosol and that this step is likely 

failing in the absence of Nup54 and Nup58. 

 

Aiming to dissect which portion of Nup54 and Nup58 is required for transposon control, I 

designed deletion mutants lacking either the FG repeats (∆FG) or the carboxy-terminus (∆C) 

(cartoon in Figure 4.7A). The carboxy-terminal region of Nup54 carries a putative ssDNA-

binding region followed by a Nup54-family domain (brown and orange boxes in Figure 4.7A,  
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Figure 4.6  Nup54 and Nup58 are involved in transposon control. A-C) Scatter plots showing 
expression levels (RPM) of sense transposon sequences in OSC RNA-seq from indicated knockdowns. 
Red dots correspond to germline-specific transposons, yellow dots to intermediate transposons and 
green dots to soma-specific ones. D-F) Coverage plots of small RNA-seq (in grey) and RNA-seq (in 
black) reads from indicated knockdowns uniquely mapped to the uni-strand clusters flam (D; zoom on 
the first 50 kb in the bottom panel) and 20A (G) and the protein-coding gene tj (F). The mappability for 
an average 50 bp read length is shown at the bottom of each panel. 
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 respectively), whereas that of Nup58 lacks readily identifiable protein domains (identified via 

NCBI Conserved Domain Search). All constructs are resistant to the siRNA used to knockdown 

either Nup and carry an HA tag. Unexpectedly, both Nups lacking the FG repeats could rescue 

transposon de-repression, whereas the ∆C constructs did not (Figure 4.7B). While the FG 

repeats contribute to the selective permeability of the NPC, the carboxy terminus of Nup54 and 

Nup58 anchors them to the scaffold of the NPC via interaction with Nup93 (Chug et al., 2015; 

Grandi et al., 1993; Grandi et al., 1995). In line with that, co-immunoprecipitation experiments 

with the same deletion constructs showed that only Nup54∆C failed to interact with full-length 

Nup58, and vice versa Nup58∆C did not coimmunoprecipitate with full length Nup54 (Figure 

4.7C). On the other hand, both ∆FG constructs successfully coimmunoprecipitated with the 

other NPC components (Figure 4.7C), indicating that their ability to connect with the partner 

Nups and the NPC scaffold, and not the FG repeats per se, is required for transposon control. 

Intriguingly, Nup54 and Nup58 lacking the carboxy-terminal region exacerbated the transposon 

upregulation, possibly indicating a dominant negative effect (Figure 4.7B). 

Figure 4.7  The FG repeats of Nup54 and Nup58 are dispensable for transposon control. A) 
Cartoon representing Nup54 and Nup58 domain mutant structure. B) Fold changes in the steady-state 
RNA levels of somatic transposons in OSCs nucleofected with siRNAs and various rescue constructs. 
Values are relative to GFP control knockdown and normalised to rp49. C-D) Western blots of FLAG-
tag co-immunoprecipitations from lysates of S2 cells transfected with the indicated constructs.  
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IV.3. Yb is in close proximity to the NPC 

 

Yb is an RNA helicase of the DEAD box family, whose members are involved in a multitude 

of cellular RNA metabolism steps, including the release of mRNPs on the cytosolic side of the 

NPC (Beck and Hurt, 2017; Tutucci and Stutz, 2011). Given that the formation of Yb bodies 

depends on flam export, I asked whether Yb could be an integral component of the NPC. I first 

performed a proximity biotinylation experiment with Yb-BASU, as described previously 

(Chapter III and detailed protocol in Materials and Methods II.12). Yb PL-MS enriched for 

the piRNA pathway factors Piwi and Armi, known interactors of Yb, as well as SoYb and others 

(Figure 4.8A). Notably, mitochondrial piRNA pathway factors such as Mino, Gasz and Daed 

were not significantly enriched in Yb PL-MS (green dots in Figure 4.8A), in line with a model 

whereby Armi and Piwi bound to pre-piRNAs translocate to mitochondria whilst Yb does not 

(compare with Armi PL-MS in Figure 3.15A). No NPC components were detected as 

significantly enriched, suggesting that Yb is not stably associated with the NPC. To further 

assess whether any transient interaction between Yb and the NPC exists, I also performed PL-

MS experiments for both Nup54 and Nup58. The BioID proximity labelling approach has been 

initially developed for NPC components and is therefore most apt to identify their stable and 

transient interactors (Kim et al., 2014; Kim et al., 2016). I tested both an amino- and a carboxy-

terminal fusion of BASU to the Nups, and found the former to be most stable and active. This 

is in line with the requirement of their carboxy-terminus for assembly of Nup54 and Nup58 in 

the NPC (Chug et al., 2015; Grandi et al., 1993; Grandi et al., 1995) (Figure 4.7C). Both Nup54 

and Nup58 PL-MS enriched for the bait together with several other Nups (blue dots in Figure 

4.8B-C) and canonical export factors. Among the most highly enriched proteins were all 

components of the Nup62 complex (Nup54, Nup58 and Nup62) and the linker Nup93-1 

connecting the complex to the NPC scaffold, altogether validating the approach. Strikingly, 

both PL-MS experiments showed enrichment of Yb (orange dot in Figure 4.8B-C), but not of 

other piRNA pathway factors. This suggests that Yb alone or the Yb bodies are in close physical 

proximity to the NPC components, Nup54 and Nup58. However, this result does not reflect a 

direct interaction nor indicates that Yb is an integral component of the NPC. In fact, Yb PL-

MS did not identify any Nup nor did immunoprecipitation of 3xFLAG-Yb copurify HA-tagged 

Nup54 and Nup58 and vice-versa (Figure 4.8D). Aside from other Nups and Yb, my PL-MS 

also provided a list of candidates that were strongly enriched in both Nup54 and Nup58 PL-MS 

experiments and whose potential involvement in the piRNA pathway will be further 

investigated.  
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Figure 4.8  Yb bodies are proximal to NPCs. A- C) Volcano plots showing enrichment and 
corresponding significance of biotinylated proteins identified via PL-MS from OSCs expressing the 
indicated constructs against control (n=3). Highlighted in red are piRNA pathway factors, in green 
mitochondrial piRNA pathway factors, in blue the Nucleoporins and in orange Yb. See also 
supplementary Tables 6-8. D) Western blots of FLAG-tag co-immunoprecipitations from lysates of S2 
cells transfected with the indicated constructs. 
 

 

IV.4. Nup54 and 58 are required for piRNA production specifically from flam 

 

Nup54 and Nup58 appear to be required for transposon control in the somatic compartment of 

the ovary. To understand whether piRNA production is affected upon their loss, I performed 

small RNA sequencing from OSCs depleted of yb, nup54 and nup58. The population of 

transposon-mapping small RNAs in OSCs is predominantly antisense to TEs, in line with flam 

being the predominant source (Figure 4.9A, siGFP panel). Depletion of yb leads to a dramatic 
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collapse of antisense piRNAs and that of nup54 and nup58 causes a similar, although milder, 

effect, while 21nt-long siRNAs are mostly unchanged (Figure 4.9A). Residual antisense 

piRNAs observed in either Nup knockdown can also explain why siNup54 and siNup58 do not 

greatly reduce Piwi protein levels, when compared to siYb (Figure 4.4C-D). The levels of flam-

mapping piRNAs were completely abolished upon loss of yb, in line with its key role in 

specifying flam for piRNA production. Knockdown of nup54 and nup58 also greatly reduced 

flam piRNA production, although to a lesser extent than that of yb. Strikingly, while loss of yb 

similarly impacted piRNA production from all source loci, including tj and 20A, the defect 

caused by loss of the two Nups was unique to flam piRNAs. As shown in Figure 4.9C and D, 

the amount of piRNAs originating from tj and 20A was essentially unchanged. Inspection of 

the global levels of genome-mapped piRNAs revealed substantial differences between 

knockdown of yb and that of nup54 and nup58. Knockdown of yb had a vast effect on all piRNA 

populations (Figure 4.10A; r2=0.546). Whilst processing of flam, 20A, tj and the other 

canonical piRNA processing substrates was reduced, there was a concomitant increased 

processing of other transcripts, which are normally not substrates of piRNA biogenesis. In the 

absence of Yb, piRNA processing does not seem to occur on selected substrates but instead 

shows promiscuous consumption of any available transcript. These results further point to Yb 

as the ‘licensing factor’ recognising selected cellular RNAs for processing into piRNAs. On the 

other hand, knockdown of nup54 and nup58 only had mild effects on genome-mapped piRNA 

levels (Figure 4.10B-C; r2=0.930 and 0.931, respectively). Strikingly, flam was one of the very 

few loci showing decreased piRNA levels, further strengthening the notion that the main 

consequence of siNup54 and siNup58 is loss of flam piRNAs. If these knockdowns were 

causing a general impairment of RNA export, they would impact cell viability or affect piRNA 

production for all precursors equally. It is interesting to note that the ~3-fold reduction of flam 

piRNAs upon siNup54 and siNup58 is consistent with the similar reduction of flam transcripts 

detected by RNA-seq (Figure 4.6D). In contrast, the 30-fold reduction of flam piRNAs caused 

by yb depletion is much more pronounced than the decrease observed by RNA-seq (Figure 

4.6D). If Yb is absent, any flam transcript that is successfully exported cannot be recognised 

and specified for piRNA production. On the other hand, any residual flam transcript that is 

exported in the Nups knockdown can still be processed thanks to the presence of Yb , which 

can perform its function even if not accumulated in Yb bodies (Hirakata et al., 2019; Ishizu et 

al., 2019). Altogether, this argues for a specific involvement of Nup54 and Nup58 in the export 

route of flam piRNA precursors, whereas Yb is responsible for licensing flam as   
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 well as all other precursors for piRNA production. 

 

 
 
Figure 4.9  Depletion of nup54 and nup58 abolishes piRNA production from flam. A) Size 
distribution of transposon-mapping small RNAs from OSCs upon indicated knockdown. Sense reads 
are shown in blue, antisense in red. B-D) Coverage plots of small RNA reads uniquely mapped to the 
uni-strand clusters flam (B) and 20A (D) and the coding gene tj (C). Shown are normalised RPM. The 
mappability for an average 25 bp read length is shown at the bottom of each panel.  
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Figure 4.10 Nup54 and Nup58 are specifically required for flam piRNA production. A- C) Scatter 
plots showing expression levels (normalised RPM) of genome-mapped small RNAs in OSCs upon 
indicated knockdown. 
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IV.5. Identification of protein interactors of Yb 

 

Aiming to understand the mechanism behind the specificity of Nup54 and Nup58 for flam 

export and specification for piRNA production, I tested three hypotheses. First, the specificity 

is dictated by protein-protein interactions, with Yb being linked to flam and the NPC via one or 

several adaptor protein(s). Second, Nup54 and Nup58 directly bind to flam RNA in the nucleus 

and promote its export through the NPC. Third, the NPC has undergone a specialisation to 

couple flam transcription and export. In this scenario, Nup54 and Nup58 would be expected to 

be asymmetrically distributed on the nuclear envelope. Alternatively, the flam DNA locus 

might be associated to the inner side of the NPC via components of the Nup62 complex, with 

this physical proximity promoting preferential export and processing of newly transcribed flam. 

 

To test the first hypothesis, I used IP-MS to analyse the protein partners of full-length Yb and 

Yb forms lacking specific domains. The Helicase C domain (HelC) has recently been shown to 

be essential only for flam piRNA production and not for that of genic piRNAs (Hirakata et al., 

2019). This mutant therefore phenocopies nup54 and nup58 knockdown results and might 

provide useful insights on candidate proteins specific to flam export. A potential “exportin” 

specific to flam would be associated with YbWT but not with Yb∆HelC. Deletion of the extended 

Tudor (eTud) domain instead abolishes the interaction between Yb and Armi and causes a 

complete loss of specificity in piRNA production (Hirakata 2019). I thus expressed each 

3xFLAG-tagged construct (YbWT, Yb∆HelC and Yb∆eTud) in OSCs where the endogenous Yb had 

been depleted using an siRNA targeting the 3’UTR. Since Yb can also interact with other Yb 

molecules, depletion of the endogenous protein prevented the mutants from accumulating in 

pre-existing Yb bodies. In line with what has been previously reported (Hirakata et al., 2019), 

neither domain mutant was able to form Yb bodies (Figure 4.11A, detected with antibody 

against Yb and against the FLAG tag). Instead, Yb∆HelC and Yb∆eTud were dispersed in the 

cytosol and showed substantially lower levels of nuclear Piwi compared to YbWT. Furthermore, 

when I assayed the ability to rescue transposon upregulation, Yb∆HelC showed an intermediate 

behaviour between YbWT and Yb∆eTud, with the latter completely failing to restore transposon 

repression, as expected (Hirakata et al., 2019) (Figure 4.11B). Having confirmed that the 

mutants behave as expected, I then carried out an immunoprecipitation against the FLAG tag, 

using a 3xFLAG-mCherry construct as control, and subjected the samples to Mass 

Spectrometry. 
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Figure 4.11  Analysis of Yb domain mutants. A) Confocal images of Piwi, lamin and 3xFLAG-

tagged Yb expression constructs (detected with anti-Yb and anti-FLAG) in OSCs upon endogenous Yb 

knockdown. Scale bar, 5µm. B) Fold changes in the steady-state RNA levels of somatic transposons in 

OSCs nucleofected with siYb and indicated 3xFLAG rescue constructs. Values are relative to GFP 

control knockdown and normalised to rp49. (n=3 except for mCherry where n=2). 

 

 

When I first compared the recovered proteins in YbWT to the mCherry control, Armi was the 

most significantly enriched protein and Piwi was also found in the immunoprecipitate (Figure 

4.12A-C), similarly to Yb PL-MS (Figure 4.8A). Both Piwi and Armi interactions were lost in 

Yb∆eTud IP-MS and appeared reduced in Yb∆HelC. When compared to YbWT, deletion of the HelC 

domain caused a less severe change in the interacting proteins, with Armi being the only one 

exclusively associated to the wild-type bait (Figure 4.12D). Conversely, deletion of the eTud 

domain had a much broader impact on Yb binding partners, with several proteins lost or gained 

(Figure 4.12E). Finally, when the mutants were compared to each other, a specific subset of 

interacting proteins was detected for either Yb mutant (Figurec4.12F). No other piRNA 

pathway factor, except for Armi and Piwi, nor screen hit was significantly associated with YbWT 

and lost in the mutants. Nevertheless, this experiment provided a list of candidate Yb-

interacting proteins, whose involvement in transposon regulation and Yb bodies formation will 

be tested in future experiments. Among promising candidates are CG9684, a Tudor-domain 
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containing protein, Top2, a topoisomerase reported to interact with heterochromatic regions 

and with RNA, and Rbp1-like, an mRNA binding protein involved in RNA splicing and RNA 

metabolism. In particular CG9684 is associated with YbWT but not with the mutants and its 

mouse homolog has been linked to the piRNA pathway. Furthermore, the Tudor domain is 

frequently found in proteins involved in piRNA production and can potentially interact with 

the sDMA modification of some PIWI proteins (Handler et al., 2011; Vagin et al., 2009a; Vagin 

et al., 2009b) 

 

 
 
Figure 4.12  Identification of protein partners of Yb wild-type and mutants. A-F) Volcano plots 
showing enrichment and corresponding significance of biotinylated proteins identified via IP-MS from 
OSCs expressing the indicated constructs. A-C) each Yb construct (n=3) is compared to the mCherry 
control (n=2); D-F) Yb domain mutants are compared to full length Yb protein or to each other. See 
also supplementary Tables 9-11.  
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IV.6. Nup54 and Nup58 do not directly bind to flam RNA 

 

To determine whether Nup54 and Nup58 bind directly to flam RNA to facilitate its passage 

through the NPC, I performed CLIP-seq of HALO-tagged Nup54 and Nup58 expressed in 

OSCs (Figure 4.13A). As a negative control, I used a HALO-3xFLAG empty vector. However, 

neither Nup54 nor Nup58 CLIP-seq showed significant enrichment of any RNA with respect 

to the control, except for their own mRNA which is often crosslinked to the bait during CLIP-

seq experiments (Figure 4.13B). The uni-strand piRNA clusters 20A and flam as well as genic 

piRNA precursors, exemplified by tj, were equally present in the control and the Nups CLIP-

seq, as can also be seen from the coverage plot over the first 50 kb of flam (Figure 4.13C). 

Inspection of transposon-mapped reads also confirmed that no antisense transposon sequences 

were enriched in Nup54 and Nup58 CLIP-seq, further confirming that no direct Nup-flam 

interaction occurs. We cannot completely rule out that this negative result is due to a technical 

issue (i.e. the aminoacidic composition of the Nups is less prone to crosslinking with RNA) and 

a way to resolve this caveat would be to perform CLIP-seq with a different crosslinking method, 

such as PFA. However, this result is in line with the current model of RNA export, whereby 

Nxf1 directly binds to the RNA and mediates its translocation through the NPC via interaction 

with the FG repeats. Recent data in human and yeast also propose that Nxf1 transiently 

associates with the NPC and acts as a mobile nucleoporin (Ben-Yishay et al., 2019; Derrer et 

al., 2019). Furthermore, Yb has also been previously shown to bind to flam. Taken together, 

these data may indicate a model whereby Nxf1 binds to flam in the nucleus and likely brings it 

to the NPC, while Yb associates with flam RNA on the cytosolic side of the NPC and directs it 

to the biogenesis machinery. However, this still does not explain why the knockdown of nup54 

and nup58 affects piRNA production only from flam, leaving all other piRNA precursors 

unaltered. 

 

 
Figure 4.13  Nup54 an Nup58 do not directly bind to RNA. A) Representative western blot 
showing pulldown of the HALO-Nup fusions. B) Scatter plot showing expression levels (RPM) of 
genes in Nup54 or Nup58 CLIP-seq (n=3) against a mock experiment (n=3). piRNA clusters 
expressed in OSCs are highlighted in red, protein coding genes producing piRNAs in blue. C) UCSC 
genome browser shot displaying Nup54 and Nup58 CLIP-seq and small RNA-seq reads uniquely 
mapping to the first 50 kb of the piRNA cluster flam. The mappability track for 50 bp read length is 
shown below. D) Scatter plots showing expression levels (RPM) of antisense transposon sequences in 
Nup54 or Nup58 CLIP-seq against a mock experiment. Transposon sequences present in flam are 
highlighted in red with dot size proportional to their abundance within flam according to dm6 Repeat 
Masker annotations.  



 123 

 
  



 124 

IV.7. Coupled flam transcription and export to specialised NPCs? 

 

I finally explored the possibility of a specialised nuclear pore that would couple transcription 

and export of flam. We envisioned that, as an unusually long transcript whose production would 

take more than 5 hrs (with the canonical speed of RNA pol II being ~25 nt/sec) (Fukaya et al., 

2017), the export of flam might initiate even before RNA pol II has reached the end of the 

genomic locus. In this scenario, Nup54 and Nup58 might be asymmetrically distributed in the 

nuclear envelope and primarily engage in flam export. Alternatively, or in addition to that, the 

DNA locus of flam might be preferentially localised in proximity to NPCs near Yb bodies while 

Nup54 and Nup58 might regulate its expression. In support of this hypothesis, several recent 

reports have found some NPC components to be directly involved in gene regulatory networks 

via direct binding to chromatin (Breuer and Ohkura, 2015; Gozalo et al., 2020; Iglesias et al., 

2020; Kalverda and Fornerod, 2010). 

 

To test this model, I first sought to determine the subcellular distribution of Nup54 and Nup58 

in OSCs. Despite trying various tags and permeabilization methods, I was unable to detect a 

strong and reproducible signal for any expression construct, likely due to low expression levels 

and/or to inaccessibility of the tag within the NPC. Therefore, I decided to exploit proximity 

biotinylation, which successfully identified the interacting partners of Nup54 and Nup58 

(Figure 4.8B-C), as a proxy for the distribution of both proteins within the cell. I expressed the 

two Nups amino-terminally fused to the TurboID biotin ligase, which has faster kinetics than 

BASU (Branon et al., 2018), then treated the cells with biotin for 1 hour and proceeded with a 

standard immunofluorescence protocol. Even though the HA tag did not show any discrete 

signal above background (represented by untransfected cells in Figure 4.14), the streptavidin 

signal was readily detectable and specific to the samples expressing a TurboID fusion protein 

(Figure 4.14). Strikingly, the Streptavidin signal generated by TurboID-Nup54 and TurboID-

Nup58 was not an even ring surrounding the nucleus, but instead showed one or more 

aggregates adjacent to the nuclear envelope. This staining pattern was reproducible and led us 

to hypothesize that those granules might be adjacent or overlapping Yb bodies. Therefore, I 

expressed the TurboID fusion proteins and co-stained for Streptavidin and Yb. In contrast to 

our expectations, this revealed different scenarios, shown in Figure 4.15A. In some instances, 

Yb bodies and Nup54/Nup58 aggregates perfectly overlapped (Figure 4.15A, upper panel), but 

this was not always the case. The main signal for Nup54 and Nup58 was often distinct from the 

strongest Yb staining, but in most cases a dim signal for Yb was always detected in association 

with the Nup granules (arrowheads in Figure 4.15A). In addition to that, I noticed that a very 
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similar staining pattern could be observed for TurboID-Nxf1 (Figure 4.15B), and here the 

signal also did not always overlap with Yb. 

 

 
Figure 4.14  Subcellular localisation of TurboID-Nup54 and Nup58 in OSCs. Confocal images 
of HA and Streptavidin in OSCs transfected with HA-TurboID-tagged Nups. Scale bar, 5µm. 
 

 

Since using proximity biotinylation as a proxy for the Nup localisation might generate artefacts 

due to construct overexpression and/or local accumulation of biotinylated proteins, I searched 

for an alternative approach to detect the endogenous FG-Nups. While no commercial antibodies 

that recognise fly Nup54 and Nup58 are available, I opted for a mouse monoclonal antibody 

raised against FG repeat-containing peptides from several Nups (mAb414, labelled as “FG 

Nups” in figure panels). Although not specific to Nup54 and Nup58, this approach has the 

advantage of detecting endogenous proteins, thus overcoming concerns about overexpression, 

and has been previously used against Drosophila Nups (Hampoelz et al., 2019). Furthermore, 

since the Nup62 complex forms a large fraction of the total FG repeat mass within the pore, we 

assumed that most of the observed signal originates from those. Staining for the FG Nups 

closely resembled what had been observed with the TurboID constructs, though with less 

prominent granules (Figure 4.15C), in line with them being enhanced by the accumulation of 

biotinylated proteins over time. As observed with TurboID, there was no consistent co-

localisation between FG Nup granules and Yb bodies. For increased resolution of the FG Nup   
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Figure 4.15  Subcellular localisation of Nups and Yb in OSCs. A-B) Confocal images of Yb and 
Streptavidin in OSCs transfected with HA-TurboID-tagged constructs. C) Confocal images of Yb and 
FG Nups in OSCs. Scale bars, 5µm.  
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aggregates in relation to Yb bodies, I also exploited STED microscopy, which has been 

successfully applied to NPCs (Thevathasan et al., 2019). Some FG Nup granules often appeared 

detached from the nuclear envelope and associated with Yb (arrowheads in Figure 4.16), 

although the main Yb bodies were not always in the vicinity of these granules, as described 

previously (Figure 4.15).  

 

 
 
Figure 4.16  Subcellular localisation of Nups and Yb in OSCs. STED microscopy of Yb and FG 
Nups in OSCs. Respective confocal images are shown on the right for comparison. 
 

 

A similar staining pattern for the FG Nups was also observed in the follicle cells of the ovary 

(arrowheads in in Figure 4.17). Interestingly, the FG Nups aggregates were more prominent in 

flam homozygous mutants (flamBG/BG in Figure 4.17). This might suggest that flam-dependent 

assembly of Yb bodies potentially influences NPC assembly as well, although we cannot 

exclude indirect effect of aberrant ovarian development in flamBG/BG. In the Drosophila ovary, 

especially in nurse cells, NPCs are assembled from cytosolic Nup aggregates that fuse into 

annulatae lamellae and are deposited into the developing egg (Hampoelz et al., 2019). We 

therefore speculate that Yb might associate with growing FG Nup aggregates that have not yet 

been integrated into mature NPCs on the nuclear envelope. If this is the case, the observed 

cytosolic co-localisation between Yb and the Nups may represent an early stage of NPC 

biogenesis and contributes to bringing Yb to the NPCs where flam is exported. Since no direct 

interaction between Yb and either Nup54 or Nup58 was detected, this process might be 

mediated by other Nups present in the granules or by a yet unidentified adaptor protein.  
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Figure 4.17  Subcellular localisation of Nups and Yb in follicle cells. Confocal images of Yb and 
FG Nups in ovaries of indicated genotypes. Scale bar, 5µm. 
 

 

Finally, I set out to determine the physical localisation of the flam locus via DNA FISH in 

OSCs. If Nup54 and Nup58 directly couple transcription and export of flam, its DNA locus 

could be localised adjacent to the cytosolic Yb bodies. Because flam is a very repetitive region 

with poor mappability, I designed a set of probes against a unique region spanning DIP1 and 

the first exon of flam (Figure 4.18A). Staining with these probes identified one or two foci for 

each cell, in most cases localised to the periphery of the nucleus and proximal to the nuclear 

envelope (Figure 4.18B), which is often the case for heterochromatic regions. As expected, 

DNA FISH foci were insensitive to RNase A treatment (always included in the staining 

protocol) but disappeared upon treatment with DNase I (Figure 4.18B). I then stained for flam 

DNA, Yb and the FG nups but did not identify any direct correlation between the nuclear 

position of flam and that of Yb bodies and FG Nup aggregates (Figure 4.18C). This is in line 

with previous reports failing to detect any correlation between the position of the genomic flam 

locus in the nucleus and that of Yb bodies in the cytosol (Murota et al., 2014) and is consistent 

with a model whereby flam RNA is transported to Yb bodies after its export from the NPC. 

However, this does not exclude a direct contact between the NPC and the flam genomic locus. 
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Figure 4.18  flam locus DNA FISH. A) Genomic distribution of the primary probes used to detect 
the genomic flam locus. B) Confocal images of flam DNA FISH in OSCs treated or not with DNase I. 
Scale bar, 5µm. C) Confocal images of Yb, FG Nups and flam DNA in OSCs. Scale bar, 5µm.  



 130 

CONCLUSION 

 

Work described in this chapter uncovers an unexpected involvement of Nuclear Pore Complex 

subunits in piRNA-mediated transposon control. We find that Nup54 and Nup58, previously 

identified as strong soma-specific piRNA pathway screen hits (Handler et al., 2013), participate 

to the production of piRNAs from the uni-strand cluster flam. Unlike Yb, which appears to 

dictate the recognition of piRNA biogenesis substrates on the cytosolic side of the NPC, loss 

of Nup54 and Nup58 only affects flam export and processing into piRNAs. 

 

There are several possible scenarios to explain their remarkable specificity and, although the 

molecular mechanism remains elusive, we can exclude some hypotheses and speculate on 

others. For clarity of the representation, Nxf1/Nxt1 heterodimers bound to flam have been 

omitted from the models in Figure 4.19. First, Yb is not an integral component of the NPC, as 

we failed to identify any direct and stoichiometric interaction between Yb and the Nups (Figure 

4.19A). However, Yb is at least transiently coming into contact with NPC components, as 

shown by PL-MS experiments and by its peri-nuclear localisation. Whether an adaptor protein 

stabilises this transient Yb-NPC interaction and promotes flam export remains an open question 

(Figure 4.19B). The specificity is also not dictated by a direct Nup-flam RNA interaction, thus 

excluding such a model as well (Figure 4.19C). The effect of yb, nup54 and nup58 knockdown 

on flam transcript levels strongly argues for a co-transcriptional export model in which the NPC 

might have specialised together with this uni-strand cluster. If any such coupling of 

transcription and export exists, then it is not due to mere physical proximity of flam DNA and 

Yb bodies, separated by a “specialised” NPC (Figure 4.19D). However, what I can hypothesize 

based on our data and the published literature (Breuer and Ohkura, 2015; Gozalo et al., 2020; 

Iglesias et al., 2020) is that Nup54, Nup58 or Nup93-1, also a piRNA pathway screen hit and 

reported to interact with chromatin, directly bind to the flam locus and assemble a machinery 

that is capable to promote flam RNA export while it is still being transcribed (Figure 4.19E). 

In this scenario, disruption of flam export would also affect the transcriptional output from this 

unusually long cluster. Once exported, flam RNA would be immediately bound by Yb, 

transiently associated to the cytosolic side of the NPC, and stored in Yb bodies until further 

processing takes place (Figure 4.19E). Finally, Yb might participate to the assembly of 

specialised NPCs starting from cytosolic FG Nup aggregates, as reported (Hampoelz et al., 

2019), although the lack of direct interaction between Yb and the Nups presumes the existence 

of additional players (Figure 4.19F).   
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Figure 4.19  Possible models for flam export. A) Yb is an integral component of the NPC and 
directly associates with Nup54 and Nup58. B) Yb transiently associates with the NPC and promotes 
flam export thanks to an adaptor protein. C) Nup54 and Nup58 directly bind to flam RNA to facilitate 
its export through the NPC. D) The flam DNA locus is directly opposite Yb bodies, on the inner side of 
the nuclear envelope. E) Components of the Nup62 complex directly bind to flam DNA locus to couple 
its transcription and export. Once exported, flam RNA is then directed to Yb bodies. F) Yb participates 
to the assembly of Nup54 and Nup58 into specialised NPCs that are capable of exporting flam. 
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piRNA-guided transposon silencing co-opts  

nuclear export factors 
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BACKGROUND 

 

Small RNA-guided epigenetic silencing is a very conserved mechanisms which can be found 

in animals and plants and can be used to regulate gene expression and dampen transposon 

activity (Holoch and Moazed, 2015). In Drosophila, this consists in piRNA-guided deposition 

of repressive histone marks along transposon bodies, primarily H3K9me3, followed by 

compaction into heterochromatin (Le Thomas et al., 2013; Rozhkov et al., 2013; Sienski et al., 

2012; Wang and Elgin, 2011). piRNA-dependent epigenetic silencing targets active elements 

and is initiated during transcription, hence it is commonly referred to as "co-transcriptional gene 

silencing" (TGS). Piwi in complex with an antisense piRNA is thought to engage with 

complementary, nascent transposon RNAs to then recruit downstream effectors (Donertas et 

al., 2013; Muerdter et al., 2013; Ohtani et al., 2013; Sienski et al., 2015; Sienski et al., 2012; 

Yu et al., 2015). Previous studies have identified Panx as a critical effector of TGS, as its 

recruitment to a nascent RNA is necessary and sufficient to induce epigenetic silencing of the 

corresponding locus (Sienski et al., 2015; Yu et al., 2015). Panx does not have any domains of 

known function and no direct homolog has yet been identified in vertebrates. In Drosophila, 

the deposition of repressive H3K9me3 marks at transposon loci is catalysed by 

dSETDB1/Eggless, a conserved histone methyltransferase acting downstream of Piwi and 

Panx. The histone demethylase dLsd1/Su(var)3-3 has instead been implicated in removing 

H3K4me2/3 from target loci to facilitate the establishment of a repressive state (Iwasaki et al., 

2016; Rangan et al., 2011; Sienski et al., 2015; Wang and Elgin, 2011; Yu et al., 2015). Notably, 

both Egg and dLsd1 are ubiquitously expressed and are general chromatin silencing factors 

whose activity must be directed towards the desired targets. Current knowledge places Panx at 

a critical node of the TGS response, bridging Piwi-mediated target recognition to the 

downstream general chromatin silencing machinery (Sienski et al., 2015; Yu et al., 2015). 

Nonetheless, how Panx recruits these histone-modifying enzymes and what other factors are 

involved in the process is an outstanding question. 
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RESULTS 

 

V.1 Identification of the PICTS complex  

 

Aiming to deepen our understanding of piRNA-guided TGS, we sought to identify what 

proteins associate with Panx in vivo. I therefore established a protocol to perform 

immunoprecipitation (IP) from ovary lysates of a GFP-tagged Panx transgene expressed under 

its endogenous regulatory elements (Handler et al., 2013). As a negative control, I performed 

the same IP from a fly line not expressing GFP (Figure 5.1A) and the isolated protein 

complexes were subjected to quantitative Mass Spectrometry (IP-MS) (for a detailed protocol 

see Materials and Methods II.13.1 and II.13.3) (Papachristou et al., 2018). Three proteins 

showed a striking enrichment and significance in GFP-Panx IP over the control, these were 

Panx itself, Nxf2 and Nxt1 (Figure 5.1B). Interestingly, both Nxf2 and Nxt1 are related to the 

family of RNA nuclear export factors and were strong hits in genetic screens for genes involved 

in transposon control (Czech et al., 2013; Handler et al., 2013). While Nxt1 is ubiquitously 

present in the adult fly, with the highest expression levels in the female gonads, Nxf2 is almost 

exclusively expressed in the ovary (modENCODE et al., 2010). 

Nxf2 belongs to the evolutionarily conserved Nuclear Export Factor (NXF) family, which in 

Drosophila comprises four members: Nxf1/sbr, Nxf2, Nxf3 and Nxf4 (Figure 5.1C). Nxf1 is 

essential for bulk mRNA export from the nucleus, similarly to its yeast homolog Mex67p (Stutz 

and Izaurralde, 2003), whereas the other three appear dispensable in S2 cells (Herold et al., 

2001; Herold et al., 2000). Proteins of the NXF family share a similar domain organisation 

(Figure 5.1C). Starting from the amino-terminus, they possess an RNA-binding domain 

(RBD), followed by Leucine-Rich Repeats (LRR), a region structurally similar to Nuclear 

Transport Factor 2 (NTF2) and a Ubiquitin-Associated domain (UBA). While the amino-

terminal region of NXF proteins generally is responsible for cargo binding, the NTF2 and UBA 

domains are involved in contacting the FG repeats of the NPC (Braun et al., 2001; Fribourg et 

al., 2001; Grant et al., 2002; Levesque et al., 2001). Nxf2 possesses all of these domains and, 

compared to Nxf1, has an extended amino-terminus (NTR) and one additional set of LRR 

upstream of the RBD. Nxt1, also known as p15, has instead been described to hetero-dimerise 

with the NTF2 fold of NXF family proteins to assemble one functional and structural unit 

(Herold et al., 2001). The role of the Nxf1/Nxt1 heterodimer in mRNA export is highly 

conserved in metazoans, whereas yeast Mex67p hetero-dimerizes with Mtr2p, whose sequence 

appears unrelated to Nxt1 despite performing a similar function (Stutz and Izaurralde, 2003). 
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Finally, Drosophila Nxt1 has been previously reported to interact with Nxf2, likely via its NTF2 

fold (Herold et al., 2001; Herold et al., 2000). 

 

 
 

Figure 5.1 Panx interacts with nuclear export factors. A) Western blot showing a representative 
replicate of the immunoprecipitation of GFP-Panx and GFP-Nxf2 from ovary lysates that was submitted 
for Mass Spectrometry. IN=input; UB=unbound; IP=immunoprecipitate. B) Volcano plot showing 
enrichment values and corresponding significance levels for proteins co-purified with GFP-Panx from 
ovary lysates (n=4 for GFP-Panx and n=3 for control ovaries). Proteins with fold change > 2 and 
adjusted P value < 0.05 are highlighted in blue. The bait protein is labelled in red and Piwi in purple.  
See also supplementary Table 12. C) Cartoon displaying the Drosophila NXF family domain structure. 
NTR, amino-terminal region; LRR, leucine rich repeats; RBD, RNA-binding domain; NTF2, NTF2-like 
domain; UBA, Ubiquitin associated domain. 
 

Since little was known about the function of Nxf2, we used CRISPR/Cas9 to generate knock-

in flies expressing a GFP-Nxf2 fusion protein from the endogenous nxf2 locus. GFP-Nxf2 

predominantly localises to the nuclei of germline and somatic cells of the ovary (Figure 5.2A, 

top panel), closely resembling the localisation of GFP-Panx (Figure 5.2A, bottom panel). IP-
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MS of GFP-Nxf2 knock-in flies confirmed that Nxf2, Nxt1 and Panx form a nuclear complex 

in vivo (Figure 5.2B). Given the established role of Panx in TGS, we hypothesized that this 

complex is constantly at war against invading transposons and therefore named it PICTS (Panx-

induced co-transcriptional silencing) complex, after the warrior tribes of northern Scotland that 

valiantly fought the Roman intruders. 

 

 
 
Figure 5.2. Nxf2 is a nuclear protein that interacts with Panx. A) Confocal images of GFP-Nxf2, 
GFP-Panx and Aub in ovaries. Scale bar, 10µm. B) Volcano plot showing enrichment values and 
corresponding significance levels for proteins co-purified with GFP-Nxf2 from ovary lysates (n=4 for 
GFP-Nxf2 and n=3 for control ovaries). Proteins with fold change > 2 and adjusted P value < 0.05 are 
highlighted in blue. The bait protein is labelled in red and Piwi in purple. See also supplementary Table 
13. C) Western blot of FLAG-tagged immunoprecipitations from OSC lysates transfected with indicated 
constructs. The bottom panel shows Piwi signal with increased contrast.   



 139 

Unexpectedly, and in contrast with previous findings (Sienski et al., 2015; Yu et al., 2015), 

GFP-Panx IP-MS did not show an enrichment of Piwi, nor did GFP-Nxf2 IP-MS (Fig 5.1B, 

5.2B). These results suggest that Piwi is not an integral component of the PICTS complex but 

leaves the questions of whether any direct interaction occurs and how PICTS is recruited to 

active transposons. I therefore expressed FLAG-tagged Panx, Nxf2, Nxt1 and a ZsGreen 

control in OSCs, performed an anti-FLAG IP and probed for the presence of endogenous Piwi 

in the immunoprecipitate via western blot. These data revealed a weak association between 

Piwi and the components of PICTS, but not with the negative control (Figure 5.2C). If Piwi 

only recruits PICTS to nascent transposon mRNAs which are mostly absent in an unperturbed 

cellular context, it follows that only a tiny fraction of Piwi will be directly binding to PICTS. 

Hence, such rare and transient binding events might be below the detection limit of Mass 

Spectrometry but still detectable at low levels via western blot. 

Finally, IP-MS experiments did not identify any significant enrichment of chromatin silencing 

factors such as Egg or dLsd1, again suggesting that their interaction with PICTS might be labile 

and below detection limit. However, we noticed that one other protein was significantly 

enriched in both IP-MS for GFP-Panx and GFP-Nxf2: cut-up (ctp), a dynein light chain protein 

that is reported to interact with Egg (Stabell et al., 2006). Ongoing work in the lab is 

investigating whether ctp is acting as a link between PICTS and the chromatin silencing 

machinery.  

 

V.2 Nxf2 is a piRNA pathway factor that functions in Transcriptional Gene Silencing  

 

Nxt1 is known to contribute to bulk mRNA export and its depletion causes dramatic gene mis-

regulation (Herold et al., 2003). As described in Chapter IV, its depletion in OSCs severely 

impaired cell viability, thus precluding further functional studies. On the other hand, Nxf2 is 

dispensable for mRNA export (Herold et al., 2001; Herold et al., 2003) and its depletion in the 

germline leads to TE upregulation without affecting the overall ovarian morphology (Czech et 

al., 2013). Therefore, we focused on investigating the role of Nxf2 in the piRNA pathway and 

generated null mutants with CRISPR-Cas9, using two gRNAs directed towards the beginning 

of the coding sequence. We recovered two null alleles, nxf2F10* and nxf2∆1*, harbouring 

premature stop codons that disrupt the coding sequence of Nxf2 from amino acid 10 onwards 

(Figure 5.3A). The deletion was confirmed via genotyping PCR with primers spanning the 

gRNA target region, followed by sequencing of the PCR product. Given the strong association 

between Nxf2 and Panx and the established role of the latter in TGS, throughout the following 

experiments we compared nxf2 null alleles to panx null alleles, namely panxM1 and panxM4 (Yu 
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et al., 2015). For all subsequent analyses, the two mutant alleles of each gene have been crossed 

and the resulting trans-heterozygous F1 flies (e.g. nxf2F10*/∆1 and panxM1/M4, hereafter referred 

to as homozygous mutants) have been compared to their heterozygous siblings, which are a 

mixed population carrying either of the two alleles over a balancer chromosome.  

 

 
 
Figure 5.3. Nxf2 is a piRNA pathway factor that functions in TGS. A) Cartoon displaying the domain 
structure of Nxf2 and of the two mutant alleles. Highlighted in red is the portion of the CDS that goes 
out of frame. B) Fold changes in steady-state RNA levels of the indicated soma- and germline-specific 
transposons from ovaries. Values are relative to w1118 flies and normalized to rp49. * = P value < 0.05; 
** = P < 0.001 (unpaired t-test). Error bars indicate standard deviation (n=3). C) Confocal images of 
Piwi in ovaries. Scale bar, 10µm. D) Size distribution of transposon-mapping small RNAs from ovaries 
of indicated genotypes. Sense reads are shown in blue, antisense in red. 
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Nxf2 homozygous flies are female sterile, a hallmark of all mutants in which the piRNA 

pathway is impaired. qPCR analysis of RNA isolated from nxf2 mutant ovaries showed strong 

de-repression of soma- (mdg1 and gypsy) and germline-specific (HeT-A and burdock) 

transposable elements in the homozygous mutants (Figure 5.3B) with respect to control flies 

 (w1118). The extent of transposon de-repression was comparable to that observed in panx 

homozygous mutants. This indicates that Nxf2 participates to transposon repression in both 

compartments of the ovary. To rule out a possible involvement of Nxf2 in the production of 

piRNAs, we performed immunofluorescence staining for Piwi in ovaries from nxf2 and panx 

mutant flies (Figure 5.3C). As expected from a factor involved in TGS, and therefore acting 

downstream of Piwi target engagement, Piwi levels in nuclei were unaffected by loss of either 

component of PICTS. I also sequenced small RNAs isolated from ovaries of panx and nxf2 

mutant flies (Figure 5.3D). This showed that panx and nxf2 homozygous mutants have 

essentially identical small RNA levels as the respective heterozygous control, thus proving that 

Nxf2 functions downstream of piRNA production. Taken together, these data point towards an 

involvement of Nxf2 in TGS, since its loss causes transposons upregulation in both tissues of 

the ovary, and rule out a role in germline piRNA cluster biology or piRNA biogenesis. 

 

RNA-seq analysis from mutant flies and from OSCs depleted of piwi, panx and nxf2 

demonstrated that loss of PICTS components does not globally alter the expression levels of 

protein-coding genes but almost exclusively affects transposon levels (Fabry et al., 2019). Since 

TGS ultimately results in the deposition of the repressive histone mark H3K9me2/3 on 

transposon loci, we profiled its distribution genome-wide via Chromatin Immuno-Precipitation 

and sequencing (ChIP-seq). In the absence of Panx and Nxf2, H3K9me3 was completely lost 

from transposons, leading to their transcriptional reactivation (Fabry et al., 2019). H3K9me3 

was specifically lost only from loci targeted by Piwi, whereas its genome-wide distribution was 

essentially unchanged. This further indicates that neither Nxf2 nor Panx are involved in global 

establishment of heterochromatin but only act on transposon loci targeted by Piwi. In all 

aforementioned experiments, the effects caused by loss of panx and nxf2 showed a high degree 

of similarity, further strengthening the notion that they act together as part of the PICTS 

complex. 
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V.3 Characterisation of the interactions within PICTS  

 

Components of multi-protein complexes often depend on each other for their respective 

localisation and stability. We noticed that transient transfection of Panx constructs in S2 cells, 

which lack an active piRNA pathway, or OSCs, which express relatively low levels of Panx 

and Nxf2, consistently resulted in only moderate expression of the transgene (an example of 

which can be seen in Figure 5.9B). This was in stark contrast with proteins of similar molecular 

weight and expressed from the same vector backbone, and thus led us to hypothesize that Panx 

might depend on Nxf2 for its stability. To address this question, I carried out a western blot on 

ovary lysates from panx and nxf2 mutants and probed for endogenous Panx (Figure 5.4A). As 

expected, panx heterozygous and homozygous mutants show diminished and null levels of 

Panx, respectively, when compared to w1118 controls. Interestingly, Panx levels are also 

dramatically affected upon loss of Nxf2, with nxf2 homozygous mutants only retaining 

approximately 15% of Panx protein (Figure 5.4A). An even stronger effect was observed when 

the GFP-Nxf2 allele was expressed in a panxM1 mutant background, with the GFP signal 

completely absent in panxM1/M1 (Fabry et al., 2019). Hence, Panx and Nxf2 are interdependent 

for their protein stability. This prompted us to investigate if Panx and Nxf2 depend on each 

other also for their subcellular localisation and which domains mediate the interaction. 

 

To this end, we generated HA- and 3xFLAG-tagged constructs of Panx and Nxf2, either full-

length or carrying domain deletions or point mutations, and expressed them in various 

combination in S2 cells. To characterise the domains required for Panx and Nxf2 interaction, 

we carried out IP of the FLAG-tagged bait and probed via western blot for the presence of the 

HA-tagged prey in the immunoprecipitate (Fabry et al., 2019) . To test for their respective 

subcellular localisation, I performed an immunofluorescence (IF) from the same samples 

against HA and FLAG tags and against Lamin. In all following IF panels, the Lamin signal has 

been used to draw a red outline that depicts the nuclear envelope. 

We first generated HA-tagged constructs of Panx full-length and split into two, by removing 

either the amino- or the carboxy-terminal portion (FL, ∆N and ∆C, respectively; schematic in 

Figure 5.4B) and co-expressed them with 3xFLAG-tagged Nxf2. As expected, full-length Panx 

and Nxf2 strongly co-immunoprecipitated and co-localised to the nucleus even in the absence 

of other piRNA pathway factors (Figure 5.4C-D, “Panx-FL” lane). Interestingly, deletion of 

the carboxy-terminal region of Panx still allowed its nuclear localisation but abolished the 

interaction with Nxf2, which appeared redistributed to the cytoplasm (“Panx∆C”  



 143 

lane). Similarly, 3xFLAG-Nxf2 expressed in the complete absence of Panx remained largely 

cytoplasmic (“ZsGreen” lane). On the other hand, Panx lacking the amino-terminal half was 

still able to interact with Nxf2 but failed to enter the nucleus (“Panx∆N” lane). 

 

 
 
Figure 5.4. Protein stability and localization of Nxf2 and Panx is reciprocally co-dependent. 
A) Western blot showing Panx protein levels in ovaries of indicated genotypes with relative 
quantification, normalized to His3 signal. B) Schematic of HA-tagged Panx full-length and mutant 
constructs. CC= Coiled Coil; CTR= Carboxy-terminal region. C) Western blot analyses of FLAG-tag 
co-immunoprecipitation from lysates of S2 cells transfected with the indicated constructs. Asterisk 
indicates unspecific band from anti-HA antibody. D) Confocal images of the indicated 3xFLAG-Nxf2 
(top, red in the merge) and HA-Panx (bottom, green in the merge) constructs transfected in S2 cells. 
Scale bar, 5µm. 
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As a consequence, Nxf2 was also aberrantly localised in the cytoplasm. Forced nuclear 

localisation of Panx∆N via addition of a Nuclear Localisation Signal (NLS) induced nuclear re-

localisation of Nxf2 as well (“NLS-Panx∆N” lane). Altogether, these data demonstrate that Nxf2 

is dependent on Panx to achieve nuclear localisation and that their interaction occurs via the 

carboxy-terminus of Panx. The amino-terminus of Panx instead harbours the information for 

nuclear import. 

 

 
 
Figure 5.5 Requirements for PICTS assembly. A) Schematic of 3xFLAG-tagged Nxf2 full-
length and domain mutant constructs. B) Western blot analyses of FLAG-tag co-immunoprecipitation 
from lysates of S2 cells transfected with the indicated constructs. C) Confocal images of the indicated 
3xFLAG-Nxf2 (top, red in the merge) and HA-Panx (bottom, green in the merge) constructs transfected 
in S2 cells. Scale bar, 5µm. 
 

Next, we generated 3xFLAG-Nxf2 mutants lacking the NPC-binding, the cargo-binding, the 

NTF2 or the UBA domain (∆NPC, ∆cargo, ∆NTF2 and ∆UBA, schematic in Figure 5.5A) and 

co-expressed them with full-length, HA-tagged Panx. Panx nuclear signal was unaffected in the 

presence of any Nxf2 domain mutants (Figure 5.5C), in line with the fact that Nxf2 depends 
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on Panx for its nuclear localisation but not vice-versa. While full-length Nxf2 was exclusively 

nuclear and strongly co-immunoprecipitated with Panx (Figure 5.5B-C), Nxf2∆NPC failed to 

interact with Panx and showed increased cytoplasmic signal. The reciprocal deletion of the 

cargo-binding region instead retained the interaction with Panx and was mostly restricted to the 

nucleus. To narrow down which portion of the NPC-binding domain interacts with Panx we 

further analysed Nxf2 lacking the NTF2 or the UBA domain individually. Among these, only 

Nxf2∆UBA showed higher cytoplasmic signal similar to Nxf2∆NPC (Figure 5.5B) and failed to 

copurify with Panx (Fabry et al., 2019). Taken together, this implicates the UBA domain within 

the carboxy-terminal NPC-binding region of Nxf2 in the interaction with Panx. 

 

 

 
Figure 5.6 Requirements for PICTS assembly. A) Schematic of 3xFLAG-tagged Nxf2 point 
mutant constructs. B) Confocal images of the indicated 3xFLAG-Nxf2 (top, red in the merge) and HA-
Panx (bottom, green in the merge) constructs transfected in S2 cells. Scale bar, 5µm. 
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Finally, aiming to investigate whether any conserved residues in the NPC-binding region are 

required to assemble PICTS, we generated 3xFLAG-tagged Nxf2 constructs carrying point 

mutations in 2-4 conserved amino acids (schematic and nomenclature in Figure 5.6A) in the 

NTF2 and UBA domain. Among these, UBA mut.1 had the strongest effect in de-localising 

Nxf2 (Figure 5.6B), further implicating the UBA domain in the interaction with Panx. The 

point mutations in the NTF2 domain targeted residues known to be essential for the interaction 

with Nxt1, which is expressed in S2 cells, and therefore indirectly probed the involvement of 

Nxt1 in silencing. None of the NTF2 point mutations significantly changed the localisation of 

Nxf2 (Figure 5.6B). We therefore concluded that, although Nxt1 is part of PICTS and involved 

in TGS, it is dispensable for the direct interaction between Panx and Nxf2. 

 

V.4 Nxf2 and Nxt1 tethering to RNA induces silencing 

 

The distinctive feature of piRNA-guided transposon silencing is that it happens via recognition 

of nascent RNA, as opposed to a specific DNA sequence. Previous work has demonstrated that 

artificial recruitment of Panx to a nascent reporter RNA triggers epigenetic silencing of the 

corresponding locus via deposition of H3K9me3, thus recapitulating what happens in vivo to 

transposon loci (Sienski et al., 2015; Yu et al., 2015). This assay is commonly referred to as 

“RNA tethering” and is based on the lN-BoxB system (Baron-Benhamou et al., 2004; Keryer-

Bibens et al., 2008), represented in Figure 5.7. The reporter construct (namely “BoxB sensor”) 

contains the Ubiquitin promoter from D. simulans driving the expression of a fluorescent 

protein, in this case ZsGreen. The 3’UTR of the reporter RNA carries 9 BoxB sites, which fold 

into 19-nt long hairpins that are recognised by the bacteriophage lambda N protein (lN). The 

second component of the assay is a construct expressing the 22 amino-terminal amino acids of 

lN-protein, sufficient to bind BoxB, fused to the protein of interest (POI). Interaction between 

the BoxB hairpins and the lN tag enables recruitment of the POI onto the reporter RNA, thereby 

bypassing the requirement for piRNA target sites. The resulting effects on transcription, 

translation and epigenetic states of the reporter can be assayed via qPCR, western blot and 

ChIP-seq, respectively (Figure 5.7). The use of a D. simulans promoter allows us to perform 

qPCR or ChIP-seq assays specific to the reporter construct. The 5’UTR of the reporter RNA 

carries a spliced intron, which enables detection of the nascent, un-spliced RNA via qPCR.  



 147 

 
 
Figure 5.7 The RNA tethering assay. Schematic of the RNA lN/BoxB tethering system used to 
probe for epigenetic silencing. A lN fusion to a protein of interest (POI) is recruited to the nascent 
sensor RNA via interaction with BoxB hairpins. If the POI is capable of inducing silencing, the reporter 
becomes covered by H3K9me3 and is transcriptionally inactivated. The effects on reporter transcription, 
translation and epigenetic states can be measured by qPCR, western blot and ChIP. 
 

With the aim of testing whether Nxf2 and Nxt1 share the same silencing capability of Panx, I 

set out to establish an RNA tethering system in OSCs. The first version I tested is depicted in 

Figure 5.8A and includes the previously described HA-ZsGreen reporter in combination with 

lN-3xFLAG-POI constructs followed by a T2A self-cleaving peptide upstream of myc-tagged 

mCherry. This system was designed to use flow cytometry as a readout for reporter activity, in 

addition to western blots. The cells that have received the tethering constructs can be identified 

based on mCherry expression, and the relative intensity of ZsGreen fluorescence is measured 

only in the mCherry positive population.  

I first generated an OSC line with a stable integration of the BoxB sensor. This was achieved 

via co-transfection of the sensor and a helper plasmid carrying a Puromycin resistance gene, 

followed by selection with Puromycin-containing media and isolation of ZsGreen positive  
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Figure 5.8 Establishment of the RNA tethering system. A) Cartoon of the BoxB sensor and lN 
constructs used for RNA tethering. B) Representative replicate showing flow cytometry analysis of 
ZsGreen mean fluorescence intensity (MFI) in the mCherry positive cell population. C) Fold-changes 
in ZsGreen MFI, as in (B). Error bars show standard deviation (n=3). D) Representative western blot 
showing expression levels of HA-tagged ZsGreen sensor and lN-3xFLAG-tagged proteins. E) Confocal 
images showing localization of lN-3xFLAG-tagged proteins and myc-tagged mCherry in OSCs.  
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clones. I then nucleofected lN-3xFLAG-tagged Piwi, Panx, Nxf2 or a Renilla negative control, 

harvested the cells four days later and analysed reporter expression levels. Flow cytometry 

analysis of the mean fluorescence intensity of ZsGreen showed only a mild but reproducible 

decrease upon tethering of Panx and Nxf2 but not Piwi (one representative replicate is shown 

in Figure 5.8B and triplicate quantification in Figure 5.8C). However, the observed reduction 

was too subtle to be detected via western blot (HA panel in Figure 5.8D), despite good 

expression levels of each lN construct (FLAG panel in Figure 5.8D). Previous work has shown 

a substantially higher silencing capability of Panx in similar tethering experiments (Sienski et 

al., 2015; Yu et al., 2015), suggesting that something is hampering the sensitivity of this assay. 

I therefore asked whether the lN-3xFLAG-tagged constructs were correctly localised to the 

nucleus and performed an immunofluorescence anti-FLAG. This revealed that Piwi and Nxf2 

were aberrantly localised to the cytosol, whereas only Panx seemed to retain its correct nuclear 

localisation (Figure 5.8E). This might have been caused by poor efficiency of the T2A self-

cleavage, leading to an aberrantly extended carboxy-terminus that impairs the interaction 

between Panx and Nxf2 and the overall functionality of tethered proteins.  

 

Hence, I moved on to a second version of the RNA tethering system, depicted in Figure 5.9A. 

I generated an OSC line stably expressing another BoxB sensor which carries a Nano-

Luciferase (NLuc) in addition to HA-ZsGreen, thus providing an alternative and highly 

sensitive readout for reporter expression levels (Hall et al., 2012). The lN-3xFLAG-tagged 

constructs did not carry any fusion at their carboxy-terminus that could impact their expression 

and localisation. Nucleofection of lN-Panx, Nxf2 and Nxt1 caused robust reporter silencing 

after 96 hrs that was readily detectable via western blot (one representative replicate is shown 

in Figure 5.9B and relative quantification of replicates in Figure 5.9C). Notably, reporter 

silencing caused by Nxf2 and Nxt1 tethering was stronger than that of Panx, with Nxf2 having 

the strongest effect. In contrast, Piwi tethering to the reporter did not induce silencing, as 

reported previously (Sienski et al., 2015; Yu et al., 2015). This is line with the model that Piwi 

can instruct silencing only when in complex with a piRNA, and not when artificially recruited 

to a transcript. This seems to support the notion that only the trimeric interaction 

Piwi:piRNA:target can lead to a conformational change in Piwi that enables recruitment of 

downstream effectors. Of note, instead of leading to silencing, tethering of lN-Piwi caused a 

modest but reproducible increase in reporter expression. 
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Figure 5.9 Recruitment of PICTS components to nascent RNA results in epigenetic silencing. 
A) Schematic representation of the BoxB sensor and lN construct used for RNA tethering. B) 
Representative western blot showing expression levels of HA-tagged ZsGreen sensor and of lN-
3xFLAG-tagged proteins. C) Fold changes in protein levels of HA-ZsGreen in lysates from OSCs 
transfected with the indicated λN constructs (relative to a λN-Renilla and normalized to His3). *** = P 
value < 0.0001 (unpaired t-test). Error bars indicate standard deviation (n=4). D) Fold changes in steady-
state RNA levels of the sensor and act5c (relative to λN-Renilla and normalized to rp49). *** = P value 
< 0.0001 (unpaired t-test). Error bars indicate standard deviation (n=4). E) Confocal images showing 
RNA FISH for ZsGreen-BoxB reporter transcripts. The blue nuclear outline has been drawn based on 
Lamin signal. Scale bar, 5µm. F) Confocal images showing localization of lN-3xFLAG-tagged proteins 
in OSCs. Scale bar, 5µm.  
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To test whether reporter silencing happens at the transcriptional level, we isolated RNA from 

the same experiments and performed qPCR for the reporter transcript using three different 

primer pairs (shown in Figure 5.9A). One primer pair spans the un-spliced junction between 

the 5’UTR exon and the downstream intron and therefore only detects nascent RNA (labelled 

as "nascent"). Tethering of each PICTS component, but not of Piwi, caused a robust decrease 

in the RNA levels of the reporter, indicating that these factors act at the (co-)transcriptional 

level (Figure 5.9D). The transcriptional repression was further demonstrated via RNA FISH 

for the reporter transcript, which showed a substantial decrease in cytosolic and nucleoplasmic 

staining as well as diminished signal from the transcription foci upon Panx and Nxf2 

recruitment (Figure 5.9E). ChIP-seq from these samples confirmed that the repression is indeed 

the result of the reporter being decorated by H3K9me3 marks (Fabry et al., 2019). Finally, all 

lN-3xFLAG tagged constructs showed correct nuclear localisation (Figure 5.9F), further 

confirming that the RNA tethering assay is recapitulating what happens in vivo on transposon 

loci. Altogether, these results demonstrate that each component of the PICTS complex has an 

intrinsic capability to trigger co-transcriptional silencing of a locus, by instructing the 

deposition of repressive histone marks. 

 

Additional work in the lab has characterised the silencing capability of PICTS upon recruitment 

to DNA. Interestingly, in this assay Panx and Nxf2 elicit epigenetic silencing whereas Nxt1 

does not (Fabry et al., 2019). Further dissection of the domains required for silencing revealed 

that the amino-terminal portion of Panx alone is necessary and sufficient to induce silencing 

(Fabry et al., 2019). This indicates that the Panx amino-terminal region constitutes the silencing 

engine within PICTS. 

 

V.5 Testing the interaction of Nxf2 with RNA  

 

All members of the Drosophila NXF family carry an RNA-binding domain (RBD in Figure 

5.1C), which for Nxf1 has been implicated in binding to spliced mRNAs that are ready to be 

exported to the cytoplasm (Liker et al., 2000; Tutucci and Stutz, 2011). Given that piRNA-

guided TGS targets nascent RNAs and that Nxf2 recruitment to RNA causes an even stronger 

silencing than Panx itself (Figure 5.9D), we hypothesized that Nxf2 might be the RNA-binding 

unit of PICTS that stabilises its interaction with the target. To test this hypothesis, I adapted the 

protocol described in Chapter III to perform CLIP-seq of a HALO-3xTEV-3xFLAG-Nxf2 

fusion expressed in OSCs (a detailed protocol is provided in Materials and Methods II.10). 

As shown in Figure 5.10A, this experiment resulted in successful enrichment of 3xFLAG-Nxf2 
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in the eluate, although to a lower extent compared to Armi (Figure 3.18). However, sequencing 

of Nxf2-bound RNA did not detect enrichment of mRNAs, somatic piRNA clusters or sense 

transposon transcripts, when compared to a mock IP (Figure 5.10B, purple dots correspond to 

transposons). I reasoned that over-expressed Nxf2 might be unstable if not in complex with 

Panx and thus incapable of binding its targets. Therefore, I decided to perform a similar in vivo 

experiment (namely RIP-seq) using the previously described GFP-Nxf2 fly line (a detailed 

protocol is provided in Materials and Methods II.11). Since the GFP tag is knocked into the 

endogenous nxf2 locus, the protein is expressed at normal levels and forms a functional complex 

with Panx and Nxt1 (Figure 5.2B). I also decided to perform chemical crosslinking of ovarian 

lysates with PFA prior to RIP-seq, given that the UV crosslinking used for CLIP-seq in OSCs 

is often less effective on intact tissue. As a positive control, I carried out the identical 

experiment from GFP-Panx expressing flies, since Panx has been previously shown to bind to 

sense transposon fragments (Sienski et al., 2015). Aiming to avoid the confounding effect of 

background transposon expression in different strains, I prepared libraries from each total input 

lysate and used them as controls. Finally, since PFA crosslinking might increase background 

signal, both IP and input RNA samples were depleted of rRNA prior to library preparation. 

Western blot analysis confirmed enrichment of the respective GFP-tagged bait protein in the IP 

from crosslinked ovary lysates (Figure 5.10C). Nonetheless, GFP-Nxf2 RIP-seq did not show 

any enrichment of mRNAs nor sense transposon transcripts, recapitulating the results obtained 

by CLIP-seq (Figure 5.10D). On the other hand, GFP-Panx RIP-seq successfully enriched for 

a number of sense transposon transcripts, thus validating my experimental procedure and 

confirming what was observed by Sienski and colleagues (Figure 5.10E). Since the publication 

of our work, three other groups reported the identification of Nxf2 and Nxt1 as Panx interactors 

(Batki et al., 2019; Murano et al., 2019; Zhao et al., 2019). Of note, their data indicate that Nxf2 

does have the ability to bind RNA, but this interaction is likely very labile and undetectable in 

my experiments and will be further discussed in Chapter VI. 
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Figure 5.10 Probing the interaction of Nxf2 with RNA. A) Western blot showing 
immunoprecipitation of HALO-3xTEV-3xFLAG-Nxf2 from OSCs. B) Scatter plot showing expression 
levels (RPM) of genes (in grey) and sense transposons (in purple) in Nxf2 CLIP-seq (n=3) against a 
mock immunoprecipitation (n=3). C) Western blot showing immunoprecipitation of GFP-tagged Panx 
and Nxf2 from ovary lysates used for RIP-seq. D) Scatter plots showing expression levels (RPM) of 
genes (in grey) and sense transposons (in purple) in GFP-Nxf2 and GFP-Panx RIP-seq (n=3) against the 
respective input controls. 
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CONCLUSION 

 

Work presented in this chapter contributed to the identification of a trimeric complex required 

for TGS of transposons in Drosophila: the PICTS complex, which comprises Panx, a protein 

with no known domains, and two nuclear export factors, Nxf2 and Nxt1 (Figure 5.11). While 

Nxt1 associates with all the NXF-family proteins and is implicated in various processes, we 

show that Nxf2 has evolved specifically for epigenetic silencing of transposable elements. 

Nxf2, together with Panx, is required for piRNA-guided transposon control and 

heterochromatin deposition in the fly ovary. Nxf2 and Panx are interdependent for the 

respective protein stability, subcellular localisation and silencing function. Each component of 

PICTS is per se capable of inducing silencing when recruited to RNA, likely through 

recruitment of Panx. Both Panx and Nxf2 can bind to target RNA, although Panx seems to do 

so in a more stable fashion, which further strengthens the requirement of active transcription to 

enable Piwi target engagement and downstream recruitment of PICTS (Figure 5.11). 

 

Taken together, our findings highlight that the evolution of transposon defence mechanisms 

involved exaptation of nuclear export factors. The NXF family has undergone an expansion in 

metazoans, with two copies in C. elegans, four in D. melanogaster and five in human (Tan et 

al., 2000; Tan et al., 2005; Yang et al., 2001). Since they do not seem to perform redundant 

functions, it is plausible that they have diversified their functions to certain tissues or substrates 

(ElMaghraby et al., 2019; Kneuss et al., 2019). 
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Figure 5.11 Model for piRNA-guided co-transcriptional silencing. Piwi bound to a piRNA 
recognises nascent transposon RNAs and recruits the PICTS complex, composed of Panx, Nxf2 and 
Nxt1. This in turn induces epigenetic silencing of the locus via H3K9me3 deposition, catalysed by Egg 
and its co-factor Wde. 
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CHAPTER VI 

 

 

DISCUSSION 
 

 

VI.1 Towards an understanding of the molecular mechanisms of piRNA biogenesis 

 

The biogenesis of piRNAs requires a highly specialised machinery that recognises the correct 

substrates and processes them into strings of consecutive piRNAs. With the work presented in 

Chapter III, I have expanded the repertoire of factors that participate to piRNA production and 

provided mechanistic insights into how the RNA substrates are presented to the biogenesis 

machinery. 

 

CG10880/Daedalus (Daed) is a protein anchored to the outer surface of mitochondria that is 

expressed predominantly in the Drosophila ovary and had been previously identified as 

required for germline transposon control (Czech et al., 2013). Dead has a similar domain 

structure to Gasz, another mitochondrially-anchored protein involved in piRNA production 

(Handler et al., 2013; Munafò et al., 2019; Yamashiro et al., 2019; Zhang et al., 2016). Gasz 

and Daed assemble into homo- and hetero-polymeric complexes on the surface of mitochondria 

and are important to recruit the RNA helicase Armi and hold it close to the nuclease Zuc, thus 

enabling piRNA production. In the absence of either Gasz or Daed, piRNA production collapses 

since Armi-bound piRNA precursors cannot be stably brought to mitochondria. Interestingly, 

Daed is unique to Drosophilids (Figure 3.24) whereas Gasz is conserved and its mouse 

homolog has been implicated in piRNA production and mitochondrial fusion in male germ cells 

(Zhang et al., 2016). It is not clear why Drosophilids possess two proteins to carry out similar 

functions, but it is apparent that they are not redundant. I hypothesize that this stems from some 

of the differences in piRNA production between Drosophila and other animals, such as the 

absence of prominent 3’ trimming following Zuc cleavages. 

 

Recruitment of Armi to the mitochondrial surface is essential to drive piRNA production (Ge 

et al., 2019; Munafò et al., 2019; Yamashiro et al., 2019) and, among known piRNA biogenesis 
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factors, Armi is unique in the ability to “shuttle” between nuage/Yb bodies and mitochondria. 

This capability is key, since Armi transfers selected piRNA precursors from the sites of 

licensing (nuage/Yb bodies) to the sites of processing (mitochondria), thus bridging the two 

major events and subcellular compartments of piRNA biogenesis. Armi binding to RNA has 

emerged as a tightly controlled process, likely to prevent random binding. In the absence of 

such control mechanisms, Armi promotes piRNA production from spurious substrates (Ge et 

al., 2019; Ishizu et al., 2019). Conversely, recruitment of Armi onto reporter transcripts 

determines their processing into bona fide piRNAs (Pandey et al., 2017; Rogers et al., 2017). 

This implies that Armi alone is necessary and sufficient to specify any cellular transcripts for 

Zuc-mediated processing, whereas substrate recognition requires its association with other 

factors. The binding of Armi to RNA is regulated by Yb and Piwi, as well as by Armi’s own 

ATP-dependent helicase activity (Ge et al., 2019; Ishizu et al., 2019; Munafò et al., 2019; 

Pandey et al., 2017; Yamashiro et al., 2019). In somatic cells, Yb, via a yet not fully clarified 

mechanism, selects specific mRNAs and cluster transcripts. In its absence, piRNA production 

does not completely collapse but instead occurs on abundant cellular RNAs, which are then 

aberrantly bound by Armi (Ishizu et al., 2019). The 5’-P of Yb-selected substrates is loaded by 

Piwi to form a pre-piRISC that can be bound by Armi (Figure 3.23, upper panel). Although the 

precise hierarchy of each molecular event has not been clarified yet, various lines of evidence, 

including Chapter III, suggest that, if Piwi cannot bind to the 5’-P of a precursor, this will not 

be efficiently recognised by Armi (Munafò et al., 2019; Yamashiro et al., 2019). 

 

Overall, what emerges from these studies is that only a complex consisting of Piwi, Armi and 

a pre-piRNA is fully competent to leave Yb bodies and translocate to mitochondria. This 

trimeric complex only binds to the correct substrate if Yb is present and Armi ATPase activity 

is intact, thus evidencing a multi-layered regulation that prevents spurious processing. Since 

Armi and Piwi are expressed in both follicle and nurse cells, this likely represents a unified 

mechanism applicable to all compartments of the fly ovary. However, the mechanisms 

upstream certainly differ, as somatic cells rely on Yb whereas germ cells have the ping-pong 

cycle. It is interesting to note that Yb is not proximal to mitochondrial biogenesis factors 

(Figures 3.10-11-15 and 4.8A), further indicating that only the Piwi-Armi-pre-piRNA complex 

leaves Yb bodies, whilst the role of Yb terminates once the right substrates have been licensed. 

 

Once on mitochondria, the Piwi-Armi-pre-piRNA complex is anchored via Gasz and Daed in 

the vicinity of Zuc. Although other cytosolic piRNA biogenesis factors were found to be nearby 

Zuc, Armi appeared to be the one in closest proximity to the cleavage-competent dimer (Figure 
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3.23). This might indicate that Armi ensures the processivity of Zuc cleavages by presenting 

the RNA substrates. In strong support of this hypothesis, a recent study in Bombyx mori reports 

that overexpression of Armi wild type, but not an ATPase mutant, strongly promotes Zuc-

driven piRNA production in vitro (Izumi et al., 2020). In this context, the ATP-dependent 

helicase activity of Armi might provide an explanation for the regular spacing of Zuc cleavages. 

Overall, these data support the model depicted in Figure 3.23, where Piwi and Armi first bind 

to a precursor RNA in the nuage/Yb bodies, the 5’-P of the RNA precursor is loaded by Piwi 

MID domain and this allows Armi stable binding to the transcript (Figure 3.23). The trimeric 

Piwi-Armi-pre-piRNA complex is competent to depart from nuage/Yb bodies and translocate 

to mitochondria, perhaps thanks to a conformational switch in Armi or additional factors like 

the uncharacterised SoYb, that are enriched in our PL-MS for mitochondrial factors. 

Interestingly, the interaction between Piwi and Armi becomes RNase-sensitive upon loss of 

daed and gasz, but is not in unperturbed cells (Figure 3.22). This would suggest that the 

interaction of Piwi and Armi is primarily mediated by RNA in Yb bodies, whereas Daed and 

Gasz provide a more stable anchoring platform on mitochondria. A typical piRNA production 

cycle would occur as follows (Figure 3.23): Piwi bound to the 5’-P of the precursor directs Zuc 

to cleave at the first accessible uridine (Gainetdinov et al., 2018) or consensus motif, at least in 

B. mori (Izumi et al., 2020). Once the first piRNA is released and readily incorporated into 

Piwi, mitochondrially-anchored Armi unwinds or more likely translocates along the transcript 

to allow Piwi sequential binding to a new 5’-P released by the previous Zuc cleavage. This re-

initiates the cycle, as the incoming Piwi footprint determines the next Zuc cleavage site. It will 

be of interest for future to studies to investigate whether specific chaperones or other factors 

enable this “cyclic” binding of Piwi to free 5’-P. 

 

How widely applicable is this model of piRNA biogenesis? To date, studies in mouse point 

towards a relatively similar mechanism to produce piRNAs during spermatogenesis. The key 

players are conserved, such as the nuclease MITOPLD (homolog of Zuc), the RNA helicase 

MOV10L1 (homolog of Armi) and the mitochondrial ankyrin repeat protein GASZ. Structural 

studies on MITOPLD show a cleavage bias nearly identical to that observed in flies (Ipsaro et 

al., 2012) whereas MOV10L1 has been shown to bind piRNA precursors and promote their 

processing (Vourekas et al., 2015). Furthermore, the footprint of PIWI proteins dictates piRNA 

size in mouse as well (Gainetdinov et al., 2018). Taken together, this strongly supports a 

unifying model of mitochondrial piRNA biogenesis whereby PIWI proteins bind 5’P RNA 

precursors and Armi/MOV10L1 ensures the processivity of Zuc/MITOPLD cleavages. In 

contrast with flies, MITOPLD generates slightly longer phased piRNA intermediates that will 
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then be trimmed to their mature size by the exonuclease PNLDC1 (Han et al., 2015; Mohn et 

al., 2015). Notably, mouse GASZ interacts with mitofusins to promote mitochondrial fusion 

and deletion of its mitochondrial targeting sequence causes aberrant mitochondrial fission and 

altered metabolism (Zhang et al., 2016). MOV10L1 localises in proximity to mitochondria in a 

structure known as inter-mitochondrial cement (ICM) and physically associates with PIWI 

proteins (Zheng et al., 2010). Therefore, it is possible that a similar “shuttling” of MOV10L1 

between nuage and ICM occurs in mice as well. Work in B.morii has also uncovered a very 

similar picture of the mitochondrial piRNA production route and has assigned prominent roles 

to BmZuc and BmArmi (Nishida et al. 2018; Izumi et al. 2020). The fact that a phasing signature 

has been detected in most animals and that Zuc is well conserved (Gainetdinov et al., 2018; 

Ozata et al., 2019), makes it tempting to speculate that the core mitochondrial piRNA 

biogenesis process is functionally similar in most animals. Future studies will define the extent 

to which the mitochondrial biogenesis machinery is conserved. An exception to this seems 

again to be C.elegans, where 21-U RNA biogenesis has so far not been linked to mitochondria. 

21-U RNA precursors are very short, implying that an RNA translocase activity like that of 

Armi might be dispensable, and instead rely on a dedicated processing machinery evolved from 

the small nuclear RNA pathway (Cordeiro Rodrigues et a., 2019). Nonetheless, 21-U RNA 

production requires the generation of a 5’P followed by binding of the PIWI protein PRG-1 and 

resection of the 3’ends by the exonuclease PARN-1, closely resembling what observed in other 

species (Ozata et al., 2019). 

 

 

VI.2 flam export relies on Yb and specific Nuclear Pore Complex subunits 

 

The substrates of somatic piRNA biogenesis carry canonical features of RNA pol II-transcribed 

genes but can nonetheless be specifically recognised among all other mRNAs. The uni-strand 

cluster flam gives rise to the largest fraction of somatic piRNAs and the work described in 

Chapter IV provides novel evidence on the molecular mechanisms underlying its export and 

specification as a piRNA precursor. 

 

Recent work, including Chapter III and IV, point to Yb as the key ‘licensing factor’ that selects 

newly exported RNAs for piRNA production (Dennis et al., 2016; Hirakata et al., 2019; Ishizu 

et al., 2019; Murota et al., 2014; Sokolova et al., 2019). What features of these RNAs promote 

binding of Yb is not entirely clear, although a ‘trigger sequence’ has been identified for some 

(Homolka et al., 2015; Ishizu et al., 2015). We find that the NPC transiently comes into contact 
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with Yb, the latter likely scanning all transcripts and binding to a subset, among which is flam 

that is then transported to Yb bodies (Ishizu et al., 2015; Murota et al., 2014). Because the Yb 

bodies are liquid-like, phase-separated compartments (Hirakata et al., 2019), we can 

hypothesize that Yb molecules bound to newly exported flam have a high propensity to 

aggregate into pre-existing Yb bodies, thus providing a sort of ‘directionality’ to the export of 

flam. Compartmentalisation of cellular events into spatially separated, non-membranous 

organelles is a strategy often used to optimise biochemical reactions or bring together proteins 

that participate to the same pathway. Yb bodies, which are unique to somatic follicle cells and 

depend on flam export, might in this case provide a temporary storage site for piRNA precursor 

molecules, prior to their licensing for mitochondrial processing. Work from the Siomi lab has 

suggested that somatic precursors are cleaved into shorter pre-piRNAs prior to their 

translocation to mitochondria (Murota et al., 2014; Saito et al., 2010; Yamashiro et al., 2019). 

Although direct evidence of this is still lacking, we can speculate that the Yb bodies provide a 

temporary storage place for flam pre-piRNAs, where they are shielded from undesired RNA 

decay pathways. Non-membranous organelles have been linked to other small RNA pathways, 

indicating that some properties of these liquid-like droplets might be particularly advantageous. 

One notable and widespread example are P-bodies, RNA and protein granules which seem to 

act as mRNA storage sites and include proteins involved in the miRNA pathway, RNA decay 

and translational repression (Standart and Weil, 2018). Small RNA pathways in C.elegans rely 

on various types of germline liquid-like organelles that are spatially and temporally regulated, 

namely the P-granules, Z-granules and Mutator foci (Wan et al., 2018). Although all three types 

of granules are closely associated, they do not overlap and are always arranged in a specific 

order, which may help to organise and coordinate the different steps of RNA biogenesis 

pathways. In line with that, cytosolic foci of Yb and flam do not perfectly overlap, possibly 

suggesting a similar spatial compartmentalisation of flam RNA processing steps. 

 

Aiming to dissect what other player(s) determine the export of flam prior to Yb binding on the 

outer side of the nuclear envelope, we uncovered an unexpected requirement of Nup54 and 

Nup58. Both Nups emerged as strong candidates for somatic transposon control (Handler et al., 

2013) and we now discover that they are specifically involved in piRNA production from flam. 

The phenotype observed upon loss of nup54 and nup58 is remarkably specific: despite being 

core components of the NPC channel (Chug et al., 2015; Kim et al., 2018; Solmaz et al., 2011), 

their knockdown does not impair cell viability (Chapter IV) or disrupts ovarian morphology 

(Handler et al., 2013). Furthermore, depletion of Nup54 and Nup58 only causes modest changes 

in the expression of the vast majority of mRNAs, whereas transposons are severely mis-
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regulated (Figure 4.6). The fact that both Nups belong to the NPC and that their loss causes a 

disassembly of Yb bodies indirectly proves their involvement in flam export. Nonetheless, we 

also observe an intriguing reduction in the overall transcript levels of flam, which might imply 

a mechanism that unifies transcription and export. A likewise reduction of flam transcripts also 

occurs upon yb knockdown. Since, to our knowledge, Yb is only present on the cytosolic side 

of the NPC, the only likely explanation is that impaired flam export negatively affects the 

upstream transcriptional process. It has been shown that canonical Nxf1/Nxt1 heterodimers 

mediate flam translocation across the NPC (Dennis et al., 2016). Notably, Nxf1 and Nxt1 

typically recognise splicing events marked by the Exon Junction Complex, which within flam 

have been reported in the 5’ region. We can therefore speculate that, once the flam 5’ end is 

marked by Nxf1/Nxt1, the transcript can be funnelled into the NPC and another mechanism 

ensures continued transcription while the rest of the RNA is exported. As Nxf1 has also been 

shown to permanently reside in the NPC (Ben-Yishay et al., 2019; Derrer et al., 2019), this 

potentially explains why the flam 5’ end appears anchored to the nuclear envelope, while the 

remainder of the transcript is associated with Yb bodies (Sokolova et al., 2019). 

 

The export of piRNA precursors is an essential task that, at least in Drosophila germ cells, has 

evolved a specialised machinery. It has been recently shown that a gonad-specific member of 

the NXF family, Nxf3, has been repurposed to mediate export of non-canonical dual-strand 

cluster transcripts (ElMaghraby et al., 2019; Kneuss et al., 2019). It is interesting to note that 

in nxf3 null mutants the production of piRNAs from those clusters is not completely abolished 

(ElMaghraby et al., 2019; Kneuss et al., 2019), thus implying that alternative export routes can 

still escort some RNAs out of the nucleus. Similarly, knockdown of nup54 and nup58 does not 

completely eliminate piRNA production from flam (Figure 4.10), although we cannot exclude 

that this results from residual Nup54 and Nup58 levels due to incomplete knockdown. To 

overcome this potential limitation, we have attempted to generate our own CRISPR/Cas9 null 

mutants for these two Nups, however we did not recover any mutant alleles and other available 

alleles are not viable in homozygosis. The ubiquitous presence of Nup54 and Nup58 in the NPC 

makes the dissection of any specific function more challenging and we must therefore rely on 

conditional mutants, knockdowns or hypomorphic alleles, where available.  

 

Interestingly, several Nup genes are highly expressed in the gonads and, most importantly, 

show signs of rapid adaptive evolution that results in hybrid incompatibilities. Nup160 from 

Drosophila simulans is incompatible with one or more factors on the D. melanogaster X 

chromosome, as hybrids carrying D. simulans Nup160 and a D. melanogaster X chromosome 
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have been shown to be lethal in both sexes (Tang and Presgraves, 2009). D. melanogaster 

females carrying autosomal deficiencies (Df) were crossed with D. simulans males and, among 

the offspring, males that inherited the deficiency were analysed. These males express only the 

D. simulans gene(s) within the deficiency but possess an X chromosome from D. melanogaster, 

hence their death implies that the X is incompatible with an autosomal gene from D. simulans. 

A similar hybrid incompatibility has also been reported for Nup96 (Presgraves et al., 2003), 

suggesting that selection driven by an evolutionary conflict involving pathogens or transposable 

element might explain the fast adaptation of Nup genes (Tang and Presgraves, 2009). Notably, 

signatures of rapid divergence between D. melanogaster and D. simulans have been identified 

also for Nup75, Nup107, Nup133 and Nup153, all part of the same NPC subcomplex as Nup96 

(Presgraves and Stephan, 2007). It is tempting to speculate that the hybrid incompatibility is, at 

least partially, due to the inability of Nups from D. simulans to recognise flam in D. 

melanogaster. However, it has to be noted that flam mutants are not lethal (Prud'homme et al., 

1995), therefore this might be part of a more complex phenotype. Nonetheless, these findings 

further underscore the fast adaptation of some Nup genes which, in some instances, might have 

diverged to originate novel, non-canonical functions. Another recent study on the involvement 

of Nup54 in Drosophila sex differentiation did not identify a striking global signature of rapid 

adaptation (Haussmann, 2019). However, this manuscript identified a stretch of amino acids of 

increasing length in different species and four hotspots for substitution in the nup54 promoter. 

Hence, it will be interesting to investigate the conservation of flam across other Drosophilids 

and whether D. simulans Nups are able to export flam in D. melanogaster. 

 

Finally, a growing body of evidence in yeast and in flies points towards the idea that NPCs are 

not passive channels waiting for their cargoes, but that some Nups are relatively mobile and 

can directly bind to and regulate genes. This can involve preferential association between Nups 

and actively transcribed regions or re-localisation of genes to the NPC in response to activation 

(Kalverda and Fornerod, 2010; Pascual-Garcia et al., 2017). In Drosophila, this has been mostly 

shown for ‘dynamic’ Nups, such as Nup62, Nup98 and Nup153, which have the ability come 

on and off the NPC during interphase. On the other hand, ‘stable’ Nups are integral components 

of the NPC throughout the cell cycle but they also appear to bind to chromatin. Interestingly, 

Drosophila Nup107 and Nup93, both considered to be stable, bind to mutually exclusive 

regions of the genome, each marked by a distinctive epigenetic signature (Gozalo et al., 2020). 

While Nup107 preferentially interacts with actively transcribed regions, Nup93 appears to 

specifically target silenced, Polycomb-bound regions (Gozalo et al., 2020). This underscores 

that a specialisation of NPCs in different areas of the nucleus can indeed occur, despite them 
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all sharing the same subunits. In the context of the piRNA pathway, this argues for a model 

whereby NPC components bind to the flam locus, preferentially located at the nuclear 

periphery, to promote its expression. A conceptually similar mechanism coupling transcription 

and export has been found in yeast, where the SAGA complex physically connects with the 

NPC via adaptor proteins, such as Mex67, a protein with a domain structure similar to Nxf1 

(Kohler and Hurt, 2007). This physical proximity is thought to help creating a more favourable 

environment for RNA processing, quality control and export of specific loci. In this scenario, 

failed export might directly affect transcription, possibly explaining the reduced levels of flam 

upon knockdown of yb, nup54  and nup58. It is apparent that many non-canonical and 

specialised (epi)genetic programmes operate in germ cells (ElMaghraby et al., 2019; Hampoelz 

et al., 2019; Hopes T., 2020; Inoue et al., 2017; Kneuss et al., 2019; Xia et al., 2020). Such 

extreme specialisation is intimately linked to the necessity of preparing the development of the 

new organism and protecting the offspring’s genome from harm, which includes preventing 

transposon mobilisation. The existence of germline-specific mechanisms can also occur within 

constitutive protein complexes, as reported for Drosophila ribosomal proteins via paralog 

switching (Hopes T., 2020). Intriguingly, specialised NPCs within the same cell have been 

identified in the ciliate Tetrahymena termophila, where small RNAs drive genomic 

rearrangements at the onset of reproduction. Here, the macro- and micro-nucleus are equipped 

with their own distinct subset of nucleoporins, and therefore display differential permeability 

(Malone et al., 2008). Taken together, our results suggest that components of the NPC might 

have acquired specialised functions to carry out transposon control in the Drosophila ovary. 

 

The flam locus seems present only in a subset of Drosophila species (J.v.L., B.C. and G.J.H., 

unpublished observation), thus it is possible that this NPC-based mechanism has evolved in 

parallel with the cluster itself. Nonetheless, dedicated export machineries exist for other non-

coding transcripts, such as Exportin-t for tRNAs, Exportin-5 for pre-miRNAs and CRM1 for 

snRNAs and rRNA precursors (Kohler and Hurt, 2007) and fly dual-strand piRNA cluster 

transcripts (ElMaghraby et al., 2019; Kneuss et al., 2019). These exportins recognise either 

structural features of their substrate RNAs, such as the 2-nucleotide 3’ overhang generated by 

Drosha cleavage on pre-miRNAs, or adaptor proteins, such as Nxf3. Therefore, eukaryotic cells 

appear to possess many parallel, non-overlapping export routes that efficiently coordinate the 

many complex RNA processing pathways occurring at any given time.  

  



 

 165 

VI.3 Co-option of cellular functions for epigenetic silencing of TEs 

 

piRNA-guided transposon silencing occurs on nascent TE transcripts and involves epigenetic 

repression of the locus. A critical mediator of the silencing response is Panx (Sienski et al., 

2015; Yu et al., 2015), which we now discover is part of the PICTS complex, together with 

Nxf2 and Nxt1 (described in Chapter V). In the absence of PICTS, Piwi is unable to induce 

silencing of active transposons. Artificial recruitment of PICTS to a locus, however, can bypass 

Piwi and is sufficient to initiate the silencing cascade.  

 

The emerging model of piRNA-guided TGS implies that only the interaction Piwi-piRNA-

target is competent to elicit silencing (Figure 5.11). In line with that, we and others find that 

forced recruitment of Piwi to a reporter locus fails to initiate silencing (Figure 5.9) (Batki et 

al., 2019; Fabry et al., 2019; Murano et al., 2019; Sienski et al., 2015; Yu et al., 2015; Zhao et 

al., 2019). A generally accredited explanation is that, upon target binding, Piwi undergoes a 

conformational change, and this in turn enables recruitment of PICTS. Notably, this provides 

an additional layer of regulation to the piRNA pathway and prevents uncontrolled silencing 

events of unwanted genomic loci. We and others failed to detect enrichment of Piwi in our IP-

MS for PICTS components, and only observe a weak association via coIP (Figure 5.1-2) (Batki 

et al., 2019; Fabry et al., 2019). This can be explained because only a tiny fraction of nuclear 

Piwi directly engages with PICTS in unperturbed cells, where TEs are mostly inactive and 

robustly wired into piRNA-mediated silencing. Together with what I discussed above (VI.1), 

it is evident that each step of the piRNA pathway is finely regulated to prevent spurious 

silencing or processing of inadequate substrates. We often find that the most important 

junctures of the pathway are indeed gated by the interplay of various factors (e.g. Piwi-piRNA-

target at the onset of TGS or Piwi-Armi-pre-piRNA during precursor licensing), providing 

robustness and specificity to the system and avoiding interference with other cellular activities. 

 

Additional evidence supporting this precise regulation stems from the interdependency between 

Panx and Nxf2 for their protein stability and subcellular localisation (Figure 5.4) (Batki et al., 

2019; Fabry et al., 2019). In the absence of Nxf2, Panx is rapidly destabilised due to the 

presence of a so-called “degron” sequence in its carboxy-terminal part (Batki et al., 2019), 

meaning that it can only exert its function where Nxf2 is expressed. Conversely, in cells 

depleted of Panx, Nxf2 does not localise to the nucleus. Of note, reports that other factors, 

namely Nxf1, Mael and Arx, associate to PICTS (Murano et al., 2019; Zhao et al., 2019), are 
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inconsistent with our results and call for a better dissection of the hierarchy and functional 

relevance of these interactions during the TGS silencing cascade. 

 

Our experiments find that both Nxf2 and Nxt1 are required for effective transposon control, 

however, the actual silencing engine within PICTS resides in the amino-terminus of Panx. This 

therefore raises the question of what is the function of Nxf2 and Nxt1 within PICTS. Although 

we failed to identify a stable association between Nxf2 and transposon mRNAs (Figure 5.10), 

other work indicates that Nxf2 at least contributes to the RNA-binding activity within PICTS. 

The amino-terminal RRM of Nxf2 can bind to RNA in vitro (Batki et al., 2019), similarly to 

that of Nxf1 (Liker et al., 2000), and CLIP-seq for Nxf2 enriches for sense transposon 

transcripts (Murano et al., 2019; Zhao et al., 2019). It is worth highlighting that those CLIP-seq 

experiments were performed either upon depletion of downstream factors (e.g. HP1A or Mael, 

thus increasing the substrate availability for Nxf2 binding) or from a stable cell line with 

concomitant depletion of endogenous nxf2. Taken together, these data strengthen the notion 

that PICTS binding to RNA is indeed a transient event, which can only be detected in specific 

experimental setups. However, some open questions remain, such as what is the fate of the 

PICTS-engaged transcript once the locus has been recognised for silencing and why is the RNA 

binding activity of PICTS so critical. A potential explanation comes from yeast TGS, where 

Swi6, an HP1 homolog, has a strong affinity for RNA and is thought to help stabilising the 

transcript on the chromatin until it is degraded by the exosome (Martienssen and Moazed, 

2015). This at the same time stabilises RITS recruitment onto a locus and prevents export of an 

unwanted transcript. Another avenue is that Nxf2 somehow shields the nascent transcript from 

the canonical RNA export machinery, again preventing TE mRNAs from being translated. 

 

It is worth pointing out that the link between PICTS and the downstream epigenetic machinery 

remains elusive. In line with other TGS pathways, Panx is thought to recruit an H3K9 

methyltransferase (Egg) but this interaction is either very transient or occurs via bridge proteins 

that escaped detection. PICTS itself does not seem to directly bind to histone marks, an activity 

that is instead present within yeast RITS (Duempelmann et al., 2020). One of the components 

of RITS is the chromodomain protein Chp1, which can directly recognise H3K9me3. As 

consequence, loci that become decorated by H3K9me3 in response to Ago1 target engagement 

can recruit more RITS via Chp1, thus establishing a self-reinforcing loop that stabilises the 

silencing. It is likely that several copies of PICTS are recruited onto each active TE locus, 

thanks to the broad array of Piwi-loaded phased piRNAs, but this process has not yet been 

dissected in detail. 
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It is most fascinating that nuclear export factors have been co-opted and repurposed for piRNA-

driven heterochromatin formation in germ cells. Exaptation of ‘housekeeping gene’ paralogs 

appears to be a recurrent theme in the piRNA pathway, with several other examples being 

discovered over the last decade (Andersen et al., 2017; Chen et al., 2016; ElMaghraby et al., 

2019; Kneuss et al., 2019; Vermaak et al., 2005; Vermaak and Malik, 2009). The NXF protein 

family is highly conserved and, while the yeast genome encodes for only one member 

(Mex67p), Drosophila has four different ones (Herold et al., 2001). The ubiquitous Nxf1 is 

critical for bulk mRNA export, whereas both Nxf2 and Nxf3 show gonad-specific expression 

patterns and are required for transposon silencing. While Nxf2 functions in co-transcriptional 

gene silencing, Nxf3 promotes the export of dual-strand cluster transcripts, bypassing the Nxf1-

mediated route (ElMaghraby et al., 2019; Kneuss et al., 2019). Nxf4 is expressed only in testis 

and its role is yet to be established. The striking functional diversification of NXF family 

members in Drosophila suggests a more general pattern, where the numerous NXF variants 

present in metazoans have acquired tissue-specific roles (Tan et al., 2000; Tan et al., 2005; 

Yang et al., 2001). Mice express testis-specific NXF variants and nxf2 null mutants are sterile 

(Pan et al., 2009), although no direct link to the piRNA pathway has yet been found. Overall, 

we can speculate that the NXF protein family has undergone a compelling evolutionary 

radiation that has led to diversified functions, also thanks to the host-transposon conflict.  

 

 

VI.4 Future perspectives 

 

Since the discovery of piRNAs nearly 15 years ago, substantial work has provided insights into 

the mechanisms underlying their production and silencing modes. Early work identified the 

involvement of conserved, germline-specific proteins and outlined major differences with other 

RNAi pathways (Aravin et al., 2006; Brennecke et al., 2007). Later on, several genetic screens 

and follow-up studies shed light onto the existence of highly specialised molecular machineries 

that have evolved for transposon control, often by co-opting paralogs of ‘housekeeping genes’ 

(Andersen et al., 2017; Czech et al., 2013; Handler et al., 2013; Mohn et al., 2015; Muerdter et 

al., 2013). A substantial challenge that current and future studies face is to understand how this 

specialised machinery connects with the general cellular pathways. Although factors like Panx 

or the RDC complex carry out highly specialised roles, they ultimately interface with and feed 

into some conserved general pathways. For instance, once Panx has specified a locus for 

silencing, the chromatin environment is remodelled by Egg, a conserved methyl-transferase 
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whose roles extend beyond transposon control (Rangan et al., 2011; Sienski et al., 2015; Stabell 

et al., 2006; Yu et al., 2015). Likewise, the dual-strand cluster export machinery involves 

ubiquitous factors such as Nxt1 and UAP56, which accumulate in Rhi-positive foci. To 

disentangle the transposon-specific role of these general factors is fundamentally difficult, as 

their loss has wide-spread effects on cellular functions and null mutants are often not viable. 

Recent studies on Su(var)2-10, Ovary absent, Nup54 and Nup58 as well as ongoing work in 

the lab are starting to bridge this gap (Ninova et al., 2019a; Yang et al., 2019), although a precise 

dissection of these molecular mechanisms remains challenging. Ultimately, understanding this 

will greatly advance our knowledge of how the evolution of novel molecular machineries is 

integrated within the general cellular functions. 

 

Another major challenge that lies ahead is that of dissecting the dynamics of each molecular 

event of the piRNA pathway. Regarding piRNA biogenesis, the current model postulates cycles 

of PIWI binding to pre-piRNAs, Zuc cleavages and Armi unwinding. Nonetheless, the evidence 

supporting this model is mostly indirect, therefore calling for additional experimental proof. 

One avenue to tackle this question would be that of reconstituting piRNA production in vitro 

and precisely dissecting the contribution of each factor. In stark contrast with the elegant in 

vitro studies that have elucidated the mechanisms of RNAi (Bernstein et al., 2001; Denli et al., 

2004; Gregory et al., 2004; Park et al., 2011), in vitro assays with recombinant Zuc failed to 

recapitulate the signatures of piRNA production observed in vivo (Ipsaro et al., 2012; 

Nishimasu et al., 2012). This further suggests that future studies aimed at reconstituting fly 

piRNA production in vitro will have to involve a wider number of factors, similarly to what has 

begun to be possible in B. mori extracts (Izumi et al., 2016; Izumi et al., 2020). It is indeed clear 

that the specificity of Zuc cleavages does not lie within a single factor but likely arises from the 

interplay of many. 

 

Another outstanding question emerging from my work is the involvement of mitochondria in 

the piRNA pathway. The localisation of the piRNA biogenesis machinery on these organelles 

seems a conserved feature and has been found in several animals. Nonetheless, the reason 

behind this preferential localisation remains a mystery. Some of the factors involved in piRNA 

production also have an impact on the correct assembly of mitochondria in flies and mice 

(Huang et al., 2011; Munafò et al., 2019; Olivieri et al., 2010; Zhang et al., 2016), which further 

underscores the link between mitochondria and piRNA biogenesis, but also poses the question 

of whether this extends beyond transposon control. Is the functionality of mitochondria 

important for piRNA biogenesis? Or, conversely, does the presence of the piRNA production 
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machinery also have an impact on the functionality of germline mitochondria? Because germ 

cells are a highly specialised cell type, as discussed above, it would not be surprising if also 

their mitochondria had undergone some specialisation. One additional intriguing feature is that 

Zuc belongs to the conserved PLD family of phosphodiesterases but, unlike other members of 

the family, has lost the ability to hydrolyse lipids and functions instead as a nuclease (Ipsaro et 

al., 2012; Nishimasu et al., 2012). Zuc itself is remarkably conserved (Ipsaro et al., 2012; 

Nishida et al., 2018; Nishimasu et al., 2012) and similar enzymes are also found in prokaryotes. 

An example is the bacterial Nup that cleaves nucleic acids in vitro (Selvy et al., 2011), thus 

raising the interesting possibility that an ancestral prokaryotic enzyme present on mitochondria 

has been adopted for transposon control. 

 

In summary, my thesis work has shed new light onto the molecular mechanisms that govern 

piRNA-mediated transposon control in Drosophila. Given the enormous progress made over 

the last decade and the emergence of new technology that will allow us to answer more precise 

questions, I envision that an even deeper understanding of this pathway is within reach.  
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CHAPTER VIII 

 

 

APPENDICES 
 

VIII.1 Fiji custom scripts for image processing 

 

The following script is a representative example of those used to process immunofluorescence 

images. The same dynamic range has been applied to individual channels across all samples. 

For each channel, a monochromatic inverted image has been exported in RGB format and a 

custom LUT has been applied for the merge. No other filters have been applied to the channels. 

 

run("Duplicate...", "duplicate"); 
img=getTitle() 
 
run("Split Channels"); 
 
selectWindow("C2-"+img); 
run("Duplicate...", " "); 
run("Invert LUT"); 
setMinAndMax(0, 2500); 
run("RGB Color"); 
saveAs("Tiff", "/Users/munafo01/Desktop/out/"+img+"_yb"); 
close(); 
 
selectWindow("C2-"+img); 
run("Magenta"); 
setMinAndMax(0, 2500); 
 
selectWindow("C3-"+img); 
run("Duplicate...", " "); 
run("Invert LUT"); 
setMinAndMax(0, 4095); 
run("RGB Color"); 
saveAs("Tiff", "/Users/munafo01/Desktop/out/"+img+"_piwi"); 
close(); 
 
selectWindow("C3-"+img); 
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run("Green"); 
setMinAndMax(0, 4095); 
 
selectWindow("C1-"+img); 
run("Blue"); 
setMinAndMax(0, 4095); 
 
waitForUser("Merge channels, then hit OK") 
run("RGB Color"); 
waitForUser("check RGB, then hit OK") 
run("Scale Bar...", "width=5 height=20 font=14 color=White 
background=None location=[Lower Right] bold hide"); 
saveAs("Tiff", "/Users/munafo01/Desktop/out/"+img); 
 

 

The following scripts has been used to extract the nuclear outline from the anti-lamin channel, 

related to Figures 5.4-6. 
 
selectWindow("C3-"+img); 
setMinAndMax(110, 2100); 
run("Gaussian Blur...", "sigma=3"); 
run("Make Binary"); 
run("Fill Holes"); 
run("Outline"); 
run("Dilate"); 
run("Dilate"); 
//apply custom red LUT 
run("Edit LUT..."); 
run("RGB Color"); 
saveAs("Tiff", 
"/Users/munafo01/Desktop/S2_CoIFs_panxnxf2_sep2018/"+img+"_lam
in"); 
close(); 
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VIII.2 Custom scripts for count of transposon reads 

 

The following custom scripts have been used to extract counts for each transposon consensus 

sequence from RNA-seq and CLIP-seq libraries. For RNA-seq libraries, files flagged as “0” 

correspond to sense transposon reads, whereas those flagged as “16” correspond to antisense. 

For stranded CLIP-seq libraries “16” corresponds to sense and “0” to antisense. 

 
for i in *.te.Aligned.sortedByCoord.out.bam; do ( 
        filename=${i%%.te.Aligned.sortedByCoord.out.bam} 
        samtools view -f 0x10 -b $i > $filename.0.bam; 
        samtools index $filename.0.bam; 
        samtools idxstats $filename.0.bam | cut -f 1,3 > 
$filename.0.te.chrom_reads.txt; 
        ) & 
 
 
for i in *.te.Aligned.sortedByCoord.out.bam; do ( 
        filename=${i%%.te.Aligned.sortedByCoord.out.bam} 
        samtools view -F 0x10 -b $i > $filename.16.bam; 
        samtools index $filename.16.bam; 
        samtools idxstats $filename.16.bam | cut -f 1,3 > 
$filename.16.te.chrom_reads.txt; 
        ) & 
  



 198 

VIII.3 R custom scripts for gene differential expression analysis 

 

The following scripts has been used to plot RPM counts for genome-mapped reads and to 
extract up- and down-regulated genes. 
 
library(ggplot2) 
library(ggrepel) 
 
dm6_reads_ctrl <- 
read.table("*.Aligned.sortedByCoord.out.bam.count.htseq", 
as.is =TRUE) 
dm6_reads_kd <- 
read.table("*.Aligned.sortedByCoord.out.bam.count.htseq", 
as.is = TRUE) 
 
dm6_reads <- cbind(dm6_reads_ctrl, dm6_reads_kd[,2]) 
dm6_reads <- dm6_reads[1:17622,] 
 
dm6_reads[,2] <- dm6_reads[,2]*(1000000/sum(dm6_reads[,2])) 
dm6_reads[,3] <- dm6_reads[,3]*(1000000/sum(dm6_reads[,3])) 
 
dm6_reads_rpm <- dm6_reads 
rownames(dm6_reads_rpm) <- dm6_reads[,1] 
colnames(dm6_reads_rpm) <- c("gene",  "ctrl", "kd") 
 
#Removes all rows with at least one value < 1 
dm6_reads_rpm <- dm6_reads_rpm[!rowSums(dm6_reads_rpm < 1),] 
 
#Calculate FC for kd vs ctrl  
fc <- as.data.frame(dm6_reads_rpm[,3]/dm6_reads_rpm[,2]) 
rownames(fc) <- dm6_reads_rpm[,1] 
rownames(fc) <- dm6_reads_rpm[,1] 
colnames(fc) <- c("kd_ctrl") 
write.csv(fc, file="./*_dm6.csv", row.names = TRUE) 
 
dm6_reads_rpm_log2 <- log2(dm6_reads_rpm[2:3]) 
dm6_reads_rpm_log2 <- data.frame(dm6_reads_rpm_log2,"gene") 
dm6_reads_rpm_log2 <- 
cbind(rownames(dm6_reads_rpm_log2),dm6_reads_rpm_log2) 
 
colnames(dm6_reads_rpm_log2) <- c( "gene", "ctrl", "kd", 
"class") 
 
plot<-  
   ggplot(dm6_reads_rpm_log2, aes(x=ctrl, y=kd)) +  



 199 

 geom_point(data=dm6_reads_rpm_log2[1:7401,], aes(x=ctrl, 
y=kd), colour="black", pch=16, alpha =0.6 ) + 
geom_point(data=dm6_reads_rpm_log2[grep("\\bflam\\b", 
dm6_reads_rpm_log2[,1]),], aes(x=ctrl, y=kd), 
colour="red", size=2, pch=16) + 
geom_text_repel(data=dm6_reads_rpm_log2[grep("\\bflam\\b"
, dm6_reads_rpm_log2[,1]),], aes(label=gene,hjust=0, 
vjust=0), colour="red", size=3, pch=1) + 

   xlim(-0.1, 15)+ylim(-0.1, 15)+ 
   xlab("RPM (log2) in siGFP") + 
   ylab("RPM (log2) in siX") + 
   
   stat_function(fun=function(x)x, linetype="dotted", 
colour="black") + 
   stat_function(fun=function(x)x+2, linetype="dotted", 
colour="black") + 
   stat_function(fun=function(x)x-2, linetype="dotted", 
colour="black") + 
   theme_bw() 
 

plot + theme(aspect.ratio=1, legend.position="none") 
 
#Calculate correlation  
X <- dm6_reads_rpm_log2[,2] 
Y <- dm6_reads_rpm_log2[,3] 
cor(X,Y)^2 
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VIII.4 R custom scripts for transposon differential expression analysis 

 
The following scripts has been used to plot RPM counts for transposon-mapped reads. 
 
library(ggplot2) 
library(ggrepel) 
 
te_class <- read.table("~/te_list_gl_vs_soma_merged.txt", 
as.is = TRUE) 
 
te_reads <- 
read.table("./ctrl_vs_kd_comb4_SENSE.te.chrom_reads.txt", 
as.is = TRUE, header = FALSE) 
 
te_reads <- te_reads[1:122,] 
rownames(te_reads) <- te_class[,1] 
 
#Normalize to the appropriate scaling factor, calculated for 
each sample as 1 000 000/ (sum of genome-mapped reads) 
te_reads[,2] <- te_reads[,2]*(0.014468113) 
te_reads[,3] <- te_reads[,3]*(0.016149348) 
te_reads <- te_reads[!rowSums(te_reads < 1),] 
 
#Add “class” column 
library(stringr) 
test <- str_split_fixed(rownames(te_reads), "_", 2) 
te_reads[,1] <- test[,1] 
te_reads <- cbind(te_reads, test[,2]) 
 
#Calculate FC kd vs ctrl 
te_reads[,5]<-(te_reads[,3]/te_reads[,2]>4) 
colnames(te_reads) <- c("te","ctrl", "kd","class","fc4_te") 
te_reads[,2:3] <- log2(te_reads[,2:3]) 
 
plot<-  
   ggplot(te_reads, aes(x=ctrl, y=kd)) +  
   geom_point(data=te_reads, aes(x=ctrl, y=kd), 
colour="grey", pch=16, alpha =0.6 ) + 
   

geom_point(data=te_reads[grep("intermediate", 
te_reads[,4]),], aes(x=ctrl, y=kd), colour="gold", 
size=3, pch=20) + 
geom_point(data=te_reads[grep("soma", te_reads[,4]),], 
aes(x=ctrl, y=kd), colour="green4", size=3, pch=20) + 



 201 

geom_point(data=te_reads[grep("germline", 
te_reads[,4]),], aes(x=ctrl, y=kd), colour="red", size=3, 
pch=20) + 
geom_point(data=te_reads[grep("unknown", te_reads[,4]),], 
aes(x=ctrl, y=kd), colour="black", size=3, pch=20) + 

   
geom_text_repel(data=te_reads[grep("TRUE", 
te_reads[,5]),], aes(label=te,hjust=0, vjust=0), 
colour="black", size=3, pch=1) + 

 
 
   xlab("RPM (log2) in sigfp_comb") + 
   ylab("RPM (log2) in sinup54_comb")+ 
   xlim(-0.1, 15)+ylim(-0.1, 15)+ 
   
   stat_function(fun=function(x)x, linetype="dotted", 
colour="black") + 
   stat_function(fun=function(x)x+2, linetype="dotted", 
colour="black") + 
   stat_function(fun=function(x)x-2, linetype="dotted", 
colour="black") + 
   theme_bw() 
   

plot + theme(aspect.ratio=1, legend.position="none") 
 
#Calculate correlation  
X <- te_reads[,2] 
Y <- te_reads[,3] 
cor(X,Y)^2 
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VIII.5 List of antibodies 

 

The following antibodies have been used for Western Blots (with relative dilution factor) 

 

• Piwi  Rabbit   Brennecke et al., 2007   1:5,000 

• Yb  Mouse   Saito et al., 2010   1:1,000 

• Tubulin Rabbit   ab18251    1:5,000 

• Histone H3 Mouse   ab10799    1:1,000 

• HA tag  Rabbit   Cell Signalling #C29F4  1:1,000 

• FLAG tag Mouse   Sigma     1:2,500 

• GFP  Chicken  ab13970    1:5,000 

• Atp5a  Mouse   ab 14748    1: 1,000 

• Streptavidin IRDye® 800CW LiCor # 926-32230   1: 4,000 

• Panx  Mouse   Sienski et al., 2015   1: 20 

 

The following antibodies have been used for immunofluorescence in ovaries and cells (with 

relative dilution factor) 

 

• Piwi  Rabbit   Brennecke et al., 2007   1:500 

• Aub  Rabbit   Brennecke et al., 2007   1:500 

• Ago3  Mouse   Senti et al., 2015 [7B4-C2]  1:500 

• Yb  Mouse   Murota et al., 2014   1:500 

• Armi  Mouse   Saito et al., 2010   1:500 

• Vasa  Rat   DSHB #760351   1:500 

• Lamin  Mouse   DSHB #ADL67.10   1:200 

• Atp5a  Mouse   ab14748    1:500 

• GFP  Chicken  ab13970    1:1,000 

• HA tag  Rabbit   ab9110     1:500 

• FLAG tag Mouse   Sigma M2 #F1804   1:500 

• FG Nups Mouse   Biolegend mAb414   1:200 

• Streptavidin Alexa Fluor® 555 Thermo Fisher Scientific S-21381 1:500 
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VIII.6 List of oligos 

 

The following oligos have been used for RT-qPCR 

 
 FW      REV 

rp49 GTCGGATCGATATGCTAAGCTG  CAGATACTGTCCCTTGAAGCG 

act5c GCATCCACGAGACCACCTACAAC  CGGTGATCTCCTTCTGCATACGG 

gypsy AGAAAGTCGCCGTCTACCCTGTA  GTGTGACATTGAGCAGCGTTTCC 

mdg1 TATACGAACACTCCACCACCCCA  GGCTTTTCGGATTGGGAGTTGGA 

HeT-A CGCGCGGAACCCATCTTCAGA   CGCCGCAGTCGTTTGGTGAGT 

TAHRE CCCTCTCACACAGCGATCATAGC  GCTTATGTTTGTGGCCTGGCTTG 

ZsGreen sensor#1 
CTACTTCAAGAACTCCTGCCCCG  GGTACATGCAGTTCTCCTCCACG 

ZsGreen sensor #2 
CCCCGTGATGAAGAAGATGACCG  CGTCCTTCAGCAGCAGGTACATG 

ZsGreen sensor Nascent   
GCAGCAGCAAGTACAAGCAAAAAG  TGGCCGAACAAAGACCTTGAAATG 

 

 

The following siRNAs have been used for OSC knockdowns 

 
  sense     antisense 

siRNA-GFP AGCUGGAGUACAACUACAACA  UUGUAGUUGUACUCCAGCUUG 

siRNA-piwi CGGUCAUGCUGCAGACGAACU  UUCGUCUGCAGCAUGACCGGG 

siRNA-zuc CGAACUUGAUGCACAACAAAU  UUGUUGUGCAUCAAGUUCGUG 

siRNA-armi CGUCGGAUGUGUAGUGGAAUA  UUCCACUACACAUCCGACGUG 

siRNA-yb GGAGCAAGAGAUAAAUUUAAG  UAAAUUUAUCUCUUGCUCCUU 

siRNA-daed AGAAGAAAGUGCAGAGCAACG  UUGCUCUGCACUUUCUUCUGG 

siRNA-gasz GCAGCUACGAUGGAUUCUACU  UAGAAUCCAUCGUAGCUGCUA 

siRNA-nup54 CAACAUGCUUGUUCACAUAGA  UAUGUGAACAAGCAUGUUGGG 

siRNA-nup58 CGAGAUCACGAACUUGAAAUG  UUUCAAGUUCGUGAUCUCGUG 

siRNA-yb[3’UTR] GCAUUCUCUUGCGAAAGAAAC UUCUUUCGCAAGAGAAUGCUG 

siRNA-nxf1  GCAGUUUAUCAGCGAAGUACG  UACUUCGCUGAUAAACUGCUG 

siRNA-nxf2 GGUACUUCACGGAAAUAAACU  UUUAUUUCCGUGAAGUACCAG 

siRNA-nxf3 GGUGUUCACUUCGAGUCUACG  UAGACUCGAAGUGAACACCUG 

siRNA-nxt1 CCGUCAAGUUCGCAGAUCAGC  UGAUCUGCGAACUUGACGGAG 
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The following gRNAs have been used to generate KO alleles: 

 
gRNAs against CG10880 locus: 

gGACGCACACAATGTCCGCG  GCCTCAAACTGAATGGTCGG 

 

gRNAs against gasz locus:  
GACTCTGATAGCAGCTACGA  GCGTTGAAGTCAATGAACAA 

 

 

The following probes have been used for ZsGreen and flam RNA FISH 

 

oMF0512_ZsGreen_hcr_probe1
 GCCCTTACTCCCAATTCCaaaaaACTTGTGGCCGTCCACGCAGCCCTCCATGCGGTACTTCAT

GGTCATCTCCTT 

oMF0513_ZsGreen_hcr_probe2
 GCCCTTACTCCCAATTCCaaaaaAGTTCTTGAAGTAGTCGACGATGTCCTGGGGGTACTCGGT

GAACACGCGGTT 

oMF0514_ZsGreen_hcr_probe3
 GCCCTTACTCCCAATTCCaaaaaGTACATGCAGTTCTCCTCCACGCTCACGGTGATGTCGGCG

TTGCAGATGCAC 

oMF0515_ZsGreen_hcr_probe4
 GCCCTTACTCCCAATTCCaaaaaGGCACGGGGATGATCTTCTCGCAGGAGGGCTCCCAGTTGT

CGGTCATCTTCT 

oMF0516_ZsGreen_hcr_probe5
 GCCCTTACTCCCAATTCCaaaaaTGCCACTTCTGGTTCTTGGCGTCGCTGCGGTCCTCGCGGG

TCAGCTTGTGCT 

oMF0517_ZsGreen_hcr_probe6
 GCCCTTACTCCCAATTCCaaaaaGCCAGTCGGGCATCTTGCGGGGCACGGACTTGGCCTTGTA

CACGGTGTCGAA 

oMF0518_ZsGreen_hcr_probe7
 GCCCTTACTCCCAATTCCaaaaaGCAGCGCAAGCGGCCACCGTCCTTCAGCAGCAGGTACATG

CTCACGTCGCCC 

oMF0519_ZsGreen_hcr_probe8
 GCCCTTACTCCCAATTCCaaaaaGTTGATGGCCTGCTTGCCCTTGAAGGGGTAGCCGATGCCC

TCGCCGGTGATC 
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RF_EK13 Flam_7_5'
 GCCCTTACTCCCAATTCCaaaaaCTAGCTTGCCCTCTGGACCAAACTGGATCTATTTCCTGGA

CACAGGACCAAA 

RF_EK14 Flam_8_5'
 GCCCTTACTCCCAATTCCaaaaaGCGCGTTCTCACAACTCGTATTTAGTTTTCGCAATCTACC

CGTTTGCCTAAC 

RF_EK15 Flam_9_5'
 GCCCTTACTCCCAATTCCaaaaaGAGGAAAATGGGATTTTCCTGTAATGGTTTGGTCATACAG

CTTGTAGGGAAA 

RF_EK16 Flam_10_5'
 GCCCTTACTCCCAATTCCaaaaaAGGGAAGAGTTCTATCCGAGAGAACTCGGGCCAATTTATT

ACCAATTTTTAC 

RF_EK18 Flam_18_5'
 GCCCTTACTCCCAATTCCaaaaaTCACAATGATATCTAGGACCCTACCAACTCTGGCAAGCTT

CCAGCATGACTA 

RF_EK20 Flam_20_5'
 GCCCTTACTCCCAATTCCaaaaaTAAAGGGTGCCGCCTTTCAGATTTTGATCGATCACAAACC

CCTCGTTTGGCT 

RF_EK21 Flam_21_5'
 GCCCTTACTCCCAATTCCaaaaaTTGAGTTGCCCTAATTTCAAACCAACCATTTCGAGTCACT

ACTGACGCTAGC 

 

 

The following probes have been used for flam DNA FISH 
 
oligopaint_01 TTGATACCCAATCTGCCACTGAAATCCTCTTCTGTGGtttCAACTTAAC 
oligopaint_02 CCGTGTATTTTGCGACACACTGTGGGTTTGGTTTTtttCAACTTAAC 
oligopaint_03 TGCAGTTCAAAATTATTCGTTGTTGAAAACGGCTCCGGtttCAACTTAAC 
oligopaint_04 GGCCGTGAAAGTGTGCAACTCTCTGTTCGGCtttCAACTTAAC 
oligopaint_05 GGGCGATTTTCTTTGATCTGCCGTTGGCGTGtttCAACTTAAC 
oligopaint_06 GCATGCAGCATCTGGGAATCATGGTGGACAAtttCAACTTAAC 
oligopaint_07 GTCGCCAGATGACCCGTAGTCCACGTAGTTGtttCAACTTAAC 
oligopaint_08 GCCAGCCCACCTTACTACCTTACTATGTACAGTGTCAGtttCAACTTAAC 
oligopaint_09 AAGAATGGTCGCCGGGTGCATGGTCTCCCAGtttCAACTTAAC 
oligopaint_10 GAGATGCACCCTTCGGCCAATGCTGCCCAACtttCAACTTAAC 
oligopaint_11 TTCCCACTCCGCGAACAGCTTGTAGATGGCAtttCAACTTAAC 
oligopaint_12 TGCACCGGATGATGATCTGCCCATGTTGAATCtttCAACTTAAC 
oligopaint_13 CCTCGTTGATATCCATTGGCTCCGAACCCATCTtttCAACTTAAC 
oligopaint_14 GCGAGAAGGCTTGGCGCGATTTTATTATTGCAAAAtttCAACTTAAC 
oligopaint_15 CTTGGCTGTCATTTTCGAGGTACCCTTGCCCtttCAACTTAAC 
oligopaint_16 GGATTCACGGCCGTTGTCACTGTCAACTCGAtttCAACTTAAC 
oligopaint_17 TTGCTGTCGATGGTGAAATCGCTGATGGTCAtttCAACTTAAC 
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oligopaint_18 CCCCAAGAACGCTCTGATGGCCCTCAACGAGtttCAACTTAAC 
oligopaint_19 CGGTTCTGTCGCAACTTCTTGTCCCGAGTGCtttCAACTTAAC 
oligopaint_20 GCCCATAGCGAAGTTTATCCTTGTCTGAATATGCCTTTGGtttCAACTTAAC 
oligopaint_21 CCGAAACGTAGAAGCAAATCGGCTAGGTTCACCtttCAACTTAAC 
oligopaint_22 AATCGGAAGATGGTGCTGTCCTCGGCATCTAtttCAACTTAAC 
oligopaint_23 CAAGCGTTGCCAGGACCTAGTGGACACCATGtttCAACTTAAC 
oligopaint_24 GCAGACCGGAAATTACTTACAGTTGTGTTGCGAGTtttCAACTTAAC 
oligopaint_25 GAAACCTAGTGCTTTGTGTGAGCGTGTGAAAATTCTGGtttCAACTTAAC 
oligopaint_26 GAAGTCGTCTGGTAAGCGAGGAAACCTTTGGTGtttCAACTTAAC 
oligopaint_27 CTGGCACTGGTACTGGCACTGGTATTGTCCTtttCAACTTAAC 
oligopaint_28 GCCGATCTCTGTCAACGATGAACCGTCCGTCtttCAACTTAAC 
oligopaint_29 TGATAACTGGCATGGGCAGTTTGGAGGCAATtttCAACTTAAC 
oligopaint_30 CCAACTCGTCCGACCAGCAGAATAATCCGGAtttCAACTTAAC 
oligopaint_31 AAAATGCGTCCTGTGGCGATTGAACAGCCACtttCAACTTAAC 
oligopaint_32 AGCAGTCTTCTCCGGTGGCTTTATATCCGACATCtttCAACTTAAC 
oligopaint_33 ATTGGCGGCCTGCAACGGCATTTGGATCAAAtttCAACTTAAC 
oligopaint_34 ACTCTTTCGCAAACGCAGAATCCCAATGCCAtttCAACTTAAC 
oligopaint_35 GATTAGTTAGCGAAGGCAACGGGTTCCGCCTtttCAACTTAAC 
oligopaint_36 CAGTCCGCTGCAAGTGATTTTGTCTAGGGTAGCtttCAACTTAAC 
oligopaint_37 AAAAGCGACTCGCTGGCCAACGGAAACCATCtttCAACTTAAC 
oligopaint_38 TTTTAAGTAGACCAGCCGACCACCCTGACGGtttCAACTTAAC 
oligopaint_39 GGAACTAGCCATGGCCATTCCTGCGACCCAAtttCAACTTAAC 
oligopaint_40 AAACGGAGATCCACAGTCGCTGGGCAGTTGGtttCAACTTAAC 
oligopaint_41 GCCGAGGACTCCGGGACCAGGTAGTCTATGCtttCAACTTAAC 
oligopaint_42 CGATGACCGAAGGATCCCCATAACTATTGTTTCATGCTAAtttCAACTTAAC 
oligopaint_43 TCGTTTCGGGCACTTTCGGTGGAGTGAATGGtttCAACTTAAC 
oligopaint_44 ACGCTGGACTTGCGGTTATCGCTAACTTTTATGGtttCAACTTAAC 
oligopaint_45 CAGTGCTGGCCATATCTAGTTGATCGAAAGCACGtttCAACTTAAC 
oligopaint_46 ACATTCGTAACCCACCCATTTGCATTGCACTCATTtttCAACTTAAC 
oligopaint_47 GGGGTGCATTGTGAATGCTGGTGGAATTCGGtttCAACTTAAC 
oligopaint_48 TGCAATAGCCACTAAAAGCGGGTTAATCGAAAGTGCtttCAACTTAAC 
oligopaint_49 AATTGTGAATGAACACTTTCACTTTGTGCGCTGCAAATTtttCAACTTAAC 
oligopaint_50 TGACGTCACGAAGATATGTATTCCGAGTGAAAATGCATCAtttCAACTTAAC 
oligopaint_51 TGCCTCCAAAGACAAATGGCTTGTTGTTTCCAGCtttCAACTTAAC 
oligopaint_52 TGCAGTACGATTCTTTCTGTGACCTGAGCAGTGAAAAtttCAACTTAAC 
oligopaint_53 CTGGCCATAGTAATATAAGCAAAGTGATGGAAAGACGGCGtttCAACTTAAC 
oligopaint_54 GCAAGTCATGAAAAGTCATGCGCTTATGGTTCGAGTTCTAtttCAACTTAAC 
oligopaint_55 TGCCTGTCTGCAGCGTGGGCAAAATCTATAAtttCAACTTAAC 
oligopaint_56 CCGTCGCACTCCCACTATCTAAGTAACAGGTATCTTACCtttCAACTTAAC 
oligopaint_57 GGTGTTCACACTGTGTTCACAAGAGTTTTGCGTTTCCtttCAACTTAAC 
oligopaint_58 GCCTATGCAGCGCAGTTTGACACTGCTTAAATATTCGTAtttCAACTTAAC 
oligopaint_59 AGTCCCTTAAGGTTCGCGAGGTTTCAAAGGTCAtttCAACTTAAC 
oligopaint_60 GGATCACAAGACGAGTCGAGCTGTCCCATATTCTTTTtttCAACTTAAC 
oligopaint_61 GGGAACTCAATACACACATATACCAACCCACTTGCAGAtttCAACTTAAC 
oligopaint_62 GCTCTTGTACCGCAGTGAAGAAAACTTTTGCGACAGTATTtttCAACTTAAC 
oligopaint_63 TAATTGTTTAGTCGCGTTTCCACATATGCACATACGCACtttCAACTTAAC 
oligopaint_64 AACTGAGAGAAATCAAAAGAAGACTCACGAAAGGAACCCAtttCAACTTAAC 
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oligopaint_65 GCCGGGCGCGTGCGCATTTAAAACAATTCTCtttCAACTTAAC 
oligopaint_66 ACACTTACCGCTTGAAAATGTACAAAATCTTGGGTGACGtttCAACTTAAC 
oligopaint_67 ATGGGACATTGGAGATTTGTACATGGATGCTAGTGGGtttCAACTTAAC 
oligopaint_68 GCGAACTTGACACCCAACCAGTCAGCGAAATTTTAAtttCAACTTAAC 
oligopaint_69 ATGTGTGGAATTTGGTTGGGTCACTTTTCTCGATGTGtttCAACTTAAC 
oligopaint_70 GGTTTGCTGAGCCGAAAGAATACTGACCTCTGGTAAAAtttCAACTTAAC 
oligopaint_71 GCTTATCGGATCATTAGGCTAGTTACCGTTAAGCGGTtttCAACTTAAC 
oligopaint_72 CCATTGCATAGATAGCAAAACACGAAACCCCAACTTGTtttCAACTTAAC 
oligopaint_73 TTGGACTGGGTGTTAATTATTTCTATGCCGGTTTGCTGCtttCAACTTAAC 
oligopaint_74 CCGTTCGCTTGAAAGCTAGGAAGCTAATTGATCAATGACAtttCAACTTAAC 
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VIII.7 – Supplementary tables 

 

The following tables report proteins significantly enriched in the PL-MS or IP-MS 

experiments from Chapter III, IV and V.  

 

Table 1 – Relative to Figure 3.10D 

Proteins showing Log2FC>1.5 and adjusted P value < 0.05 in BASU-Daed PL-MS. Only 

proteins with more than one unique peptide are reported. 

 
Accessions GeneSymbol Unique_peptides log2FC adj.P.Val 
CG7082 papi 5 4.75 0.000022 
CG1458 Cisd2 3 4.73 0.00001 
CG9424 bocks 3 4.38 0.000022 
CG5581 Ote 12 4.37 0.00001 
CG5014 Vap33 6 4.16 0.000022 
CG44154 koi 2 4.03 0.00016 
CG10880 CG10880 34 3.96 0.00001 
CG3186 eEF5 3 3.79 0.00015 
CG4147 Hsc70-3 20 3.67 0.000016 
CG43770 Sxl 4 3.51 0.00012 
CG10504 Ilk 4 3.47 0.00012 
CG5508 mino 8 3.35 0.000097 
CG15081 Phb2 7 3.31 0.0002 
CG3249 spoon 2 3.31 0.00024 
CG14894 CG14894 2 3.3 0.00085 
CG5676 CG5676 2 3.21 0.00012 
CG46280 CG46280 3 3.09 0.000047 
CG6701 CG6701 5 3.08 0.0011 
CG6718 iPLA2-VIA 2 3.04 0.00035 
CG8522 SREBP 2 3.03 0.0017 
CG33129 CG33129 2 2.95 0.00021 
CG14981 mge 3 2.94 0.00054 
CG8547 CG8547 2 2.88 0.0023 
CG5271 RpS27A 7 2.86 0.000022 
CG10198 Nup98-96 15 2.75 0.000047 
CG6479 CG6479 4 2.55 0.00016 
CG12047 mud 3 2.47 0.00075 
CG3948 zetaCOP 2 2.46 0.00037 
CG6214 MRP 3 2.45 0.00045 
CG7838 BubR1 5 2.3 0.00017 
CG7961 alphaCOP 2 2.29 0.00089 
CG17952 LBR 6 2.28 0.00016 
CG11513 armi 49 2.23 0.000047 
CG4183 Hsp26 2 2.18 0.0014 
CG4264 Hsc70-4 18 2.13 0.00012 
CG31755 SoYb 9 2.13 0.00017 
CG2028 CkIalpha 3 2.09 0.00031 
CG2183 Gasz 3 2.07 0.00016 
CG11844 vig2 3 1.95 0.00038 
CG32675 Tango5 3 1.94 0.001 
CG9710 nudC 14 1.9 0.00016 
CG32016 4E-T 5 1.88 0.0038 
CG5436 Hsp68 2 1.83 0.0065 
CG8258 CCT8 5 1.82 0.0017 
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CG6122 piwi 8 1.79 0.0013 
CG13388 Akap200 2 1.77 0.0025 
CG4170 vig 4 1.77 0.012 
CG6838 ArfGAP3 2 1.74 0.017 
CG3820 Nup214 2 1.73 0.0028 
CG8367 cg 6 1.72 0.0013 
CG18445 oys 2 1.69 0.0017 
CG11154 ATPsynbeta 4 1.63 0.0008 
CG31363 Jupiter 2 1.58 0.00097 
CG14788 Ns3 2 1.56 0.0071 
CG7439 AGO2 7 1.53 0.00047 

 
 
Table 2 – Relative to Figure 3.11 

Proteins showing Log2FC>1.5 and adjusted P value < 0.05 in BASU-Gasz PL-MS. Only 

proteins with more than one unique peptide are reported. 

 
Accessions GeneSymbol Unique_peptides log2FC P.Value 
CG31755 SoYb 3 4.87 0.04 
CG5271 RpS27A 3 4.68 0.0000021 
CG8948 Graf 2 3.82 0.0011 
CG16973 msn 3 3.56 0.00034 
CG10811 eIF4G1 2 3.52 0.00063 
CG10198 Nup98-96 2 3.48 0.000095 
CG6756 Tom70 3 3.42 0.00007 
CG11710 CG11710 3 3.31 0.00026 
CG3249 spoon 3 3.18 0.0003 
CG7878 CG7878 4 3.08 0.022 
CG46280 CG46280 5 3.05 0.0000052 
GASZ+BASU BASU-Gasz 18 2.99 0.00000074 
CG11513 armi 8 2.94 0.00036 
CG4170 vig 2 2.87 0.000072 
CG42551 larp 2 2.87 0.0015 
CG11844 vig2 3 2.76 0.00026 
CG1242 Hsp83 4 2.72 0.0013 
CG14894 CG14894 3 2.6 0.000069 
CG1633 Jafrac1 3 2.56 0.00083 
CG10283 CG10283 2 2.56 0.0015 
CG4264 Hsc70-4 4 2.54 0.001 
CG8367 cg 2 2.47 0.00025 
CG18174 Rpn11 2 2.45 0.0026 
CG5205 obe 3 2.41 0.00082 
CG11856 Nup358 4 2.33 0.00012 
CG6122 piwi 10 2.29 0.00033 
CG30069 CG30069 2 2.27 0.00074 
CG30084 Zasp52 3 2.24 0.00093 
CG1898 HBS1 2 2.23 0.0042 
CG7838 BubR1 4 2.22 0.00039 
CG1458 Cisd2 2 2.17 0.00043 
CG30404 Tango11 2 2.17 0.0011 
CG43726 qin 2 2.13 0.0035 
CG6493 Dcr-2 4 2.06 0.00059 
CG7139 CG7139 2 2.04 0.00046 
CG5208 Patr-1 2 2.04 0.001 
CG7439 AGO2 15 2.01 0.00072 
CG9710 nudC 7 1.98 0.0038 
CG6946 glo 2 1.95 0.00037 
CG9684 CG9684 3 1.9 0.011 
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CG32555 RhoGAPp190 3 1.86 0.0019 
CG5581 Ote 3 1.8 0.00088 
CG32031 Argk 2 1.76 0.0038 
CG11660 RIOK1 3 1.65 0.0098 
CG8280 eEF1alpha1 8 1.62 0.0011 
CG9765 tacc 3 1.6 0.0044 
CG5726 CG5726 2 1.6 0.0046 
CG32315 dlt 2 1.6 0.0094 
CG1913 alphaTub84B 2 1.54 0.0041 
CG16944 sesB 4 1.52 0.006 
CG1404 Ran 3 1.51 0.017 

 

Table 3 – Relative to Figure 3.15A 

Proteins showing Log2FC>1.5 and adjusted P value < 0.05 in Armi-BASU PL-MS. Only 

proteins with more than one unique peptide are reported. Due to space limitations, only the 

top 50 proteins are reported. 

 
Accessions GeneSymbol Unique_peptides log2FC P.Value 
CG5166 Atx2 2 7.5 0.00000045 
CG8963 CG8963 2 6.54 0.000012 
CG7838 BubR1 7 6.07 6.5E-08 
CG31755 SoYb 6 5.97 1.6E-08 
CG5508 mino 3 5.9 0.0000024 
CG4916 me31B 2 5.85 0.00000002 
CG8280 eEF1alpha1 8 5.79 0.00000028 
CG11183 DCP1 4 5.74 0.00000034 
CG18174 Rpn11 2 5.74 0.00001 
CG4878 eIF3b 2 5.69 0.00000067 
CG8258 CCT8 3 5.56 4.3E-08 
ARMI+BASU Armi-BASU 51 5.52 0.000031 
CG1633 Jafrac1 4 5.51 0.00000015 
CG14894 CG14894 6 5.49 0.00000012 
CG14648 lost 4 5.42 0.0000021 
CG1691 Imp 10 5.4 0.00000036 
CG5205 obe 4 5.4 0.000059 
CG11844 vig2 3 5.35 0.0000017 
CG10811 eIF4G1 13 5.32 0.0000003 
CG5581 Ote 5 5.32 0.000032 
CG3249 spoon 3 5.28 1.7E-08 
CG5940 CycA 2 5.23 3.5E-08 
CG9684 CG9684 2 5.19 2.1E-08 
CG1404 Ran 3 5.17 0.0000011 
CG1341 Rpt1 9 5.15 3.8E-08 
CG7082 papi 3 5.14 0.00000035 
CG9805 eIF3a 6 5.13 0.00000021 
CG8975 RnrS 2 5.1 0.00000019 
CG10423 RpS27 2 5.04 3.2E-08 
CG42551 larp 3 4.93 0.00000015 
CG11139 p47 2 4.87 0.0000021 
CG9710 nudC 4 4.86 0.0071 
CG6838 ArfGAP3 2 4.79 0.00001 
CG5686 chico 3 4.77 0.00000012 
CG1242 Hsp83 8 4.75 0.00032 
CG4735 shu 6 4.73 0.000001 
CG3845 NAT1 6 4.72 0.000003 
CG32016 4E-T 9 4.7 0.00000029 
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CG11660 RIOK1 3 4.69 7.4E-08 
CG31363 Jupiter 3 4.68 0.00000021 
CG9281 CG9281 2 4.68 0.0000062 
CG11856 Nup358 17 4.65 0.000044 
CG5119 pAbp 12 4.63 5.7E-08 
CG11238 l(3)04053 2 4.63 0.000081 
CG11061 GM130 2 4.61 0.0000019 
CG9888 Fib 3 4.6 0.00000027 
CG4237 ArfGAP1 3 4.57 6.2E-08 
CG41099 CG41099 7 4.51 7.3E-08 
CG17255 nocte 8 4.51 0.0000018 
CG10638 CG10638 2 4.49 0.00000078 

 

Table 4 – Relative to Figure 3.15C 

Proteins showing Log2FC>1.5 and adjusted P value < 0.05 in Zuc-BASU PL-MS. Only 

proteins with more than one unique peptide are reported.  

 
Accessions GeneSymbol Unique_peptides log2FC P.Value 
CG3249 spoon 3 4.92 0.00000032 
CG30404 Tango11 3 4.69 0.000047 
CG11513 armi 33 4.57 0.00000022 
CG5508 mino 3 4.51 0.000019 
CG2238 eEF2 7 4.37 0.013 
CG17952 LBR 3 4.27 0.000025 
CG3291 pcm 3 4.26 0.0013 
CG9710 nudC 4 4.22 0.0000043 
CG9424 bocks 2 4.06 0.034 
ZUC+BASU Zuc-BASU 11 3.8 0.00013 
CG6944 Lam 2 3.75 0.0000044 
CG3869 Marf 9 3.41 0.00000089 
CG42551 larp 3 3.19 0.0000072 
CG4237 ArfGAP1 2 3.07 0.000022 
CG7838 BubR1 7 3.05 0.0000053 
CG46280 CG46280 8 3.03 0.0000014 
CG14894 CG14894 5 2.98 0.0000011 
CG6756 Tom70 5 2.91 0.0000035 
CG10198 Nup98-96 6 2.82 0.00078 
CG18174 Rpn11 2 2.79 0.000063 
CG7082 papi 3 2.69 0.0000075 
CG10880 CG10880 3 2.63 0.000012 
CG8258 CCT8 3 2.62 0.000058 
CG31755 SoYb 6 2.55 0.0000017 
CG5395 nmd 4 2.5 0.000019 
CG8280 eEF1alpha1 8 2.41 0.00012 
CG10364 msb1l 3 2.4 0.000086 
CG9126 Stim 4 2.31 0.000011 
CG11844 vig2 3 2.28 0.000074 
CG9213 CG9213 2 2.25 0.024 
CG6701 CG6701 5 2.23 0.00083 
CG6214 MRP 6 2.22 0.000036 
CG18361 dsh 2 2.22 0.00083 
CG2183 Gasz 2 2.2 0.00066 
CG1633 Jafrac1 4 2.16 0.000014 
CG5271 RpS27A 4 2.16 0.0021 
CG9684 CG9684 2 2.1 0.000028 
CG3937 cher 10 2.02 0.034 
CG32016 4E-T 7 2.01 0.007 
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CG2092 scra 2 1.99 0.015 
CG8465 Ankle2 2 1.96 0.000049 
CG14648 lost 2 1.94 0.00057 
CG1913 alphaTub84B 2 1.92 0.0012 
CG6479 CG6479 3 1.91 0.0022 
CG12051 Act42A 4 1.87 0.022 
CG42250 lqfR 3 1.85 0.0021 
CG11856 Nup358 15 1.74 0.000093 
CG8522 SREBP 4 1.71 0.0073 
CG32031 Argk 7 1.7 0.000058 
CG1945 faf 5 1.57 0.0035 
CG14964 CG14964 2 1.57 0.0086 
CG33113 Rtnl1 2 1.57 0.033 
CG5205 obe 5 1.53 0.0023 
CG5581 Ote 6 1.52 0.0028 
CG31363 Jupiter 3 1.51 0.0003 

 

Table 5 – Relative to Figure 3.16C 

Proteins showing Log2FC>1.5 and adjusted P value < 0.05 in Zuc Split BioID PL-MS. Only 

proteins with more than one unique peptide are reported.  

 
Accessions GeneSymbol Unique_peptides log2FC P.Value 
CG30404 Tango11 2 2.42 0.000016 
ZUC+SPLITBIO Zuc-SplitBioID 13 2.67 0.00007 
CG11173 Snap29 1 2.94 0.00024 
CG5581 Ote 8 2.04 0.00048 

 

Table 6 – Relative to Figure 4.8A 

Proteins showing Log2FC>1.5 and adjusted P value < 0.05 in BASU-Yb PL-MS. Only 

proteins with more than one unique peptide are reported.  

 
Accessions GeneSymbol Unique_peptides log2FC adj.P.Val 
CG11513 armi 49 4.95 0.000013 
CG2706 fs(1)Yb 75 4.19 0.000021 
CG8367 cg 6 3.7 0.0001 
CG9684 CG9684 19 3.63 0.000024 
CG3186 eEF5 3 3.33 0.00028 
CG11183 DCP1 5 3.2 0.000088 
CG4620 unk 2 3.17 0.00028 
CG31755 SoYb 9 3.08 0.00007 
CG6311 Edc3 10 3.02 0.00011 
CG32016 4E-T 5 2.93 0.00061 
CG9132 CG9132 3 2.87 0.00087 
CG9710 nudC 14 2.84 0.00007 
CG11881 dgt6 3 2.83 0.00033 
CG10504 Ilk 4 2.77 0.00033 
CG5166 Atx2 3 2.61 0.00036 
CG4170 vig 4 2.53 0.0024 
CG1691 Imp 10 2.5 0.0001 
CG5939 Prm 5 2.5 0.00035 
CG14894 CG14894 2 2.4 0.0022 
CG11414 CG11414 12 2.36 0.00022 
CG14788 Ns3 2 2.29 0.0019 
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CG5208 Patr-1 4 2.12 0.00051 
CG7838 BubR1 5 2.06 0.00033 
CG10423 RpS27 2 1.98 0.0003 
CG31363 Jupiter 2 1.98 0.00053 
CG11844 vig2 3 1.92 0.00057 
CG30084 Zasp52 3 1.92 0.0009 
CG14648 lost 5 1.89 0.00046 
CG3820 Nup214 2 1.89 0.0028 
CG5886 CG5886 2 1.83 0.0019 
CG43770 Sxl 4 1.78 0.0007 
CG7878 CG7878 4 1.68 0.014 
CG4264 Hsc70-4 18 1.65 0.001 
CG8258 CCT8 5 1.61 0.00063 
CG10811 eIF4G1 4 1.58 0.0016 
CG7518 CG7518 6 1.57 0.0011 
CG11154 ATPsynbeta 4 1.56 0.012 
CG1913 alphaTub84B 2 1.5 0.009 

 

Table 7 – Relative to Figure 4.8B 

Proteins showing Log2FC>1.5 and adjusted P value < 0.05 in BASU-Nup54 PL-MS. Only 

proteins with more than one unique peptide are reported.  

 
Accessions GeneSymbol Unique_peptides log2FC adj.P.Val 
CG6251 Nup62 11 3.97 0.0000022 
CG14712 CG14712 17 3.03 0.0013 
CG8771 Nup188 24 2.93 0.0000034 
CG10198 Nup98-96 39 2.85 0.000026 
CG33180 Ranbp16 4 2.73 0.0000082 
CG7360 Nup58 17 2.14 0.000017 
CG11943 Nup205 15 2.11 0.000019 
CG2637 Fs(2)Ket 2 1.99 0.000044 
CG6479 CG6479 5 1.99 0.0033 
CG4453 Nup153 14 1.91 0.0001 
CG17023 Dbp80 5 1.86 0.000017 
CG34407 Not1 2 1.73 0.018 
CG10318 NC2alpha 2 1.64 0.00028 
CG11092 Nup93-1 12 1.55 0.000039 
CG8831 Nup54 40 1.54 0.000026 

 

Table 8 – Relative to Figure 4.8C 

Proteins showing Log2FC>1.5 and adjusted P value < 0.05 in BASU-Nup58 PL-MS. Only 

proteins with more than one unique peptide are reported.  

 
Accessions GeneSymbol Unique_peptides log2FC adj.P.Val 
CG8771 Nup188 24 3.71 0.0000055 
CG14712 CG14712 17 3.66 0.001 
CG17023 Dbp80 5 3.33 0.0000055 
CG6479 CG6479 5 3.26 0.000043 
CG6251 Nup62 11 3.23 0.000044 
CG33180 Ranbp16 4 3.08 0.000021 
CG10198 Nup98-96 39 3.04 0.000054 
CG10318 NC2alpha 2 2.8 0.00005 
CG2637 Fs(2)Ket 2 2.76 0.000043 
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CG4453 Nup153 14 2.7 0.00022 
CG14788 Ns3 13 2.59 0.000043 
CG11943 Nup205 15 2.41 0.000048 
CG3820 Nup214 20 2.39 0.00025 
CG2158 Nup50 19 2.21 0.00069 
CG7583 CtBP 2 2.16 0.00077 
CG11092 Nup93-1 12 2.05 0.00011 
CG5794 puf 2 2.04 0.0037 
CG13387 emb 2 2.03 0.00052 
CG7360 Nup58 40 1.99 0.00034 
CG17660 CG17660 3 1.92 0.00061 
CG4464 RpS19a 4 1.78 0.00052 
CG8831 Nup54 17 1.72 0.00044 
CG2207 Df31 7 1.64 0.00017 
CG13349 Rpn13 3 1.63 0.00061 
CG7262 Nup93-2 5 1.59 0.00021 
CG4579 Nup154 2 1.58 0.0013 
CG34407 Not1 2 1.57 0.014 
CG4622 CG4622 2 1.56 0.0037 
CG2095 Sec8 2 1.55 0.0016 
CG1708 cos 2 1.55 0.0021 
CG7917 Nlp 4 1.54 0.003 
CG6521 Stam 2 1.52 0.0024 
CG2706 fs(1)Yb 20 1.51 0.00052 

 

 

Table 9 – Relative to Figure 4.12A 

Proteins showing Log2FC>1.5 and adjusted P value < 0.05 in 3xFLAG-Yb WT IP-MS. Only 

proteins with more than one unique peptide are reported. 

 
Accessions GeneSymbol Unique_peptides log2FC adj.P.Val 
CG8057 alc 2 3.29 2.6E-13 
CG11513 armi 56 3.21 3.6E-16 
CG2706 fs(1)Yb 49 3.16 8.8E-15 
CG10223 Top2 53 2.97 1.3E-13 
CG1475 RpL13A 7 2.22 2.4E-12 
CG6510 RpL18A 10 2.08 1.8E-12 
CG4897 RpL7 12 1.82 1E-11 
CG1691 Imp 18 1.79 2.1E-12 
CG2099 RpL35A 4 1.76 1E-11 
CG2849 Rala 4 1.76 1.4E-10 
CG7194 CG7194 8 1.68 1.4E-10 
CG8615 RpL18 4 1.66 1.4E-10 
CG5502 RpL4 19 1.64 4.4E-12 
CG7283 RpL10Ab 9 1.6 1E-10 
CG9354 RpL34b 4 1.59 3.4E-10 
CG6815 bor 19 1.56 1E-11 
CG9684 CG9684 4 1.54 9E-11 
CG6253 RpL14 7 1.52 2E-11 
CG3314 RpL7A 11 1.52 5.7E-11 
CG6122 piwi 26 1.52 6.3E-11 
CG17420 RpL15 4 1.51 9.9E-10 
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Table 10 – Relative to Figure 4.12B 

Proteins showing Log2FC>1.5 and adjusted P value < 0.05 in 3xFLAG-Yb ∆eTud IP-MS. 

Only proteins with more than one unique peptide are reported. 

 
Accessions GeneSymbol Unique_peptides log2FC adj.P.Val 
CG7263 AIF 5 2.82 2.2E-12 
CG5203 STUB1 4 2.75 3.7E-13 
CG4264 Hsc70-4 28 2.55 3.7E-13 
CG8057 alc 2 2.16 8.6E-11 
CG2706 fs(1)Yb 49 1.93 7E-12 
CG18743 Hsp70Ab 7 1.77 2E-10 
CG3201 Mlc-c 7 1.61 0.00000022 
CG15792 zip 52 1.59 0.0000038 
CG10289 fmt 9 1.53 4.5E-10 
CG5436 Hsp68 9 1.51 1.7E-10 

 

Table 11 – Relative to Figure 4.12C 

Proteins showing Log2FC>1.5 and adjusted P value < 0.05 in 3xFLAG-Yb ∆HelC IP-MS. 

Only proteins with more than one unique peptide are reported. 

 
Accessions GeneSymbol Unique_peptides log2FC adj.P.Val 
CG8057 alc 2 2.75 7.3E-12 
CG2706 fs(1)Yb 49 2.61 3.1E-13 
CG10223 Top2 53 2.13 1.9E-11 
CG2849 Rala 4 1.93 1.2E-10 
CG1475 RpL13A 7 1.82 6E-11 
CG6510 RpL18A 10 1.66 6E-11 

 

Table 12 – Relative to Figure 5.1B 

Proteins showing Log2FC>2 and adjusted P value < 0.05 in GFP-Panx IP-MS. Only proteins 

with more than one unique peptide are reported. 

 
Accessions GeneSymbol Unique_peptides log2FC adj.P.Val 
CG9754 Panx 22 4.35 0.00000011 
CG17108 CG17108 2 3.87 0.000019 
CG4118 nxf2 33 3.77 0.00000064 
CG12752 Nxt1 6 3.61 0.00000064 
CG18067 CG18067 4 2.12 0.027 
CG6998 ctp 2 1.99 0.000027 

 

Table 13 – Relative to Figure 5.2B 

Proteins showing Log2FC>2 and adjusted P value < 0.05 in GFP-Nxf2 IP-MS. Only proteins 

with more than one unique peptide are reported. 

 
Accessions GeneSymbol Unique_peptides log2FC adj.P.Val 
CG9754 Panx 22 4.31 0.00000013 
CG4118 nxf2 33 4.04 0.00000029 
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CG12752 Nxt1 6 3.64 0.00000058 
CG6863 tok 3 2.44 0.00014 
CG6998 ctp 2 2.07 0.000022 
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VIII.8 Source data 

 

Chapter III 

 

Raw data from proteomics and high-throughput sequencing experiments relative to this chapter 

are available on Proteomics Identifications (PRIDE) database (accession numbers: 

PXD013417, PXD013405, PXD013404, and PXD013403) and Gene Expression Omnibus 

(GEO) (accession number: GSE129321). 

 

Chapter IV 

 

Raw data from proteomics and high-throughput sequencing experiments relative to this chapter 

are available on PRIDE (accession numbers: PXD019674, PXD019671, PXD019670) and 

GEO (accession number: GSE152297). 

 

Chapter V 

 

Raw data from proteomics and high-throughput sequencing experiments relative to this chapter 

are available on PRIDE (accession number: PXD011415) and GEO (accession number: 

GSE121661). 

 

 


