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N E U R O S C I E N C E

Sexually divergent development of depression-related 
brain networks during healthy human adolescence
Lena Dorfschmidt1*, Richard A. Bethlehem1, Jakob Seidlitz2,3,4, František Váša5, Simon R. White1, 
Rafael Romero-García1, Manfred G. Kitzbichler1, Athina R. Aruldass1, Sarah E. Morgan1,6,7,  
Ian M. Goodyer1, Peter Fonagy8, Peter B. Jones1,9, Ray J. Dolan10,11, NSPN Consortium†,  
Neil A. Harrison12,13, Petra E. Vértes1‡, Edward T. Bullmore1‡

Sexual differences in human brain development could be relevant to sex differences in the incidence of depres-
sion during adolescence. We tested for sex differences in parameters of normative brain network development 
using fMRI data on N = 298 healthy adolescents, aged 14 to 26 years, each scanned one to three times. Sexually 
divergent development of functional connectivity was located in the default mode network, limbic cortex, and 
subcortical nuclei. Females had a more “disruptive” pattern of development, where weak functional connectivity 
at age 14 became stronger during adolescence. This fMRI-derived map of sexually divergent brain network devel-
opment was robustly colocated with i prior loci of reward-related brain activation ii a map of functional dysconnec-
tivity in major depressive disorder (MDD), and iii an adult brain gene transcriptional pattern enriched for genes 
on the X chromosome, neurodevelopmental genes, and risk genes for MDD. We found normative sexual divergence 
in adolescent development of a cortico-subcortical brain functional network that is relevant to depression.

INTRODUCTION
Adolescence is a period of critical development of the brain, charac-
terized by changes in both structure (1–4) and function (5, 6) that 
coincide with changes in cognition and behavior (7). It is also a time 
of increasing incidence of many psychiatric disorders, including de-
pression, which occurs more frequently in females than males (8, 9). 
Small sex differences in mood have been reported from the age of 
11, and by the age of 15, females are about twice as likely to be 
depressed as males (8–10). Recent work has supported the idea that 
sexually divergent risk for mood disorders could be related to sex 
differences in adolescent brain network development (11).

Functional brain networks derived from resting-state functional 
magnetic resonance imaging (fMRI) can be used to study complex 
network organization in the brain. Each node of these networks is 
an anatomical region, and each edge weight is an estimator of asso-
ciation, so-called functional connectivity, typically the correlation 
or coherence between the two fMRI signals simultaneously mea-
sured for each possible pair of nodes in the network (12, 13).

The brain is plastic and undergoes maturational changes throughout 
life. Primary sensory and motor areas mature most rapidly during child-
hood, while association areas undergo their most profound changes 
during adolescence (6, 14, 15). Previous resting-state fMRI studies 
have reported a shift from local to distributed networks (16) and an 
increase in the strength of long-range connections (17, 18) in the course 
of adolescence. However, it has since been noted that in-scanner head 
motion may have confounded many of the effects previously attributed to 
age, particularly in younger participants (19–21). Developmental imaging 
studies have therefore used different strategies to address these con-
cerns, e.g., by restricting analysis to motion-uncontaminated subsamples 
of data acquired with no detectable head motion (6) or by regressing each 
nodal fMRI signal on the global average fMRI signal, aka global signal 
regression (GSR) (22). Issues concerning optimal head motion cor-
rection for preprocessing fMRI data remain controversial (23–25).

It is not yet clear how FC differs between males and females, ei-
ther during adolescence or adulthood. One widely reported sex dif-
ference is increased FC of the default mode network (DMN) in 
females (26–30). Female-increased (or female > male) connectivity 
has also been reported in the subcortex and limbic areas (cingulate 
gyrus, amygdala, and hippocampus) (31), whereas male > female 
connectivity has been reported for sensorimotor areas (26, 29, 31). 
However, these effects are not consistently found across studies 
(27, 28, 32). Most research on sex differences has focused on prese-
lected regions, often including the amygdala (33, 34), with few studies 
having investigated sex differences comprehensively over all brain 
regions (26, 29, 35–37). Most prior fMRI studies of brain devel-
opment have focused on estimating “average” effects of age across 
both sexes, e.g., by including sex as a covariate in the statistical 
model for estimation of developmental parameters, and few prior 
studies have reported age-by-sex interactions or the conditioning of 
developmental parameters by sex (29, 31).

We start from the position that the sexually divergent risk trajec-
tory for depression, with higher depressive symptom scores for 
adolescent females than males (8, 9), could be the psychological or 
clinical representation of underlying sex differences in adolescent 

1Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK. 
2Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, 
USA. 3Department of Child and Adolescent Psychiatry and Behavioral Science, Uni-
versity of Pennsylvania, Philadelphia, PA 19104, USA. 4Lifespan Brain Institute, Children’s 
Hospital of Philadelphia and Penn Medicine, Philadelphia, PA 19104, USA. 5Depart-
ment of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s 
College London, London SE5 8AF, UK. 6The Alan Turing Institute, London NW1 2DB, 
UK. 7Department of Computer Science and Technology, University of Cambridge, 
Cambridge CB2 0SZ, UK. 8Research Department of Clinical, Educational and Health 
Psychology, University College London, London WC1E 6BT, UK. 9Cambridgeshire 
and Peterborough NHS Foundation Trust, Huntingdon PE29 3RJ, UK. 10Wellcome 
Trust Centre for Neuroimaging, University College London Queen Square Institute 
of Neurology. 11Max Planck University College London Centre for Computational 
Psychiatry and Ageing Research, University College London, London WC1B 5EH, 
UK. 12Department of Neuroscience, Brighton and Sussex Medical School, Uni-
versity of Sussex Campus, Brighton BN1 9RY, UK. 13Cardiff University Brain Re-
search Imaging Centre, Cardiff University, Cardiff CF24 4HQ, UK.
*Corresponding author. Email: ld548@cam.ac.uk
†A complete list of the NSPN Consortium can be found in the Supplementary Materials.
‡These authors contributed equally to this work.

Copyright © 2022 
The Authors, some 
rights reserved; 
exclusive licensee 
American Association 
for the Advancement 
of Science. No claim to 
original U.S. Government 
Works. Distributed 
under a Creative 
Commons Attribution 
License 4.0 (CC BY).

D
ow

nloaded from
 https://w

w
w

.science.org at C
am

bridge U
niversity on June 08, 2022

mailto:ld548@cam.ac.uk


Dorfschmidt et al., Sci. Adv. 8, eabm7825 (2022)     27 May 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

2 of 13

brain network development (28, 29, 35). Specifically, we hypothe-
sized (i) that there are normative sex differences in adolescent FC 
development and (ii) that these sex differences in functional brain 
network maturation are anatomically, psychologically, and genetically 
relevant to depression. To investigate these overarching hypotheses 
experimentally, we used a two-step analytic approach: First, we 
identified sexually divergent systems of healthy adolescent brain de-
velopment, and second, we tested the anatomical colocation of 
sexually divergent fMRI systems with prior maps of task-related 
brain activation, human brain gene expression, and depression-
related abnormalities of functional dysconnectivity. To assess the 
diagnostic specificity of the depression-related results from the second 
stage of analysis, we repeated some of these analyses using compara-
ble, schizophrenia-related fMRI and genetic data.

Using fMRI data from a previously published (6) accelerated 
longitudinal study (N = 298; age range 14 to 26 years; 51% female; 
Table 1), stratified by age and balanced for sex per age stratum (38), 
we estimated the effects of sex on three parameters of adolescent 
development of resting-state FC: (i) baseline connectivity at age 14, 
FC14, (ii) the adolescent rate of change in connectivity, FC14 − 26, 
estimated at nodal and edgewise levels of analysis, and (iii) the 
maturational index for each node, MI, which is the signed cor-
relation coefficient between FC14 and FC14 − 26 over all edges con-
necting a given node to the rest of the network. The sign of MI 
(positive or negative) has been reported to reflect two distinct 
modes of adolescent development of brain FC, operating in distinct 
sets of brain regions (6): (i) Positive MI is indicative of conserva-
tive development, meaning strong connections at 14 years became 
stronger during adolescence; (ii) negative MI is indicative of dis-
ruptive development, meaning weak connections at 14 years be-
came stronger during adolescence and strong connections became 
weaker. Disruptive development is thus characteristic of nodes that 
change the relative strength or rank order of their functional con-
nections to the rest of the brain network (see fig. S1) over the course 
of adolescence; see Materials and Methods and Discussion for 
detail. MI is an appealing measure for estimating developmental 
changes due to its succinct characterization of systems level matu-
rational changes across all of a node’s edges and because it relates 
the magnitude of developmental change during adolescence to 
the strength of FC at baseline. The sex difference in MI (MI) 

thus summarizes the sexual divergence in how a node’s edge-
wise wiring changes from baseline during adolescence and thereby 
goes beyond traditional analyses of age-by-sex interactions by 
highlighting sex differences in regions that are likely undergoing 
rewiring of their functional connections (“disruptive”) and 
regions that are further consolidating their functional connections 
over the course of adolescence in line with their previous trend 
(“conservative”).

In relation to our first hypothesis, we found that there was a sex-
related difference in adolescent brain network development: Females 
had significantly more disruptive development of FC in a default 
mode cortical, limbic, and subcortical network. In relation to our 
second hypothesis, we found that this developmentally diver-
gent brain system was colocated with loci of brain activation by 
reward-related tasks, with expression of a weighted function of the 
whole genome enriched for X chromosome genes, genes expressed 
during various phases of brain development, and genes identified by 
genome-wide association with major depressive disorder (MDD), 
and colocated with an anatomical map of depression-related differ-
ences in FC from an independent case-control fMRI study of MDD 
(39, 40). The robustness of all these results to potentially confound-
ing effects of sex differences in head movement, intracranial volume, 
or global FC was evaluated (and supported) by five sensitivity 
analyses; see the “Sensitivity analyses” section in Supplementary 
Text. Last, we assessed the diagnostic specificity of the relation-
ships between sexually divergent brain development (indexed by 
the MI map) and (i) MDD case-control differences in FC and 
(ii) brain expression profiles of MDD risk genes. To do this, we re-
peated analyses (i) and (ii) using comparable data from prior inde-
pendent studies of schizophrenia. Specifically, we tested for 
significant association between MI and schizophrenia-related dif-
ferences in FC estimated from The Centre for Biomedical Research 
Excellence (COBRE) case-control fMRI study of schizophrenia 
(41, 42), and we tested for significant enrichment of the list of genes 
transcriptionally colocated with the ∆MI map by risk genes for 
schizophrenia identified by a large prior genome-wide association 
study (GWAS) (43). Thus, we conclude that normative sexual di-
vergence in adolescent development of FC in a cortico-subcortical 
brain network is anatomically, genetically, and psychologically rel-
evant to depression.

Table 1. Adolescent developmental MRI sample. Total N = 298 healthy young people participated in an accelerated longitudinal MRI study, with recruitment 
balanced for sex in each of five age-defined strata and each subject scanned between one and three times (with follow-up scans taking place approximately 6 
and 18 months after baseline). FD, a measure of head movement in millimeters, was significantly greater in males compared to females on average over all ages 
and in the youngest two age strata specifically (P < 0.05, uncorrected; fig. S3). 

Sex
Age stratification

All ages
14–15 16–17 18–19 20–21 22–25

N subjects
Female 22 151 24 32 22 151

Male 32 33 24 35 23 147

FD (mm)
Female 0.13* 0.10* 0.12 0.10 0.13 0.11*

Male 0.15* 0.13* 0.12 0.14 0.13 0.13*

N scans/subject 
(1|2|3)

Female 9|22|3 11|25|3 6|16|2 14|16|2 14|7|1 54|86|11

Male 7|24|1 8|24|1 7|16|1 11|20|4 8|14|1 41|98|8
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RESULTS
Analyzable sample, head movement, and sensitivity analyses
A total of 36 scans were excluded by quality control criteria including 
high in-scanner motion [mean framewise displacement (FD) > 0.3 mm 
or maximum FD  >  1.3 mm], co-registration errors, or extensive 
fMRI dropout. The analyzable sample thus consisted of 520 scans 
from 298 participants (151 females; Table 1 and table S1), with 
regional signal available in 346 cortical and subcortical regions (fig. 
S2). Males had significantly more head movement than females in 
the youngest two age strata (P < 0.05, uncorrected) and on average 
over all ages (Table 1 and figs. S3 and S4).

After preprocessing for within-subject correction of head motion 
effects on individual fMRI time series, FC was positively correlated 
with individual differences in mean FD and this effect scaled with 
distance between the nodes (fig. S4A). We therefore also corrected 
for between-subject differences in head motion by regressing each 
interregional correlation on mean FD across all participants. This 
removed the relationship between connectivity and FD, as well as 
the distance dependence in this relationship (fig. S4D) (19, 44).

Age and sex effects on FC
We modeled age and sex effects on global FC of each participant, 
estimated as mean weighted degree, using linear mixed effects 
models (LMEs). FC increased with age [t(219) = 2.3, P < 0.05], 
and males had higher global mean weighted degree than females 
[t(296) = 5.5, P < 0.0001] (Fig. 1A and table S2).

Regional FC was estimated between and within cortical and 
subcortical subsets of nodes by averaging the relevant parts of the 
connectivity matrix (fig. S5). To model development of FC during 
adolescence, we focused on three parameters: regional baseline con-
nectivity at age 14, FC14, regional linear change in connectivity 
between 14 and 26 years, FC14 − 26 (Fig. 1B), and the signed Spear-
man correlation of these two parameters, termed MI (−1 < MI < + 
1; Fig. 2A) (6). Previous work on this sample has reported develop-
mental change (controlling for sex) in terms of these parameters 
estimated at each regional node of a whole-brain fMRI network (6). 
Here, we estimated each of these parameters for males and females 

separately and the between-sex difference for each parameter, 
e.g., MI = MIfemale − MImale. We tested the significance of the be-
tween-sex difference in each parameter at each regional node using 
parametric tests (see the “Analysis of sex effects on parameters of 
adolescent brain development” section in Supplementary Text).

Baseline connectivity at age 14 was quantitatively (but not signifi-
cantly) greater in primary sensorimotor cortex than in association 
cortex for both sexes (Fig. 1B and figs. S6A, S7, and S8). As predicted 
by the sex difference in global FC at all ages (Fig. 1A), males had 
significantly stronger baseline connectivity than females at 14 years, 
i.e., FC14 = FC14, female − FC14, male < 0, in cortico-cortical and cortico-
subcortical connections (Fig. 1C).

The pattern of adolescent rate of change in connectivity was 
strongly positive in sensorimotor cortex and was quantitatively (but 
not significantly) less positive or slightly negative in association cor-
tical and limbic areas, for both sexes. After correction for multiple 
comparisons, there was no significant sex difference (at PFDR < 0.05), 
i.e., the null hypothesis that FC14 − 26 = 0 was not refuted, for 
cortico-cortical or cortico-subcortical connectivity, but a subset of 
27 subcortico-cortical connections, involving the nucleus accumbens, 
had significantly less positive rates of change in females compared 
to males (PFDR < 0.05; Fig. 1D and figs. S6A, S9, and S10).

MI was positive in sensorimotor cortex and negative in associa-
tion cortex and subcortical areas, in both sexes separately (Fig. 2B 
and fig. S11), as previously reported for both sexes on average (6). 
However, there were many areas of significant sex difference in MI 
(PFDR < 0.05; fig. S11). Females had more negative MI than males in 
107 regions (Fig. 2B; for a full list, see table S3; effect sizes are shown 
in fig. S12). In 84 of these regions, exemplified by the left area 24 
(Fig. 2D), there was more disruptive development in females, i.e., 
weak connections at 14 years became stronger during adolescence 
and strong connections became weaker in females compared to males. 
In 23 regions, exemplified by the right visual area V6 (Fig. 2D), 
there was less conservative development in females, i.e., strong con-
nections at 14 years became stronger during adolescence in males com-
pared to females (figs. S13 and S14). Thus, the brain system defined 
by regions with a negative MI is predominantly characterized by 

A | Global FC development B | Estimators of baseline and adolescent change in FC D | Sex diff. rate of changeC | Sex diff. baseline connectivity 
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Fig. 1. Sex differences in FC at age 14 (FC14) and adolescent rate of change of connectivity (FC14−26) per year. (A) Global functional connectivity (FC) strength in-
creased with age [t(219) = 2.3, P < 0.05] and was higher in males [t(296) = 5.5, P < 0.0001]. (B) To estimate two parameters of development at each regional node, we fit a 
linear model to the relationship between age and weighted degree (nodal strength of connectivity to the rest of the network) for males (m) and females (f) separately. 
The two model parameters are the intercept, or “baseline” connectivity at age 14 (FC14), and the linear rate of change in connectivity during adolescence (FC14 − 26). (C) We 
found that 321 of 330 regions had significantly increased cortico-cortical connectivity and 230 of 330 regions had increased cortico-subcortical connectivity (PFDR < 0.05) 
at baseline (FC14) in males. (D) FC14 − 26 was only significantly different between sexes, decreased in females, in 27 of 330 subcortico-cortical connections of the nucleus 
accumbens.
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a weak-getting-stronger profile of developmental change in FC that 
was greater in females than males.

The unthresholded map of MI was co-registered with a prior 
map of cortical cytoarchitectonic classes (Fig. 3A) and a prior map 
of resting state networks (45) from an independent component 
analysis (ICA) of adult fMRI data (Fig. 3B). Regions of negative 
MI were concentrated in secondary sensory, limbic, and insular 
classes of cortex; in subcortical structures, defined anatomically (Fig. 3A); 
and in default mode, limbic, ventral attentional, and subcortical sys-
tems defined functionally (Fig. 3B).

It has recently been proposed that many aspects of brain organi-
zation conform to a gradient or axis between unimodal and trans-
modal cortical areas (46). We found that the map of MI (6), estimated 
on average over both sexes, was significantly negatively correlated 
with a prior map of the unimodal-transmodal axis (U-T axis) (46) 
such that positive MI (conservative development) was associated 
with unimodal regions and negative MI (disruptive development) 
was associated with transmodal regions (r = −0.63, P < 0.01, Pspin < 
0.01); see fig. S15A. The map of MI, representing sex differences in 
MI, was also negatively correlated with the U-T axis map, such that 
transmodal regions tended to have more negative MI, indicating 
more disruptive development in females (r = −0.28, P < 0.01, Pspin = 
0.08); see fig. S15B. However, the nominally significant correlation 
between the MI map and the U-T axis map was not robust to sig-
nificance testing using the spin-test method to control for spatial 
autocorrelation in the maps, and the correlation between the MI 
map and the U-T axis map was evidently not as strong as the cor-
relation between the MI map and the U-T axis map.

Automated meta-analytic referencing of the unthresholded map 
of negative MI was conducted using the NeuroSynth database of 
task-related fMRI activation coordinates (47). This indicated that 
regions with more disruptive (or less conservative) development in 
females were typically activated by tasks related to reward process-
ing, emotion, motivation, incentive delay, and dopamine (Fig. 3C; 
for results for positive MI, see fig. S16).

Sexually divergent brain network development and  
gene expression
To investigate the relationships between gene expression profiles and 
sexually divergent adolescent brain development, we used partial 
least squares (PLS) regression to find the weighted gene expression 
pattern that was most closely colocated with the MI map (Fig. 4A) 
(5, 14, 48). Whole-genome transcripts were estimated for the average 
of each of 180 bilaterally homologous cortical regions using adult 
postmortem data (N = 6) provided by the Allen Human Brain Atlas (49).

The first PLS component (PLS1; Fig. 4A) explained 34.6% of the 
variance in MI, significantly more than expected by chance (Pperm < 
0.05, Pspin < 0.05). The PLS1 gene expression weights were positively 
correlated with MI. This means that negatively weighted genes, at 
the bottom of the ranked PLS1 list, were overexpressed in regions 
with negative MI, or more disruptive maturational change in females. 
Conversely, positively weighted genes, at the top of the ranked PLS1 
list, were underexpressed in regions with negative MI (Fig. 4B).

To test the hypothesis that sex chromosomal gene expression, par-
ticularly expression of X chromosome genes, was related to the sexual 
differences in adolescent brain development, we assessed chromosomal 
enrichment of the genes on PLS1. We hypothesized that gene expres-
sion patterns related to sex differences in adolescent brain development 
might be enriched for X chromosomal genes. First, genes on the 
X chromosome are enriched for sex-differential gene expression in 
multiple tissues, including the prenatal (50) and postnatal brain (51). 
Furthermore, the X chromosome is diploid in females (XX) and haploid 
in males (XY), and while X chromosome inactivation silences tran-
scription of one of the two X chromosomes in females, incomplete in-
activation has been shown to affect at least 23% of X chromosomal genes, 
which results in sex biases in gene expression and is likely to introduce 
phenotypic diversity (52). We found that the most negatively weighted 
genes, which were highly expressed in brain regions that demonstrated 
more disruptive development in females, i.e., regions with negative 
MI or more negative MI in females, were most strongly enriched for 
X chromosome genes (Pperm< 0.001; Fig. 4C, fig. S17, and table S4).

Fig. 2. Sex differences in MI. (A) The MI was estimated as the correlation between edgewise baseline connectivity at age 14 (FC14) and the adolescent rate of change in 
connectivity per year (FC14 − 26) at each regional node. (B) MI maps for males and females separately. MI was generally negative (blue) in frontal and association cortical 
areas and positive (orange) in primary motor and sensory cortices. (C) The sex difference in MI, MI = MIfemale − MImale, was significant in 230 of 346 regional nodes (PFDR = 
0.05). MI was significantly negative in the ventral and medial prefrontal gyrus, ventrolateral prefrontal cortex, anterior and posterior cingulate gyrus, medial temporal 
gyrus, and subcortical nuclei (table S3), indicating sex differences in adolescent development of connectivity of these regions. More specifically, negative MI defined a 
set of brain regions where adolescent development was either more disruptive (weak connections at 14 years became stronger during adolescence, and strong connec-
tions became weaker) or less conservative (strong connections at 14 years became stronger or weak connections became weaker during adolescence) in females com-
pared to males. (D) Map of brain regions where development was more disruptive in females. As exemplified by the left area 24 (L a24), functional connections of 
disruptively developing nodes that were strong at 14 years (high FC14, x axis) became weaker over the period 14 to 26 years (FC14 − 26 < 0, y axis), and edges that were 
weakly connected at 14 years became stronger over the course of adolescence, especially in females. (E) Map of brain regions where development was less conservative 
in females. As exemplified by right visual area V6 (R V6), connections that were strong at baseline become stronger over the period 14 to 26 years, especially in males.
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Regional differences in cortical gene expression have been attributed 
to different proportions of functionally specialized neuronal, glial, 
and other cell types in different cortical areas (53). We therefore used 
the Cell Type–Specific Enrichment Analysis (CSEA) tool (54) to assess 
cell type enrichment of the most positively and negatively weighted 
genes on PLS1. We found that negatively weighted genes (Z < −2.58) 
were enriched for genes with cortical expression in late fetal and 
early postnatal life and for genes with amygdala, hippocampal, and 
striatal expression in late childhood and adolescence (Fig. 4D). In 
contrast, positively weighted genes (Z > 2.58) were enriched for genes 
with cortical, cerebellar, and thalamic expression during adolescence 
and young adulthood (Fig. 4D). These results indicate that the negatively 
weighted genes, most strongly expressed in cortico-subcortical re-
gions that demonstrated more disruptive development in females, 
i.e., regions with negative MI or more negative MI in females, were 
specialized for perinatal development of cortex and later develop-
ment, in childhood and adolescence, of subcortical structures.

We further explored developmental aspects of the sexually di-
vergent system by testing for enrichment by genes specific to prenatal 
and postnatal cell types (55, 56). We found that negatively weighted 
genes, which were overexpressed in cortico-subcortical regions that 
demonstrated more disruptive development in females, i.e., regions 
with negative MI or more negative MI in females, were enriched 
for prenatal cell types (54), including oligodendroglial precursor cells, 
microglia, astrocyte progenitor radial cells, inhibitory and excitatory 
cortical neurons (Fig. 4E and table S5), as well as for multiple adult 
glial and neuronal cell classes (Fig. 4F, fig. S18, and table S6).

Sexually divergent brain network development 
and depression
Extending the enrichment analysis to consider depression-related 
genes, we found that the list of genes strongly coexpressed with sex-
ually divergent disruptive brain systems was significantly enriched 

for risk genes for MDD (Fig. 4H and table S7) (57). For this analysis, 
risk genes for MDD were defined by a prior study, in which single-
nucleotide polymorphisms (SNPs) significantly associated with MDD 
in one of the largest available GWASs (58–60) were mapped to func-
tionally relevant genes using epigenetic (Hi-C) data to guide the 
interpretation of GWAS-significant SNPs in noncoding loci (57). 
More than 80% of risk variants identified by GWAS are found in the 
noncoding genome, which makes the interpretation of underlying 
biological mechanisms challenging. Noncoding SNPs can regulate 
distal genes via long-range regulatory interactions since the three-
dimensional structure of the genome allows for distal enhancers to 
be brought into contact with sequentially distant promoters. Our 
enrichment results showed that the MDD risk genes were negatively 
weighted and ranked toward the bottom of the PLS1 list, indicating 
that they were more highly expressed in brain regions with disrup-
tive development, indexed by negative MI.

To assess the anatomical correspondence between the sexually 
divergent disruptive brain system and mood disorder–related changes 
in fMRI connectivity, we used resting state fMRI data from a prior 
case-control study of adult MDD cases (N = 50) and healthy con-
trols (N = 46); see table S8. The parcellated, unthresholded map of 
MDD case-control differences in weighted degree (comprising 346 
regional t statistics) was significantly colocated with the identically 
parcellated, unthresholded map of MI (r = 0.4, P < 0.001, Pspin < 
0.001; Fig. 3D). Brain regions with sexually divergent development 
in adolescence (negative MI) had reduced degree of FC in MDD 
cases compared to controls. Perhaps, as expected, given that MI is esti-
mated for each regional node as the correlation between FC14 and 
FC14 − 26 over all edges connecting the node in question to the rest 
of the network, we also found a correlation between the MDD 
case-control map and sex differences in baseline FC (∆FC14) and 
sex differences in the adolescent rate of change of connectivity 
(∆FC14–26; see fig. S19).

C | Task-related termsB | Resting fMRI modulesA | Cytoarchitectonic classes D | Depression-related fMRI 

Visu
al

Dorsa
l a

tte
ntio

n

Somato
moto

r

Fro
nto

parie
ta

l

Ventra
l a

tte
ntio

n

Lim
bic

Defa
ult m

ode

Subco
rte

x

-
0

.8
0

.8

S
e

x 
d

iff
e

re
n

ce
 in

 M
I

0.5

0.0

0.5

1 2 3 4 5 6 7 8
.

Moto
r

Ass
ocia

tio
n

Ass
ocia

tio
n

Lim
bic

Senso
ry

Senso
ry

In
su

la

Subco
rte

x

reward
fear

anticipation

motivation

sentences

listening
pain

incentive
comprehension

linguistic

incentive delay

speech

em
ot

io
na

l

dopamine
gains

reward anticipation

value

dopaminergic

reinforcement

voice

language comprehension

outcomes

autobiographical

losses

language

prediction error

affective

sounds

valence

social

pa
in

fu
l

speech perception

em
ot

io
n

decision making

punishment

sentence

ratings

prediction
learning

reinforcement learning

delay

heard

risk taking

addiction

gambling

decision

ar
ou

sa
l

temporal
vocal

auditory stimuli

Corr.  0.15 0.1 0.05

t statistic
1-4

Sign. MDD
and

M
D

D
 c

a
se

-c
o

n
tr

o
l d

iff
e

re
n

ce
, t

4

3

2

1

0

0.5 0.0 0.5
MI

= 0.39, < 0.01 

Fig. 3. Sex difference in MI in psychological and psychiatric context. (A) MI was most negative in cytoarchitectonically defined secondary sensory, limbic, and insula 
cortex and subcortical structures (B) as well as functionally defined (fMRI) DMN, ventral attention network, limbic systems, and subcortical structures. (C) Word cloud of 
NeuroSynth meta-analytical cognitive terms scaled according to their strength of association with the disruptively developing brain regions (cortical map of MI < 0). 
(D) Scatterplot of MDD case-control t statistics (y axis) versus MI (x axis). Each point represents one of 346 cortical or subcortical regions; regions of interest that show a 
significant MDD case-control difference, t ≠ 0, and a significant sex difference in MI, t ≠ 0, are highlighted. The fitted line and 95% confidence interval indicate the positive 
correlation (r = 0.4, P < 0.001, Pspin < 0.001) between the spatial maps of MDD case-control differences, t, and MI, shown alongside the y and x axes, respectively. Regions 
with sexually divergent disruptive development in adolescence (negative MI) had reduced degree of connectivity (negative t) in adult MDD cases.
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Sensitivity analyses
To assess the robustness of key results to the two-step process for 
head motion correction, we conducted three sensitivity analyses 
(see the “Sensitivity analysis” section in Supplementary Text): (i) 
Sex-specific motion correction. FC matrices were regressed on FD 
separately for males and females (figs. S20 to 24). (ii) GSR correction. 
The fMRI time series at each node were regressed on the global fMRI 
signal per participant (figs. S25 to 28). (iii) Motion-matched subsa-
mple analysis. We used a subset of data (N = 314), comprising equal 
numbers of males and females, for which there was no statistical dif-
ference in FD (figs. S29 to S33).

Given the male > female sex difference in intracranial volume 
(61, 62), we ran two further sensitivity analyses: (iv) Intracranial 

volume correction. We regressed global and edgewise fMRI metrics 
on intracranial volume estimated from structural MRI data on the 
same sample (figs. S34 to S37). (v) Global FC correction. We re-
gressed edgewise fMRI metrics on global FC (figs. S38 to S41).

Results of these five sensitivity analyses were quantitatively com-
pared to the corresponding results at all stages of the principal anal-
ysis. There was a significant correlation between the developmental 
fMRI metrics (FC14, FC14 − 26, and MI) estimated by each of these 
sensitivity analyses, and the same parameters estimated by our prin-
cipal analysis (fig. S42). The key findings of sexually divergent 
adolescent development of FC between DMN, limbic, and subcorti-
cal regions (mean correlation r = 0.8 between principal and sensitiv-
ity analyses of MI); gene expression enrichment for MDD-related 
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Fig. 4. Sexually divergent, disruptive brain systems are colocated with brain tissue transcripts enriched for X chromosome, neurodevelopmental, and MDD risk 
genes. (A) We used PLS regression to map gene expression data (43) onto MI. (B) PLS1 was positively correlated with MI; thus, low PLS1 scores were colocated with low 
MI or predominantly female more disruptive regions. (C) Relationship of MI to expression of exemplary genes: sodium voltage-gated channel beta subunit 1 (SCN1B), 
a positively weighted gene near the top of the ranked PLS1 weights list; cortistatin (CORT), a near-zero weighted gene in the middle of the list; and somatostatin (SST), a 
negatively weighted gene near the bottom. Negatively weighted genes were more strongly expressed in regions of negative MI, that is, predominantly female > male 
disruptive regions, whereas positively weighted genes were more strongly expressed in regions with female > male conservative development indicated by positive MI. 
(D) Enrichment analysis for chromosomal genes. Plot of median ranks of genes from each chromosome on PLS1. (E) Enrichment analysis for neurodevelopmental genes. 
Negatively weighted genes were enriched for genes expressed in cortex during late fetal and early postnatal development and for genes expressed in the amygdala, 
hippocampus, and striatum during late childhood and adolescence. Positively weighted genes were enriched for genes typically expressed in cortex and cerebellum 
during adolescence and early adult life. (F) Enrichment analysis for prenatal cell type–specific genes. Negatively weighted genes (blue) were significantly enriched for 
genes expressed by prenatal radial glia (vRG and oRG), microglia (Mic), oligodendrocyte progenitor cells, and excitatory neurons. (G) Enrichment analysis for adult cell 
type–specific genes. Negatively weighted genes were significantly enriched for genes expressed by adult astrocytes, oligodendroglial precursor (OPC) cells, and excitatory 
neurons. (H) Enrichment analysis for MDD-related genes. Negatively weighted genes were enriched for genes associated with major depressive disorder by an indepen-
dent GWAS (52).
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genes; and colocation with MDD case-control dysconnectivity, were 
conserved in all five sensitivity analyses. In all sensitivity analyses, X 
chromosome genes ranked toward the bottom of PLS1; however, 
this enrichment was not always significant at P < 0.05. The 
cell-specific enrichment was largely conserved across all sensitivity 
analyses, with PLS1 consistently enriched for excitatory neurons. In 
particular, the potentially confounding effect of cortical volume on 
FC (62) did not appear to significantly alter our results; see figs. S20 
to S41 for figures corresponding to Figs. 1 to 4 for each sensitivity 
analysis.

Diagnostic specificity
To assess the specificity of the relationships between sexually divergent 
brain development (indexed by the MI map) and (i) MDD case-
control differences in FC and (ii) brain expression profiles of MDD 
risk genes, we repeated these analyses using comparable indepen-
dent data on schizophrenia. First, we tested the colocation of the 
MI map with a map of FC differences in schizophrenia cases 
(N = 67) compared to healthy controls (N = 81), reported in a prior 
case-control resting-state fMRI study (41, 42); see the “Diagnostic 
specificity” section in Supplementary Text. We found that schizo-
phrenia case-control differences in weighted degree were not sig-
nificantly colocated with the unthresholded map of MI (r = 0.05, 
P = 0.35, Pspin = 0.47); see fig. S43B. Second, we tested the list of genes 
transcriptionally colocated with MI for enrichment by schizophrenia-
related risk genes. We used the largest currently available GWAS of 
schizophrenia, which identified 270 schizophrenia-associated SNPs 
and mapped these SNPs to genes using epigenetic information (43). 
We found that genes transcriptionally colocated with MI were not 
significantly enriched for genes associated with schizophrenia (P = 
0.25); see fig. S43C.

DISCUSSION
This study was motivated by the twin hypotheses that there are 
sex-divergent differences in brain functional network development 
of healthy adolescents and that these normative developmental dif-
ferences are located in cortical areas and subcortical nuclei that are 
psychologically, genomically, and clinically relevant to depression. 
In this accelerated longitudinal fMRI study of healthy young peo-
ple, we first identified human brain systems that demonstrated a 
significantly different pattern of adolescent development in females 
compared to males. We found sex differences in several aspects of 
FC: Females had lower global mean FC across all ages and reduced 
nodal strength of connectivity in most regional nodes at 14 years, 
FC14. However, there were more anatomically specific sex differences 
in two developmentally sensitive parameters: The rate of change in 
FC during adolescence, FC14 − 26, was significantly reduced in females 
for connections between one cortical nucleus (nucleus accumbens) 
and 27 cortical structures, and the MI, a coefficient of the linear 
relationship between edgewise FC14 and FC14 − 26 at each node, was 
significantly more negative in females for 107 cortical areas con-
centrated in the DMN, ventral attentional, and limbic networks, 
as well as subcortical nuclei.

The MI can be used to define two modes of adolescent brain func-
tional network development (6). A conservative node is defined by 
a positive MI, indicating that it is highly connected or “hub-like” at 
baseline (14 years) and becomes even more strongly connected 
over the course of adolescence (14 to 26 years). Theoretically, 

conservative nodes could also be weakly connected at baseline and 
become even more weakly connected during adolescence; however, 
empirically, we found that this was not the case (fig. S14). A disrup-
tive node is defined by a negative MI, indicating either that it is 
weakly connected at age 14 but becomes more strongly connected 
or hub-like during adolescence or that it is a strongly connected 
node at 14 years but becomes more weakly connected or less hub-
like during adolescence. The disruptive developmental profile of 
weak-getting-stronger during adolescence hypothetically rep-
resents a “rewiring” in the functional connectome, which could be 
relevant to the acquisition of social, cognitive, and other skills (6). Similar 
selective strengthening of connections has also been observed on the 
cellular level in the developing Caenorhabditis elegans connectome 
(63). It has also been argued that brain networks that are most de-
velopmentally active during adolescence are most likely to contrib-
ute to the coincidentally increased risk of mental health symptoms, 
i.e., “moving parts get broken” (11). For these reasons, our analysis 
focused particularly on sexual differences in weak-getting-stronger 
disruption in cortico-subcortical networks; results for strong-get-
ting-stronger or conservative development are summarized in 
fig. S16.

The first explanation that we considered for this sex difference in 
developmental fMRI parameters is that they were attributable to sex 
differences in potentially confounding variables, including head motion 
during scanning. Head movement is known to be a potentially 
problematic confounder in developmental fMRI (19–21), and males, 
especially younger males, had more head movement than females in 
this sample. We initially addressed this issue by a two-stage prepro-
cessing pipeline that statistically corrected each participant’s func-
tional connectome for between-subject differences in head motion, 
indexed by FD. These preprocessed data passed the standard quality 
control criteria for movement-related effects on FC. In addition, 
we conducted three sensitivity analyses of head movement, re-
peating the entire analysis for male and female data separately, for 
a “motion-matched” subset of the data in which there was no signif-
icant sex difference in FD, and for all data after GSR (figs. S20 to 
S33) (24). In parallel, we conducted two additional sensitivity 
analyses to assess whether the male > female differences in in-
tracranial volume, or global FC, might have confounded our principal 
results. In all five sensitivity analyses, our key results were qualita-
tively and quantitatively conserved, e.g., MI maps estimated by the 
principal analysis were strongly correlated (mean r ∼ 0.8) with 
corresponding maps estimated by each sensitivity analysis. We 
therefore consider that sex differences in head movement, intra-
cranial volume, and global FC can be discounted as sufficient ex-
planations for sex differences in these parameters of brain network 
development.

An alternative explanation is that sex differences in FC14 − 26 and 
MI reflect divergent development of specific cortico-subcortical cir-
cuits. In particular, females have a significantly more disruptive pat-
tern of adolescent development, indexed by negative MI, because 
functional connections that were weak at 14 years became stronger, 
and connections that were strong became weaker, over the course of 
adolescence. This sex difference in terms of FC could be related to 
sex differences in an underlying process of reconfiguration or re-
modeling of cortico-subcortical connectivity at a synaptic or neuro-
nal scale. To assess the plausibility of this biological interpretation, 
we used preexisting data on human brain gene expression, and the 
dimension-reducing multivariate method of PLS to identify the set of 
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genes that were most over- or underexpressed in brain regions cor-
responding to the divergent system defined by developmental 
fMRI. Enrichment analysis demonstrated that the genes that were 
most strongly expressed in brain regions with more disruptive (or 
less conservative) development in females included significantly 
more X chromosome genes than expected by chance. The same set 
of genes was also significantly enriched for genes that are known a 
priori to be expressed in cortical areas during early (perinatal) develop-
ment and in subcortical structures, such as amygdala, during adoles-
cent development.

Sexual differentiation of the brain has been proposed to occur in 
two stages: an initial “organizational” stage before and immediately 
after birth and a later “activational” stage during adolescence (64). 
It has long been argued that these events are driven by gonadal hor-
mones. However, more recent work suggests a complex interplay of 
sex chromosomes and their downstream products leading to sexual 
differentiation of brain cells (65–67). The results of our enrichment 
analysis, indicating colocation of the sexually divergent fMRI-derived 
map with brain regions enriched for expression of X chromosomal 
and neurodevelopmental genes, are compatible with interpretation 
of adolescent change in fMRI connectivity as a marker of an under-
lying program of transcriptional changes in genes previously linked 
to postnatal sexual differentiation at a neuronal level.

We assessed the relevance to depression of this sexually divergent 
profile of brain network development in several ways. Anatomically, 
the DMN and subcortical structures that had more disruptive de-
velopment in females, e.g., ventral medial prefrontal cortex, medial 
temporal gyrus, and anterior and posterior cingulate cortex, have 
previously been implicated as substrates of depressive disorder (68, 69). 
This anatomical convergence was quantified by the significant spa-
tial correlation between the whole brain map of sex differences in 
MI and an independent map of MDD case-control differences in 
nodal degree of FC. Cortical and subcortical areas with reduced 
degree of connectivity or “hubness” in MDD cases had more disrup-
tive development in adolescent females. Genomically, the list of 
genes transcriptionally colocated with this divergently developing 
network was enriched for risk genes from prior genome-wide asso-
ciation studies of MDD. Further contextualizing the genes that 
were found to be significantly overexpressed in regions displaying 
more disruptive development in females, we noticed that this list 
included two (SST and NPY) of three genes previously reported (70), 
as specifically expressed by adult neuronal and glial cells and linked 
to neuroimaging phenotypes of depression (fig. S44). It is also nota-
ble that MDD has been previously associated with up-regulation of 
X-linked escapee genes and genes that control X-inactivation (71). 
Psychologically, by meta-analysis of a large prior database of task-
related fMRI studies, we found that brain regions comprising the 
sexually divergent system were psychologically specialized for re-
ward- and emotion-related processes that are fundamental to core 
depressive symptoms, e.g., anhedonia. Collectively, these results do 
not prove that there is a causal relationship between sexually divergent 
brain development and risk of depression. However, they demon-
strate that there is a sexually divergent process of adolescent develop-
ment of a cortico-subcortical system that is anatomically, genomically, 
and psychologically relevant to depression. These insights motivate 
and focus future studies purposively designed to test the hypothesis 
that sexual divergence of adolescent brain development causes con-
temporaneous or subsequent sex differences in the risk for mood 
disorders.

It is increasingly recognized that clinical phenotypes and genetic 
and environmental risk factors may be shared in common between 
depression and other mental health disorders arising in adolescence 
(72, 73). In particular, abnormalities in fMRI connectivity have been 
reported as trans-diagnostic phenotypes, characteristic of multiple, 
diagnostically distinct disorders (72), and risk genes associated with 
individual mental health and neurodevelopmental disorders have 
been found to overlap across disorders, implying that some genes 
confer trans-diagnostic risk for multiple neuropsychiatric disorders 
(73). In this context, it is reasonable to ask whether the significant 
associations that we have demonstrated between MI and both fMRI 
and genetic data on MDD are specific to depression or whether they 
are representative of a trans-diagnostic association between MI 
and functional dysconnectivity and/or risk genes for mental health 
disorders more generally. As a first step in addressing this question, 
we tested for spatial colocation of the MI map and a map of func-
tional dysconnectivity derived from a prior case-control fMRI study 
of schizophrenia. We found no significant association, indicating that 
the abnormalities of FC associated with adult schizophrenia do not 
coincide anatomically with the cortico-subcortical network that 
demonstrated sex differences in adolescent development. In a sec-
ond step, we tested for enrichment by schizophrenia-associated 
genes of the list of genes that were identified by PLS analysis as tran-
scriptionally colocated with the MI map. We found no evidence for 
significant enrichment of this gene list by risk genes for schizophrenia. 
In summary, these two specificity analyses indicated that the brain 
systems demonstrating sexually divergent development in adoles-
cence were not anatomically or genetically linked to schizophrenia, 
suggesting that this normative neurodevelopmental process may be 
specifically relevant to depression. However, we note that we have 
only tested for a relationship between MI and two mental health 
disorders (MDD and schizophrenia). It will be important in the future 
to explore this relationship across a wider range of disorders to charac-
terize its diagnostic specificity more comprehensively and conclu-
sively. It is conceivable that sex differences in development of this 
system could be relevant to sex differences in risk for other mental 
health disorders.

Methodological limitations
It is a strength of the study that our analysis of sexually divergent 
brain network development is based on a large, accelerated longitudinal 
fMRI dataset with approximately equal numbers of males and females 
in each stratum of the adolescent age range. However, previous work 
has found substantial overlap in male and female distributions of 
multiple brain measures (74, 75), and the metrics analyzed here 
(FC14, FC14 − 26, and MI) are group-level parameters. Thus, all 
reported sex differences are reflective of a group mean difference, 
estimated from FC distributions that substantially overlap between 
the sexes. On this basis, we are not arguing that female and male 
brains are distinctly dimorphic (76). Furthermore, this study in-
cluded only data on biological sex such that we cannot comment on 
the effects of gender.

Limitations of the study include our reliance on gene expression 
maps from postmortem examination of six adult, mostly male, brains. 
This dataset is used widely and has been invaluable in shedding new 
light on the molecular correlates of neuroimaging phenotypes (77). 
Biological validation of sexually divergent adolescent development 
of this cortico-subcortical system derived from fMRI would be more 
directly informed by sex-specific human brain maps of whole-genome 
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transcription in adolescence, but to the best of our knowledge, these 
data are not currently available. It will also be important in the future 
to test the hypothesis that an anatomically homologous cortico-subcortical 
system has divergent adolescent development in animal models 
that allow more precise but invasive analysis of the cellular and mo-
lecular substrates of fMRI phenotypes than is possible in humans.

Here, we used spin tests to correct for the confounding effects of 
spatial autocorrelation. Spatial autocorrelation of statistical brain maps 
can cause inflated estimates of the probability of spatial colocation 
or correlation between two maps (78). The spin-test procedure 
addresses this issue by conserving the spatial autocorrelational 
structure of the maps by randomly “spinning” or spherically rotating 
each map over the surface of the brain and calculating the spatial 
colocation statistic after each spin permutation (79). Other methods 
for testing spatial colocation in the context of spatial autocorrelation 
have been proposed, and this remains an active focus for ongoing 
research, especially in relation to colocation of neuroimaging phe-
notypes and brain gene transcriptional maps (78).

Social and environmental factors are relevant modulators of psychiatric 
disorders (80) and have not been assessed in this study. These factors 
(i) can be neurodevelopmentally relevant, i.e., childhood socioeconomic 
status influences the pace of brain development (81), and (ii) can help 
explain sex and gender differences in mental health outcomes, i.e., previous 
studies have demonstrated a relationship between social inequality and 
gender disparities in mental health (82). This naturally leads to the 
question of how sexually divergent functional network development 
might be modulated by socioeconomic deprivation or other environ-
mental risk factors for mental health disorder. We suggest that deeper 
understanding of these potential interactions between biological programs 
of sexually divergent brain development on one hand and gendered or 
generic social stressors in childhood and adolescence on the other hand 
will be an important strategic goal for the future of mental health science.

MATERIALS AND METHODS
Study sample
A total of 520 analyzable fMRI scans were available for N = 298 
healthy participants, aged 14 to 26 years, each scanned one to three 
times as part of an accelerated longitudinal study of adolescent brain 
development [Neuroscience in Psychiatry Network (NSPN); see the 
“Data” section in Supplementary Text] (1, 2, 6, 14, 38). Participants 
self-identified their sex as either male or female. There were approxi-
mately equal numbers of males and females in each of five age-
defined strata at baseline (Table 1). All participants aged 16 years or 
older gave informed consent; participants younger than 16 gave 
informed assent, and consent was provided by their parent or guardian. 
The study was ethically approved by the National Research Ethics 
Service and conducted in accordance with U.K. National Health 
Service research governance standards.

fMRI data acquisition
fMRI data were acquired at three sites, on three identical 3T Siemens 
MRI scanners (Magnetom TIM Trio, VB17 software version), with 
a standard 32-channel radio frequency (RF) receive head coil and 
RF body coil for transmission using a multiecho (ME) echo-planar 
imaging sequence with the following scanning parameters: repeti-
tion time, 2.42 s; GRAPPA with acceleration factor = 2; flip angle = 90°; 
matrix size = 64 × 64 × 34; field of view = 240 mm by 240 mm; in-
plane resolution = 3.75 mm by 3.75 mm; slice thickness = 3.75 mm 

with 10% gap, sequential slice acquisition, 34 oblique slices; band-
width, 2368 Hz/pixel; and echo times (TE) = 13, 30.55, and 48.1 ms.

fMRI data preprocessing
fMRI data were preprocessed using multi-echo independent com-
ponent analysis (ME-ICA) (83, 84), which identifies and removes 
sources of variance in the time series that do not scale linearly with 
TE and are therefore not representative of blood oxygenation level–
dependent contrast. Ventricular time series, representing variance in 
cerebrospinal fluid, were regressed from parenchymal time series 
using Analysis of Functional NeuroImages (AFNI) (85). Scans were 
parcellated into 360 bilateral cortical regions using the Human 
Connectome Project (86) template, and 16 bilateral subcortical regions 
(amygdala, caudate, diencephalon, hippocampus, nucleus accumbens, 
pallidum, putamen, and thalamus) were defined by Freesurfer’s “aseg” 
parcellation template (87, 88). Regional time series were averaged 
over all voxels within each parcel and band-pass–filtered by the discrete 
wavelet transform, corresponding to the frequency range 0.025 to 
0.111 Hz (89).

After preprocessing and quality control of each individual scan, 
we retained regional time series for 330 cortical and 16 subcortical 
nodes. Each regional time series was normalized by subtracting the 
mean and dividing by the SD. Thirty cortical regions were excluded 
because of low regional mean signal, defined by a low Z score of 
mean signal intensity in at least one participant (Z < −1.96; see fig. 
S2 for details on retained regions). The FC between each regional 
pair of normalized fMRI time series was estimated by Pearson’s cor-
relation coefficient (r) for each possible pair of regions, resulting in 
a 346 × 346 symmetric association or FC matrix. The FC r values 
were subsequently transformed to Z scores by Fisher’s transformation 
(90), so the units of FC are SDs of the normal distribution. Last, we 
regressed each pairwise correlation or edge on the time-averaged 
head motion of each participant (mean FD). The residuals of this 
regression, i.e., motion-corrected Z scores, were the estimates of 
FC used for further analysis (fig. S4). The marginal means of the 
rows (or columns) of this motion-corrected, Z-transformed con-
nectivity matrix yield the vector of regional or nodal weighted 
degrees (13). Thus, for each region i, we calculated the mean weighted 
degree k as follows

	​​ k​ i​​ = ​  1 ─ N − 1 ​ * ​∑ j=1;j≠i​ N  ​​ ​w​ i,j​​​	 (1)

where ki is the mean weighted degree of node i, N is the number of 
nodes in the network, and wi, j is the weight of the edge between 
node i and an arbitrary node j. The sum is taken over all edges 
wi, j(j ≠ i = 1,2,3, …N = 346).

Estimating parameters of adolescent development 
and testing sex differences
Previous work on this dataset did not find evidence for nonlinear 
trajectories of development of FC between the majority of all pos-
sible pairs of regional nodes (see the “Nonlinear effects of age” 
section in Supplementary Text; fig. S45) (6). Therefore, we used a 
linear function to model the fixed effect of age on regional and 
edgewise metrics of cortico-cortico, subcortico-cortical, and 
cortico-subcortical FC (fig. S7), also including the fixed effect of 
site and a subject-specific intercept as a random effect, in LMEs fit 
separately for males and females (see the “Sex stratified analysis of 
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developmental parameters” section in Supplementary Text; figs. 
S46 and S47).

Baseline connectivity (FC14) was estimated as the predicted FC 
at age 14, and the adolescent rate of change (FC14 − 26) was estimated 
as linear rate of change of connectivity between 14 and 26 years (Fig. 1). 
We calculated the MI, as the Spearman’s correlation () of edgewise 
FC14 and FC14 − 26 (Fig. 2). The sign of this correlation defines the 
two different modes of maturational development during adolescence: 
disruptive and conservative. In conservative development, that is, 
in the case of a positive MI, nodes are highly connected at baseline 
consolidate, that is, they become (even) more strongly connected 
over the course of adolescence. A disruptive change, that is, a negative 
MI, can mean that either the respective node was highly connected 
at baseline and becomes weaker with age or it was weakly connected 
at baseline and becomes stronger over the course of adolescence.

We parametrically tested for the significance of the sex difference 
in all developmental parameters using a Z test (91). In short, the Z 
statistic is estimated as the difference in developmental parameters 
divided by the SE of the difference in the parameters. More specifi-
cally, the Z score for sex difference in MI (MI) was estimated by

	​ z = ​ ​MI​ female​​ − ​MI​ male​​  ─  S ​E​ ​MI​ female​​−​MI​ male​​​​
  ​ = ​  ​MI​ female​​ − ​MI​ male​​  ────────────  

​√ 
________________

  S ​​E​ female​​​​ 2​ + S ​​E​ male​​​​ 2​ ​
 ​​	 (2)

where MIfemale and MImale are the MI for each sex and SEfemale and 
SEmale are the SEs of MI for each sex.

For FC14 and FC14 − 26, the SE of the sex difference in parameters is 
defined differently. The Z score for the sex difference in FC14 (FC14), 
for example, is estimated by

	​ Z  = ​  F ​​C​ 14​​​ female​​ − F ​​C​ 14​​​ male​​  ─────────────  S ​E​ F​​C​ 14​​​ female​​−F​​C​ 14​​​ male​​​​
  ​  = ​  F ​​C​ 14​​​ female​​ − F ​​C​ 14​​​ male​​  ─────────────  

​√ 
_______________

  ​​(​​ ​S ​E​ female​​ _ ​N​ female​​
 ​ + ​S ​E​ female​​ _ ​N​ male​​

 ​​ )​​​​ 
2
​ ​
  ​​	 (3)

where FC14female and FC14male are the baseline connectivity at age 14 
for females and males, respectively, SEfemale and SEmale are the SEs of 
FC14 for each sex, and Nfemale and Nmale are the numbers of females 
and males. The same estimator of Z scores (Eq. 3) was also specified 
for analysis of between-sex differences in FC14 − 26. The difference 
between estimators (Eqs. 2 and 3) of the sex differences in these devel-
opmental parameters results from the fact that the SE of MI is the 
SE of the correlation between FC14 and FC14 − 26, whereas the SEs of 
FC14 and FC14 − 26 are the SEs of the regression coefficients, which 
include the number of observations in the denominators.

Thus, the Z score for sex difference in three developmental fMRI 
parameters was estimated at each of 346 cortical and subcortical re-
gions. We tested for statistical significance using P values from the 
standard normal distribution controlled for multiple comparisons 
by the false discovery rate (FDR). For each whole brain map, com-
prising 346 regional P values, we used FDR = 5% as the threshold 
for significant sex difference in developmental fMRI parameters.

Each analysis of spatial colocation of two cortical maps is reported 
with both the parametric P value corresponding to the Pearson cor-
relation (r), as well as a P value derived from the more conservative spin-
test permutation (4, 79), which conserves the spatial autocorrelation 
of both maps (Pspin). Briefly, P values for the spatial correlation between 
two maps were estimated by comparing the magnitude of the empiri-
cal correlation coefficient between the two maps to a null distribution 
of correlations based on a set of 10,000 random spatial permutations. 

The permutation was applied in both directions (i.e., by permuting both 
maps, before comparing each permuted map to the empirical version 
of the other map) before calculating the average P value (see the 
“Spatial autocorrelation” section in Supplementary Text) (4).

Enrichment analysis
We extracted the first component (PLS1) of a PLS regression of MI 
on postmortem gene expression data collected from six donor brains 
(five males) (49) and provided by the Allen Human Brain Atlas 
(Fig. 4). We controlled the PLS regression for spatial autocorrelation 
using spin tests (see the “Spatial permutation ‘spin’ testing” section in 
Supplementary Text for details). We first tested for developmental 
gene enrichment using the CSEA tool (54). We then used a median 
rank–based approach to assess the enrichment of PLS1 on several pub-
lished gene lists (92). This approach estimates the degree to which the 
ranked list of genes identified by PLS is enriched for a prior reference 
set of genes (e.g., MDD risk genes from GWAS) by comparing median 
rank of the prior reference set of genes observed in the PLS1 list to a 
null distribution of the median rank of a randomly sampled set of 
genes matched to the prior reference set in terms of number of genes 
and gene length (see the “Enrichment analysis” section in Supplemen-
tary Text for details). Thus, if the prior reference gene set has a real 
median rank that is significantly lower than the median rank of com-
parable random sets of genes, then the reference gene set is enriched in 
the bottom of the PLS1 list, whereas if the median rank of the reference 
gene set is significantly higher than the rank of the random gene sets, 
then the reference gene set is enriched in the top end of the PLS1 list. 
In this way, we tested for gene enrichment for prenatal (56) and adult 
(55) cell types and MDD-related genes (57).

fMRI connectivity in major depressive disorder
We constructed a MDD case-control map by conducting multiple 
t tests for the difference in nodal weighted degree of FC between 
two groups of resting state fMRI data from an independent sample 
(39, 40) of 46 healthy controls and 50 MDD cases (see the “Co-
location with depression” section in Supplementary Text and table 
S8). We then correlated the MI map with the MDD case-control t 
map and tested for significant colocation using the spin-test proce-
dure to control for spatial autocorrelation in both maps (Fig. 3).

Diagnostic specificity
Using identical methods to those described in detail for MDD case-
control analysis of abnormalities in resting state fMRI connectivity, 
we constructed a map of schizophrenia case-control differences in 
FC from a prior study of 81 healthy controls and 67 schizophrenia 
cases (see the “Diagnostic specificity” section in Supplementary Text) 
(41, 42). We then correlated the MI map with the schizophrenia 
case-control t map and tested for significant anatomical colocation 
using the spin-test procedure to control for spatial smoothness of 
both maps. Using the same methods as described in detail for MDD 
risk gene enrichment analysis, we also tested the list of genes tran-
scriptionally colocated with MI (PLS1) for enrichment by a set of 
130 schizophrenia-related risk genes based on the largest available 
GWAS of schizophrenia (43).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abm7825

View/request a protocol for this paper from Bio-protocol.
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