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Abstract

Drug delivery during breastfeeding: investigations of formulations and

clinical feasibility - Theresa Maier

At an age when breastfeeding is the optimal nutritional support for infants, oral
drug delivery can be challenging. In the past, the concept of drug delivery during
breastfeeding was developed as a means to address challenges in low-income coun-
tries by facilitating administration using solid dosage forms without the need for
clean water. Hereby, a silicone nipple shield, containing a formulation inside its
teat, is meant to be worn by a mother during breastfeeding, enabling drug delivery
to the sucking infant through the flow of human milk. Furthering past research,
this doctoral work aimed to investigate novel dosage forms for this application, in-
cluding a fibrous matrix and a gel formulation, as well as the clinical potential,
feasibility, and acceptability of therapeutic delivery during breastfeeding. In a clin-
ical context, a descriptive qualitative study revealed the need for alternative infant
oral drug delivery technologies in high-resource settings, and parents’ and nursing
staff’s positive response to the concept of drug delivery during breastfeeding. Find-
ings were supported by the anecdotal evidence of difficulties in infant compliance
and accurate dosing, and indicated high relevance for a use case in neonatal inten-
sive care. Formulation investigations included zinc sulphate loaded non-woven fibre
mats, and iron sulphate loaded liquid-core alginate hydrogels, using a modified and a
commercially available nipple shield design. While full release during breastfeeding
simulation was not achieved, both formulations enabled superior delivery of their
loaded therapeutic dose compared to previously studied dosage forms. In addition,
a clinical feasibility study involving the delivery of vitamin B12 from a commercially
available nipple shield during breastfeeding was conducted, supported by a qualita-
tive mixed methods approach. Results illustrated the successful delivery of vitamin
B12 to breastfed infants and unanimous maternal advocacy for the availability of

therapeutic delivery during breastfeeding in the future.
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Chapter 1

Motivation

"Children are one third of our population and all of our future.”
- Select Panel for the Promotion of Child Health, 1981

Depending on the socio-economic setting, parents face a variety of challenges in
infant enteral drug delivery. In a high-resource setting, parental challenges can
comprise measuring inconvenience of liquid formulations, as well as difficulties in
administering the full dose required, mostly due to a lack of infant compliance using
existing devices, such oral syringes. Particularly the latter, if evoking defensive be-
haviour and association of therapeutic delivery as a negative experience, can make
subsequent administration increasingly difficult. In a low-resource setting, addi-
tional challenges arise due to the lack of refrigerated storage, often required for
liquid formulations, access limitations to clean water for the disintegration of solid
dosage forms, or simply the unavailability of hygienic delivery technologies. Ac-
cording to the World Health Organization (WHO), more than thirty percent of the
5.4 million child deaths worldwide before the age of five are caused by conditions
such as pneumonia, diarrhoea, malaria, HIV, and measles, and could be preven-
ted with access to simple and affordable interventions [1]. With reference to the
conditions in developing countries, the United Nations Secretary-General Progress
Report on the Every Woman Every Child Global Strategy for Women’s, Children’s
and Adolescent’s Health emphasized that “innovation is essential to achieving the
ultimate goal of ending preventable deaths among women and children and ensuring
they thrive.” ([2], page 60).
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The following doctoral research aims to contribute to this objective. It investig-
ates design preferences, suitable therapeutic dosage forms, as well as the clinical
potential, feasibility, and acceptability of therapeutic delivery during breastfeeding
to contribute towards better treatment options for breastfed infants. Hereby, a sil-
icone nipple shield, containing a (semi-)solid dosage form, is placed on the mother’s
breast during breastfeeding, enabling therapeutic delivery through the flow of hu-
man milk. This approach is believed to be a promising alternative to currently
existing delivery devices, because it i) overcomes the need for clean water for the
disintegration of solid dosage forms in developing countries, ii) supports the call for
flexible solid dosage forms by the WHO as a means to support treatment of infants
and children in both high- and low-resource environments, and iii) could encourage

the prevalence of breastfeeding, particularly in developed countries [3].

The objectives of this doctoral work are two-fold:

1. To investigate novel therapeutic dosage forms for delivery from a nipple shield

into human milk, including

(a) a fibrous matrix for the delivery of zinc sulphate.

(b) a hydrogel for the delivery of iron sulphate.

2. To explore the clinical implications of therapeutic delivery during breastfeed-

ing by means of

(a) a qualitative study evaluating its potential and suitability for a high-

resource setting.

(b) a clinical study assessing its in-vivo feasibility and acceptability.

The proposed research is highly interdisciplinary, based on expertise in engineer-
ing, medicine, and natural sciences, and jointly supervised by the Department of
Chemical Engineering and Biotechnology (School of Technology), as well as the De-
partment of Paediatrics (School of Clinical Medicine). Through interaction with
patients, parents, and healthcare staff, this doctoral work aims to foster an inter-
disciplinary development approach. Ultimately, patient-centred research facilitates

the translation of scientific findings into clinical practice, and thus increases the
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likelihood of reaching those in need. Beyond the scientific scope of this thesis, it
also intends to encourage similarly cross-disciplinary research endeavours for the

application of engineering in medicine.

The presented doctoral thesis consists of seven chapters: Following an introduction
of the basic principles underlying the research of therapeutic delivery during breast-
feeding (Chapter 2), the need for alternative oral therapeutic delivery technologies
for infants is introduced (Chapter 3), and results of therapeutic delivery into human
milk from a fibrous matrix, and a liquid-core hydrogel during in-vitro breastfeeding
simulation presented (Chapter 4 and Chapter 5). Moreover, clinical feasibility and
acceptability are discussed (Chapter 6), as well as opportunities for future research
indicated (Chapter 7). A detailed outline is provided below.

Chapter 2 introduces the background underlying this doctoral thesis, amongst
others the importance, prevalence, and science of breastfeeding, as well as an over-
view of current oral infant drug delivery technologies. Subsequently, the concept of
therapeutic delivery from a silicone nipple shield during breastfeeding is introduced,
and an overview of both previous research for its development and key research

methodologies of this thesis provided.

Chapter 3 illustrates findings of a qualitative descriptive study conducted from
May to July 2016, aimed at evaluating the perspective of parents and nursing staff

on therapeutic delivery during breastfeeding in a high-resource setting.

Chapter 4 investigates the release of zinc sulphate from non-woven fibres within a
lip-containing nipple shield into human milk, comparing results to previous studies
conducted by Scheuerle et al. [4]. The chapter also provides a detailed character-

isation of the non-woven fibre mats used for zinc sulphate delivery.

Chapter 5 presents the development and characterisation of a hydrogel formulation
for delivery into human milk, subsequently used to evaluate the release of iron

sulphate into DDI water and human milk.
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Chapter 6 explores maternal expectation, experience, and acceptability of thera-
peutic delivery during breastfeeding by means of a single-centre feasibility study,
conducted from July to November 2018. The study involved the administration of
vitamin B12 from a commercially available silicone nipple shield, quantified success-
ful delivery by means of an increase in the infant’s vitamin B12 blood serum level,

and made use of a mixed methods approach.

Chapter 7 provides a summary of research findings and its synthesis with previous
literature. It concludes this doctoral thesis with an overview of suggestions for

further work.
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Background

2.1 Introduction

Oral infant therapeutic delivery poses significant challenges and limitations with
regard to the range of delivery technologies and therapeutic formulations available.
These limitations affect patient acceptability [5, 6], defined as “the overall ability
and willingness of the patient and their caregiver to administer the medicines as
intended” ([5], p. 1243), and also decrease the effectiveness of treatments [5]. Liquid
formulations of medicines and nutrients are preferred for infants below six years
of age [7], but possess distinct disadvantages, such as dosing errors and the need
for refrigerated storage. In 2006, the WHO indicated their preference for Flexible
Solid Oral Dosage forms (FSOD), including dispersible, chewable or orodispersible
tablets [7], to address the aforementioned shortcomings for infants globally, but with
particular intend to lessen the challenges in developing countries. Flexibility in this
context relates to the use of a single formulation for different age groups, and the
possibility to have parts of the dosage form either disintegrated or swallowed as a
whole [7]. This chapter introduces a novel approach to therapeutic delivery, namely
the administration from a silicone nipple shield during breastfeeding. Since this
approach of infant therapeutic administration enables the use of solid formulations,
it also has the potential to overcome limitations in stability and excipient efficacy

of liquid medicines [8].
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2.2 Science and prevalence of breastfeeding

2.2.1 Overview

The Supplemental Nursing System, often used for formula feeding by mothers with
no or only limited human milk supply, is the only infant oral delivery device that
can be used while the infant is latched onto the mother’s breast, and was repor-
ted to be well accepted by the infant [9]. It inspired the concept of infant drug
administration during breastfeeding, which would not only provide an alternat-
ive delivery method for all infants globally, but also a solution acceptable to the
36 % of exclusively breastfed infants aged 0 — 6 months worldwide [10]. A means
of therapeutic delivery during breastfeeding would also have the additional advant-
age of advocating and facilitating the beneficial practice of breastfeeding in both
high-income and low-resource settings. Human milk is also often referred to as
“a personalised medicine for infants” ([11], p. 476) based on its nutritional and
immunological characteristics [11]. Past research has shown that children breast-
fed for longer periods of time have a decreased infectious morbidity and mor-
tality, fewer dental malocclusions, higher intelligence, as well as a lower risk of
obesity and non-communicable diseases, such as asthma and type 2 diabetes, in later
life [11-13]. According to Victora et al., the scaling up of breastfeeding alone, i.e.
without addition of any medicine/nutrient supplement, could prevent 823,000 an-

nual deaths in children under the age of five [11].

2.2.2 Prevalence of breastfeeding

Despite the beneficial impact of breastfeeding on infant health, only about 40 %
of infants in high-income countries at 6 months, and about 25 % at 12 months are
breastfed (mixed or exclusively), while rates in low- and lower-middle income coun-
tries remain close to 90 % or above [11]. At this age, most breastfed infants originate
from South Asia, sub-Saharan Africa, and certain countries in Latin America [11].
Victora et al. pointed out that on average breastfeeding prevalence decreases with
increasing material wealth, with a longer breastfeeding duration of infants in poorer
environments compared to infants in more prosperous families (see Figure 2.1) [11].
Yet, not only wealth, but also education impacts on the initiation and duration of
breastfeeding: women with a higher degree of formal education in high-resource en-

vironments are more likely to breastfeed than less educated women in low-resource

6



Chapter 2

environments [11]. Rollins et al. emphasized that women in high-resource settings
need to change their belief that breastfeeding is only beneficial to prevent diseases
affecting the poor [14]. Global breastfeeding prevalence of infants aged 12 months is
illustrated in Figure 2.2. In the UK, 81 % of babies are breastfed at the time of birth,
merely 17 % three months later [15]. Only 1 % of infants are exclusively breastfed
at the age of six months [15]. Nevertheless, the 2010 Infant Feeding Survey reported
a positive development in breastfeeding initiation and continuation, with any type
of breastfeeding increased compared to the 2005 Infant Feeding Survey [15]. In this
context, “The Baby Friendly Initiative (BFI)” is perceived as a major driver, being
particularly effective in the promotion of breastfeeding [15, 16]. BFI is a worldwide
programme focusing on breastfeeding promotion as part of a partnership between
the WHO and UNICEF [17].

!
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Figure 2.1: Prevalence of breastfeeding in 2010 based on the country income group.
Data was obtained from 153 countries [11]. Reprinted from The Lancet, Vol. 387,
Victora, C.G., Bahl, R., Barros, A.J.D., Franca, G.V.A., Horton, S., Krasevec,
J., Murch, S., Sankar, M.J., Walker, N.; Rollins, N.C., Breastfeeding in the 21st
century: epidemiology, mechanisms, and lifelong effect, Pages 475 — 490, copyright

(2016), with permission from Elsevier.
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Figure 2.2: Percentage of global breastfeeding rates between 1995 and 2013 [11].
Reprinted from The Lancet, Vol. 387, Victora, C.G., Bahl, R., Barros, A.J.D.,
Franca, G.V.A., Horton, S., Krasevec, J., Murch, S., Sankar, M.J., Walker, N.,
Rollins, N.C., Breastfeeding in the 21st century: epidemiology, mechanisms, and

lifelong effect, Pages 475 — 490, copyright (2016), with permission from Elsevier.

2.2.3 Anatomy and physiology of breastfeeding

The suck cycle of an infant during breastfeeding is illustrated in Figure 2.3. Dur-
ing breastfeeding the infant’s cavity is filled with the maternal nipple as well as a
significant part of areolar tissue, while the infant’s tongue remains in contact with
the nipple throughout the entire breastfeeding process [18, 19]. Research showed
that the negative pressure created inside the infant’s mouths through the intra-oral
vacuum is the main driving force for human milk to be drawn out from the ma-
ternal ducts [18, 20, 21]. Throughout a suck cycle, the intra-oral vacuum increases
with the lowering of the infant’s tongue from the baseline pressure, also referred to
as mean maximum pressure (—56.4 + 31.4 mmHg [22], —64 £ 45 mmHg [21]), to
its peak vacuum or so-called mean minimum pressure (—163.2 + 62.0 mmHg [22],
—145 + 58 mmHg [21]), while the maternal nipple elongates and retracts rapidly
with an elongation in length by up to two fold [18]. Sucks per minute vary depend-
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ing on the age and type of feeding (‘exclusive breastfeeding’ or 'mixed feeding’),
with estimated values of 46.74-12.9 sucks min™! for exclusively breastfed infants and
41.1 £+ 10.6 sucks min?' for mixed fed infants aged 21 — 28 days, as well as
50.6 £ 14.2 sucks min™ for mixed fed infants of 3 — 5 months of age [23].

A

Hard palate

Milk space

Tongue

Soft palate

Figure 2.3: Illustration of the infant’s latch during breastfeeding. Milk flow into the
infant’s oral cavity occurs when the infant’s tongue is at its lowest point, and the

intra-oral vacuum has reached its peak. Image adapted from [24].

2.3 Infant oral therapeutic delivery

2.3.1 Common oral infant therapeutics

Most commonly used therapeutics for infants up to the age of six months include
nutritional supplements as well as drug formulations (Table 2.1). While some thera-
peutics are used for infants globally, such as antibiotics, applicability of most thera-
peutics is dependent on geographical and social factors, as well as on the infants’
gestational age. For instance, vitamin supplements are mostly used to account for

the additional needs of premature infants, as well as for infants in low-income coun-
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tries with risk of deficiency. In these locations, additional drug formulations are

also needed due to the prevalence of HIV, malaria, and tuberculosis. Dosage forms

comprise oral liquids, tablets, capsules, and powders for the preparation of oral solu-
tions. In accordance with the WHO Model List of Essential Medicines for Children,

the term ’solid oral dosage form’ is used whenever equal clinical efficacy and safety

of oral formulations is applicable [25]. Tablets and capsules have to be portioned

and disintegrated in water, formula or previously expressed human milk prior to

delivery. Liquid or disintegrated medicines and nutrients have to be measured and

administered to the infant using a delivery technology (see Table 2.2).

THERAPEUTIC

INDICATION

DOSAGE FORM

Vitamin/mineral supplements

Vitamin K [26]

Prevention of
haemorrhagic disease of

the newborn

Oral liquid

Vitamin A

Vitamin Bl

Vitamin B2

Vitamin B3

Vitamin B6

Vitamin C

To satisfy nutritional
needs of preterm infants,
and Small for
Gestational Age (SGA)
infants [25, 27-29]

Oral solution

Vitamin D [25, 30]

Supplement for bone
metabolism,
recommended for

breastfed infants

Oral liquid, solid oral

dosage form

Ferrous salt [25]

Supplement or

antianaemia medicine

Oral liquid, tablet

Table 2.1: Overview of therapeutics commonly administered to infants up to

months of age.
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THERAPEUTIC

INDICATION

DOSAGE FORM

Medicines for pain

Analgesics [31, 32]

Pain relief

Oral liquid, tablet

Medicines for epilepsy

Antiepileptics [25]

Treatment of epilepsy

Oral liquid, tablet, solid
oral dosage form,

capsule

Anti-infective medicines

Antibiotics [31, 32]

Bacterial infection

Powder, oral liquid,

tablet, capsule

Antituberculosis

medicines [25]

Treatment of

tuberculosis

Oral liquid, tablet, solid

oral dosage form

Antifungal

medicines [25]

Treatment of Candida

diaper dermatitis

Oral liquid, capsule,
tablet

Antiretrovirals [25]

Treatment of HIV

Oral liquid, tablet,
capsule, powder, solid

oral dosage form

Antimalarial

medicines [25]

Treatment of malaria

Oral liquid, tablet,

capsule

Gastrointestinal medicines

Oral rehydration
[25]

Treatment of diarrhoea

Powder for dilution

Zinc sulphate [25]

Adjunct to oral
rehydration salts for
treatment of acute

diarrhoea

Solid oral dosage form

Table 2.1 continued: Overview of therapeutics commonly administered to infants

up to six months of age.
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2.3.2 Currently available delivery technologies

A review of existing infant oral therapeutic delivery technologies is presented in
Table 2.2. Administration of medicines and nutrients to neonates and young infants
by means of an oral syringe is most common, while bottle feeding mothers also have
the option of mixing the drug formulation with expressed milk or formula within a
drinking bottle. Additional devices exist for infants, but are less commonly used or
might not be suitable for use, e.g. if parents have decided against the introduction of
a pacifier. Some formulations require the disintegration in water, formula or human
milk, but most commercially available infant formulations are prepared in liquid

form. With regard to the latter, dosing errors can occur [33].

DEVICE DELIVERY METHOD NoOTE

Oral syringe | Therapeutic is displaced from a reservoir | Most commonly
through plunger movement used

Drinking Therapeutic is bottle fed Bottle feeding

bottle mothers only

Dosing Therapeutic is administered via a plastic | Less feasible in

cups/spoons | cup/spoon young infants

Oral Therapeutic is displaced from a reservoir | Some multivitamin

dropper by squeezing the dropper’s rubber top supplements only

Medicine Liquid is sucked from a reservoir Applicable to infants

dummy using a dummy

Table 2.2: Overview of existing oral infant therapeutic delivery technologies.

2.3.3 Therapeutic delivery during breastfeeding

(a) Overview. To enable drug administration during breastfeeding, use of com-
mon breastfeeding adjuncts already used to support normal feeding are particularly
promising. A review of the literature suggested the application of an ultra-thin
nipple shield, a silicone device that is placed over the maternal nipple and are-
ola during breastfeeding [34]. Most commonly, nipple shields are recommended

when infant or maternal physiology challenge the establishment and continuation
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of breastfeeding [34], supporting the infant in latching onto the breast, as well as
in protecting and relieving maternal pain caused by sore nipples [35]. While ma-
ternal response to the use of nipple shields during normal feeding varies between
different mothers, including both positive maternal experience as well as handling
difficulties [34], past literature on ultra-thin contact nipple shields has shown that
there is no statistically significant change in infant human milk intake and weight
gain, while even enabling an increase in milk transfer for preterm infants [36, 37].
Moreover, as nipple shields had previously been shown to prolong the duration of
mothers breastfeeding [34], their use for medicine and nutrient delivery could poten-
tially also positively impact current breastfeeding rates. The potential to expand
the currently available options of infant oral therapeutic delivery technologies, while
at the same time encouraging the beneficial practice of breastfeeding, motivated the
initiation of a research project at the University of Cambridge’s Department of
Chemical Engineering and Biotechnology in 2010: the investigation of therapeutic
administration from a silicone nipple shield during breastfeeding. Thereby, a thera-

peutic dosage form is placed into the teat of a silicone nipple shield (see Figure 2.4).

Figure 2.4: Principle of therapeutic administration from a silicone nipple shield
during breastfeeding. To enable therapeutic administration during breastfeeding,
a therapeutic dosage form is placed into the teat of a silicone nipple shield. Be-
ing placed on the mother’s breast during breastfeeding, the therapeutic (medicine
or nutrient) is delivered to the sucking infant through the flow of human milk.

(a) Nipple shield, (b) Therapeutic. Image originally published in [38].
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When being placed on the mother’s breast during breastfeeding, it enables the thera-
peutic to be released and delivered to the sucking infant through the flow of human
milk. A wide range of possible nipple shield designs and therapeutic dosage forms

can be considered, and are discussed below.

(b) Nipple shields. Different silicone nipple shield designs could be considered for

therapeutic delivery during breastfeeding, including;:

o« COMMERCIALLY AVAILABLE NIPPLE SHIELDS: Ultra-thin contact nipple shields
are fabricated out of soft thin silicone in a shape that enables maximum skin

contact between mother and infant.

o« MODIFIED NIPPLE SHIELDS: Modified nipple shields could potentially facil-
itate therapeutic delivery during breastfeeding, e.g. through comprising a

holder for drug placement.

(c) Suitable therapeutic dosage forms. To enable therapeutic delivery from
a silicone nipple shield during breastfeeding, a solid-like dosage form is required.

Various dosage forms exist and could be considered:

o TABLETS: a therapeutic compressed into rapidly disintegrating medical tab-

lets using standard pharmaceutical methods, such as direct compression.

o GELATIN/HPMC CAPSULES: a therapeutic in powder form enclosed within a
(pre-treated) gelatin/Hydroxypropyl Methylcellulose (HPMC) capsule to en-

able rapid release upon rupture.

« MEMBRANE SUPPORT MATERIALS: a therapeutic loaded onto inert fibrous

mats (e.g. by means of adsorption).
« HYDROGELS: a therapeutic solution used for hydrogel preparation.

o DISSOLVABLE FILMS: a therapeutic solution used for fabrication of thin oral

matrices which dissolve in contact with mucus/the mucosal membrane.

(d) Conceptual considerations. Complete delivery of a full therapeutic dose

within the duration of one breastfeed is crucial to guarantee accurate dosing and
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treatment compliance. Varying milk composition, flow rate, and feeding pattern rep-
resent a challenge to the development of formulations with standardized
release [20]. Among others, design specifications have to account for the up to
three-fold change in absolute fat content depending on the stage of lactation, di-
etary requirements and health status of the breastfeeding mother [39], as well as
the varying human milk volume available for therapeutic disintegration based on
the pattern of milk intake [40]. With regard to the latter, a cross-sectional study
of 1I-month- to 6-month-old infants by Kent et al. illustrated an average consump-
tion of 76.0 £ 12.6 g (range 0 — 240 g) during one breastfeed, with the average
intake being unrelated to the infant’s age [40]. Instead, the total amount of hu-
man milk consumed was highly dependent on whether the more or less productive
breast was wused, and whether breastfeeding was unpaired, paired or
clustered [40]. Hereby, an additional breastfeed <30 minutes or >30 minutes after
the end of the first feed was defined as “paired” or “unpaired”, respectively. The
notation “clustered” refers to a feed from both breasts, following which an additional
feed from the first breast occurs within 30 minutes of finishing on the second breast.
During clustered breastfeeding, the minimum median intake from the first breast
was 42 g (IQR: 31 —103 g) [40]. These findings illustrate the importance of ensuring
full therapeutic delivery ideally within 42 g of intake from the first breast, but in
any case within a total of 76 g of human milk consumed. Likewise, it has to be
ensured that therapeutic administration during breastfeeding causes no alteration
in breastfeeding behaviour, i.e. no reduction in human milk consumed, as well as no
change in infant compliance towards overall breastfeeding practices. Two additional
factors have to be considered: the concurrent timing of feeding and therapeutic ad-
ministration, as well as the dosage form’s method of disintegration. The former is
of importance only for medications, which need to be administered at a certain time
or as subsequent doses within a certain time interval. The method of disintegration
is a general design consideration, particularly focused on preventing the formation
of fragments, which could pass through the nipple shield holes and might pose a
risk of infant choking. Lastly, the concept of therapeutic administration from a
nipple shield during breastfeeding has to take into account existing BFI guidelines,
and discussions about their evaluation of therapeutic administration during breast-
feeding are required whenever findings provide enough evidence that it is suitable

to do so.
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2.4 Research context

The concept of using a modified nipple shield, designed to differ from commercially
available ones by comprising a holder (e.g. a lip or a mesh) for drug placement, was
proposed by a student group during a design competition in 2008. Subsequent doc-
toral research by Dr Stephen Gerrard (2010 — 2013) and Dr Rebekah L. Scheuerle
(2013 — 2017) at the Department of Chemical Engineering and Biotechnology, Uni-
versity of Cambridge, aimed to validate the scientific potential of such a modified
nipple shield, referred to as the nipple shield delivery system (NSDS), to serve as an
infant therapeutic delivery tool. Past lab-based investigations included the develop-
ment of novel setups to mimic breastfeeding, as well as the evaluation of therapeutic
release from different dosage forms using a variety of modified nipple shields. Field-
work in Kenya and South Africa consisted of interviews exploring opinions with
regard to the use of a modified nipple shield. A review of past investigations and

findings is provided below.

2.4.1 Development of setups for breastfeeding simulation

TEST RAG [41]. Initial therapeutic recovery experiments were conducted using a
test rag, enabling the investigation of therapeutic recovery from a filter holder into
a flowing, temperature-controlled fluid. During experiments, fluid was transferred
from a stirred reservoir by a peristaltic pump at a physiological rate through silic-
one tubing, heated in a water bath to 37°C, passed through the filter holder, and
fractions collected via a fraction collector (Figure 2.5). Neither pressure nor suction

frequency were controlled, and nipple shields were not used during experiments.

e
L O

[ ] [ ]
Fraction Heat Pump Stirred
collector exchanger reservoir

Figure 2.5: Test rag used for initial recovery experiments into human milk. Image
adapted from [41].
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As a result, the test rag was not capable of mimicking breastfeeding, nor of providing

insight into the ability of therapeutics to be released from a nipple shield.

BREASTFEEDING SIMULATION APPARATUS [42]. In order to improve experimental
procedures, a breastfeeding simulation apparatus was developed. The apparatus
enabled to mimic breastfeeding by accounting for both, fluid temperature and flow
rate, as well as relevant pressure values and suction frequency, while also making it
possible to investigate the release of dosage forms within a nipple shield. As a key re-

search method used in this doctoral thesis, it will be further explained in Section 2.5.

SETUP TO SIMULATE TONGUE MOVEMENT AND ITS APPLIED PRESSURE [43].
Scheuerle et al. investigated the impact of infant tongue peristalsis by means of a
Tongue Mimic System, consisting of a fluid reservoir, a heat exchanger, a peristaltic
pump, a built tongue-mimic, and a fraction collector. The tongue mimic was charac-
terised by a shaft-like structure connected to a peristaltic pump, enabling to control
the shaft’s rotation rate by varying pump speed, as well as a metal plate to mimic
the infants’ palate (see Figure 2.6). The tablet was located in a tubing between the
moving shaft and the metal plate, through which deionized (DI) water at a temper-
ature of 33.5 — 35.5°C was transferred at an approximate flow rate of 5 mL min™.
Using two different compression settings and different rotational rates, delivery of
Sulforhodamine B (SB) dye from rapidly disintegration tablets was investigated.
Scheuerle et al. proved that not only temperature, flow rate, suction frequency, and
pressure - parameters controlled by the breastfeeding simulation apparatus - but also
the level of tongue compression and rotation are affecting the tablet’s therapeutic

release.

DI water

( « Palate mimic

@ Tablet

Figure 2.6: Simplified illustration of the tongue mimic. Image adapted from [43].

17



Chapter 2

2.4.2 Designs of modified nipple shields

GLASSFIBRE MESH FOR PLACEMENT OF DOSAGE FORMS [42]. The initial modified
nipple shield prototype consisted of a commercially available nipple shield (Mater-
nity Silicone Nipple Shield, Boots), into which an O-ring with a fibreglass mesh was
sealed at a position 9 mm away from the teat’s inside tip. The commercially avail-
able nipple shield contains four 1 mm radius holes, to which Gerrard et al. added

eight additional holes at a distance of 5 mm away from existing ones.

CIRCULAR SILICONE LIP FOR PLACEMENT OF DOSAGE FORMS [4]. Experiments by
Scheuerle et al. made use of an advanced modified silicone nipple shield, manufac-
tured by injection moulding, and characterised by a silicone lip for drug placement
as opposed to a glassfibre mesh. The design intended for use with small dosage
forms, such as tablets, was characterised by a total teat length of 23.95 mm and a
silicone lip for drug placement 10.45 mm away from the teat’s inside tip. Through-
out this thesis, this modified nipple shield is referred to as the “lip-containing nipple
shield” or “NSDS lip-containing design”.

SILICONE FLAP FOR PLACEMENT OF CAPSULES [44]. In addition, research by
Scheuerle et al. also investigated a modified nipple shield for use with capsules,
comprising of a partially filled-in region between the teat’s tip and a silicone flap for
dosage form placement. It was characterised by only two holes of 2.11 mm radius,
and a reduced overall teat length of 22.51 mm, whereby the silicone flap for capsule
positioning was located even further away from the teat’s inside tip, at a distance
of 12.88 mm.

@ D

9mmIf fl/ 10.45mmI% ?l/o 12.88mm1% \I/

Glassfibre mesh Lip-containing Capsule holder
design design design

Figure 2.7: Overview of modified nipple shield designs used for in-vitro therapeutic

delivery into human milk.
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2.4.3 Dosage form investigations

SDS DELIVERY FROM NON-WOVEN FIBRES [41]. Gerrard et al. investigated the
release of Sodium Dodecyl Sulphate (SDS) from non-woven fibres using the breast-
feeding test rag. Hereby, circular fibre mats of 10 mm diameter, consisting of non-
woven viscose and polyester fibres (Bathfelt Texel, Québec, Canada), were loaded
with 0.07 g SDS by soaking them for 10 sec in a 30 % wt SDS solution. Left drying for
72 hours, experiments were performed into 50 mL of human milk, whereby a recov-

ery of 70 — 100 % loaded SDS was obtained.

SULFORHODAMINE B DELIVERY FROM RAPIDLY DISINTEGRATING TABLETS [42].
A number of experiments investigating the release of Sulforhodamine B (SB) dye
from rapidly disintegrating tablets within the mesh containing nipple shield were
conducted to evaluate the impact of milk fat content, flow rate, and suction pulse
rate on absolute SB recovery using the breastfeeding simulation apparatus. At a

flow rate of 5 mL min!

, suction rates of 30 and 60 pulses min™! led to a similar
SB recovery, which improved at a pulse rate of 120 pulses min. At a physiological
suction frequency of 1 suck sec!, release was neither dependent on flow rate (range:
1 — 8 mL min!), nor on fat content (range: 2.9 — 4.2 %). In most experiments, an

absolute recovery of less than 80 % within 40 mL of milk was obtained.

ZINC SULPHATE DELIVERY FROM RAPIDLY DISINTEGRATING TABLETS [4]. Sch-
euerle et al. investigated the release of zinc sulphate from rapidly disintegrating
tablets within the lip-containing nipple shield during breastfeeding simulation ex-
periments. Four types of tablet formulations were used, characterised by different
excipients and tablet hardnesses. Within approximately 100 g of human milk, an

absolute recovery of 32 — 51 % loaded zinc sulphate was achieved.

ZINC SULPHATE DELIVERY FROM HPMC CAPSULES [44]. Scheuerle et al. investig-
ated the release of zinc sulphate from “treated rapidly disintegrating
capsules” [44]. Hereby HPMC capsules were loaded with a zinc sulphate lactose
mixture and dried by means of a lyophilizer until <5 % of weight change within
29.5 h was recorded. Subsequently, using the breastfeeding simulation apparatus,
delivery of zinc sulphate from the modified capsule holder containing nipple shield
into 100 mL of human milk was evaluated. As capsules failed to rupture, no release

of zinc sulphate was achieved.
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2.4.4 Qualitative research

KENYA: ACCEPTABILITY OF THE LIP-CONTAINING NIPPLE SHIELD [45]. A qualit-
ative study was conducted by Hart et al. in Kenya to evaluate the perceived accept-
ability of the lip-containing nipple shield to prevent mother-to-child transmission
of HIV during breastfeeding, and to assess mothers’ understanding of vertical HIV
transmission. Eleven focus group discussions a 7 — 12 participants were performed,
including mothers, fathers, grandmothers, and mothers-in-law. In this low-resource
setting, use of the lip-containing nipple shield was considered “potentially accept-
able” ([45], p. 68), requiring provision to enable sustainable access and careful
consideration of associated implications for barriers of use, such as religious belief
or potential stigma. With regard to the prevention of mother-to-child transfer of
HIV, efficacy and safety of the lip-containing nipple shield for infant antiretroviral
delivery were discussed, and most participants advocated for the need of scientific

validation and recommendation by healthcare staff.

SOUTH AFRICA: ACCEPTABILITY OF THE LIP-CONTAINING NIPPLE SHIELD [46]
Interviews (semi-structured and focus groups) were conducted with 35 infant care-
takers and nine health workers, in the Vhembe District of Limpopo, South Africa, to
explore their opinion towards use of the lip-containing nipple shield for therapeutic
delivery. Participants responded positively, and gave preference to a disposable
see-through NSDS design. Hereby, the lip-containing nipple shield was chosen over
other designs without a lip, simply based on its circular base and thicker material,
as mothers associated less material with an increased risk for the shield to fall off the
breast. Health workers suggested a cough and de-worming medication as potential
therapeutics to be delivered from the lip-containing nipple shield. Challenges with
regard to community acceptance were raised and the need for education around the

use of the lip-containing nipple shield for therapeutic delivery stressed.

2.5 Research methods

2.5.1 Breastfeeding simulation

To ease in-vitro testing of different therapeutic dosage forms and nipple shield
designs, a breastfeeding simulation apparatus was developed by Gerrard et al.,

simulating both the process of lactation and infant feeding [42]. The apparatus
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is capable of resembling average flow rates/patterns of milk during breastfeed-
ing, as well as of mimicking, monitoring, and recording the sucking pressure of
infants [42]. It was used for investigations in Chapter 4, Chapter 5, and
Chapter 6. A process flow diagram of the apparatus is illustrated in Figure 2.8.
According to Gerrard et al. the breastfeeding simulation apparatus has the fol-
lowing characteristics [42]: Using a peristaltic pump (P1, Masterflex, Cole-Parmer
Instrument Co. Ltd., London/UK), milk is pumped through silicone tubing from
a continuously stirred reservoir (R1) into a hot water bath (heat exchanger, HX1),
controlled using a temperature sensor (TS, Digitron thermocouple, Elektron Techno-
logy, Cambridge/UK), where it is heated to a physiological temperature of
33.7 — 35.7°C. The heated milk is subsequently fed through a reservoir valve and a
non-return valve into a silicone human breast mimic (SBM), containing 25 evenly
distributed holes to imitate maternal lactiferous sinuses. Using a clamp system, the
nipple shield is held in place on the SBM in an airtight fashion, and positioned at
a 30° angle downwards from the horizontal flow direction. A funnel (R2), having
a reservoir at its lower part for fluid leaving the SBM, is connected to a vacuum
pump (P3, modified Medela swing electric breast pump, Manchester /UK) through
an airline. The vacuum pump (P3) withdraws milk from the SBM by means of a
physiological relevant breastfeeding pressure cycle (vacuum with oscillating pattern)
and is controlled by a National Instruments card (NIC, National Instruments, Aus-
tin, TX/USA), and connected to a computer system (CPU, Gigabyte Technology
Co. Ltd., UK), while a second peristaltic pump (P2, Masterflex, Cole-Parmer In-
strument Co. Ltd., London/UK) is delivering milk leaving the nipple shield through
an exit line to a fraction collector (FC, SuperFrac, GE Healthcare Sciences, Bucking-
hamshire/UK). A 2011 LabVIEW software is used to accurately control P3, while
the pressure within the airline system is measured using a SSOB002A pressure gauge
(Sensortechnics, Munich/Germany). Two 60 mL syringes, connected to the air line,
enable modification of the vacuum amplitude through adjustment of their plun-
gers. Based on the physiology of breastfeeding outlined previously, the apparatus
was designed to enable a suction frequency of 60 sucks min, and an approximate

! Breastfeeding simulation experiments are conducted as

flow rate of 5 mL min-
follows [42, 44]: After calibrating both P1 and P2 to have an equivalent pumping
frequency, the feed pump (P1) is turned on and milk passed into the collection reser-
voir (CR), following which air from the airline is purged and the purge valve closed

(with the feed pump P1 being on hold). Subsequently, the vacuum pump (P3) is
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started by means of the LabVIEW programme and the exit pump (P2) turned on.
As a last step the feed reservoir valve (FRV1) is opened to enable human milk flow
through the silicone breast mimic (SBM). The breastfeeding simulation experiment
is discontinued by turning off both the LabVIEW programme and the vacuum pump
(P3), followed by feed (P1) and exit pump (P2).

Liquid line
Air line
Transmission
circuit

I.ﬂ_
t R1
: | FC | |  —
CPU  Computer system P2 Pump 2
CR Collection reservoir P3 Pump 3
CV1 Air control valve PSPS Current digitalized pressure sensor power supply
FC Fraction collector R1 Continuously stirred milk feed reservoir
FRV  Feed reservoir valve R2 Collection reservoir and funnel connected to SBM
HX1  Heat exchanger S1 Air syringe 1
MS Main switch S2 Air syringe 2
NIC National instrument card SBM  Silicone breast mimic
NRV1 Non-return valve 1 TO Temperature output
NRV2 Non-return valve 2 TS Temperature sensor
NS Nipple shield V1 Valve 1
P1 Pump 1 V2 Valve 2

Figure 2.8: In-vitro testing is performed by means of a breastfeeding simulation ap-
paratus developed by Gerrard et al. [42]. Image adapted from [4]. Image originally
published in [47].
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2.5.2 Introduction to qualitative research

Qualitative research is often used as an initial scoping tool at the beginning of a
research project, providing a direction for the establishment of a working hypothesis,
which can be further investigated by means of quantitative research
assessments [48]. Qualitative research is an effective measure to obtain “a deeper un-
derstanding of certain aspects of human beliefs, attitudes or behaviours”
([48], p- 235), and research interviews and focus groups are the most frequently used
methods to gather data for qualitative experiments within the medical
discipline [49]. Interviews can be structured, semi-structured, and un-
structured [49]. Research presented in Chapter 3 and Chapter 6 has made use
of semi-structured interviews, the most common interview format for qualitative
medical research [49]. These interviews contain a framework created by pre-defined
questions to provide guidance, while allowing the interviewer and interviewee to
focus on certain aspects or responses more thoroughly as required [49]. In order to
analyse the qualitative data obtained, a researcher can choose between two overall
approaches: The deductive approach involves the analysis by means of a predefined
theory or framework, which is either confirmed or disproved throughout the analysis
process [50]. In contrast, when the inductive approach is used, little to no predefined
hypothesis is applied, yet a framework developed based on themes which are derived
from the data itself [50]. In both cases, the thematic content analysis is the most
common approach for qualitative data analysis, and involves the identification of
themes and  examples for these themes  within the interview
transcripts [50-52]. In contrast to quantitative research, analysis in qualitative ex-
periments already takes place during the first data collection, as preliminary results
can inform the subsequent interview process, for example through modification of
key questions used in semi-structured interviews [50]. Following transcription of the
interview verbatim, the thematic content analysis is defined by the following analysis
stages [50, 53, 54]:

1. PRE-READING: thorough reading of all transcripts.

2. OPEN CODING: re-reading of the transcripts, adding notes capturing a sum-

mary or conclusion of the text’s content.
3. INITIAL CODING FRAMEWORK - generation of a short list of identified categor-
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ies: Identified content categories during open coding are revised to cross out
repetitions and re-group similar categories into an overarching theme. Hereby,
parts of the text can be coded into different categories, while other parts of the
interview may not be assigned to any category. The latter applies for segments

identified as not applicable for the objectives of the conducted research.

4. FINAL CODING FRAMEWORK - verification of category system: Each tran-
script is further analysed to identify and highlight data related to each cat-

egory.

2.5.3 Introduction to mixed methods research

Studies conducted based on a mixed methods approach make use of both qualit-
ative and quantitative components as part of their study design, data collection,
and analysis [55]. Mixed methods are defined as “research in which the investig-
ator collects and analyses data, integrates the findings, and draws inferences us-
ing both qualitative and quantitative approaches or methods in a single study or
program of inquiry” ([56], p.4). Use of this approach can be advantageous if the
research is of complex nature, e.g. with the intention to increase the breadth of a
study [55]. Two design options exist: i) a parallel form, whereby qualitative and
quantitative data are collected simultaneously and conclusions based on both ana-
lyses, ii) a sequential form, whereby data is collected successively, one type of data
supporting the collection of another [55]. Research in Chapter 6 makes use of a

parallel mixed methods approach.

2.5.4 Introduction to clinical studies

(a) Basic, clinical, and translational research

BAsiCc RESEARCH. Basic research focuses on lab-based investigations with the
objective of contributing knowledge and of enhancing human comprehension of
nature [57, 58]. According to Salter et al., basic research can be differentiated
as either ’curiosity-oriented’ or ’strategic’ [58]. While findings may address a range
of practical problems, the fundamental purpose of basic research does not consist in

providing actionable answers or implementable recommendations [57].
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CLINICAL RESEARCH. Clinical research comprises the following areas of inquiry:
i) patient-oriented research that involves both human subjects or human tissues,
the latter for which patient contact was required, ii) epidemiologic and behavioural
studies, and iii) research with regard to the effectiveness of interventions and health
services [57, 59, 60]. Patient-oriented research is further classified into four types
of research studies: research on mechanisms of human disease, therapeutic inter-
ventions, clinical trials, and the development of new technologies [60]. Schuster et
al. provides the following guideline [60]: “Clinical research includes any scientific

investigation in which the unit of analysis is the person” (p. xvii).

TRANSLATIONAL RESEARCH. Translational research interconnects both basic and
clinical research, and refers to the application of basic scientific findings for clin-
ical use, for example to enhance patient treatment or diagnostics [57]. According
to the National Institutes of Health (NIH), the pathway of “bench to bedside”
consists of two translational steps, and is defined as follows [57]: “Translational
research includes two areas of translation. One is the process of applying discov-
eries generated during research in the laboratory, and in preclinical studies, to the
development of trials and studies in humans. The second area of translation con-
cerns research aimed at enhancing the adoption of best practices in the community.
Cost-effectiveness of prevention and treatment strategies is also an important part
of translational science.” In 2007, Westfall et al. proposed a third translational
step, comprising of practice-based research to support the implementation of dis-
coveries into daily clinical use [61]. The feasibility study presented in this chapter,
being based on prior preclinical development at the Department of Chemical En-

gineering and Biotechnology, relates to translational step 1.

(b) Feasibility study. Research in Chapter 6 is classified as a “pilot” or “feasibil-
ity study”, terms that are often used interchangeably. It consists of a “small study
for helping to design a further confirmatory study” ([62], p. 67) of reduced duration
and financial expenses [63]. The purpose of feasibility studies is to evaluate the
potential of an intervention, such as general safety and effectiveness, and the benefit
of allocating further resources, with the intention of subsequently investigating the
intervention at a larger scale [63-65]. Consequently, feasibility or pilot studies are
regarded as an essential initial step in the development process of an intervention,

and believed to increase its likelihood of being successful [63]. Thereby, Bowen et
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al. defines an intervention as “any program, service, policy or product that is inten-
ded to ultimately influence or change people’s social, environmental, and organiza-
tional conditions, as well as their choices, attitudes, believes, and behaviours” ([64],
p. 452). Eight focus areas of feasibility studies can be differentiated, including the
acceptability, demand, practicality, adaption, integration, expansion, and efficacy of
an intervention [64]. It is important to note that a pilot study does not aim to test

effectiveness, efficacy, or user safety of an intervention [63].

(c) Integrated Research Application System (IRAS). Since clinical research
involves the participation of human subjects, approval by major regulatory bod-
ies is needed prior to any research being undertaken. Within the UK, applica-
tions can be submitted using the Integrated Research Application System (IRAS),
a single system enabling the submission of approval requests to nine different review
bodies [66].

(d) Commonly used terminology. Common terminology in clinical research,

used in Chapter 6, is presented in Table 2.3.

TERM DEFINITION

Objective Scientific question to be answered by the clinical study [67].

Endpoint(s) | A clinical study is defined by one or more endpoints. The primary
endpoint is a precise definition for reaching the study’s main
objective; it is evaluated by means of reproducible and accurate
methods [67].

Recruitment | Process to identify and enrol suitable human subjects for
participation in a clinical research study; the identification is

conduced based on defined inclusion and exclusion criteria [68].

Inclusion/ Detailed description of criteria to define the study population, i.e.
exclusion to determine eligibility of human subjects for participation in a
criteria clinical study [69]. A potential subject has to fulfil all inclusion

criteria to be eligible for participation, while conformity with any

of the defined exclusion criteria prohibits involvement in the

proposed study [68].

Table 2.3: Commonly used terminology in clinical research.
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TERM DEFINITION
Informed Involves informing suitable individuals about the content and
consent risks of a study, as well as participants’ rights; individuals who
process match the inclusion/exclusion criteria, and who voluntarily decide
to participate in the proposed study, have to sign an informed
consent form to confirm their voluntary participation and
acknowledge receipt of all legally required study information [70].
Research Institutional bodies, which focus on protecting those individuals
Ethics involved in clinical research, either as participants or as
Committees | researchers [68].

Table 2.3 continued: Commonly used terminology in clinical research.

27







Chapter 3

A parent and nursing perspective

3.1 Introduction

3.1.1 Overview

The potential of therapeutic delivery from a silicone nipple shield during breast-
feeding in a developed setting, where dosing spoons and oral syringes are readily
available, had not previously been explored. Although the concept was originally
developed as a means to address challenges in developing countries, it was hypo-
thesised that it could likewise serve as an alternative approach to common delivery
technologies in high-resource environments. Potential advantages were believed to
include the support of exclusively breastfeeding mothers, as well as the treatment of
infants with chronic or acute conditions, requiring regular or frequent medication.
More and more companies are making use of such reverse innovation by expand-
ing their offerings in developed markets with technologies originally intended for
resource-limited settings, aiming to cater towards cost-minded customers and/or
to address an existing product gab [71]. Products include lower-cost developments
with similar (cost innovations), market-tailored (good-enough innovations), or novel
functionality (frugal innovation) [71]. Therapeutic delivery during breastfeeding was
also considered as a potential means to encourage the beneficial practice of breast-
feeding, with continuation rates at the infants’ sixth postnatal months being over
50 % lower in high-resource environments compared to those in low-income set-
tings [11]. In particular, the UK exhibits one of the lowest rates in breastfeeding

establishment and continuation within Europe [15].
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Work presented in this chapter aimed to achieve the following objectives:

1. To evaluate the potential of therapeutic delivery during breastfeeding in a

high-resource environment using appropriately chosen design methodology

2. To identify design characteristics of a nipple shield intended for the use of

therapeutic administration to infants

3.1.2 Study design considerations

Experimental work in this chapter was based on the following considerations.

(a) Selection of research methodology. Based on guidance for the identifica-
tion of a working hypothesis at the beginning of a research project [48], use of a
qualitative methodology was chosen. Hereby, semi-structured interviews were pre-
ferred over structured and unstructured interview formats, aiming at providing a
certain degree of guidance while enabling the participants to direct their focus of
importance. With the objective to interview mothers, fathers, and nursing staff, the
study focused on gaining both primary and secondary information about potential
parental challenges of infant oral therapeutic delivery, and to assess the opinion of
end-users and potential groups of supporters with regard to the possible intervention

of therapeutic administration during breastfeeding.

(b) Selection of study location. Research with parents of infants in a neonatal
intensive care environment was chosen over assessment in outpatient groups or as
part of community support, since it was believed that parents having experienced a
high level of neonatal intervention, such as mechanical ventilation or total parenteral
nutrition, will be more anxious and hence more critical in assessing the potential
of therapeutic delivery during breastfeeding. The same interview environment was
thereby also regarded as a means to avoid systematic errors arising in other study

locations.

(c) Selection of nipple shields as a visual aid. Based on the concept’s novelty
and in order to support the participants’ comprehension, it was decided to provide

visual guidance in form of both a commercial contact nipple shield, potentially
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already familiar to some of the parents, and a modified nipple shield, the NSDS lip-
containing design, currently under investigation at the University of Cambridge’s
Department of Chemical Engineering and Biotechnology. Both are illustrated in
Figure 3.1. The commercially available ultra-thin contact nipple shield (Medela,
UK) for normal feeding has four holes of diameter 1.00 mm and is available in
a variety of sizes, including small, medium, and large. Corresponding values for

maximum teat diameter and teat length are illustrated in Table 3.1.

a) b)

Figure 3.1: Illustration of nipple shields investigated for therapeutic delivery during
breastfeeding. Commercially available ultra-thin contact nipple shield shown from
a) the side, b) from below. Modified nipple shield with a retention lip for therapeutic
placement from c) the side, d) from below. Image adapted from [72].

DEVICE SIZE MAXIMUM TEAT DIAMETER TEAT LENGTH
[mm] [mm)]

Small 16 18

Medium 20 19

Large 24 20

Table 3.1: Maximum teat diameter and teat length for commercially available ultra-
thin contact nipple shields (Medela, UK).
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The modified nipple shield was manufactured through silicone injection moulding in
one size only, containing twelve exit holes of diameter 1.23 mm evenly spread across
the teat’s tip, a maximum teat diameter of 17.41 mm, a teat length of 23.95 mm,

and a base diameter of 75.71 mm.

3.2 Materials and methods

3.2.1 Study population and participant recruitment

The qualitative descriptive study was conducted with parents and staff on a
level 3 Neonatal Intensive and a Transitional Care Unit (NICU) of the Univer-
sity of Cambridge Addenbrooke’s Hospital NHS Trust from May to July 2016. All
parents with an inpatient infant, who had previously breastfed an infant, and/or
were intending to breastfeed or already doing so, and who were willing to provide
written informed consent for participation were eligible for inclusion. No restric-
tions regarding health status, gestational age or birth weight were applied. Eligible
staff comprised healthcare professionals whose role included supporting families to
establish breastfeeding. Staff of varied years of experience and age were recruited
by distributing information sheets on the wards, while parents were approached by

the clinical nursing staff prior to being seen by a member of the research team.

3.2.2 Interview development and data collection

The interview process aligned with established procedures for semi-structured in-
terviews [73]. Pre-defined questions were designed to (a) identify challenges of oral
infant therapeutic administration, (b) assess parents’ attitude towards nipple shields
for normal feeding, (c) evaluate the potential of therapeutic delivery from a silicone
nipple shield during breastfeeding, and (d) determine its preferred design character-
istics. An excerpt of questions is shown in Table 3.2. Both a commercially available
ultra-thin contact nipple shield and the NSDS lip-containing nipple shield were
shown to the participants. Staff were interviewed individually in private rooms on
the units, whereas interviews with parents were performed at the infant’s bedside,
while a nurse known to the parents was present. The interviews were conducted
independently from the clinical team to provide for consistency and avoid bias, and
recorded using digital voice recording software for later analysis. The interviewer

did not provide any advice regarding breastfeeding or the use of nipple shields, and
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parents were clearly informed that this was a research study, only investigating a

novel approach of infant oral therapeutic delivery.

« In the past, have you ever given any medicine to any/your baby?
Which delivery devices did you use? What was your experience?

(parents)

 After discharge, are you/your wife/your girlfriend intending to

breastfeed your baby? For what reason “no”/”yes”? (parents)

o What do you think about the nipple shields’ design characteristics
(colour, shape, size)? (parents, staff)

« Would you want to use/recommend a nipple shield device for
therapeutic delivery during breastfeeding, and if so, which
therapeutics would you like/not like to administer from a nipple

shield device during breastfeeding? (parents, staff)

Table 3.2: Excerpt of questions used in the qualitative descriptive study.

3.2.3 Data analysis

Interviews were transcribed verbatim and potentially identifiable data of parti-
cipants and their infants were anonymised during interview transcription. Analysis
was conducted through code development using the inductive approach of thematic
content analysis in the software package ATLAS.ti (Scientific Software Development
GmbH) [53, 74]. Following pre-reading of all transcripts, notes were added line-by-
line through an open coding approach, subsequently revised and re-grouped to form
an initial coding framework. These initial codes were evaluated within the research
team, particularly in discussion with Dr Kathryn Beardsall, together iteratively ad-
apted and refined into a final coding framework. Advice on overall coding practices

was provided by Oliver Bonner.
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3.2.4 Ethics

The study was approved and registered with the Patient Office at the University
of Cambridge Addenbrooke’s Hospital NHS Trust, and was assessed by the Ad-
denbrooke’s Hospital Research and Development Department to not require ethics
approval. All participants provided their written informed consent to be quoted

anonymously in this publication.

3.3 Results

From a total of thirty invited, twenty-eight participants were interviewed
(Table 3.3), including nine registered nurses (RNs), seven fathers and twelve moth-
ers, of which six each were parents of the same infant and were interviewed together
(Table 3.4 and Table 3.5). Three of the infants were born extremely preterm
(<28 weeks), two very preterm (28 to <32 weeks), four moderately preterm
(32 to <37 weeks), three full term (37 to <41 weeks), and one late term
(41 to <42 weeks) [75, 76]. The gestational age of the participants’ infants was
anonymised using the WHO definitions of preterm birth [76]. Two individuals had

refused participation due to language comprehension difficulties.

ID Parents Staff
Characteristics n n
Gender
Female 12 9
Male 7 0
Average age [years] 30.2 (17 — 40) 38.8 (22 — 50)
Breastfeeding experience N/A
Yes 13
No 6
Total number of children N/A
1
2-3
>3
Table 3.3: Characteristics of interview participants

(N = 28). Table originally published in [72].
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The total number of participants was determined by the point at which information

saturation was reached [77].

MOTHERS FATHERS

ID INFANT’S GESTATIONAL ID INFANT’S GESTATIONAL
AGE AGE

M1 Moderate to late preterm F1 Moderate to late preterm

M2 Late term F2 Late term

M3 Moderate to late preterm F3 Moderate to late preterm

M4  Extremely preterm F4 Extremely preterm

M5 Full term F5 Full term

M6 Full term F6 Full term

M7 Full term F7 Moderate to late preterm

M8 Extremely preterm

M9 Extremely preterm

M10  Very preterm

M11 Very preterm

M12 Moderate to late preterm

Table 3.4: Parent participant’s ID and the gestational age of the parent’s infant

(n = 19).

REGISTERED NURSES

ID PROFESSION

RN1 Nursery nurse

RN2 Nursery nurse

RN3 Junior sister

RN4 Staff nurse

RN5 Nursery nurse

RNG6 Staff nurse

RNT7 Staff nurse

RNS Senior sister

RN9 Registered nurse, IBCLC® and midwife”

Table 3.5: Profession and ID of RN participants (n = 9).
“IBCLC® stands for International Board Certified Lactation Consultant®
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Interviews lasted on average 15.6 min (range 9.5 — 27.5 min), since parents were
either not able to speak about previous breastfeeding or therapeutic delivery exper-
ience, or found it emotionally challenging to discuss breastfeeding intentions, given
their infant’s present health status. Based on the responses provided, four overall
themes were identified, including current practices and challenges, perceived bene-
fits and risks, design considerations, as well as the role of healthcare professionals.
Quotations are used to illustrate key points, and if required were edited to enhance
clarity and brevity (see content in square brackets). The adjunct Mz, Fz, and RNz,
for mothers, fathers, and registered nurses respectively, refers to the participant
codes from Table 3.4 and Table 3.5.

Current practice of oral drug delivery: challenges and the need for in-

novation

Use of commonly available infant oral therapeutic delivery devices was described by
the participants as both physically and emotionally challenging, relating to either
therapeutic administration to their previous infant, or to nutrient delivery to their
inpatient newborn on the NICU. With regard to physical challenges, parents referred
to incidents, in which the infant was actively fighting therapeutic administration,
e.g. through slapping the dosing spoon or oral syringe, sudden turning of the head,
or spitting out medicine after delivery. As a consequence they also expressed their

worry about the reduction in the final dose received.

"It was a nightmare, because he wouldn’t take [the therapeutic| from a

syringe, you put it on a spoon, he flipped it. So we were never certain,
what he had." [M1]

Oral syringes were preferred over spoons for infants below the age of six months,

but some mothers perceived their appropriate handling as difficult.

"[Syringes] are not easy to put in their mouth. And they are not easy to

use. So you end up shooting quite a lot of liquid in very fast." [M1]

One mother also described her observation about the limited options available for

exclusively breastfeeding mothers.

'If you are bottle feeding, you can give the medication into the milk;
but when you are breastfeeding, you are kind of stuck when they are not

taking the medication [with a spoon or a syringe]." [M7]
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Emotionally, parents expressed their worry of hurting their struggling infant, their

feeling of guilt, and their infant’s anxiety.

"[It was| quite difficult, and she is a bit scared. [...] I feel like I am
torturing her." [laughs shyly] [M2]

Responding to a need: perceived benefits

The concept of therapeutic administration from a silicone nipple shield during
breastfeeding was well perceived and positive responses were obtained from all par-
ticipants, both in terms of practical and emotional benefits. It was felt that it could
help to achieve the delivery of a complete dose, and thereby address a commonly

held anxiety of risk with current methodologies.

"[Tf] the baby was gonna get all its medication, it would be an ideal idea.
Rather than trying to shove it into its cheek, and then spitting it out
the other side. We have all been there with a syringe." [M4]

'T think, mothers would probably be quite happy that their child is going
to get the full dose." [RN6]

Moreover, all participants believed that therapeutic delivery during breastfeeding

would lead to a reduction of infant distress.

"It is going to be easier than trying to put a syringe with medicine into
a baby’s mouth, and it is not going to be distressing for the baby, if it

is just going to have a breastfeed as normal." [RN5]
"[...] they’d be calmer, I think that’s the difference." [M1]

Additional statements referred to an improved relationship between mother and
infant. Mothers saw the ability to deliver nutrients while breastfeeding as a means

to foster mother-infant bonding.

"It is just another way that you can be involved in your child’s care. So
you get so many things taken away from you [on the NICU] - that you
can’t do. [...]| We understand that. But it would be nice to feel a bit

more involved. |...] So with [therapeutic delivery from a silicone nipple

shield], it is a way that you can still bond with your baby, and feel like
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you are helping them instead of being completely useless. [...]
Anything that can be done to help us feel closer with our babies is

absolutely excellent." [MS§]

Staff expressed the belief that therapeutic delivery during breastfeeding was an
opportunity of supporting and empowering mothers in challenging environments
like the NICU, as therapeutic delivery during breastfeeding would allow them to

regain ownership and responsibility of their infant’s care.

'In some ways we are giving ownership back to them. Giving
medication is a nursing role. [...] it’s lovely for them to think to take
ownership of that, thinking "It is my baby, I can do that’" [RN9]

All participants favoured use of therapeutic delivery from a silicone nipple shield
during breastfeeding, when being asked about their preference between a nipple

shield device and a medicine pacifier (dummy).

"They seem to be a bit too much in control of themselves [with a

medicine pacifier]." [M§]

Noticeably, fathers appreciated the ability of enabling therapeutic delivery while

encouraging the natural practice of infant feeding.

"This is encouraging something natural, but kind of doing it [the

therapeutic administration] at the same time [as breastfeeding]." [F5]

The delivery of nutrients was supported by all participants and the administra-
tion of medicines using a nipple shield during breastfeeding by the majority of the

interviewees, provided potential risks can be mitigated.

Comprising challenges: perceived risks

At the beginning of the interview, questions aimed at exploring the attitudes to-
wards using standard nipple shields in the process of establishing and maintaining
breastfeeding. On the NICU, nipple shields are often used as “a temporary meas-
ure” [RN1], which parents associate with the positive experience of enabling them
to breastfeed.

'If the baby really struggles, [and] a nipple shield really helps [to

achieve breastfeeding|, then the parents are obviously very happy to
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learn that there is actually something that they can [do], that will help
the baby to latch." [RN4]

Staff highlighted the importance of adequate parent education and guidance.

"I think [it is important] to show them properly how to apply a nipple
shield [...] because a lot of people don’t apply it properly. You know,
they just shove it on. They don’t really realize that there is actually a
bit of a skill to apply them." [RN9]

Subsequent questions referred to the potential use of a nipple shield for therapeutic
administration. Hereby, five main areas of concern were raised. First, all par-
ticipants expressed their worry that potential undesirable therapeutic taste could
negatively affect normal feeding behaviour, if the infant was to associate human

milk with the taste of a therapeutic.
"So it is just ensuring that the [infant] would still latch." [RN§]

Furthermore, the need for rapidly disintegrating formulations was emphasized by all
participants with the objective to avoid the risk of incomplete delivery of the required
dose. RNs indicated three additional areas of concern. Firstly, they pointed out that
some mothers, for example those who are in the process of establishing breastfeeding
and those confidently feeding without a nipple shield, might be reluctant to use a
nipple shield for therapeutic delivery, if it was to adversely impact their experience

either practically or emotionally.

"They will be worrying that maybe the baby will get used to the
convenience of the silicone, and then not go back to skin-to-skin, baby’s
lips to mother’s breast." [RN6]

"My concern is that there are some mothers who feel already out of

control, that are struggling." [RN9]

Secondly, they highlighted the potential challenge of combining therapeutic admin-

istration with the time constraints of three-hourly feeds.

"You have to think of timings of feed with medication. [...] Then it’s
trying to find another method of getting the oral medication in, if it is
not during a feed time." [RN2]
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One RN additionally indicated that there could be a risk of maternal skin reaction
when medicine in the nipple shield would be in direct contact with the mother’s

skin.

"Vitamins you could do quite easily. [But] if you have the drug in there
right next to the woman’s nipple, you don’t want to give her a rash."
[RNS]

Nipple shield design considerations

When asking participants about their nipple shield design preferences, all advoc-
ated for a discrete see-through device, to be available in a range of sizes, making

therapeutic delivery directly observable, personalized, and more natural.

'T think [the nipple shield should be| see-through, because [...] T would
want to know what medicine was in there, and how much was going, has
been taken." [M1]

All participants preferred a contact nipple shield to a full circular one, as well as
material properties with reduced thickness and enhanced softness. A preference
for the ultra-thin contact nipple shield over the modified nipple shield (NSDS) was
expressed, resulting from cleanliness, fit, and practicability concerns related to the
NSDS retention lip. As the lip is protruding inwardly, many participants projected
cleaning to be challenging, with participants preferring a reusable device for high-
resource settings. RNs observed that the available space for the maternal nipple
within the modified silicone teat was significantly reduced due to the retention lip,
while the teat’s length was similar to those of commercial shields. This was seen as

particularly problematic for mothers of certain anatomy.

"[...] T think my only concern is that depending on the mother’s nipples
[...] ...that [the remaining space within the nipple shield] is quite short."
[RN9]

The lip was also considered to be a potential source of maternal discomfort, because

of its risk to rub on, or trap the mother’s nipple during breastfeeding.

'T am worried that [the lip] could catch your nipple [...]." [F5]
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"[...] part of the nipple might then try to go through [the hole in the lip],
and it might rub." [RN2]

Several parents also expressed that a commercially available device already used for

normal feeding, might enable easier handling.

"That [commercially available nipple shield] would be better. Just be-
cause if people are using these anyway [for a normal feed], it would be

easier to just use this and put the medication in, I guess." [M11]

Introducing therapeutic delivery during breastfeeding: key role of health-

care professionals

Both parents and RNs felt that it would be best to introduce the nipple shield device
for therapeutic delivery within a hospital environment, with the objective to provide

mothers more confidence for subsequent home use.

"If you have already used this in the hospital, you are used to it, you
know what you are doing, you will be more than confident to do it [at
home]." [M§]

They also indicated that the main factors driving positive perceptions of infant
therapeutic delivery technologies, and consequently of a nipple shield to aid thera-
peutic delivery, is their customary use and formal recommendation by healthcare

professionals.

"I think if someone gave this [to us] and said ’this is the way we were
giving the medicine’, then I don’t think you would question it. [...]
Because it’s... I don’t know, it’s almost less risk compared to something
else]." [F5]

'T think whatever becomes normal. If the baby is able to latch on the
breast with a nipple shield to be able to give medication, then that’s
probably a [more] normal way than having the baby away from you, and

[squeezing] medicine down." [RN§|

RNs confirmed that they would recommend a nipple shield for therapeutic delivery
to parents, if all stated risks could be sufficiently addressed.
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3.4 Discussion

This study is the first of its kind to explore the perceived acceptability of a nipple
shield for therapeutic delivery during breastfeeding in a high-resource environment.
It thereby furthers work by Hart et al., targeted at exploring the potential of a
nipple shield for antiretroviral delivery to prevent vertical HIV transmission in a
low-resource environment [45], by exploring associated benefits, risks, and design
preferences. The study has highlighted practical and emotional challenges of par-
ents in the process of infant oral therapeutic delivery, using commercially available
delivery devices. It has provided evidence for the need of alternative infant thera-
peutic delivery technologies in high-resource settings, and suggested that a nipple
shield for delivery during breastfeeding could serve as a potential solution for breast-

feeding mothers.

Potential advantages

The responses provided by parents indicate that infant oral drug administration is
associated with physical and emotional burden. The level of emotional anxiety is
highlighted by the emotive language used, and their worry about the infant’s choking
and fear. The delivery of therapeutics during breastfeeding was perceived to have
a positive impact on the infant’s overall emotional state. The literature indicates
that the release of Oxytocin during breastfeeding in both the infant’s and mother’s
brain has the potential to decrease stress levels through counteracting certain path-
ways within the sympathetic nervous system [78], whilst also eliciting enhanced
care-giving behaviour [78, 79]. All participants confirmed that they would use and
recommend the nipple shield for nutrient delivery. This indicates the potential of
a nipple shield to be used for the daily nutrient administration to infants on the
NICU and its continuation up to six months after discharge [27, 28]. A nipple shield
for therapeutic delivery was also perceived as a means to improve mother-infant
bonding, a matter of particular relevance for parents on a Neonatal Intensive Care
Unit. In such emotionally challenging environments, building of emotional closeness
empowers parents to regain responsibility for their infants’ care, while leading to im-
proved infant outcomes [80-82]. The finding of this study to provide appropriate
maternal support by healthcare professionals while introducing a nipple shield for
therapeutic delivery aligns with past literature on the transition of responsibility in

care from clinical staff to parents of preterm infants [80-83].
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Potential challenges and requirements

The potential association of breastfeeding with the adverse taste of medicine was
raised as a concern by all participants, due to the risk that it could negatively affect
infant breastfeeding behaviour. This emphasizes the importance of therapeutic taste
masking of formulations used for delivery into human milk. Yet, while appropriate
taste masking of formulations is important to ensure, it is known that breastfed
infants are familiar with a wide range of tastes, reflecting the maternal diet [84, 85].
Moreover, human milk is itself considered to have taste masking characteristics, as
previously shown for formulations that are insoluble, characterized as irritating or
bitter-tasting [86-88]. The capacity of therapeutic delivery to enable appropriate
mixing of therapeutic and human milk was shown in previous lab-based studies using
orally disintegrating tablets [4], whereby a linear release profile was obtained for

20 min of breastfeeding simulation at physiologically relevant conditions.

Preference for delivery using a commercial nipple shield

All participants preferred a commercially available and reusable nipple shield, provid-
ing one or more of the following reasons: inability to properly clean a lip-containing
device, design limitations of a lip-containing device with regard to varying maternal
physiology, perceived user convenience of a commercially available device used for
normal feeding. This finding contrasts with prior efforts in developing a modified

lip-containing nipple shield [4, 41, 87].

Limitations

This study has elicited parents’ and staff’s views revealing the potential of thera-
peutic delivery during breastfeeding by means of a nipple shield in a high-resource
neonatal care setting. Limitations include that this is a single centre study, de-
scribing participants’ opinions only based on visual assessment of nipple shields, not
their practical use. Moreover, participants’ preference of a nipple shield may have
been biased by material appearance. It has to be noted however that most parti-
cipants provided clear reasoning for their choice based on design parameters rather
than the device’s material composition. The study was designed to explore parents’
and staff’s opinions about therapeutic delivery during breastfeeding and preferred

nipple shield design characteristics for further development. In order to determine
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the clinical feasibility, safety, and acceptability of a nipple shield for therapeutic

delivery during breastfeeding, subsequent clinical work will be required.

3.5 Conclusion

This study was the first of its kind to prove the potential of infant oral therapeutic
administration in a high-resource environment, as hypothesised in previous liter-
ature [4, 42, 45]. The following two key drivers were identified: (1) the desire to
overcome associated emotional and physical challenges with currently available in-
fant oral therapeutic delivery devices, (2) the need to foster mother-infant bonding
in neonatal special care environments, and to encourage parental empowerment.
The findings demonstrate acceptability of a nipple shield for therapeutic delivery to
address these issues, so long as concerns about potential impact on breastfeeding
can be addressed and accurate dosing ensured. Raised design concerns related to a
formerly modified lip-containing shield, and indicated preference for a commercially

available silicone nipple shield.
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Fibre-based zinc delivery into

human milk

4.1 Introduction

4.1.1 Overview

Based on the need to investigate novel therapeutic dosage forms for delivery from a
nipple shield into human milk, presented research synthesizes previously conducted
investigations by exploring the release of zinc sulphate pentahydrate from non-woven
fibres during breastfeeding simulation. Neither the release properties of non-woven
fibre mats, using parameters resembling the physiological process of breastfeeding,
nor the delivery of zinc sulphate from dosage forms others than rapidly disintegrating

tablets had yet been investigated. The following objectives where defined:

1. Characterisation of non-woven fibre mats for zinc delivery into human milk

2. Quantification of zinc release from a lip-containing nipple shield into human

milk during breastfeeding simulation

3. Comparison of absolute recovery achieved with previous literature on zinc

release from rapidly disintegrating tablets
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4.1.2 Importance of zinc in neonates

The element zinc (Zn) is of great importance in the human body, as it is re-
sponsible for the activity of various proteins in major pathways of the human
metabolism [89]. In case of deficiency, not only infant growth and development, but
also the capabilities of the body’s immune system are significantly
affected [89-91]. Zinc is absorbed in the small intestine and uptake is independ-
ent of zinc status [89, 92]. Nonetheless, higher uptake is reported for term babies
in the literature, caused by a lower zinc concentration in the blood serum [89]. Es-
pecially preterm and Small for Gestational Age (SGA) neonates have an increased
risk of zinc deficiency [91], as these infants had benefited a shorter time from the
maternal zinc derived via placental transfer [89]. At the same time, they are anti-
cipated to have little intake after birth, while increasingly loosing zinc endogenously
through the gastrointestinal tract [89]. Deficiency is believed to occur within the first
1 — 2 months of life [90]. Although breastfed infants derive zinc through the con-
sumption of human milk, the available concentration might not be sufficient, as it
varies significantly between mothers (0.7—1.6 mg L'!) and the stage of lactation, and
constantly declines postpartum: while 8 — 12 mg L zinc are present in colostrum,
the first milk the maternal breast produces after giving birth, only 3 — 6 mg L in
human milk can be found seven days after birth, and only 1 — 3 mg L™ another
three weeks later [89]. As a means to prevent deficiency, enteral zinc delivery of
0.8 mg kg! day™?! for term infants and 3 mg kg! day™! for preterm neonates is re-
commended [93], while Terrin et al. noted that the recommended dose seemed to
have increased over time [89]. Zinc deficiency in neonates is associated with con-
ditions such as dermatitis, growth retardation, necrotizing enterocolitis, neurologic
damage,  bronchopulmonary dysplasia, infections, and retinopathy of
prematurity [89], while its supplementation has positive impact on paediatric
survival [90]. Zinc deficiency, not only in form of severe but also as moderate de-
ficiency, is adding to “the global burden of disease” ([94], p. 1488S), as each year ap-
proximately 800,000 child deaths are documented as a result of zinc
deficiency [94]. An excerpt of the literature illustrating the positive effect of zinc

supplementation can be found in Table 4.1.
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AUTHOR FINDINGS: ZINC SUPPLEMENTATION...

Bhutta et al. [95] ...leads to significant reduction in infantile

Walker et al. [96] diarrhoea and pneumonia rates in developing
countries.

Sazawal et al. [97] ...leads to a significant decrease in mortality for

small for gestational age infants.

Bhatnagar et al. ...was suggested as an adjunct to antibiotics for

(98] the infantile treatment of bacterial infections.

Table 4.1: Excerpt of the literature illustrating positive benefits of infant zinc sup-

plementation.

In addition to the overall health promoting effects of zinc, supplementation is also
recommended by the WHO as an adjunct to oral rehydration salts for the treatment
of acute diarrhoea (20 mg zinc sulphate). Guidance is included in the WHO Model
List of Essential Medicines and the WHO Model List of Essential Medicines for
Children [25, 99]. Based on its importance for the physical development and health
of infants globally, and in order to enable comparison with previously conducted
experiments [4], zinc was chosen as the therapeutic for breastfeeding simulation

experiments in this chapter.

4.2 Materials and methods

4.2.1 Materials

(a) Human milk. The Cambridge Human Biology Research Ethics Committee
at the University of Cambridge ethically approved all human milk sample use
(HBREC.2012.01). Human milk samples from two healthy mothers, previously
screened negative for syphilis, hepatitis B and C, HIV I and II, as well as HTLV 1
and II, were obtained from the Queen Charlotte’s and Chelsea Hospital Milk Bank
(Imperial College Healthcare NHS Trust). For the initial pooling and analysis, in-
dividual frozen human milk samples of 50 — 100 pL volume, thawed from -80°C in re-
peated cycles at 4°C  overnight and at room temperature for

5 h each, were pooled, thoroughly mixed, and aliquots taken for creamatocrit and
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protein analysis. Protein quantification was conducted using a standard Bradford
Agent assay (Sigma-Aldrich, UK). All measurements were performed in triplicate
and the average taken. Cream content was evaluated in sextuplicate by means
of the creamatocrit technique according to a protocol by Lucas et al., whereby a
Sigma Microcentrifuge (SciQuip, UK) and BRAND® Haematocrit sealing compound
(Sigma-Aldrich, UK) were used [100]. Subsequently, the fat content was calculated
using the following equation: fat (g L'') = (5.37 x creamatocrit %) + 5.28 [101]. A
total lipid content of 43.52 g L' measured in sextuplicate was determined. Protein
content measured in triplicate was 16.51 g L™t. Both values correspond to previously
reported literature data [40, 102, 103]. An example of human milk composition by
Emmet et al. is illustrated in Table 4.2 [102]. Milk density measurements, covering
the temperature range of 33.7 — 35.7°C, a temperature used in previous research
to simulate the milk’s temperature in the infant’s mouth during breastfeeding sim-
ulation [4], were conducted in triplicate using a hydrometer (VWR, Lutterworth,
UK). Following linear interpolation, illustrated in Figure 4.1, a density value of
1.023 g mL™! was obtained for the median temperature during breastfeeding simula-
tion experiments. Characterised human milk was aliquoted for future experiments a
500 mL each, and stored at -80°C until further use. For the experiments conducted
in this chapter, human milk was thawed for 48 h at 4°C before use. Human milk
characterisation was guided by Dr Rebekah L. Scheuerle, who also calculated the

milk’s protein content.

NUTRIENT HUMAN MILK, | HUMAN MILK, | HUMAN MILK,
[g 100 mL| COLOSTRUM TRANSITIONAL | MATURE
Water 88.2 87.4 87.1

Protein 2.0 1.5 1.3

Fat 2.6 3.7 4.1
Carbohydrate 6.6 6.9 7.2

Table 4.2: Average water, protein, fat, and carbohydrate composition of human
milk for all stages of lactation by Emmet et al. [102]. Colostrum is defined as
human milk produced within the first few days after birth, 'mature’ refers to hu-
man milk 10 days following birth, while the time period in between is classified as

‘transitional’ [102].
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Figure 4.1: Linear interpolation used to evaluate human milk density. Milk density
measurements for the temperature range of 33.7—35.7°C were conducted in triplicate
using a hydrometer (VWR, Lutterworth, UK). "T” illustrates temperature in °C, 'd’

stands for density in g mL™.

(b) Nipple shield. To enable direct comparison of former experiments by Scheuerle
et al, investigating =zinc sulphate recovery from rapidly disintegrating

tablets [4], the modified lip-containing nipple shield was used.

(c) Non-woven fibre preparation. Non-woven fibre mats, composed of 35 %
viscose and 65 % polyester, by Bathfelt Texel (Québec, Canada) were used as the
delivery matrix (see Figure 4.2). Two different types of fibre mats were evaluated:
a 235 g per square metre (g m~2) felt with targeted thickness of 1.8 mm (referred
to as fibre mat type A), and a 335 g m~? felt with targeted thickness of 2.1 mm
(referred to as fibre mat type B).

a) b)

Figure 4.2: Delivery matrix. Illustration of non-woven fibre mat (a) type A and

(b) type B, loaded with zinc sulphate. Image adapted from [38].
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The selection of non-woven fibres was based on previous research by
Gerrard et al. [41].

(d) Therapeutic. Zinc sulphate monohydrate was obtained from Sigma Aldrich
(Dorset, UK), and preferred over elemental zinc based on its superior solubility and
taste characteristics [4]. The chosen amount of zinc sulphate loaded onto the fibre
mats aligned with the WHO-based dose recommendation of zinc sulphate as an

adjunct to oral rehydration salts for the treatment of acute diarrhoea [25].

4.2.2 Fibre mat preparation

Fibre mat type A and type B were loaded with 6.2 mg (standard deviation
0.075 mg, n = 3) and 6.4 mg (standard deviation 0.046 mg, n = 3) of elemental zinc
respectively, by pipetting a 49 % zinc sulphate monohydrate solution
(wt/wt %) onto the fibre mats. The mats were air dried in a petri dish for

24 h at room temperature.

4.2.3 Fibre mat characterisation procedures

(a) Scanning Electron Microscope (SEM) analysis. Scanning Electron Mi-
croscope (SEM) analysis was applied to investigate both the fibre mats’ surfaces and
their cross-sections. Samples for cross-sectional visualisation were frozen in liquid
nitrogen and cross-fractured with a cooled razor plate, while samples for surface
visualisation did not require prior preparation. The resulting samples of zinc sulph-
ate loaded and unloaded fibre mats were mounted on 12.5 mm Cambridge stubs
with Silver Dag (Taab Ltd), and sputter coated with 15 nm of Iridium using a
Quorum/Emitech K575X sputter coater. Imaging was performed by using a FEI
Verios 460L at 3 kV and 25 pA with a through lens detector operated in field free
mode. Sample preparation was performed by Dr Jeremy Skepper (Cambridge Ad-

vanced Imaging Centre), who also assisted in subsequent imaging.

(b) Energy Dispersive X-Ray analysis. To confirm the presence of zinc sulph-
ate on loaded fibre mats, as well as the absence of zinc on unloaded mats, Energy
Dispersive X-Ray (EDX) analysis of the mats’ cross-section of loaded and unloaded
fibre mats was performed. For sample preparation, the mats were frozen in liquid

nitrogen and cut into appropriate size using a cooled razor blade. Following mount-
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ing using carbon DAG, the samples were carbon coated using a Quorum Q150 at
50 nm. EDX spectra were recorded using an Ametec/EDAX Energy Dispersive X-
ray spectrometer with a silicon drift detector. Analysed areas of the fibre mats were
additionally imaged using a Scanning Electron Microscope according to the oper-
ation parameters outlined previously, as well as using a concentric backscattered
electron detector (CBS). A CBS detector enables areas of higher atomic number to
appear brighter in the recorded image. Sample preparation was conducted by Dr
Karin Muller (Cambridge Advanced Imaging Centre), following which analysis was

performed collaboratively.

(c) X-ray Micro Computed Tomography (XpCT). To enable the analysis
of changes in porosity, entire fibre mats were analysed by means of X-ray Micro
Computed Tomography (XpCT) using a SkyScan 1172 high-resolution XuCT scan-
ner (Bruker, Antwerp, Belgium), combining a cone beam geometry and a 2D array
detector. During the process of XpCT, shadow projections following stepwise ro-
tations of the object at 0.25° are acquired, enabling a 3D image reconstruction of
the object following a total rotation of 180°. It is characterised by high spatial res-
olution and negligible diffraction of investigated samples. Using an isotropic voxel
size of 2.49 pm, 10 images per position were averaged, aiming to reduce noise while
increasing contrast. In approximately 3 h of acquisition time, 720 images were
obtained. Reconstruction of recorded data was performed using NRecon (Bruker,
159 v1.6.8.0), resulting data visualized in CTVox (Bruker, v3.3), and processed in
Avizo Fire (FEI Company, 160 Hillsboro, Oregon, USA, v8.1). The protocol is
based on previous literature by Markl et al. [104]. In order to differentiate solid
material from the pore space for a selected volume of interest within the centre
of the fibre mat (0.998 m?), thresholding was applied. Subsequently, volume and
surface area were calculated for the extracted solid material, while porosity values
were obtained by using the relationship between pore space volume and solid ma-
terial. XpCT measurements and data reconstruction was performed together with

Dr Daniel Markl, who also guided the data analysis process.

4.2.4 Breastfeeding simulation procedures

(a) Breastfeeding simulation. Breastfeeding simulation conditions were chosen
based on literature on breastfeeding physiology [18, 20, 21, 23]): Milk was heated
to 33.7 - 35.7°C, simulating its likely temperature inside the infant’s mouth dur-
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ing breastfeeding, and flow rate and suction frequency adjusted to approximately

L'and 1 suck sec? respectively. For each type of fibre mat, simulation

5 mL min
experiments were conducted in triplicate, with the human breast mimic set to an
angle of 30° downwards from the vertical axis. Temperature and pressure were
monitored throughout. The pressure range and amplitude represented values of
physiological relevance [21], and peak vacuum values of -22.78 kPa and -22.32 kPa,
as well as baseline vacuum values of -10.90 kPa and -11.38 kPa for fibre mat type
A and B respectively were recorded. An average pressure profile for both types of
fibre mats is illustrated in Figure 4.3. A total of 30 fractions, each for a duration
of 40 sec, were collected. This duration was chosen to enable comparative ana-
lysis with previously published breastfeeding simulation experiments by Scheuerle
et al. [4]. For each fraction, the weight was recorded using a Sartorius analytic bal-

ance (Epsom/UK), and samples subsequently stored at -80°C until further analysis.
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Figure 4.3: Example pressure profile during zinc delivery experiments using
the breastfeeding simulation apparatus, depicted for 10 s at t = 120 — 130 s.
Dosage forms used for delivery from a nipple shield were zinc-loaded fibre mats
a) type A, and b) type B. Experiments were conducted using an average flow rate

of approximately 5 mL min™'. Tmage originally published in [38].

(b) Pre-analysis preparation of collected fractions and standard solu-
tions. Preparation of collected fractions and standard solutions was performed
by Dr Rebekah L. Scheuerle, and conducted based on a published protocol by

Scheuerle et al., illustrated in the following [4, 44]. To generate zinc calibration
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curves, zinc standards (Perkin Elmer, Inc., Shelton, CT) were diluted 1:20 volu-
metrically in diluent A, consisting of a total concentration of 0.1 % nitric acid
(SPEX CertiPrep, Metuchen, NJ/USA) in ultra-high purity water. Calibration
data was retaken continuously after every few experimental samples. To evalu-
ate the elemental zinc content in human milk samples collected during breastfeed-
ing simulation studies, nine out of the 30 fractions obtained during each breast-
feeding simulation run were chosen for experimental analysis (fraction numbers
1, 2, 3, 4, 5, 7, 10, 15, 20, 30). Hereby, samples were thawed at room tem-
perature, following which a 1:20 volumetric dilution was performed using diluent
B, a diluent of ultra-high purity water (Sartorius Stedium Biotech Arium pro UV
Water polisher) with 0.002 % TritonX100 (Sigma-Aldrich, UK), as well as the in-
ternal standard 1 ppm molybdenum (SPEX CertiPrep Metuchen, NJ). To evaluate
the elemental zinc content of non-woven fibre mats used for breastfeeding simula-
tion experiments, fibre mats were added to a vial containing 1 mL rinse of ultra-
high purity water (Sartorius Stedium Biotech Arium pro UV water polisher) with
0.002 % TritonX100 (Sigma-Aldrich,UK). After two ultrasonications of 10 min each,
the vials were gently shaken overnight using a shaker plate, following which 1 mL of
rins was added. The latter was repeated for a total of three nights/days, following
which the samples were kept in a 40°C water bath overnight, and were volumet-
rically diluted in ultra-high purity water 1:10, and in diluent B 1:20. Prior to
ICP-OES analysis being conducted, sample solutions were vortexed using a Fish-
erbrand Whirlimixer (Loughborough/UK).

(c) ICP-OES. Detection of elemental zinc content was performed by Dr Re-
bekah L. Scheuerle at the MRC Human Nutrition Research Unit (Cambridge, UK)
by means of Inductively Coupled Plasma Optical Emission Spectrometry (ICP-
OES). The subsequent experimental procedure references methods by Scheuerle et
al. [4, 44]. Experiments were performed using an ICP-OES (Jobin Yvon Horiba-
ULTIMA 2C; concentric glass nebulizer with 0 — 1 mL min' sample flow rate,
50 mL glass cyclonic spray chamber, radial torch with a 3 mm i.d. alumina injector).
Samples were introduced to the concentric glass nebulizer through a sample probe of
0.75 mm i.d. sample tubing and 0.76 mm i.d. pump tubing using an auto-sampler
(Jobin Yvon Hribo AS500) with a flow rate of 1 mL min™!. Passing the concentric
glass nebulizer, the sample was introduced to an argon plasma containing glass cyc-

lonic spray chamber at 12 L min™!, while a radio frequency power of 1300 W and
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a sheath gas flow of 2 L min™' was applied. Detection of zinc was performed in a

photomultiplier tube at 213.856 nm and a voltage of 605 V (?f;f), detection of

molybdenum (Mo) at 202.030 nm and a voltage of 955 V (kgme), using a 0.5 sec

s3xA

integration time. Data was recorded by ICP Analyst 5.4 software (Horiba, UK).

(d) Data analysis. Analysis was conducted based on a previously published
protocol by Scheuerle et al. [4], with guidance by Dr Rebekah L. Scheuerle, and

resulting calibration curves are illustrated in Figure 4.4.
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Figure 4.4: Calibration curves for a low range (0.0 — 0.5 mg L) and a high
range (0.5 — 50.0 mg L!) of elemental zinc detected vs. zinc to molybdenum in-
tensity ratio to determine the elemental zinc content of a - b) loaded fibre mats,
¢ - d) breastfeeding simulation samples. Calibration curves were generated through
linear interpolation. ’c’ represents the elemental zinc concentration in mg L7,

i’ illustrates the Zn to Mo intensity ratio.
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Both curves were generated through linear interpolation, and intensity ratios cor-
rected for blank values. Using the calibration equations, the amount of elemental
zinc obtained in diluted samples is based on the intensity ratio of Zn to Mo [4].
The actual elemental zinc content of the simulation experiment samples was evalu-
ated through accounting for the factor of dilution, the sample’s weight, the density
of human milk, and the temperature during the experiment [4]. Using the values
obtained from measuring nine out of 30 samples, the concentration of zinc in the
remaining 21 human milk samples was subsequently evaluated by means of linear
interpolation. Data obtained was used to generate release profiles and to evaluate
the cumulative zinc release during each experiment, represented as a percentage of

the total amount loaded onto the non-woven fibre mats to the total amount released.

4.3 Results

4.3.1 Release of zinc from non-woven fibres

The amount of human milk passed through the nipple shield, and the absolute
recovery achieved for both fibre mat types are presented in Table 4.3. Figure 4.5
illustrates the cumulative normalised proportion of zinc released and its propagated
error, as well as the normalised proportion of zinc released in individual fractions

over time. A similar effectiveness and duration of release were observed.

RECOVERY AMOUNT OF HUMAN MILK PASSED
ACHIEVED [%)] THROUGH THE SHIELD |[g]

MAT TYPE A 64.00 £ 0.21 93.09 £1.08

MAT TYPE B 61.64 +£0.13 98.15 £ 0.97

Table 4.3: Recovery achieved and human milk passed through the nipple shield for
the delivery of zinc sulphate from Texel non-woven fibre mats using the breastfeeding

simulation apparatus (30 fractions & 40 sec each). Table originally published in [38].
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Figure 4.5: Illustration of zinc sulphate release from Texel fibre mats type A
(1.8 mm targeted thickness, 235 ¢ m™?) and type B (2.1 mm targeted thickness,
335 g m™2), as well as from rapidly disintegrating tablets by Scheuerle et al. [4] into
human milk. a) Cumulative normalised proportion of zinc sulphate released, and
b) Normalised proportion of zinc sulphate released in each fraction over time. Re-
lease is represented as a percentage of the total amount loaded onto the non-woven
fibre mats to the total amount released. Each set of points represents the average
of three experiments, using the mean of ICP-OES triplicate measurements for each

fraction shown. Image originally published in [38].

4.3.2 Scanning Electron Microscope (SEM) analysis

To explore the fibre mats’ morphology, SEM imaging of unloaded and zinc sulph-
ate loaded Texel fibre mats type A and type B was conducted in triplicate (see
Figure 4.6 and Figure 4.7 for fibre mats’ surfaces, and Figure 4.8 and Figure 4.9 for
the fibre mats’ cross-sections). Hereby, an approximate fibre diameter of 20 pm was
identified, and it was found that both types of mats have the same fibrous structure
in spite of their difference in g m™? and thickness. Adsorption of zinc sulphate was
observed in localized areas scattered across the mats’ network, either in form of flat
patches or clumps. The mostly uniform coating on the fibre surface is character-
ised by a cracked pattern, because of the evaporation of water from the loaded zinc
sulphate solution. Since Texel fibre mats are characterised by a porous structure,

adsorption within the deeper regions of the fibre mats can be observed.
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Figure 4.6: SEM results for fibre mat type A (fibre mat surface). Illustration of
results obtained for SEM analysis of Texel fibre mat type A (1.8 mm targeted thick-
ness, 235 g m?) at three different magnifications. Images a) - ¢) present unloaded
fibre mats, images d) - f) fibre mats loaded with zinc sulphate before dissolution.

Image originally published in [38].
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Figure 4.7: SEM results for fibre mat type B (fibre mat surface). Illustration of
results obtained for SEM analysis of Texel fibre mat type B (2.1 mm targeted thick-
ness, 335 g m?) at three different magnifications. Images a) - ¢) present unloaded
fibre mats, images d) - f) fibre mats loaded with zinc sulphate before dissolution.

Image originally published in [38].
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Figure 4.8: SEM results for fibre mat type A (fibre mat cross-section). SEM images
are depicting the cross-section of Texel fibre mat type A (1.8 mm targeted thickness,
235 g m?) at two different magnifications. Images a) - c) present unloaded fibre
mats, images d) - f) fibre mats loaded with zinc sulphate before dissolution. Image

originally published in [38].
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Figure 4.9: SEM results for fibre mat type B (fibre mat cross-section). SEM images
are illustrating the cross-section of Texel fibre mat type B (2.1 mm targeted thick-
ness, 335 g m?) at two different magnifications. Images a) - ¢) present unloaded
fibre mats, images, d) - f) fibre mats loaded with zinc sulphate before dissolution.

Image originally published in [38].
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4.3.3 Energy Dispersive X-Ray analysis

Energy Dispersive X-Ray analysis, as well as imaging via SEM and CBS were con-
ducted as a means to chemically characterise unloaded and loaded Texel fibre mats
type A and B. Characteristic X-ray values of relevant elements can be found in
Table 4.4. Results are illustrated in Figure 4.10 and Figure 4.11.

Element Ka x-ray line [keV] | La x-ray line [keV]
C 0.277 -

O 0.525 -

S 2.307 -

Zn 8.630 1.012

Table 4.4: Summary of X-ray lines for the elements C, O, S, and Zn.
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Figure 4.10: EDX spectra and corresponding imaging results for fibre mat type A
(fibre mat cross-section) before dissolution. Image a) and d) illustrate the EDX
spectra, images b) and e) imaging of the EDX analysed fibre mat area via SEM,
images ¢) and f) imaging of the EDX analysed fibre mat area via a concentric

backscatter detector (CBS). Image originally published in [38].
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Figure 4.11: EDX spectra and corresponding imaging results for fibre mat type B
(fibre mat cross-section) before dissolution. Image a) and d) illustrate the EDX
spectra, images b) and e) imaging of the EDX analysed fibre mat area via SEM,
images ¢) and f) imaging of the EDX analysed fibre mat area via a concentric
backscatter detector (CBS). Image originally published in [38].

For unloaded and loaded samples, the EDX spectra showed presence of the elements
C and O, the building blocks of the mats’ viscose and polyester fibres, while Zn and
S were only detected in zinc sulphate loaded samples. The analysis thus confirms

the absence of zinc in unloaded samples.

4.3.4 X-ray Micro Computed Tomography (XnCT)

To investigate the fibre mats’ porosity and 3D structure, analysis via X-ray Micro
Computed Tomography (XpuCT) was conducted. Loaded and unloaded Texel fibre
mats type A and Type B are illustrated in Figure 4.12 and Figure 4.13, respect-
ively. Different colours indicate material of different electron density as detected
by XnCT, red indicating low, and green high-density material. Since the materials’
elemental composition is not changing, the sample’s electron density is equivalent
to its true density values. The presented colour scale was chosen based on the dens-
ity of viscose (1.52 g cm™) [105], polyester (1.38 g cm™) [105], and zinc sulphate
(3.54 g em™) [106]. As a consequence, the unloaded fibre material of comparably
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lower density appeared in red, and zinc sulphate of comparably higher density in
blue and green colour. 3D renderings of the XpCT data for unloaded and loaded
fibre mats are illustrated in Figure 4.12 and 4.13. Through a change in the opacity
(see colour maps of the individual renderings) regions of varying densities were ob-
served. While images d) - e) depict both fibre material and zinc sulphate loaded
onto the fibre mats, indicated by the mats’ red and a blue to red colour, the blue
and green colour of image f) solely illustrates loaded zinc sulphate. This observation
is further confirmed when comparing figures of loaded with those of unloaded fibre
mats in images a) — ¢), in which the visible fibrous material at medium density is
only visible as a faint silhouette. Merely light blue spots of < 10 pm and sporadic-
ally larger spots of < 250 pm size are visible. Figure 4.14 illustrates that the bottom
side of fibre mat type A, unlike those of fibre mat type B, appears similar to the

fibrous structure of unloaded fibre mats.

a) —— b) miin <) —

0 255 0 255 0 255

x 2mm

Figure 4.12: XpCT results for loaded fibre mat type A. Images generated from XuCT
measurements of a) - ¢) unloaded, and d) - f) zinc sulphate loaded Texel fibre mats
type A (1.8 mm targeted thickness, 235 ¢ m™2). The colour maps were the same
for all images and only the opacity was adjusted in order to visualize components
of different densities. Red colour indicates low, green colour high-density material.
The images depict only half of the fibre mats in order to visualize the cross-section

at the centre of each sample. Image originally published in [38].
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Moreover, in alignment with SEM results, XpCT analysis confirmed an approximate
fibre diameter of 20 pm for unloaded or partially loaded fibres. The diameter of
loaded fibres could not be identified, as data illustrated the fusion of adjoined fibres
following swelling, rendering the identification of individual fibres in areas of high
zinc loading impossible. An example of representative cross-sectional cuts through
a swollen fibre cluster is illustrated in Figure 4.15. To quantify changes within the
fibre network following zinc sulphate loading, volume fraction, porosity, and total
surface area were calculated for a cubical region of interest measuring 0.998 mm?
from the fibre mats’ centre. Results are shown in Table 4.5. A decrease in porosity
can be observed as a result of an increase in solid fraction, and consequently in the
volume of solid material. This is caused by both swelling of individual fibres and
the deposit of zinc sulphate, in turn resulting in an increase in the surface area of

the total solid material.

Figure 4.13: XpCT results for loaded fibre mat type B. Images generated by XpCT
analysis of a) - ¢) unloaded, and d) - f) zinc sulphate loaded Texel fibre mats
type B (2.1 mm targeted thickness, 335 g m™?). Opacity was adjusted in order to
visualize components of different densities using the same colour map. Red colour
indicates low, green colour high-density material. In order to visualize the cross-
section at the centre of each sample, only half of the fibre mats are illustrated. Image

originally published in [38].
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Figure 4.14: Images generated for XpuCT analysis of loaded Texel fibre mats (bottom
side facing up). Fibre mat a) type A, b) type B. Image originally published in [38].

Figure 4.15: Cut through zinc-loaded fibres in the y-z plane of loaded fibre mat
type B. Images a) - ¢) illustrate resulting cross-sectional images at different positions

in the x-direction. Zinc-loaded fibres appear swollen and fused with adjoined fibres

to form high-density fibre clusters. Image originally published in [38].

PARAMETER UNLOADED LOADED CHANGE [%]
FIBRE Porosity [-] 0.942 0.607 - 36
MAT Surface area [mm?] | 19.72 32.70 + 66
TYPE A | Volume [mm’] 0.058 0.392 + 580
FisrE | Porosity [ 0.939 0.416 _ 56
MAT Surface area [mm?] | 17.30 50.90 + 194
TYPE B | Volume [mm?] 0.061 0.583 + 856

Table 4.5: Overview of porosity, surface area, and volume of a cubical region of

interest measuring 0.998 mm? taken from the loaded and unloaded fibre mats’ centre.

Table originally published in [38].
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4.4 Discussion

Delivery of the full dose of loaded zinc sulphate from non-woven Texel fibres within
the duration of one breastfeed, equivalent to the consumption of 76.0 + 12.6 g of
human milk for 1-month- to 6-month-old infants was not achieved [40]. Potential
reasons include impact of milk properties, such as the accumulation of milk com-
ponents within the porous mat structure, hampering the flow of milk and hence the

delivery of zinc from the fibrous network, as well as changes in fibre conformation.

Milk properties. Although it has to be noted that the nature and adsorption
properties of a therapeutic significantly affect its release rate, recent literature by
Gerrard et al. suggests that absolute recovery is additionally dependent on both
the milk’s lipid content and distribution, as well as the overall milk composition,
including carbohydrates, proteins, and lipids. The former was confirmed, as abso-
lute release into cow’s milk was reduced to 30 — 60 % when non-homogenized milk
(5.2 % fat) was used, as opposed to a total of 70 — 90 % for use of a homo-
genized form (3.6 % fat) [41]. The latter was shown when comparing these res-
ults to the absolute recovery of 100 % into non-homogenized goat’s milk (4.0 %
fat) [41]. Both results pose difficulties to the development of a standardized pro-
tocol for therapeutic release via non-woven Texel fibre mats, as not only commer-
cially available cow’s and goat’s milk, but in particular human milk is a complex
fluid with highly variable properties. Among others, a variation of the absolute fat
content of up to three fold can be observed, as a result of the stage of lactation, di-
etary requirements and health status of the breastfeeding mother [39]. To overcome
undesired accumulation of milk components within the porous fibre network, po-
tential surface modifications, such as plasma treatment could be applied [107, 108].
Such modifications would however increase both manufacturing efforts, as well as
overall production cost of a fibre-based therapeutic insert, and potential benefits

and risks would have to be carefully assessed.

Changes in fibre conformation. Moreover, XjCT results also suggest that zinc
release is likely affected by the change in conformation, namely the swelling of loaded
fibres, decreasing porosity and the flow of human milk through the fibrous structure,
while simultaneously increasing the likelihood for milk components to accumulate.

Previous literature showed a decrease in release from low surface area to volume
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HPMC tablets [109], and similarly literature by Siepmann et al. [110] suggests that
also the release from zinc-loaded fibre clusters will likely be slowed down as a result
of their reduced surface to volume ratio. XpCT also revealed the presence of fibres of
higher density than initially anticipated based on the true density values of viscose
and polyester. The 10 — 250 pm sized spots in rendered 3D XpCT data, observ-
able at medium density values, indicates fibre accumulation and/or the presence of
impurities. Both are believed to be a result of the fibres’ manufacturing process,
and/or caused by trapped dust particles. The even distribution of zinc within the
fibrous network of fibre mat type B, which contrasts with the zinc adsorption pattern
illustrated in Figure 4.14, can be explained by the slightly larger fibre diameter and
different wetting behaviour of the two fibre mats. Liquid absorption of individual
fibres within the fibre mats is driven by capillary action, while being influenced by
the samples’ porosity [111]. It is believed that these differences also lead to the
unequal changes in porosity, surface area, and volume of fibre mat type A and B
following loading, which nonetheless do not result in a noticeable difference in re-

lease from both mats.

Comparing recovery to the literature. Overall, experimental results revealed
a 20 — 48 % superior absolute recovery of zinc sulphate from Texel non-woven fibre
mats, compared to rapidly disintegrating tablets manufactured by direct compres-
sion: research by Scheuerle et al. reported an absolute recovery of only
32 — 51 % [4]. It has to be noted however that the total elemental zinc content
of rapidly disintegrating tablets used by Scheuerle et al. (17.81 — 18.21 mg) was
higher than the amount of elemental zinc loaded onto this study’s Texel non-woven
fibre mats (6.17 — 6.40 mg) [4]. Yet, when comparing the zinc delivery within the
first 8 min, during which the main release from non-woven fibre mats had occurred,
the estimated amount of elemental zinc released from the rapidly disintegrating tab-
lets ranged between 2—4 mg, characterised by a linear release profile [4]. It thus was
significantly lower than the release from Texel non-woven fibre mats at 8 min. Not
only their superior release properties, but also the enhanced loading feasibility and
cost-effectiveness of Texel non-woven fibre mats, compared to the referenced rapidly
disintegrating tablets, confirm their potential as a therapeutic insert for delivery

from a nipple shield during breastfeeding.
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Additional investigations are needed to prove the capability of Texel non-woven
fibres to serve as a generalized matrix for oral drug administration, as well as to
explore alternative materials with suitable characteristics for delivery from a nipple

shield into human milk.

4.5 Conclusion

Texel non-woven fibre mats were investigated as a delivery matrix for zinc sulph-
ate pentahydrate. When tested during breastfeeding simulation experiments, an
absolute elemental zinc recovery of 64 % (fibre mat type A) and 62 % (fibre mat
type B) respectively in approximately 93 g and 98 g of human milk passed through
the fibre insert was achieved. Incomplete delivery may be attributed to i) the com-
plex properties of human milk, ii) accumulation of milk components within the
porous mat structures, as well as iii) structural changes of the fibre networks fol-
lowing loading, thereby hampering the delivery of zinc. Based on the non-woven
fibre mats’ release characteristics and cost-effectiveness, non-woven fibres can be
regarded as an advantageous dosage form for oral therapeutic delivery from a nipple
shield during breastfeeding simulation. Further research will be required to establish
Texel non-woven fibres as a generalized matrix for oral therapeutic delivery from a
nipple shield, and to further explore alternative fibrous materials with advantageous

characteristics for therapeutic delivery into human milk.
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Hydrogel-based iron delivery into

human milk

5.1 Introduction

5.1.1 Overview

Initial research on dosage forms mainly focused on rapidly disintegrating tablets
and Texel non-woven fibre mats. Since neither one enabled complete delivery of a
full dose during breastfeeding simulation experiments, investigation of alternative
formulations was required. Hydrogels were believed to overcome some of the previ-
ously encountered limitations, such as the firmness of tablets, and the uncontrollable
adsorption pattern of non-woven fibres. This chapter explores both the suitability
of hydrogels for therapeutic delivery into human milk, as well as the in-vitro feasib-
ility of commercially available ultra-thin contact nipple shields for oral therapeutic

delivery during breastfeeding. The following objectives where defined:

1. Development and characterisation of a hydrogel formulation for iron delivery

into human milk

2. Quantification of iron release from a commercially available ultra-thin contact

nipple shield into human milk during breastfeeding simulation experiments
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5.1.2 Importance of iron in neonates

Iron deficiency (ID), defined as “a state in which there is insufficient iron to main-
tain normal physiologic functions” ([112], p. 1041) and being equivalent to serum
ferritin values below 10 — 12 pg L [113], is the most common single-nutrient de-
ficiency worldwide, with an estimated total of two billion people affected [114].
Iron is of significant physiological importance with 80 % of the body’s iron be-
ing present in the blood’s haemoglobin [115]. Moreover, iron is involved in the
brain’s structural development due to its functional role in enzyme catalysis, among
others for cell replication, the synthesis of neurotransmitters, and the cell’s energy
metabolism [116]. As a consequence, deficiency is reported to be associated
with a decrease in mental, motor, neurophysiological, and behavioural
abilities [117-120]. Three distinct ID phases can be differentiated: a first stage,
during which body iron stores are reduced, followed by an increase in the amount of
soluble plasma transferrin receptors during a second stage [113]. The last stage of
iron deficiency is defined as iron deficient anaemia (IDA), a condition, in which the
blood’s haemoglobin concentration is decreased and the morphology of red blood
cells altered [113]. The WHO indicates that about 500 million people suffer of
IDA [121]. Tron deficiency is particularly prevalent in the developing world [112],
due to nutritional limitations and the high level of parasitic diseases associated with
blood loss, such as malaria [122]. Nevertheless, iron deficiency is far from being a
condition solely limited to low-resource settings: Within Europe, prevalence of 1D
in healthy term infants and toddlers aged 1 to 3 years is reported to be as high
as 26 % [113, 123]. Term infants are born with an iron storage of approximately
75 mg kg body weight, providing a sufficient amount of iron until the infants’ 4th to
6th postnatal months of age [112, 115]. Since human milk contains only small quant-
ities of highly available iron (0.2 — 0.4 mg L!) [124], intake from external sources is
required to guarantee adequate supply thereafter [124]. This aligns with the Amer-
ican Academy of Paediatrics’ and the World Health Organization’s recommendation
for exclusive breastfeeding until the end of the infants’ 4th and 6th months of age,
respectively [112]. Yet, earlier supplementation is required in infants whose moth-
ers have suffered health conditions leading to lower infant iron stores at the time
of birth, such as anaemia or diabetes during pregnancy as well as for preterm
infants [112]. Since eighty percent of term infants’ total body iron is acquired within
its 29th to 40th week of gestation [112], the amount of total body iron in preterm

infants is decreased at birth based on their reduced gestational age, with subsequent
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depletion during their extensive postnatal growth and rapid blood volume expan-
sion [112, 125]. As a result, preterm infants are at particular risk of developing
iron deficiency within their first six months of life. Elemental iron requirements are
estimated to amount to 2 —4 mg kg™ per day [112]. According to Rao et al. a total
of 25 % to 85 % of preterm infants are shown to exhibit iron deficiency during early
childhood [126]. Term infants are susceptible to developing deficiency only following
their first half year of life [112]. Ultimately, supplementation recommendations are
based on the infant’s gestational age and the type of feeding. A summary by Baker
et al. is provided as follows [112]:

1. HEALTHY, BREASTFED, TERM INFANTS: Exclusively and predominantly breast-
fed, healthy term infants are recommended 1 mg of oral elemental iron per kg
body weight per day, starting at the beginning of their fifth postnatal month

until iron-containing foods are introduced.

2. HEALTHY, FORMULA-FED, TERM INFANTS: For healthy formula-fed infants
adequate iron supply will be guaranteed for the infants’ first 12 months of
life through the consumption of standard infant formula, characterised by an
iron content of 10 — 12 mg L' (see Table 5.1), as well as through introduction
of iron-comprising complementary foods starting between their 4th and 6th

months of age.

3. BREASTFED, PRETERM INFANTS: For exclusively and predominantly breast-
fed preterm infants, supplementation of at least 2 mg elemental iron per kg
body weight per day, from the beginning of the infants’ first to the end of their
twelfth month of age, is required (maximum: 15 mg d™') [126]. Liquid iron
supplements can be used for exclusively breastfed infants, and in combination

with iron-fortified formula or iron-containing complementary foods.

4. FORMULA-FED, PRETERM INFANTS: [ron-fortified formula covers the preterm
infants’ iron supplementation requirements (maximum: 15 mg d') [126], and
should be fed until the infants’ first year of age, with iron-containing comple-
mentary foods introduced starting between their 4th and 6th months of age
(see Table 5.1).
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ProbucTs (UK) IrRON DOSAGE | IRON [mg
COMPOUND FORM PER 100 mlL)]

Term formula

SMA® PRO First Powder 0.7

Infant Milk Ferrous

Cow & Gate First sulphate Liquid, 0.53 and 0.55
Infant Milk powder

HiPP Organic First Liquid, 0.5

Infant Milk 1 powder

Aptamil Profutura & Powder | 0.5

Aptamil First Infant Milk

Aptamil Profutura & Iron lactate Liquid 0.52 and 0.51

Aptamil First Infant Milk

Preterm formula

SMA® PRO Gold Prem 1 Liquid 1.8

SMA® PRO Gold Prem 2 Ferrous Liquid, 0.8
sulphate powder

SMA® PRO Breast Milk Powder 1.8

Fortifier

Cow & Gate Nutriprem 2 Powder 1.2

Low Birthweight Formula
Cow & Gate Nutriprem 1 Iron lactate Liquid 1.6 and 1.2
and 2 LBW Formula

Table 5.1: Iron compounds commonly used in preterm infant formula, term infant
formula, and breast milk fortifiers [127-130].

Supplementation of higher amounts of iron apply for term infants with lower iron
storage at time of birth, for preterm infants <1000 g birth weight, and for infants
with special needs based on their health condition. In contrast, infants having
received blood transfusions require a lower amount of external iron [112, 126]. Ad-
justing external iron supplementation is of importance, as the body - contrary to
other nutrients - is unable to modulate iron excretion, and iron overload is repor-
ted to have negative impact on the infants’ health [120]. For developing countries
with high prevalence of IDA (40 % or higher), the World Health Organization’s
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guidelines for iron supplementation recommend a daily oral dose of 10 — 12.5 mg
of elemental iron for three consecutive months in a year [121]. A summary of most
commonly used compounds in therapeutic formulations for the prevention or treat-
ment of iron-deficiency anaemia in infants is provided in Table 5.2. The effect of
providing external iron to meet the infants’ nutritional needs was widely studied:
among others, iron supplementation during the first six months of life in low birth
weight (LBW) infants decreased iron deficiency at 6 — 12 months of age [119, 131],
as well as the prevalence of infant behavioural problems at both 3.5 years and
7 years [132, 133].

PropucTts | IRON DOSAGE | RECOMMENDED IN

(UK) COMPOUND | FORM (MINIMUM AGE)

Prophylaxis/treatment of iron deficiency

Sytron® Sodium Syrup Preterm and LBW infants
feredetate starting 4 weeks after birth

Fersamal® Ferrous Syrup Preterm and LBW infants
fumarate starting 4 — 6 weeks after birth

Galfer® Oral Preterm and term infants

solution starting 4 — 6 weeks after birth

Ironorm® Ferrous Oral LBW infants starting 4 — 6
sulphate drops weeks after birth

Infant vitamin supplements

Zarbee’s Ferrous Oral Infants >2 months of age

Naturals™ | gluconate solution

Baby Mul-

tivitamin

Wellbaby® | Ferric Oral Drops: from 4 months of age
ammonium | drops, onward, solution: from 6 months
citrate oral of age onward

solution

Table 5.2: UK products commonly used for prophylaxis and treatment of iron defi-

ciency, as well as infant vitamin supplements [134-136].
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Siddappa et al. proved that iron deficiency in infants at one year of age is correlated
with slower motor development [116], and Angulo-Barroso et al. that in turn sup-
plementation of 1 mg elemental iron per kg body weight starting at six weeks of age
improved development of motor function [137]. The most commonly used compound
for iron supplementation is ferrous sulphate, also referred to as iron(II)sulphate, due
to its availability and low cost [126]. Ferrous sulphate has the additional advantage
that it may be administered once per day based on its high bioavailability, whereas
other iron compounds require more frequent consumption [126, 138]. It is used in
both fortified food, prophylactic and therapeutic formulations for iron supplement-
ation, and included in the WHO Model List of Essential Medicines and the WHO
Model List of Essential Medicines for Children [25, 99].

Iron was chosen for delivery during breastfeeding simulation experiments presen-
ted in this chapter, due to i) its importance for infant development and health,
ii) the prevalence of iron deficiency in both developing and developed countries,

with particular need for supplementation in breastfed infants.

5.1.3 Hydrogel fundamentals

Use of hydrogels was first suggested for biological applications in the 1960s by
Wichterle and Lim [139]. Such gels are defined as three-dimensional, cross-linked
networks of water-soluble polymers [140], and their characteristic structure are a
result of physical and chemical cross-linking: covalent and hydrogen bonds, van
der Waals bindings, or “physical entanglements” ([139], p. 1639). The ability of a
polymeric network to absorb water is caused by its hydrophilic groups, for example
-OH, -CONH-, -CONH,y", and -SO3H [139, 141]. Since the degree of hydration is
a result of the network’s physiochemical characteristics, it varies based on the net-
work’s composition and environment [139, 142]. Hydrogels are classified based on
a set of characteristics, such as side groups, mechanical, structural and physical
properties, as well as environmental responsiveness (e.g. pH, temperature, ionic
strength) [139]. For applications in biology and pharmaceutics, natural, synthetic,
and combinational polymers are used. Natural polymers have particular advant-
ages based on their biocompatibility and non-toxicity, but are prone to cause un-
desired immune responses [139]. On the other hand, synthetic polymers with their
defined structure lead to the formation of uniform and fine-tunable hydrogels [139].

The porous structure of hydrogels enables their use as drug delivery matrices,
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either through drug loading or through the conjugation of drugs to the hydrogel
network [143]. Use in drug delivery requires the hydrogel to respond to either pH
or temperature [144]. Three different mechanisms of release from hydrogel matrices
can be differentiated: release controlled by i) diffusion, ii) swelling, and iii) chemical

influences [139].

5.1.4 Formulation considerations

Prior to the development of a protocol for hydrogel fabrication, as outlined in the
chapter’s objectives, a suitable polymer system had to be chosen. An overview of
polymers considered for hydrogel formulation and selection criteria are provided in

the following.

(a) Polymer selection. Both the FDA’s GRAS (“Generally Recognized As Safe”)
list and the database of “Indirect Additives Used in Food Contact Substances” were
used as the basis for the identification of polymers considered as safe for hydrogel
fabrication with intended clinical use [145]. Amongst others, six polymer systems
were shortlisted: gelatin, methylcellulose, agar-agar, carbopol, hypromellose, and
sodium alginate cross-linked hydrogels. Each polymer system is discussed in more
detail below. Particular focus is given to its use in paediatric formulations and
research, as well as to gelation temperature. As the gelation temperature of polymer
solutions in water is based on the polymer’s molecular weight and the polymer’s

concentration in solution, only a gelation temperature range is provided.

GELATIN: The natural polymer gelatin is derived through partial hydrolysis of colla-
gen from bovine or porcine bone or skin [146, 147]. The “multi-talent” gelatin ([148],
p. XI) is water-soluble, and often used in medical and pharmaceutical applications
due to its biocompatibility and biodegradable characteristics [148, 149]. Hydrogels
from aqueous gelatin solutions are formed when being cooled down to a temperat-
ure under 30°C following heating, but re-melt again if the temperature is raised to
in-vivo conditions (approximately 40°C) [146, 150]. While chemical cross-linking is
required to increase the chemical and thermal stability of gelatin hydrogels for a
wide range of applications [146], the dissolving characteristics of gelatin at in-vivo
temperatures seem particularly suitable for delivery into human milk. As gelatin is
derived from animals, however, it might not be applicable to individuals of certain

belief or dietary restrictions. Gelatin was reported to be used in both paediatric
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formulations [151] and clinical research in infants aged three months and younger,
including its intravenous use as a gelatin-based plasma substitute during clinical

studies, and as gelatin tannate for the treatment of acute gastroenteritis [152, 153].

METHYLCELLULOSE: Methylcellulose is defined as a non-ionic polymer, which is
water-soluble and stable over a wide pH range [154]. It enables gelation of solutions
without precipitation, while exhibiting a long storage stability [155]. Due to these
favourable characteristics, it is commonly used in food, cosmetics, and pharmaceut-
ical products [155]. Among others, methylcellulose was the gelation agent of choice
for large-scale manufacture of the first medical capsules not containing gelatin [148].
In paediatric drug formulations, methylcellulose often serves as a very thin tablet
coating [156, 157]. The sol to gel transition of methylcellulose-water solutions ranges
between approximately 30 — 55°C [158, 159).

AGAR-AGAR: Agar-agar, characterised as one of the oldest agents used for
gelation [148], is derived from algae, a dried smell-, taste-, and often also colour-less
gelatin-like compound [160]. The characteristic gelation of agar-agar is resulting
from its high molecular weight. Standard types of agar-agar dissolve at temper-
atures over 85°C, “fast-dissolving” types of agar-agar regain its liquid state in a
temperature range between 60 — 80°C [148]. Agar-agar was reported to be used in
paediatric gel formulations [161], as well as for the treatment of hyperbilirubinemia

of jaundiced full-term newborns [162].

CARBOMER POLYMERS (CARBOPOL): Carbomers are acrylic acid polymers widely
used in the cosmetic and pharmaceutical industry [159, 163]. Advantages of car-
bomer gels are numerous, including a wide viscosity range (with high viscosity at
low carbomer concentrations), thermal stability, and good acceptance by patients
treated with carbomer-containing products [163]. Aqueous carbopol solutions gelate
above its pK, value at pH > 5.5. [159]. Use of carbopol in paediatric research was
previously reported in the literature [164, 165].

HYPROMELLOSE: Water-soluble hypromellose, also called Hydroxypropyl Methyl-
cellulose (HMPC), is a non-ionic cellulose ether [166], possessing many favourable
characteristics for use in pharmaceutical products, such as low cost, stability over

a wide pH range (pH 3.0 - 11.0), resistance against enzymes, and controlled release
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properties [166]. Its sol to gel transition occurs at a temperature between 75 —90°C,
and is decreased to approximately 40°C through lowering the hydroxypropyl molar
substitution [167]. Within the class of hydrophilic matrices, hypromellose is the
most often utilized cellulose ether [166]. Due to its non-reactive and pH-neutral
properties, it is considered to be safe for the use in neonates [168]. It is commonly
used in paediatric antibiotic eye drops/ointments, aiming at keeping the corneas
moist and at preventing corneal abrasions [169], as well as in commercially available

formulations, such as Bonjela Teething Gel [170].

SODIUM ALGINATE: Sodium alginate is a non-toxic, low-cost, and biocompatible
anionic polymer, made by brown algae and bacteria [171, 172], and commonly used
in pharmaceutical and food-grade production [171, 173]. It comprises a-L-guluronic
acid and S-D-mannuronic acid residues, also referred to as G-blocks and M-blocks re-
spectively, linearly linked by 1,4-glycosidic linkages [171]. Gels are formed by cross-
linking the alginate polymer chains chemically and/or physically, whereby ionic
cross-linking, i.e. the exchange of sodium ions from the guluronic acid (G) blocks
with multivalent cations, is the most commonly applied method [171]. A variety
of cations are suitable for cross-linking, but calcium ions are most commonly used
[171, 172, 174, 175]. Elasticity and porosity of the resulting gel are a result of the
number of available G- and M-blocks [171]. Spherification represents one possible
approach of gelation [171, 176]. Three different techniques can be differentiated:
i) basic spherification: whereby an alginate solution is slowly added into a cationic
bath; ii) reverse spherification: whereby a cationic solution is added into an alginate
bath; iii) frozen reverse spherification: whereby a frozen cationic solution is added
into an alginate bath [171, 177]. Reverse and frozen reverse spherification both
enable the formation of hydrogels with a liquid core and a solid shell [176-178]. So-
dium alginate is used in commercially available formulations, and serves for example
as the main ingredient in 'Gaviscon Infant’, a medication used to treat infants aged
1 —2 years with gastric regurgitation, gastroesophageal reflux, and reflux associated
with hiatus hernia [179-181].

The final selection was conducted sequentially by i) identifying polymer systems
used in paediatrics, and specifically for infants aged three months and younger,
ii) considering potential limitations of polymer systems (e.g. whether they might

interfere with any religious belief or dietary requirements), iii) taking into account

1)



Chapter 5

the polymer’s characteristics, such as gelation temperature and viscosity. The latter
included considerations such as “Is the polymer system re-melting in human milk
with a temperature of 33.7 — 35.7°C, or will it release the in-vivo tracer through
diffusion or mechanically induced disintegration?” and “Is the polymer system vis-
cous enough to remain within the nipple shield, or would it likely drip out of the
nipple shield before the breastfeeding process?” Table 5.3 illustrates an overview of
important polymer characteristics, influencing polymer selection, including viscosity

range, gelation temperature, and the polymer’s use in paediatrics diagnostics and

therapy.
POLYMER | VISCOSITY RANGE GELATION | COMMONLY| USED IN
[MPa xs| AT [°C] USED IN INFANTS <
INFANTS 3 MONTHS
Gelatin <50 - 125 [182] ~ 40 X X
[20 % solution, 60°C] [146, 150] [151] [152, 153]
Methyl- 15 - 4,000 [183] 30 - 55 x
cellulose [2 % solution, 20°C] [158, 159] [156, 157]
Agar-Agar | 10 - 100 [184] 60 - 85 X X
[1.5 % solution, 20°C] [148] [161] [162]
Carbopol 4,000 - 77,000 [185] pH > 5.5 X
[0.5 % solution, 20°C] [159] (164, 165]
Hypro- 10 - 19,000 [186] 40 - 90 X X
mellose [2 % solution, 20°C] [167] [170] [169]
Sodium 5.0 - 40.0 [187] ~ 32 X X
alginate [1 % solution, 25°C] [188] [181] [179, 180,
189]

Table 5.3: Overview of polymer characteristics and factors considered for hydrogel
selection. Selection was based on the polymer’s properties required for delivery
during breastfeeding, as well as the polymer’s use in paediatrics, and particularly

[

neonatology. Thereby, “x” is indicating the applicability of a characteristic for the

relevant polymer system.

From Table 5.3, the following ranking of polymer suitability for use within an ultra-

thin contact nipple shield was created:
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1. SODIUM ALGINATE (cross-linked with calcium ions): The potential to create
hydrogels with a liquid core through reverse spherification, enabling burst
release upon mechanically induced rupture, was regarded as the most desired

option to further investigate.

2. HYPROMELLOSE: Due to its wide viscosity range and common use in paediat-
ric formulations and neonatal treatments, hypromellose was seen as a polymer
system of great interest for delivery into human milk. However, potential dif-
ficulties were projected to arise with regard to the duration of delivery, since
the overall properties of hypromellose support controlled as opposed to rapid

release.

3. GELATIN: The natural polymer gelatin was regarded as a suitable polymer
system based on its frequent use in medical and pharmaceutical applications.
Its ability to re-melt at in-vivo conditions following gelation was regarded as
particularly ideal for use with human milk at body temperature. Yet, since
gelatin is derived from bovine or porcine bone or skin, potentially interfering
with religious belief and diet preferences, its suitability was believed to be

limited.

(b) Crosslinker calcium and its physiological relevance. Due to sodium
alginate being ranked as the most favourable polymeric system for hydrogel fabric-
ation by means of spherification, the following paragraph provides further insights
into the physiological importance of its crosslinker calcium. Since excipients used in
commercially available paediatric formulations do not commonly possess additional
health benefits, the positive contribution of calcium on infant health was seen as a

particular advantage.

Calcium constitutes 1.9 % to the human body weight, whereby 99 % can be found
as calcium hydroxyapaptide in bones and teeth, contributing to their structure
and function [190]. The remaining 1 %, of which 0.9 % are present in cells and
0.1 % in extracellular fluid, fulfils vital metabolic processes, including muscle func-
tion, secretion of hormones, vascular contraction and vasodilation [190]. Calcium
is also referred to as a “threshold nutrient”, because an increase in bone mass with
increasing calcium consumption levels off after reaching its threshold requirements

for bone mechanics, and subsequently any excess calcium is excreted [191]. Human
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milk is considered to be the ideal source of calcium for term infants, exhibiting a
higher calcium bioavailability than bovine milk or formula [191, 192]. The aver-
age daily amount of calcium consumed by an exclusively breastfed infant amounts
to 200 — 300 mg [190], fulfilling the adequate intake recommendations for infants
of 0 — 12 months of age [192, 193]. Infants born prematurely, however, exhibit
higher calcium requirements, which cannot be met through human milk consumption
alone [191, 192]. In particular infants with less than 1500 g body weight at the time
of birth, also referred to as very low birth weight (VLBW) infants [194], are in
need for both calcium and phosphorus supplementation to ensure sufficient supply
for bone mineralization [191]. As fetal calcium consumption increases significantly
during the third trimester of gestation, reaching its peak of 100 — 120 mg kg™ d! at
30 — 36 weeks of gestation, an infant born at 24 — 26 weeks will only possess 20 %
of a full-term infant’s whole-body calcium [191]. Literature indicates that fortifica-
tion, for example by mixing powdered fortifiers or liquid formulas with high-mineral
content and human milk, has beneficial effects for infants of less than 1500 g birth
weight [191, 192]. For bottle-fed infants, a variety of calcium-enriched formulas
exist [190-192]. The use of such formulas even following discharge is suggested
in the literature, but guidance about the optimal concentration and duration does
not exist [192]. WHO recommendations exclusively relate to the first month of
life, comprising a supplementation of 120 — 140 mg kg™ per day [194]. The World
Health Organization recognises that supplementation is of particular importance
in low- and middle-income countries, where calcium deficiency is prevalent across
all age groups [195], and includes calcium gluconate in the complementary listing
of the WHO Model List of Essential Medicines and the WHO Model List of Es-
sential Medicines for Children [25, 99]. Using alginate gels fabricated by means of
reverse spherification and frozen reverse spherification, might therefore also have the
potential to contribute to supplementation efforts in breastfed infants, enabling to

encapsulate calcium concentrations higher than those needed for spherification.

5.2 Materials and methods

5.2.1 Materials

(a) Human milk. Experiments were conducted using human milk characterised

in Chapter 4, containing a protein content of 16.51 g L' and a lipid content of
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43.52 g L. The Cambridge Human Biology Research Ethics Committee at the Uni-
versity of Cambridge ethically approved all human milk sample use (HBREC.2012.01).

Prior to breastfeeding simulation, human milk was thawed for 48 h at 4°C.

(b) Nipple shield. Based on findings in Chapter 3, demonstrating maternal pref-
erence for the use of commercially available ultra-thin contact nipple shields for
therapeutic delivery during breastfeeding, as well as limitations of modified lip-
containing devices, research in this chapter was conducted using a medium-sized

(20 mm) commercially available ultra-thin contact nipple shield (Medela, UK).

(c) Hydrogel fabrication. For hydrogel preparation, low viscosity alginic acid
sodium salt in FCC grade (G:M ratio in the range of 61 — 65 : 39 — 35) was ob-
tained from Alfa Aesar (Lancashire, UK), calcium lactate pentahydrate from Sigma
Aldrich (Dorset, UK), salicylic acid and iron(III)sulphate pentahydrate from Fisher
Scientific (Leicestershire, UK). A preference was given to i) iron(III)sulphate over
iron(IT)sulphate to prevent potential competition with Ca?* during cross-linking
and to facilitate subsequent iron analysis, ii) calcium lactate pentahydrate over
other calcium salts, such as calcium chloride or calcium lactate gluconate, based on

its neutral taste and low cost [196].

5.2.2 Hydrogel preparation

The following solutions were prepared: i) A 0.5 % sodium alginate solution of low
viscosity alginic acid sodium salt in double deionized water (DDI). The solution
was kept at 4°C over night to remove air bubbles formed during mixing. ii) A
1 % calcium lactate pentahydrate solution, additionally containing 60 mg mL™*
ferric sulphate pentahydrate in DDI water. 500 nL solution was pipetted into each
hemispherical impression of a food-grade silicone mould, measuring approximately
2.5 cm in diameter and 1 ¢cm in depth. The filled mould was kept at -20°C for at least
5 h. Gelation occurred when a frozen calcium lactate ferric sulphate hemisphere
was introduced into a 4°C sodium alginate bath for 2.75 min, and access sodium
alginate rinsed off through transferring formed gels into a DDI water bath. All
liquid-core hydrogels were prepared immediately before use in characterisation and

breastfeeding simulation experiments.
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5.2.3 Hydrogel characterisation procedures

(a) Compression testing. Mechanical characterisation of manufactured liquid-
core hydrogels was performed by means of uniaxial compression testing. Experi-
ments were conducted in octuplicate using a H5Ks electric screw machine (Tinius
Olsen, Redhill/UK) fitted with a 5N load cell. Hereby, the manufactured hydro-
gel was positioned on a flat surface, following which a flat plate applied vertical
compression until the gel’s plastic region of formation was reached. The setup is
illustrated in Figure 5.4 a). A crosshead speed of 2 mm min™! was chosen, and force
displacement data recorded. Because of the complex nature of liquid-core hydro-
gels, no other mechanical properties were evaluated. Measurements were performed
together with Andrew Rayment, Department of Material Science and Metallurgy,
University of Cambridge.

(b) Visual characterisation. A bespoke optical system, consisting of a high-speed
camera (Basler, Ahrensburg/Germany) and a National Instruments card (NIC, Na-
tional Instruments, Austin, TX/USA) controlled via a LabVIEW software pro-
gramme, was used to enable visual analysis of the gels’ rupture mechanism and
morphology. Calibration was performed by determining the number of pixels and
the distance in mm between the top and bottom compression plate. The resulting re-
lationship was used to calculate the hydrogels’ average wall thickness, diameter, and
height in quadruplicate based on images taken before compression testing. Hereby,
wall thickness measurements made use of the difference in colour strength of the
gel’s core and shell when visualised via the LabVIEW programme. This enabled
recognition of the solid core’s boundary. Measurements were performed together
with Andrew Rayment, Department of Material Science and Metallurgy, University
of Cambridge.

5.2.4 Breastfeeding simulation procedures

(a) Breastfeeding simulation. Delivery of iron(Ill)sulphate pentahydrate into
DDI water and human milk was conducted in triplicate using the breastfeeding sim-
ulation apparatus by Gerrard et al. [42]. The apparatus was operated as previously
described in Chapter 4, whereby fractions were collected for a duration of 10 sec
each, and recovery into approximately 10 g of human milk investigated. To explore

the potential of hydrogel delivery for preterm infants, who were shown to poten-
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tially benefit from the use of nipple shields to establish breastfeeding and increase
milk transfer [37], the pressure values for breastfeeding simulation were adjusted in
alignment with literature by Geddes et al. [197, 198]. A comparison of pressure
values for term and preterm infants is illustrated in Table 5.4. Figure 5.1 illustrates

exemplary average pressure profiles during breastfeeding simulation.

PRESSURE TERM INFANT PRETERM INFANT (MIN, MAX)
Baseline [mmHg] | —56.4 + 31.4 [22], —31.1 (—60.0, —12.7) [198]
—64 + 45 [21]
Peak [mmHg] —163.2 £ 62 [22], —106.2 (—153.0, —65.5) [198]
—145 + 58 [21]
Mean vacuum —114 £ 58 [21] —53.6 (—89.3,—31.5) [198],
[mmHg] —40.6 £ 27.8 (—126.4 , —0.4) [197]

Table 5.4: Pressure values during breastfeeding for term and preterm infants. Pres-
sure values for preterm infants are based on two studies by Geddes et al. with
infants born at 23.6 — 33.3 weeks of gestation [197, 198]. While one study included
38 infants at 5.9 £+ 3.8 weeks postnatal age (1.0 — 16.3 weeks), who were able to
successfully latch and suck at the breast [197], the other study consisted of 17 in-
fants at 4.4 £+ 2.84 weeks postnatal age (1.0 — 10.6 weeks) when full oral feeds were
introduced [198].

a) 20 ' b) 20
— DDI water — Human milk
= 0 Ia 0
g €
= 20 } £ L
% 20 : 20
o}
%] 17}
£ -0 o 40 L
o
60 } 4 60 F
-80 ) -80 L
0 5 10 0 5 10
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Figure 5.1: Exemplary pressure profiles during iron(III)sulphate pentahydrate de-
livery into a) DDI water and b) human milk, using the breastfeeding simulation

apparatus. Pressure profiles are depicted for 10 s at t = 90 — 100 s.
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Profiles obtained align with clinically obtained data for preterm infants
([197], Figure 5). During breastfeeding simulation, mean peak vacuum values of
-64.62 + 5.37 mmHg and -62.47 + 1.76 mmHg, as well as mean baseline vacuum
values of -1.01 + 0.34 mmHg and -0.92 £ 0.37 mmHg for delivery into DDI wa-
ter and human milk respectively were recorded. The mean average vacuum was
-42.91 4+ 9.97 mmHg and -38.30 4+ 9.71 mmHg for delivery into DDI water and

human milk.

(b) Iron detection and data analysis. Iron(III)sulphate pentahydrate in DDI
water and human milk, including both samples collected during breastfeeding sim-
ulation experiments as well as prepared standards with known concentrations for
data processing, were quantitatively analysed in triplicate as follows: 1 M hydro-
chloric acid was added in a ratio of 1 : 8 to the sample to achieve i) precipitation
of the human milk’s casein (isoelectric point: pH 4.7), ii) release of iron bound to
transferrin, a protein naturally present in human milk [199, 200]. Following mixing
by vortexing, all samples were centrifuged for 7 min at 16,112 x g. The resulting
samples contained precipitated casein and clear supernatant, enabling detection of
ferric sulphate by means of spectrophotometric analysis. From the resulting super-
natant, 20 uL were transferred to 180 pL of DDI water and 1700 pL of 0.1 % salicylic
acid solution added. Subsequently, absorbance of ferric salicylate in each sample was
measured at room temperature at A, = 524 nm. The wavelength of maximum
absorbance was evaluated by means of absorbance scans of all calibration samples
over the wavelength range of A = 328 — 1000 nm. An illustration of corresponding
absorbance scans and calibration curves at ferric salicylate’s maximum absorbance
in DDI water and human milk can be found in Figure 5.2. Each point represents
the average conductivity of triplicate measurements for a given concentration. The
calibration curve in DDI water was also used to assess the total amount of fer-
ric sulphate pentahydrate loaded into the liquid-core hydrogels. For this purpose,
frozen hemispheres were melted, weighted, diluted 1:1 in DDI water, and their iron
sulphate pentahydrate concentration evaluated by means of absorbance measure-
ments at A\, = 524 nm. Analysis was performed in triplicate, yielding a total of
29.59 + 0.43 mg iron(III)sulphate pentahydrate contained within manufactured
liquid-core hydrogels, equivalent to 6.75 £+ 0.10 mg of elemental iron. Based on
measured absorbance values of fractions collected during breastfeeding simulations,

release profiles were generated. Release profiles include the cumulative iron(III)-
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sulphate pentahydrate recovery of each experiment, represented as a percentage of
the total amount encapsulated within the liquid-core gel, as well as the normalised
proportion of iron(IIT)sulphate pentahydrate released in each fraction over time. To
do so, the amount of iron (IIT)sulphate pentahydrate in each fraction was assessed by
means of absorbance measurements at \,,., = 524 nm using the calibration curves
in Figure 5.2, and normalised to the total amount of ferric sulphate pentahydrate

used for liquid-core hydrogel manufacture.
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Figure 5.2: Absorbance scan for iron(III)sulphate pentahydrate samples of known
concentration at A = 328 — 1000 nm in a) DDI water and ¢) human milk. The
ferric salicylate’s maximum absorbance occurred at A, = 524 nm. Calibration
curve of iron(IIl)sulphate pentahydrate in b) DDI water and d) human milk at
Amaz = 924 nm. All samples were pre-processed by adding hydrochloric acid to
the sample (1:8) to enable absorbance measurements following casein precipitation.
Each data point represents the average of triplicate measurements. Modified image

originally published in [47].
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To obtain i) a graph illustrating the normalized release in each fraction over time,
values were plotted for each fraction without further processing, ii) a cumulative
normalised release graph, values were summed up for each new fraction with those

of previous fractions.

5.3 Results

5.3.1 Hydrogel preparation

Fabrication of liquid-core hydrogels containing ferric sulphate was achieved by means
of frozen reverse spherification. The fabrication protocol was iteratively adapted,
including the following variables: i) type of spherification technique used to ob-
tain reproducibly uniform spheres, ii) ratio of iron(III)sulphate pentahydrate to cal-
cium lactate pentahydrate, in order to minimize precipitation of either compound,
iii) duration of gelation to control wall thickness (increasing with increasing gela-
tion time) and liquid-core content available for delivery, iv) size of the hydrogel in
order to maximize its liquid load, but to also enable sufficient milk flow through
the nipple shield’s silicone teat. Spherification and compound ratio were assessed
visually, while the variables gel size and gelation time were evaluated by means of
breastfeeding simulation experiments. Optimising the fabrication process aimed at
providing the required stability for gel handling, while at the same time maintaining
the gel’s mechanical sensitivity to enable rapid rupture. A range of gelation times
between 1 min to 5 min were assessed, and gels stable enough for handling tested
by means of breastfeeding simulation experiments. Shorter gelation duration was
required for smaller amounts of liquid to be encapsulated than for larger amounts in
order to achieve the same hydrogel stability. Each impression within the food-grade
silicone mould was filled with 500 pL of the prepared calcium lactate pentahydrate
and iron(IIT)sulphate pentahydrate solution, and subsequently frozen at -20°C. Gel
formation occurred when the frozen hemisphere was exposed to a 4°C sodium algin-
ate bath for 2.75 min. An illustration of the gel’s manufacturing process is provided
in Figure 5.3. Gelation occurs through an exchange of sodium ions from the gu-
luronic acid blocks of alginate with calcium cations from the frozen hemisphere,
and the stacking of these guluronic acid blocks to form a characteristic “egg box”
structure [171].
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Figure 5.3: Schematic of the frozen reverse spherification process for the manu-
facture of iron(III)sulphate pentahydrate liquid-core hydrogels. One alginate chain
can be linked with several other chains through calcium cations and form a three-

dimensional gel network [171]. Image originally published in [47].

5.3.2 Compression testing and visual characterisation

Figure 5.4 b) illustrates a typical force-displacement graph, Figure 5.5 displays the
gel’s rupture during compression testing. Release of the hydrogel’s liquid core occurs

following the formation of a pinhole in the hydrogel’s solid shell.
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Figure 5.4: a) Simplified schematic of the experimental setup used for uniaxial
compression testing of manufactured liquid-core hydrogels. b) Representative force-
displacement graph for liquid-core sodium alginate hydrogels, fabricated via frozen

reverse spherification. Image originally published in [47].
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Average values for wall thickness, diameter, and height of manufactured liquid-core
hydrogels, as well as compression force required for gel rupture are summarised in
Table 5.5. Obtained values are compared to previously published data of both
i) rapidly disintegrating tablets for zinc delivery into human milk by Scheuerle
et al. [4], ii) Liquid-core alginate Hydrogel Beads by Tsai et al. [176, 178, 201].

Comparison with literature data
LIQUID-CORE LIQUID-CORE RAPIDLY DISIN-
HYDROGELS BEATS (LHBS) | TEGRATING
TABLETS ©
Wall thickness 0.44 +£0.10 ® Not provided N/A
[mm]
Diameter 14.28 £ 0.85 Range: 8.093 4+ 0.003
[mm] 4.17 — 5.84 [178]
Height 491 4+£0.28 * 4.65 + 0.03
]
Compression 0.245+£0.103 > | 1.26 4 [176] 22,000
force [N]

Table 5.5: Overview of average wall thickness, diameter, height, and compression
force of liquid-core hydrogels used for iron sulphate delivery into DDI water and
human milk. Data obtained was compared to literature data by both Scheuerle
et al. and Tsai et al., using rapidly disintegrating tablets for zinc delivery into
human milk [4], and Liquid-core alginate Hydrogel Beads (LHBs) for chlorogenic
acid delivery into simulated intestinal fluid [176, 178], respectively. Table originally
published in [47].

* Values were measured in quadruplicate.
> Values were measured in octuplicate.
¢ Values taken from [4], referring to tablet type 2.

4 Reverse spherification using a single spherification step.
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Figure 5.5: Illustration of the liquid-core hydrogel’s deformation during compres-

sion testing. Rupture and release of the hydrogel’s liquid core occurs following the

formation of a pinhole in image f). Image originally published in [47].

5.3.3 Release of iron from liquid-core hydrogels

Breastfeeding simulation experiments evaluated both the delivery into DDI water

and human milk. The amount of DDI water and human milk passed through the

nipple shield, and absolute recovery data, are summarised in Table 5.6.

RECOVERY
ACHIEVED [%)]

AMOUNT OF FLUID PASSED
THROUGH THE DEVICE [g]

DDI WATER

04.43 £4.16

10.45£0.14

HUMAN MILK

44.35 £ 5.43

10.58 £+ 0.09

Table 5.6: Recovery achieved and fluid passed through the nipple shield for the
delivery of ferric sulphate pentahydrate from liquid-core sodium alginate calcium

lactate gel formulations.
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An approximately 10 % increased recovery of ferric sulphate pentahydrate was
achieved into DDI water compared to delivery into human milk. Figure 5.6 illus-
trates the cumulative normalised proportion of ferric sulphate pentahydrate released

and the normalised proportion released in individual fractions over time.
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Figure 5.6: Release of ferric sulphate from sodium alginate hydrogels into DDI water
and human milk. a) Cumulative normalised proportion of ferric sulphate released.
b) Normalized proportion of ferric sulphate released in each fraction over time.
Release is represented as a percentage of the total amount loaded within the sodium
alginate hydrogels to the total amount released. Each set of points represents the
average of three experiments, using the mean of absorbance triplicate measurements

for each fraction shown.

5.4 Discussion

Despite the hydrogel’s rapid release properties, full release during breastfeeding
simulation experiments within 2 min was not achieved. Potential reasons for iron
retention include a combination of both iron precipitation and iron inclusion within
the shell’s solid core. Liquid-core hydrogels possess a range of advantages, but also

require further considerations for improvement.
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Recovery and iron retention. In spite of the incomplete delivery from liquid-
core hydrogels, recovery of ferric sulphate pentahydrate achieved within 2 min of
breastfeeding simulation was superior to previously studied dosage forms. Release
of zinc sulphate pentahydrate from rapidly disintegrating tablets and non-woven
fibres in approximately 10 g of human milk (equivalent to 2 min of breastfeeding
simulation) resulted in only 3 — 5 % and 29 — 31 % recovery, respectively [4, 38].
Gradual release as opposed to burst release can be attributed to the hydrogel’s
release mechanism, visualised during uniaxial compression testing, which merely
entails the formation of a pinhole in the hydrogel’s solid shell. As small amounts of
ferric sulphate pentahydrate were still released after 10 g of human milk had passed
through the nipple shield, it can be hypothesised that marginal liquid residues
were still contained within the gel’s solid shell. At the same time, the difference
between the amount loaded into the hemispherical silicone mould as part of the hy-
drogels’ fabrication process, and the amount recovered in collected fractions during
breastfeeding simulation, results from a combination of both iron retention within
the hydrogel’s core shell, as well as within the complex apparatus’ network. The
former is a result of ferric sulphate being enclosed within the cross-linked alginate
polymer chains, with the gel’s solid shell being retained in the nipple shield dur-
ing experimental procedures. Iron-casein precipitates occur when ferric sulphate
comes in contact with human milk, as Fe3t causes the neutralization of the ca-
sein’s negative charge by binding to its Pser clusters [202]. Since resuspension of
precipitated casein can only be achieved in collected fractions by adjusting the pH
during pre-analysis processing, precipitated ferric sulphate trapped within the ap-
paratus cannot be recovered. Comparing both the absolute recovery achieved during
breastfeeding simulation experiments into human milk and into DDI water respect-
ively, about 10 % of undelivered ferric sulphate pentahydrate can be attributed
to such precipitation effects. Although in-vitro experiments yielded only insuffi-
cient delivery of the loaded dose, it has to be noted that a breastfed infant would
be directly latched onto the nipple shield, which contains the hydrogel, preventing
loss of therapeutic precipitates, and would feed for a seven times extended period

of time, as shown by Kent et al. [40].
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Advantages. In addition to their release properties, liquid-core hydrogels are char-
acterised by distinct advantages, indicating their preferred use as a dosage form for
therapeutic delivery from a nipple shield during breastfeeding. Firstly, liquid-core
hydrogels are the first dosage form studied during breastfeeding simulation that
enable therapeutic release by means of a mechanically induced release mechanism,
i.e. the rupture of the hydrogels’ solid shells as a result of flow rate, suction fre-
quency, and vacuum applied. Comparison of manufactured gels to LHBs by Tsai
et al. [176, 178] indicated a five-fold lower compression force needed to initiate
rupture, presumably caused by the comparatively large amount of liquid enclosed
within the manufactured hydrogels, leading to a marginal sphericity. The larger
diameter of liquid-core hydrogels enables their central positioning within the nipple
shield teat, and also increases the dosage form’s surface area for human milk contact
and hence subsequent rupture. Liquid-core hydrogels consequently address previous
limitations of rapidly disintegrating tablets, non-woven fibres, and HPMC capsules
for which the milk’s fat content, homogeneity, and macromolecule composition signi-
ficantly altered the dosage form’s release properties. As milk composition is known
to vary among others based on the maternal diet and the stage of lactation [39], the
dependence of absolute recovery on the milk’s properties was perceived as particu-
larly problematic for the exploration of suitable formulations and the definition of
widely applicable findings. In addition, sodium alginate hydrogels manufactured via
frozen reverse spherification enable the production of low-cost dosage forms, using
both a biocompatible, non-toxic polymer and the essential element calcium in form
of calcium lactate, particularly advantageous for infant therapeutic formulations due
to its neutral taste [196]. Since manufacture of liquid-core hydrogels does not require
use of harmful or problematic excipients often present in other infant formulations,
they might serve as a possible response to the consistently emphasized need for more
appropriate paediatric formulations and their inclusion into pharmaceutical product
portfolios [87, 157]. When considering the chosen therapeutic as part of this study,
ferric sulphate delivery from a nipple shield during breastfeeding seems particularly
suitable, as prolonged exposure of iron to milk products over time, e.g. through milk
or yoghurt supplementation, results in both undesired change of odour and flavour,

as well as the milk’s rancidity due to iron-induced lipid oxidation [202].
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Considerations: Three additional areas of discussion arise with regard to the hy-
drogels’ potential in-vivo use: taste masking requirements, implications of the hy-
drogel’s soft texture, as well as improvements of stability and calcium/therapeutic
solubility. Although fast release of therapeutics is preferred to enable the deliv-
ery of a full dose even during short feeds, it also increases the overall ratio of
human milk to therapeutic, reinforcing the concern that bitter or irritating tast-
ing medication could negatively affect the infant’s breastfeeding compliance. While
liquid-core hydrogels enable 38.16 + 0.06 % absolute ferric sulphate pentahydrate
recovery already within the first minute of breastfeeding simulation, it is important
to note that breastfed infants are acquainted with a wide range of tastes as a result
of the maternal diet [84, 85|, and that human milk itself comprises taste masking
properties [86]. Likewise, encapsulation of commercially available paediatric liquid
formulations, characterised by already optimised taste masking properties to enable
their delivery by means of oral syringes or dosing spoons for neonates and tod-
dlers respectively, provides a feasible means to address taste masking concerns and
serves as a potential mitigation strategy. The hydrogel’s soft texture also enables to
mitigate potential infant or maternal discomfort due to large solid tablets or cap-
sules within the nipple shield’s teat. The potential to use commercially available
nipple shields for therapeutic delivery during breastfeeding is believed to enhance
user acceptability over a modified nipple shield device. Final areas of considera-
tion comprise both the liquid-core hydrogel’s stability and shelf life characteristics,
as well as calcium/therapeutic solubility. According to Tsai et al., the former can
be improved via a secondary gelation step [176, 178, 201], whereby hydrogels are
immersed into a Ca?" solution following cross-linking to enable the permeation of
Ca?* into the previously unoccupied blocks within the hydrogels’ core shell struc-
ture [201]. This approach was shown to increase hardness and storage stability of
LHBs produced by means of reverse spherification, but likewise also decreased the
rate of encapsulated therapeutic release over time [176, 178, 201]. It has to be noted
however, that experiments by Tsai et al. were conducted without agitation, and that
the environment during breastfeeding simulation, exposing hydrogels to repetitive
mechanical stress, is of a significantly different nature [176, 178, 201]. Consequently,
it can be hypothesised that secondary gelation has the potential to significantly im-
prove the hydrogel’s mechanical stability for handling and storage purposes, while
at the same time causing a less pronounced alteration in therapeutic release. In

fact, findings by Scheuerle et al. give reason to expect an even improved rate of
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therapeutic release during in-vivo breastfeeding, as infant tongue peristalsis, shown
to be an important driver for dosage form disintegration [43], cannot be mimicked
using the breastfeeding simulation apparatus. Solubility considerations refer to the
overall availability of calcium lactate pentahydrate for hydrogel gelation, which can
be affected by both the temperature decrease during the spherification’s freezing
step, as well as the solution’s overall concentration of calcium lactate pentahydrate
and therapeutic. Since calcium ions are required to enable gelation, therapeutic- and
concentration-dependent effects make it necessary to consistently optimise both the
cross-linking protocol and the chosen concentration of calcium lactate pentahydrate

with respect to the type and concentration of therapeutic used.

5.5 Conclusion

Liquid-core hydrogels for the delivery of iron sulphate pentahydrate were fabricated
by means of frozen reverse spherification. When tested during breastfeeding simula-
tion experiments, a total recovery of 44.35+5.43 % and 54.43+4.16 % was achieved
after 10.5840.09 g human milk and 10.45+0.14 ¢ DDI water respectively had passed
through the hydrogel-containing nipple shield. These results highlight their superior
release properties to previously studied dosage forms. In addition, sodium alginate
calcium lactate hydrogels benefit from their low cost, ease of fabrication, and high
safety profile. Based on the hydrogel’s soft texture and its compatibility with a
commercially available nipple shield, an enhanced acceptability for in-vivo use may
be anticipated. Additional research is needed to increase the hydrogel’s stability
characteristics to facilitate both hydrogel handling and storage.
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Clinical assessment of therapeutic

delivery during breastfeeding

6.1 Introduction

6.1.1 Overview

Work presented in this chapter was encouraged by the positive feedback of par-
ents and nursing staff as part of the qualitative descriptive study, presented in
Chapter 3, and furthers previous in-vitro research conducted at the Department of
Chemical Engineering and Biotechnology. While in-vitro breastfeeding simulation
experiments are an important component for research and development, breastfeed-
ing is a complex process with significant differences between mother-infant dyads,
ultimately limiting lab-based simulation validity. The single-centre study presented
in this chapter therefore aimed to investigate therapeutic delivery during breast-
feeding in a clinical context, focusing on both its feasibility as well as maternal

expectation, experience, and acceptability. The following objectives where defined:

1. Primary objective: demonstration of therapeutic delivery during breastfeed-

ing. (Endpoint: change in systemic concentration post study feed)

2. Secondary objective: evaluation of mothers’ perspective on therapeutic deliv-
ery during breastfeeding. (Endpoint: qualitative/quantitative assessment of

maternal views pre and post study feed)
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6.1.2 Tracer molecule considerations

Prior to experimental considerations for therapeutic delivery to infants during breast-
feeding, as outlined in the chapter’s objectives, a suitable tracer molecule had to
be chosen. An overview of compounds considered for delivery from an ultra-thin

contact nipple shield, and applied selection criteria are provided in the following.

(a) In-vivo tracer selection. To identify a suitable therapeutic for delivery and
subsequent in-vivo detection, tracer molecules reported in published literature and
those commonly used in clinical diagnostics were considered. Amongst others four
different in-vivo tracers were shortlisted: D-xylose, [1]-'3C-glucose and [6,6]-*Ha-
glucose, as well as vitamin B12. Each tracer molecule is discussed in more detail
below. Particular focus was given to their use in paediatric practice, as well as their

associated risk profile.

D-XYLOSE: In a clinical setting, D-xylose is commonly used to detect diseases of the
upper intestine, which result in a decreased uptake of sugar molecules (“malabsorp-
tion test”). Xylose is a 5-carbon monosaccharide that is absorbed in the duodenum
and jejunum, nearly not metabolized, and eliminated renally [203, 204]. Generally,
a concentration of 0.4 g D-xylose kg body weight (with a maximum dose of 5 g
D-xylose) is used [203]. Although side effects like diarrhoea, vomiting, nausea, and
flatulence are possible, previous research has reported no to minimal side effects
when using a dose of 5 g D-xylose [203]. In neonates and infants, D-xylose has
been used to detect pathological conditions of gut absorption, as well as to invest-
igate gut permeability, during paediatric surgery, or with focus on its development
in preterm neonates [204, 205]. In-vivo samples are usually analysed following a
5-hour long urine collection based on an adapted protocol by Roe and Rice, whereby
D-xylose forms a pink colour, which can be read at 520 nm on heating with para-
bromoaniline [206, 207]. Approximately 25 % can be expected to be recovered in
healthy subjects [206, 207].

13C- AND 2H-LABELLED GLUCOSE: Metabolic isotope tracers are defined as mo-
lecules identical in chemistry and function to their naturally occurring in-vivo coun-
terpart, which only differ in their stable or radioactive isotope label [208]. Generally,
non-radioactive isotope tracers are preferred, due to fewer side effects and their wide

applicability for a variety of kinetic investigations within the human metabolism.
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Most commonly, hydrogen, carbon, and nitrogen isotopes are used for in-vivo kinetic
studies, with tracers exhibiting a heavier weight than their corresponding tracees,
the naturally occurring unlabelled molecules [208]. Based on the weight difference of
tracer and tracee, the tracer to tracee ratio (TTR, also referred to as “enrichment”)
can be evaluated by means of Gas Chromatography/Mass Spectrometry (GC/MS)
or Liquid Chromatography/Mass Spectrometry (LC/MS) [208, 209]. For research
in this chapter particularly [1]-'*C- and [6,6]->Ha-glucose were considered as tracer
molecules, both of which were used in neonatal research or diagnostics before. Use
of 3C labelled compounds (here: ¥C-octanoic or 13C-acetic acid) is most commonly
known as part of the 1*C-breath test to evaluate gastric emptying [210, 211], while
literature also reports the use of 3C-labelled glucose for *C magnetic resonance
scans (MRS) in neonates and children [212-214], and to investigate pulmonary sur-
factant kinetics of the newborn infant [215]. [6,6]->Ha-glucose is a common tracer
molecule in clinical research of glucose and amino acid metabolism in infants and
neonates [208]. Past literature reported its application as a tracer to study intra-
venous amino acid intake in very low birth weight infants [216], as well as infantile
hypoglycaemia in infants born small for gestational age [217], and in preterm in-
fants (gestational age between 26 to 36 weeks) [218]. Only milligram amounts of
both [1]-13C- and [6,6]-?H,-glucose are needed for in-vivo applications, differing in
price: 3 g of [1]-*C-glucose amount to £509 (Sigma-Aldrich, Dorset, UK), 5 g of
[6,6]-2H,-glucose to £360 (CK Isotopes Ltd, Ibstock/UK).

ViTaMIN B12: Vitamin B12, transformed into cobalamin, is an important cofactor
for the two enzymes methionine synthase and L-methylmalonyl-CoA mutase: Me-
thionine synthase enables the methylation of homocysteine to methionine, requiring
B12 in the form of methylcobalamin, while L-methylmalonyl-CoA mutase is respons-
ible for the “reversible rearrangement” ([219], p. 312) of methylmalonyl-CoA to
succinyl-CoA, requiring B12 in the form of 5’-deoxyadenosylcoba-
lamin [219, 220]. Since the human body cannot synthesize vitamin B12, supply
has to be met through the consumption of animal products, such as fish and meat,
as well as egg and dairy products [219, 221]. Deficiency can be inherited, occur as
a result of vegan or vegetarian diet, or due to an abnormal absorption in the small
intestine [219, 221], causing an accumulation of the precursors of both previously
mentioned processes. This accumulation subsequently leads to a disruption of both

DNA synthesis, the production of red blood cells, as well as the central nervous
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system’s development [219]. A particular risk for vitamin B12 deficiency exists for
breastfed infants of a strictly vegetarian or vegan mother, as their B12 store is gen-
erally low at birth and cannot be increased due to low amounts of vitamin B12 in
their mother’s human milk [220]. Vitamin B12 has no reported toxicity, even being
safe when administered at 300 — 3000 times the recommended dietary allowance

through intramuscular injection [220].

Table 6.1 provides an overview of important tracer characteristics, including the
method of detection, costs, its use in neonates, and its suitability for delivery from
a nipple shield during breastfeeding. The final selection was conducted sequentially
by i) identifying tracers suitable to be delivered from a nipple shield, ii) taking into
account parents’ preferences (Chapter 3), and iii) considering projected tracer costs

per infant feed.

TRACER D-XYLOSE [1]-13C- [6,6]->Ha- VITAMIN
GLUCOSE GLUCOSE B12

ANALYSIS Urine Blood, breath Blood Blood

COSTS 0.74 170 72 0.12x106

[£/g] (AppliChem (Sigma- (CK Isotopes | (JustVitamins

Inc., USA) | Aldrich, UK) | Ltd, UK) Ltd, UK)

AMOUNT 5¢g 0.65-0.73 g 3.6 mg kg! 1000 ng

NEEDED kgt BW BW [216] (1 tablet)
212, 214]

COSTS 3.71 442 — 496 1.04 0.12

[£ /DOSE*]

NS USE X X X

Table 6.1: Overview of tracers considered for the proposed feasibility study and key
characteristics with relevance for selection. Thereby, “x” is indicating the applicab-
ility of a characteristic for the relevant tracer; BW stands for “body weight”, NS for
“nipple shield”.

*Note: Cost per dose is shown exemplary for an infant of 4 kg BW.
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With exception of the CE-manufactured sublingual vitamin B12 tablets listed in
Table 6.1, expenses refer only to the purchasing costs of the respective tracers in
pharmaceutical grade powder form, and additional costs need to be considered for
dosage form manufacture. From Table 6.1, the following ranking of tracer molecules

suitable for delivery from a nipple shield during breastfeeding was created:

1. VitaMIN B12: Due to its importance for infant health and development, its
non-toxicity, commercial availability as a solid dosage form, and alignment with par-
ents’ and nurses’ preference for the delivery of vitamins from a nipple shield during
breastfeeding (see Chapter 3), vitamin B12 was considered as the favourable in-vivo
tracer to be administered during the feasibility study. Its commercial availability in
form of tablets was perceived as particularly advantageous, as it reduces potential

risks and challenges associated with self-preparing formulations for clinical use.

2. [1]-'3C-agLUCOSE and [6,6]-*H,-GLUCOSE: Both tracer molecules were con-
sidered to be feasible for delivery during breastfeeding. While [1]-13C-glucose was
perceived as advantageous with regard to its less invasive mode of detection (pos-
sibility of detection through both breath test and blood test as opposed to exclusive
blood sampling for [6,6]->Ha-glucose detection), [6,6]-?Hs-glucose was more cost-
effective. Although both labelled glucose molecules could serve as an in-vivo tracer
for the proposed feasibility study, it was anticipated that their use might make
parents more reluctant to provide their consent for participation. Projected reas-
ons included amongst others worries about the use of an “unknown” molecule which
might be perceived as “harmful” by parents, and which does not provide any benefits
to their infants’ health. At the same time, interaction with parents in the University
of Cambridge Addenbrooke’s Hospital had shown that use of the words “isotope”
or “tracer” were discouraging parents from being interested in the study. In addi-
tion, intended use in the feasibility study would require costly CE-manufacture of

[1]-13C-glucose or [6,6]-*Ha-glucose containing solid dosage forms.

3. D-XYLOSE: Delivery within a nipple shield for potential in-vivo application was
identified as problematic, as the required amount of 5 g cannot be fitted within
the silicone teat of a medium-sized commercially available nipple shield. Since only
smaller amounts of D-xylose could be delivered from a nipple shield during breast-

feeding, recovery of D-xylose in the infants’ urine might subsequently be below the
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detection minimum. As a consequence, suitability of D-xylose as a tracer molecule

was believed to be limited.

6.1.3 Blood sampling and assay considerations

In order to identify the blood sampling time at which maximum absorption of ad-
ministered vitamin B12 delivery is achieved, literature on the mechanism of vitamin

B12 absorption in both adults and neonates was reviewed.

ABSORPTION IN ADULTS: The process of absorption in adults is mediated by
a vitamin B12-binding protein called intrinsic factor (IF), and requires the pres-
ence of digestive enzymes and gastric acid [222]. IF is excreted by the stom-
ach’s parietal cells, while the intrinsic factor receptors (IFRs) are located in the
ileum [222]. Based on the limited capacity of IFRs, it was reported that only
1.5 — 2.9 ng of vitamin B12 per meal can be absorbed following binding to the in-
trinsic factor protein, with an additional 1 — 3 % of any oral dose being uptaken
by means of passive diffusion [223]. Doscherholmen et al. suggested that with in-
creasing dose, passive diffusion becomes the more dominant factor of vitamin B12
control [224]. Carkeet et al. reported appearance of B12 in the human blood plasma
only 2 — 3 h after administration, aligning with gastric emptying and subsequent
ileum-based absorption [225]. On average, a peak of 3 % the administered dose
(1.5 pg of labelled vitamin B12) was detected at 7 h after oral administration [225].

ABSORPTION IN NEONATES: The process of vitamin B12 absorption is believed to
differ in neonates. Adkins et al. presents findings that suggest two mechanisms
for vitamin B12 absorption in the neonate: IF-mediated and haptocorrin (HC)-
mediated vitamin B12 absorption [222]. The latter mechanism was previously re-
ported in suckling piglets and rat pups; yet the glycoprotein HC (68 — 100 kDa)
can also be found in pico-molar amounts in human milk [222]. Due to literature
highlighting low secretion levels of gastric acid and IF (both secreted by the stom-
ach’s parietal cells), and pepsin in the neonatal GI tract required for IF-mediated
absorption, an IF-independent mechanism was believed to occur [222, 226, 227].
Adkins et al. proved i) that an IF-mediated vitamin B12 absorption mechanism
seems to exist in breastfed infants, with IF receptors present in the infant’s ileum,
but indicated that IF levels may be too low in early life to participate in vitamin B12

absorption [222], ii) that until the IF-mediated absorption mechanism is completely
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matured, HC may mediate vitamin B12 uptake [222]. IF excretion in breastfed in-
fants was shown to gradually increase throughout the first four months of life [222].
Although the exact mechanisms of vitamin B12 absorption in neonates is unknown,
studies with preterm infants by Haiden et al. and Wothington et al. provide a
potential indication of the expected increase in serum vitamin B12 levels following
supplementation: Hereby, supplementing vitamin B12 over 8 — 12 weeks led to an

approximate three-fold rise in the infants’ serum B12 levels [228, 229].

IMPLICATIONS FOR USING VITAMIN B12 AS A TRACER IN BREASTFED INFANTS:
No evidence seems to exist about i) the rate of HC-mediated vitamin B12 uptake,
and ii) how both vitamin B12 absorption mechanisms of adults (IF-mediated and
diffusion-based) and term neonates correlate with the absorption mechanisms in in-
fants born prematurely. Based on the limited information available, it was decided
to apply the findings of IF-mediated and diffusion based absorption in adult popu-
lations, as well as its relevant peaks obtained as a guideline for blood sampling of

both term and preterm neonates.

6.1.4 Study design considerations

Experimental work in this chapter was based on the following considerations.

(a) Selection of research methodology. In addition to the quantitative assess-
ment of vitamin B12 delivery, the feasibility study aimed to also assess maternal
expectation, experience, and acceptability. Due to the complex nature of therapeutic
delivery during breastfeeding, and its evaluation with inpatient mother-infant dy-
ads in a clinical setting, a parallel mixed method approach was chosen over purely
qualitative interviews. Hereby, qualitative and quantitative data were collected sim-

ultaneously, aiming to enhance the breadth and validity of study findings.

(b) Ethical considerations and timing. Research was meant to occur at a
time that is characterised by emotional and physical challenges, including maternal
recovery, adjustment to parental responsibilities, as well as to experiences of birth
and unexpected infant health challenges, e.g. preterm birth. As a consequence, an
engaging combination of tablet-based interactions and in-person conversations was

chosen: to collect quantitative data, tablet-based questionnaires (Likert scale) were
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used as an interactive tool, following which semi-structured open-ended interviews

were performed to more broadly discuss the questionnaires’ content.

(c) Selection of a nipple shield design. The clinical study was conducted us-
ing commercially available ultra-thin contact nipple shields (Medela, UK) of either

16 mm, 20 mm, or 24 mm size.

(d) Selection of vitamin B12 tablets. Sublingual vitamin B12 tablets from
JustVitamins Ltd, UK (1000 pg Methylcobalamin) were identified as a commercially
available formulation, based on their suitability for vegetarians and vegans, and the

absence of known allergenic components.

6.1.5 Proprietary studies

To investigate the JustVitamin tablets’ disintegration properties and to evaluate
whether they can serve as a suitable dosage form/formulation for the feasibility
study, the following proprietary studies aimed at investigating i) the capability of
JustVitamins’ sublingual vitamin B12 tablets to dissolve in human milk at physiolo-
gical parameters representative of in-vivo breastfeeding, ii) the duration for disin-

tegration to be achieved.

Methods. In-vitro breastfeeding simulation experiments were performed using pas-
teurised standardised homogenised whole cow’s milk (Coop British Whole Milk,
UK), characterised by a lipid content of 36 g L', and a protein content of
32 ¢ L', The vitamin B12 tablet was placed in the silicone teat of a medium-
sized (20 mm) ultra-thin contact nipple shield (Medela, UK), and breastfeeding
simulation experiments conducted (according to Chapter 4) in triplicate for a dura-
tion of 5 min, 10 min, and 20 min. Pressure values averaged between those of term
and preterm infants were applied. Tablets and tablet leftovers after breastfeeding
simulation were weighted in a petri dish at room temperature before, and for 7 days

after experimental procedures until < 5% change in weight was observed.

Results. The percentage of tablets released within 5 min, 10 min, and 20 min are

summarised in Table 6.2. No tablet break-off during disintegration or dislocation of
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the remaining tablet through the silicone teat’s three holes following the experiment

was observed.

DURATION OF MILK PASSED THROUGH | AVERAGE OF TABLET
EXPERIMENT [min] SHIELD [g] RELEASED [%]

) 2549 £0.18 41+6

10 48.94 £ 0.40 62 £ 2

20 91.90 £ 0.08 74£9

Table 6.2: Percentage of tablet released and milk passed through the nipple shield

for breastfeeding simulation experiments of 5 min, 10 min, and 20 min duration.

Discussion. Results obtained revealed the suitability of JustVitamins B12 tablets
for delivery during breastfeeding. Reasoning included the following: i) Substantial
tablet disintegration even after a short duration of breastfeeding, indicating that in-
vivo detection of vitamin B12 will also be possible for short feeds. ii) Steady tablet
disintegration ensuring adequate mixing of vitamin B12 with human milk during
the feed, and thus continuous delivery over time. Since the breastfeeding simulation
apparatus can neither simulate infant tongue movement [43], nor the elongation of
the maternal nipple during breastfeeding, enhanced disintegration properties can be

anticipated during in-vivo delivery.

Conclusion. The experimental procedures revealed that JustVitamins’ sublingual
vitamin B12 tablets are capable of dissolving in human milk at physiological para-
meters resembling the breastfeeding process, and thus, that sufficient delivery during
in-vivo breastfeeding can be expected. Due to their high safety profile and estab-
lished efficacy for delivery from a nipple shield, JustVitamins’ sublingual vitamin

B12 tablets are suitable for delivery during the feasibility study.

6.2 Materials and methods

6.2.1 Study design

As part of the presented single centre feasibility study, mothers administered vitamin
B12 in form of a sublingual tablet (Just Vitamins Ltd, 1000 pg vitamin B12 as

101



Chapter 6

Methylcobalamin), placed within the silicone teat of a commercially available ultra-
thin contact nipple shield, to their infant during breastfeeding. A qualified nurse
or lactation consultant known to the mother was present, provided breastfeeding
support, and advised on the appropriate use and application of nipple shields to the
breast. The study involved both the evaluation of quantitative changes in vitamin
B12 through blood serum tests, and assessment of maternal expectation, experience,
and acceptability via a mixed methods approach. An overview of the study’s design
is provided in Figure 6.1. Nipple shield and vitamin tablet used in this study are
illustrated in Figure 6.2.

R

E Identifying eligible mother-infant dyads
R |

R

u Providing patient information sheet (PIS)
I

T |

II\I Maternal questions answered & informed consent obtained
¢ |

_?_ Pre study feed blood sample

u

D Pre feed interview

Y

P "Vitamin B12 feed"

R

0]

C Post feed interview

E

D

U Post study feed blood sample

R

E

S End of study

Figure 6.1: FEDD study flow chart.
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"

Vitamin B12
tablet

Figure 6.2: Illustration of the commercially available ultra-thin contact nipple shield
design (Medela, UK) and the vitamin B12 tablet (JustVitamins Ltd, 1000 pg
Methylcobalamin) used during the clinical feasibility study.

6.2.2 Study population and participant recruitment

The presented feasibility study was conducted from July to November 2018 on a UK
level 3 Neonatal Intensive and a Transitional Care Unit of the University of Cam-
bridge Addenbrooke’s Hospital Trust using purposive sampling. Inpatient breastfed
infants below 12 months of age, without medical conditions preventing them from
participation, were eligible for inclusion. No restrictions with regard to gestational
age or birth weight were made. The research team identified eligible infants in con-
sultation with both the nursing and medical staff, as well as the units’ Speech and
Language Therapists and feeding lead, following which mothers were approached
and study information provided. In addition, parents were informed about the
study through posters located in the unit’s communal area. Detailed inclusion and

exclusion criteria are provided in Table 6.3.
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INCLUSION CRITERIA

» Breastfeeding is established (exclusively or non-exclusively)

o Infant is aged below 12 months

o No known allergy or hypersensitivity of mother or infant against any
ingredient of the commercially available vitamin B12 tablets
(JustVitamins Ltd, UK) used in the study

EXCLUSION CRITERIA

o Breastfeeding not established

o Infant not feeding properly

o Allergy or hypersensitivity of mother or infant against any ingredient
of the commercially available vitamin B12 tablets (JustVitamins Ltd,
UK) used in the study

o Medical conditions that could negatively influence swallowing, and
thus breastfeeding

o Infant suffers from short bowel syndrome or malabsorption

Table 6.3: Inclusion and exclusion criteria for study recruiting.

6.2.3 Data collection and analysis

(a) Vitamin B12

Data collection. In order to assess the increase in vitamin B12 in the infants’ blood
following delivery, two infant blood samples were taken: a pre study feed sample
within one week before the study feed serving as the infants’ baseline vitamin B12
level, and a sample 6 — 8 hours after the study feed to evaluate the infants’ vitamin
B12 level increase and percentage uptake. Hereby, sampling time was based on

literature referencing vitamin B12 absorption in adult patients [225].
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Vitamin B12 assay. Blood serum was separated from whole blood following
clotting by centrifugation at 6100 rpm for 10 min, transferred into a separate vial,
and frozen at -80°C until further analysis. Serum vitamin B12 levels were analysed
using a LOCI Vitamin B12 assay (Siemens Healthcare, Munich/Germany) by the
Core Biochemical Assay Laboratory (CBAL) at the NHS Addenbrooke’s Hospital
Cambridge.

Analysis of assay data. The percentage increase of blood serum vitamin B12 was
calculated based on the difference in vitamin B12 levels pre and post study feed. The
percentage uptake of the administered dose was obtained via the following steps:
i) The infant’s haematocrit (Hct) data was used to calculate the infant’s correspond-
ing percentage of serum. ii) The infant’s blood volume was subsequently calculated
by means of published correlations [230], taking into account the infant’s current
weight. iii) The infant’s blood volume and the increase in vitamin B12 serum level
concentration was used to calculate the percentage uptake of the administered dose.
Data of the infants’ haematocrit and weight were taken from the medical notes,
ideally recorded /evaluated for clinical reasons on the study day itself or - if unavail-

able - from a day as close to the study day as possible.

(b) Mixed methods approach

Data collection. A mixed methods approach was used to evaluate maternal ex-
pectation, experience and acceptability, including both tablet-based questionnaires
(offline survey app: Feed2go) and recorded semi-structured interviews, developed
based on established guidelines [73]. Mothers were asked to compare their expect-
ations and experience of vitamin B12 delivery during breastfeeding to the previous
use of an oral syringe via the Likert scale from 0 to 10. The tablet was also used
to collect demographic data, e.g. asking mothers about their infants’ gestational
age or their previous experience of breastfeeding using a nipple shield. Excerpts
of the semi-structured questionnaire script and structured tablet-based questions
are illustrated in Figure 6.3 and Figure 6.4, as well as in Table 6.4 and Table 6.5,

respectively.
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Interview before the study feed

Questions about you/your baby and your expectations for the study feed

Please read each question carefully. Let Theresa know if you
need any help in answering a question.

Please rate the following sentences.

Giving medicines/nutrients to my baby during breastfeeding...

*10. ...is a more natural way than using an oral gy ) Strong]
4
syringe.
il bo eas - ~ 1080808000
*11. ...will be easier than using an oral syringe. a.

@ - Very unlikely Most likely - @

*12. ...is going to be a positive experience. EGMQIE
= very uniikely ostlikely -

*13. ... will make me less worried (e.g. about aaaa

upsetting or hurting my baby). @ - Very unlikely Most likely - @

*14. . will make my baby feel less distressed/ nnaaa

upset (than e.g.an oral syringe). @ - Very unlikely Most likely - @

*15. ._.will help me to feel closer to my baby. Ee?GMﬁg
_ unlikely _

Figure 6.3: Excerpt of structured interview questions used before the study feed,

illustrated as presented to mothers on a tablet via the Feed2go survey app.

SEMI-STRUCTURED PRE-DELIVERY INTERVIEW QUESTIONS

o In the past, has your baby been given medicines/nutrients using
commercial devices, e.g. oral syringes, and how did you feel about it?

o What is your biggest worry for giving medicines or nutrients to your
baby during breastfeeding, and why?

e Why are you/are you not worried about using a nipple shield to give

medicines or nutrients to your baby during breastfeeding?

Table 6.4: Excerpt of semi-structured interview questions used (pre study feed).
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Interview after the study feed

Questions about your/your baby's experience of the study feed

Please read each question carefully. Let Theresa know if you
need any help in answering a question.

Please rate the following sentences.

Use of a nipple shield with a vitamin tablet.
*7. The nipple shield with a vitamin tablet was (g N Not sure |01 Strongly
agree gree ot sure isagree disagree
easy to use.
*8. The nipple shield with a vitamin tablet was (g N ) Strongly
agree gree |Not sure |Disagree disagree
comfortable to wear.
*9. My baby latched as usual.
*10. My baby breastfed as usual.
*11. I am worried about having to use a nipple
Shleld agree disagree

Figure 6.4: Excerpt of structured interview questions used after the study feed,

illustrated as presented to mothers on a tablet via the Feed2go survey app.

SEMI-STRUCTURED POST-DELIVERY INTERVIEW QUESTIONS

e What did surprise you the most when you compare your expectations
to your experience of giving the vitamin to your baby during
breastfeeding?

e Which of your expectations was least met, i.e. which experience was
not at all similar to your expectation?

o Why do you/do you not prefer to give medicines or nutrients during
breastfeeding over oral syringes? What would have to be changed, so

that you would prefer it?

Table 6.5: Excerpt of semi-structured interview questions used (post study feed).
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Data analysis. Semi-structured interviews were transcribed verbatim and po-
tentially identifiable data anonymized; tablet-based questionnaires were evaluated
quantitatively. Interview analysis was facilitated by ATLAS.ti (Scientific Software
Development GmbH) using an inductive approach of thematic content analysis
[53, 74]. Hereby, an initial coding framework emerged following both pre-reading, a
line-by-line open-coding approach, and re-grouping steps. The final coding frame-

work was developed by means of iterative revisions within the research team.

6.2.4 Ethics approval

The study was approved by the London - Brighton & Sussex Research Ethics Com-
mittee (18/L0O/0551), with subsequent approval by the Health Research Authority
(HRA), as well as the Cambridge University Hospitals R&D and Insurance De-
partment. Applications were submitted via the IRAS system, comprising almost
100 pages of documentation. All participants provided their written informed con-

sent to be quoted anonymously in this publication.

6.3 Results

Out of a total of 60 infants screened, including four twin pairs, 43 were eligible
for participation. Reasons for ineligibility included: Health problems or feeding
difficulties (9), change to bottle feeding (4), discharge (4). 26 mother-infant dy-
ads provided their consent, of which 20 dyads completed the full study protocol
(Table 6.6). Reasoning to decline participation included: Mother felt overwhelmed
with the establishment of breastfeeding (3), mother refused non-clinical
blood samples (3), mother refused vitamin administration (1), mother had stopped
using a nipple shield (2), no reason provided (8). Non-completion and exclusion from
analysis was a result of one of the following: change to bottle feeding (1), discharge
before study feed (2), blood sampling time not kept (2), parent-led withdrawal (1).
The total number of participants was determined according to guidelines for qualit-
ative research and feasibility studies [231-233], and based on reaching information
saturation [77, 234].
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CHARACTERISTICS

MEAN (RANGE) OR
N (%)

Mother’s age, mean (range) [years] 32.4 (23 - 39)
Total number of children, N (%)

1 9 (45)

2.3 10 (50)

>3 1 (5)

Infants’ gestational age at birth, N (%)

Extremely preterm (<28 weeks) 1 (5)

Very preterm (28 to <32 weeks) 2 (10)

Moderately preterm (32 to <37 weeks) 4 (20)

Full term (37 to <41 weeks) 8 (40)

Late term (41 to <42 weeks) 5 (25)
Infants’ birth weight, mean (range) [gram)] 2769 (890 - 4145)
Stay of infant on NICU, N (%)

Yes, up to 1 week 5 (25

Yes, 1 week or longer 7 (35)

No 8 (40)
Infants’ age at time of study, mean (range) [days] 16.2 (2 - 70)
Infants’ corrected gestational age at time of -3.7 (-30 - 15)
study, mean (range) [days]

Duration infant has been breastfeeding, mean 6.7 (2 - 17)
(range) [days]
Exclusive breastfeeding at time of study, N (%)

Yes (35)

No, also NG (45)

No, also bottle (20)

Use of nipple shield, N (%)

For current infant 9 (45)

Only for a previous infant 1(5)

Never 10 (50)

Table 6.6: Characteristics of study participants (mother-infant dyads, N = 20).
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6.3.1 Vitamin B12 delivery

In all study feeds, complete tablet disintegration and delivery of the full vitamin
B12 dose was achieved. No residual tablet was left after the study feeds, and the
tablet’s presence in the shield did not appear to affect feeding. Percentage uptake
of the administered dose and the percentage increase in blood serum vitamin B12
are illustrated in Table 6.7. A pharmacokinetic-dependent increase to 3856 pg/mlL
(1506 — 8413) from a baseline of 498 pg/mL (236 — 681) in infants aged 19-70 days,
and 1136 pg/mL (610 — 1743) from a baseline of 549 pg/mL (303 — 925) (infants
<7 days of age) was observed. Detailed blood serum vitamin B12 levels pre and

post study feed for each infant are illustrated in the Appendix section.

Increase of blood Uptake of the

serum vitamin B12 [%] | administered dose [%]
Infants aged <7 days 126 £ 79 0.0072 £+ 0.0029
Infants aged 19-70 days | 656 + 619 0.0329 + 0.0173

Table 6.7: Vitamin B12 serum increase and uptake of the administered dose
(n = 16). Four pairs of blood samples (pre and post study feed) were excluded

from analysis due to haemolysis, affecting accuracy of the vitamin B12 assay used.

6.3.2 Mixed methods approach

Semi-structured interviews before and after the study feed, assessing maternal ex-
pectations and experiences, lasted 7.7 min (range 4.4 —16.6 min) and 7.0 min (range
3.5 — 12.2 min), respectively. Results and relevant quotes of expectation are illus-
trated in Table 6.8. A summary of the maternal experience and perceived accept-
ability of therapeutic delivery from a nipple shield during breastfeeding, including
quotes of experience, is provided in Table 6.9 and Table 6.10. For all quotes used,
content in square brackets was edited to improve clarity and brevity. The abbrevi-
ation “NS” (nipple “shield) and “no NS” (no nipple shield) provides an indication
about the current nipple shield use of the participating mother-infant dyad.
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Reported expectations

Maternal expectations about therapeutic delivery during breastfeeding can be clas-
sified into two dyads of themes: worry and curiosity, as well as perceived emotional
and practical benefits. Concerns arose with regard to the nipple shield itself, as well
as to the vitamin inside its nipple teat. Mothers without previous experience of us-
ing a nipple shield, worried predominantly about the infants’ reaction and behaviour

during the study feed, including both the infants’ latching and overall feeding.

"It might take some [time] getting used to. I don’t know how she is going
to do with a nipple shield. And I don’t know whether it is going to affect
her, I mean the way that she latches." [M12, no NS]

'T guess it feels like this barrier in between the breast and them feeding.
[...] And it might feel a bit alien to the baby [...]." [M4, no NS]

For mothers who had previously used nipple shields, worries focused exclusively
on the tablet’s disintegration properties, its potential taste, and implication on

breastfeeding practice.
"[...] will it dissolve, and will she taste, be able to taste it?" [M2, NS]

'l don’t have any particular worries. Oki, I suppose if I was going to
have a worry it would be that it would give them a negative experience
of breastfeeding and then would put them of breastfeeding." [M6, NS]

In spite of their worries, mothers expressed their positivity and curiosity in attempt-

ing vitamin delivery from a nipple shield during breastfeeding.

'l think it’s worth looking into. It is something I have never thought
about. I think it is a good idea." [M12, no NS]

"It is just quite exciting to see how it works."[M2, NS]

Therapeutic delivery whilst breastfeeding was associated by all participants with
the expectancy of an improved emotional situation and enhanced convenience (see
Table 6.8). On an emotional level, mothers assumed a reduction of stress for both

mother and infant, while some mothers also referred to an enhancement in physical
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intimacy (see Table 6.8). With regard to practical considerations, anticipated be-
nefits were related to time saving, as well as fewer dosing errors using solid dosage
forms and its association of being “less messy” [M2, NS]. Both emotional and prac-
tical benefits were associated by all mothers with breastfeeding as a more “natural”

method of delivery compared to oral syringes.

"It seems a more natural way of administering medication. Because he
would have to nurse in this manner. So this shouldn’t be too different

from that natural process."'[M5, no NS]

Reported experiences

Discussing their experience of therapeutic administration during breastfeeding, moth-
ers most frequently discussed the following: the experience as being positive, their
feeling of surprise about its ease and the infant’s positive perception, as well as con-
solidated positive thoughts around the use of nipple shields for therapeutic delivery.
Aligning with their previous expectations, mothers associated use of the nipple
shield with the vitamin B12 tablet with an ease of use and comfort, and referred
to it as positive. At the same time they shared their surprise about their infant’s
contentment during both feeding and vitamin delivery (Table 6.9), admitting that
they had expected a difference in the infant’s breastfeeding behaviour. Hereby,
mothers attributed their worries prior to the study feed to the lack of experience

and emotional circumstances.

'T think those worries were probably fear of the unknown. Not ever using
a nipple shield before. Sort of remembering how they were three years
ago, when I saw them in the shops, and they were a little bit alien-
looking. [...] Tsuppose not having that practice or that experience made
me think 'Oh, what is this going to feel like? And is it going to be a
barrier to feeding? And is he going to latch properly?” But actually, all
of that was fine." [M4, no NS]

Based on the positive reaction of breastfed infants and the maternal assessment that
“the nipple shield didn’t hinder that natural breastfeeding sensation or process” [M5,
no NSJ, 95 % of mothers expressed that they are not worried to use a nipple shield
at times for therapeutic delivery, particularly in light of its beneficial implications

for therapeutic administration.
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'T think the thing is, the benefits outway any of the potential problems.
So I think that [since I am a midwife] I would definitely advocate the use
of nipple shields under those circumstances to give medication, because
actually, I think the benefits of this far outway the risks of any nipple
confusion, which - to be honest with you - if you are gonna use a nipple
shield for ten minutes and the drug dissolves, I don’t really think you

can cause any harm." [M6, NS]

Appropriate guidance was requested for feeds, during which only incomplete delivery

of the full dose was achieved.

"So my thought would be: What would you do - if it was an actual drug
- and [you had] given only part of a dose? " [M2, NS]

Overarching themes: perceived advantages and acceptability

When asked to comment on the overall method of therapeutic delivery during breast-
feeding, considering its implications for future use, mothers expressed their belief
that it was “less invasive” [M7, no NS|, and “not an aggressive method of deliv-
ery” [M16, no NS], which meant to them that “you are not forcing them” [M20,
no NS|. It emphasised the potential of therapeutic delivery during breastfeeding to
de-medicalise infant treatment by combining it with the natural process of breast-
feeding. This was seen as a particular advantage for mothers with prior neonatal
intensive care experience, providing a means to ease the emotional burden of the

infants’ past medical journey.

'T think what’s really nice, especially for [my daughter| - because she
started off her life being poked and prodded, and having things stuck in
her - that this is such a lovely... like for babies who’ve had to undergo
all that, to have something so natural, is lovely." [moved to tears] [M12,
no NSJ

"In particular, I think, for my daughter, because she has been in a hos-
pital for three weeks, I would like something more natural for her from
now on. She had - she has - a tube in her nose, and I hope that in the
future, we don’t have anything clinical, you know, to deal with. [...] the
thought [of it] brings us back here. And not that it has been a hor-
rible experience [on the NICU], but it has been very scary. [...] at the
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moment, for us everything that has to do with syringes and medication
makes me think of NICU and, you know, this very scary part of her life"
[M19, NS]

All mothers advocated for oral infant therapeutic administration during breastfeed-
ing to become available to parents in the future, with the majority preferring this
method of infant therapeutic delivery to existing options (see Table 6.10). Reason-
ing for availability included that it would increase the range of technologies available
to them, and provide “choices to make things simpler” [M8, no NS]. A range of dif-
ferent technologies was seen as a possibility to respond to a mother’s and infant’s
individual preferences, to adjust to the type of therapeutic to be administered, while
also making it possible for the partner and family to help with therapeutic admin-

istration.

"[...] at the end of the day, as parents we have to make sure to give
our children medications when they need them, and in the most calm,
you know, not upsetting way possible for them. So, having the choice,
since every child is different... there isn’t just one way to make it easier,
I think. So having more ways means that there will be more children
having the best way." [M19, NS]
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LIKERT SCALE EVALUATION

BEFORE AFTER CHANGE | QUOTE OF EXPECTATION
STUDY FEED
coowill 70+16 | 83+ 1.8 +19 % | “They are upset, but you need to give the
be/was easier medicine first. So then you have to get
than using an that all sorted out. Then they are crying,
oral syringe. because they are hungry, and by the time

you actually start to feed, they are
already really distressed. Whereas [
guess, if you can do it all in one go, then
that is just going to be a bit easier.”

[M9, NS]

“l...] you are doing breastfeeding
anyway. Hopefully it will be less messy.
There is no sort of error with calculating,
mismeasuring with the syringes. You
have just one tablet and that’s the dose.”
[M2, NS]

“Because you are already breastfeeding, it
makes it a bit simpler in that sense. That
it’s faster with what you are already

naturally anyways doing.” [M8, no NS]

...will make/ | 7.2 £2.0 | 8.6 1.5 | +19% | “[...] I think it would be positive for the
made me less mother, if it is positive for the baby. [...]
worried. So I am just making the assumption it

will be nicer for [my baby] and in turn it
will be nicer for me.” [M6, NS]

“Probably [I’d be] more confident in
giving medicine, to be honest. Because
then it’s not having to stress him out, nor
do I stress me out.” [M10, NS]

“I would probably feel more comfortable
doing it this way, just ‘cause it’s
something we are already doing.” [M17,
NS]

Table 6.8: Comparison of maternal experience and expectation of vitamin B12

delivery during breastfeeding (N = 20).
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LIKERT SCALE EVALUATION

BEFORE AFTER

CHANGE

QUOTE OF EXPECTATION

STUDY FEED

... will help/
helped me to
feel closer to

my baby.

77+16 | 84+ 1.7

+9 %

“I would probably going to be closer to
him and it would feel more like a natural
part of the feed, rather than kind of going
away, taking the medicine out of a bottle,
putting it in a syringe, and then feeding
it to him.” [M9, NS]

“I don’t know if it really changes
closeness, because it is such a short. ..

it’s such a snapshot of time.” [M4, no NS]

Lowill
make/ made
my baby feel
less upset/

distressed.

77+15 | 86+14

+12 %

“I think, if you are able to give your baby
medication in a more natural way where
it is just part of their routine anyway, I
think that’s good. I think it’s less
stressful.” [M12, no NS]

“I think it’s a good idea, ‘cause it’s a way
of them getting the medication that’s
doing something they would normally do.
You are not forcing them. It’s a natural
process.” [M20, no NS]

“I imagine the nipple shield would be less
stress for the baby. Because it’s part of a
regular interaction. Whereas a syringe
would be something completely new,
external coming in.” [M16, no NS]

“I guess, if baby is already familiar with a
nipple shield, it shouldn’t notice the
difference of receiving something else as
well. So I guess that would be the least
invasive way of delivering. If a baby is
not familiar with a nipple shield, then I
don’t know if it would be as smoothly
received. Because that’s another thing
that the baby has to adapt to, that would
change.” [M16, no NS]

Table 6.8 continued: Comparison of maternal experience and expectation of vitamin
B12 delivery during breastfeeding (N = 20).
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AGREE
(STRONGLY)

QUOTE

The nippl

e shield with

a vitamin tablet. ..

...was a
positive
experi-

ence

95 %
(45 %)

“I think it surpassed my expectation. Mainly because I was slightly
concerned about using this silicone and having the tablet, and how
it would all work. Whereas now that I have done it, I can see that
it is actually quite a natural process. [...] I wish I'd be able to
administer all medicines like that rather than using syringes.”

[M5, no NS]

“It was pleasantly surprising, really. [...] You know, it was just an
idea before, and now having done it, I feel good about it. I would
say that it exceeded my expectations.” [M1, NS]

“I think after doing it, using the shield, and having him
breastfeeding normally on it, I'd say it was a really positive
experience. [...] I really think it is a more natural way to deliver
the vitamin.” [M4, no NS]

.. was
easy to

use.

95 %
(65 %)

“I think this method of being able to give medication is so much
easier. [...] You are not having to use a syringe necessarily to give
the medication, which can be quite difficult. [...] It’s part of what
would have been your everyday routine anyway, instead of having to
include something that’s not necessarily something that they would
want to do.” [M20, no NS]

“It was really easy to put on.” [M7, no NS]

“[...] T didn’t feel that I was giving him medicine at all.” [M6, NS]

“[...] this was just such a smooth, easy process.” [M5, no NS]

.. was
comfort-
able to

wear.

95 %
(65 %)

“[Breastfeeding] is a bit different with a shield, ‘cause you don’t
necessarily get the same contact. But I think for the benefits it’s
not enough to worry about. Because the benefits far outway that.”
[M20, no NS]

“How comfortable the shield was for me [...] - T was quite
surprised.” [M5, no NS]

“You know, I was aware that there was a layer in between. But
then it was less painful for me - the whole idea of the nipple shield
is to ease the pain of the nipple, so that actually made it more
comfortable anyway.” [M4, no NS]

“I thought it might be... I don’t know awkward or difficult. I
thought the shield might slip off, or something. But it was actually
very comfortable.” [M12, no NS]

Table 6.9: Maternal experience of vitamin B12 delivery during breastfeeding using

a commercially available contact nipple shield (N = 20).
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AGREE QUOTE
(STRONGLY)

My baby....

...]Jatched 95 % “I was surprised how easily he still latched, and that he didn’t even

as usual. (65 %) notice that there was a nipple shield in the way.” [M7, no NS]
“I think he thought it was a bit strange at first, because he has not
had to use a breast shield before. So it was obviously a different
texture to what he was used to. But once he got used to it, it didn’t
stop him at all. [...] it [also] hasn’t stopped him then going onto
the other side, which didn’t have the breast shield on — which is a
positive.” [M20, no NS]

...breast- 90 % “I couldn’t tell any difference between feeding him with the tablet

fed as (65 %) in there or without. [...] it was completely flawless, it just worked

usual. perfectly.” [M6, NS]

“I was expecting more hurdles there. But there weren’t any. She
did very well. She didn’t have any problems with taste or anything
changing. [...] I think that was my main concern initially: How
would she react to it having the change? And she was absolutely
comfortable with it.” [M8, no NS]

“That surprised me the most, that he just didn’t seem bothered.”
[M5, no NS]

Table 6.9 continued:

Maternal experience of vitamin B12 delivery during breast-

feeding using a commercially available contact nipple shield (N = 20).
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AGREE QUOTE
(STRONGLY)
I prefer to give 85 % “It’s because [breastfeeding is] what she’s used to. And that
medicines/ (30 %) means there is not gonna be a traumatic experience. It’s not
nutrients using gonna be something scary or something that she doesn’t know,
a nipple shield that she doesn’t understand what’s going on. Which is always
over using an helpful [...] especially when the baby is poorly you don’t
oral syringe. want to add more stress to the whole procedure.” [M19, NS]
“It would definitely be something I would consider doing over
a syringe, if I had the option.” [M17, NS]
“Just because it’s natural, it’s the best. That’s how she is
been giving her food.” [M12, no NS]
“To have something simple as that...then I would always
choose the nipple shield, and that option.” [M6, NS]
“Whether I would use it all the time, I don’t know. [...] I
might use a combination of ways. But definitely the fact that
it caused him less stress having it, was a major plus. [...] I
am glad I tried this way as well.” [M4, no NS]
“It has not been a bad experience at all. But I just don’t
know if it is the preferred method for me.” [M11, no NS]
I think the 100 % “I would say vitamins would be more preferable, because (for)
nipple shield (65 %) medicine it depends on how distressed the baby is. Because
could be an sometimes you have to hold them and give them the medicine.
acceptable They are not interested in feeding, they are not feeling that
method for well, and everything. And then it could become a bit hard.”
nutrient [MS8, no NS]
delivery. “I think anything you can save a baby from having to kind of
have to have syringes and things like that.” [M6, NS]
I think the 95 % “I think, as long as it’s proved that they absorb the amount
nipple shield (60 %) they need to absorb, I wouldn’t have an issue with it being

could be an
acceptable
method for
medicine

delivery.

medication as well at all. If anything it’s less stressful, so [...]
you are actually more likely to get the full amount of it
[delivered] in this scenario.” [M20, no NS]

“It could be anything, as long as there is a way to know that
he has definitely got everything. Which... It was really easy
to tell, that the tablet had completely dissolved, and therefore
he had taken the whole tablet. So it’s just making sure he got

the right dose.” [M7, no NS]

Table 6.10: Perceived acceptability of vitamin B12 delivery during breastfeeding

(N = 20).
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AGREE QUOTE
(STRONGLY)
I would like 100 % “I think it would be good, if it is possible. As long as there is
that medicine/ (55 %) proper training on how to give the medicine. But then you

nutrient
delivery during
breastfeeding
becomes
possible for
parents in the

future.

have to have training on how to give a syringe anyway. So it
shouldn’t make much difference, it’s just a different way of
doing it. Similar, but in a less invasive way.” [M7, no NS]
“It’s very intimate with the baby. [...] You are not imposing
anything on the baby, it’s not an aggressive method of
delivery. I think if someone is breastfeeding, this should
definitely be presented as an option, as a way to deliver the
medicine or the nutrient supplement.” [M16, no NS]

“I think it is a perfectly good option. Just ‘cause I don’t
particularly get on with the shield, I think for other mums,
[...] it would be a good idea for some. [...] I think options are
always a good idea.”[M11, no NS]

“It would be much easier in the future if that’s a method.
yes, you have the odd child that likes
the syringe, but not every child does. It varies quite a lot.”
[M20, no NS]

Because the syringe. . .

“I think it is more of a personal choice. It would always come
down to having a choice there. But having a choice is good.”
[M8, no NS]

Table 6.10 continued: Perceived acceptability of vitamin B12 delivery during breast-
feeding (N = 20).

6.4 Discussion

This study is the first to demonstrate the feasibility and acceptability of therapeutic

delivery during breastfeeding using a commercially available silicone nipple shield.

Vitamin B12 delivery

The study showed that vitamin B12 (in tablet form) can be delivered from a

commercially available silicone nipple shield during breastfeeding. Since none of

the administered dose was lost, a common held anxiety with oral syringes and
dosing spoons, uptake of only 0.0072 + 0.0029 % (infants <7 days of age), and
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0.0329 £ 0.0173 % (infants aged 19 — 70 days) of the administered dose can be at-
tributed to vitamin B12 pharmacokinetics. Observations of this study align with
reported literature on a less matured mechanism of absorption in infants, e.g. the
gradual increase in IF excretion throughout the first 4 months of life [222], lead-
ing to a lower uptake of vitamin B12 in infants than suggested for adult subjects
(1 =3 % of the administered dose). In addition, dependence of vitamin B12 absorp-
tion on the infants’ actual age, independent of prematurity or birth weight, repres-
ents a previously unreported finding. Based on the infants’ creatinine
values, no concerns about renal function existed. In accordance with the
literature [224, 225], adjustment of vitamin B12 values within 10 — 24 hours to

those detected in the infants’ blood serum prior to the study feed were expected.

Themes of advocacy

The study also demonstrated maternal advocacy for the availability of therapeutic
administration during breastfeeding, which was motivated by two main themes:
choice and absence of worry. Throughout the study, mothers emphasised the im-
portance of choice, a factor shown to be liberating parents from experiencing a lack
of control [235, 236], while at the same time enabling them to assume responsibility
of their infants’ care and to further their ability in making informed decisions in
favour of their infants’ well-being [237, 238]. The advocacy of choice in oral delivery
technologies, particularly for neonates, might also be driven by a projected relief in
fear of potentially being “kind of stuck when they are not taking the medication” (see
Chapter 3), enabling to elevate the emotional burden associated with therapeutic
delivery to infants. Oral syringes, albeit commonly supplied with commercially
available infant liquid formulations, were associated with a predominantly negative,
medical sensation by mothers. Reasoning included their stimulation of worry and
their role as a reminder of previously experienced medical challenges, with the latter
being especially pronounced for mothers whose infants had undergone a variety of
intensive care procedures. It can be assumed that previously experienced emotional
burden during intensive care is again reinforced by the infants’ efforts in fighting

therapeutic administration [237].
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Use of nipple shields

The exceedingly positive evaluation of therapeutic delivery from a nipple shield
was at odds with literature-based reporting on maternal beliefs around the use of
nipple shields: hereby, nipple shields were characterised to have both significant
benefits in establishing and maintaining breastfeeding [10,11], as well as negative
associations of discomfort, inconvenience, and the fear of nipple confusion [12].
While it was anticipated that recruitment and the interventions’ overall assessment
might be affected by potential negative prejudice, mothers in fact presented a very
positive and curious attitude towards this novel approach of therapeutic delivery,
indicated by a 60.5 % recruitment rate. Moreover, mothers, supported by nursing
staff in the application of the nipple shield to the breast, described the experi-
ence as positive for both themselves and their infants, and indicated that their
infant did not show problems in latching following removal of the nipple shield
after vitamin delivery. Even though half of the participants were not acquainted
with the use of a nipple shield, and the majority of mothers referred to breast-
feeding as their infant’s sole method for oral feeding at the time of study, concerns
about nipple confusion were limited. On the contrary, mothers in fact reported
their relief in having become familiar with the use of a nipple shield under nurs-
ing supervision, enabling them to be prepared if temporary use might be required
in the future. While this observation highlights the need for maternal education
on the practice of feeding with a nipple shield, it also stimulates considerations to
relieve maternal fear of nipple confusion, empowering them to make use of avail-
able tools - if needed - to support them in breastfeeding. The observation of com-
plete tablet disintegration and positive infant acceptance aligns with literature on
the infant’s acquaintance with a variety of tastes and the milk’s taste masking
properties [13-16]. Yet, based on maternal idioms of expressing surprise following
vitamin delivery during breastfeeding, it seems likely that in spite of their hope
for a positive experience, previous encounters of therapeutic delivery and potential
prejudice for the use of nipple shields might have reinforced the connotation of a

more challenging encounter.

Limitations

Limitations of this study include its design as a single centre study with a limited

sample size. Moreover, participants might have been biased towards a more favour-
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able evaluation of therapeutic delivery during breastfeeding, as only mothers willing
to use a nipple shield for the delivery of vitamin B12 consented to participate in
the study. It has to be highlighted however that the majority of participants had
not used a nipple shield before for feeding their current infant, and that potentially
biased expectations would have been resolved when reporting on their experience
after the study feed. Further research is needed to investigate use of a variety of
formulations for different medical indications and with an increased sample size in

both developing and developed countries.

6.5 Conclusion

This study evaluated the feasibility and acceptability of therapeutic delivery to in-
fants during breastfeeding by means of i) vitamin B12 delivery from a commercially
available ultra-thin contact nipple shield, ii) measurement of the infants’ vitamin
B12 blood serum levels 6 — 8 hours after the study feed, and iii) a mixed method
approach. Delivery of the full dose was achieved, and results showed that thera-
peutic delivery during breastfeeding was perceived as a feasible approach. Mothers
provided their unanimous advocacy for its availability to parents in the future, re-
lating to the following two themes of advocacy: (1) the desire of parents to be
given choices with regard to their infants’ health, (2) their preference of replacing a
mostly medically associated practice of delivery with one dominated by the natural
process of breastfeeding. Further investigations could focus on a variety of infant

therapeutic formulations and indications.
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Concluding remarks

7.1 Final conclusions

The exploration of therapeutic delivery from a nipple shield during breastfeeding
has taken place within the Department of Chemical Engineering and Biotechnology
since 2010, and progress was made in establishing a means to enable in-vitro breast-
feeding simulation in order to analyse different formulations and modified nipple
shield designs. Yet, due to incomplete therapeutic delivery, the need for further
formulation investigations for delivery into human milk remained, so did the evalu-
ation of the in-vivo feasibility and acceptability of therapeutic delivery from a nipple
shield during breastfeeding. The presented doctoral work provided insight into both
areas of need by means of lab-based and clinical investigations. In the following, the
objectives outlined in Chapter 1 will be reviewed and study findings summarised.
Subsequently, their contribution to previous knowledge will be presented, resulting

implications synthesised, and suggestions for further research provided.
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7.1.1 Overview of results

Objective 1: TO INVESTIGATE NOVEL THERAPEUTIC DOSAGE FORMS FOR DE-
LIVERY FROM A NIPPLE SHIELD INTO HUMAN MILK

(a) Fibrous matrix: non-woven Texel fibre mats for zinc sulphate deliv-
ery. The ability of Texel non-woven fibre mats to deliver zinc sulphate pentahydrate
from a modified lip-containing nipple shield into human milk was investigated, and
quantitatively compared to previous research by Scheuerle et al., using rapidly dis-
integrating tablets. Two types of Texel non-woven fibre mats of varying thickness
and different gram per square metre values were used, and zinc detection performed
via Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). A total
recovery of 64.00 + 0.01 % and 61.64 + 0.01 % was achieved after 93.09 + 1.08 g
and 98.15 4+ 0.97 g of human milk had passed through the modified lip-containing
nipple shield. This totals 20 — 48 % superior release compared to previous zinc
delivery studies using rapidly disintegrating tablets. Incomplete delivery is believed
to be attributed to the accumulation of milk components within the porous mat
structures, and structural changes of loaded fibres. Further research is required to

establish Texel non-woven fibres as a generalized matrix for oral therapeutic delivery.

(b) Hydrogel: liquid-core sodium alginate calcium lactate hydrogels for
iron sulphate delivery. The feasibility of liquid-core hydrogels for therapeutic
delivery from a nipple shield during breastfeeding simulation was investigated by
means of ferric sulphate pentahydrate. It was the first time that a semi-solid dosage
form and a commercially available ultra-thin silicone nipple shield have been used
during in-vitro breastfeeding simulation into human milk. Release of ferric sulphate
pentahydrate was quantified using absorbance measurements of a salicylic assay. An
absolute recovery of 44.35+5.43 % loaded ferric sulphate pentahydrate was obtained
after 10.58 & 0.09 g of human milk had passed through the nipple shield. This
finding is superior to the recovery of previously studied dosage forms. Consequently,
based on their superior delivery properties, ease of fabrication, and cost-efficiency,
liquid-core alginate hydrogels represent a promising dosage form for delivery during
breastfeeding. Incomplete recovery may be attributed to a combination of both iron
retention within the hydrogel’s core shell, as well as formation and accumulation of
iron-casein precipitates within the complex apparatus’ network. Further research is

required to improve the gel’s handling stability and shelf life characteristics.
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Objective 2: TO EXPLORE THE CLINICAL IMPLICATIONS OF THERAPEUTIC DE-
LIVERY DURING BREASTFEEDING

(a) Descriptive qualitative study: need and design preferences in a high-
resource setting. The concept of drug delivery during breastfeeding has originally
been developed as a means to overcome the challenges associated with therapeutic
administration to infants in low-resource settings. In this low-resource environment,
therapeutic delivery during breastfeeding was considered “potentially acceptable”
([45], p. 68). Yet, its suitability in a developed country, where dosing spoons and
oral syringes are readily available, had not been previously explored. The qualit-
ative descriptive study conducted at the University of Cambridge Addenbrooke’s
Hospital NHS Trust provided evidence that use of a nipple shield for therapeutic
delivery during breastfeeding was believed to be acceptable to parents and staff in
a high-resource environment and to address previously neglected challenges faced
with current delivery technologies. Particular benefits were anticipated for infants
in neonatal special care, among others the potential to foster mother-infant bond-
ing and encourage parental empowerment. Concerns raised related among others
to taste masking and timing of feeding and therapeutic administration. Parents
advocated for use of a commercially available ultra-thin contact nipple shield over

a modified lip-containing design.

(b) Clinical feasibility study: experience, acceptability, and advocacy in a
high-resource setting. Feasibility and acceptability of therapeutic delivery from
a nipple shield during breastfeeding was investigated as part of a clinical study with
twenty mother-infant dyads below 12 months of age. The study involved the de-
livery of vitamin B12 to infants during breastfeeding from a commercially available
ultra-thin contact silicone nipple shield, and the assessment of maternal expecta-
tion and experience by means of a mixed methods approach. Participants reported
a positive experience, noting that the nipple shield, containing a small tablet in
its silicone teat, did not affect their infants’ feed or comfort of breastfeeding. It
also demonstrated delivery of the full dose of vitamin B12. Mothers unanimously
advocated for this approach to become available to parents in the future, with
85 % expressing their preference for therapeutic administration from a nipple shield
during breastfeeding over the use of oral syringes. Reasoning included the desire

(1) of being provided with choices in relation to their infants’ health, (2) to replace
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a mostly medically annotated practice of therapeutic delivery with one dominated

by the natural process of breastfeeding.

7.1.2 Synthesis

Formulation investigation. Three formulation types have been investigated,
using both the modified lip-containing nipple shield and a commercially available
ultra-thin contact nipple shield. While the work on formulation development for dis-
integration during breastfeeding is far from being exhaustive, research findings com-
plement previous investigations using rapidly disintegrating tablets and HPMC cap-
sules, both of which were inferior to non-woven fibres and liquid-core
hydrogels [4, 44]. A summary of previously studied formulations and therapeut-
ics via in-vitro breastfeeding simulation experiments is provided in Table 7.1, key
information on formulation evaluations conducted as part of this doctoral thesis is
illustrated in Table 7.2. Out of all formulations studied for use in human milk, liquid-
core hydrogels allowed for the highest and non-woven fibres for the second highest
release within 2 min of breastfeeding simulation, amounting to 44.35 + 5.43 % of
loaded ferric sulphate pentahydrate (Chapter 5, [47]), as well as 28.95 4+ 9.52 % and
30.50 + 4.33 % of zinc sulphate pentahydrate (Chapter 4, [38]), respectively. In
comparison, only about 3 — 5 % of zinc sulphate was released from rapidly dis-
integrating tablets within the same time and no detectable amount from HPMC
capsules [4, 44]. When comparing the total release values, it has to be noted that
experimental procedures for the investigation of liquid-core hydrogels were adapted
to account for breastfeeding physiology of premature infants, with a decreased pres-
sure amplitude and a less effective mean pressure to drive milk from the breast and
through the nipple shield, and that Fe3T-casein precipitation occurred. To date,
liquid-core hydrogels are the only dosage form, studied using breastfeeding simu-
lation, that enable therapeutic release simply by means of mechanical drivers, i.e.
flow rate, suction frequency, and vacuum applied. In contrast, previous research has
shown the dependence of tablet disintegration on the milk’s fat content, homogen-
eity, and macromolecule composition, also assumed to be affecting the release from
fibrous networks. Differences in release between in-vitro and in-vivo breastfeeding
have been highlighted as part of the feasibility study, demonstrating limitations of
breastfeeding simulation experiments. These include its lack of mimicking tongue

peristalsis, shown to be an important factor for therapeutic release from dosage
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forms within a nipple shield [43], as well as the apparatus’ void space, making it
possible for therapeutic-milk precipitates to be trapped and accumulate. Sublingual
vitamin B12 tablets were also analysed by means of in-vitro breastfeeding simula-

tion, before being used for in-vivo delivery from a nipple shield.

PARAMETER RAPIDLY DISINTEGRATING TABLETS | HPMC
CAPSULES

Reference [42] 4] [44]

Nipple shield used Modified nipple | Modified Modified
shield, mesh lip-containing capsule nipple
holder nipple shield shield

Dosage form related

Diameter [mm] 8 8.08 — 8.09 4.8

Height [mm)] N/A 3.65 — 4.65 12

Physical state Solid Solid Solid shell,

powdered core

Therapeutic related

Therapeutic Sulforhodamine | Zinc sulphate Zinc sulphate

delivered B

Analysis method Absorbance ICP-OES ICP-OES

used

Approximate 100 100 100

amount of human

milk passed [g]

Time of 20 20 20

breastfeeding

simulation [min]

Absolute recovery <80 32 —51 No recovery

achieved into human detected

milk [%]

Table 7.1:

previous literature.

Summary of in-vitro breastfeeding simulation experiments, reported in
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PARAMETER NON-WOVEN ALGINATE SUBLINGUAL
FIBRE MATS HYDROGELS TABLETS

Reference Chapter 4, [38] | Chapter 5, [47] | Chapter 6

Nipple shield used Modified Commercial Commercial
lip-containing ultra-thin ultra-thin

nipple shield

contact nipple
shield

contact nipple
shield

Dosage form related

Diameter [mm] 10 14.28 8
Height [mm] 1.8/2.1 4.91 5
Physical state Solid Solid shell, Solid

liquid core

Therapeutic related

Therapeutic Zinc sulphate Iron(III) Vitamin B12
delivered sulphate
Analysis method ICP-OES Absorbance of Weight
used trisalicylate difference
complexes of
iron(I1I)
Amount of human 93.09 + 1.08/ 10.58 + 0.09 91.90 +0.08
milk passed [g] 98.15 + 0.97
Time of 20 2 20
breastfeeding
simulation [min]
Absolute recovery 64.00 £+ 0.01/ 44.35 £ 5.43 T4£9
achieved into human | 61.64 + 0.01

milk [%]

Table 7.2: Summary of conducted in-vitro breastfeeding simulation experiments

conducted as part of this doctoral thesis.
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Thereby, release of 74 + 9 % was achieved within 20 min of breastfeeding simula-
tion, contrasting to findings from the feasibility study, whereby vitamin B12 tablets
dissolved completely in all study feeds of 15 — 20 min duration. For those infants
whose breastfeeding was paired (feeding on both breasts) or who were losing their
latch at some time during the study feed, it could be noted that tablet disintegration
was already completed after 5 — 10 min of breastfeeding. These findings emphasize
both the importance of in-vitro experiments in order to provide a general assess-
ment of formulation suitability for delivery into human milk, but likewise the need
for clinical investigations in order to account for current limitations in breastfeeding

simulation.

Qualitative research. Presented qualitative data complements research conduc-
ted in Kenya and South Africa [45, 46], by providing views of parents in a de-
veloped setting. In addition, the descriptive qualitative study also benefited from
enabling trained medical staff to contribute their thoughts on the potential of thera-
peutic delivery from a nipple shield during breastfeeding. It was the first time that
this potential end-user group and staff, likely to act as advocates or opponents for
therapeutic administration from a nipple shield, were interviewed. As the work on
therapeutic delivery during breastfeeding is of interdisciplinary nature, particularly
medical input is key, but unfortunately had been lacking prior to research presented
in this doctoral thesis. These studies have been helpful in identifying previously
unrealized limitations of the modified nipple shield designs, presented in Chapter 2.
These included among others the decreased space within the modified nipple shield,
which was believed to be not compatible with maternal physiology. Likewise, par-
ents gave preference to a reusable commercially available ultra-thin contact nipple
shield, which contrasts to findings by Hart et al. and Flynn et al. [45, 46]. In both
studies, mothers had advocated for a disposable nipple shield with a circular shape,
based on the fear that a reduced base would increase the likelihood of the shield to
fall off the breast [45, 46]. No assessment on the lip contained within the shield’s
teat was made, indicating that maternal preference for a modified nipple shield was
likely based on appearance of the shield’s base. Following multiple years of work
with modified nipple shields, research presented in this doctoral thesis thus sets a
new direction for the development of therapeutic delivery during breastfeeding. It
moved its focus away from the design of a modified nipple shield towards the iden-

tification of approaches to enable use of commercially available ultra-thin contact
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nipple shields for convenient and reliable administration of therapeutics to breastfed

infants.

Clinical study. Clinical work presented in Chapter 6 was unique in being the
first in-vivo assessment of therapeutic delivery during breastfeeding. Previously,
interactions with parents and staff had only been based on the visual assessment
of nipple shields and dosage forms, as well as its hypothetical use during breast-
feeding (Chapter 3, [45, 46]). Findings of the presented feasibility study confirmed
the assumption that therapeutic delivery from a nipple shield could serve as an al-
ternative to existing oral infant delivery technologies. Even more so, 95 % of mothers
were happy using a nipple shield for therapeutic delivery and 85 % preferred this
method to oral syringes. This highlights that therapeutic delivery during breastfeed-
ing is not just a tolerated alternative, but in fact, an alternative regarded as superior
by the majority of mothers who participated in the study. Irrespective of personal
preference, experience in using nipple shields, or exposure to neonatal intensive care,
the mothers’ unanimous advocacy of therapeutic administration during breastfeed-
ing acknowledges the need to provide parents with a choice in oral infant therapeutic
delivery. “Choice” was identified as a main driver for advocacy of therapeutic deliv-
ery from a nipple shield, alongside the desire to turn the negative, medical sensation
of therapeutic administration into a positive experience associated with the natural
process of breastfeeding. As both themes are not constrained to a country’s state of
development or available resources, it can be hypothesised that therapeutic delivery
from a nipple shield during breastfeeding has the potential to serve as an alternative

for therapeutic administration to infants globally.

7.2 Outlook

Further progress is needed to move closer towards making therapeutic delivery from
a nipple shield during breastfeeding available to parents in the future. The work of
interdisciplinary nature focuses on complementing formulation investigations, fur-
thering clinical research, as well as seeking support in the translation of research

efforts into medical practice.
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7.2.1 Formulation investigations

Non-dissolvable and dissolvable fibres. In order to continue presented work on
Texel non-woven fibre mats (Chapter 4), research to confirm its in-vivo suitability
could be undertaken, including the investigation of fibre cohesion to exclude the
possibility of fibre break-off, palatability, biocompatibility, and long-time stability.
In addition, further research using different polymeric networks could be conduc-
ted, including the use of different fibre types and materials, such as the natural
polymers  cellulose  and  xanthan  with  enhanced  biocompatibility
characteristics [239-241]. Particularly fast-disintegrating electrospun fibres could be
promising for two reasons: they are capable of enhancing the solubility of even poorly
water-soluble drugs through incorporation in their amorphous form or as nanocrys-
tals [242, 243], and enable their full delivery when disintegrating, thereby actualising
the end-users’ preference to visually observe the delivery process (Chapter 3). Dur-
ing electrospinning, electrostatic forces are used to achieve fibre formation of both

natural and synthetic polymers [243].

Dissolvable films. To date four out of the five types of dosage forms, believed to be
suitable for delivery into human milk as outlined in Chapter 2, have been explored,
leaving dissolving films as an investigation yet to pursue. Such films, designed to
dissolve in the oral cavity, are referred to by the European Medicines Agency (EMA)
and the Food and Drug Administration (FDA) as orodispersible films (ODFs) and
soluble films, respectively [244]. Originally developed to help address the needs of
geriatric patients as well as younger children with swallowing difficulties, dissolvable
films are designed to enable release of a full dose within less than one minute when
being exposed to saliva [244, 245]. In addition, ODFs enable convenient alteration of
doses by adapting the number of strips used for administration [87]. Most common
are polymeric films fabricated using a single or a mixture of polymers, comprising
celluloses, starch, semi-synthetic, synthetic, and other polymer classes [244], but
also protein or protein-polymer films [246]. Particularly promising in the context of
therapeutic delivery into human milk is the investigation of films or 'melts’” made
from casein, a protein naturally occurring in milk. Films of CaCas or NaCas blen-
ded with glycerol (Gly) are transparent and tasteless [246], characteristics preferable
for administration during breastfeeding. Originally developed for intended use as
edible food packaging [246], these films would also possess the stability needed to
be placed within the nipple shield’s teat. For each type of therapeutic and its inten-
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ded concentration, iterative adaption of the original fabrication protocol is required
to ensure film formation despite the presence of a therapeutic in the CaCas/Gly
or NaCas/Gly mixture. Film formation is achieved by spreading the mixture on
a silicone baking tray, followed by a controlled trying process in an environmental
chamber [246].

Liquid-core capsules fabricated through crystallization. Another poten-
tial approach for the fabrication of liquid-core dosage forms is the encapsulation
of molecule solutions by means of crystallisation. The literature documents its
wide range of applications, such as the fabrication of dissolvable milk capsules
for use in hot drinks or of small pastilles with liquid content for pharmaceutical
applications [247, 248]. The process is also already used commercially, e.g. in the
confectionery industry for the manufacture of sugar coated liquid-core sweets [248].
Formation is most commonly based on the presence of a sugar or sugar substitute,
such as xylitol, in a saturated liquid formulation, poured into moulds lined with
seeded particles [247, 248]. A cooling steps subsequently leads to the formation of
a crystal shell [247, 248]. Crystallisation protocols have to be optimised for each
therapeutic or food product solution, the type of sugar or sugar substitute used, and
the size of pastille/capsule to be obtained [247, 248]. This method of dosage form
fabrication seems particularly suitable for formulations containing a high amount of
sugar, such as CALPOL® Infant Suspension. One dose of CALPOL® Infant Sus-

pension (5 mL) contains 2.2 g of sucrose.

3D-printed dosage forms. Computer-assisted three-dimensional printing is a
technique whereby an ink-jet printing technology enables a binder material to be
printed into layers of powder, resulting in a 3D object [249]. 3D printed dosage
forms provide a range of beneficial characteristics, such as personalization, precise
dose control, and the production of dosage forms with complex therapeutic release
profiles [250, 251]. This technique is particularly advantageous for paediatric applic-
ations, allowing for the production of smaller quantities and providing an incentive
for the development of formulations optimised for use in paediatrics, particularly in
its even smaller neonatal sub-population. It can also help to reduce potential ad-
verse reactions and enhance tolerance [251]. Evidence of the potential of 3D printed
dosage forms is shown in the literature, and gains increasing commercial interest.

The first 3D printed orally disintegrating tablet was approved by the Food and
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Drug Administration (FDA) in 2015 [252]. A range of 3D printed dosage forms are
possible, for example tablets or films [87, 253].

7.2.2 Clinical investigations

The positive feedback received by mothers as part of the clinical feasibility study
is promising and encourages further clinical research with the objective to increase
total sample size, as well as to evaluate use of different formulations and their ap-
plication for a range of therapeutic indications. Since acceptability can vary based
on the cultural, social, and geographical setting, investigations should be designed
to account for a range of factors believed to impact acceptability of therapeutic

delivery from a nipple shield during breastfeeding.

High-resource settings. In order to further presented clinical work in a high-
resource environment, future research could investigate use of additional commer-
cially available formulations for delivery during breastfeeding, aiming at supporting
therapeutic administration for a range of clinical neonatal indications. Investig-
ations could among others include the delivery of dextrose gel for the treatment
of neonatal hypoglycaemia, affecting 5 — 15 % of newborns and putting them at
risk for irreversible brain injury [254]. It was hypothesized that administration of
dextrose gel from a nipple shield during breastfeeding could be beneficial in two
respects. i) It could support the stimulation of maternal milk production. ii) It
could enable a slower, more favourable rise of the infants’ blood glucose levels, as
the dextrose is swallowed as opposed to absorbed via the buccal mucosa. Yet, care
has to be taken with regard to the gel’s viscosity, which could hamper its delivery
from a nipple shield, and with regard to early use of a nipple shield, requiring guid-
ance based on the expertise by both trained midwives and healthcare professionals.
Additional applications could include the delivery of vitamin and antioxidant sup-
plements to premature neonates [255], probiotics [256], and adjustable human milk
fortification [257]. Since commercially available formulations, both with regard to
suitable solid or semi-solid dosage forms and appropriate dosing for the delivery
from a nipple shield during breastfeeding, do not exist, formulation development

would be required.
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Low-resource settings. Due to the high prevalence of breastfeeding [11], and by
drawing on previous qualitative interviews conducted in Kenya and South
Africa [45, 46], investigations in low-income countries are of particular interest.
Hereby, literature indicates the importance of focusing on the intervention’s suit-
ability for cultural and religious circumstances, while also considering obstacles in
realising its availability and access [45]. The Cambridge University Hospital Global
Network has established links with maternal and neonatal hospital units, and aca-
demic institutions in Botswana and El Salvador, which could facilitate in expanding
investigations internationally. A range or research interventions could be considered.
First, the study protocol could be designed to have the same objectives and end-
points as the feasibility study presented in Chapter 6, enabling direct comparison
of findings in a low- and a high-income environment. In addition, use of alternative
therapeutics could be considered, whereby use of vitamin and mineral supplements
seem most appropriate due to their safety and commercial availability in form of
sublingual tablets or capsules. Due to the high prevalence of anaemia in children
below five years of age, amounting to more than 40 % in Botswana and 30 % in El
Salvador [25], administration of ferrous salt would seem particularly suitable. Lit-
erature reports that oral delivery of 25 mg ferrous iron in six healthy adult subjects
led to a maximum increase in serum iron (pmol L!) concentration by 10 pmol L

4 h post delivery [258], enabling detection by means of blood serum analysis.

7.2.3 Support for translation into medical practice

As indicated previously in the context of design considerations for therapeutic deliv-
ery during breastfeeding, guidance and support by external organisations is required
to make its translation into clinical practice possible. This includes both support
on a policy as well as on an industrial pharmaceutical level. Initial responses to
the overall concept of therapeutic administration from a nipple shield, obtained in
2016 from the Deputy Programme Director at the UNICEF UK Baby Friendly Ini-
tiative, as well as the Research Engagement Officer and VOICES Co-ordinator at
NCT Excellent Practitioner (Antenatal), were generally positive, but highlighted
the need for further investigations, including clinical research. Based on results
presented in Chapter 6, further opportunities for conversations can now be sought.
Likewise, the Royal College of Paediatrics and Child Health, focusing to increase

breastfeeding rates within the UK, could assists in providing advice. To enhance
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visibility of this potential alternative to existing infant therapeutic delivery tech-
nologies, publications of short articles in magazines for professional practice and
research communication, such as “Infant”, a journal for neonatal and paediatric
healthcare professionals available on all neonatal units within the UK, the Univer-
sity of Cambridge Magazine “Research Horizons”, as well as the IChemE magazine,
are intended. Engaging in discussions with healthcare experts, policy professionals,
and the pharmaceutical industry is of high importance in emphasising the need of
and parents’ interest in innovation of infant oral therapeutic administration. Ul-
timately, only in collaboration it will be possible to provide parents with a choice
to facilitate drug and nutrient delivery and lessen current struggles in children - an

endeavour worthwhile, because they are all of our future.
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Appendix

A1l. A parent nursing perspective (page 140 — 146)

Appendix Al illustrates study recruitment material used as part of the qualitative
descriptive study, presented in Chapter 3, including patient information sheets for

parents and healthcare professionals, as well as consent forms.

A2. FEDD feasibility study (page 147 — 153)

Appendix A2 illustrates study recruitment material used as part of the FEDD feas-
ibility study, presented in Chapter 6, including a poster, the patient information

sheet, as well as consent forms for mother and infant.

A3. FEDD vitamin B12 blood serum levels (page 154)

Appendix A3 relates to the clinical investigation in Chapter 6, and illustrates raw

data of the infants’ vitamin B12 blood serum levels before and after the study feed.
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Drug and Nutrient Delivery System: Exploratory interviews

Participant information sheet

We would like to invite you to take part in our research study. Before deciding
whether you take part you need to understand why this research is being done and
what it involves. Please take time to read the following information carefully and talk
to others about the study if you wish. Please ask us if anything is not clear or if you
would like more information. Contact details can be found on the last page.

If you would like to take part, please speak to the nurse who gave you this
sheet.

Introduction to the project

My name is Theresa Maier and | am a PhD student and WD Armstrong Scholar
developing a novel device for delivering medicines to infants during breastfeeding.
A first prototype of the device exists, which has been tested in the laboratory. Its
design will now be optimized based on end-user feedback.

Purpose of the study

This interview study is designed to listen to the opinions and experiences of parents
and healthcare professionals on their experience in oral drug administration to
infants, breastfeeding habits, as well as preferred design characteristics of the novel
drug delivery device. By receiving end-user feedback, | hope to be able to optimize
the design of the novel infant drug delivery device in the most effective way possible,
making infant drug administration safer, simpler and more convenient.

Do | have to take part?

Participation in this study is entirely voluntary. You may withdraw your participation
at any point, including after the interview has started. If you do decide to withdraw, all
information gathered will be immediately destroyed. You will be asked to sign a
consent form prior to the interview starting.

What will happen if | do take part?

The interviews will take place in a meeting room close to the neonatal unit. The
whole process will last for approximately 20 minutes. There will be a pre-interview
briefing and a post-interview debriefing, with the interview itself taking around 15
minutes. The interviewer will ask questions on the topics of drug delivery,
breastfeeding, and on your opinion related to the novel infant drug delivery device.
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The interview will be recorded using a digital voice recorder, which will be keptin a
secure location (see below for more information about confidentiality).

Are there any risks in taking part?

The topic of your baby’s healthcare is clearly a sensitive one, and it may be upsetting
for you to talk about it. There is no obligation to answer any of the questions, and
you may withdraw from the study at any time. Along with the researcher, a research
nurse will usually be present during the interview who can answer any clinical
questions you have which arise during the interview. Care has been taken when
designing this study to minimise any negative impact on the participants.

What possible benefits will there be to taking part?

By taking part in this study you will be contributing to the background research about
current oral drug delivery practices in infants, your attitude towards breastfeeding, as
well as towards using a drug delivery device during breastfeeding. Your answer will
aid the development of a device optimized for clinical use, in particular for a clinical
investigation with mothers and babies in early 2017.

Will my taking part in this project be kept confidential?

Digital recordings of the interviews will be securely stored at Addenbrooke’s Hospital
for the duration of the study. Transcripts of the recordings will be made — where
identifiable data exists in the interview, the transcript will anonymise it. For example,
if a birth weight of 745g is mentioned during the interview, this will be presented in
the transcript as ‘extremely low birth weight’ as per the Bliss Charity guidelines'. The
recordings will be destroyed after six months, or the publication of results, whichever
is sooner. Transcripts will be destroyed after 12 months.

What will happen to the results of the research project?

After writing up the transcripts from all the interviews | will identify common themes
and ideas through the texts. We hope to report the results of this study in a relevant
academic journal. The results will be reported as a discussion of the identified
themes using direct quotes from the interview to help the reader to understand the
point of view of the interviewee. All quotes will be completely anonymous with no
identifiable data present.
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Ethical approval
This project has been registered with the patient experience department at
Addenbrooke’s Hospital.

Contacts for further information

The first point of contact for any queries about the study is the project lead
investigator, Miss Theresa Maier. Any clinical queries should be directed to Dr.
Kathryn Beardsall at Addenbrooke’s Hospital.

Project lead investigator: Miss Theresa Maier, University of Cambridge
email: tm520@cam.ac.uk

Project supervisor: Prof Nigel Slater, University of Cambridge
email: nkhs2@cam.ac.uk

Clinical supervisor: Dr. Kathryn Beardsall, Addenbrooke’s Hospital
email: kb274@medschl.cam.ac.uk
telephone: 01223 746791

Patient Advice and Liaison Service (PALS)

email: pals@addenbrookes.nhs.uk
telephone: 01223 256170
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Drug and Nutrient Delivery System: Exploratory interviews

Participant information sheet

' We would like to invite you to take part in our research study. Before deciding
whether you take part you need to understand why this research is being done and
what it involves. Please take time to read the following information carefully and talk
to others about the study if you wish. Please ask us if anything is not clear or if you
would like more information. Contact details can be found on the last page.

Introduction to the project

My name is Theresa Maier and | am a PhD student and WD Armstrong Scholar
developing a novel device for delivering medicines to infants during breastfeeding.
A first prototype of the device exists, which has been tested in the laboratory. Its
design will now be optimized based on end-user feedback.

Purpose of the study

This interview study is designed to listen to the opinions and experiences of parents
and healthcare professionals on their experience in oral drug administration to
infants, breastfeeding habits, as well as preferred design characteristics of the novel
drug delivery device. By receiving end-user feedback, | hope to be able to optimize
the design of the novel infant drug delivery device in the most effective way possible,
making infant drug administration safer, simpler and more convenient.

Do | have to take part?

Participation in this study is entirely voluntary. You may withdraw your participation
at any point, including after the interview has started. If you do decide to withdraw, all
information gathered will be immediately destroyed. You will be asked to sign a
consent form prior to the interview starting.

What will happen if | do take part?

The interviews will take place in a meeting room close to the neonatal unit. The
whole process will last for approximately 20 minutes. There will be a pre-interview
briefing and a post-interview debriefing, with the interview itself taking around 15
minutes. The interviewer will ask questions on the topics of drug delivery,
breastfeeding, on your opinion related to the novel infant drug delivery system and to
its first clinical investigation at Addenbrooke’s Hospital in early 2017.
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The interview will be recorded using a digital voice recorder, which will be keptin a
secure location (see below for more information about confidentiality).

Are there any risks in taking part?

There are no risks associated with this study. There is no obligation to answer any of
the questions, and you may withdraw from the study at any time. Care has been
taken when designing this study to minimise any negative impact on the participants.

What possible benefits will there be to taking part?

By taking part in this study you will be contributing to the background research about
current oral drug delivery practices in infants, your evaluation of parents’ attitude
towards using a drug delivery device during breastfeeding, and your opinion about
the current device prototype. Your answer will aid the development of a device
optimized for clinical use, in particular for a clinical investigation with mothers and
babies in early 2017.

Will my taking part in this project be kept confidential?

Digital recordings of the interviews will be securely stored at Addenbrooke’s Hospital
for the duration of the study. Transcripts of the recordings will be made — where
identifiable data exists in the interview, the transcript will anonymise it. For example,
if a birth weight of 7459 is mentioned during the interview, this will be presented in
the transcript as ‘extremely low birth weight’ as per the Bliss Charity guidelines®. The
recordings will be destroyed after six months, or the publication of results, whichever
is sooner. Transcripts will be destroyed after 12 months.

What will happen to the results of the research project?

After writing up the transcripts from all the interviews | will identify common themes
and ideas through the texts. We hope to report the results of this study in a relevant
academic journal. The results will be reported as a discussion of the identified
themes using direct quotes from the interview to help the reader to understand the
point of view of the interviewee. All quotes will be completely anonymous with no
identifiable data present.
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Who is funding the research?
This PhD project is funded by the WD Armstrong Trust of the University of
Cambridge, supporting PhD research in the application of engineering in medicine.

Ethical approval
This project has been registered with the patient experience department at
Addenbrooke’s Hospital.

Contacts for further information

The first point of contact for any queries about the study is the project lead
investigator, Miss Theresa Maier. Any clinical queries should be directed to Dr.
Kathryn Beardsall at Addenbrooke’s Hospital.

Project lead investigator: Miss Theresa Maier, University of Cambridge
email: tm520@cam.ac.uk

Project supervisor: Prof Nigel Slater, University of Cambridge
email: nkhs2@cam.ac.uk

Clinical supervisor: Dr. Kathryn Beardsall, Addenbrooke’s Hospital
email: kb274@medschl.cam.ac.uk
telephone: 01223 746791

Patient Advice and Liaison Service (PALS)

email: pals@addenbrookes.nhs.uk
telephone: 01223 256170
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Participant Consent Form
Drug and Nutrient Delivery System: Exploratory Interviews

July 2016
Dear Participant

Your signature below indicates that you have read and understood the information presented in
the attached Participant Information Sheet, and consent to your participation in the study.

You are reminded that you may withdraw from the study at any point for any reason. If you do so,
all recordings and personal information will be destroyed.

If you have any further questions do not hesitate to ask.

If you would like to be informed of the publication of the results of the study, please write your
email address below and tick the box indicating you are happy for us to keep a record of your
email address. We will not contact you for any reason other than informing you of the results of the
study, and the information will not be passed on to any other individuals.

| would like to be informed when the results of the study are available: I:I

Email address:

Participant signature:

Participant name (printed):

Date:

Researcher signature:

Researcher name (printed):
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FEDD

Feasibility of drug delivery to
infants during breastfeeding

Are you breastfeeding your baby?

Would you be interested in helping to
develop a new way of giving vitamins
and medicines to babies?

What it will involve?

Trying a new way of giving a vitamin to your baby during breastfeeding.

To find out more, please contact:

Dr. Kathryn Beardsall, Consultant in Neonatology

Email: kb274@cam.ac.uk
Office Phone: 01223 746791

Theresa Maier, PhD Student

Email: tm520@cam.ac.uk
Phone: 07778627858

Cambridge University Hospitals
NHS Foundation Trust
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NHS Foundation Trust

FEDD
Feasibility of drug delivery to
infants during breastfeeding

Information Sheet for Parents

We would like to invite you and your baby to take part in our
research study. Please take time to read the following information
carefully and talk to others about the study if you wish. Please ask
us if anything is unclear, or if you would like more information.

Dr. Kathryn Beardsall Miss Theresa Maier
Principal Investigator Project Lead Investigator
Neonatal Consultant PhD Student

Email: kb274@meschl.cam.ac.uk Email: tm520@cam.ac.uk
Phone: 01223 746791 Phone: 07778627858

Paula Peirce (Lactation Nurse)
Email: paula.peirce@addenbrookes.nhs.uk
Phone: 01223 256950, Bleep 157-933

IRAS ID: 240944, Parent Information Sheet: Version 3.0; Dated: 29 May 2018
Page 1 of 4
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What is the purpose of the study?

This feasibility study aims to look at a new way of giving
medicine/vitamins to babies during breastfeeding, without using
syringes or spoons. It is conducted as part of a doctorate degree and
aims to obtain information about its suitability for delivery, as well
as expectations and experience of mother and infant.

Who is being invited to take part?
Mothers who are breastfeeding their babies.

Does my baby have to take part?

Taking part in this study is completely voluntary. If you agree for
your baby to take part, you are free to change your mind and leave
the study at any time without giving a reason. If you do wish to
withdraw at any time, it will not affect your baby’s care in any way,
and you can choose to have your baby’s blood sample/collected
data disposed of, and we will document this in your baby’s notes.

What will taking part in the study involve?

The study has two parts. 1) You will be asked to breastfeed your
baby using a nipple shield that contains a vitamin supplement
(1 feed only). Statf will be available to support you during feeding.
You will also be asked some questions before and after the feed
about your expectations/experiences (total length approx 30-50 min,
recorded). 2) We will take a total of two small blood samples (heel
prick or venous samples) from your baby — one before and one after
the feed. We will try to take theses samples at the same time as your
baby is having samples taken for clinical reasons.

\ 4
} + Nipple —*)
shield _“

Nipple Vitamin
shield B12 tablet Vitamin

IRAS ID: 240944, Parent Information Sheet: Version 3.0; Dated: 29 May 2018
Page 2 of 4

149



Appendix

What do I have to do?

You have received this information leaflet, because the clinical team
and a lactation consultant had identified your baby as suitable for
this study. If - following a conversation with the research team, and
having all your questions answered - you are interested in
participating in the study, please let one of the nurses know. Please
take time to decide whether to join the study. If you do, you will be
asked to sign a consent form. You will be given a copy of your
signed consent form to take away and refer to later. The study itself
will be scheduled for a day suitable for you.

What are the possible risks of my baby taking part?

The study uses a nipple shield and a vitamin supplement. Both are
commercially available — it is the combined use which is novel. You
will get your own nipple shield which will be sterilized before the
feed. Use of nipple shields is recommended only if advised by an
appropriate professional, as use for each feed over a long period
may impact breastfeeding. Literature about the use of nipple shields
for premature babies has indicated beneficial feeding outcomes. We
are taking two small blood samples, but this is only a small amount
and we will try to take them at the same time as clinical samples
that your baby may be having. There is a small risk of bruising with
any blood sample being taken. The study is covered by NHS
indemnity insurance.

What are the possible benefits of my baby taking part?

We cannot say that your baby will directly benefit from taking part
in this study. However, the information collected may inform
medicine and nutrient delivery for babies in the future. Many
parents feel that involvement in research studies, which aim to
improve clinical care of future babies, is a positive experience.

IRAS ID: 240944, Parent Information Sheet: Version 3.0; Dated: 29 May 2018
Page 3 of 4
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Will my/my baby’s taking part in this study be kept confidential?
We will follow ethical and legal guidance, and all study information
will be handled in confidence, with exception of safeguarding
issues, in which case we would have to take appropriate action. The
medical team looking after your baby will be informed of their
involvement. You/your baby will be given a unique study number,
which will be used on all study documentation and to record study
data. The study data (including interview recordings) will be stored
securely in keeping with the data protection act, and it won’t be
used to contact you at any point in the future. Following completion
of the study, your baby’s blood samples will be disposed in
accordance with the NHS'’s code of practice.

What will happen to the results of the study?

When the results of this study are available, they may be published
in peer-reviewed journals, used for presentations and conferences,
and shared with parent support groups/organisations. If you would
like to obtain a copy of the published results, please let the study
team know who will be able to arrange this for you.

Who is organising (sponsoring) and funding the study?
This study is sponsored by Cambridge University Hospitals NHS
Foundation Trust and the University of Cambridge.

Who has reviewed this study?

All research within the NHS is reviewed by an independent group
of people called a Research Ethics Committee, to protect your
interests. This study has been reviewed and given a favourable
opinion by the National Research Ethics Service Committee London
- Brighton & Sussex.

Thank you for taking the time to read this information sheet.

IRAS ID: 240944, Parent Information Sheet: Version 3.0; Dated: 29 May 2018
Page 4 of 4
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UNIVERSITY OF
CAMBRIDGE

Participant study number (for office use)

Feasibility of drug delivery to infants during breastfeeding
Maternal consent for their own involvement in the study

Name of Researchers: Dr. K Beardsall (Neonatal Consultant), Theresa Maier (PhD Student)

I being the legal guardian of
(subsequently referred to as baby) hereby give my permission fully and freely to participate
in the research study stated above: ‘Feasibility of drug delivery to infants during
breastfeeding’

Please initial each box

1. | confirm that | have read and understood the attached Information Sheet for
Parents entitled ‘Feasibility of drug delivery to infants during breastfeeding’
(Version: .............. ) and have had the opportunity to consider the information,
ask questions and have had these answered satisfactorily.

2. lunderstand that my participation is voluntary and that | am free to withdraw from
the study at any time, without giving any reason, and without my legal rights being
affected in any way.

3. | agree to the study team retaining my contact details for potential future follow-up.

4. | understand that relevant sections of my notes and data collected during the
study may be looked at by the research team or individuals from regulatory
authorities or from the NHS Trust where it is relevant to them taking part in this
research. | give permission for these individuals to have access to this

information.
Name of Mother Signature Date
Name of Person taking consent Signature Date

Please file the original in the study folder, one copy in the participant’s notes, and give one
copy to the participant.

Participation Consent Mother: Version 1.0,
1 February 2018 Page 1 of 1
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Participant study number (for office use)

Feasibility of drug delivery to infants during breastfeeding
Maternal consent for involvement of her baby

Name of Researchers: Dr. K Beardsall (Neonatal Consultant), Theresa Maier (PhD Student)

| being the legal guardian of
(subsequently referred to as baby) hereby give my permission fully and freely for my baby to
participate in the research study stated above: ‘Feasibility of drug delivery to infants
during breastfeeding’

Please initial each box

1. | confirm that | have read and understood the attached Information Sheet for
Parents entitled ‘Feasibility of drug delivery to infants during breastfeeding’
(Version: .............. ) and have had the opportunity to consider the information,
ask questions and have had these answered satisfactorily.

2. lunderstand that my baby’s participation is voluntary and that | am free to
withdraw him/her at any time, without giving any reason, and without their legal
rights being affected in any way.

3. | agree that blood samples are to be taken from my baby to check for vitamin
levels.

4. | agree to the study team retaining my baby’s contact details for potential future
follow-up.

5. | agree to the clinical team caring for my baby being informed of my baby’s
participation in this study.

6. | understand that relevant sections of my baby’s medical notes and data collected
during the study may be looked at by the research team or individuals from
regulatory authorities or from the NHS Trust where it is relevant to them taking
part in this research. | give permission for these individuals to have access to my
baby’s records.

Name of Parent/Guardian Signature Date

Name of Person taking consent Signature Date
Please file the original in the study folder, one copy in the participant’s notes, and give one
copy to the participant.

Participation Consent Infant: Version 1.0,
1 February 2018 Page 1 of 1
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INFANT ID SERUM VITAMIN B12 HAEMOLYSIS
PRE STUDY FEED POST STUDY
[pg/mL] FEED [pg/mL]
575 3484
681 2577
449 1743
4 (%) 371 705 Pre study feed
sample
5 (%) 395 13516 Post study feed
sample
6 858 1285
7 303 1045
8 236 4981
9 593 1928
10 596 4104
11 430 1006
12 925 1121
13 565 1321
14 325 610
15 660 1259
16 (*) 297 2193 Post study feed
sample
17 582 1104
18 397 866
19 (*) 452 8413 Post study feed
sample
20 352 1506

Table A3.1: FEDD vitamin B12 blood serum levels in breastfed infants pre and
post study feed. Blood samples of infants indicated by (*) were not considered for
data analysis, since at least one blood sample was haemolysed. Four pairs of blood
samples (pre and post study feed) were excluded from analysis due to haemolysis,

affecting accuracy of the vitamin B12 assay used.

154



References

1]

UNICEF, World Health Organization, World Bank Group, and United Na-
tions. Levels and trends in child mortality: report 2018. United Nations
Children’s Fund, New York, 2018.

M. Isbell and I. Simpson. Saving lives, protecting futures: progress report on
the global strategy for women’s and children’s health 2010-2015. UN Founda-
tion, Washington, 2015.

R.A. Helms and D.J. Quan. Teztbook of therapeutics: drug and disease man-
agement. Lippincott Williams & Wilkins, Philadelphia, 2nd edition, 2006.

R.L. Scheuerle, S.F.A. Bruggraber, S.E. Gerrard, R.A. Kendall, C. Tuleu,
and N.K.H. Slater. Characterisation of zinc delivery from a nipple shield

delivery system using a breastfeeding simulation apparatus. PLOS ONE, 12
(2):e0171624, 2017. doi: 10.1371/journal.pone.0171624.

M. Orlu, S.R. Ranmal, Y. Sheng, C. Tuleu, and P. Seddon. Acceptability of
orodispersible films for delivery of medicines to infants and preschool children.
Drug Delivery, 24(1):1243-1248, 2017. doi: 10.1080/10717544.2017.1370512.

H.K. Batchelor, N. Fotaki, and S. Klein. Paediatric oral biopharmaceutics:
key considerations and current challenges. Advanced Drug Delivery Reviews,

73:102-126, 2014. doi: 10.1016/j.addr.2013.10.006.

S. Orubu, C. Okwelogu, and O. Opanuga. A survey of caregivers of Nigerian
children less than 6 years of age to determine the experience and perception
of acceptability of oral solid dosage forms. International Journal of Pharma-
ceutics, 536(2):582-589, 2018. doi: 10.1016/j.ijpharm.2017.10.047.

155



References

8]

[10]

[11]

[12]

[14]

[15]

[16]

[17]

S. Pawar and A. Kumar. Issues in the formulation of drugs for oral
use in children.  Pediatric Drugs, 4(6):371-379, 2002. doi: 10.2165/
00128072-200204060-00004.

A.M. Anderson. Disruption of lactogenesis by retained placental frag-
ments. Journal of Human Lactation, 17(2):142-144, 2001. doi: 10.1177/
089033440101700210.

World Health Organization. Infant and young child feeding, fact sheet N.342,
2017. URL http://who.int/mediacentre/factsheets/fs342/en/.

C.G. Victora, R. Bahl, A.J.D. Barros, G.V.A. Franca, S. Horton, J. Krasevec,
S. Murch, M.J. Sankar, N. Walker, and N.C. Rollins. Breastfeeding in the
21st century: epidemiology, mechanisms, and lifelong effect. The Lancet, 387
(10017):475-490, 2016. doi: 10.1016/S0140-6736(15)01024-7.

T. Harder and R. Bergmann. Duration of breastfeeding and risk of overweight:
a meta-analysis. American Journal of Epidemiology, 162(5):397-403, 2005.
doi: 10.1093/aje/kwi222.

C.G. Owen and R.M. Martin. Does breastfeeding influence risk of type 2
diabetes in later life? A quantitative analysis of published evidence. The
American Journal of Clinical Nutrition, 84(5):1043-1054, 2006. doi: 10.1093/
ajen/84.5.1043.

N.C. Rollins, N. Bhandari, N. Hajeebhoy, and S. Horton. Why invest, and
what it will take to improve breastfeeding practices? The Lancet, 387(10017):
491-504, 2016. doi: 10.1016/s0140-6736(15)01044-2.

UNICEF UK. The evidence and rationale for the UNICEF UK Baby Friendly
Initiative standards. UNICEF, London, 2013.

B. Sinha, R. Chowdhury, M.J. Sankar, J. Martines, S. Taneja, S. Mazumder,
N. Rollins, R. Bahl, and N. Bhandari. Interventions to improve breastfeeding

outcome: a systematic review and meta analysis. Acta Paediatrica, 104:114—
134, 2015. doi: 10.1111/apa.13127.

UNCEF UK. Baby Friendly Initiative, 2017. URL http://www.unicef.org.uk/
babyfriendly/.

156


http://who.int/mediacentre/factsheets/fs342/en/.
http://www.unicef.org.uk/babyfriendly/
http://www.unicef.org.uk/babyfriendly/

References

[18]

[21]

[22]

[26]

[27]

28]

R.F. Black, L. Jarman, and J. Simpson. The science of breastfeeding. Jones
and Bartlett Publishers, Sudbury, 3rd edition, 1998.

M.W. Woolridge. The "anatomy" of infant sucking. Midwifery, 2(4):164-171,
1986. doi: 10.1016/s0266-6138(86)80041-9.

M.E.R. Macias and G.J.S. Meneses. Physiology of nutritive sucking in new-
borns and infants. Boletin Medico del Hospital Infantil de Mexico, 68(4):
296-303, 2011. doi: N/A.

D.T. Geddes, J.C. Kent, L.R. Mitoulas, and P.E. Hartmann. Tongue move-
ment and intra-oral vacuum in breastfeeding infants. Farly Human Develop-
ment, 84(7):471-477, 2008. doi: 10.1016/j.earlhumdev.2007.12.008.

H.L. McClellan, D.T. Geddes, J.C. Kent, C.P. Garbin, L.R. Mitoulas, and
P.E. Hartmann. Infants of mothers with persistent nipple pain exert strong
sucking vacuums. Acta Paediatrica, 97(9):1205-1209, 2008. doi: 10.1111/j.
1651-2227.2008.00882.x.

A. Moral, I. Bolibar, G. Seguranyes, J.M. Ustrell, G. Sebastia, C. Martinez-
Barba, and J. Rios. Mechanics of sucking: comparison between bottle feed-
ing and breastfeeding. BMC Pediatrics, 10(1):1-8, 2010. doi: 10.1186/
1471-2431-10-6.

Medela. The science of infant sucking, 2017. URL http://www.medela.co.za/

breastfeeding-professionals/research /infant-sucking/.

World Health Organization. WHO Model List of Essential Medicines for Chil-
dren, 5th list. World Health Organization, Geneva, 2015.

C. Kenner and J.W. Lott. Comprehensive neonatal nursing: an interdisci-

plinary approach. Elsevier Health Sciences, St. Louis, 4th edition, 2007.

D. Tudehope, M. Vento, Z. Bhutta, and P. Pachi. Nutritional requirements and
feeding recommendations for small for gestational age infants. The Journal of
Pediatrics, 162(3):581-589, 2013. doi: 10.1016/j.jpeds.2012.11.057.

A. Lapillonne, D.L. O’Connor, D. Wang, and J. Rigo. Nutritional recom-
mendations for the late-preterm infant and the preterm infant after hos-
pital discharge. The Journal of Pediatrics, 162(3):5S90-S100, 2013. doi:
10.1016/j.jpeds.2012.11.058.

157


http://www.medela.co.za/breastfeeding-professionals/research/infant-sucking/
http://www.medela.co.za/breastfeeding-professionals/research/infant-sucking/

References

[29]

[30]

[31]

32]

33]

[34]

[37]

[38]

N. Embleton and R. Geethanath. NHS guideline for vitamins, iron and breast
milk fortifier. The Northern Neonatal Network, 2017.

Baby Friendly Initiative. Infosheet: statement of vitamin D supplementation
for breastfed babies. UNICEF UK, 2017.

A.H. Jeske. Mosby’s dental drug reference. Elsevier Health Sciences, St. Louis,
9th edition, 2013.

R.L. Wynn, T.F. Meiller, and H.L. Crossley. Drug information handbook for
dentistry. Lexi-Comp, Hudson, 2001.

J. Walsh and D. Bickmann. Delivery devices for the administration of paedi-
atric formulations: overview of current practice, challenges and recent devel-
opments. International Journal of Pharmaceutics, 415(1):221-231, 2011. doi:
10.1016/j.ijpharm.2011.05.048.

[.LR.A. Chertok. Reexamination of ultra-thin nipple shield use, infant growth
and maternal satisfaction. Journal of Clinical Nursing, 18(21):2949-2955,
2009. doi: 10.1111/j.1365-2702.2009.02912.x.

M. Brigham. Mothers’ reports of the outcome of nipple shield use. Journal of
Human Lactation, 12(4):291-297, 1996. doi: 10.1177/089033449601200414.

[.LR.A. Chertok, J. Schneider, and S. Blackburn. A pilot study of maternal
and term infant outcomes associated with ultrathin nipple shield use. Journal
of Obstetric, Gynecologic, and Neonatal Nursing, 35(2):265-272, 2006. doi:
10.1111/3.1552-6909.2006.00028 .x.

P.P. Meier, L.P. Brown, N.M. Hurst, D.L. Spatz, J.L. Engstrom, L..C. Borucki,
and A.M. Krouse. Nipple shields for preterm infants: effect on milk transfer
and duration of breastfeeding. Journal of Human Lactation, 16(2):106-114,
2000. doi: 10.1177/089033440001600205.

T. Maier, R.L. Scheuerle, D. Markl, S. Bruggraber, A. Zeitler, L. Fruk, and
N.K.H. Slater. Zinc delivery from non-woven fibres within a therapeutic nipple
shield. International Journal of Pharmaceutics, 537(1-2):290-299, 2018. doi:
10.1016/j.ijpharm.2017.12.042.

158



References

[39]

[40]

[41]

[42]

[45]

[46]

[47]

S.C. Vir. Public health and nutrition in developing countries. CRC Press, New
Delhi, 1st edition, 2011.

J.C. Kent, L.R. Mitoulas, M.D. Cregan, D.T. Ramsay, D.A. Doherty, and P.E.
Hartmann. Volume and frequency of breastfeeding and fat content of breast
milk throughout the day. Pediatrics, 117(3):387-395, 2006. doi: 10.1542/peds.
2005-1417.

S.E. Gerrard, M.L. Baniecki, and D.C. Sokal. A nipple shield delivery system
for oral drug delivery to breastfeeding infants: microbicide delivery to inacti-
vate HIV. International Journal of Pharmaceutics, 434(1):224-234, 2012. doi:
10.1016/j.ijpharm.2012.05.035.

S.E. Gerrard, M. Orlu-Gul, C. Tuleu, and N.K.H. Slater. Modeling the physio-
logical factors that affect drug delivery from a nipple shield delivery system to
breastfeeding infants. Journal of Pharmaceutical Sciences, 102(10):3773-3783,
2013. doi: 10.1002/jps.23688.

R.L. Scheuerle, R.A. Kendall, C. Tuleu, N.K.H. Slater, and S.E. Gerrard.
Mimicking the impact of infant tongue peristalsis on behavior of solid oral
dosage forms administered during breastfeeding. Journal of Pharmaceutical
Sciences, 106(1):193-199, 2017. doi: 10.1016/j.xphs.2016.08.006.

R.L. Scheuerle. Characterisation studies of a drug and nutrient delivery device
for infants (unpublished PhD thesis). University of Cambridge, Cambridge,
2018.

C.W. Hart and K.A. Israel-Ballard. Acceptability of a nipple shield delivery
system administering antiviral agents to prevent mother-to-child transmission
of HIV through breastfeeding. Journal of Human Lactation, 31(1):68-75, 2015.
doi: 10.1177/0890334414559980.

A.D. Flynn, R.L. Scheuerle, G. Galgon, S.E. Gerrard, and V.O. Netshan-
dama. Community feedback on the justmilk nipple shield delivery system
in the Vhembe District of Limpopo Province, South Africa. South African
Journal of Child Health, 11(4):193-197, 2017. doi: N/A.

T. Maier, A. Kerbs, L. Fruk, and N.K.H. Slater. Iron delivery from liquid-core

159



References

[48]

[50]

[53]

[54]

[55]

hydrogels within a therapeutic nipple shield. FEuropean Journal of Pharma-
ceutical Sciences, 131:119-126, 2019. doi: 10.1016/j.ejps.2019.01.032.

K. Stewart, P. Gill, B. Chadwick, and E. Treasure. Qualitative research in
dentistry. British Dental Journal, 204(5):235-239, 2008. doi: 10.1038/bdj].
2008.149.

P. Gill, K. Stewart, E. Treasure, and B. Chadwick. Methods of data collection
in qualitative research: interviews and focus groups. British Dental Journal,
204(6):291-295, 2008. doi: 10.1038/bdj.2008.192.

P. Burnard, P. Gill, K. Stewart, E. Treasure, and B. Chadwick. Analysing and
presenting qualitative data. British Dental Journal, 204(8):429-432, 2008. doi:
10.1038/sj.bdj.2008.292.

C. Pope, S. Ziebland, and N. Mays. Analysing qualitative data. In Qualitative
research in health care, pages 63-81. Blackwell Publishing Ltd, Oxford, UK,
2006. doi: 10.1002/9780470750841.ch7.

J. Ritchie, J. Lewis, C.M.N. Nicholls, and R. Ormston. Qualitative research
practice: a quide for social science students and researchers. SAGE Publica-
tions, London, 2nd edition, 2014.

M. Vaismoradi and H. Turunen. Content analysis and thematic analysis:
implications for conducting a qualitative descriptive study. Nursing € health,
15(3):398-405, 2013. doi: 10.1111/nhs.12048.

D.R. Thomas. A general inductive approach for analyzing qualitative eval-
uation data. American Journal of FEvaluation, 27(2):237-246, 2006. doi:
10.1177/1098214005283748.

D.M. Mertens. Research and evaluation in education and psychology: in-
tegrating diversity with quantitative, qualitative, and mired methods. Sage
Publications Inc, Thousand Oaks, 4th edition, 2014.

A. Tashakkori and J.W. Creswell. Editorial: the new era of mixed meth-
ods. Journal of Mized Methods Research, (1):3-7, 2007. doi: 10.1177/
2345678906293042.

160



References

[57]

[60]

[61]

[62]

[63]

[66]

D. McGartland-Rubio, E.E. Schoenbaum, L.S. Lee, D.E. Schteingart, P.R.
Marantz, K.E. Anderson, L.D. Platt, A. Baez, and K. Esposito. Defining
translational research: implications for training. Journal of the Associa-
tion of American Medical Colleges, 85(3):470-475, 2010. doi: 10.1097/acm.
0b013e3181ccd618.

A.J. Salter and B.R. Martin. The economic benefits of publicly funded basic
research: a critical review. Research Policy, 30(3):509-532, 2001. doi: 10.
1016/s0048-7333(00)00091-3.

M. Jefford, M.R. Stockler, and M.H.N. Tattersall. Outcomes research: what
is it and why does it matter? Internal Medicine Journal, 33(3):110-118, 2003.
doi: 10.1046/j.1445-5994.2003.00302.x.

D.P. Schuster and W.J. Powers. Translational and experimental clinical re-
search. Lippincott Williams & Wilkins, Philadelphia, 1st edition, 2005.

J.M. Westfall, J. Mold, and L. Fagnan. Practice-based research: blue highways
on the NIH roadmap. JAMA, 297(4):403-406, 2007. doi: 10.1001/jama.297.
4.403.

M. Arain, M.J. Campbell, C.L. Cooper, and G.A. Lancaster. What is a pilot or
feasibility study? A review of current practice and editorial policy. BMC' Med-
ical Research Methodology, 10(1):67-73, 2010. doi: 10.1186,/1471-2288-10-67.

A.C. Leon, L.L. Davis, and H.C. Kraemer. The role and interpretation of pilot
studies in clinical research. Journal of Psychiatric Research, 45(5):626-629,
2011. doi: 10.1016/j.jpsychires.2010.10.008.

D.J. Bowen, M. Kreuter, B. Spring, and L. Cofta-Woerpel. How we design
feasibility studies. American Journal of Preventive Medicine, 36(5):452-457,
2009. doi: 10.1016/j.amepre.2009.02.002.

R. Garcia. Medical device: a primer based on best practices. Xlibris Corpora-

tion, Bloomington, 1st edition, 2017.

IRAS. Integrated Research Application System, 2018. URL http://www.

myresearchproject.org.uk/.

161


http://www.myresearchproject.org.uk/
http://www.myresearchproject.org.uk/

References

[67]

[68]

[69]

[70]

T. Parry and A. Parrott. Statistics in clinical research. Institute of Clinical
Research, White Waltham, 1st edition, 2006.

CDISC. Clinical research glossary, 2018. URL  http://www.

appliedclinicaltrialsonline.com /cdisc-clinical-research-glossary /.

J.R. Turner. New drug development: an introduction to clinical trials.

Springer, Durham, 2nd edition, 2010.

O. Korosteleva. Clinical statistics: introducing clinical trials, survival analysis,
and longitudinal data analysis. Jones and Bartlett Publishers, Sudbury, 1st
edition, 2009.

M.B. Zeschky, S. Winterhalter, and O. Gassmann. From cost to frugal
and reverse innovation: mapping the field and implications for global com-
petitiveness.  Research-Technology Management, 57(4):20-27, 2014. doi:
10.5437/08956308x5704235.

T. Maier, O. Bonner, P. Peirce, N.K.H. Slater, and K. Beardsall. Drug and
nutrient administration on the NICU - is delivery during breastfeeding an
alternative to oral syringes? Journal of Neonatal Nursing, in press, 2019. doi:

10.1016/j.jnn.2019.09.009.

M.Q. Patton. Qualitative research and evaluation methods. SAGE Publica-
tions, Thousand Oaks, 3rd edition, 2002.

L. Richards. Handling qualitative data: a practical guide. SAGE Publications,
London, 3rd edition, 2014.

G. Leifer. Introduction to maternity and pediatric nursing. Elsevier Health
Sciences, St. Louis, 7th edition, 2014.

March of Dimes, PMNCH, Save the Children, and WHO. Born too soon: the
global action report on preterm birth. World Health Organization, Geneva,
2012. doi: N/A.

S.L. Dworkin. Sample size policy for qualitative studies using in-depth in-
terviews. Archives of Sexual Behavior, 41(6):1319-1320, 2012. doi: 10.1007/
s10508-012-0016-6.

162


http://www.appliedclinicaltrialsonline.com/cdisc-clinical-research-glossary/
http://www.appliedclinicaltrialsonline.com/cdisc-clinical-research-glossary/

References

[78]

[79]

[30]

[81]

[82]

[84]

[85]

[36]

[87]

K.U. Moberg and D.K. Prime. Oxytocin effects in mothers and infants during
breastfeeding. Infant, 9(6):201-206, 2013. doi: N/A.

J. Bick, M. Dozier, K. Bernard, D. Grasso, and R. Simons. Foster mother-
infant bonding: associations between foster mothers’ oxytocin production,

electrophysiological brain activity, feelings of commitment, and caregiving
quality. Child Development, 84(3):826-840, 2013. doi: 10.1111/cdev.12008.

R. Flacking, G. Thomson, and A. Axelin. Pathways to emotional closeness
in neonatal units: a cross-national qualitative study. BMC' Pregnancy and
Childbirth, 16(1):170, 2016. doi: 10.1186/s12884-016-0955-3.

[LH. Hagen, V.C. Iversen, and M.F. Svindseth. Differences and similarities
between mothers and fathers of premature children: a qualitative study of

parents’ coping experiences in a neonatal intensive care unit. BMC' Pediatrics,

16(1):92, 2016. doi: 10.1186/s12887-016-0631-9.

L.J. Woodward, S. Bora, C.A.C. Clark, A. Montgomery-Honger, V.E.
Pritchard, C. Spencer, and N.C. Austin. Very preterm birth: maternal expe-

riences of the neonatal intensive care environment. Journal of Perinatology,
34(7):555-561, 2014. doi: 10.1038/jp.2014.43.

M. Turner, A. Chur-Hansen, and H. Winefield. The neonatal nurses’ view of
their role in emotional support of parents and its complexities. Journal of
Clinical Nursing, 23(21-22):3156-3165, 2014. doi: 10.1111/jocn.12558.

F. Bravi, F. Wiens, A. Decarli, and A.D. Pont. Impact of maternal nutrition
on breast-milk composition: a systematic review. The American Journal, 104
(3):646-662, 2016. doi: 10.3945/ajen.115.120881.

V.D. Cosmi, S. Scaglioni, and C. Agostoni. Early taste experiences and later
food choices. Nutrients, 9(2):107, 2017. doi: 10.3390/nu9020107.

S.M. Bennett, L. Zhou, and J.E. Hayes. Using milk fat to reduce the irritation
and bitter taste of ibuprofen. Chemosensory Perception, 5(3-4):231-236, 2012.
doi: 10.1007/s12078-012-9128-6.

F.L. Lopez and T.B. Ernest. Formulation approaches to pediatric oral drug
delivery: benefits and limitations of current platforms. Faxpert Opinion on
Drug Delivery, 12(11):1727-1740, 2015. doi: 10.1517/17425247.2015.1060218.

163



References

[33]

[89]

[90]

[91]

[92]

[93]

K. Soulele and P. Macheras. Milk as a medium for pediatric formulations:
experimental findings and regulatory aspects. International Journal of Phar-
maceutics, 492(1):344-345, 2015. doi: 10.1016/j.ijpharm.2015.05.015.

G. Terrin, R.B. Canani, M.D. Chiara, and A. Pietravalle. Zinc in early life: a
key element in the fetus and preterm neonate. Nutrients, 7(12):10427-10446,
2015. doi: 10.3390/nu7125542.

L.E. Caulfield, N. Zavaleta, and A.H. Shankar. Potential contribution of
maternal zinc supplementation during pregnancy to maternal and child sur-
vival. The American Journal of Clinical Nutrition, 68(2):4995-508S, 1998.
doi: 10.1093/ajcn/68.2.499s.

K. Wulf, A. Wilhelm, M. Spielmann, and S. Wirth. Frequency of symptomatic
zinc deficiency in very low birth weight infants. Klinische Paediatrie, 225(1):
13-17, 2013. doi: 10.1055/s-0032-1312610.

H.H. Lee, A.S. Prasad, G.J. Brewer, and C. Owyang. Zinc absorption in
human small intestine. American Journal of Physiology-Gastrointestinal and

Liver Physiology, 256(1):G87-G91, 1989. doi: 10.1152/ajpgi.1989.256.1.¢87.

R.A. Polin, W.W. Fox, and S.H. Abman. Zinc in the fetus and neonate.
In Fetal and neonatal physiology, chapter 35, pages 324-346. Elsevier Inc.,
Philadelphia, 3rd edition, 2004. doi: 10.1016/b978-0-7216-9654-6.50038-2.

R. Black. Micronutrient deficiency: an underlying cause of morbidity and
mortality. Bulletin of the World Health Organization, 81(2):79, 2003.

Z.A. Bhutta, R.E. Black, K.H. Brown, and J.M. Gardner. Prevention of
diarrhea and pneumonia by zinc supplementation in children in developing
countries: pooled analysis of randomized controlled trials. The Journal of
Pediatrics, 135(6):689-697, 1999. doi: 10.1016/s0022-3476(99)70086-7.

C.L.F. Walker and R.E. Black. Zinc for the treatment of diarrhoea: effect on
diarrhoea morbidity, mortality and incidence of future episodes. International
Journal of Epidemiology, 39:163-169, 2010. doi: 10.1093/ije/dyq023.

S. Sazawal, R.E. Black, V.P. Menon, P. Dinghra, L.E. Caulfield, U. Dhingra,

and A. Bagati. Zinc supplementation in infants born small for gestational age

164



References

98]

[99]

[100]

[101]

[102]

103)]

104]

[105]

[106]

reduces mortality: a prospective, randomized, controlled trial. Pediatrics, 108
(6):1280-1286, 2001. doi: 10.1542/peds.108.6.1280.

S. Bhatnagar, N. Wadhwa, S. Aneja, R. Lodha, S.K. Kabra, U.C.M. Natchu,
H. Sommerfelt, A.K. Dutta, J. Chandra, and B. Rath. Zinc as adjunct treat-
ment in infants aged between 7 and 120 days with probable serious bacterial

infection: a randomised, double-blind, placebo-controlled. The Lancet, 379
(9831):2072-2078, 2012. doi: 10.1016/s0140-6736(12)60477-2.

World Health Organization. WHO Model List of Essential Medicines, 20th
list. World Health Organization, Geneva, 2017.

A. Lucas, J.A. Gibbs, R.L. Lyster, and J.D. Baum. Creamatocrit: simple
clinical technique for estimating fat concentration and energy value of human
milk. British Medical Journal, 1(6119):1018-1020, 1978. doi: 10.1136/bmj.1.
6119.1018.

L.R. Mitoulas, C.T. Lai, L.C. Gurrin, M. Larsson, and P.E. Hartmann. Ef-
ficacy of breast milk expression using an electric breast pump. Journal of

Human Lactation, 18(4):344-352, 2002. doi: 10.1177/089033402237907.

P.M. Emmett and I.S. Rogers. Properties of human milk and their relationship
with maternal nutrition. Farly Human Development, 49:S7-528, 1997. doi:
10.1016/s0378-3782(97)00051-0.

T. Saarela, J. Kokkonen, and M. Koivisto. Macronutrient and energy con-
tents of human milk fractions during the first six months of lactation. Acta
Paediatrica, 94(9):1176-1181, 2005. doi: 10.1111/j.1651-2227.2005.tb02070.x.

D. Markl, J.A. Zeitler, C. Rasch, M.H. Michaelsen, A. Muellertz, J. Ranta-
nen, T. Rades, and J. Botker. Analysis of 3D prints by x-ray computed
microtomography and terahertz pulsed imaging. Pharmaceutical Research, 34
(5):1037-1052, 2017. doi: 10.1007/s11095-016-2083-1.

E. Koc and E. Cincik. An analysis on abrasion resistance of polyester-/viscose-
blended needle-punched nonwovens. Journal of The Textile Institute, 104(8):
852-860, 2013. doi: 10.1080/00405000.2012.760232.

Fisher Scientific. Safety data sheet - zinc sulfate. FisherScientific, 2014.

165



References

[107]

[108]

[109]

[110]

[111]

112]

[113]

[114]

[115]

[116]

Y. Ikada. Surface modification of polymers for medical applications. Bioma-
terials, 15(10):725-736, 1994. doi: 10.1016/0142-9612(94)90025-6.

H.S. Yoo, T.G. Kim, and T.G. Park. Surface-functionalized electrospun
nanofibers for tissue engineering and drug delivery. Advanced Drug Delivery

Reviews, 61(12):1033-1042, 2009. doi: 10.1016/j.addr.2009.07.007.

T.D. Reynolds, S.A. Mitchell, and K.M. Balwinski. Investigation of the ef-
fect of tablet surface area/volume on drug release from hydroxypropylmethyl-

cellulose controlled-release matrix tablets. Drug Development and Industrial

Pharmacy, 28(4):457-466, 2002. doi: 10.1081/ddc-120003007.

J. Siepmann and F. Siepmann. Modeling of diffusion controlled drug delivery.
Journal of Controlled Release, 161(2):351-362, 2012. doi: 10.1016/j.jconrel.
2011.10.006.

Y.-T. Chen, H.T. Davis, and C.W. Macosko. Wetting of fiber mats for com-
posites manufacturing: I. visualization experiments. AIChE Journal, 41(10):
22612273, 1995. doi: 10.1002/aic.690411009.

R.D. Baker and F.R. Greer. Diagnosis and prevention of iron deficiency and
iron-deficiency anemia in infants and young children (0-3 years of age). Pedi-
atrics, 126(5):1040-1050, 2010. doi: 10.1542/peds.2010-2576.

M. Domelloef, C. Braegger, C. Campoy, V. Colomb, T. Decsi, M. Fewtrell,
I. Hojsak, W. Mihatsch, C. Molgaard, R. Shamir, D. Turck, and J. van
Goudoever. Iron requirements of infants and toddlers. Journal of Pedi-
atric Gastroenterology and Nutrition, 58(1):119-129, 2014. doi: 10.1097/mpg.
0000000000000206.

P. Lanzkowsky. Iron-deficiency anemia. In Lanzkowsky’s manual of pediatric
hematology and oncology, chapter 6, pages 69-83. Elsevier, 2016. doi: 10.1016/
b978-0-12-801368-7.00006-5.

P.A. De Alarcon and E.J. Werner. Neonatal hematology. Cambridge University
Press, Cambridge, 4th edition, 2005.

A.M. Siddappa, M.K. Georgieft, S. Wewerka, C. Worwa, C.A. Nelson, and R..-

A. Deregnier. Iron deficiency alters auditory recognition memory in newborn

166



References

[117]

[118]

[119]

[120]

[121]

[122]

[123]

infants of diabetic mothers. Pediatric Research, 55(6):1034-1041, 2004. doi:
10.1203/01.pdr.0000127021.38207.62.

L.A. Kazal. Prevention of iron deficiency in infants and toddlers. American
Family Physician, 66(7):1217-1224, 2002. doi: N/A.

B. Lozoft, J. Beard, J. Connor, B. Felt, M. Georgieff, and T. Schallert. Long-
lasting neural and behavioral effects of iron deficiency in infancy. Nutrition
Reviews, 64(suppl_ 2):S34-S43, 2006. doi: 10.1111/j.1753-4887.2006.tb00243.

X.

S.K. Berglund, B. Westrup, and M. Domell6f. Iron supplementation until 6
months protects marginally low-birth-weight infants from iron deficiency dur-
ing their first year of life. Journal of Pediatric Gastroenterology and Nutrition,
60(3):390-395, 2015. doi: 10.1097/mpg.0000000000000633.

C. Agostoni, G. Buonocore, V.P. Carnielli, M. De Curtis, D. Darmaun,
T. Decsi, M. Domelloef, N.D. Embleton, C. Fusch, O. Genzel-Boroviczeny,
O. Goulet, S.C. Kalhan, S. Kolacek, B. Koletzko, A. Lapillonne, W. Mihatsch,
L. Moreno, J. Neu, B. Poindexter, J. Puntis, G. Putet, J. Rigo, A. Riskin,
B. Salle, P. Sauer, R. Shamir, H. Szajewska, P. Thureen, D. Turck, J.B.
van Goudoever, and E.E. Ziegler. Enteral nutrient supply for preterm in-
fants: commentary from the European Society of Paediatric Gastroenterol-
ogy, Hepatology and Nutrition Committee on Nutrition. Journal of Pedi-
atric Gastroenterology and Nutrition, 50(1):85-91, 2010. doi: 10.1097/mpg.
0b013e3181adaeel.

World Health Organization. Guideline: daily iron supplementation in infants
and children. World Health Organization, Geneva, 2016.

A.C. Wu, L. Lesperance, and H.B. Statement. Screening for iron deficiency.
Pediatrics in Review, 23(5):171-178, 2002. doi: 10.1542/pir.23-5-171.

L.A. Persson, M. Lundstroem, B. Loennerdal, and O. Hernell. Are wean-
ing foods causing impaired iron and zinc status in 1-year-old Swedish in-
fants? A cohort study. Acta Paediatrica, 87(6):618-622, 1998.  doi:
10.1111/§.1651-2227.1998.tb01518.x.

167



References

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

E.E. Ziegler, S.E. Nelson, and J.M. Jeter. Iron supplementation of breastfed
infants from an early age. The American Journal of Clinical Nutrition, 89(2):
525-532, 2009. doi: 10.3945/ajcn.2008.26591.

E. Hey. Neonatal formulary: drug use in pregnancy and the first year of life.
John Wiley & Sons, West Sussex, 6th edition, 2011.

R. Rao and M.K. Georgieff. Iron therapy for preterm infants. Clinics in
Perinatology, 36(1):27-42, 2009. doi: 10.1016/j.clp.2008.09.013.

SMA. Nutrition baby milks - formula milk, 2018. URL https://www.smababy.

co.uk/formula-milk/.

C&G Babyclub. Products, 2018. URL https://www.candgbabyclub.ie/
products//.

HiPP. Formula milk: baby products and advice, 2018. URL https://www.
hipp.co.uk/formula-milks// .

Aptamil. Products: baby milk and formula, 2018. URL https://www.
aptaclub.co.uk/products/.

H.-X. Jin, R.-S. Wang, S.-J. Chen, A.-P. Wang, and X.-Y. Liu. Early and late
iron supplementation for low birth weight infants: a meta-analysis. [ltalian
Journal of Pediatrics, 41(1):16, 2015. doi: 10.1186/s13052-015-0121-y.

S.K. Berglund, B. Westrup, B. Hiagglof, O. Hernell, and M. Domell6f. Effects
of iron supplementation of LBW infants on cognition and behavior at 3 years.
Pediatrics, 131(1):47-55, 2013. doi: 10.1542/peds.2003-1150-1.

S.K. Berglund, A. Chmielewska, J. Starnberg, B. Westrup, B. Héagglof,
M. Norman, and M. Domellof. Effects of iron supplementation of low-birth-
weight infants on cognition and behavior at 7 years: a randomized controlled
trial. Pediatric Research, 83(1):111-118, 2018. doi: 10.1038/pr.2017.235.

Electronic medicines compendium. Search eMC, 2018. URL https://www.

medicines.org.uk/emc/.

Wellbaby. Nutritional support for babies and infants, 2018. URL https://

www.vitabiotics.com/wellbaby /.

168


https://www.smababy.co.uk/formula-milk/
https://www.smababy.co.uk/formula-milk/
https://www.candgbabyclub.ie/products/
https://www.candgbabyclub.ie/products/
https://www.hipp.co.uk/formula-milks/.
https://www.hipp.co.uk/formula-milks/.
https://www.aptaclub.co.uk/products/
https://www.aptaclub.co.uk/products/
https://www.medicines.org.uk/emc/
https://www.medicines.org.uk/emc/
https://www.vitabiotics.com/wellbaby/
https://www.vitabiotics.com/wellbaby/

References

[136]

[137]

[138]

[139]

[140]

[141]

142]

[143]

[144]

[145]

Zarbee’s. Natural baby multivitamin with iron supplement, 2018. URL https:

/ /www.zarbees.com /product /baby-multivitamin-with-iron-supplement /.

R.M. Angulo-Barroso, M. Li, D.C.C. Santos, Y. Bian, J. Sturza, Y. Jiang,
N. Kaciroti, B. Richards, and B. Lozoff. Iron supplementation in pregnancy
or infancy and motor development: a randomized controlled trial. Pediatrics,

137(4), 2016. doi: 10.1542/peds.2015-3547.

S. Naude, S. Clijsen, G. Naulaers, H. Daniels, C. Vanhole, and H. Devlieger.
Iron supplementation in preterm infants: a study comparing the effect and
tolerance of a Fe2+ and a nonionic Felll compound. The Journal of Clinical
Pharmacology, 40(12):1447-1451, 2000. doi: 10.1177/009127000004001215.

M. Hamidi, A. Azadi, and P. Rafiei. Hydrogel nanoparticles in drug delivery.
Advanced Drug Delivery Reviews, 60(15):1638-1649, 2008. doi: 10.1016/j.
addr.2008.08.002.

T.R. Hoare and D.S. Kohane. Hydrogels in drug delivery: progress and chal-
lenges. Polymer, 49(8):1993-2007, 2008. doi: 10.1016/j.polymer.2008.01.027.

N.A. Peppas and A.R. Khare. Preparation, structure and diffusional behavior
of hydrogels in controlled release. Advanced Drug Delivery Reviews, 11(1):
1-35, 1993. doi: 10.1016/0169-409x(93)90025-y.

N.A. Peppas, P. Bures, W. Leobandung, and H. Ichikawa. Hydrogels in phar-
maceutical formulations. FEuropean Journal of Pharmaceutics and Biophar-
maceutics, 50(1):27-46, 2000. doi: 10.1016/S0939-6411(00)00090-4.

Q. Chai, Y. Jiao, and X. Yu. Hydrogels for biomedical applications: their
characteristics and the mechanisms behind them. Gels, 3(1):6, 2017. doi:
10.3390/gels3010006.

E.M. Ahmed. Hydrogel: Preparation, characterization, and applications: a
review. Journal of Advanced Research, 6(2):105-121, 2015. doi: 10.1016/].
jare.2013.07.006.

Food and Drug Administration. Generally Recognized As Safe (GRAS), 2018.
URL https://www.fda.gov/food /ingredientspackaginglabeling /gras/.

169


https://www.zarbees.com/product/baby-multivitamin-with-iron-supplement/
https://www.zarbees.com/product/baby-multivitamin-with-iron-supplement/
https://www.fda.gov/food/ingredientspackaginglabeling/gras/

References

[146] S. Sakai, K. Hirose, K. Taguchi, Y. Ogushi, and K. Kawakami. An in-
jectable, in situ enzymatically gellable, gelatin derivative for drug deliv-
ery and tissue engineering. Biomaterials, 30(20):3371-3377, 2009. doi:
10.1016/j.biomaterials.2009.03.030.

[147] D. Olsen, C. Yang, M. Bodo, R. Chang, S. Leigh, J. Baez, and D. Carmichael.
Recombinant collagen and gelatin for drug delivery. Advanced Drug Delivery,
55(12):1547-1567, 2003. doi: 10.1016/j.addr.2003.08.008.

[148] R. Schrieber and H. Gareis. Gelatine handbook: theory and industrial practice.
John Wiley & Sons, Ltd., Weinheim, 1st edition, 2007.

[149] B. Cohen, O. Pinkas, M. Foox, and M. Zilberman. Gelatin-alginate novel
tissue adhesives and their formulation-strength effects. Acta Biomaterialia, 9

(11):9004-9011, 2013. doi: 10.1016/j.actbio.2013.07.002.

[150] F. Podczeck and B.E. Jones. Pharmaceutical capsules. Pharmaceutical Press,
London, 2nd edition, 2004.

[151] R.G. Strickley, Q. Iwata, S. Wu, and T.C. Dahl. Pediatric drugs - a review of
commercially available oral formulations. Journal of Pharmaceutical Sciences,
97(5):1731-1774, 2008. doi: 10.1002/jps.21101.

[152] Northern Neonatal Nursing Initiative Trial Group. Randomised trial of pro-
phylactic early fresh-frozen plasma or gelatin or glucose in preterm ba-
bies: outcome at 2 years. The Lancet, 348(9022):229-232, 1996. doi:
10.1016/s0140-6736(95)12506-x.

[153] M. Ruszczynski and M. Urbanska. Gelatin tannate for treating acute gas-
troenteritis: a systematic review. Annals of Gastroenterology, 27(2):121, 2014.
doi: N/A.

[154] G. Broze. Handbook of detergents, part A: properties. Marcel Dekker, New
York, 1st edition, 1999.

[155] C.H. Chen, C.C. Tsai, W. Chen, F.L. Mi, and H.F. Liang. Novel living cell
sheet harvest system composed of thermoreversible methylcellulose hydrogels.
Biomacromolecules, 7(3):736-743, 2006. doi: 10.1021/bm0506400.

170



References

[156] S. Khan, J.S. Boateng, J. Mitchell, and V. Trivedi. Formulation, characterisa-
tion and stabilisation of buccal films for paediatric drug delivery of omeprazole.
AAPS PharmSciTech, 16(4):800-810, 2015. doi: 10.1208/s12249-014-0268-7.

[157] J.F. Standing and C. Tuleu. Paediatric formulations - getting to the heart of
the problem. International Journal of Pharmaceutics, 300(1-2):56-66, 2005.
doi: 10.1016/j.ijpharm.2005.05.006.

[158] S. Thirumala, J.M. Gimble, and R.V. Devireddy. Methylcellulose based ther-
mally reversible hydrogel system for tissue engineering applications. Cells, 2
(3):460-475, 2013. doi: 10.3390/cells2030460.

[159] H.R. Lin and K.C. Sung. Carbopol/pluronic phase change solutions for oph-
thalmic drug delivery. Journal of Controlled Release, 69(3):379-388, 2000.
doi: 10.1016/s0168-3659(00)00329-1.

[160] V. Sharma, V. Arora, and C. Ray. Use of natural superdisintegrant in mouth
dissolving tablet-an emerging trend. International Bulletin of Drug Research,

1(2):46-54, 2010. doi: N/A.

[161] C. Tournier, J. Rodrigues, F. Canon, C. Salles, and G. Feron. A method to
evaluate chewing efficiency in infants through food bolus characterization: a
preliminary study. Journal of Texture, 46(2):113-119, 2015. doi: 10.1111/
jtxs.12116.

[162] S. Caglayan, H. Candemir, S. Aksit, S. Kansoy, and S. Asik. Superiority of
oral agar and phototherapy combination in the treatment of neonatal hyper-
bilirubinemia. Pediatrics, 92(1):86-89, 1993. doi: N/A.

[163] M.T. Islam, N. Rodriguez-Hornedo, and S. Ciotti. Rheological characteri-
zation of topical carbomer gels neutralized to different pH. Pharmaceutical
Research, 21(7):1192-1199, 2004. doi: 10.1023/b:pham.0000033006.11619.07.

[164] L.F. Eichenfield, S. Basu, B. Calvarese, and R.J. Trancik. Effect of desonide
hydrogel 0.05% on the hypothalamic pituitary adrenal axis in pediatric sub-
jects with moderate to severe atopic dermatitis. Pediatric Dermatology, 24(3):

289-295, 2007. doi: 10.1111/§.1525-1470.2007.00405.x.

[165] K. Gaudin, A. Barbaud, C. Boyer, M.H. Langlois, A.-M. Lagueny, J.-P. Du-

bost, P. Millet, and F. Fawaz. In vitro release and stability of an artesunate

171



References

[166]

167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

rectal gel suitable for pediatric use. International Journal of Pharmaceutics,
353(1):1-7, 2008. doi: 10.1016/j.ijpharm.2007.10.048.

C.L. Li, L.G. Martini, and J.L. Ford. The use of hypromellose in oral drug
delivery. Journal of Pharmacy and Pharmacology, 57(5):533-546, 2005. doi:
10.1211/0022357055957.

E. Ruel-Gariepy and J.C. Leroux. In situ-forming hydrogels - review of
temperature-sensitive systems. Furopean Journal of Pharmaceutics and Bio-
pharmaceutics, 58(2):409-426, 2004. doi: 10.1016/j.ejpb.2004.03.019.

M. Helin-Tanninen, T. Naaranlahti, K. Kontra, and K. Wallenius. Enteral
suspension of nifedipine for neonates. Part 1. Formulation of nifedipine sus-

pension for hospital use. Journal of Clinical Pharmacy and Therapeutics, 26

(1):49-57, 2001. doi: 10.1111/j.1365-2710.2001.00318.x.

C. Niccolls. Persistent pulmonary hypertension of the newborn. Journal of
Neonatal Nursing, 18(2):63-71, 2012. doi: 10.1016/j.jnn.2010.10.001.

Electronic Medicines Compendium. Bonjela teething gel - summary of prod-
uct characteristics, 2017. URL https://www.medicines.org.uk/emc/medicine/
23319/.

J.P. Paques, E. van der Linden, and C.J.M. van Rijn. Preparation methods
of alginate nanoparticles. Advances in Colloid and Interface Science, 209:
163-171, 2014. doi: 10.1016/j.cis.2014.03.009.

H.H. Tonnesen and J. Karlsen. Alginate in drug delivery systems. Drug
Development and Industrial Pharmacy, 28(6):621-630, 2002. doi: 10.1081/
ddc-120003853.

M.R. Manali and D.P. Shah. Oral medicated jelly: a recent advancement in
formulation. Pharma Science Monitor, 7(2):13-20, 2016. doi: N/A.

N. Caporaso and D. Formisano. Developments, applications, and trends
of molecular gastronomy among food scientists and innovative chefs. Food
Reviews International, 32(4):417-435, 2016. doi: 10.1080/87559129.2015.
1094818.

172


https://www.medicines.org.uk/emc/medicine/23319/
https://www.medicines.org.uk/emc/medicine/23319/

References

[175]

[176]

[177]

[178]

[179)

[180]

181]

[182]

[183]

D.J. Sen. Cross linking of calcium ion in alginate produce spherification in
molecular gastronomy by pseudoplastic low. World Journal of Pharmaceutical
Sciences, 5(1):1-10, 2017. doi: N/A.

F.-H. Tsai, P.-Y. Chiang, Y. Kitamura, M. Kokawa, and M.Z. Islam. Produc-
ing liquid-core hydrogel beads by reverse spherification: effect of secondary
gelation on physical properties and release characteristics. Food Hydrocolloids,
62:140-148, 2017. doi: 10.1016/j.foodhyd.2016.07.002.

S.J. Schmidt, D.M. Bohn, A.J. Rasmussen, and E.A. Sutherland. Using food
science demonstrations to engage students of all ages in science, technology,
engineering, and mathematics (STEM). Journal of Food Science Education,
11(2):16-22, apr 2012. doi: 10.1111/j.1541-4329.2011.00138.x.

F.-H. Tsai, Y. Kitamura, and M. Kokawa. Liquid-core alginate hydro-
gel beads loaded with functional compounds of radish by-products by re-
verse spherification: optimization by response surface methodology. In-
ternational Journal of Biological Macromolecules, 96:600-610, 2017. doi:
10.1016/j.ijbiomac.2016.12.056.

L. Corvaglia, M. Spizzichino, D. Zama, and A. Aceti. Sodium alginate
(Gaviscon®) does not reduce apnoeas related to gastro-oesophageal reflux
in preterm infants. Farly Human Development, 87(12):775-778, 2011. doi:
10.1016/j.earlhumdev.2011.05.013.

L. Corvaglia, A. Aceti, and E. Mariani. The efficacy of sodium alginate
(Gaviscon) for the treatment of gastro oesophageal reflux in preterm in-
fants. Alimentary Pharmacology € Therapeutics, 33(4):466-470, 2011. doi:
10.1111/j.1365-2036.2010.04545.x.

Electronic Medicines Compendium (eMC). Gaviscon infant - summary
of product characteristics, 2018. URL https://www.medicines.org.uk/emc/
medicine/21981/.

Gelatin Manufacturers Institute of America. Gelatin handbook, 2017. URL
http://www.gelatin-gmia.com /gelatinhandbook.html.

Sigma-Aldrich. Methylcellulose, 2017. URL https://www.sigmaaldrich.com/
catalog/substance /methylcellulose123459004675117lang=en{& }region=GB.

173


https://www.medicines.org.uk/emc/medicine/21981/
https://www.medicines.org.uk/emc/medicine/21981/
http://www.gelatin-gmia.com/gelatinhandbook.html
https://www.sigmaaldrich.com/catalog/substance/methylcellulose12345900467511?lang=en{&}region=GB
https://www.sigmaaldrich.com/catalog/substance/methylcellulose12345900467511?lang=en{&}region=GB

References

184]

[185)

[186]

[187]

[188]

[189)]

[190]

191]

[192]

193]

[194]

Agar Gel. Agar-Agar, 2017. URL http://www.agargel.com.br/agar-tec-en.
html/.

Lubrizol. Carbopol® polymer products, 2017. URL https://www.lubrizol.
com/en/Life-Sciences/Products/Carbopol-Polymer-Products// .

Ashland. Products, 2017. URL http://www.ashland.com /products.

Sigma-Aldrich. Sodium alginate, 2017. URL https://www.sigmaaldrich.com/
catalog/product/aldrich/w2015027lang=en{& }region=GB/.

K.Y. Lee and D.J. Mooney. Alginate: properties and biomedical applica-
tions. Progress in Polymer Science, 37(1):106-126, 2012. doi: 10.1016/].
progpolymsci.2011.06.003.

A.S. Dhillon and A.K. Ewer. Diagnosis and management of gastro-oesophageal

reflux in preterm infants in neonatal intensive care units. Acta Paediatrica,

93(1):88-93, 2004. doi: 10.1111/j.1651-2227.2004.tb00680.x.

V.R. Preedy. Calcium. In Caffeine - chemistry, analaysis, function and effects,

chapter 1. Royal Society of Chemistry, London, 2nd edition, 2016.

C. Weaver and R.P. Heaney. Calcium in human health. Humana Press, To-
towa, 1st edition, 2007.

S.S. Baker, W.J. Cochran, C.A. Flores, M.K. Georgieff, M.S. Jacobson, T. Jak-
sic, and N.F. Krebs. American academy of pediatrics - committee on nutrition:

calcium requirements of infants, children, and adolescents. Pediatrics, 104(5

Pt 1):1152-1157, 1999. doi: 10.1542/peds.104.5.1152.

A.C. Ross, J.E. Manson, S.A. Abrams, J.F. Aloia, P.M. Brannon, S.K. Clin-
ton, R.A. Durazo-Arvizu, J.C. Gallagher, R.L. Gallo, G. Jones, C.S. Kovacs,
S.T. Mayne, C.J. Rosen, and S.A. Shapses. The 2011 report on dietary refer-
ence intakes for calcium and vitamin D from the institute of medicine: what

clinicians need to know. The Journal of Clinical Endocrinology € Metabolism,
96(1):53-58, 2011. doi: 10.1210/jc.2010-2704.

World Health Organization. Guidelines on optimal feeding of low birth-weight
infants in low- and middle-income countries. World Health Organization,
Geneva, 2011.

174


http://www.agargel.com.br/agar-tec-en.html/
http://www.agargel.com.br/agar-tec-en.html/
https://www.lubrizol.com/en/Life-Sciences/Products/Carbopol-Polymer-Products/
https://www.lubrizol.com/en/Life-Sciences/Products/Carbopol-Polymer-Products/
http://www.ashland.com/products
https://www.sigmaaldrich.com/catalog/product/aldrich/w201502?lang=en{&}region=GB/
https://www.sigmaaldrich.com/catalog/product/aldrich/w201502?lang=en{&}region=GB/

References

195]

[196]

197]

[198]

[199]

[200]

201]

202]

203

204]

D.B. Kumssa, E.J.M. Joy, E.L. Ander, M.J. Watts, S.D. Young, S. Walker,
and M.R. Broadley. Dietary calcium and zinc deficiency risks are decreasing
but remain prevalent. Scientific Reports, 5(1), 2015. doi: 10.1038/srep10974.

P. Pathomrungsiyounggul, A.S. Grandison, and M.J. Lewis. Effect of cal-
cium carbonate, calcium citrate, tricalcium phosphate, calcium gluconate
and calcium lactate on some physicochemical properties of soymilk. Inter-
national Journal of Food Science & Technology, 45(11):2234-2240, 2010. doi:
10.1111/j.1365-2621.2010.02399.x.

D.T. Geddes, K. Chooi, K. Nancarrow, A.R. Hepworth, H. Gardner, and
K. Simmer. Characterisation of sucking dynamics of breastfeeding preterm
infants: a cross sectional study. BMC Pregnancy and Childbirth, 17(1):386,
2017. doi: 10.1186/s12884-017-1574-3.

D. Geddes, C. Kok, K. Nancarrow, A. Hepworth, and K. Simmer. Preterm
infant feeding: a mechanistic comparison between a vacuum triggered novel
teat and breastfeeding. Nutrients, 10(3):376, 2018. doi: 10.3390/nul0030376.

C. Broyard and F. Gaucheron. Modifications of structures and functions of

caseins: a scientific and technological challenge. Dairy Science & Technology,
95(6):831-862, 2015. doi: 10.1007/s13594-015-0220-y.

G.O. Phillips and P.A. Williams. Caseins. In Handbook of food proteins,
chapter 2, pages 13-29. Woodhead Publishing, Cambridge, 2011.

F.-H. Tsai, Y. Kitamura, and M. Kokawa. Effect of gum arabic-modified
alginate on physicochemical properties, release kinetics, and storage stability
of liquid-core hydrogel beads. Carbohydrate Polymers, 174(1):1069-1077, 2017.
doi: 10.1016/j.carbpol.2017.07.031.

F. Gaucheron. Iron fortification in dairy industry. Trends in Food Science €
Technology, 11(11):403-409, 2000. doi: 10.1016/s0924-2244(01)00032-2.

W.M. McCrae. The D-xylose absorption test in infancy. Archives of Disease
in Childhood, 38(202):571-573, 1963. doi: 10.1136/adc.38.202.571.

[. Malagon, W. Onkenhout, G. Klok, P.F.H. van der Poel, J.G. Bovill, and
M.G. Hazekamp. Gut permeability in paediatric cardiac surgery. British
Journal of Anaesthesia, 94(2):181-185, 2005. doi: 10.1093/bja/aei014.

175



References

205

[206]

207]

208]

209]

[210]

[211]

212]

[213]

E.V. Rouwet, E. Heineman, W.A. Buurman, G. Terriet, G. Ramsay, and
C.E. Blanco. Intestinal permeability and carrier-mediated monosaccharide

absorption in preterm neonates during the early postnatal period. Pediatric
Research, 51(1):64-70, 2002. doi: 10.1203/00006450-200201000-00012.

J.H. Roe and E.W. Rice. A photometric method for the determination of
free pentoses in animal tissues. Journal of Biological Chemistry, 173:507-512,
1948. doi: N/A.

J.M. Goodhart and G.R. Kingston. Modification of the method for the esti-
mation of xylose in urine. Journal of Clinical Pathology, 22(5):621, 1969. doi:
N/A.

[.-Y. Kim, S.-H. Suh, I.-K. Lee, and R.R. Wolfe. Applications of stable, non-
radioactive isotope tracers in in vivo human metabolic research. Fxzperimental

& Molecular Medicine, 48(1):e203, 2016. doi: 10.1038 /emm.2015.97.

S.J. Jackson, J.S. Waterhouse, and L.J.C. Bluck. A single glucose derivative
suitable for gas chromatography/mass spectrometry and gas chromatogra-

phy/combustion /isotope ratio mass spectrometry. Rapid Communications in

Mass Spectrometry, 21(18):3123-3128, 2007. doi: 10.1002/rcm.3195.

B. Braden, B. Lembcke, W. Kuker, and W.F. Caspary. 13C-breath tests:
current state of the art and future directions. Digestive and Liver Disease, 39
(9):795-805, 2007. doi: 10.1016/j.d1d.2007.06.012.

O. Pozler, D. Neumann, V. Vorisek, J. Bukac, J. Bures, and Z. Kokstein.
Development of gastric emptying in premature infants. Nutrition, 19(7):593—
596, 2003. doi: 10.1016,/s0899-9007(03)00064-9.

A. Moreno, S. Blueml, J.-H. Hwang, and B.D. Ross. Alternative 1-13C glucose
infusion protocols for clinical 13-C MRS examinations of the brain. Magnetic

Resonance in Medicine, 46(1):39-48, 2001. doi: 10.1002/mrm.1158.

B. Ross, A. Lin, K. Harris, P. Bhattacharya, and B. Schweinsburg. Clinical
experience with 13C MRSin vivo. NMR in Biomedicine, 16(67):358-369, 2003.
doi: 10.1002/nbm.852.

176



References

214]

[215]

[216]

[217]

218]

219]

[220]

[221]

222]

S. Blueml, A. Moreno, J.-H. Hwang, and B.D. Ross. 1- 13C glucose mag-
netic resonance spectroscopy of pediatric and adult brain disorders. NMR in
Biomedicine, 14(1):19-32, 2001. doi: 10.1002/nbm.679.

V.P. Carnielli, L.J.I. Zimmermann, A. Hamvas, and P.E. Cogo. Pulmonary
surfactant kinetics of the newborn infant: novel insights from studies with
stable isotopes. Journal of Perinatology, 29(S2):529-S37, 2009. doi: 10.1038/
ip.2009.32.

P.J. Thureen, D. Melara, and P.V. Fennessey. Effect of low versus high intra-
venous amino acid intake on very low birth weight infants in the early neonatal
period. Pediatric, 53(1):24-32, 2003. doi: 10.1203/01.pdr.0000042441.34920.
e

B. Diderholm. Perinatal energy metabolism with reference to IUGR and SGA:
studies in pregnant women and newborn infants. Indian Journal of Medical
Research, 130(5):612-617, 2009. doi: N/A.

A AM.W. Van Kempen, J.A. Romijn, A.F.C. Ruiter, M.T. Ackermans, E. En-
dert, J.H. Hoekstra, J.H. Kok, and H.P. Sauerwein. Adaptation of glucose
production and gluconeogenesis to diminishing glucose infusion in preterm in-
fants at varying gestational ages. Pediatric Research, 53(4):628-634, 2003.
doi: 10.1203/01.pdr.0000054733.13366.af.

E. Scolamiero, G.R.D. Villani, L. Ingenito, R. Pecce, L. Albano, M. Caterino,
M.G. di Girolamo, C. di Stefano, I. Franzese, and G. Gallo. Maternal vitamin
B12 deficiency detected in expanded newborn screening. Clinical Biochem-

istry, 47(18):312-317, 2014. doi: 10.1016/j.clinbiochem.2014.08.020.

L.H. Allen. Vitamin B12. Advances in Nutrition, 3(1):54-55, 2012. doi:
10.3945/an.111.001370.

B. Koletzko, B. Poindexter, and R. Uauy. Nutritional care of preterm infants
- scientific basis and practical guidelines. S. Karger AG, Basel, 1st edition,
2014.

Y. Adkins and B. Loennerdal. Mechanisms of vitamin B12 absorption in
breastfed infants. Journal of Pediatric Gastroenterology and Nutrition, 35(2):
192-198, 2002. doi: 10.1097,/00005176-200208000-00016.

177



References

[223]

[224]

[225]

[226]

[227]

[228]

[229]

230]

[231]

World Health Organization. Human vitamin and mineral requirements: report
of a joint FAO/WHO expert consultation. World Health Organization, Geneva,
2001.

A. Doscherholmen and P.S. Hagen. A dual mechanism of vitamin B12 plasma
absorption. Journal of Clinical Investigation, 36(11):1551-1557, 1957. doi:
N/A.

C. Carkeet, S.R. Dueker, J. Lango, B.A. Buchholz, J.W. Miller, R. Green, B.D.
Hammock, J.R. Roth, and P.J. Anderson. Human vitamin B12 absorption
measurement by accelerator mass spectrometry using specifically labeled 14C-
cobalamin. Proceedings of the National Academy of Sciences, 103(15):5694—
5699, 2006. doi: 10.1073/pnas.0601251103.

E.J. Kelly, K.G. Brownlee, and S.J. Newell. Gastric secretory function in the
developing human stomach. Farly Human Development, 31(2):163-166, 1992.
doi: 10.1016,/0378-3782(92)90043-g.

J. DiPalma, C.L. Kirk, M. Hamosh, and A.R. Colon. Lipase and pepsin ac-
tivity in the gastric mucosa of infants, children, and adults. Gastroenterology,
101(1):116-121, 1991. doi: 10.1016/0016-5085(91)90467-y.

N. Haiden, K. Klebermass, F. Cardona, J. Schwindt, A. Berger,
C. Kohlhauser-Vollmuth, B. Jilma, and A. Pollak. A randomized, controlled
trial of the effects of adding vitamin B12 and folate to erythropoietin for the
treatment of anemia of prematurity. Pediatrics, 118(1):180-188, 2006. doi:
10.1542/peds.2005-2475.

D.A. Worthington-White, M. Behnke, and S. Gross. Premature infants re-
quire additional folate and vitamin B-12 to reduce the severity of the anemia
of prematurity. The American Journal of Clinical Nutrition, 60(6):930-935,
1994. doi: 10.1093/ajen/60.6.930.

G.E. Morgan, M.S. Mikhail, and M.J. Murray. Clinical Anesthesiology.
McGraw-Hill, New York, 3rd edition, 2002.

S.A.M. Billingham, A.L. Whitehead, and S.A. Julious. An audit of sam-
ple sizes for pilot and feasibility trials being undertaken in the United
Kingdom registered in the United Kingdom Clinical Research Network

178



References

[232]

233

234]

[235]

[236]

[237]

238

[239]

[240]

database. BMC Medical Research Methodology, 13(1):104, 2013. doi: 10.
1186,/1471-2288-13-104.

G. Guest, A. Bunce, and L. Johnson. How many interviews are enough? Field

Methods, 18(1):59-82, 2006. doi: 10.1177/1525822x05279903.

S.E. Baker, R. Edwards, and M. Doidge. How many qualitative interviews
is enough? Ezpert voices and early career reflections on sampling and cases
in qualitative research. National Centre for Research Methods, Southampton,
2012.

A. Tong, P. Sainsbury, and J. Craig. Consolidated criteria for reporting quali-
tative research (COREQ): a 32-item checklist for interviews and focus groups.
International Journal for Quality in Health Care, 19(6):349-357, 2007. doi:
10.1093/intqhc/mzm042.

V. Arockiasamy, L. Holsti, and S. Albersheim. Fathers’ experiences in the

neonatal intensive care unit: a search for control. Pediatrics, 121(2):e215-22,

2008. doi: 10.1542/peds.2007-1005.

L. Cescutti-Butler and K. Galvin. Parents’ perceptions of staff competency

in a neonatal intensive care unit. Journal of Clinical Nursing, 12(5):752-761,

2003. doi: 10.1046/j.1365-2702.2003.00783.x.

S. Jiang, R. Warre, X. Qiu, K. O’Brien, and S.K. Lee. Parents as practitioners
in preterm care. Early Human Development, 90(11):781-785, 2014. doi: 10.
1016/j.earlhumdev.2014.08.019.

L.A. Lewandowski and M.D. Tesler. Family-centered care: Putting it into
action: the SPN/ANA guide to family-centered care. American Nurses Asso-
ciation, Washington, 1st edition, 2003. doi: 10.1039/c2cs35265f.

J. Nicolas, S. Mura, D. Brambilla, N. Mackiewicz, and P. Couvreur. Design,
functionalization strategies and biomedical applications of targeted biodegrad-
able/biocompatible polymer-based nanocarriers for drug delivery. Chemical
Society Reviews, 42(3):1147-1235, 2013. doi: 10.1039/c2cs35265f.

J.D. Schiffman and C.L. Schauer. A review: electrospinning of biopolymer
nanofibers and their applications. Polymer Reviews, 48(2):317-352, 2008. doi:
10.1080/15583720802022182.

179



References

[241]

[242]

[243]

244]

[245]

[246]

[247]

248

[249]

R. Sridhar, R. Lakshminarayanan, K. Madhaiyan, V.A. Barathi, K.H.C. Lim,
and S. Ramakrishna. Electrosprayed nanoparticles and electrospun nanofibers
based on natural materials: applications in tissue regeneration, drug delivery
and pharmaceuticals. Chemical Society Reviews, 44(3):790-814, 2015. doi:
10.1039/c4cs002264.

D.-G. Yu, X.-X. Shen, C. Branford-White, K. White, L.-M. Zhu, and S.W.A.
Bligh. Oral fast-dissolving drug delivery membranes prepared from electrospun
polyvinylpyrrolidone ultrafine fibers. Nanotechnology, 20(5):055104, 2009. doi:
10.1088/0957-4484/20/5/055104.

F. Ignatious, L. Sun, C. Lee, and J. Baldoni. Electrospun nanofibers in oral
drug delivery. Pharmaceutical Research, 27(4):576-588, 2010. doi: 10.1007/
s11095-010-0061-6.

A F. Borges, C. Silva, J.F.J. Coelho, and S. Simoes. Oral films: Current status
and future perspectives: galenical development and quality attributes. Journal
of Controlled Release, 206:1-19, 2015. doi: 10.1016/j.jconrel.2015.03.006.

A. Arya, A. Chandra, V. Sharma, and K. Pathak. Fast dissolving oral films:
an innovative drug delivery system and dosage form. International Journal of

ChemTech Research, 2(1):576-583, 2010. doi: N/A.

L. Bonnaillie, P. Tomasula, L.M. Bonnaillie, and P.M. Tomasula. Application
of humidity-controlled dynamic mechanical analysis (DMA-RH) to moisture-
sensitive edible casein films for use in food packaging. Polymers, 7(1):91-114,
2015. doi: 10.3390/polym7010091.

A. Hartwig and J. Ulrich. In situ encapsulation of liquids by means of crys-
tallization. Journal of Crystal Growth, 469:128-130, 2017. doi: 10.1016/j.
jerysgro.2016.08.056.

M. Wellner and J. Ulrich. Design of dissolvable milk containers for convenient
handling. Chemical Engineering € Technology, 40(7):1247-1251, 2017. doi:
10.1002/ceat.201600714.

S.V. Sastry, J.R. Nyshadham, and J.A. Fix. Recent technological advances in
oral drug delivery - a review. Pharmaceutical Science € Technology Today, 3
(4):138-145, 2000. doi: 10.1016/51461-5347(00)00247-9.

180



References

[250]

251]

[252]

253

[254]

[255]

[256]

[257]

[258]

C.L. Ventola. Medical applications for 3D printing: current and projected
uses. Pharmacy and Therapeutics, 39(10):704-11, 2014. doi: N/A.

J. Norman, R.D. Madurawe, C.M.V. Moore, M.A. Khan, and A. Khairuz-
zaman. A new chapter in pharmaceutical manufacturing: 3D-printed drug
products. Advanced Drug Delivery Reviews, 108:39-50, 2017. doi: 10.1016/].
addr.2016.03.001.

A. Goyanes, H. Chang, D. Sedough, G.B. Hatton, J. Wang, A. Buanz, S. Ga-
isford, and A.W. Basit. Fabrication of controlled-release budesonide tablets
via desktop (FDM) 3D printing. International Journal of Pharmaceutics, 496
(2):414-420, 2015. doi: 10.1016/j.ijpharm.2015.10.039.

M. Preis, J. Breitkreutz, and N. Sandler. Perspective: concepts of printing
technologies for oral film formulations. International Journal of Pharmaceu-

tics, 494(2):578-584, 2015. doi: 10.1016/j.ijpharm.2015.02.032.

D.L. Harris, P.J. Weston, M. Signal, J.G. Chase, and J.E. Harding. Dex-
trose gel for neonatal hypoglycaemia (the Sugar Babies Study): a randomised,
double-blind, placebo-controlled trial. The Lancet, 382(9910):2077-2083, 2013.
doi: 10.1016/s0140-6736(13)61645-1.

J.W. Lee and J.M. Davis. Future applications of antioxidants in premature
infants. Current opinion in pediatrics, 23(2):161-6, 2011. doi: 10.1097/mop.
0b013e3283423e51.

G.C. Deshpande, S.C. Rao, A.D. Keil, and S.K. Patole. Evidence-based guide-
lines for use of probiotics in preterm neonates. BMC' Medicine, 9(1):92, 2011.
doi: 10.1186/1741-7015-9-92.

S. Arslanoglu, G.E. Moro, and E.E. Ziegler. Adjustable fortification of human
milk fed to preterm infants: does it make a difference? Journal of Perinatol-
0gy, 26(10):614-621, 2006. doi: 10.1038/sj.jp.7211571.

P. Geisser, S. Burckhardt, P. Geisser, and S. Burckhardt. The pharmacokinet-
ics and pharmacodynamics of iron preparations. Pharmaceutics, 3(1):12-33,
2011. doi: 10.3390/pharmaceutics3010012.

181



	Preface
	List of Publications
	Nomenclature
	1 Motivation
	2 Background
	2.1 Introduction
	2.2 Science and prevalence of breastfeeding
	2.3 Infant oral therapeutic delivery 
	2.4 Research context
	2.5 Research methods

	3 A parent and nursing perspective 
	3.1 Introduction
	3.2 Materials and methods
	3.3 Results 
	3.4 Discussion
	3.5 Conclusion

	4 Fibre-based zinc delivery into human milk 
	4.1 Introduction
	4.2 Materials and methods
	4.3 Results
	4.4 Discussion
	4.5 Conclusion

	5 Hydrogel-based iron delivery into human milk 
	5.1 Introduction
	5.2 Materials and methods
	5.3 Results
	5.4 Discussion
	5.5 Conclusion

	6 Clinical assessment of therapeutic delivery during breastfeeding
	6.1 Introduction
	6.2 Materials and methods
	6.3 Results
	6.4 Discussion
	6.5 Conclusion

	7 Concluding remarks 
	7.1 Final conclusions
	7.2 Outlook

	Appendix
	References

