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Abstract. Consider a sequence of continuous-time irreducible reversible Markov
chains and a sequence of initial distributions, µn. Instead of performing a worst
case analysis, one can study the rate of convergence to the stationary distribution
starting from these initial distributions. The sequence is said to exhibit (total
variation) µn-cutoff if the convergence to stationarity in total variation distance is
abrupt, w.r.t. this sequence of initial distributions.

In this work we give a characterization of µn-cutoff (and also of total-variation
mixing) for an arbitrary sequence of initial distributions µn (in the above setup).
Our characterization is expressed in terms of hitting times of sets which are “worst”
(in some sense) w.r.t. µn.

Consider a Markov chain on Ω whose stationary distribution is π. Let tH(α) :=
maxx∈Ω,A⊆Ω:π(A) > α Ex[TA] be the expected hitting time of the set of stationary
probability at least α which is “worst in expectation” (starting from the worst
starting state). The connection between tH(·) and the mixing time of the chain was
previously studied by Aldous and later by Lovász and Winkler, and was recently
refined by Peres and Sousi and independently by Oliveira. In this work we further
refine this connection and show that µn-cutoff can be characterized in terms of con-
centration of hitting times (starting from µn) of sets which are worst in expectation
w.r.t. µn. Conversely, we construct a counter-example which demonstrates that in
general cutoff (as opposed to cutoff w.r.t. a certain sequence of initial distributions)
cannot be characterized in this manner.

Finally, we also prove that there exists an absolute constant C such that for any
Markov chain ε(tH(ε) − tH(1 − ε)) 6 Ctrel| log ε|, for all 0 < ε < 1/2, where trel is
the inverse of the spectral gap of the additive symmetrization 1

2
(P + P ∗).
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1. Introduction

This work is a continuation of Basu et al. (2017), in which Starr’s maximal
inequality was used to characterize the cutoff phenomenon for reversible Markov
chains in terms of concentration of hitting times of sets which are “worst” in some
sense. Here using the same technique we present several new related results.

The connection between mixing times and hitting times of sets which are “worst”
in some sense goes back to the pioneer work of Aldous (1982) and the later body
of work of Lovász and Winkler (1998) on stopping rules. Recently, this connection
was substantially refined by Peres and Sousi (2015) and independently by Oliveira
(2012). All of the aforementioned works considered sets whose hitting time is in
some sense the “worst in expectation”1. The results in Basu et al. (2017) give a
more refined connection between hitting times and mixing times.

We extend the results of Basu et al. (2017) to the case cutoff (resp. mixing)
is considered only w.r.t. a certain sequence of initial distributions (resp. initial
distribution). We show that in this setup one may interpret “worst” above as
“maximizing the expected hitting time” w.r.t. the considered sequence of initial
distributions over all sets whose stationary probability is at least some α ∈ (0, 1).
Conversely, we show that this may fail when considering cutoff in the usual sense
(not only w.r.t. a certain sequence of initial distributions).

Generically, we shall denote the state space of a Markov chain by Ω and its
stationary distribution by π (or Ωn and πn, respectively, for the n-th chain in a
sequence of chains). We say that the chain is finite, whenever Ω is finite. Let
(Yt)

∞
t=0 be an irreducible Markov chain on a finite state space Ω with transition

matrix P and stationary distribution π. We denote such a chain by (Ω, P, π). The
time-reversal of P is P ∗, given by P ∗(x, y) := π(y)P (y, x)/π(x). A chain (Ω, P, π)
is called reversible if P = P ∗, i.e. π(x)P (x, y) = π(y)P (y, x), for all x, y ∈ Ω.
The additive symmetrization of P is given by Q := 1

2
(P + P ∗).

Periodicity issues can be avoided by considering the continuous-time version of
the chain, (Xt)t > 0. This is a continuous time Markov chain whose heat kernel

is defined by Ht(x, y) :=
∑∞

k=o
e−ttk

k! P t(x, y). It is a classic result of probability
theory that for any initial condition the distribution of Xt converges to π when t
goes to infinity. The object of the theory of Mixing time for Markov chain is to
study the characteristic of this convergence (see Aldous and Fill, 2002; Levin et al.,
2017 for self-contained introductions to the subject). Throughout, we shall consider
only continuous time chains, although all our results can be stated also in discrete
time, assuming P (x, x) > δ for some δ > 0, for all x ∈ Ω (in fact, even if this
fails, the results are still valid if one replaces the relaxation time by the absolute
relaxation time; see Basu et al., 2017, Remark 1.8).

We denote by Ht
µ (Hµ) the distribution of Xt ((Xt)t > 0), given that the initial

distribution is µ. When µ = δx (where δx(y) = 1x=y), for some x ∈ Ω, we simply
write Ht

x (Hx). We denote the set of probability distributions on a (finite) set B by
P(B). For any pair of distributions µ, ν ∈ P(B), their total-variation distance

1In Oliveira (2012) and Peres and Sousi (2015) the parameter tH(·) was considered and in
Aldous (1982); Lovász and Winkler (1998) maxα∈(0,1) αtH(α) was considered, where tH(·) is

defined in Definition 1.4.
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is defined to be

‖µ− ν‖TV :=
1

2

∑

x

|µ(x) − ν(x)| = max
A⊂B

µ(A)− ν(A) =
∑

x∈B:µ(x)>ν(x)

µ(x)− ν(x).

The worst-case total variation distance at time t is defined as d(t) := maxx∈Ω ‖Ht
x−

π‖TV. For µ ∈ P(Ω) let dµ(t) := ‖Ht
µ − π‖TV = 1

2

∑

y∈Ω |
∑

x∈Ω µ(x)Ht(x, y) −
π(y)|. The ε-mixing-time (resp. w.r.t. a fixed initial distribution µ) is defined as

tmix(ε) := inf {t : d(t) 6 ε} , (resp. tmix,µ(ε) := inf {t : dµ(t) 6 ε}).
When ε = 1/4 we simply write tmix and tmix,µ.

Recall that if (Ω, P, π) is a finite irreducible chain, then the additive symmetriza-
tion Q is reversible and hence self-adjoint w.r.t. the inner-product induced by π (see
Definition 2.1). Thus Q has |Ω| real eigenvalues. Throughout we shall denote them
by 1 = λ1 > λ2 > . . . > λ|Ω| > − 1 (where λ2 < 1 by irreducibility). Define the
spectral-gap and relaxation-time of P as λ := (1 − λ2) and trel := 1/λ. The
following general relation holds for reversible chains (see Levin et al., 2017 Lemmas
20.5 and 20.11),

trel| log (2ε) | 6 tmix(ε) 6 trel| log
(

εmin
x

π(x)
)

|. (1.1)

Next, consider a sequence of such chains, ((Ωn, Pn, πn) : n ∈ N), each with its

corresponding worst-distance from stationarity dn(t), its mixing-time t
(n)
mix, etc..

Loosely speaking, the (total variation) cutoff phenomenon occurs when over
a negligible period of time, known as the cutoff window, the (worst-case) total
variation distance (of a certain finite Markov chain from its stationary distribution)
drops abruptly from a value close to 1 to near 0. In other words, one should run

the n-th chain until time (1− o(1))t
(n)
mix for it to even slightly mix in total variation,

whereas running it any further after time (1 + o(1))t
(n)
mix is essentially redundant.

Formally, we say that a sequence of chains exhibits a cutoff if the following sharp
transition in its convergence to stationarity occurs:

lim
n→∞

t
(n)
mix(ε)/t

(n)
mix(1− ε) = 1, for every 0 < ε < 1.

Similarly, for a sequence of initial distributions µn ∈ P(Ωn), we say that a sequence
of chains exhibits a µn-cutoff if

lim
n→∞

t
(n)
mix,µn

(ε)/t
(n)
mix,µn

(1 − ε) = 1, for every 0 < ε < 1.

We say that the sequence has a cutoff window (resp. µn-cutoff window) wn, if

wn = o(t
(n)
mix) (resp. wn = o(t

(n)
mix,µn

)) and for any ε ∈ (0, 1) there exists Cε > 0 such
that for all n

t
(n)
mix(ε)− t

(n)
mix(1 − ε) 6 Cεwn (resp. t

(n)
mix,µn

(ε)− t
(n)
mix,µn

(1 − ε) 6 Cεwn).

We say that a family of chains satisfies the product condition if λ(n)t
(n)
mix → ∞

as n → ∞ (or equivalently, t
(n)
rel = o(t

(n)
mix)). The following well-known fact follows

easily from the first inequality in (1.1) (see e.g. Levin et al., 2017, Proposition 18.4).

Fact 1.1. If a sequence of irreducible reversible chains exhibits a cutoff, then t
(n)
rel =

o(t
(n)
mix).



104 J. Hermon

The following mixing parameter, introduced in Basu et al. (2017), shall play a
key role in this work.

Definition 1.2. Let (Ω, P, π) be an irreducible chain. Let µ ∈ P(Ω), δ, ε ∈ (0, 1)
and t > 0. We define pµ(δ, t) := maxB⊆Ω:π(B) > δ Hµ[TB > t], where TB := inf{t :
Xt ∈ B} is the hitting time of the set B. Set p(δ, t) := maxx∈Ω px(δ, t). We define

hitδ,µ(ε) := min{t : pµ(δ, t) 6 ε} and hitδ(ε) := min{t : p(δ, t) 6 ε}.

Definition 1.3. Let (Ωn, Pn, πn) be a sequence of irreducible chains and let α ∈
(0, 1). We say that the sequence exhibits a hitα-cutoff (resp. hitα,µn

-cutoff), if for
every 0 < ε < 1/4,

hit(n)α (ε)− hit(n)α (1− ε) = o
(

hit(n)α (1/4)
)

(respectively, hit(n)α,µn
(ε)− hit(n)α,µn

(1− ε) = o
(

hit(n)α,µn
(1/4)

)

).

The main abstract result in Basu et al. (2017) (Theorem 3) is the following
theorem.

Theorem A. Let (Ωn, Pn, πn) be a sequence of reversible irreducible finite Markov
chains. The following are equivalent:

(1) The sequence exhibits a cutoff.

(2) The sequence exhibits a hitα-cutoff for some α ∈ (0, 1) and t
(n)
rel = o(t

(n)
mix).

Definition 1.4. Let µ ∈ P(Ω) and 0 < α < 1. Define

tH,µ(α) := max
A⊆Ω: π(A) > α

Eµ[TA] and

tH(α) := max
x

tH,x(α) = max
x∈Ω,A⊆Ω:π(A) > α

Ex[TA].

This work was greatly motivated by the results of Peres and Sousi (2015). Sim-
ilar results were obtained independently by Oliveira (2012). Both papers refined
previous results of Aldous (1982) and of Lovász and Winkler (1998). Their results
share the general theme of describing mixing-times in terms of hitting-times. Their
approach relied on the theory of random times to stationarity combined with a
certain “de-randomization” argument due to Aldous (1982), which shows that for
any reversible irreducible finite chain and any stopping time T (possibly w.r.t. a
larger filtration, allowing some external randomness) such that XT ∼ π, we have
tmix = O(maxx∈Ω Ex[T ]). As a consequence, they showed that for any 0 < α < 1/2
(this was extended to α = 1/2 in Griffiths et al., 2014), there exist some constants
cα, c

′
α > 0 such that for every reversible irreducible finite chain

c′αtH(α) 6 tmix 6 cαtH(α).

It is natural to ask whether the more studied mixing parameter tH(α) could be used
in Theorem A instead of the mixing parameter hitα(·).

The following theorem extends Theorem A to arbitrary starting distributions

µn ∈ P(Ωn), such that t
(n)
rel = o(t

(n)
mix,µn

). In addition, it asserts that “cutoff”

w.r.t. these initial distributions (i.e. µn-cutoff), is in fact equivalent to concentra-
tion of hitting times of sets which are “worst in expectation” w.r.t. these initial
distributions (in the sense of Definition 1.4).
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Theorem 1. Let (Ωn, Pn, πn) be a sequence of finite irreducible reversible chains.

Let µn ∈ P(Ωn) be such that t
(n)
rel = o(t

(n)
mix,µn

(δ)), for some 0 < δ < 1. Then the
following are equivalent:

i) The sequence exhibits a µn-cutoff.
ii) There exists some α ∈ (0, 1) such that the sequence exhibits a hitα,µn

-cutoff.
iii) There exist some α ∈ (0, 1) and a sequence of sets An ⊆ Ωn with

πn(An) > α satisfying that Eµn
[TAn

] = t
(n)
H,µn

(α), such that

lim
n→∞

Hµn
[|TAn

− t
(n)
mix,µn

| < εEµn
[TAn

]] = 1, for every ε > 0.

Remark 1.5. It was shown in Basu et al. (2017) that the occurrence of hitα-cutoff
for some α ∈ (0, 1/2] implies that the product condition holds. Example 8.2 in
Basu et al. (2017) demonstrates that this cannot be improved and that hitα-cutoff
for some α ∈ (1/2, 1) need not imply cutoff. A small variation of that example can
be used to show that in general hitα,µn

-cutoff (even for small α) need not imply

µn-cutoff. Thus the assumption that t
(n)
rel = o(t

(n)
mix,µn

(δ)) for some 0 < δ < 1, in
Theorem 1 cannot be removed.

We say that a Markov chain is transitive if for every x, y ∈ Ω there exists a
bijection φ : Ω → Ω such that (1) φ(x) = y and (2) for all a, b ∈ Ω we have that
P (a, b) = P (φ(a), φ(b)).

Corollary 1.6. Let (Ωn, Pn, πn) be a sequence of finite irreducible reversible tran-
sitive chains. Then the following are equivalent:

i) The sequence exhibits a cutoff.
ii) The sequence satisfies the product condition, and for some sequence xn ∈

Ωn and some 0 < α < 1, there exists a sequence of sets An ⊆ Ωn with

πn(An) > α satisfying that Exn
[TAn

] = t
(n)
H,xn

(α), such that

lim
n→∞

Hxn
[|TAn

− t
(n)
mix| < εExn

[TAn
]] = 1, for every ε > 0.

The following proposition asserts that in general cutoff (as opposed to cutoff
w.r.t. some sequence of initial distributions) cannot be characterized in terms of
the parameter tH(·).
Proposition 1.7. There exists a sequence (Ωn, Pn, πn) of finite irreducible re-
versible chains satisfying the product condition such that the following holds:

· There exist An ⊆ Ωn and xn ∈ Ωn such that πn(An) > 1/2 and Exn
[TAn

] =

t
(n)
H (1/2).

· The distribution of the hitting times of An are concentrated w.r.t. the initial
states xn.

· The sequence does not exhibit a hit1/2-cutoff.
· The sequence does not exhibit a cutoff.

In Example 5.1 we construct a sequence of chains which exhibits the behavior
described in Proposition 1.7.

Remark 1.8. It was shown in Chen and Saloff-Coste (2013) that a sequence of

finite continuous-time Markov chains exhibits a cutoff iff t
(n)
L (ε) − t

(n)
L (1 − ε) =

o(t
(n)
L (1/4)), where t

(n)
L (ε) is the ε-mixing-time of the associated lazy chain. They

also showed that the same holds for a sequence of fixed initial distributions. Hence
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in part (i) of Theorem 1 and of Corollary 1.6 we could have considered the lazy
version of the chain, rather than its continuous-time version.

Recall that the relaxation-time trel of P is defined to be the inverse of the smallest
non-zero eigenvalue of I− 1

2
(P +P ∗). The main ingredient in the proof of Theorem

1 is the following proposition.

Proposition 1.9. Let (Ω, P, π) be a finite irreducible reversible Markov chain. Let
µ ∈ P(Ω). Let 0 < α, ε < 1 and let 0 < δ 6 min{ε, 1− ε, 1− α}. Then

hitα,µ(ε+ δ)−α−1 log

(

1− α

δ

)

trel 6 tmix,µ(ε) 6 hitα,µ(ε− δ)+
3

2
trel| log δ|. (1.2)

The same holds when µ is omitted from the inequality. Moreover, even if the chain
is non-reversible, we still have that

hitα,µ(ε+ δ)− α−1 log(
1− α

δ
)trel

6 tmix,µ(ε) 6 hit1−δ,µ(ε− δ) + log(2/δ3)trel log(trel ∨ e).
(1.3)

Conjecture 1.10. Let t∗ := inf{t : VarπHtf 6 e−2Varπf for all f ∈ RΩ}, where
for g ∈ RΩ we define Varπg := ‖g−Eπg‖22, Eπg :=

∑

x π(x)g(x), ‖g‖22 := Eπg
2 and

Htg(x) :=
∑

y Ht(x, y)g(y) = Exg(Xt). Then there exist some constants cε, Cδ > 0

such that for every irreducible finite Markov chain, for every ε ∈ (0, 1) and every
δ 6 min{ε, 1− ε} we have that

max{cεt∗, hit1−δ(ε+ δ)} 6 tmix(ε) 6 hit1−δ(ε− δ) + Cδt∗.

For more details regarding this conjecture and how one might prove it, see Con-
jecture 2.5 and Remark 2.6.

The advantage in the definition of trel as the relaxation-time of the additive sym-
metrization is that in this fashion it still admits an extremal characterization and
thus in applications can be bounded from above via various standard comparison
techniques. The disadvantage is that without reversibility, in general it no longer
provides a lower bound on tmix nor on the rate of exponential decay of variances.
To see this consider the following example due to Chen (2006) (similar examples
can be found at Montenegro and Tetali, 2006, Section 6 and Aldous and Fill, 2002,
Example 9.26). Let Ω = {0, 1}n and P ((x1, x2, . . . , xn), (x2, x3, . . . , xn, η)) = 1

2
for

all (x1, x2, . . . , xn) ∈ Ω and η ∈ {0, 1}. Observe that after n steps the discrete-time
chain attains (exactly) the uniform distribution on Ω, while the relaxation-time
of the additive-symmetrization is governed by that of simple random walk on the
n-cycle and hence is of order n2 (e.g. Levin et al., 2017, Section 12.3)

We now comment about t∗ being a natural alternative extension of trel to the
non-reversible setup, which is meant to eliminate the existence of such examples.

Remark 1.11. It is possible to replace in all of our results trel by t∗ from the previous

conjecture. Let H∗
t (x, y) :=

π(y)
π(x)Ht(x, y). Since H

∗
t is the dual operator of Ht w.r.t.

the inner-product on RΩ given by 〈f, g〉π := Eπ[fg] we have that

t∗ = inf{t : 〈H∗
t Htf, f〉π 6 e−2 for all f ∈ RΩ such that Eπf = 0 and Eπf

2 = 1}
Observe that under reversibility we have that t∗ = trel, while in general t∗ 6 trel.
Moreover, observe that for all k ∈ N we have that VarπHkt∗f 6 e−2kVarπf .

Since H∗
t Ht is self-adjoint w.r.t. 〈•, •〉π it follows from the Courant-Fischer-Weyl

min-max principle (and continuity w.r.t. t) that there exists some non-constant f ∈
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RΩ such that H∗
t∗Ht∗f = e−2f and Eπf = 0. It follows from general considerations

(cf. Levin et al., 2017, the proof of Theorem 12.4) that if |f(x)| = maxy∈Ω |f(y)|
then

‖H∗
t∗Ht∗(x, •)− π(•)‖TV =

∑

y

1
2
|H∗

t∗Ht∗(x, y)− π(y)| > 1

2e2
.

It follows that ‖Ht∗
µ − π‖TV > 1

2e2 , where µ(z) := H∗
t∗(x, z), and so tmix(

1
2e2 ) > t∗.

Remark 1.12. Equation (1.2) is essentially Proposition 1.7 from Basu et al. (2017),
written (and proved) in a neater manner. Equation (1.3) is new. It is not hard
to extend the proof of Theorem 1 to the non-reversible setup if one replaces the

assumption that t
(n)
rel = o(t

(n)
mix,µn

(δ)) with the assumption that t
(n)
rel log(t

(n)
rel ∨ e) =

o(t
(n)
mix,µn

(δ)). Similarly, under the assumption that t
(n)
rel log(t

(n)
rel ∨ e) = o(tmix(δ)),

even without reversibility we have that cutoff is equivalent to the occurrence of
hitα-cutoff for some (and in fact, for all) α ∈ (0, 1).

In Griffiths et al. (2014) the following general inequality was proved (without a
reversibility assumption).

Theorem B. Fix 0 < ε < 1/2. For any irreducible finite Markov chain

εtH(ε) 6 tH(1/2).

The following proposition offers an upper bound on tH(ε)− tH(1 − ε), which in
some cases is considerably better than the bound in Theorem B (in particular, this
is the case under reversibility when the product condition holds).

Proposition 1.13. There exists an absolute constant C > 0 such that for every
finite irreducible chain (Ω, P, π),

tH,µ(ε)− tH,µ(1− ε) 6 Cε−1trel, for every 0 < ε < 1/2 and µ ∈ P(Ω). (1.4)

The same holds when µ is omitted from the l.h.s..

Remark 1.14. In the non-reversible setup it is possible that tH(ε) 6 C
√
trel for all

ε ∈ (0, 1). To see this, consider a walk on the n-cycle with a fixed clockwise bias.
Here maxx,y Ex[Ty] 6 Cn, while the additive symmetrization is simple random
walk on the n-cycle and hence trel = Θ(n2) (e.g. Levin et al., 2017, Section 12.3).
Conversely, under reversibility we have that tH(1/2) > trel (e.g. Aldous and Fill,
2002, Lemma 4.39) and thus (1.4) implies that tH(ε) − tH(1 − ε) 6 Cε−1tH(1/2),
recovering Theorem B, up to a constant.

2. Starr’s Maximal inequality

In this section we present the machinery that will be utilized in the proof of
the main results. The most important tool we shall utilize is Starr’s L2 maximal
inequality (Theorem 2.3). We start with a few basic definitions and facts. We
denote Z+ := {n ∈ Z : n > 0} and R+ := {t ∈ R : t > 0}.
Definition 2.1. Let (Ω, P, π) be a finite chain. For f ∈ RΩ, let

Eπ[f ] :=
∑

x∈Ω

π(x)f(x) and Varπf := Eπ[(f − Eπf)
2].

The inner-product 〈·, ·〉π and Lp norms (1 6 p < ∞) are

〈f, g〉π := Eπ[fg] and ‖f‖p := (Eπ[|f |p])1/p .
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We identify P k and Ht with the operators P k, Ht : L
2(RΩ, π) → L2(RΩ, π), defined

by P kf(x) :=
∑

y∈Ω P k(x, y)f(y) and Htf(x) :=
∑

y∈ΩHt(x, y)f(y) = Ex[f(Xt)].

Recall that if P is reversible, then also Ht is self-adjoint w.r.t. 〈·, ·〉π . Recall that
the spectral gap can be characterized as λ = inf{ 〈(I−P )f,f〉π

Varπf
: f ∈ RΩ non-constant}

and that d
dtVarπHtf = −〈(I − P )Htf,Htf〉π 6 − 2λVarπHtf , from which the

following lemma, known as the Poincaré inequality or the L2-contraction Lemma,
follows.

Lemma 2.2. Let (Ω, P, π) be a finite irreducible chain. Let f ∈ RΩ. Then

∀t > 0, VarπHtf 6 e−2λtVarπf. (2.1)

We now state a particular case of Starr’s maximal inequality (Starr, 1966 Propo-
sition 3). The proof in the discrete time setup could be found in Basu et al. (2017).
Let f ∈ RΩ. Define its maximal function by f∗(x) := supt > 0 |Htf(x)|.
Theorem 2.3 (Maximal inequality, Starr, 1966). Let (Ω, P, π) be a finite reversible
irreducible Markov chain. Then for every f ∈ RΩ

‖f∗‖2 6 2‖f‖2. (2.2)

For any B ⊆ Ω and s ∈ R+, set ρ(B) :=
√

π(B)(1 − π(B)) =
√
Varπ1B and

σs := ρ(B)e−λs. Note that by Lemma 2.2, σs >
√
VarπHs1B. We define the good

set for B from time s within m standard-deviations to be

Gs(B,m) :=
{

y : |Ht
y(B)− π(B)| < mσs, for all t > s

}

. (2.3)

The following corollary follows by combining Lemma 2.2 with Theorem 2.3.

Corollary 2.4. Let (Ω, P, π) be a finite reversible irreducible chain. Then

π(Gs(B,m)) > 1− 4

m2
, for all B ⊆ Ω, s > 0 and m > 0. (2.4)

Proof: For any s > 0, let fs(x) := Hs(1B(x)− π(B)) = Hs
x(B)− π(B). Then by

Lemma 2.2 and Theorem 2.3

‖f∗
s ‖2 6 2‖fs‖2 6 2e−λs‖1B(x)− π(B)‖2 = 2σs. (2.5)

For any t > 0, Htfs(x) = ft+s(x) = Ht+s
x (B) − π(B). Then, in the notation of

Theorem 2.3,
f∗
s (x) := sup

t > 0
|Htfs(x)| = sup

t > s
|Ht

x(B)− π(B)|.

Hence D := {x ∈ Ω : f∗
s (x) > mσs} is the complements of Gs(B,m). Thus by

Markov inequality and (2.5)

1− π(Gs(B,m)) = π(D) = π
{

(f∗
s )

2
> (mσs)

2
}

6 4m−2. �

Conjecture 2.5. Let (Ω, P, π) be a finite irreducible Markov chain (not necessarily
reversible). Define t∗ := inf{t : VarπHtf 6 e−2Varπf for all f ∈ RΩ} as in
Conjecture 1.10. Let f∗

s (x) := supt > s |Htf(x)|. Then for every ε ∈ (0, 1) there

exists a constant Cε (independent of (Ω, P, π)) such that for every f ∈ RΩ of mean
zero (i.e. Eπf = 0) we have that

Eπf
∗
Cεt∗ = ‖f∗

Cεt∗‖1 6 ε‖f‖∞. (2.6)

Remark 2.6. If (2.6) holds then one could prove the upper bound on tmix(ε) from
Conjecture 1.10 by imitating the proof of the upper bound on tmix(ε) from Propo-
sition 1.9, with (2.6) replacing (2.2).
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3. Inequalities relating tmix(·) and hit·(·)

Our aim in this section is to obtain inequalities relating tmix(ε) and hitβ(δ) for
suitable values of β, ε and δ using Corollary 2.4. As was shown in Basu et al.
(2017), these two notions of mixing are intimately connected to each other. In this
section we refine the analysis from Basu et al. (2017). Corollary 3.2 below contains
the more difficult half of Proposition 1.9.

Lemma 3.1. Let (Ω, P, π) be a finite irreducible reversible chain. Let µ ∈ P(Ω),
α, p ∈ (0, 1), s > 0 and B ⊆ Ω. Then

π(B)−Hhitα,µ(p)+s
µ (B) 6 pπ(B) + 2(1− p)e−λs

√

(1− α)−1π(B)π(Bc). (3.1)

Proof : Denote τ := hitα,µ(p), ρ(B) := π(B)π(Bc) and ℓ := 2e−λs
√

(1− α)−1.
Consider

H :=
{

y : |Ht
y(B)− π(B)| < ℓ

√

ρ(B) for all t > s
}

.

By Corollary 2.4, π(H) > α. By the Markov property and the definition of H ,

Hµ[Xτ+s ∈ B | TH 6 τ ] > π(B)− ℓ
√

ρ(B).

Since τ = hitα,µ(p) and π(H) > α, we get that Hµ[TH 6 τ ] > 1− p. Thus

π(B)−Hτ+s
µ (B) 6 π(B)−Hµ[Xτ+s ∈ B, TH 6 τ ]

= Hµ[TH > τ ]π(B) + Hµ[TH 6 τ ] (π(B) −Hµ[Xτ+s ∈ B | TH 6 τ ])

6 pπ(B) + (1− p) (π(B)− Hµ[Xτ+s ∈ B | TH 6 τ ]) 6 pπ(B) + (1− p)ℓ
√

ρ(B).

This concludes the proof of (3.1). �

Corollary 3.2. Let (Ω, P, π) be a reversible irreducible finite chain. Let µ ∈ P(Ω).

Let 0 < ε, α < 1 and let δ ∈ (0, ε). Denote s := 0 ∨ trel log

(

1−ε+δ√
(1−α)εδ

)

. Then

tmix,µ(ε) 6 hitα,µ(ε− δ) + s. (3.2)

Proof : Denote t := hitα,µ(ε − δ). If 1 − ε + δ <
√

(1− α)εδ, then we can prove

(3.2) for δ′ < δ such that 1 − ε + δ′ =
√

(1− α)εδ′, so we may assume that

s = trel log

(

1−ε+δ√
(1−α)εδ

)

> 0. Let B ⊆ Ω. Denote π(B) = z. By (3.1) and the fact

that h(z) := (ε− δ)z+2
√

εδz(1− z) attains its maximum in [0, 1] at z∗ = ε
ε+δ and

h(z∗) = ε, we get that

π(B)−Ht+s
µ (B) 6 (ε− δ)z + 2

√

εδz(1− z) 6 ε,

The claim now follows by maximizing over B. �

4. Proofs of Theorem 1 and Propositions 1.9 and 1.13

Let A ( Ω. Let QA (resp. PA) be the restriction of Q (resp. P ) to A. Note
that QA and PA are substochastic. The spectral gap of PA, denoted by λ(A), is
defined as the minimal eigenvalue of I −QA (it is often referred to as the Dirichlet
eigenvalue of I − Q on A). Denote Λ(c) := minA:π(A) 6 c λ(A). Let πA denote π
conditioned on A (i.e. πA(y) = 1y∈Aπ(y)/π(A)).
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Lemma 4.1. Let (Ω, P, π) be a finite irreducible Markov chain. Let A ( Ω be
non-empty. Let α > 0 and w > 0. Let B(A, t, α) := {y : Hy [TAc > t] > α}. Then

λ(A) > π(Ac)λ and so ∀c ∈ (0, 1), Λ(c) > (1− c)λ. (4.1)

Hπ [TAc > t]

π(A)
= HπA

[TAc > t] 6 e−λ(A)t
6 e−Λ(π(A))t

6 e−λπ(Ac)t, for all t. (4.2)

π (B(A, t, α)) 6 π(A)e−2λ(A)tα−2 6 π(A)e−2π(Ac)λtα−2. (4.3)

Remark 4.2. The inequality (4.1) is well-known (cf. Goel et al., 2006, Eq. (1.4)).
We include its proof for the sake of completeness.

Proof of Lemma 4.1: Consider the inner-product 〈·, ·〉πA
on RA given by

〈f, g〉πA
:=

∑

a∈A πA(a)f(a)g(a). We identify every g ∈ RA with its extension

to Ω obtained by setting g ≡ 0 on Ω \ A. Using the fact that for all g ∈ RA we
have 〈(I −Q)g, g〉π = 〈(I − P )g, g〉π, together with the Perron-Frobenius (for the
non-negativity) and the Courant-Fischer variational characterization of eigenvalues
we have

λ(A) = inf
{

〈(I − PA)g, g〉πA
/〈g, g〉πA

: g ∈ RA
+, g non-constant

}

. (4.4)

We may identify each g ∈ RA with g ∈ RΩ s.t. g ≡ 0 on Ac and vice-versa. Hence

λ(A) = inf
{

〈(I − P )g, g〉π/〈g, g〉π : g ∈ RΩ
+ non-constant and g = 0 on Ac

}

.

Also observe that by the Cauchy-Schwarz inequality, for all g > 0 such that g = 0
on Ac, we have that

Varπg = Eπg
2 − (Eπg)

2 = Eπg
2 − (π(A)EπA

g)2

> Eπg
2 − [π(A)]2EπA

g2 = π(Ac)〈g, g〉π.

Thus by the extremal characterization of the spectral gap

λ = inf
{

〈(I − P )g, g〉π/Varπg : g ∈ RΩ non-constant
}

6 λ(A)/π(Ac). (4.5)

Denote the heat kernel of the chain killed upon escaping A by HA
t . Then

HA
t = e−t

∑∞
k=0(kPA)

t/k!. Let g ∈ RA. Denote gt := HA
t g and ‖g‖pA,p :=

∑

a∈A πA(a)|g(a)|p, for 1 6 p < ∞. Then by (4.4)

d

dt
‖gt‖2A,2 =

d

dt
〈HA

t g,HA
t g〉πA

= −2〈(I − PA)H
A
t g,HA

t g〉πA
6 − 2λ(A)‖gt‖2A,2.

(4.6)
Hence ‖gt‖2A,1 6 ‖gt‖2A,2 6 ‖g‖2A,2e

−2λ(A)t. Taking g = 1A, by (4.5) we get that

HπA
[TAc > t] = ‖gt‖A,1 6 ‖gt‖A,2 6 ‖1A‖A,2e

−λ(A)t = e−λ(A)t 6 e−π(Ac)λt. (4.7)

Write B = B(A, t, α). Then B ⊆ {a ∈ A : g2t (a) > α2}. By (4.7)

π(B)/π(A) = πA(B) 6 α−2‖gt‖2A,2 6 α−2e−2π(Ac)λt. �

Corollary 4.3. Let (Ω, P, π) be a finite irreducible Markov chain. Let µ ∈ P(Ω),

0 < ε, α < 1 and 0 < δ 6 1− ε. Denote s :=
log( 1−α

δ
)

Λ(1−α) 6
log( 1−α

δ
)

αλ . Then

hitα,µ(ε+ δ) 6 tmix,µ(ε) + s ∨ 0.
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Proof : By decreasing δ if necessary, we may assume that s > 0. Take an arbitrary
set A with π(A) > α and µ ∈ P(Ω). It follows by coupling of the chain with initial
distribution Ht

µ with the stationary chain that for all t > 0

Hµ[TA > t+ s] 6 dµ(t) + Hπ[TA > s] 6 dµ(t) + (1− α)e−λ(Ac)s 6 dµ(t) + δ. (4.8)

where the penultimate inequality follows from (4.2) and the last from the choice of
s. Plugging t = tmix,µ(ε) in (4.8) and maximizing over A with π(A) > α concludes
the proof. �

Proof of Proposition 1.9: By combining Corollaries 3.2 and 4.3 it remains only
to show that tmix,µ(ε) 6 hit1−δ,µ(ε−δ)+log(2/δ3)trel log(trel∨e), for 0 < δ 6 ε < 1.
Set t := log(2/δ3)trel log(trel ∨ e). Let A ⊆ Ω. For all x ∈ Ω and s > 0 we have
that | d

dsHs(x,A)| = |δxHs(P − I)1A| 6 1 and so by (2.1) (used to deduce that

(
∑

x π(x)|Hs(x,A) − π(A)|)2 6 VarπHs1A 6 e−2λsVarπ1A 6 e−2λs

4 )

∑

x

π(x)| d
ds

[Hs(x,A) − π(A)]2| 6 2
∑

x

π(x)|Hs(x,A)− π(A)| 6 e−λs.

Denote g(x) :=
∫∞

t
| d
ds [Hs(x,A)− π(A)]2|ds. Then

‖g‖1 6
∫ ∞

t

e−λsds = e−λt/λ 6 δ3/2

and VarπHt1A 6 1
4e

−2λt 6 δ6/8. Let

B := {b ∈ Ω : g(b) + |Ht(b, A)− π(A)|2 > δ2}.
Then

π(B) 6 δ−2(‖g‖1 +VarπHt1A) 6 δ.

From the definition of B it follows that if x /∈ B then sups > t |Hs(x,A)−π(A)| 6 δ.
Thus

|Hhit1−δ,µ(ε−δ)+t
µ (A)− π(A)| 6 Hµ[TBc > hit1−δ,µ(ε− δ)] + δ 6 ε. �

Corollary 4.4. Let (Ω, P, π) be an irreducible finite Markov chain. Let µ ∈
P(Ω). Let 0 < ε < δ < 1 and 0 < β 6 γ < 1. Denote s :=

log( 1−β

(1−γ)ε2
)

2Λ(1−β)

6 1
2β trel log

(

1−β
(1−γ)ε2

)

. Then

hitγ,µ(δ) 6 hitβ,µ(δ) 6 hitγ,µ(δ − ε) + s. (4.9)

Proof : The first inequality in (4.9) is trivial. We now prove the second inequality
in (4.9). Let A be an arbitrary set with π(A) > β. Using the notation from Lemma
4.1, let B := B(Ac, s, ε) := {y : Hy[TA > s] > ε}. Then by (4.3)

π(B) 6 ε−2π(Ac)e
− log

(

1−β

(1−γ)ε2

)

6 1− γ.

Set t1 := hitγ,µ(δ − ε). Then Hµ[TBc > t1] 6 δ − ε. By the definition of B and the
Markov property,

Hµ[TA > t1 + s | TBc 6 t1] 6 max
d/∈B

Hd[TA > s] 6 ε.

Whence

Hµ[TA > t1 + s] 6 Hµ[TBc > t1] + Hµ[TA > t1 + s | TBc 6 t1] 6 (δ − ε) + ε = δ.

Since A was arbitrary, this concludes the proof of (4.9). �
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Proposition 4.5. Let (Ωn, Pn, πn) be a sequence of finite irreducible reversible

chains. Let µn ∈ P(Ωn). Assume that t
(n)
rel = o(t

(n)
mix,µn

(δ)) for some 0 < δ < 1.

Then for all β ∈ (0, 1),

(1− o(1))t
(n)
mix,µn

(δ) 6 hit
(n)
β,µn

(δ/2) 6 (1 + o(1))t
(n)
mix,µn

(δ/8). (4.10)

t
(n)
rel = o(hit

(n)
β,µn

(δ/2)) (4.11)

Moreover, (1) below implies (2):

(1) There exists some α ∈ (0, 1) such that the sequence exhibits a hitα,µn
-cutoff.

(2) For every α ∈ (0, 1) the sequence exhibits a hitα,µn
-cutoff.

Moreover, if (1) holds for some α then

lim
n→∞

hit
(n)
β,µn

(1/4)/hit(n)α,µn
(1/4) = 1, for all β ∈ (0, 1). (4.12)

Proof : First note that (4.10) follows from Proposition 1.9 together with the as-

sumption that t
(n)
rel = o(t

(n)
mix,µn

(δ)), while (4.11) follows from the (4.10). Assume (1)

holds for some α. This in conjunction with Corollary 4.4 and (4.11) implies (4.12),
which combined with another application of Corollary 4.4 yield (2) (cf. Basu et al.,
2017, Proposition 3.6). �

We now present two lemmas regarding expected hitting times inequalities.
Proposition 1.13 follows by combining these two lemmas. The first of which is
simpler and gives better bounds for some poruses. The second one gives better
asymptotic in the sense that it follows from it that tH(ε) − tH(1 − ε) 6 Ctrelε

−1,
for some absolute constant C, whereas the first lemma only implies that tH(ε) −
tH(1− ε) 6 Ctrelε

−1 log(1/ε).

Lemma 4.6. Let (Ω, P, π) be a finite irreducible Markov chain. Let ε ∈ (0, 1)
and k > 0. Let A ⊆ Ω be such π(Ac) 6 ε. There exists I = I(A, k) ⊆ Ω with
π(Ic) 6 ε

2·3k
, such that

Ez[TA] 6 (9/4 + k/2)(log 3)/λ(Ac) 6 (9/4 + k/2)(1− ε)−1trel log 3, for all z ∈ I.

Proof : Fix k > 0. Denote a := (log 3)/λ(Ac) 6 Λ−1(ε) log 3 6 (1 − ε)−1trel log 3.
Consider

Ii = Ii(A, k) :=
{

y : Hy [2TA > (k + 3i)a] 6 3−i
}

.

Then by (4.3) we have that

π(Ici ) 6 (3−i)−2π(Ac)e−(k+3i) log 3
6 ε(1/3)i+k.

Let I :=
⋂

i∈N
Ii. Then π(Ic) 6

∑

i∈N
π(Ici ) 6 ε

∑

i∈N
3−(i+k) = ε

2·3k . By construc-
tion,

Hz

[

TA − ka

2
>

3ia

2

]

6 3−i, for all z ∈ I and i ∈ N.

Hence Ez [TA] 6
3a/2

1− 1
3

+ ka = (9/4 + k/2)a for all z ∈ I, as desired. �

Lemma 4.7. Let (Ω, P, π) be a finite irreducible chain. Let A ⊆ Ω be non-empty.
Denote ε := π(A). Let t > 1. There exists J = J(A, t) ⊆ Ω such that

(i) π(J) > 1− 3e−2t/2.
(ii) For any z ∈ J we have that Ez[TA] 6 trel[t+ log 2(1 + 9ε−1) + | log ε|].
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(iii) For any z ∈ J and i ∈ N we have that

Hz [λTA 6 t+ i log 2(1 +
3

2ε
) + | log ε|] > (1− 2−i)2.

Proof : Denote r = r(ε, t) := (t + | log ε|)trel, ℓ := trel log 2 and s = s(ε) :=
(3/2)ε−1trel log 2. For any i ∈ N, let Ci :=

{

y : Hy[TA 6 is] > 1− 2−i
}

. Then
by (4.3) we have that

π(Cc
i ) 6 22iπ(Ac)e−3i log 2 = (1− ε)2−i. (4.13)

Define

Ji :=
{

y : Hr+iℓ
y [Ci] > 1− 2−i = 1− (1− ε)2−i − ε2−i

}

.

Denote gi := Hr+iℓ1Ci
. By stationarity Eπ [gi] = Eπ[1Ci

] = π(Ci) > 1− (1− ε)2−i.
Hence

Jc
i ⊆ {x : gi(x) > Eπ[gi] + ε2−i}. (4.14)

By (2.1) and the fact that z1(1− z1) < z2(1− z2) if z1, z2 ∈ [0, 1] and |z1 − 1/2| >
|z2 − 1/2|,

Varπgi 6 e−2λ(r+iℓ)Varπ1Ci
6 ε22−2ie−2tπ(Ci)π(C

c
i ) 6 ε22−3i(1− 2−i)e−2t.

By the Chebyshev’s inequality and (4.14)

π(Jc
i ) 6 ε−222iVarπgi 6 2−ie−2t(1 − 2−i).

Denote J :=
⋂∞

i=1 Ji. By a union bound

π(Jc) 6
∑

i∈N

π(Jc
i ) 6 e−2t(1 + 3/16 +

∑

i > 3

2−i) < 3e−2t/2.

Fix some z ∈ J and i > 1. Note that because J ⊆ Ji we get from the definitions of
Ji and Ci together with the Markov property that

Hz [TA 6 r + i(ℓ+ s)] > Hz [Xr+iℓ ∈ Ci] min
y∈Ci

Hy[TA 6 is] > (1− 2−i)2.

From this it is easy to verify that indeed Ez [TA] 6 r + 6(s+ ℓ). �

The following lemma asserts that, for a fixed starting distribution µ such that trel
is much smaller than tmix,µ, a set A which is “worst” in expectation (i.e. Eµ[TA] =
tH,µ(π(A))) is almost the “worst in probability” (in the sense of Definition 1.2) for
all times. By this we mean that this is the case up to a small size and time shifts
and up to a small difference in the chance of not being hit by any given time.

Lemma 4.8. Let (Ω, P, π) be a finite irreducible reversible chain. Let µ ∈ P(Ω)
and 0 < ε < 1. Let A ⊆ Ω be such that Eµ[TA] = tH,µ(1 − ε) and π(A) > 1 − ε.
Denote ρ = ρ(ε) := 3(1− ε)−1trel log 3. Then for all r > 1

max
B⊆Ω:π(B) > 1−ε/2

Hµ[TB − TA > rρ] 6 r−1. (4.15)

In particular, for all t > 0, r > 1, q ∈ (0, 1) and B ⊆ Ω with π(Bc) 6 ε/2 we have
that

Hµ[TA 6 t]−Hµ[TB 6 t+ rρ] 6 Hµ[TB > t+ rρ, TA 6 t] 6 r−1 and

Hµ[TA 6 hit1−ε/2,µ(1− q)− rρ] 6 q + r−1.
(4.16)
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Proof. We first note that the first row in (4.16) follows from (4.15) trivially. The
second row in (4.16) follows from the first by taking t = hit1−ε/2,µ(1− q)− rρ and
picking some B ⊆ Ω such that π(Bc) 6 ε/2 and Hµ[TB 6 hit1−ε/2,µ(1− q)] 6 q.

We now prove (4.15). Let I be as in Lemma 4.6 w.r.t. A with the choice of k = 0.
Then π(Ic) 6 ε/2 and for any z ∈ I we have Ez [TA] 6 ρ. Denote D := I ∩B. Then
by the assumption that π(Bc) 6 ε/2, we have that π(D) > 1−π(Bc)−π(Ic) > 1−ε.
Hence

Eµ[TD] 6 tH,µ(1− ε) = Eµ[TA]. (4.17)

For any ℓ ∈ R denote ℓ+ := max{ℓ, 0}. Since D ⊆ I, by the Markov property we
have that Eµ[(TA − TD)+] 6 maxz∈I Ez [TA] 6 ρ. Thus by (4.17)

Eµ[(TD − TA)
+] = Eµ[TD − TA] + Eµ[(TA − TD)+] 6 0 + ρ = ρ.

By Markov inequality and the fact that D ⊆ B we get that for all r > 1

Hµ[TB − TA > rρ] 6 Hµ[TD − TA > rρ] 6 r−1. �

We are now ready to prove Theorem 1.

Proof of Theorem 1. The equivalence between (i) and (ii) follows from Propo-
sition 1.9 together with (4.11). We now show that (ii)=⇒(iii). Let α ∈ (0, 1).
Assume that

hit
(n)
1−α,µn

(ε)− hit
(n)
1−α,µn

(1 − ε) = o
(

hit
(n)
1−α,µ(1/4)

)

, for all 0 < ε < 1/4.

Then by Proposition 4.5,

hit
(n)
β,µn

(ε)− hit
(n)
β,µn

(1− ε) = o
(

hit
(n)
β,µn

(1/4)
)

, for all 0 < ε < 1/4 and 0 < β < 1.

Let An ⊆ Ωn be an arbitrary sequence of sets such that Eµn
[TAn

] = t
(n)
H,µn

(1 − α)

and πn(An) > 1 − α. By the equivalence between (i) and (ii) in Theorem 1, we
have that

t
(n)
mix,µn

(ε)− t
(n)
mix,µn

(1− ε) = o(t
(n)
mix,µn

), for all 0 < ε 6 1/4.

Fix some 0 < ε 6 1/8. Using Proposition 4.5 and similar reasoning as in the proof
of the equivalence between (i) and (ii) in Theorem 1, we have that for all β ∈ (0, 1)

(1 − o(1))t
(n)
mix,µn

6 hit
(n)
β,µn

(1 − ε) 6 hit
(n)
β,µn

(ε) 6 (1 + o(1))t
(n)
mix,µn

, (4.18)

Let kn(p) := inf{t : Hµn
[TAn

> t] 6 p}. Then by the definition of hit
(n)
1−α,µn

(ε) and

the fact that πn(An) > 1− α (first inequality), together with (4.18) we get that

kn(ε) 6 hit
(n)
1−α,µn

(ε) 6 (1 + o(1))t
(n)
mix,µn

. (4.19)

Conversely, let ℓn = ℓn(ε) := 3ε−1(1 − α)−1t
(n)
rel log 3 = o(t

(n)
mix,µn

). Then by (4.16)

(first inequality) and (4.18) we get that

kn(1− 2ε) > hit
(n)
1−α/2,µn

(1− ε)− ℓn > (1 − o(1))t
(n)
mix,µn

. (4.20)

Whence (4.19) implies that kn(ε)− kn(1− 2ε) = o(t
(n)
mix,µn

). By (4.20) we get that

t
(n)
mix,µn

= O(Eµn
[TAn

]) and thus we also have that kn(ε)−kn(1−2ε) = o(Eµn
[TAn

]),

for all 0 < ε < 1/8. This concludes the proof of (ii)=⇒(iii). We now show that
(iii)=⇒(ii).
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Let α ∈ (0, 1) and An ⊆ Ωn be an arbitrary sequence of sets such that Eµn
[TAn

] =

t
(n)
H,µn

(1− α) and πn(An) > 1− α. Assume that

lim
n→∞

Hµn
[|TAn

− t
(n)
mix,µn

| < εEµn
[TAn

]] = 1, for all ε > 0. (4.21)

As before, denote kn(p) := inf{t : Hµn
[TAn

> t] 6 p}. Then by (4.21),

kn(ε)− kn(1− ε/2) = o(kn(1− ε)), for all 0 < ε < 1/4. (4.22)

Recall that by assumption, there exists some 0 < δ < 1 such that t
(n)
rel =

o(t
(n)
mix,µn

(δ)). Fix some 0 < ε < δ/4. By (4.9) we have that

hit
(n)
1−α,µn

(1− ε/2) 6 hit
(n)
1−α/2,µn

(1 − ε) + o(t
(n)
mix,µn

(δ)). (4.23)

As in (4.19),

kn(1− ε/2) 6 hit
(n)
1−α,µn

(1 − ε/2). (4.24)

By (4.10), we have that

(1− o(1))t
(n)
mix,µn

(δ) 6 hit
(n)
1−α/2,µn

(δ/2).

Hence by (4.23)-(4.24) we get that

kn(1− ε/2) 6 hit
(n)
1−α/2,µn

(1− ε) + o(hit
(n)
1−α/2,µn

(δ/2)). (4.25)

This, in conjunction with (4.22), yields that for all 0 < ε < δ/4,

kn(ε)− kn(1− ε/2) = o(hit
(n)
1−α/2,µn

(δ/2)) (4.26)

Conversely, let ℓn(ε) be as before. Fix some 0 < ε < δ/4. Then ℓn(ε/2) =

o(t
(n)
mix,µn

(δ)) and by (4.11) ℓn(ε/2) = o(hit
(n)
1−α/2,µn

(δ/2)). Similarly to the deriva-

tion of (4.20), by (4.16)

kn(ε) > hit
(n)
1−α/2,µn

(ε/2)− ℓn(ε/2) = hit
(n)
1−α/2,µn

(ε/2)− o(hit
(n)
1−α/2,µn

(δ/2)).

(4.27)
This, in conjunction with (4.25)-(4.26), implies that

hit
(n)
1−α/2,µn

(ε/2)−hit
(n)
1−α/2,µn

(1−ε) = o(hit
(n)
1−α/2,µn

(δ/2)), for all 0 < ε < δ/4. �

5. Aldous’ Example

We now present a version of Aldous’ example (see Figure 2) for a sequence of
reversible Markov chains (Ωn, Pn, πn) which satisfies the product condition but
do not exhibit cutoff and analyze it. Our version of Aldous’ demonstrates the
behavior described in Proposition 1.7. Namely, we show that the sequence does
not exhibit cutoff although there exist An ⊆ Ωn with πn(An) > 1/2 and xn ∈ Ωn

satisfying tH(1/2) = Exn
[TAn

] such that the hitting times of An started from xn

are concentrated under the initial starting positions xn ∈ Ωn.

Example 5.1. Consider the sequence of chains (Ωn, Pn, πn), where Ωn := A∪B∪C∪
{z}, where A = An := {a2n+1, a2n, a2n−1, . . . , an+1}, B = Bn := {bn, bn−1, . . . , b1}
and C = Cn := {cn, cn−1, . . . , c1}. For notational convenience we write a := a2n+1,
v := an+1 = bn+1 = cn+1 and b0 = z = c0.

Define the transition matrix Pn by
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dn (t)

300n 306n

1/2

0

1

t

Figure 5.1. Decay in total variation distance for Aldous’ exam-
ple: it does not have cutoff.

· · · an+2 v

bn

bn-1

bn-2

b1

z

c1

·
·
·

cn-2
cn-1

cn

·
·
·

1

3

1

6

1

2

1/2

1

150

1

300

1

200

1

200

1/6

1/3

99/100

a2n+1=a a2n

99/100

1/6

1/6

1/6

Figure 5.2. We consider a Markov chain with the transition prob-
abilities specified above.

· Holding probabilities:

Pn(x, x) =

{

1/2 x ∈ An ∪Bn,

99/100 x ∈ Cn ∪ {z}.
· Values at the special three states a = a2n+1, v = an+1, z = b0 = c0:
Pn(a, a2n) = 1/2,

Pn(v, an+2) = Pn(v, bn) = Pn(v, cn) =
1

6
,

Pn(z, b1) =
1

200
= Pn(z, c1) =

1

200
.

· Pn(an+k, an+k−1) = Pn(bk, bk−1) = 1/3 = 2Pn(an+k, an+k+1) =
2Pn(bk, bk+1) for all k ∈ [n].

· Pn(ck, ck−1) =
1

150 = 2Pn(ck, ck+1) for all k ∈ [n].
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Think of Ωn as a nearest neighbor walk (on an interval of length 2n + 1), biased
towards state z, which in the middle of the interval (at state v) splits into two
parallel paths, B and C (which we refer to as “branches”) of length n leading to
z (see Figure 5.2). The difference between the two branches is that on branch C
the holding probability is much larger (i.e. Pn(c, c) = 99/100 for all c ∈ C, while
Pn(b, b) = 1/2 for all b ∈ B).

Conditionally on not making a lazy step, the chain moves with a fixed bias
towards z. More precisely, let (Ωn, Qn, π

′
n) be the non-lazy version of (Ωn, Pn, πn).

That is, Qn(x, x) = 0 for all x and Qn(x, y) = Pn(x,y)
1−Pn(x,x)

for all x 6= y. Let

f : Ωn → {0, 1, . . . , 2n + 1} be f(bi) = i = f(ci) and f(an+1+i) = n + 1 + i for
all 0 6 i 6 n. Let (Yt) be a realization of (Ωn, Qn, π

′
n). It is easy to see that the

projection Zt = f(Yt) is a nearest neighbor biased random walk on the interval
{0, 1, . . . , 2n + 1} (with reflecting boundary conditions) with a fixed bias of 2/3
of making a step towards 0. In particular, T0 under Hk (w.r.t. the chain (Zt))
is concentrated around Ek[T0] = 3k − O(1) within a time window of size O(

√
n)

(where the equality Ek[T0] = 3k −O(1) follows from (5.11) below).
It is easy to check that the chains (Ωn, Pn, πn) are indeed reversible. One way

to see this is to note that Kolmogorov’s cycle condition holds. Alternatively,
the corresponding (symmetric) edge weights are wn(an+m, an+m+1) = 2−(n+m),
wn(bm, bm+1) = 2−m = wn(cm, cm+1) and

wn(x, x) =

{

∑

y:y 6=xwn(x, y) x ∈ A ∪B,

99
∑

y:y 6=xwn(x, y) otherwise.

By the well-known discrete analog of Cheeger inequality (e.g. Levin et al., 2017

Theorem 13.14) we have that t
(n)
rel = O(1), as the bottleneck-ratio is bounded from

below (which can readily be seen from the above edge weights). In particular, the
product condition holds.

For 0 < ε < 1 let kn(ε) := inf{t : maxx∈Ωn
Px[Tz > t] 6 ε}. As πn(z) > 1/2, we

get that for all 0 < ε < 1 we have hit
(n)
1/2(ε) = kn(ε). To see this, observe that if A

is such that π(A) > 1/2 then it must be the case that z ∈ A and hence for all x ∈ Ω
and t > 0 we have that maxA⊆Ω:π(A) > 1/2 Px[TA > t] 6 Px[Tz > t]. Conversely,
π({z}) > 1/2 and so the opposite inequality holds as well.

We define CB (a shorthand for “chosen branch”) to equal B (resp. C) if the first
visit to z was made by crossing the edge (b1, z) (resp. (c1, z)).

Note that for all x ∈ A we have that Hx[CB = B] = 1/2 = Hx[CB = C].
Let S ∈ {B,C}. It is easy to see for every ℓ ∈ [n], conditioned on CB = S, the
conditional distribution of Tz under Han+1+ℓ

[ · | CB = S], is concentrated around
6ℓ+ 6n1S=B + 300n1S=C.

Using the aforementioned projection (Zt) together with elementary results about
hitting probabilities for a nearest neighbor biased walk on a segment (e.g. Levin
et al., 2017 Exam. 9.9) we get that

Hbℓ [Tv < Tz] =
2ℓ − 1

2n+1 − 1
= Hcℓ [Tv < Tz], for all ℓ ∈ [n]. (5.1)

Consequently,

Hcℓ [CB = B] =
1

2
· 2ℓ − 1

2n+1 − 1
= Hbℓ [CB = C], for all ℓ ∈ [n]. (5.2)
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In particular, we get that for all ℓ > ⌈log2 n⌉ the law of Tz under Hcn+1−ℓ
(respec-

tively Hbn+1−ℓ
) is concentrated around 300(n − ℓ) (resp. 6(n − ℓ)), within a time

window of size O(
√
n) .

Let S ∈ {B,C}. It follows from (5.10) below that Ecn+1−r
[Tv | CB = B] 6 300r+

O(1), for all 0 6 r 6 n. Using Markov inequality, and the analysis of the case
x ∈ A, with x = an+1 = v, it is easy to verify that for all 0 6 ℓ 6 ⌈log2 n⌉,
conditioned on CB = S, the conditional distribution of Tz under Hcn+1−ℓ

[ · | CB =
S] is concentrated around 6n1S=B + 300n1S=C. The same holds for bn+1−ℓ.

By the analysis above,

kn(1/2− o(1)) > 306n− o(n) and kn(1/2 + o(1)) 6 300n+ o(n). (5.3)

In particular, there is no hit1/2-cutoff. By Theorem A, the sequence does not exhibit
a cutoff.

Let xn ∈ Ωn be such that t
(n)
H (1/2) = maxy∈Ωn

Ey [Tz] = Exn
[Tz]. We now argue

that the xn = cjn for some jn ∈ [n] such that min(n − jn, jn) → ∞ (in fact, we
shall show that n − jn = Θ(logn)). Note that starting from such xn, the hitting
time of z is concentrated, although the sequence of chain does not exhibit a cutoff.

Most readers should be satisfied by the following explanation. It is clear that
either xn ∈ C or xn = a. If ℓn = o(n) and ℓn → ∞, then the distribution of Tz

under Hcn−ℓn
is concentrated around 300n − o(n) and Ecn−ℓn

[Tz] = 300n − o(n).
On the other hand, Ea[Tz] 6 159n. Lastly, if ℓn = O(1), then Hcn+1−ℓn

[CB = B] is
bounded from below, and so lim supn→∞ Ecn+1−ℓn

[Tz]/n < 300.
We now present a more detailed proof for the fact that xn = cjn for some jn

such that n− jn = Θ(logn). First write

Ecr [Tz] = Ecr [Tz | Tz < Tv]
2n+1 − 2r

2n+1 − 1
+ (Ecr

[Tv | Tv < Tz] + Ev[Tz])
2r − 1

2n+1 − 1
.

(5.4)
We shall show that there exist absolute constants K1,K2,K3 > 0 such that for all
r ∈ [n]

300−K12
−r 6 Ecr+1 [Tcr ] 6 300 and 6−K12

−r 6 Ean+r+1 [Tan+r
],Ebr+1 [Tbr ] 6 6.

(5.5)
300n

2
+

6n

2
−K2 6 Ev[Tz] 6

300(n+ 1)

2
+

6(n+ 1)

2
= 153(n+ 1). (5.6)

Ea[Tz] = Ea[Tv] + Ev[Tz] 6 159(n+ 1). (5.7)

Ecn+1−r
[Tcn−r

| Tz < Tv] = 300±K32
−r = Ecr [Tcr+1 | Tv < Tz]. (5.8)

Ecn+1−r
[Tz | Tz < Tv] = 300(n+ 1− r) ± 2K32

−r. (5.9)

Ecn+1−r
[Tv | Tv < Tz] = 300r± 2K32

−(n−r). (5.10)

Combining (5.6)-(5.10) with (5.4) it is easy to verify that indeed xn = cjn for some
jn ∈ [n] such that n− jn = Θ(logn).

We first note that (5.6) and (5.7) follow easily from (5.5). We now prove (5.5).
It is a standard result (e.g. Aldous and Fill, 2002 Lemma 1 Chapter 5, or Basu

et al., 2017 Lemma 5.2) that for a birth and death chain on {0, 1, . . . , 2n+ 1} with
symmetric edge weights (wi,j)i,j:|i−j| 6 1,

Er+1[Tr] =

∑

i,j:i > r,j > r+1,|i−j| 6 1 wi,j

wr,r+1
− 1. (5.11)
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It follows from (5.11) that the projected chain (Zt) satisfies that

∀0 6 k 6 2n, ∈ 3− 2−(2n−k) 6 Ek+1[Tk] 6 3,

which together with (5.1) imply (5.5). As (5.9) and (5.10) follow from (5.8), we
conclude the proof by verifying (5.8).

Using the Doob’s transform (see e.g. Levin et al., 2017 Section 17.6) we have that
the law of (Xt) up to time Tv (resp. Tz) conditioned on Tv < Tz (resp. Tz < Tv)

is a Markov chain whose transition matrix is given by Pv(x, y) :=
Pn(x,y)Hy[Tv<Tz ]

Hx[Tv<Tz]

(resp. Pz(x, y) =
Pn(x,y)Hy[Tz<Tv ]

Hx[Tz<Tv]
).

By (5.1) we get that for all r ∈ [n] there exists an absolute constant K4 > 0
such that Pz(cn+1−r, y) = Pn(cn+1−r, y) ± K42

−r for all y, while Pv(cr, cr+i) =
Pn(cr, cr−i)±K42

−r for i ∈ {0,±1} (i.e., up to negligible terms, Pv restricted to C
is a nearest neighbor walk with an opposite bias compared to the original chain).
This, in conjunction with (5.5), implies (5.8).
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