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Marius Leonhardt

Plectic arithmetic of Hilbert modular varieties

Abstract

We introduce plectic Galois actions on the set of CM points, on the set of con-

nected components, and on the set of cocharacters of Shimura varieties that di�er

in the centre from the Hilbert modular variety. By allowing the centre to vary, we

extend the plectic framework of Neková°�Scholl to include such Shimura varieties,

thereby also bridging the gap to earlier work of Neková°. Our main result is that

the map that sends a point on the Shimura variety to its connected component is

equivariant under the plectic action.

To achieve this, we de�ne a generalisation of the plectic Taniyama element, de-

scribe the points of the Shimura varieties in question in terms of abelian varieties

with extra structure, and orient ourselves by the main theorem of complex multi-

plication over the rationals to de�ne the plectic action on CM points. Moreover, we

use a description of the set of connected components as a zero-dimensional Shimura

variety and then employ class �eld theoretic techniques to prove the main result.
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1

Introduction

. . . schon eine Idee ausdenken, durchdenken, bis in die letzte Weiterung

durchrechnen und kombinieren, das ist eine Freude, auf die ich gar nicht

mehr gerechnet habe.

� Stefan Zweig, Rausch der Verwandlung1

1.1 Background and framework

Fix a totally real number �eld F and denote its degree by r = [F : Q]. The main

objects of study in this thesis are variants of the Hilbert modular variety associ-

ated to F . These variants are certain Shimura varieties whose points parametrise

r-dimensional abelian varieties with real multiplication by F equipped with a polar-

isation and a level structure. Of special focus will be those points corresponding to

abelian varieties with complex multiplication (CM), so let us start with a summary

of CM theory.

1.1.1 Galois conjugates of CM abelian varieties

A complex elliptic curve A0 has CM if its endomorphism algebra is an imaginary

quadratic number �eld K0. The most powerful result in the theory of CM elliptic

curves is the Main Theorem of Complex Multiplication. It describes the Galois

conjugates of torsion points of A0 in terms of the class �eld theory of K0. See

[Sil94, Ch. II] for a modern account and [Sch98] for a historical perspective. As

an application, the Main Theorem implies �Kroneckers Jugendtraum� � an explicit

construction of the maximal abelian extension of K0 using the torsion points of A0.

The �rst higher-dimensional analogue of CM theory was established by Shimura

and Taniyama [ST61, Shi71]. They study abelian varieties A whose endomorphism

1Fischer Taschenbuch Verlag, 21st edition, July 2014, p. 290, l. 13-15.
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1.1. BACKGROUND AND FRAMEWORK 1. INTRODUCTION

algebra is a CM �eld K such that A induces a �xed CM type Φ on K. The Main

Theorem in this context gives a very similar description of Galois conjugates of

torsion points of A, with two main modi�cations: First of all, the theorem only

gives information about conjugation by Galois elements that �x the re�ex �eld E of

the pair (K,Φ). And secondly, the class-�eld-theoretic behaviour is now governed

by the re�ex norm

NΦ : A×E,f −→ A×K,f .

This result turned out to be extremely powerful. For example, it allowed Deligne

[Del71] to de�ne the notion of canonical models for Shimura varieties. The problem

of extending the Main Theorem to conjugation by arbitrary Galois elements, not

only those �xing the re�ex �eld, was addressed by Tate [Tat16]. He de�ned an

extension of the re�ex norm called the half transfer

FΦ : ΓQ −→ Γab
K

and conjectured (and proved �up to signs�) that the formula describing Galois con-

jugates of CM abelian varieties in the Main Theorem over the re�ex �eld should

remain valid for conjugation by arbitrary Galois elements if one replaces the re�ex

norm by the half transfer. Deligne [Del82] completed Tate's proof and the result

is now known as the Main Theorem of CM over Q. It is intricately related to the

Taniyama group [Lan79, MS82b], CM motives [Sch94, Far06], and to conjugation of

Shimura varieties [MS82a].

As an application, the Main Theorem of CM over Q yields an explicit formula

for the Galois action on the CM points of the PEL Hilbert modular variety in terms

of the half transfer.

1.1.2 Plectic conjecture

The plectic Galois group is the semidirect product Sr n ΓrF of the symmetric group

Sr acting on r-tuples of elements of ΓF by permuting the coordinates. Choosing

representatives si for the right ΓF -cosets in ΓQ, so that ΓQ =
⊔

1≤i≤r siΓF , we get

an embedding

ρs : ΓQ ↪→ Sr n ΓrF , γ 7→ (σ, (hi)1≤i≤r)

determined by

γsi = sσ(i)hi, 1 ≤ i ≤ r.

The embedding ρs depends on the choice of the si; however, there are choice-free

versions of the plectic group Sr n ΓrF and of the embedding ρs, see e. g. (4.1.3).

Neková° [Nek09] noticed that Tate's half transfer admits a natural extension to
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1. INTRODUCTION 1.2. MOTIVATION AND MAIN RESULTS

a plectic half transfer

F̃Φ : Sr n ΓrF −→ Γab
K .

This allowed him to de�ne an action of a certain large subgroup (SrnΓrF )0 of SrnΓrF
on the CM points of the PEL Hilbert modular variety. By the formula mentioned at

the end of Section 1.1.1, this action of (SrnΓrF )0 extends the action of ΓQ. Moreover,

Blake [Bla16] used the plectic half transfer to de�ne a plectic Taniyama group.

Inspired by [Nek09], Neková° and Scholl [NS16] formulated the plectic conjecture.

It predicts that Shimura varieties associated to groups of the form RF/QH, for H

a reductive group over F , carry functorial and canonical extra structures. These

so-called plectic structures should conjecturally exist on the level of motives. The

prototypical example is the (non-PEL) Hilbert modular variety, which is associated

to RF/Q GL2. In this case, the motives in question are given by abelian varieties

with real multiplication and level structure.

For general H, [NS16] also outlines how the plectic structures should manifest

themselves in various realisations, de�nes a plectic analogue of the re�ex �eld called

the plectic re�ex Galois group, and sketches arithmetic applications e. g. to Stark's

conjectures and Beilinson's conjectures. For example, on the étale cohomology

groups of Shimura varieties, a plectic structure is simply an action of the plectic

group extending the Galois action. In a di�erent direction, [NS17] de�nes plec-

tic mixed Hodge structures and shows that the singular cohomology of the Hilbert

modular variety carries a canonical plectic mixed Hodge structure.

1.2 Motivation and main results

There is a subtle, but fundamental di�erence between the setups of [Nek09] and

[NS16]. Namely [Nek09] considers the PEL Hilbert modular variety Sh(G, hrt(−h)r)

whose underlying group G is not of the form RF/QH for any group H. Instead,

G is related to the group RF/Q GL2, which underlies the Hilbert modular variety

Sh(RF/Q GL2, (C \ R)r), by the Cartesian diagram

G RF/Q GL2

Gm RF/QGm.

RF/Q(det) (1.2.0.1)

This situation motivates the following questions: Is there a way of extending the

plectic framework of [NS16] to include Shimura varieties whose underlying groups

are not necessarily of the form RF/QH? Is there a common reason for the phenomena

in [Nek09] and [NS16] that explains why it was necessary to restrict to the subgroup
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1.2. MOTIVATION AND MAIN RESULTS 1. INTRODUCTION

(Sr n ΓrF )0 ⊂ Sr n ΓrF in [Nek09]? As a concrete example, we want to be able to

de�ne a plectic re�ex Galois group for the PEL Hilbert modular variety in analogy

to [NS16], and to de�ne an action of the plectic group Sr n ΓrF on the CM points of

the non-PEL Hilbert modular variety in analogy to [Nek09].

In this thesis, we address these questions for groups G′ that di�er only in the

centre from a restriction of scalars RF/QH. Here we say that G′ di�ers only in the

centre from G1 := RF/QH if G′ embeds into G1 and the diagram

G′ G1

C ′ C1

d d1
(1.2.0.2)

is Cartesian, where d and d1 are the canonical maps d : G′ → C ′ := G′/(G′)der and

d1 : G1 → C1 := G1/G
der
1 . We will see in (6.2.9) that this condition implies that G′

and G1 have the same adjoint and derived groups, but di�erent centres, justifying

the terminology.

For example, in the case of the Hilbert modular variety, the groups that di�er

only in the centre from RF/Q GL2 are in bijection with algebraic tori R over Q with

R ⊂ RF/QGm. We denote the group corresponding to R by GR; it �ts into the

Cartesian diagram

GR RF/Q GL2

R RF/QGm.

RF/Q(det) (1.2.0.3)

For technical reasons, we restrict to R with Gm ⊂ R. For each such R, we de�ne a

subsetXR ⊂ (C\R)r such that (GR, XR) is a Shimura datum. We think of the family

of Shimura varieties Sh(GR, XR), where R ranges over tori with Gm ⊂ R ⊂ RF/QGm,

as interpolating between the Hilbert modular case (R = RF/QGm) and the PEL

Hilbert modular case (R = Gm). We therefore call the Shimura varieties Sh(GR, XR)

variants of the Hilbert modular variety.

Our main results are as follows: For each R, we de�ne three plectic groups

(Sr n ΓrF )RCM, (Sr n ΓrF )Rπ0
and (Sr n ΓrF )Rcc together with actions of

(A) (Sr n ΓrF )RCM on the set Sh(GR, XR)CM of CM points of Sh(GR, XR),

(B) (SrnΓrF )Rπ0
on the set π0(Sh(GR, XR)) of connected components of Sh(GR, XR),

(C) (Sr n ΓrF )Rcc on the set X∗(G
R) of cocharacters of GR.

More precisely, the groups (Sr n ΓrF )RCM and (Sr n ΓrF )Rcc are subgroups of Sr n ΓrF .

For many choices of R, the group (Sr n ΓrF )Rπ0
is also a subgroup of Sr n ΓrF , but we

do not know if this is true in general, see (5.2.7).
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1. INTRODUCTION 1.2. MOTIVATION AND MAIN RESULTS

For (A) we need two ingredients: The �rst ingredient is a description of the points

of Sh(GR, XR) in terms of abelian varieties with real multiplication by F equipped

with an R(Q)-class of a polarisation and a level structure, see (4.4.5). The second

ingredient is a class-�eld-theoretic preimage (the plectic Taniyama element)

f̃Φ : Sr n ΓrF −→ A×K,f/K
×

of the plectic half transfer F̃Φ, see (4.3.6). The group (Sr n ΓrF )RCM is then precisely

de�ned, in (4.4.11), in such a way that the formula for the Galois action on the

CM points of Sh(GR, XR) extends to (Sr n ΓrF )RCM when Tate's half transfer FΦ is

replaced by the plectic Taniyama element f̃Φ, see (4.4.13).

For (B) we take advantage of the description of π0(Sh(GR, XR)) as a zero-

dimensional Shimura variety, see (5.1.9) and (5.2.3). We then use the class-�eld-

theoretic description (5.2.4) of the Galois action on π0(Sh(GR, XR)) to de�ne the

group (Sr n ΓrF )Rπ0
and its action on π0(Sh(GR, XR)) in (5.2.6).

Although the groups and actions in (A) and (B) are de�ned in di�erent ways, we

are able to prove the following theorem, which is Theorem (5.2.10) and can be seen

as the main result of this thesis.

1.2.1 Theorem. Let Gm ⊂ R ⊂ RF/QGm be an intermediate algebraic torus de�ned

over Q. Then (Sr n ΓrF )RCM canonically embeds into (Sr n ΓrF )Rπ0
, and the π0-map

restricted to CM points

π0 : Sh(GR, XR)CM −→ π0(Sh(GR, XR))

is (Sr n ΓrF )RCM-equivariant.

Finally, (C) requires purely group-theoretic considerations: The full plectic group

SrnΓrF acts naturally on the cocharacters of RF/Q GL2 and by the Cartesian diagram

(1.2.0.3) the cocharacters of GR form a subgroup of the cocharacters of RF/Q GL2.

We thus de�ne (Sr n ΓrF )Rcc as the stabiliser of this subgroup under the action of

Sr n ΓrF , see (6.2.4). It is then straightforward to de�ne the plectic re�ex Galois

group of (GR, XR), see (6.2.6).

To conclude, the group actions in (A), (B) and (C) all extend the natural action

of the Galois group ΓQ. Thus they can be viewed as instances of plectic structures in

the sense of [NS16] for the groups GR, which di�er only in the centre from RF/Q GL2.

In the case R = Gm the action (A) is precisely the one discovered in [Nek09], and

[NS16] dealt with (C) for R = RF/QGm. In this sense, this thesis both generalises

and interpolates between [Nek09] and [NS16].
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1.3 Chapter overview

Chapters 2 and 3 are a review of CM theory as outlined in Section 1.1.1 and serve

a twofold purpose: In these chapters we introduce the necessary notation, which is

quite extensive, and present the results of CM theory in a form most amenable to

generalisation. We often only sketch proofs or give references. We invite readers who

are familiar with CM theory and the theory of Shimura varieties to skim through

these chapters, or to directly start with Chapter 4.

In Chapter 2 we review the theory of complex multiplication over the re�ex

�eld. We start by introducing CM �elds, CM types, the re�ex norm, and CM

abelian varieties. We then state the Main Theorem of Complex Multiplication over

the re�ex �eld in two versions, Theorem (2.4.7) and Theorem (2.4.10). We �nish

Chapter 2 with an application to the canonical model of the PEL Shimura variety

parametrising polarised CM abelian varieties.

Section 3.1 recalls the de�nition of Tate's half transfer FΦ : Γab
Q → Γab

K and states

the Main Theorem of CM over Q again in two versions, Theorem (3.1.3) and The-

orem (3.1.5). In Section 3.2 we interpret the points of the PEL Hilbert modular

variety Sh(G, hr t (−h)r) in terms of abelian varieties equipped with real multipli-

cation, polarisation and level structure. By applying the Main Theorem over Q, we
obtain an explicit formula for the ΓQ-action on the CM points of Sh(G, hr t (−h)r).

Sections 4.1 and 4.2 summarise the results of [Nek09]. Here we introduce the

plectic Galois group SrnΓrF and discuss several of its manifestations. We also recall

Neková°'s plectic half transfer and the action of the subgroup (SrnΓrF )0 on the CM

points of the PEL Hilbert modular variety.

The stage is now set for the results announced in Section 1.2. Section 4.3 extends

the de�nition of Neková°'s plectic Taniyama element to the entire plectic group.

The main ingredients are a suitable section χF of the reciprocity homomorphism

rF : A×F,f/F
×
>0 � Γab

F together with diagram (4.3.1.1) from class �eld theory. Section

4.4 introduces the variants Sh(GR, XR) of the Hilbert modular variety and proves

a moduli description (4.4.5) in terms of abelian varieties. Then it de�nes the sub-

group (Sr n ΓrF )RCM of Sr n ΓrF and an action of this subgroup on the CM points of

Sh(GR, XR) in (4.4.13), extending the natural action of ΓQ.

Chapter 5 is devoted to the study of π0(Sh(GR, XR)), the set of connected compo-

nents of the Shimura variety Sh(GR, XR). We start by recalling the description of the

set of connected components of an arbitrary Shimura variety as a zero-dimensional

Shimura variety and then apply it to Sh(GR, XR). We then use a general formula to

describe the Galois action of ΓQ on π0(Sh(GR, XR)) in terms of a certain reciprocity

morphism, see (5.2.4). This allows us to de�ne the plectic group (SrnΓrF )Rπ0
and an

action of this group on π0(Sh(GR, XR)) in (5.2.6), extending the action of ΓQ. We

14



1. INTRODUCTION 1.3. CHAPTER OVERVIEW

then prove Theorem (1.2.1) in (5.2.9) and (5.2.10).

Section 5.3 is an appendix and contains a discussion of cohomological conditions

on the torus R that imply that (SrnΓrF )Rπ0
is a subgroup of the plectic group SrnΓrF .

Among those conditions is the vanishing of the Shafarevich�Tate group X(R) of

R, see (5.3.4.1). Examples of tori whose Shafarevich�Tate group vanishes include

R = Gm and R = RF/QGm.

Section 6.1 reviews the plectic Galois action of SrnΓrF on the set of cocharacters

X∗(RF/QH) of the group RF/QH. In Section 6.2, we �rst de�ne the plectic group

(Sr n ΓrF )Rcc and an action of this group on X∗(G
R) in (6.2.4) using the Cartesian

diagram (1.2.0.3), and then de�ne the plectic re�ex Galois group of (GR, XR) in

(6.2.6). We �nish with a discussion of general properties (6.2.9) of groups that di�er

only in the centre from a group of the form RF/QH, and generalise the results of

this chapter to such groups.
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1.4 Notation and conventions

For an algebraic number �eld k, we write Ak (resp. Ak,f ) for the adeles (resp. �nite

adeles) of k and A×k (resp. A×k,f ) for the ideles (resp. �nite ideles) of k. When k = Q,
we often write A for AQ etc. Moreover, k×>0 denotes the subgroup of k× consisting

of all elements that are positive under every real embedding of k. We write Γk for

the absolute Galois group of k and Γab
k for its abelianisation. For notation regarding

class �eld theory, see (2.4.1). We also write Σk = Hom(k,Q) = ΓQ/Γk for the set of

embeddings of k into Q, where Q denotes an algebraic closure of Q.
To avoid notational di�culties, we will usually view all occuring number �elds

as embedded into Q and Q as embedded into C. We will use the letter c to denote

complex conjugation, both as an element of Aut(C), of ΓQ or Γab
Q , or of Galois groups

of CM �elds. We will also occasionally use z for the complex conjugate of z.

From Section 3.2 onwards, we �x a totally real number �eld F and write Σ for

ΣF . We denote by SΣ the symmetric group of the �nite set Σ. Since we usually

denote elements of SΣ by σ, we will use x for elements of Σ.

Algebraic groups will usually be de�ned over Q. For an algebraic group H over a

number �eld k, we write Rk/QH for the Weil restriction of scalars. It is the algebraic

group over Q whose A-points, for any Q-algebra A, are given by

(Rk/QH)(A) = H(A⊗Q k).

To shorten notation, we will occasionally denote the torus Rk/QGm by Tk, where Gm

denotes the multiplicative group. For a torus T , we denote its character group by

X∗(T ) and its cocharacter group by X∗(T ). We often write R for an algebraic torus

over Q with Gm ⊂ R ⊂ RF/QGm. For more notation on algebraic groups, see e. g.

(6.2.8).

If k is a number �eld, V is a k-vector space and A is a Q-algebra, we sometimes

write V (A) for V ⊗Q A.

Labels to paragraphs, theorems, examples, etc. consist of three numbers, the �rst

16



1. INTRODUCTION 1.4. NOTATION AND CONVENTIONS

two of them indicating the chapter and section in which the paragraph can be found.

Labels for equations consist of four numbers, and labels for items in lists of three

numbers and a lower case letter. In both cases, the �rst three numbers indicate

the paragraph in which the equation or list can be found. When cross-referencing,

except for chapters and sections we will always put the label in parentheses, and we

will often simply write �(1.2.1)� when refering to Theorem (1.2.1).
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2

Main Theorem of Complex

Multiplication over the re�ex �eld

In this chapter, we summarise the theory of complex multiplication over the re�ex

�eld. The main goals are to introduce notation for CM �elds, CM types, and po-

larised abelian varieties, and to provide the background to state the Main Theorem

of CM over the re�ex �eld. The Main Theorem is the starting point of both the the-

ory of Shimura varieties and the study of Galois conjugates of CM abelian varieties,

and both will play a major role in this thesis.

In Section 2.1 we start by de�ning CM �elds and CM types. We then associate

a re�ex �eld E and a re�ex type to a CM type Φ of a CM �eld K, and use them to

de�ne the re�ex norm NΦ : E× → K×. Finally, using the Serre group we �nd that

NΦ extends to a morphism of algebraic tori RE/QGm → RK/QGm.

In Section 2.2 we introduce complex abelian varieties as polarisable complex tori

and explain how to think of polarisations in terms of Riemann forms. We then de�ne

rational Hodge structures and state the equivalence of categories (2.2.10) between

the category of abelian varieties up to isogeny and the category of polarisable rational

Hodge structures.

In Section 2.3 we take a closer look at abelian varieties A with complex multipli-

cation by a CM �eld K. By de�nition, this means A is equipped with an embedding

i : K ↪→ End(A)⊗Z Q.

We de�ne the CM type Φ of K associated to (A, i), and then describe polarised

CM abelian varieties (A, i, ψ) of type Φ by associating to (A, i, ψ) a lattice a ⊂ K

and a totally imaginary element t ∈ K×, see (2.3.5). We call (K,Φ; a, t) the type of

(A, i, ψ).

Section 2.4 is devoted to the Main Theorem over the re�ex �eld. We start with

a quick summary of results from class �eld theory, which we will use throughout
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this thesis. We then state the Main Theorem in two versions: For a polarised CM

abelian variety (A, i, ψ) of type (K,Φ; a, t), Theorem (2.4.7) describes the type of

the conjugate of (A, i, ψ) under an automorphism of C �xing the re�ex �eld E of

(K,Φ) in terms of the �nite adelic points of the re�ex norm

NΦ : A×E,f −→ A×K,f .

Moreover, Theorem (2.4.7) also describes the conjugates of the torsion points of A

in terms of the re�ex norm, and Theorem (2.4.10) rephrases this result in terms of

Tate modules.

In Section 2.5 we introduce the PEL Shimura variety Sh(T, {hΦ}) associated to a

pair (K,Φ). The points of the zero-dimensional variety Sh(T, {hΦ}) are in bijection

with isomorphism classes of abelian varieties with CM of type (K,Φ) equipped with

polarisation and level structure. We then explain how the Main Theorem over the

re�ex �eld can be used to get a canonical model of Sh(T, {hΦ}).
With small exceptions, the contents of this chapter can be found in [Shi71], which

is based on [ST61], and in [Mil07], see also [Lan83]. For this reason, proofs are kept

short and often sketchy. For details about the Serre group, we also use [Bla15],

[Sch94] and [MS82b]. In Section 2.2, we follow [SD74] and [BL04], and for the

background on Shimura varieties we use [Del71] and [Mil17].

2.1 CM �elds and the re�ex norm

2.1.1 (CM �elds). A CM �eld is a totally imaginary quadratic extension K of a

totally real �eld. We will usually denote this totally real �eld by F and its degree

by r = [F : Q], so that [K : Q] = 2r.

It is useful to also state the equivalent de�nition [Shi71, Prop. 5.11]: A number

�eld K is a CM �eld if and only if it has a non-trivial automorphism c that acts as

complex conjugation under every embedding ϕ ∈ ΣK := Hom(K,C), i. e. ϕ ◦ c = ϕ

where (·) denotes complex conjugation on C. Namely, one chooses c to be the

non-trivial element of Gal(K/F ). We will often simply denote c by (·).
Note that the Galois closure overQ of a CM �eld is again a CM �eld, and similarly

the composite of two CM �elds is a CM �eld too.

2.1.2 (CM types). Let K be a CM �eld. A CM type Φ of K is a subset Φ ⊂ ΣK =

Hom(K,C) containing precisely one embedding from each complex conjugate pair,

i. e.

ΣK = Φ t Φ.

The pair (K,Φ) is called a CM pair.
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If K ⊂ L are CM �elds and Φ is a CM type of K, then ΦL := {ϕ ∈ ΣL : ϕ|K ∈ Φ}
is a CM type of L. We say that ΦL is induced from (K,Φ). If a CM type Φ of a

CM �eld K is not induced from any proper CM sub�eld of K, we call Φ (or the

pair (K,Φ)) primitive. Note that in this way every CM type of K is induced by a

unique primitive CM pair (K0,Φ0) with K0 ⊂ K, see [Mil06, Prop. 1.9].

2.1.3 (Re�ex �eld and re�ex type). Let (K,Φ) be a CM pair. To (K,Φ), we can

associate the re�ex �eld E = E(K,Φ), which will play a crucial role in the following

considerations. It is the sub�eld E of C given by

Aut(C/E) := {τ ∈ Aut(C) | τΦ = Φ}.

More explicitly, it is given by

E = Q(TrΦ(x) | x ∈ K),

where TrΦ(x) :=
∑

ϕ∈Φ ϕ(x).

Note that the re�ex �eld E is by de�nition a sub�eld of C, and is itself a CM

�eld because complex conjugation on C induces the required automorphism on E.

Moreover, the re�ex �eld E comes equipped with a CM type Φ∗, called the re�ex

type. It is de�ned as follows:

Let L be the Galois closure ofK overQ and let G = Gal(L/Q). Fix an embedding

L ⊂ C, inducing an identi�cation G ∼= ΣL. We view E as a sub�eld of L, so we

have a diagram of �elds

L

K

E

Q.

H

H∗

G

It is then not hard to see [Shi71, p. 125�126] that

Φ−1
L = {ϕ ∈ G : ϕ−1|K ∈ Φ}

is a CM type of L and is induced from a CM type Φ∗ of E. The pair (E,Φ∗) is

called the re�ex pair of (K,Φ).

Sketch of proof. Let us write H := Gal(L/K), H∗ := Gal(L/E), and identify ΣK =

G/H and ΣE = G/H∗. Observe that H∗ = {g ∈ G | gΦL = ΦL}.
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Let us write Φ = {ϕ1H, . . . , ϕrH} ⊂ ΣK = G/H, so that ΦL = tri=1ϕiH. Using

that complex conjugation gives an element c in the centre of G, one sees that Φ−1
L

is a CM type of L and consists of right cosets for H∗, i. e.

Φ−1
L =

m⊔
j=1

ψjH
∗ (2.1.3.1)

for some ψj ∈ G. This means that Φ−1
L is induced from Φ∗ := {ψ1H

∗, . . . , ψmH
∗} ⊂

ΣE, and one can show that Φ∗ is indeed a CM type of E.

However, it is worth pointing out that Φ∗ depends on the embedding K ⊂ C
induced from the chosen embedding L ⊂ C.

2.1.4 Example. Let us give a few concrete examples of CM types. Let K be a

cyclic CM �eld of degree 6 and write G = Gal(K/Q) = 〈g〉. For a concrete example,

one may take K = Q(ζ7). To avoid confusion, let us embed K into C via id = g0

and identify ΣK with G. The maximal totally real sub�eld F of K is the �xed �eld

of g3 = c. Let us denote by K0 the sub�eld of K �xed by the subgroup H = 〈g2〉.
Then K0 is an imaginary quadratic �eld.

Since K has degree 6, it has precisely 23 = 8 di�erent CM types: two of them are

induced from the sub�eld K0 and the remaining six are primitive. For example the

CM type Φ0 = {g0|K0} ⊂ ΣK0 = G/H of K0 induces the CM type Φ = {g0, g4, g2} of
K. On the other hand, the CM type Ψ = {g0, g1, g2} of K is primitive. To calculate

their re�ex types, we see that Φ−1 = {g0, g4, g2} = idH, so Φ∗ = Φ0. Moreover,

Ψ−1 = {g0, g4, g5} = Ψ∗.

We observe that the re�ex pair is always primitive, and repeating this calculation

we see that the �double re�ex� of a CM type is equal to its primitive subpair. These

two facts actually hold in complete generality, i. e. for any CM pair (K,Φ), see [ST61,

p. 71]. For more examples, see [ST61, 8.4]

2.1.5 (Re�ex norm). Let (K,Φ) be a CM pair and E its re�ex �eld. Fix an embed-

ding K ⊂ C and let Φ∗ be the associated re�ex type of E. The re�ex norm is the

group homomorphism

NΦ : E× −→ K×

x 7−→
∏
ψ∈Φ∗

ψ(x).

This is well-de�ned: Using the notation of (2.1.3), note that if σ ∈ H and ψ ∈
Φ−1
L = tri=1Hϕ

−1
i , then σψ ∈ Φ−1

L . So σ induces a permutation of Φ−1
L . By (2.1.3.1)

σ induces a permutation of {ψ1, . . . , ψm}, say ψj 7→ ψk(σ,j), determined by σψj ∈
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ψk(σ,j)H
∗. For x ∈ E× we then conclude that

σNΦ(x) =
m∏
j=1

σψj(x) =
m∏
j=1

ψk(σ,j)(x) = NΦ(x).

Hence NΦ(x) is �xed by all σ ∈ H, i. e. NΦ(x) ∈ K×.
Moreover, one can show that the re�ex norm is independent of the choice of

embedding K ⊂ C: Calling this embedding ι : K
∼−−→ ι(K), with ι(K) ⊂ C, we see

that Φ∗ depends on ι, hence the re�ex norm NΦ : E× → ι(K×) depends on ι (in the

calculation above, we suppressed ι from notation). In order to get a map E× → K×

we need to post-compose the re�ex norm NΦ with ι−1, and one can check that this

composition is independent of the choice of ι.

We will need the re�ex norm also as a map between the (�nite) ideles of E and

K, so we remark here that the group homomorphism NΦ extends to a morphism

NΦ : RE/QGm −→ RK/QGm

of algebraic tori over Q. The details can be found in (2.1.8) below, but �rst we need

some background about algebraic tori and the Serre group.

2.1.6 (Restriction of scalars of Gm). For any number �eld M , we write TM for the

algebraic torus RM/QGm. It is de�ned over Q and its character and cocharacter

groups can be identi�ed with Z[ΣM ] as ΓQ-modules. We write (co-)characters as∑
σ∈ΣM

nσ[σ] with nσ ∈ Z. Here [σ′] denotes either the character

[σ′] : (M ⊗Q Q)× =
∏
σ∈ΣM

Q× −→ Q×,

(tσ)σ∈ΣM 7−→ tσ′ ,

or the cocharacter

[σ′] : Q× −→
∏
σ∈ΣM

Q× = (M ⊗Q Q)×

t 7−→ (1, . . . , 1, t, 1, . . . , 1),

where the t is in the entry corresponding to σ′. It will always be clear from context

whether [σ′] denotes a character or a cocharacter.

The action of γ ∈ ΓQ on [σ] ∈ X∗(TM) or [σ] ∈ X∗(TM) is given by

γ : [σ] 7→ [γ ◦ σ].
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The canonical perfect pairing

〈·, ·〉 : X∗(TM)×X∗(TM)→ Z, 〈f, g〉 := deg(f ◦ g),

where the degree of the morphism Gm → Gm, t 7→ tn, is de�ned to be n, translates

to

Z[ΣM ]× Z[ΣM ]→ Z,

〈∑
σ∈ΣM

mσ[σ],
∑
σ∈ΣM

nσ[σ]

〉
=
∑
σ∈ΣM

nσmσ.

2.1.7 (Serre group). Let E ⊂ C be a CM �eld. The Serre group SE at level E is

the algebraic torus over Q whose character group is given by

X∗(SE) :=

{ ∑
σ∈ΣE

nσ[σ]

∣∣∣∣∣ nσ + nσ = nσ′ + nσ′ for all σ, σ
′ ∈ ΣE

}
⊂ X∗(TE).

The equivalence of categories [PR94, Thm 2.1] between algebraic tori and their

character groups implies that SE is a quotient of TE, so there is a canonical map

TE → SE. Moreover, its cocharacter group is given by

X∗(SE) = X∗(TE)/X∗(SE)⊥,

where X∗(SE)⊥ := {µ ∈ X∗(TE) | 〈χ, µ〉 = 0 for all χ ∈ X∗(SE)}.
The �xed embedding E ⊂ C, which we will temporarily denote by ι, determines

a cocharacter µE := [ι] +X∗(SE)⊥ of SE. On characters, this corresponds to

(µE)∗ : X∗(SE)→ X∗(Gm) = Z,
∑
σ∈ΣE

nσ[σ] 7→ nι.

From this it is not hard to see that µE is de�ned over E and that its weight −(c+1)µE

is de�ned over Q, where c ∈ ΓQ denotes complex conjugation.

In fact, the pair (SE, µE) satis�es the following universal property [Mil81, start

of �4]: For every pair (T, µ) consisting of a Q-algebraic torus T and a cocharacter

µ of T de�ned over E such that −(c + 1)µ is de�ned over Q, there exists a unique

morphism ρµ : SE → T de�ned over Q such that the following diagram commutes:

Gm SE

T.

µE

µ
ρµ

2.1.8 (Re�ex norm as a morphism of algebraic groups). Let (K,Φ) be a CM pair

with re�ex pair (E,Φ∗) as in (2.1.5). There we constructed the re�ex norm as a

group homomorphism NΦ : E× → K×, which we will now upgrade to a morphims
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of algebraic tori over Q.
Note that the CM type Φ determines a cocharacter µΦ :=

∑
ϕ∈Φ[ϕ] ∈ X∗(TK).

By de�nition of the re�ex �eld E, the cocharacter µΦ is de�ned over E, and its

weight −(c+ 1)µΦ =
∑

ϕ∈ΣK
[ϕ] is de�ned over Q. By the universal property of the

Serre group, there exists a unique morphism ρΦ : SE → TK de�ned over Q such that

Gm SE

TK

µE

µΦ

ρΦ (2.1.8.1)

commutes.

Composing ρΦ with the canonical map TE → SE gives the desired morphism

NΦ : TE −→ SE
ρΦ−−→ TK ,

which we will temporarily denote by N ′Φ to avoid confusion.

We claim that N ′Φ agrees, on Q-points, with the re�ex norm NΦ de�ned in (2.1.5).

Proof of claim. Looking at the morphisms in the commutative diagram (2.1.8.1) on

the level of characters, one sees that

ρ∗Φ : X∗(TK) −→ X∗(SE),
∑
σ∈ΣK

nσ[σ] 7−→

(∑
σ∈Φ

nσ

)
[ι] + (other terms),

where ι denotes the �xed embedding E ⊂ C.
Using that ρΦ is de�ned over Q, one can determine ρ∗Φ completely as

ρ∗Φ : X∗(TK) −→ X∗(SE), [σ] 7−→
∑
τ∈ΣE

mτ (σ)[τ ]

with

mτ (σ) =

1, if τ = γ−1 ◦ ι for some γ ∈ ΓQ such that γ ◦ σ ∈ Φ,

0, otherwise.

Note that (N ′Φ)∗ is given by the same formula, using X∗(SE) ⊂ X∗(TE). This

enables us to write down N ′Φ explicitly on Q-points (in terms of the mτ (σ)).
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We want to prove that the following diagram commutes

(E ⊗Q Q)× (K ⊗Q Q)×

E× K×.

N ′Φ

NΦ

Using the above formula for N ′Φ (in terms of the mτ (σ)) and combining it with

the notation of (2.1.3), this reduces to proving that for each σ ∈ ΣK ,

{τ ∈ ΣE | σ ∈ τΦ} = σ̃Φ∗,

where σ̃ ∈ G denotes a lift of σ ∈ ΣK = G/H. To show this, also denote a lift of

τ ∈ ΣE to G by τ̃ . Then

{τ ∈ ΣE | σ ∈ τΦ} = {τ̃H∗ ∈ ΣE | σ ∈ τ̃Φ}

= {τ̃H∗ ∈ ΣE | σ̃ ∈ tri=1τ̃ϕiH}

= {τ̃H∗ ∈ ΣE | τ̃ ∈ σ̃(tri=1Hϕ
−1
i ) = σ̃(tmj=1ψjH

∗)}

= σ̃Φ∗,

so we are done. In the penultimate step, we used (2.1.3.1).

2.2 Abelian varieties

2.2.1 (Complex abelian varieties). Let A be an abelian variety de�ned over C, of
dimension g = dimA. By Riemann's classi�cation of abelian varieties over C, see
e. g. [Mil08, Prop. I.2.1], there exists a lattice Λ in a g-dimensional C-vector space
V and an isomorphism A(C) ∼= V/Λ of complex Lie groups, which we will call a

uniformization of A.

More intrinsically, one can de�ne V to be the tangent space of A at the origin.

In this setting, Λ can be de�ned to be Λ := H1(A,Z).

Conversely, let V be a �nite dimensional complex vector space and Λ a lattice in

V . Then [Mum70, �3, Cor. on p. 35] the complex torus V/Λ admits the structure

of an abelian variety if and only if it is polarisable.

Here, a polarisation on V/Λ is de�ned to be an isogeny between V/Λ and its

dual complex torus that is associated to an ample line bundle on V/Λ. We call V/Λ

polarisable if it admits a polarisation.

2.2.2 (Polarisations and Riemann forms). Let V be a �nite dimensional complex

vector space and Λ a lattice in V . Because we are working over the complex numbers,

the Theorem of Appell�Humbert [Mum70, �2, p. 20] implies that polarisations on
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V/Λ are in bijection with positive de�nite Hermitian Riemann forms on V with

respect to Λ. Such forms are maps H : V × V → C satisfying

• H is Hermitian, i. e. H is C-linear in the �rst variable and satis�es H(v, w) =

H(w, v) for all v, w ∈ V .

• H is positive de�nite, i. e. H(v, v) > 0 for all v ∈ V \ {0}.

• ImH is Z-valued on Λ× Λ.

It is not di�cult (compare [Mum70, �2, Lemma on p. 19]) to express these prop-

erties only in terms of the imaginary part E of H, namely

• E : V ×V → R is an R-bilinear alternating form satisfying E(iv, iw) = E(v, w)

for all v, w ∈ V .

• The form (x, y) 7→ E(ix, y) is positive de�nite.

• E is Z-valued on Λ× Λ.

Such forms E are called Riemann forms on V with respect to Λ. Because Λ⊗ZR = V ,

it is enough to know E on Λ (or on Λ⊗ZQ). In this thesis, we will often simply call

E (or E|Λ×Λ) a polarisation of V/Λ.

2.2.3 (Endomorphisms of abelian varieties). Let A be an abelian variety over C of

dimension g, and let A = V/Λ be a uniformization of A. Then the endomorphisms

of A are given by

End(A) = {Ψ ∈ EndC(V ) : Ψ(Λ) ⊂ Λ}.

This shows that the endomorphism ring End(A) has two natural representations:

(a) The complex representation is given by the action of End(A) on the complex

vector space V of dimension g.

(b) The rational representation is given by the action of End(A) on the free Z-
module Λ = H1(A,Z) of rank 2g, or (which is essentially the same) as the

action of EndQ(A) := End(A) ⊗Z Q on the 2g-dimensional Q-vector space

H1(A,Q). This action is faithful.

These representations are related by the Hodge decomposition

H1(A,Q)⊗Q C ∼= V ⊕ V , (2.2.3.1)

where V denotes a copy of the vector space V on which End(A) acts by the complex

conjugate of the action on V , i. e. if P is the matrix of Ψ ∈ End(A) acting on V with
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respect to some basis, then Ψ acts on V by P (with respect to the same basis). The

proof of this relation is an explicit calculation using `nice' bases, see [SD74, Lem.

39].

Before moving on to CM abelian varieties, it will be useful to connect the theory

of abelian varieties over C to the theory of rational Hodge structures. We follow

[Mil17, �2], but restrict ourselves to the necessary minimum.

2.2.4 ((Rational) Hodge structures). A (real) Hodge structure is a �nite dimensional

real vector space V together with a Hodge decomposition

V ⊗R C =
⊕
p,q∈Z

V p,q,

where V p,q are complex subspaces of V ⊗RC such that V p,q is the complex conjugate

of V q,p. The set of (p, q) ∈ Z2 with V p,q 6= 0 is called the type of the Hodge structure.

The condition V p,q = V q,p implies that, for each n ∈ Z, the (complex) subspace⊕
p+q=n V

p,q is stable under complex conjugation. Hence there is a real subspace Vn

of V such that Vn ⊗R C =
⊕

p+q=n V
p,q. We call Vn the weight space of weight n.

A Z-Hodge structure is a free Z-module Λ of �nite rank together with a Hodge

decomposition of Λ⊗ZC such that the weight spaces are de�ned over Q. Similarly, a

Q-Hodge structure is a �nite dimensional Q-vector space M together with a Hodge

decomposition of M ⊗Q C such that the weight spaces are de�ned over Q.

2.2.5 (Hodge structures and representations of the Deligne torus). Giving a Hodge

structure on a �nite dimensional real vector space V is equivalent to giving a rep-

resentation h : S → GL(V ) of the Deligne torus S := RC/RGm, which is an al-

gebraic torus over R. The dictionary between these two points of view is to let

(z1, z2) ∈ S(C) = C× × C× act on V p,q by multiplication by z−p1 z−q2 .

Associated to a Hodge structure h : S→ GL(V ) we also have a cocharacter µh of

GL(V )C given by

µh : Gm,C → GL(V ⊗R C), µh(z) := hC(z, 1),

and this cocharacter determines h.

For example, a Hodge structure of type {(−1, 0), (0,−1)} on a real vector space

V is the same as a complex structure J on V , i. e. an endomorphims J ∈ End(V )

such that J2 = −1. Namely, if h denotes the associated representation of S, then
J = h(i).

2.2.6 (Polarisations of Hodge structures). Let (M,h) be a Q-Hodge structure of

weight n. A polarisation of (M,h) is a Q-bilinear form ψ : M ×M → Q satisfying
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• ψ(h(z)v, h(z)w) = (zz)−nψ(v, w) for all v, w ∈M ⊗Q R, z ∈ C×, and

• the pairing (v, w) 7→ ψ(v, h(i)w) is positive de�nite (on M ⊗Q R×M ⊗Q R).

We call (M,h) polarisable if it admits a polarisation. Similarly, one de�nes polari-

sations for Z-Hodge structures and real Hodge structures.

For example, if (M,h) has type (−1, 0), (0,−1) (i. e. weight −1), then a polarisa-

tion of (M,h) is a bilinear form ψ : M ×M → Q satisfying

• ψ is alternating and ψ(h(i)v, h(i)w) = ψ(v, w) for all v, w ∈M ⊗Q R, and

• (v, w) 7→ ψ(v, h(i)w) is positive de�nite.

The connection to abelian varieties is given by the following theorem, see [Mil17,

Thm 6.8]:

2.2.7 Theorem (Abelian varieties and Hodge structures). The category of abelian

varieties over C is equivalent to the category of polarisable Z-Hodge structures of

type {(−1, 0), (0,−1)} via the functor

A 7−→ H1(A,Z).

2.2.8 Remark. If the abelian variety A is given as V/Λ, then H1(V/Λ,Z) = Λ.

The Hodge decomposition (2.2.3.1) equips Λ with a Z-Hodge structure of type

{(−1, 0), (0,−1)}, namely, V = V −1,0 and V = V 0,−1. We mentioned in (2.2.1)

that A admits a polarisation, which we described in terms of Riemann forms in

(2.2.2). The Riemann form E (restricted to Λ× Λ) is then precisely a polarisation

of the Z-Hodge structure Λ.

2.2.9 (Isogeny category). For large parts of this thesis, we will work in the category

of abelian varieties up to isogeny. Its objects are abelian varieties, but the morphisms

between A1 and A2 in this isogeny category are given by

HomQ(A1, A2) := Hom(A1, A2)⊗Z Q.

Sometimes, elements of Hom(A1, A2)⊗Z Q are called quasi-isogenies, because some

integer multiple of a quasi-isogeny is an actual isogeny.

Working in this category has the e�ect that isogenies are viewed as isomorphisms.

The equivalence of categories (2.2.7) implies:

2.2.10 Theorem. The category of abelian varieties over C up to isogeny is equiv-

alent to the category of polarisable Q-Hodge structures of type {(−1, 0), (0,−1)} via
the functor

A 7−→ H1(A,Q).

We will denote the Q-Hodge structure on H1(A,Q) by hA : S→ GL(H1(A,R)).
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2.3 Abelian varieties with complex multiplication

Going back to endomorphisms of abelian varieties, using the ideas of (2.2.3) one can

classify the possible division algebras EndQ(A) := End(A) ⊗Z Q for simple A, see

[SD74, Thm. 43]. In this thesis, we are interested in abelian varieties with complex

multiplication, which in some sense are those abelian varieties whose endomorphism

algebra has largest possible centre. Namely, by [ST61, Prop. 1, p. 39], any commu-

tative semi-simple subalgebra B of EndQ(A) satis�es dimQB ≤ 2 dimA.

2.3.1 (Abelian varieties with complex multiplication). We say an abelian variety

A over C of dimension g has complex multiplication (CM) by a CM �eld K if [K :

Q] = 2g and we are given an embedding

i : K ↪→ EndQ(A).

A few remarks:

(2.3.1.a) An abelian variety A can have CM by several CM �elds. Therefore, we include

the homomorphism i : K ↪→ EndQ(A) as part of the data and say that (A, i)

has CM by K, or that A has CM by K via i.

(2.3.1.b) If A is simple, then EndQ(A) is a division algebra. One can then show that if

(A, i) has CM by K with A simple, then i is an isomorphism. In this case, K

is determined up to isomorphism.

(2.3.1.c) Some authors allow K to be a CM algebra instead of a CM �eld. A CM

algebra is a �nite product of CM �elds. Most of the theory can be worked out

for CM algebras instead of CM �elds, but for the purpose of this thesis we

will always restrict to the case where K is a �eld. This is not too restrictive

because if A has CM by a CM algebra, then it is isogeneous to a product of

abelian varieties, each of which has CM by a CM �eld.

2.3.2 (CM type determined by A). Let us assume that (A, i : K ↪→ EndQ(A)) has

CM by K. Then the 2g-dimensional Q-vector space H1(A,Q) carries a faithful

representation of EndQ(A) and hence by K. So we can view H1(A,Q) as a one-

dimensional vector space over K, and simply write H1(A,Q) = K.

On the other hand, K also acts, via i and the complex representation of EndQ(A),

on the tangent space V of A at the origin. The vector space V is g-dimensional over

C, and diagonalising the K-action we get an isomorphism of complex vector spaces

with K-actions

V ∼=
⊕
ϕ∈Φ

Cϕ =: CΦ,
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for a subset Φ ⊂ ΣK = Hom(K,C) with g elements (repetitions allowed), where Cϕ

denotes a one-dimensional complex vector space on which K acts via ϕ.

It remains to show that Φ is a CM type of K. This follows from the Hodge

decomposition (2.2.3.1): We have isomorphisms of complex vector spaces with K-

actions

V ⊕ V ∼= H1(A,Q)⊗Q C ∼= K ⊗Q C ∼=
⊕
ϕ∈ΣK

Cϕ.

But the left hand side is isomorphic to
⊕

ϕ∈Φ Cϕ ⊕
⊕

ϕ∈Φ Cϕ, thus Φ is a CM type

of K.

We say that (A, i) is of type (K,Φ).

2.3.3 Remark. Let (A, i) be a CM abelian variety of type (K,Φ). As in (2.3.2), we

can view H1(A,Q) as a one-dimensional K-vector space, and the tangent space V

of A at the origin is isomorphic to CΦ, which is equipped with CM by K by letting

x ∈ K act as multiplication by Φ(x) = (ϕ(x))ϕ∈Φ ∈ CΦ.

Under the equivalence of categories (2.2.10), the abelian variety A hence corre-

sponds to the Q-Hodge structure (K,hΦ), where hΦ encodes the isomorphism

K ⊗Q R ∼= CΦ.

In other words, the endomorphism hΦ(i) of K ⊗Q R is equal to the pullback of

multiplication by (i, . . . , i) ∈ CΦ under this isomorphism.

The CM pair (K,Φ) determines the Q-Hodge structure (K,hΦ), so we conclude

that the isogeny class of a CM abelian variety (A, i) is determined by its type (K,Φ).

Put di�erently, there is a bijection between CM types of K and isogeny classes of

abelian varieties with CM by K.

We have seen that (A, i) determines the pair (K,Φ), and that in turn (K,Φ)

determines the isogeny class of (A, i). In order to get a �ner classi�cation, we also

need to take polarisations into account. We follow the exposition in [Mil07, p. 5,

before Prop. 1.3].

2.3.4 (Compatible polarisations). Let (A, i : K ↪→ EndQ(A)) be a CM abelian va-

riety of type (K,Φ). We call (the Riemann form of) a polarisation ψ : H1(A,Q) ×
H1(A,Q) → Q (K-)compatible (with i) if its Rosati involution stabilises i(K) and

induces complex conjugation on it. This means that ψ(i(a)v, w) = ψ(v, i(c(a))w)

for all v, w ∈ H1(A,Q) and a ∈ K.

We can describe compatible polarisations more explicitly as follows: As in (2.3.2)

we can view H1(A,Q) as a 1-dimensional vector space over K. Call a basis element

e. Then by [Shi71, (5.5.13)] there exists a unique element t ∈ K× such that

ψ(x · e, y · e) = Et(x, y) := TrK/Q(txc(y)), for all x, y ∈ K.
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The conditions of (2.2.2) (or (2.2.6)) on the polarisation ψ translate to

(2.3.4.a) t being totally imaginary (because ψ is alternating), and

(2.3.4.b) Imϕ(t) > 0 for all ϕ ∈ Φ (because (x, y) 7→ ψ(ix, y) is positive de�nite).

2.3.5 (Polarised CM abelian varieties). Let us classify triples (A, i, ψ) consisting of

a CM abelian variety (A, i) of type (K,Φ) as in (2.3.2) and a compatible polarisation

ψ.

To analyse this situation, let Θ: CΦ/Λ
∼−−→ A be a uniformization. Choose a K-

basis element e of H1(A,Q). This determines a lattice a ⊂ K by a := {x ∈ K | x·e ∈
Λ}, and allows us to identify Λ ⊂ CΦ with Φ(a), where we write Φ: K ↪→ CΦ for

the map x 7→ (ϕ(x))ϕ∈Φ.

Together with the discussion in (2.3.4), this shows that the choice of e determines

a quadruple (K,Φ; a, t), which we will also call the type of (A, i, ψ) relative to the

uniformization Θ.

A di�erent choice of basis element for H1(A,Q) has the form e′ = a−1e for some

a ∈ K×, resulting in changing a to a′ = aa and t to t′ = t
aa

(and Θ to Θ′ = Θ ◦ a−1,

where a−1 : CΦ/Φ(aa)→ CΦ/Φ(a) denotes the map induced from multiplication by

Φ(a−1) on CΦ).

To summarise: The type (K,Φ; a, t) as above determines the triple (A, i, ψ) up to

isomorphism. Here an isomorphism of triples (A, i, ψ) is an isomorphism of abelian

varieties respecting the complex multiplication i and the polarisation ψ. Conversely,

a triple (A, i, ψ) determines the type (K,Φ; a, t) up to simultaneously changing a to

aa and t to t
aa
, for some a ∈ K×.

Finally, a quadruple (K,Φ; a, t), with K a CM �eld, Φ a CM type of K, a a

lattice in K and t ∈ K× a totally imaginary element, occurs as the type of some

polarized CM abelian variety (A, i, ψ) if and only if Imϕ(t) > 0 for all ϕ ∈ Φ.

The following lemma will be very useful.

2.3.6 Lemma. Let (A, i : K ↪→ EndQ(A)) be a CM abelian variety. Let F denote

the maximal totally real sub�eld of K, i. e. F = K〈c〉. Assume that ψ : H1(A,Q) ×
H1(A,Q) → Q is a polarisation of A that is F -compatible, i. e. ψ(i(a)v, w) =

ψ(v, i(a)w) for all v, w ∈ H1(A,Q) and a ∈ F .
Then ψ is also K-compatible.

Proof. To shorten notation, let V := H1(A,Q). As before, we identify V with K

and drop i from notation. Note that dimK V = 1, hence dimF V = 2. The proof

proceeds in three steps.

• The map

HomF (V, F ) −→ HomQ(V,Q), v∗ 7−→ TrF/Q ◦v∗

32



2. MAIN THEOREM OF CM 2.3. CM ABELIAN VARIETIES

is an F -linear isomorphism, where HomQ(V,Q) is an F -vector space via (f ·
α)(v) := α(fv) for f ∈ F , α ∈ HomQ(V,Q), and v ∈ V .

The map is clearly F -linear and both its domain and target have dimension

2[F : Q] over Q, so it is enough to check that the map is injective. So assume

that TrF/Q ◦v∗ = 0 for some v∗ ∈ HomF (V, F ). Then the F -vector space im(v∗) is

contained in ker(TrF/Q), which has dimension [F : Q]− 1 over Q, hence v∗ = 0.

• Let W denote the Q-vector space of all Q-bilinear, alternating, F -compatible

forms B : V × V → Q. We make W into an F -vector space by de�ning

(f ·B)(v, w) := B(fv, w) for f ∈ F and B ∈ W . Then W has dimension 1 as

an F -vector space.

Let us �rst look at the F -vector space U of all Q-bilinear, F -compatible (not

necessarily alternating) forms B : V × V → Q. Writing U ′ for the F -vector space of

F -bilinear forms B′ : V × V → F , identifying a bilinear form B on V with the map

v 7→ B(v, ·), and using the previous step we get an F -linear isomorphism

U ′ = HomF (V,HomF (V, F ))
∼−−→ HomF (V,HomQ(V,Q)) = U

B′ 7−→ TrF/Q ◦B′.

The F -subspace W of U consists precisely of those B ∈ U that are alternating.

Now B′ ∈ U ′ is alternating if and only if the linear map βB′ : V → HomF (V, F )

de�ned by βB′(v) := B′(v, ·) +B′(·, v) is trivial, which by the previous step happens

if and only if TrF/Q ◦βB′ is trivial. But clearly TrF/Q ◦βB′ = βTrF/Q ◦B′ , which by the

same argument is trivial if and only if TrF/Q ◦B′ is alternating. Thus the isomor-

phism U ∼= U ′ restricts to an isomorphism between W and the F -vector space of

F -bilinear alternating forms V × V → F , i. e. with HomF (
∧2
F V, F ). Since V has

dimension 2 over F , this latter space has dimension 1 over F .

• Note that ψ ∈ W . So �nally we claim that any B ∈ W is K-compatible.

Let W ′ denote the set of all K-compatible, Q-bilinear, alternating forms B : V ×
V → Q. Then W ′ is an F -subspace of W , and W ′ 6= 0 because the pairing Et, for

any totally imaginary t ∈ K×, is non-trivial. But since dimF W = 1, we must have

W ′ = W .

2.3.7 Remark (Torsion points and uniformizations). Let (A, i) be a CM abelian

variety of type (K,Φ), and let Θ: CΦ/Φ(a)
∼−−→ A be a uniformization of A, with a

a lattice in K. Since a ⊗Z Q = K, the torsion points of A correspond under Θ to

Φ(K)/Φ(a). We will simply write Θ: K/a
∼−−→ Ators, although this should really be

written as Θ ◦ Φ, for Φ: K ↪→ CΦ given by Φ(x) := (ϕ(x))ϕ∈Φ.
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The importance of introducing the re�ex �eld is illustrated by the following ob-

servation:

2.3.8 (Change of CM type). Let (A, i) be a CM abelian variety of type (K,Φ). Let

σ ∈ Aut(C). Then the conjugate abelian variety σA also has CM by K via

σi : K
i−→ EndQ(A)

σ−−→ EndQ(σA).

The same calculation as in (2.3.2) shows that (σA, σi) is of type (K, σΦ), where

σΦ := {σ ◦ϕ | ϕ ∈ Φ}. In particular, (σA, σi) has the same type as (A, i) if and only

if σΦ = Φ, i. e. if and only if σ �xes the re�ex �eld E(K,Φ).

2.4 Main Theorem over the re�ex �eld

We are now almost ready to state the Main Theorem of Complex Multiplication

over the re�ex �eld. But before doing so, we need to introduce more notation, and

talk about class �eld theory.

2.4.1 (Class �eld theory). Let k be a number �eld. We write A×k :=
∏′

v k
×
v for the

group of ideles of k and A×k,f :=
∏′

v-∞ k
×
v for the group of �nite ideles. We embed

k× diagonally into A×k and A×k,f .
Class �eld theory [NSW15, Ch. 8] says that there exists a surjective, continuous

group homomorphism

artk : A×k /k
× −→ Gal(kab/k) = Γab

k

called the Artin map. We normalise it by sending uniformizers to geometric Frobe-

nius elements. Recall that the kernel of artk is the connected component of the

identity element, which is equal to the closure of k×∞,>0 · k× inside A×k /k×. Here

k×∞,>0 :=
∏

v realR
×
>0 ×

∏
v complexC× is the identity component in k×∞ :=

∏
v|∞ k

×
v .

In particular, artk induces a surjective, continuous group homomorphism

rk : A×k,f/k
×
>0 −→ Γab

k ,

where k×>0 := k× ∩ k×∞,>0 denotes the elements of k× that are positive at all real

places of k. For example, if k is totally imaginary, e. g. when k is a CM �eld, then

k×>0 = k×. The following commutative diagram summarises the situation

A×k /k× A×k /k
×
∞,>0k

× π0(Ak/k
×) Γab

k

A×k,f/k
×
>0.

artk
∼

∼ rk
(2.4.1.1)
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2.4.2 Example (Class �eld theory of Q). For the �eld Q, one can describe its

class �eld theory explicitly using roots of unity and the cyclotomic character: The

Theorem of Kronecker�Weber states that Qab is obtained by adjoining all roots of

unity to Q. Hence the Galois group Gal(Qab/Q) is canonically isomorphic to Ẑ×,
the isomorphism being given by the cyclotomic character χcyc : Gal(Qab/Q)

∼−−→ Ẑ×:
An element σ ∈ Gal(Qab/Q) acts on a root of unity ζ by

σ(ζ) = ζχcyc(σ).

On the other hand, the identity component in Q×∞ = R× is R×>0, and in this case

R×>0·Q×/Q× is a closed subgroup of A×Q/Q×. Moreover, the quotient A×Q/(R
×
>0·Q×) is

isomorphic to Ẑ×, the isomorphism being induced from the inclusion Ẑ× ⊂ A×Q,f ↪→
A×Q. The Artin map is then given explicitly by the commutative diagram

A×Q/Q× A×Q/R
×
>0Q× π0(AQ/Q×) Γab

Q

A×Q,f/Q
×
>0.

Ẑ×.

artQ
∼

χcyc

∼

∼ rQ

∼

∼

2.4.3. (Class �eld theory and transfer) Let k′/k be a �nite extension of number

�elds. Then we have a commutative diagram [Tat67, (13), p. 197]

A×k′/k′× Γab
k′

A×k /k× Γab
k ,

artk′

artk

Vk′/k

where the left vertical arrow is induced from the inclusion k ⊂ k′ and the right

vertical arrow is the transfer map Vk′/k : Γab
k → Γab

k′ , see (2.4.4). The same diagram

with �r� instead of �art� and �nite ideles and totally positive elements on the left

hand side also commutes. We will very often use the particular case when k = Q.

2.4.4 (Transfer). Let Γ be a (pro�nite) group and ∆ be a (closed) �nite index

subgroup. Denote (the closure of) the commutator subgroup of Γ by [Γ,Γ], and the

abelianisation of Γ by Γab := Γ/[Γ,Γ]. The transfer map

V : Γab −→ ∆ab

is de�ned as follows: For x ∈ Γ/∆, let sx ∈ Γ be a representative of the right ∆-coset

x, so that Γ =
⊔
x sx∆. For any γ ∈ Γ, we have γsx = sγxδ for some δ ∈ ∆, i. e.
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s−1
γxγsx ∈ ∆. So we can de�ne

V (γ) :=
∏

x∈Γ/∆

(s−1
γxγsx · [∆,∆]) ∈ ∆ab.

One checks that V is a (continuous) group homomorphism, hence factors through

Γab, and is independent of the chosen system of representatives (sx).

If k′/k is a �nite extension of number �elds, then Γk′ is a �nite index subgroup

of Γk and we denote the resulting transfer map by Vk′/k.

2.4.5 (�Idele times lattice�). Let K be a number �eld and a ⊂ K a lattice. For a

prime number p, let Kp := K ⊗Q Qp and ap := a⊗Z Zp, a Zp-lattice in Kp. For an

idele x = (xv)v ∈ A×K (or a �nite idele, since the ∞-component will not play a role

here), de�ne its p-component to be xp := (xv)v|p ∈
∏

v|pKv = Kp. Then xp · ap is
also a Zp-lattice in Kp.

Now [Lan83, Ch. 3.6, p. 77-78] one can �nd a lattice b in K such that bp = xpap

for all prime numbers p. So we de�ne x · a := b. For example, if a is a fractional

ideal, then we can de�ne b := (x) · a, where (x) is the fractional ideal of K de�ned

by the idele x.

Furthermore, using the isomorphism K/a ∼=
⊕

pKp/ap, we can also de�ne a

�multiplication by x� map K/a → K/xa in the following way: Let u ∈ K and

choose v ∈ K such that v ≡ xpumodxpap for all p. De�ne x · (umod a) := vmodxa.

The following commutative diagram illustrates this process:

K/a K/xa

⊕
pKp/ap

⊕
pKp/xpap

Kp/ap Kp/xpap.

∼ ∼

·x

⊂

·xp

⊂

We denote this map by K/a
x−−→ K/xa although it is not really a �multiplication by

x� map.

If a is a fractional ideal, one can avoid working with prime numbers p and instead

work with the prime ideals p of K. The procedure remains the same.

2.4.6 (Projective vs. inductive limit). Here is another way to think about the con-

struction in (2.4.5): For any lattice a in K, we have a ⊗Z Q = K. So on the one

hand, we can view K/a as the union (inductive limit) of all 1
n
a/a, and we have
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constructed a map

K/a = lim−→
n

1

n
a

/
a

x−−→ lim−→
n

1

n
xa

/
xa = K/xa.

On the other hand, we have

AK,f =

(
lim←−
n

1

n
a

/
a

)
⊗Z Q.

For every n, the �multiplication by x� map above induces a map 1
n
a/a → 1

n
xa/xa.

For n|m, these maps are compatible in the right way, so we get an induced map

between the projective limits (also denoted by x)

(
lim←−n

1
n
a
/
a
)
⊗Z Q

(
lim←−n

1
n
xa
/
xa
)
⊗Z Q

AK,f AK,f .

x

Then the dotted arrow is precisely given by multiplication by x ∈ A×K,f .

We are now ready to state the Main Theorem of Complex Multiplication over

the re�ex �eld. Up to notational di�erences1, this is [Shi71, Thm 5.15] and follows

from the results in [ST61]. For a full proof, see [Lan83, Ch. 3, Thm 6.1] or [Mil07,

Thm 3.13].

2.4.7 Theorem (Main Theorem of CM over the re�ex �eld I). Let (A, i) be a CM

abelian variety of type (K,Φ) equipped with a compatible polarisation ψ. Let (A, i, ψ)

be of type (K,Φ; a, t) relative to a uniformization Θ: CΦ/Φ(a)
∼−−→ A. Furthermore,

let E be the re�ex �eld of (K,Φ), let σ ∈ Aut(C/E) and choose s ∈ A×E,f such that

rE(s) = σ|Eab.

Then:

(2.4.7.a) The triple σ(A, i, ψ) := (σA, σi, σψ) is of type (K,Φ; fa, tχcyc(σ)

ff
) relative to some

uniformization Θ′, where f = NΦ(s) ∈ A×K,f .

(2.4.7.b) There exists a unique uniformization Θ′ : CΦ/Φ(fa)
∼−−→ (σA)(C) such that the

following diagram commutes:

K/a Ators

K/fa (σA)tors.

Θ

f σ

Θ′

1Most notably, [Shi71] and [Lan83] use a di�erent normalisation for class �eld theory by sending
uniformizers to arithmetic Frobenius elements. We follow the convention in [Mil07], see (2.4.1).
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Here the left vertical arrow is the �multiplication by f� map de�ned in (2.4.5).

2.4.8 Remark. In (2.4.7.a) we write σA for the conjugate abelian variety. It has

CM by K via σi, see (2.3.8). The polarisation σψ of σA is de�ned to be associated to

the σ-conjugate of the line bundle determining ψ. For more details in the slightly

di�erent language of divisors, see [Lan83, Ch. 3.4].

Moreover, by [Mil07, Lemma 3.7] we have χcyc(σ)

ff
∈ Q×>0, so the quadruple

(K,Φ; fa, tχcyc(σ)

ff
) is a type in the sense of (2.3.5).

The Main Theorem of Complex Multiplication is a statement of the action of

σ ∈ Aut(C) �xing the re�ex �eld on the torsion points of an abelian variety A with

CM by K. It will be useful to restate this theorem in terms of the Tate module of

A.

2.4.9 (Tate module). The (full, rational) Tate module of an abelian variety A is

de�ned to be

V̂ (A) :=

(
lim←−
n

A[n]

)
⊗Z Q.

It is a free AQ,f -module of rank 2 dimA. If A has complex multiplication by K, then

V̂ (A) becomes a free AK,f -module of rank 1.

The Main Theorem now becomes [Mil07, Thm 3.10]:

2.4.10 Theorem (Main Theorem of CM over the re�ex �eld II). Let (A, i) be an

abelian variety with CM of type (K,Φ), and let E be the re�ex �eld of (K,Φ). Let

σ ∈ Aut(C/E) and let s ∈ A×E,f such that rE(s) = σ|Eab. Finally, let f := NΦ(s) ∈
A×K,f .

Then there exists a unique K-linear quasi-isogeny λ : A → σA such that the fol-

lowing diagram is commutative:

V̂ (A) V̂ (A)

V̂ (σA).

f

σ λ (2.4.10.1)

Moreover, if ψ is a compatible polarisation on (A, i), then for all v, w ∈ H1(A,Q)

we have

(σψ)(λ(v), λ(w)) =
χcyc(σ)

ff
ψ(v, w).

Sketch of proof that Theorems (2.4.7) and (2.4.10) are equivalent. Theorem (2.4.7)

follows from Theorem (2.4.10) by [Mil07, 3.13], but the argument can be reversed.

Namely, the isogeny λ : A→ σA and the uniformizations Θ and Θ′ are related by

λ = Θ′ ◦Θ−1,
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where we view Θ as a K-linear isomorphism of Q-Hodge structures (K,hΦ)
∼−−→

(H1(A,Q), hA) and similarly for Θ′. Moreover, the commutative diagrams (2.4.7.b)

and (2.4.10.1) are related by (2.4.6).

2.5 PEL Shimura variety associated to (K,Φ)

We will now explain how the Main Theorem over the re�ex �eld can be used to

get a canonical model of a certain (PEL) Shimura variety associated to a CM pair

(K,Φ). This is an easy case of a general phenomenon, which will come up again in

(3.2.8), and is included here as an illustrative example for the general case.

2.5.1 (Two Shimura data associated to (K,Φ)). Let K be a CM �eld and Φ a CM

type of K. Let hΦ : S→ GLQ(K)R be the associated Q-Hodge structure, see (2.3.3).
We view TK = RK/QGm as an algebraic subgroup of GLQ(K): On Q-points, we
embed TK(Q) = K× as the K-linear endomorphisms in GLQ(K). By construction,

for every z ∈ C× the map hΦ(z) is K-linear on K ⊗Q R, hence we may view hΦ as

a morphism hΦ : S→ (TK)R of algebraic tori over R.
The pair (TK , {hΦ}) satis�es the axioms [Del79, (2.1.1.1-3)] because TK is a torus,

hence (TK , {hΦ}) is a Shimura datum. However, except when K/Q is imaginary

quadratic, it is not of PEL type. We modify TK slightly in order to get a PEL

Shimura datum:

Let F be the maximal totally real sub�eld of K. De�ne the Q-algebraic torus T
by the Cartesian diagram

T TK

Gm TF ,

N (2.5.1.1)

where the map N is the norm map, which on the level of Q-points is given by the

norm NK/F : K× → F×, and the embedding Gm ↪→ TF on the level of Q-points is
given by the inclusion Q× ↪→ F×. In particular, this means that

T (Q) = {x ∈ K× | NK/F (x) ∈ Q×}.

We describe all these maps on the level of cocharacters in (6.2.2).

It is then not hard to see that the image of hΦ is contained in the R-torus TR.
Then (T, {hΦ}) is a Shimura datum of PEL type: Fix a totally imaginary element

t ∈ K× such that Imϕ(t) > 0 for all ϕ ∈ Φ. Then (T, {hΦ}) is the PEL Shimura

datum (in the sense of [Del71, 4.9]) associated to the simple Q-algebra K, with

involution given by complex conjugation, acting on the Q-vector space K, which we

equip with the alternating, Q-bilinear, K-compatible form Et from (2.3.4).
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2.5.2 (Shimura variety associated to (T, {hΦ})). For a compact open subgroup U ⊂
T (Af ), we de�ne the Shimura variety of level U to be the set

ShU(T, {hΦ}) := T (Q)\ [{hΦ} × T (Af )/U ] .

It is often more convenient to work with the projective limit over all such U ,

namely we call the limit

Sh(T, {hΦ}) := lim←−
U

ShU(T, {hΦ})

the Shimura variety associated to (T, {hΦ}). It carries an action by T (Af ) by mul-

tiplication on the right in the second factor. We mention the formula [Orr18, (1),

p. 4] (which is a variant of [Del79, Prop. 2.1.10]):

Sh(T, {hΦ}) = T (Q)\
[
{hΦ} × T (Af )/T (Q)

]
= {hΦ} × T (Af )/T (Q),

where T (Q) denotes the closure of T (Q) inside T (Af ) (in the idelic topology).

The Shimura variety Sh(T, {hΦ}) is a pro-algebraic variety over C, i. e. the pro-
jective limit of the algebraic varieties ShU(T, {hΦ}) over C. However, every Shimura
variety has a unique so-called canonical model, de�ned over its re�ex �eld, a certain

number �eld. The aim of the following discussion is to describe the canonical model

for Sh(T, {hΦ}) in terms of abelian varieties with complex multiplication.

2.5.3 (Re�ex �eld of Sh(T, {hΦ})). Associated to the Hodge structure hΦ we have

the cocharacter µhΦ
(see (2.2.5)). By de�nition, for z ∈ C× it is given by

µhΦ
(z) = multiplication by (z, . . . , z, 1, . . . , 1) on CΦ ⊕ CΦ = K ⊗Q C,

i. e. the cocharacter µhΦ
agrees with the cocharacter µΦ of TK de�ned in (2.1.8). The

description of the cocharacters of T in (6.2.2.4) shows that µΦ can be viewed as a

cocharacter of T , too. This also means that the re�ex norm constructed in (2.1.8)

can be viewed as a morphism NΦ : TE → T .

By De�nition (6.1.11), the re�ex �eld of the Shimura datum (T, {hΦ}) (or of

(TK , {hΦ})) is the �eld of de�nition of the cocharacter µΦ, and so is equal to the

re�ex �eld E of the CM pair (K,Φ).

2.5.4 (Canonical model of Sh(T, {hΦ})). The canonical model of a Shimura variety

is de�ned to be a model over the re�ex �eld, equipped with a (right) action of

the adelic points of the underlying group, satisfying a certain reciprocity law on its

special points. For a precise de�nition, see [Del71, 3.13] or [Mil17, 12.8].
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In our case, the underlying algebraic group is the torus T , so all points are

special points and the associated Shimura variety is zero-dimensional. Moreover,

the reciprocity law is given by a morphism TE → T (see [Mil17, (60)]) that agrees,

by its de�nition, with the re�ex norm NΦ : TE → T .

Spelling out the de�nition: The canonical model of Sh(T, {hΦ}) is a pro-variety

M de�ned over E with a (right) action of T (Af ), together with a T (Af )-equivariant

isomorphism m : M ×E C ∼−−→ Sh(T, {hΦ}) such that for every point [hΦ, g] ∈
Sh(T, {hΦ}), where g ∈ T (Af ), the point m

−1([hΦ, g]) ∈ M(C) is de�ned over Eab,

and for an arbitrary σ ∈ Aut(C/E) and an element s ∈ A×E,f such that rE(s) = σ|Eab ,

we have

σ[hΦ, g] = [hΦ, gNΦ(s)]. (2.5.4.1)

Now, a zero-dimensional pro-variety de�ned over any �eld E is the same as a

pro�nite set equipped with a continuous action of the absolute Galois group ΓE of

E. So here we can simply de�ne the canonical model M by declaring it to be the

pro�nite set Sh(T, {hΦ}), which we equip with a ΓE-action by de�ning σ ∈ ΓE to

act by the formula (2.5.4.1).

2.5.5 Remark. As explained in (2.5.4), the construction of canonical models for

tori is basically tautological. (2.5.4.1) simply de�nes the correct ΓE-action. What

is less tautological is its relationship with the Main Theorem over the re�ex �eld,

which we will explain in the remaining paragraphs of this section and which is the

reason for de�ning canonical models in the way they are de�ned.

Canonical models are de�ned by the property that on special points the Galois

action is equal to a certain class-�eld theoretic recipe (called a reciprocity map).

This reciprocity map is modelled on the re�ex norm. This means that, for PEL

Shimura varieties, special points correspond to abelian varieties with complex mul-

tiplication, and so the Main Theorem over the re�ex �eld implies, under a few tech-

nical assumptions, that the moduli variety representing the associated PEL moduli

problem de�nes a canonical model of the Shimura variety.

We illustrate this procedure by looking at the example of the Shimura variety

Sh(T, {hΦ}). It is related to abelian varieties with complex multiplication of type

(K,Φ) by Theorem (2.5.8) below, which can be found in [Del71, 4.11], specialised to

the particular choice of PEL data in (2.5.1). For a proof and an explicit description

of the bijection, one can use the same strategy as in the proof of (4.4.5).

For the remainder of this section, we �x, as in (2.5.1), a totally imaginary element

t ∈ K× such that Imϕ(t) > 0 for all ϕ ∈ Φ. Temporarily, we write V = K and

ψ : V × V → Q for the bilinear form Et de�ned in (2.3.4), and we write V (Af ) for

V ⊗Q Af = AK,f .
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2.5.6 Theorem ((T, {hΦ}) and CM abelian varieties). The coset space

T (Q)\ [{hΦ} × T (Af )]

is in bijection with the set of isomorphism classes of quadruples (A, i,Q×s, η), con-

sisting of

• (A, i) a CM abelian variety of type (K,Φ),

• s a K-compatible polarisation of A, and

• η : V (Af )
∼−−→ V̂ (A) an isomorphism of AK,f -modules sending A×f ψ to A×f s,

satisfying the condition

(2.5.6.a) There exists a K-linear isomorphism a : (H1(A,Q), hA)
∼−−→ (V, hΦ) of Q-

Hodge structures that sends Q×s to Q×ψ.

Moreover, if we let g ∈ T (Af ) act on such a quadruple (A, i,Q×s, η) by sending

it to (A, i,Q×s, η ◦ g), then this bijection is equivariant for the T (Af )-actions.

2.5.7 Remarks. A few comments about the notation in the above theorem are

necessary.

(2.5.7.a) We view Q×s as the set of all bilinear forms {qs | q ∈ Q} onH1(A,Q) (and sim-

ilarly for Q×ψ). Note that not every element of the set Q×s is a polarisation,

since for negative q the pairing (v, w) 7→ qs(v, hA(i)w) is negative de�nite, so

the last condition of (2.2.6) fails.

The condition on η sending A×f ψ to A×f s then translates to: There exists an

element q ∈ A×f such that s(η(v), η(w)) = qψ(v, w) for all v, w ∈ V (Af ).

Similarly for the last condition on a in (2.5.6.a).

(2.5.7.b) An isomorphism of quadruples (A, i,Q×s, η)
∼−−→ (A′, i′,Q×s′, η′) is a quasi-

isogeny f : A→ A′ such that

• f sends Q×s to Q×s′,

• f is K-compatible (with respect to i and i′), and

• f sends η to η′, i. e. f ◦ η = η′.

Note that the T (Af )-action on quadruples induces a well-de�ned action on the

set of isomorphism classes of such quadruples.

Theorem (2.5.6) immediately implies the following interpretation of the points of

the Shimura variety ShU(T, {hΦ}), see [Del71, 4.11]:
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2.5.8 Corollary (Complex points of Sh(T, {hΦ})). For any compact open subgroup

U ⊂ T (Af ), the points of the Shimura variety

ShU(T, {hΦ})(C) = T (Q)\ [{hΦ} × T (Af )/U ]

are in bijection with isomorphism classes of quadruples (A, i,Q×s, ηU) satisfying

the conditions of Theorem (2.5.6), where ηU denotes a (right) U-coset of isomor-

phisms V (Af )
∼−−→ V̂ (A) and isomorphisms between such quadruples are de�ned

as in (2.5.7.b), with the last condition replaced by the analogous equality of (right)

U-cosets (f ◦ η)U = η′U .

Similarly, in the projective limit we get a bijection between

Sh(T, {hΦ})(C) = T (Q)\
[
{hΦ} × T (Af )/T (Q)

]
and isomorphism classes of quadruples (A, i,Q×s, ηT (Q)).

We use this interpretation of the complex points of Sh(T, {hΦ}) in terms of CM

abelian varieties to de�ne another pro�nite set and equip it with the structure of a

pro-variety over E:

2.5.9 (Moduli variety). Let M+ be the set of isomorphism classes of quadruples

(A, i,Q×s, ηT (Q)), consisting of

• (A, i) a CM abelian variety of type (K,Φ) de�ned over Q,

• s a K-compatible polarisation of A, also de�ned over2 Q, and

• η : V (Af )
∼−−→ V̂ (A) an AK,f -module-isomorphism sending A×f ψ to A×f s,

satisfying the condition

(2.5.9.a) There exists a K-linear isomorphism a : (H1(A,Q), hA)
∼−−→ (V, hΦ) of Q-

Hodge structures that sends Q×s to Q×ψ.

Note that the only di�erence to the set in Corollary (2.5.8) is that (A, i, s) is de�ned

over Q, which enables us to conjugate (A, i, s) by an element of ΓE. In fact, any

(polarised) complex abelian variety with CM is isomorphic to a (polarised) CM

abelian variety de�ned over some number �eld, see [ST61, Prop. 26, p. 109], so

indeed M+ is equal to the set in (2.5.8).

We endowM+ with the pro�nite topology asM+ is equal to the projective limit,

over all compact open subgroups U ⊂ T (Af ), of sets M
+
U de�ned in the same way

2This means that the line bundle associated to s is de�ned over Q, see (2.2.2).
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with (right) U -cosets of η instead of T (Q)-cosets. We let σ ∈ ΓE act on an element

[A, i,Q×s, ηT (Q)] of M+ by

σ[A, i,Q×s, ηT (Q)] := [σA, σi,Q×(σs), (σ ◦ η)T (Q)],

where σA denotes the conjugate abelian variety, σi and σs are de�ned as in (2.4.8),

and the action on the level structure η is given by composition with the induced

map on Tate modules σ : V̂ (A)→ V̂ (σA).

It is not hard to check that this gives a well-de�ned continuous action of ΓE on

the set M+, hence gives M+ the structure of a zero-dimensional pro-variety over E.

We call M+ the moduli variety (associated to T , hΦ and ψ).

Combining this with the Main Theorem of Complex Multiplication over the re�ex

�eld, in the version (2.4.10), yields the following theorem, see [Del71, 4.19 & 4.20]:

2.5.10 Theorem. The moduli variety M+ de�nes a canonical model of the Shimura

variety Sh(T, {hΦ}).

Proof. First of all, Corollary (2.5.8) shows that M+ indeed de�nes a model of

Sh(T, {hΦ}) over the re�ex �eld E.

Secondly, let [A, i,Q×s, ηT (Q)] be a point of M+, and let γ ∈ Aut(C/E) and

u ∈ A×E,f such that rE(u) = γ|Eab . Let λ : A → γA be the quasi-isogeny in the

statement of the Main Theorem over the re�ex �eld (2.4.10). Then

γ ◦ η = λ ◦NΦ(u) ◦ η = λ ◦ η ◦NΦ(u),

where the �rst equality is the commutative diagram (2.4.10.1), and the second equal-

ity holds because η is AK,f -linear. Together with the statement about the polarisa-

tion in (2.4.10), we see that λ de�nes an isomorphism of quadruples

(A, i,Q×s, η ◦NΦ(u))
∼−−→ (γA, γi,Q×(γs), γ ◦ η).

We conclude that

γ[A, i,Q×s, ηT (Q)] = [A, i,Q×s, (η ◦NΦ(u))T (Q)],

which by (2.5.4.1) precisely says that M+ is a canonical model for Sh(T, {hΦ}).

44



3

Galois conjugates of CM abelian

varieties

Let (K,Φ) be a CM pair. In this chapter we generalise the Main Theorem of CM

over the re�ex �eld to the Main Theorem of CM over Q. The former gives only

information about conjugates of CM abelian varieties by Galois elements �xing the

re�ex �eld E of (K,Φ), whereas the latter allows arbitrary Galois elements. The

key idea is to replace the re�ex norm NΦ : A×E,f → A×K,f by the Taniyama element

fΦ : ΓQ → A×K,f/K×.
Section 3.1 starts by de�ning Tate's half transfer

FΦ : ΓQ → Γab
K

associated to a CM pair (K,Φ). For γ ∈ ΓQ, the Taniyama element fΦ(γ) ∈
A×K,f/K× is then a suitably normalised class-�eld-theoretic preimage of FΦ(γ). Us-

ing class �eld theory, we can think of the Taniyama element as extending the re�ex

norm. We then state the Main Theorem of CM over Q in two version: Theorem

(3.1.3) describes Galois conjugates of torsion points of CM abelian varieties, and

Theorem (3.1.5) describes the same e�ect on the level of Tate modules.

Fix a totally real number �eld F . In Section 3.2 we introduce the PEL Hilbert

modular variety Sh(G,X) associated to F . In (3.2.6) we interpret the points of

Sh(G,X) as isomorphism classes of abelian varieties with real multiplication by F

equipped with polarisation and level structure, and describe the canonical model

of Sh(G,X) over Q. Finally, in (3.2.9) we apply the Main Theorem of CM over Q
to get an explicit formula describing the Galois action of ΓQ on the CM points of

Sh(G,X) in terms of the Taniyama element. This formula is extremely useful when

generalising this action to an action of the plectic Galois group in Chapter 4.

The results of Section 3.1 can be found in [Mil07, �4], which is based on the

observations in [Tat16], see also [Lan83, Ch. 7]. In Section 3.2 we apply the general
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theory of Shimura varieties, see [Mil17] and [Del71], to the speci�c example of the

PEL Hilbert modular variety.

3.1 Main Theorem over Q

3.1.1 (Tate's half transfer). Let K ⊂ Q be a CM �eld and Φ be a CM type of K.

Identify ΣK = Hom(K,Q) with ΓQ/ΓK . For each ρ ∈ ΣK , choose a representative

wρ ∈ ΓQ of the corresponding coset in ΓQ/ΓK in such a way that for all ρ ∈ ΣK we

have

wcρ = cwρ,

where c ∈ ΓQ denotes complex conjugation.

The choice of wρ gives a partition ΓQ = tρ∈ΣKwρΓK , so for any γ ∈ ΓQ, we have

γwρ = wγρh for some h ∈ ΓK . In other words, w−1
γρ γwρ ∈ ΓK , so we may de�ne

Tate's half transfer by

FΦ : ΓQ −→ Γab
K

γ 7−→
∏
ϕ∈Φ

(
w−1
γϕγwϕ

)∣∣
Kab .

These maps have the following properties, which can be checked easily:

(3.1.1.a) [Mil07, Lem. 4.4] FΦ(γ) is independent of the choice of the set-theoretic section

w : ΣK → ΓQ, ρ 7→ wρ to ΓQ � ΓQ/ΓK = ΣK .

(3.1.1.b) [Mil07, Lem. 4.5] FΦ(γ) is independent of the choice of embedding of K into

Q.

(3.1.1.c) From the de�nition of the transfer map VK/Q : Γab
Q → Γab

K in (2.4.4) one imme-

diately sees that

FΦ(γ) · FcΦ(γ) =
∏
ϕ∈ΣK

(
w−1
γϕγwϕ

)∣∣
Kab = VK/Q(γ).

That is why FΦ is called a �half-transfer�.

(3.1.1.d) [Nek09, (1.4.1.3)] For γ, γ′ ∈ ΓQ we have the �cocycle relation�

FΦ(γγ′) = Fγ′Φ(γ)FΦ(γ′).

We are aiming for a description of the e�ect of conjugation by γ ∈ ΓQ on the

torsion points of a CM abelian variety. Under a uniformization, the torsion points

will be given by K/a as in (2.3.7), and the e�ect of γ on torsion points will again
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be expressed by multiplication by a certain idele f ∈ A×K,f . This idele is (a lift of)

the Taniyama element � a particular preimage, under the Artin map, of Tate's half

transfer. Here we follow the ideas of [Tat16, Prop.-Def.].

3.1.2 (Taniyama element). Let (K,Φ) be as in (3.1.1), and let γ ∈ ΓQ. Look at the

following commutative diagram with exact rows

0 ker(rK) A×K,f/K× Γab
K 0

0 ker(rK) A×K,f/K× Γab
K 0.

1+c

rK

1+c 1+c

rK

(3.1.2.1)

Here, 1 + c denotes the map that multiplies an element with its conjugate under c.

Moreover, c acts by conjugation on Γab
K . By [Tat16, Lemma 1], ker(rK) is uniquely

divisible and complex conjugation c acts trivially on it, so the left vertical arrow is

an isomorphism. By an easy diagram chase, this means the right hand square is a

pullback square.

Using the action of c by conjugation on Γab
K , choosing the coset representatives

w′ϕ := wcϕc to calculate FcΦ(γ) (see 3.1.1.a), then using (3.1.1.c) and �nally class

�eld theory (2.4.3) and (2.4.2), we see that

1+cFΦ(γ) = FΦ(γ)(cFΦ(γ)c−1) = FΦ(γ)FcΦ(γ) = VK/Q(γ) = rK(χcyc(γ)).

Since the right square in (3.1.2.1) is Cartesian, there exists a unique fΦ(γ) ∈
A×K,f/K× such that

(3.1.2.a) rK(fΦ(γ)) = FΦ(γ), and

(3.1.2.b) 1+cfΦ(γ) = χcyc(γ)K×.

The map fΦ : ΓQ → A×K,f/K× is called the Taniyama element attached to (K,Φ).

The cocycle relation for Tate's half transfer translates to

fΦ(γγ′) = fγ′Φ(γ)fΦ(γ′), γ, γ′ ∈ ΓQ.

The relation between the Taniyama element and the re�ex norm is given by

[Mil07, Prop. 4.9]: If γ ∈ ΓE, where E is the re�ex �eld of (K,Φ), then for any

u ∈ A×E,f/E× such that rE(u) = γ|Eab we have

fΦ(γ) = NΦ(u)K×.

We are now ready to state the Main Theorem. Again, we will present two versions

of it, one in terms of torsion points and one in terms of Tate modules. For a proof:
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[Tat16] proves the theorem up to a sequence of signs, and the proof was completed

as a consequence of [Del82], see [Del82, Rem. 4, p. 263]. The details can be found

in [Mil07, �4].

3.1.3 Theorem (Main Theorem of CM over Q � I). Let (A, i, s) be a triple con-

sisting of a CM abelian variety (A, i) of type (K,Φ) and a compatible polarisation

s. Assume (A, i, s) has type (K,Φ; a, t) relative to a uniformization Θ. Let γ ∈ ΓQ

and take f ∈ A×K,f such that fΦ(γ) = fK×. Then:

(3.1.3.a) The triple (γA, γi, γs) has type(
K, γΦ; fa, t

χcyc(γ)

f · f

)
relative to some uniformization Θ′.

(3.1.3.b) Moreover, one can choose Θ′ uniquely such that the following diagram is com-

mutative:
K/a Ators

K/fa (γA)tors.

Θ

f γ

Θ′

3.1.4 Remark. By condition (3.1.2.b) we have χcyc(γ)

f ·f ∈ K×, and this element

is �xed by complex conjugation, hence even lies in F×. Hence the quadruple(
K, γΦ; fa, tχcyc(γ)

f ·f

)
in (3.1.3.a) makes sense.

Now, part of the assertion of (3.1.3.a) is that

Imϕ

(
t
χcyc(γ)

f · f

)
> 0, for all ϕ ∈ γΦ, (3.1.4.1)

so that the quadruple satis�es the last condition in (2.3.5). We will prove (3.1.4.1)

directly and in more generality in (4.2.9).

In terms of Tate modules, this translates to:

3.1.5 Theorem (Main Theorem of CM over Q � II). Let (A, i, s) be a triple

consisting of a CM abelian variety (A, i) of type (K,Φ) and a compatible polarisation

s. Let γ ∈ ΓQ and take f ∈ A×K,f such that fΦ(γ) = fK×. Then:

(3.1.5.a) (γA, γi) is of type (K, γΦ).

(3.1.5.b) There exists a unique K-linear isomorphism1 δ : H1(A,Q)
∼−−→ H1(γA,Q) such

that

s

(
χcyc(γ)

f · f
x, y

)
= (γs) (δx, δy), x, y ∈ H1(A,Q),

1Note that if γΦ 6= Φ, then δ cannot be an isomorphism of Q-Hodge structures. So in general
δ is only an isomorphism of K-vector spaces.
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and the following diagram commutes:

V̂ (A) V̂ (A)

V̂ (γA).

f

γ δ

Sketch of proof that Theorems (3.1.3) and (3.1.5) are equivalent. This is similar to

the equivalence of (2.4.7) and (2.4.10). Namely, we again view a uniformization Θ as

a K-linear isomorphism of Q-Hodge structures (K,hΦ)
∼−−→ (H1(A,Q), hA). Then

the map δ of (3.1.5.b) is related to the uniformizations in (3.1.3) by

δ = Θ′ ◦Θ−1.

Moreover, the commutative diagrams in (3.1.3.b) and (3.1.5.b) are related by (2.4.6).

3.2 PEL Hilbert modular variety and Galois action

on its CM points

In (2.5.8), we saw that the Shimura variety Sh(T, {hΦ}) parametrises CM abelian

varieties of a �xed type (K,Φ). Moreover, in (2.5.10) we then used the Main The-

orem over the re�ex �eld E of (K,Φ) to describe the ΓE-action on Sh(T, {hΦ}) in

terms of the re�ex norm. It was essential to only look at Galois elements �xing E,

because otherwise, by (2.3.8), the conjugate abelian variety induces a CM type on

K that is di�erent from Φ, and therefore does not de�ne a point of Sh(T, {hΦ}).
From now on, �x a totally real number �eld F . In this section, we introduce

the Hilbert modular variety and the PEL Hilbert modular variety. The latter

parametrises abelian varieties with real multiplication by a totally real �eld F

equipped with polarisation and level structure. For any totally imaginary quadratic

extension K of F , the PEL Hilbert modular variety contains the points correspond-

ing to abelian varieties with CM by K � of any CM type � as special points. It is

the goal of this section to understand the action of ΓQ on these special points using

the Main Theorem over Q.
We denote the two-dimensional F -vector space F 2 by V .

3.2.1 (Hilbert modular variety). Let G1 be the Q-algebraic group given by G1 :=
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RF/Q GL2 = RF/Q GLF (V ). De�ne h0 : S→ (G1)R by

h0(i) :=

(
0 −1

1 0

)
∈ G1(R) = GLF⊗QR((F ⊗Q R)2),

and let X1 be the G1(R)-conjugacy class of h0. To describe X1 more explicitly,

we identify V (R) = (F 2) ⊗Q R with
∏

x∈ΣF
R2, using F ⊗Q R =

∏
x∈ΣF

R, where
ΣF = Hom(F,C). Since the totally real �eld F will always be �xed, we will very

often drop the F from notation and simply write Σ for ΣF .

Under this identi�cation, we get G1(R) =
∏

x∈ΣF
GL2(R), so we write elements

g ∈ G1(R) as g = (gx)x∈ΣF with gx ∈ GL2(R). For example, the element h0(i)

corresponds to

h0(i) =

((
0 −1

1 0

))
x∈ΣF

∈ G1(R) =
∏
x∈ΣF

GL2(R). (3.2.1.1)

If we let
∏

x∈ΣF
GL2(R) act on (C \R)ΣF by componentwise Möbius transforma-

tions, then we may identify X1 with (C \ R)ΣF by

X1
∼−−→ (C \ R)ΣF (3.2.1.2)

gh0g
−1 7−→ (gx · i)x∈ΣF , g = (gx)x∈ΣF ∈ G1(R),

compare [vdG88, Ch. I.7]. The pair (G1, X1) is a Shimura datum, i. e. it satis�es

the axioms [Del79, (2.1.1.1-3)]. The associated Shimura variety Sh(G1, X1) is called

the Hilbert modular variety (associated to F ).

In order to get a PEL Shimura datum, we equip V with the Q-bilinear alternating
form ψ : V × V → Q given by

ψ

((
v1

v2

)
,

(
w1

w2

))
= TrF/Q ◦ det

(
v1 w1

v2 w2

)
.

The form ψ is F -compatible, i. e. ψ(fv, w) = ψ(v, fw) for all v, w ∈ V and f ∈ F .

3.2.2 (PEL Hilbert modular variety). Associated to the PEL datum (of type (C))

consisting of the simple Q-algebra F , with trivial involution, acting on the Q-vector
space V equipped with the alternating, Q-bilinear, F -compatible form ψ, we get

a PEL Shimura datum (G,X) as in [Mil17, Def. 8.15], [Del71, 4.9]. We call the

associated Shimura variety Sh(G,X) the PEL Hilbert modular variety.

We can describe the group G ⊂ G1 explicitly as having Q-points

G(Q) = {g ∈ GL2(F ) | det(g) ∈ Q×}.
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The proof of this is an easy calculation and is done, in slightly more generality, in

(4.4.4). In other words, the diagram

G RF/Q GL2

Gm RF/QGm

RF/Q(det) (3.2.2.1)

is Cartesian. This is precisely diagram (1.2.0.1). On Q-points, the bottom arrow is

given by the inclusion Q× ↪→ F× and the right hand arrow is given by the usual

determinant det : GL2(F )→ F×. Note the similarity to (2.5.1.1).

On real points, this means

G(R) =

{
g = (gx)x∈ΣF ∈ G1(R) =

∏
x∈ΣF

GL2(R)

∣∣∣∣∣ det(gx) = det(gx′) ∀x, x′ ∈ Σ

}
.

We can also describe X more explicitly: Let h0 : S→ (G1)R be as in (3.2.1). First

of all, by (3.2.1.1) h0 lands in GR ⊂ (G1)R. Moreover, the form (v, w) 7→ ψ(v, h0(i)w)

is positive de�nite on V (R), hence h0 lies in X. This means that X is the G(R)-

conjugacy class of h0, and it is easy to see that the bijection (3.2.1.2) restricts to

X
∼−−→ hΣF t (−h)ΣF (3.2.2.2)

gh0g
−1 7−→ (gx · i)x∈ΣF , g = (gx)x∈ΣF ∈ G(R),

where h denotes the upper half plane in C. For a proof in a slightly more general

setting, we refer to (5.1.7).

3.2.3 (Re�ex �eld of Sh(G,X)). In (6.1.11) we de�ne the re�ex �eld E(G,X) of a

Shimura datum (G,X). By [Mil17, 12.4(c)], in the case of a PEL Shimura datum the

re�ex �eld E(G,X) is given by Q(TrX(b) | b ∈ F×), where TrX(b) denotes the trace

of b ∈ F× acting on V −1,0, where V = V −1,0 ⊕ V 0,−1 is the Hodge decomposition

associated to h (compare (2.2.4)).

In the case of the Shimura datum (G,X) from (3.2.2), we can take h = h0,

and then a direct calculation shows that TrX(b) = TrF/Q(b) for all b ∈ F×. Hence

E(G,X) = Q. Moreover, De�nition (6.1.11) only depends on the adjoint group of

G. By (6.2.9), the adjoint group of G and G1 are the same, so E(G1, X1) = Q too.

Similar to (2.5.8), the complex points of Sh(G,X) can be interpreted as isomor-

phism classes of abelian varieties. The following theorem is a special case of [Mil17,

Thm 8.17]. We prove a slightly di�erent, but more general version in (4.4.5).

3.2.4 Theorem ((G,X) and abelian varieties with real multiplication). The coset
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space

G(Q)\[X ×G(Af )]

is in bijection with the set of isomorphism classes of quadruples (A, i,Q×s, η), where

• A is a complex abelian variety,

• i : F ↪→ End(A)⊗Z Q is a ring homomorphism,

• s is an F -compatible polarisation of A, and

• η : V (Af )
∼−−→ V̂ (A) is an AF,f -module-isomorphism sending A×f ψ to A×f s,

satisfying the condition

(3.2.4.a) There exists an F -linear isomorphism a : H1(A,Q)
∼−−→ V that sends Q×s to

Q×ψ and satis�es a ◦ hA ◦ a−1 ∈ X.

Moreover, this bijection is equivariant for the right G(Af )-actions.

3.2.5 Remarks. To clarify the notation, let us make a few comments.

(3.2.5.a) If i : F ↪→ End(A) ⊗Z Q for an abelian variety A of dimension [F : Q] as in

the theorem, then we say that (A, i) has real multiplication by F .

(3.2.5.b) A polarisation s of an abelian variety (A, i) with real multiplication by F

is called F -compatible if s(i(f)v, w) = s(v, i(f)w) for all f ∈ F and v, w ∈
H1(A,Q).

(3.2.5.c) In (3.2.4.a) hA : S→ End(H1(A,R)) denotes the Hodge structure on H1(A,Q)

and a ◦ hA ◦ a−1 : S→ GL(V )R is given (on R-points) by z 7→ a ◦ hA(z) ◦ a−1.

(3.2.5.d) We call (A, i,Q×s, η) and (A′, i′,Q×s′, η′) isomorphic if there exists a quasi-

isogeny f : A → A′ that is F -linear (with respect to i and i′), sends Q×s to

Q×s′ and satis�es η′ = f ◦ η.

(3.2.5.e) By [Mil17, 8.19], condition (3.2.4.a) is equivalent to s being F -compatible and

i satisfying the trace condition

• For any b ∈ F×, the trace of i(b), acting on the tangent space of A at the

origin, is equal to TrX(b) = TrF/Q(b).

By a calculation very similar to the one in (2.3.2), we see that this trace con-

dition is automatically satis�ed. It is nonetheless useful to mention condition

(3.2.4.a) because the existence of an isomorphism a (although automatic) is

the key for the proof of Theorem (3.2.4).
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As in (2.5.8), Theorem (3.2.4) implies the following interpretation of the points

of the Shimura variety Sh(G,X), see [Del71, 4.11]:

3.2.6 Corollary (Complex points of Sh(G,X)). The complex points

Sh(G,X)(C) := lim←−
U

G(Q)\ [X ×G(Af )/U ] = G(Q)\
[
X ×G(Af )/Z(Q)

]
(3.2.6.1)

of the Shimura variety Sh(G,X) are in bijection with isomorphism classes of quadru-

ples (A, i,Q×s, ηZ(Q)), where

• A is a complex abelian variety,

• i : F ↪→ End(A)⊗Z Q is a ring homomorphism,

• s is an F -compatible polarization of A, and

• η : V (Af )
∼−−→ V̂ (A) is an AF,f -module-isomorphism sending A×f ψ to A×f s,

satisfying the condition

(3.2.6.a) There exists an F -linear isomorphism a : H1(A,Q)
∼−−→ V that sends Q×s to

Q×ψ and satis�es a ◦ hA ◦ a−1 ∈ X.

Here Z ⊂ G denotes the centre of G, and Z(Q) denotes the closure of Z(Q)

inside G(Af ) (in the adelic topology). Moreover, the second equality in (3.2.6.1) is

[Orr18, (1), p. 4].

3.2.7 (Special points of Sh(G,X)). By de�nition, a special point of the Shimura

variety Sh(G,X) is a point [h, g] ∈ Sh(G,X) such that the Mumford�Tate group

of h is a torus, where we view h : S → GR as a Q-Hodge structure on V via G ⊂
GLF (V ) ⊂ GLQ(V ).

By [Mil17, 14.11]2, if the point [h, g] corresponds to a quadruple [A, i,Q×s, ηZ(Q)]

under the bijection in (3.2.6), then [h, g] is special if and only if A has CM by a

CM algebra (compare (2.3.1.c)). In this case, since h takes values in GR, it is in

particular F -linear, so the CM structure on A must extend the real multiplication

i by F . Hence A has CM by a CM �eld K that is a totally imaginary quadratic

extension of F . We will often abuse notation and denote the associated embedding

K ↪→ End(A)⊗Z Q also by i.

3.2.8 (Canonical model of Sh(G,X)). In order to get a canonical model for the

Shimura variety Sh(G,X), one follows the strategy outlined in [Mil17, p. 126], mim-

icking the Siegel case presented in [Mil17, �14]. Namely, the canonical model is the

2[Mil17, 14.11] is actually the analogous statement for points of the Siegel variety. But the
condition on h being special (resp. A having CM) only depends on the Mumford-Tate group of h
(resp. A), hence the same argument works.

53



3.2. PEL HILBERT MODULAR VARIETY 3. CONJUGATES OF CM AVS

(pro-)variety M+ over Q representing the moduli functor, modelled on Corollary

(3.2.6), of abelian varieties with real multiplication by F equipped with polarisation

and level structure. See also [Del71, 4.15, 5.8] or [Kot92, �8].

Corollary (3.2.6) tells us that M+ is a model for the Shimura variety Sh(G,X).

By (3.2.7), its special points correspond to CM abelian varieties. To show that this

de�nes a canonical model is then similar to the calculation in (2.5.10) and relies only

on the Main Theorem over the re�ex �eld.

3.2.9 (Galois action on special points of Sh(G,X)). Let P = [A, i,Q×s, ηZ(Q)] be

a special point of Sh(G,X) as in (3.2.7). Then A has CM, so in particular can be

de�ned over Q. Let γ ∈ ΓQ.

By (3.2.8), the γ-conjugate of the given point corresponds to the quadruple

γ[A, i,Q×s, ηZ(Q)] = [γA, γi,Q×(γs), (γ ◦ η)Z(Q)].

The abelian variety (A, i) has CM, say of type (K,Φ) for some totally imaginary

quadratic extension K of F . Note that by Lemma (2.3.6) the polarisation s is

automatically K-compatible. We observe that the point γP for arbitrary γ ∈ ΓQ

is a special point too, because (γA, γi) is a CM abelian variety (of type (K, γΦ)).

Moreover, we can describe it using the Main Theorem over Q: Take f ∈ A×K,f such

that fΦ(γ) = fK×. Using the notation in (3.1.5), we can write

[γA, γi,Q×(γs), γ ◦ η] =

[
γA, γi,Q×s

(
χcyc(γ)

f · f
δ−1(·), δ−1(·)

)
, δ ◦ f ◦ η

]
.

We can give a similar description in terms of uniformizations: Using the notation

of Theorem (3.1.3), we have

[A, i,Q×s, η] = [CΦ/Φ(a), iΦ|F ,Q×Et,Θ−1 ◦ η], (3.2.9.1)

where iΦ : K → End(CΦ/Φ(a)) is given by sending k ∈ K to the map on CΦ/Φ(a)

given by multiplication by (ϕ(k))ϕ∈Φ. For the conjugate quadruple, we get

[γA, γi,Q×(γs), γ ◦ η] = [CγΦ/γΦ(fa), iγΦ|F ,Q×Eχt, (Θ′)−1 ◦ γ ◦ η]

= [CγΦ/γΦ(fa), iγΦ|F ,Q×Eχt, f ◦Θ−1 ◦ η], (3.2.9.2)

where χ = χcyc(γ)

f ·f ∈ F×. Here the �rst equality follows from (3.1.3.a) and the second

equality follows from (3.1.3.b).

3.2.10 Remark (Galois conjugates of special points). It is actually true in full

generality that conjugates of special points of an arbitrary Shimura variety by Galois

elements that �x its re�ex �eld are again special points, see [Orr18, Thm 5.1].
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But here we additionally need the Main Theorem over Q to get the explicit

description in (3.2.9) of the conjugate special point on the PEL Hilbert modular

variety in terms of CM abelian varieties.
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4

Plectic Galois action on CM points

Fix a totally real number �eld F . In this chapter, we introduce the plectic Galois

group AutF (F ⊗Q Q) associated to F . For every algebraic torus R de�ned over Q
with Gm ⊂ R ⊂ RF/QGm, we then show that a certain subgroup AutF (F⊗QQ)RCM of

AutF (F ⊗QQ) acts naturally on the CM points of the Shimura variety Sh(GR, XR).

Here the Shimura variety Sh(GR, XR) is a variant of the Hilbert modular variety. It

is associated to the group GR that �ts into the Cartesian diagram (1.2.0.3)

GR RF/Q GL2

R RF/QGm.

RF/Q(det)

The key idea to de�ne this action of AutF (F ⊗Q Q)RCM on the CM points is to

extend Tate's half transfer FΦ : ΓQ → Γab
K to a plectic half transfer

F̃Φ : AutF (F ⊗Q Q) −→ Γab
K .

The goal of Section 4.1 is to familiarise the reader with the properties of the

plectic group AutF (F ⊗Q Q). The absolute Galois group of Q embeds into the

plectic group via

ΓQ ↪→ AutF (F ⊗Q Q), γ 7→ id⊗γ.

This de�nition does not involve any choices. However, it is useful to identify

AutF (F ⊗Q Q) with the semi-direct product SΣ n ΓΣ
F mentioned in Section 1.1.2,

where Σ := Hom(F,Q) = ΓQ/ΓF . Namely, a choice of coset representatives s =

(sx)x∈Σ for the right ΓF -cosets in ΓQ de�nes an isomorphism βs : AutF (F⊗QQ)
∼−−→

SΣ n ΓΣ
F . We �nish Section 4.1 by recalling in (4.1.11) the de�nition of the plectic

half transfer F̃Φ, where (K,Φ) denotes a CM pair.

Section 4.2 starts with some remarks about class �eld theory before de�ning, for
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an element γ of a certain subgroup AutF (F ⊗Q Q)1 of AutF (F ⊗Q Q), the plectic

Taniyama element f̃Φ(γ) ∈ A×K,f/K× as a suitably normalised class-�eld-theoretic

preimage of F̃Φ(γ). Inspired by formula (3.2.9) for the ΓQ-action, we then show in

(4.2.10) how the subgroup AutF (F ⊗Q Q)0 of AutF (F ⊗Q Q)1 naturally acts on the

set of CM points of the PEL Hilbert modular variety.

Sections 4.1 and 4.2 are a review of the results in [Nek09], most of which are

presented without proof. We present them in enough detail to generalise the results

to Shimura varieties whose groups di�er only in the centre from RF/Q GL2, i. e. are

of the form GR as above.

In Section 4.3 we extend the plectic Taniyama element f̃Φ to the entire plectic

group AutF (F ⊗Q Q). To do so, we choose a splitting χF : Γab
F → A×F,f/F

×
>0 to the

reciprocity map rF : A×F,f/F
×
>0 → Γab

F , and then proceed in analogy to Tate's strategy

(3.1.2), see (4.3.6).

In Section 4.4 we study the Shimura varieties Sh(GR, XR). In (4.4.5) we prove a

moduli interpretation of the points of Sh(GR, XR) in terms of isomorphism classes

of abelian varieties with real multiplication by F equipped with an R(Q)-class of

a polarisation and a level structure. We de�ne the subgroup AutF (F ⊗Q Q)RCM of

AutF (F ⊗Q Q) in (4.4.11). Finally, we show in (4.4.13) that the group AutF (F ⊗Q

Q)RCM acts naturally on the CM points of Sh(GR, XR), extending the action of ΓQ.

4.1 Plectic Galois group and plectic half transfer

4.1.1. (Plectic Galois group) The (F -)plectic Galois group is the group

AutF (F ⊗Q Q)

of F -algebra automorphisms of F ⊗Q Q. The absolute Galois group of Q embeds

into the plectic Galois group via

ΓQ ↪→ AutF (F ⊗Q Q), γ 7→ idF ⊗γ.

It is useful to view AutF (F⊗QQ) more concretely as a certain semi-direct product:

4.1.2. (Semi-direct product) Fix an embedding F ⊂ Q and identify Σ := ΣF =

Hom(F,Q) with the quotient ΓQ/ΓF . Let SΣ be the symmetric group on the �nite

set Σ. Let ΓΣ
F denote the group of Σ-tuples h = (hx)x∈Σ of elements of ΓF , with the

group structure given by pointwise composition.

We introduce the semi-direct product

SΣ n ΓΣ
F ,
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where the group operation is given by

(σ, h)(σ′, h′) :=
(
σσ′, (hσ′(x)h

′
x)x∈Σ

)
.

Let s : x 7→ sx be a section to the map ΓQ � ΓQ/ΓF = Σ. Then we can de�ne

an injective group homomorphism

ρs : ΓQ ↪→ SΣ n ΓΣ
F , ρs(γ) = (σ, h),

where σ is given by σ : x 7→ γx and h = (hx)x∈Σ by hx = s−1
γxγsx. For more details,

e. g. on how ρs depends on the chosen section s, see [Nek09, (1.1.2)].

4.1.3. (Isomorphism between AutF (F ⊗QQ) and SΣnΓΣ
F ) We continue (4.1.2). Let

QΣ
denote the ring of Σ-tuples of elements of Q. We view QΣ

as an F -algebra via

the �xed embedding F ⊂ Q in each component. By [Nek09, (1.1.3)] the canonical

map

SΣ n ΓΣ
F
∼−−→ AutF

(
QΣ
)
,

(σ, h) 7−→
[
(qx)x∈Σ 7→

(
hσ−1(x)(qσ−1(x))

)
x∈Σ

]
,

is a group isomorphism. We will simply identify these two groups.

The section s : Σ→ ΓQ induces an isomorphism of F -algebras

QΣ ∼−−→
∏
x∈Σ

Qx = F ⊗Q Q,

(qx)x∈Σ 7−→ (sx(qx))x∈Σ,

where we view Qx as an F -algebra via the embedding x ∈ Σ = Hom(F,Q). Com-

bining these two observations (see [Nek09, (1.1.4)]), we get an isomorphism

βs : AutF (F ⊗Q Q)
∼−−→ AutF (QΣ

) = SΣ n ΓΣ
F

between the plectic Galois group (4.1.1) and the semi-direct product (4.1.2). More-

over, the isomorphism βs is compatible with the embeddings of ΓQ, i. e. we have the

commutative diagram

ΓQ AutF (F ⊗Q Q)

SΣ n ΓΣ
F .

ρs βs

4.1.4 Remark. (Plectic groups and induced representations) The semi-direct prod-

uct SΣnΓΣ
F is a purely group-theoretical construction. Replacing ΓQ by an arbitrary
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group Γ and the subgroup ΓF of ΓQ by a �nite index subgroup ∆ of Γ, and denoting

Σ := Γ/∆, we can de�ne the group SΣ n ∆Σ in the same way.

Similarly, a section s : Σ→ Γ will induce an embedding ρs : Γ ↪→ SΣ n ∆Σ. Now

(compare [NS16, �3] and [Nek09, (1.1.1.1)]), if V is a representation of ∆, then the

induced representation is the vector space

IndΓ
∆(V ) =

⊕
x∈Σ

sx.V, (4.1.4.1)

where the right hand side consists of formal sums (or Σ-tuples) of elements of V ,

and the sx are only introduced for notational purposes to denote the summand

corresponding to x. It comes equipped with a Γ-action given as follows: If γ ∈ Γ

and
∑

x∈Σ sx.vx ∈ Ind
ΓQ
ΓF

(V ), and ρs(γ) = (σ, h), then

γ

(∑
x∈Σ

sx.vx

)
:=
∑
x∈Σ

sσ(x).hx(vx). (4.1.4.2)

This formula clearly makes sense for arbitrary (σ, h) ∈ SΣn∆Σ, and it is straight-

forward to check that this de�nes a representation of SΣn∆Σ. Similar remarks apply

for the tensor induction of V and other related constructions, see e. g. (4.1.6) below.

Induced representations are one instance where plectic groups arise naturally. Of

course, the action of Γ on the induced module is canonical, i. e. given a di�erent

section s′ there is a canonical isomorphism of Γ-representations between
⊕

x∈Σ sx.V

and
⊕

x∈Σ s
′
x.V . In other words, there is a description of IndΓ

∆(V ) that is indepen-

dent of s, so it is desirable to also �nd a description of ρs : Γ ↪→ SΣ n ∆Σ that is

independent of s.

4.1.5 (Another version of the plectic group). For general groups Γ and ∆, look at

the group (see [NS16, �3] and [Bla15, (3.2.1)])

Γ#∆ := AutSet−∆(Γ)

of right ∆-equivariant bijections of the set Γ with itself.

The group Γ embeds into Γ#∆ as the subgroup of left translations, i. e. γ ∈ Γ

is sent to the bijection g 7→ γg, which clearly is right ∆-equivariant. Now [Bla15,

(3.2.2)], a section s : Σ→ Γ induces a group isomorphism

πs : Γ#∆
∼−−→ SΣ n ∆Σ (4.1.5.1)

that is compatible with the respective embeddings of Γ, i. e. we have the commutative
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diagram

Γ Γ#∆

SΣ n ∆Σ.

ρs πs

Moreover, Γ#∆ acts canonically on the intrinsically de�ned induction IndΓ
∆(V ), and

the isomorphim (4.1.4.1) is compatible with the actions of Γ#∆ and SΣ n∆Σ under

πs.

4.1.6 Example. (Plectic action on CM types � I) As a concrete example of (4.1.4),

let K be a totally imaginary quadratic extension of F , and choose an embedding

K ⊂ Q. We continue to use the notation of (4.1.2). The section s : Σ = ΣF → ΓQ

determines a CM type {ϕx | x ∈ Σ} of K by ϕx := sx|K . It allows us to write

ΣK = {cbϕx | x ∈ ΣF , b ∈ Z/2Z}. (4.1.6.1)

We claim that the set ΣK with its usual ΓQ-action is isomorphic to the induced

module (in the category of sets with ΓQ-action rather than the category of ΓQ-

representations over some �eld)

Ind
ΓQ
ΓF

({1, c}) =
⊔
x∈Σ

sx.{1, c}

by sending cbϕx = cbsx|K = (sxc
b)|K ∈ ΣK to sx.c

b ∈ Ind
ΓQ
ΓF

({1, c}). Here {1, c}
is a two-element set equipped with the (left) ΓF -action given by the map ΓF �

Gal(K/F ) = 〈c〉 = {1, c}, which we will denote by h 7→ ch with h ∈ Z/2Z.

Proof of claim. The map cbϕx 7→ sx.c
b is clearly a bijection ΣK → Ind

ΓQ
ΓF

({1, c}),
and for γ ∈ ΓQ and ρs(γ) = (σ, h) we have

γ(cbϕx) =
[
γsxc

b
]∣∣
K

= sγx(s
−1
γxγsx)c

b
∣∣
K

= sσ(x)hxc
b
∣∣
K

= sσ(x)c
b+hx

∣∣∣
K
,

so

γ(cbϕx) 7→ sσ(x).c
b+hx = γ(sx.c

b),

where the last equality holds by De�nition (4.1.4.2) (without the formal sum).

We conclude that we can de�ne an action of SΣ n ΓΣ
F on ΣK by

(σ, h)(cbϕx) := cb+hxϕσ(x). (4.1.6.2)

Clearly this action factors through the �nite group SΣ n Gal(K/F )Σ. Since σ is a

permutation of Σ, this action induces an action of SΣ n ΓΣ
F on the set of CM types
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of K, which depends on the choice of s because the identi�cation (4.1.6.1) does �

but see (4.1.8.a) for a result that is independent of s.

4.1.7 Example. Let us give a concrete example of the plectic action on CM types

by having another look at the CM types Φ = {g0, g4, g2} and Ψ = {g0, g1, g2} of
(2.1.4), where G = Gal(K/Q) = 〈g〉 is cyclic of order 6. It is not hard to see that the

set of CM types decomposes into precisely two G-orbits, namely the induced types

and the primitive types. The former is the G-orbit of Φ, the latter is the G-orbit of

Ψ.

We identify Σ = G/〈c〉 with {0, 1, 2} by gi〈c〉 7→ i and also SΣ with S{0,1,2} = S3.

We thus write elements of Gal(K/F )Σ = 〈c〉3 as (ca0 , ca1 , ca2) with ai ∈ Z/2Z.
Moreover, we choose the section s : Σ → G given by si := gi. Then we have the

embedding

ρs : G ↪→ S3 n 〈c〉3, g 7→
(
(0 1 2), (c0, c0, c1)

)
.

Using (4.1.6.2) we directly calculate that

(
(0 1), (c1, c0, c0)

)
Ψ = Φ.

In particular the plectic group SΣ n Gal(K/F )Σ acts transitively on the set of CM

types of K. In fact, this holds for any CM �eld K.

4.1.8 Remarks. (Independence of the section s)

(4.1.8.a) The actions of SΣ n ΓΣ
F on induced representations in (4.1.4.2) and on the set

of CM types in (4.1.6) induce, via βs, actions of AutF (F ⊗Q Q), which turn

out to be independent of the chosen section s. See (4.1.9) for the strategy of

the proof.

(4.1.8.b) Combining the isomorphisms βs of (4.1.3) and πs of (4.1.5.1), we get the group

isomorphism [Bla15, (3.2.12)]

AutF (F ⊗Q Q)
∼−−→ ΓQ#ΓF ,

which turns out to be independent of the chosen section s : Σ→ ΓQ.

4.1.9 Example. (Quotients of the plectic group)

(4.1.9.a) The composition1

AutF (F ⊗Q Q)
βs−−→ SΣ n ΓΣ

F � SΣ,

(σ, h) 7→ σ,

1This is actually a special case of (4.1.8.a), because similar to (4.1.6) we have Σ ∼= Ind
ΓQ
ΓF

({1}) =⊔
x∈Σ sx.{1}, via the map x 7→ sx.1, as sets with ΓQ-action, where {1} denotes a set with one

element and trivial ΓF -action.
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is independent of the choice of section s : Σ→ ΓQ.

(4.1.9.b) The composition

AutF (F ⊗Q Q)
βs−−→ SΣ n ΓΣ

F

(1,prod)−−−−→ Γab
F ,

(σ, h) 7−→
∏
x∈Σ

hx|F ab ,

is independent of the choice of section s : Σ→ ΓQ.

Moreover, when restricted to ΓQ, we get the commutative diagram

ΓQ SΣ n ΓΣ
F

Γab
Q Γab

F .

ρs

(1,prod)

VF/Q

Proof. Let s′ : Σ → ΓQ be another section, so s′x = sxtx for some t = (tx)x∈Σ ∈ ΓΣ
F .

By [Nek09, (1.1.4)(iv)], we have for all γ ∈ AutF (F ⊗Q Q):

βs′(γ) = (1, t)−1βs(γ)(1, t).

So if βs(γ) = (σ, h) ∈ SΣ n ΓΣ
F , then

βs′(γ) =
(
σ,
(
t−1
σ(x)hxtx

)
x∈Σ

)
.

From this, (4.1.9.a) follows immediately. For (4.1.9.b), note

(1, prod) ◦ βs′(γ) =
∏
x∈Σ

t−1
σ(x)hxtx

∣∣∣
F ab

=

(∏
x∈Σ

t−1
σ(x)

∣∣∣
F ab

)(∏
x∈Σ

tx|F ab

)(∏
x∈Σ

hx|F ab

)
=
∏
x∈Σ

hx|F ab ,

so as claimed (1, prod) ◦ βs is independent of s.
The last assertion is [Nek09, (1.1.2.3)] and can be proved as follows. For γ ∈ ΓQ,

we have ρs(γ) =
(
[x 7→ γx], (s−1

γxγsx)x∈Σ

)
, so

(1, prod) ◦ ρs(γ) =
∏
x∈Σ

(
s−1
γxγsx

)∣∣
F ab ,

which by de�nition of the transfer map is equal to VF/Q(γ), see (2.4.4).

So far, we have found two good indications that the plectic theory can be com-
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bined with CM theory. Namely, by (4.1.6) the plectic group acts on CM types,

extending the action of ΓQ, which is a good sign in view of (2.3.8). On the other

hand, by the commutative diagram in (4.1.9.b) there is a connection between the

plectic group and the transfer map, so we can hope to �nd an analogue of Tate's

half transfer in the plectic world.

4.1.10. (Plectic action on CM types � II) We continue (4.1.6). The identi�cation

(4.1.6.1) induces a bijection

(Z/2Z)Σ ∼−−→ {CM types of K},

(ax)x∈Σ 7−→ {caxsx|K : x ∈ Σ} .

The plectic action on CM types induced by (4.1.6.2) then translates to an action of

(σ, h) ∈ SΣ n ΓΣ
F on a = (ax)x∈Σ ∈ (Z/2Z)Σ given by

(σ, h)a =
(
aσ−1(x) + hσ−1(x)

)
x∈Σ

. (4.1.10.1)

4.1.11. (Neková°'s plectic half transfer) With the notation as in (4.1.10), let Φ be

a CM type of K, corresponding to a = (ax)x∈Σ ∈ (Z/2Z)Σ. As in [Nek09, (2.1.3)],

de�ne the map

sF̃a : SΣ n ΓΣ
F −→ Γab

K

(σ, h) 7−→
∏
x∈Σ

s−1
σ(x)c

ax+hxsσ(x)hxs
−1
x caxsx

∣∣∣
Kab

.

This map depends on s and a.

By the calculations in [Nek09, (2.1.2)], this extends the domain of Tate's half

transfer (3.1.1) from ΓQ to SΣ n ΓΣ
F via the embedding ρs : ΓQ ↪→ SΣ n ΓΣ

F , namely

sF̃a ◦ ρs = FΦ : ΓQ −→ Γab
K .

Moreover (see [Nek09, (2.1.7)]), the composition

F̃Φ := sF̃a ◦ βs : AutF (F ⊗Q Q) −→ Γab
K

is independent of the section s and therefore only depends on the CM type Φ of K.

It is called the (F -)plectic half transfer and satis�es:

(4.1.11.a) Restricted to ΓQ via the embedding ΓQ ↪→ AutF (F⊗QQ) of (4.1.1), the plectic

half transfer F̃Φ agrees with Tate's half transfer FΦ.
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(4.1.11.b) For γ, γ′ ∈ AutF (F ⊗Q Q), we have the cocycle relation

F̃Φ(γγ′) = F̃γ′Φ(γ)F̃Φ(γ′).

(4.1.11.c) For (σ, h) ∈ SΣ n ΓΣ
F , we have [Nek09, (2.1.4)(ii), �rst formula]

sF̃a(σ, h)
∣∣∣
F ab

=
∏

x∈|(σ,h)a|

cx
∏
x∈|a|

cx
∏
x∈Σ

hx|F ab ,

where |a| := {x ∈ Σ: ax 6= 0} denotes the support of a = (ax)x∈Σ ∈ (Z/2Z)Σ,

and (σ, h)a is given by (4.1.10.1) and corresponds to the CM type (σ, h)Φ.

(4.1.11.d) For (σ, h) ∈ SΣ n ΓΣ
F , we have [Nek09, (2.1.4)(ii), second formula]

1+c
(
sF̃a(σ, h)

)
= VK/F ◦ (1, prod)(σ, h) ∈ Γab

K .

4.2 Plectic Taniyama element and plectic action on

CM points of the PEL Hilbert modular variety

As in (3.1.2), in this section we de�ne a suitably normalised preimage f̃Φ(γ) ∈
AK,f/K

× of the plectic half transfer F̃Φ(γ) ∈ Γab
K under the Artin map. To achieve

this, we will start with a few remarks about class �eld theory, see [Nek09, �1.3].

4.2.1. (Complex conjugations) Fix an embedding F ⊂ Q. For each x ∈ Σ, we de�ne

the complex conjugation corresponding to x to be the element cx ∈ Γab
F de�ned as

follows: If s : Σ→ ΓQ is a section as before, then s−1
x csx is an element of ΓF and its

image cx in Γab
F is independent of s.

De�ne the subgroup c := 〈cx : x ∈ Σ〉 ⊂ Γab
F . By [Nek09, (1.3.1)], the Artin map

rF : A×F,f/F
×
>0 → Γab

F induces a bijection

rF : F×/F×>0
∼−−→ c

αF×>0 7−→
∏
x∈Σ

cαxx ,

where the αx ∈ Z/2Z are determined by (−1)αx = sgn(x(α)) for each x ∈ Σ. Here

sgn: R× → {±1} denotes the sign of a real number.

Note that the group F×/F×>0 is isomorphic to {±1}Σ via αF×>0 7→ (sgn(x(α)))x∈Σ.

4.2.2. (Kernel of transfer) By [Nek09, (1.2.5)], for any number �eld k the kernel

of the transfer map Vk/Q : Γab
Q → Γab

k is either 〈c〉, if k is totally complex, or trivial
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otherwise. In particular, one can show [Nek09, (1.3.2.4-6)] that this implies that the

preimage of c ⊂ Γab
F under VF/Q is equal to 〈c〉 ⊂ Γab

Q , so that

V F/Q : Γab
Q /〈c〉 −→ Γab

F /c (4.2.2.1)

is injective. Moreover, we have VF/Q(c) =
∏

x∈Σ cx.

We state [Nek09, (1.3.4)], which will be extremely useful:

4.2.3 Proposition. Let K be a CM �eld and F its maximal totally real sub�eld.

(4.2.3.a) The Artin map rK restricts to a bijection

{y ∈ A×K,f : 1+cy ∈ Ẑ×K×}/K× ∼−−→ {γ ∈ Γab
K : γ|F ab ∈ c · VF/Q(Γab

Q )}.

Denoting its inverse by `K, we get

1+c`K(γ) = χcyc(u(γ))K× ∈ A×K,f/K
×,

where u(γ) ∈ Γab
Q /〈c〉 is the unique element satisfying V F/Q(u(γ)) = γ|F ab · c.

(4.2.3.b) One can be more precise: If γ is an element of the domain of `K, write (non-

uniquely)

γ|F ab = VF/Q(u)
∏
x∈Σ

cαxx ,

with u ∈ Γab
Q and αx ∈ Z/2Z, x ∈ Σ. Then

NK/F (`K(γ)) = χcyc(u)αF×>0 ∈ A×F,f/F
×
>0,

where α ∈ F× has signs

sgn(x(α)) = (−1)αx , x ∈ Σ.

4.2.4 Remarks. A few comments to avoid confusion:

(4.2.4.a) For a �nite idele y ∈ A×K,f , note that 1+cy = iK/F ◦ NK/F (y) ∈ A×K,f , where
iK/F denotes the embedding A×F,f ↪→ A×K,f . Since NK/F (K×) ⊂ F×>0, we get an

induced map

NK/F : A×K,f/K
× −→ A×F,f/F

×
>0,
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�tting into the commutative diagram

A×K,f/K× A×F,f/F
×
>0

A×K,f/K×.

NK/F

1+c
iK/F

From this point of view, (4.2.3.a) describes the image of `K(γ) under the

diagonal arrow, whereas (4.2.3.b) describes the image under the top horizontal

arrow.

(4.2.4.b) Moreover, note how the description in (4.2.3.b) depends (very slightly) on the

choice of u: By the injectivity of (4.2.2.1), the only other possible choice is

u′ = cu, and this forces αx to change to α
′
x = 1−αx, x ∈ Σ, and α to α′ = −α.

4.2.5 Remark. Recall the de�nition of the Taniyama element fΦ(γ) in (3.1.2), for

γ ∈ ΓQ, from Tate's half transfer FΦ(γ). From the point of view of (4.2.3), we can

rephrase (3.1.2.b) as stating that FΦ(γ) lies in the domain of `K , and (3.1.2.a) as

fΦ(γ) = `K(FΦ(γ)).

So we want to use the isomorphism `K of Proposition (4.2.3) to get a preimage

of the plectic half transfer F̃Φ(γ) under the Artin map, for γ ∈ AutF (F ⊗Q Q). For

this we need F̃Φ(γ) to lie in the domain of `K , so we need to look at F̃Φ(γ)|F ab .

4.2.6. (1st subgroup of the plectic group) Using the notation of (4.1.11), recall

(4.1.11.c): for (σ, h) ∈ SΣ n ΓΣ
F , we have

sF̃a(σ, h)
∣∣∣
F ab

=
∏

x∈|(σ,h)a|

cx
∏
x∈|a|

cx
∏
x∈Σ

hx|F ab .

We want sF̃a(σ, h)|F ab to lie inside c·VF/Q(Γab
Q ), as then sF̃a(σ, h) lies in the domain

of `K . However, as the hx are arbitrary elements of ΓF , this is not automatically

the case. To remedy this, we de�ne the subgroup (SΣ n ΓΣ
F )1 ⊂ SΣ n ΓΣ

F by the

Cartesian diagram

(SΣ n ΓΣ
F )1 SΣ n ΓΣ

F

Γab
Q /〈c〉 Γab

F /c.

(1,prod)

V F/Q

This precisely means that (σ, h) ∈ SΣ n ΓΣ
F lies in (SΣ n ΓΣ

F )1 if and only if∏
x∈Σ hx|F ab lies in c ·VF/Q(Γab

Q ), i. e. if and only if sF̃a(σ, h) lies in the domain of `K .
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We also de�ne

AutF (F ⊗Q Q)1 := β−1
s

(
(SΣ n ΓΣ

F )1

)
⊂ AutF (F ⊗Q Q).

By (4.1.9.b), this de�nition is independent of the choice of s.

Finally, observe that the diagram in (4.1.9.b) implies that the embedding ρs of

ΓQ into SΣ n ΓΣ
F actually lands inside (SΣ n ΓΣ

F )1. In other words,

ΓQ ⊂ AutF (F ⊗Q Q)1.

4.2.7. (Plectic Taniyama element) Continuing with the same notation, the plectic

Taniyama element is the map

f̃Φ : AutF (F ⊗Q Q)1 −→ A×K,f/K
×

γ 7−→ `K

(
F̃Φ(γ)

)
.

It satis�es the following properties [Nek09, (2.2.3)]:

(4.2.7.a) Because `K is inverse to rK , we have rK ◦ f̃Φ = F̃Φ

∣∣∣
AutF (F⊗QQ)1

.

(4.2.7.b) By (4.1.11.a) and (4.2.5), we have f̃Φ(idF ⊗γ) = fΦ(γ) for γ ∈ ΓQ.

(4.2.7.c) By (4.1.11.b), we have the cocycle relation f̃Φ(γγ′) = f̃γ′Φ(γ)f̃Φ(γ′) for γ, γ′ ∈
AutF (F ⊗Q Q)1.

(4.2.7.d) By applying (4.2.3.a) to F̃Φ(γ), we see that for γ ∈ AutF (F ⊗Q Q)1 we have

1+cf̃Φ(γ) = χcyc(ũ(γ))K× ∈ A×K,f/K
×,

where ũ(γ) is the unique element of Γab
Q /〈c〉 with V F/Q(ũ(γ)) = F̃Φ(γ)|F abc.

It was necessary to restrict to (SΣnΓΣ
F )1, because then a combination of (4.1.11.c)

and (4.2.3.a) allowed us to de�ne f̃Φ. Moreover, we can achieve a more precise

statement in (4.2.7.d) if we use (4.2.3.b) instead of (4.2.3.a). For this to work, it is

necessary to restrict to a smaller subgroup:

4.2.8. (0th subgroup of the plectic group) De�ne the subgroup (SΣnΓΣ
F )0 of SΣnΓΣ

F

by the Cartesian diagram

(SΣ n ΓΣ
F )0 SΣ n ΓΣ

F

Γab
Q Γab

F ,

(1,prod)

VF/Q
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and let

AutF (F ⊗Q Q)0 := β−1
s

(
(SΣ n ΓΣ

F )0

)
⊂ AutF (F ⊗Q Q),

which, again by (4.1.9.b), is independent of the chosen section s : Σ→ ΓQ.

Clearly, we have (SΣnΓΣ
F )0 ⊂ (SΣnΓΣ

F )1 and so AutF (F⊗QQ)0 ⊂ AutF (F⊗QQ)1.

Moreover, by the diagram in (4.1.9.b) we see that

ΓQ ⊂ AutF (F ⊗Q Q)0.

Again using the notation of (4.1.11), let γ ∈ AutF (F ⊗QQ)0 and (σ, h) = βs(γ) ∈
(SΣnΓΣ

F )0, and let ũ ∈ Γab
Q be the unique element such that VF/Q(ũ) =

∏
x∈Σ hx|F ab .

We calculate

F̃Φ(γ)|F ab = sF̃a(σ, h)|F ab

=
∏

x∈|(σ,h)a|

cx
∏
x∈|a|

cx
∏
x∈Σ

hx|F ab

=
∏
x∈Σ

cαxx VF/Q(ũ),

where (αx)x∈Σ measures the di�erence between the CM types Φ (which corresponds

to a) and γΦ (which corresponds to (σ, h)a), namely

αx =

0, if [(σ, h)a]x = ax,

1, otherwise.
(4.2.8.1)

In the calculation above, the �rst equality holds by De�nition (4.1.11) of F̃Φ, the

second equality is (4.1.11.c), and the last equality follows from the de�nition of ũ.

Applying (4.2.3.b), we conclude that (see [Nek09, (2.2.3)(vii)], which contains a

typo in the de�nition of u(g) that we �xed here):

(4.2.8.a) For γ ∈ AutF (F ⊗Q Q)0 and ũ ∈ Γab
Q de�ned above, we have

NK/F f̃Φ(γ) = χcyc(ũ)αF×>0 ∈ A×F,f/F
×
>0,

where α ∈ F× has signs

sgn(x(α)) = (−1)αx =

1, if γΦ and Φ agree at x,

−1, otherwise,

for x ∈ Σ.

Here we say that two CM types Φ,Φ′ agree at x ∈ Σ if the unique elements ϕx ∈ Φ

and ϕ′x ∈ Φ′ extending x are the same.
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4.2.9 Remark. The assertion about the signs in (4.2.8.a) implies the following:

Let t ∈ K× be totally imaginary such that Imϕ(t) > 0 for all ϕ ∈ Φ. Let γ ∈
AutF (F ⊗Q Q)0 and f̃ ∈ A×K,f such that f̃Φ(γ) = f̃K×. Then

Imϕ

(
t
χcyc(ũ)

1+cf̃

)
> 0, for all ϕ ∈ γΦ.

In particular, for γ ∈ ΓQ, this proves (3.1.4.1).

We have seen in (3.2.9) how the action of ΓQ on the special points of the

PEL Hilbert modular variety Sh(G,X) can be described using Tate's half trans-

fer. Namely, recall (3.2.9.2): If K is a CM �eld whose maximal totally real sub�eld

is F , and (K,Φ; a, t) describes a polarised CM abelian variety as in (2.3.5), then for

γ ∈ ΓQ and f ∈ A×K,f such that fΦ(γ) = fK× ∈ A×K,f/K× we have2

γ
[
CΦ/Φ(a), iΦ|F ,Q×Et, ηZ(Q)

]
=
[
CγΦ/γΦ(fa), iγΦ|F ,Q×Eχt, f ◦ ηZ(Q)

]
,

where χ := χcyc(γ)

f ·f ∈ F×.
Now, we reverse this process and de�ne an action of AutF (F ⊗Q Q)0 on the

special points of Sh(G,X) using the plectic half transfer (4.1.11) together with the

observations in (4.2.8), compare [Nek09, (2.2.5)]:

4.2.10 (Plectic action on CM points of PEL Hilbert modular variety). Let K be

a totally imaginary quadratic extension of F , and let (K,Φ; a, t) be a type as in

(2.3.5). We look at the CM point [CΦ/Φ(a), iΦ|F ,Q×Et, ηZ(Q)] of the PEL Hilbert

modular variety Sh(G,X).

Let γ ∈ AutF (F ⊗Q Q)0 and f̃ ∈ A×K,f such that f̃Φ(γ) = f̃K× ∈ A×K,f/K×. Let
ũ ∈ Γab

Q be the unique element such that VF/Q(ũ) = (1, prod) ◦ βs(γ) as in (4.2.8),

and denote χ := χcyc(ũ)
1+cf̃

∈ F×. De�ne

γ
[
CΦ/Φ(a), iΦ|F ,Q×Et, ηZ(Q)

]
:=
[
CγΦ/γΦ(f̃a), iγΦ|F ,Q×Eχt, f̃ ◦ ηZ(Q)

]
.

(4.2.10.1)

This de�nes a group action of AutF (F⊗QQ)0 on the set of CM points of Sh(G,X),

extending the action of ΓQ.

We will prove this in more generality in (4.4.13). Here, we only give a sketch:

Sketch of proof. First of all, one needs to show that (4.2.10.1) is independent of the

choice of f̃ and of choosing a di�erent type (K,Φ, a′, t′) (of the same CM point),

but both are easy to check.

2We now ignore the uniformizations Θ and Θ′ and directly work with the abelian variety
A = CΦ/Φ(a).
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Secondly, one needs to check that the right hand side of (4.2.10.1) de�nes a

valid CM point of Sh(G,X). For this, note that Eχt is a K-compatible polarisation

of CγΦ/γΦ(f̃a) by (4.2.9), which by (3.2.5.e) implies that the right hand side of

(4.2.10.1) is a point of Sh(G,X), which is clearly a CM point. Let us also remark

that here we identify V̂ (CΦ/Φ(a)) = H1(CΦ/Φ(a),Q)⊗QAQ,f with AK,f , so we may

view f̃ ∈ A×K,f as a map

V̂ (CΦ/Φ(a)) = AK,f
f̃−−→ AK,f = V̂ (CγΦ/γΦ(f̃a)).

This shows that (4.2.10.1) is well-de�ned. Finally, the cocycle relation (4.2.7.c)

implies that (4.2.10.1) does indeed de�ne a group action of AutF (F ⊗Q Q)0.

4.2.11 Remark. In De�nition (4.2.10.1), it was absolutely essential to restrict to

γ ∈ AutF (F⊗QQ)0: First of all, by (4.2.6) we need to restrict to γ ∈ AutF (F⊗QQ)1

because otherwise the plectic Taniyama element f̃Φ(γ) is not de�ned. However, in

(4.3.6) we will �nd a way to de�ne the plectic Taniyama element on the entire plectic

group AutF (F ⊗Q Q).

Nonetheless, we need to restrict further to γ ∈ AutF (F ⊗QQ)0 because otherwise

we would have no control over the signs of the imaginary parts of χt under the

embeddings ϕ ∈ γΦ. So in view of (2.3.4.b) and (4.2.9), we can only guarantee that

Eχt is a polarisation of CγΦ/γΦ(f̃a) if γ ∈ AutF (F ⊗Q Q)0.

4.3 Plectic Taniyama element on the entire plectic

group

In the previous section we recalled Neková°'s de�nition of the plectic Taniyama

element f̃Φ(γ) := `K(F̃Φ(γ)) ∈ A×K,f/K× from the plectic half transfer F̃Φ(γ) ∈ Γab
K

via the isomorphism `K of (4.2.3). We had to restrict to γ ∈ AutF (F ⊗QQ)1 so that

F̃Φ(γ) lies in the domain of `K .

In this section we will extend the de�nition of f̃Φ to the entire plectic group

AutF (F ⊗Q Q). We will do this in a way closer to the de�nition of the (non-plectic)

Taniyama element in (3.1.2), using an extension of diagram (3.1.2.1).

From now on, unless stated otherwise, the results and proofs are our own.
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4.3.1 (A useful diagram). We look at the commutative diagram with exact rows

0 ker(rK) A×K,f/K× Γab
K 0

0 ker(rF ) A×F,f/F
×
>0 Γab

F 0

0 ker(rK) A×K,f/K× Γab
K 0.

NK/F

rK

NK/F res

iK/F

rF

iK/F VK/F

rK

(4.3.1.1)

Here NK/F denotes the norm map, iK/F is induced from the inclusion F ⊂ K,

res(γ) = γ|F ab is the restriction and VK/F the transfer map. The vertical composites

are 1 + c, so that the outer diagram is precisely (3.1.2.1).

As mentioned in (3.1.2), the map 1 + c is an isomorphism on ker(rK), so that the

right hand composite rectangle is Cartesian. By [Nek09, (1.2.2)], we have ker(rK) ∼=
O×K ⊗Z (AQ,f/Q) and ker(rF ) ∼= O×F,>0 ⊗Z (AQ,f/Q). By Dirichlet's Unit Theorem

[Neu92, Thm I.7.4] the groups O×K and O×F,>0 have the same Z-rank. Hence the

maps NK/F : O×K → O
×
F,>0 and iK/F : O×F,>0 → O

×
K have �nite kernel and cokernel,

and since AQ,f/Q is a Q-vector space, we conclude that both left vertical arrows

NK/F : ker(rK) → ker(rF ) and iK/F : ker(rF ) → ker(rK) are in fact isomorphisms.

By the same diagram chase as in (3.1.2.1) this means that both right hand squares

in (4.3.1.1) are Cartesian. Let us highlight the top right Cartesian square

A×K,f/K× Γab
K

A×F,f/F
×
>0 Γab

F

rK

NK/F res

rF

(4.3.1.2)

because it will be extremely useful for the rest of this section.

4.3.2 (De�nition of `K revisited). With the help of diagrams (4.3.1.1) and (4.3.1.2)

let us give a di�erent perspective on the de�nition of `K : Let γ ∈ Γab
K lie in the

domain of `K , i. e. γ|F ab = VF/Q(u)
∏

x∈Σ c
αx
x for some (almost unique, see (4.2.4.b))

u ∈ Γab
Q and αx ∈ Z/2Z. By (4.2.1) we have rF (αF×>0) =

∏
x∈Σ c

αx
x for α ∈ F× with

sgn(x(α)) = (−1)αx for all x ∈ Σ. Moreover, by (2.4.3) we also have rF (χcyc(u)) =

VF/Q(u). Now the Cartesian square (4.3.1.2) looks like

` γ

χcyc(u)αF×>0 VF/Q(u)
∏

x∈Σ c
αx
x ,

rK

NK/F res

rF

hence asserts the existence of a unique ` ∈ A×K,f/K× such that rK(`) = γ and
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NK/F (`) = χcyc(u)αF×>0. The element ` is precisely `K(γ) from (4.2.3).

4.3.3 (De�nition of f̃Φ revisited). Let γ ∈ AutF (F ⊗Q Q)1. By de�nition of the

group AutF (F ⊗Q Q)1, we have (1, prod)(βs(γ)) = VF/Q(u)
∏

x∈Σ c
bx
x ∈ Γab

F for some

(again almost unique) u ∈ Γab
Q and bx ∈ Z/2Z. Combining this with (4.1.11.c) yields

(with αx given by (4.2.8.1))

F̃Φ(γ)|F ab = VF/Q(u)
∏
x∈Σ

cαx+bx
x .

Using (4.2.1), let α′ ∈ F× with sgn(x(α′)) = (−1)αx+bx for all x ∈ Σ, so that

rF (α′F×>0) =
∏

x∈Σ c
αx+bx
x . Now the Cartesian square (4.3.1.2) looks like

f̃ F̃Φ(γ)

χcyc(u)α′F×>0 VF/Q(u)
∏

x∈Σ c
αx+bx
x

rK

NK/F res

rF

and hence asserts the existence and uniqueness of an element f̃ ∈ A×K,f/K×. The

element f̃ is precisely the plectic Taniyama element f̃Φ(γ) from (4.2.7).

In other words, the reason for restricting to γ ∈ AutF (F ⊗Q Q)1 is to ensure

we have a canonical preimage of F̃Φ(γ)|F ab = VF/Q(u)
∏

x∈Σ c
αx+bx
x ∈ Γab

F under rF ,

namely χcyc(u)α′F×>0 ∈ A×F,f/F
×
>0, so that the Cartesian square (4.3.1.2) implies the

existence of f̃Φ(γ). Note here that the ambiguity (4.2.4.b) in choosing αx and u does

not a�ect the product χcyc(u)α′F×>0.

For general γ ∈ AutF (F ⊗Q Q) however we only have (4.1.11.c)

F̃Φ(γ)|F ab = (1, prod)(βs(γ))
∏
x∈Σ

cαxx ∈ Γab
F .

Since (1, prod) : SΣ n ΓΣ
F → Γab

F is surjective, F̃Φ(γ)|F ab can be any element of

Γab
F . Since we are aiming to construct a plectic Taniyama element f̃Φ(γ) for any

γ ∈ AutF (F ⊗Q Q) using the Cartesian diagram (4.3.1.2), this means we need to

choose a splitting3 χF : Γab
F → A×F,f/F

×
>0 to rF : A×F,f/F

×
>0 → Γab

F .

4.3.4 (Splitting of rF ). Let us look at the middle row in (4.3.1.1), i. e. the short

exact sequence of topological abelian groups

0 ker(rF ) A×F,f/F
×
>0 Γab

F 0,
κF rF

3We choose the notation χF for this splitting as it is going to play a similar role as the cyclotomic
character χcyc.
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where κF temporarily denotes the inclusion ker(rF ) ↪→ A×F,f/F
×
>0. The Splitting

Lemma [Hat02, p. 147] tells us that (in the category of abelian groups) it is equivalent

to �nd a map χF such that rF ◦χF = idΓab
F
or a map ωF such that ωF ◦κF = idker(rF ).

We call either of χF and ωF a splitting, and if they exist they are related by the

identity im(χF ) = ker(ωF ). This situation is illustrated by the diagram

0 ker(rF ) A×F,f/F
×
>0 Γab

F 0.
κF rF

ωF

χF

As mentioned in (4.3.1), ker(rF ) is (uniquely) divisible, hence an injective object

in the category of abelian groups. In turn, the injectivity of ker(rF ) implies the

existence of the dashed arrow in the commutative diagram

ker(rF ) A×F,f/F
×
>0

ker(rF ).

κF

id
ωF

This diagram precisely means that ωF is a splitting of κF , and we denote the asso-

ciated splitting of rF by χF .

We want the splitting χF of rF to be compatible with the lift χcyc(u)αF×>0 of

VF/Q(u)
∏

x∈Σ c
αx
x under rF as in (4.3.2). This is guaranteed by the following lemma.

4.3.5 Lemma (Extra properties of χF ). We use the notation of (4.3.4). Then

(4.3.5.a) Restricted to the subgroup c ⊂ Γab
F , the splitting χF is an inverse to the iso-

morphism of (4.2.1)

rF : F×/F×>0
∼−−→ c.

(4.3.5.b) We can choose the splitting χF so that the following diagram commutes

Ẑ× Γab
Q

A×F,f/F
×
>0 Γab

F .

iF/Q

χcyc

∼

VF/Q

χF

Proof. To prove (4.3.5.a), notice that ωF restricted to F×/F×>0 is a group homo-

morphism with domain a �nite group and target a uniquely divisible group, hence

ωF must be trivial. This easily translates into the desired property of χF : Let
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c′ ∈ c. We need to show χF (c′) = ξ(c′), where ξ : c → F×/F×>0 denotes the inverse

of rF : F×/F×>0
∼−−→ c.

We see that ξ(c′) ∈ F×/F×>0 ⊂ ker(ωF ) = im(χF ), so there exists a δ ∈ Γab
F such

that χF (δ) = ξ(c′). We calculate

χF (c′) = χF rF ξ(c
′) = χF rFχF (δ) = χF (δ),

where the �rst equality uses that ξ is inverse to rF , the second equality follows from

the choice of δ, and the third equality holds since rFχF = id.

To prove (4.3.5.b), let us �rst look at the commutative diagram

Ẑ× Γab
Q

0 ker(rF ) A×F,f/F
×
>0 Γab

F 0.

∼
rQ

iF/Q VF/Q

κF rF

(4.3.5.1)

It shows im(iF/Q) ∩ ker(rF ) = 0, hence the composition

ker(rF )
κF−→ A×F,f/F

×
>0 −→ A×F,f/Ẑ

×F×>0

is injective, where the second arrow is the quotient map. Again since ker(rF ) is

divisible, the dashed arrow in the following diagram

ker(rF ) A×F,f/Ẑ×F
×
>0

ker(rF )

κF

id
ω′F

exists. Then the composite

ωF : A×F,f/F
×
>0 −→ A×F,f/Ẑ

×F×>0

ω′F−→ ker(rF )

is a splitting of κF satisfying ωF (Ẑ×) = 0. We claim that the splitting χF associated

to such an ωF makes the diagram (4.3.5.b) commutative, where we proceed in a

similar way as at the end of the proof of (4.3.5.a):

Let γ ∈ Γab
Q and let z := χcyc(γ) ∈ Ẑ×, so that rQ(z) = γ. Since iF/Q(z) ∈

ker(ωF ) = im(χF ), there exists an element δ ∈ Γab
F such that χF (δ) = iF/Q(z). We

calculate

χFVF/Q(γ) = χFVF/QrQ(z) = χF rF iF/Q(z) = χF rFχF (δ) = χF (δ) = iF/Q(z),

where the �rst equality uses the de�nition of z, the second equality follows from
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(4.3.5.1), the third and �fth equality use the de�nition of δ, and the fourth equality

uses rFχF = id. Finally, using the de�nition of z one more time, we conclude

χFVF/Q(γ) = iF/Q(z) = iF/Qχcyc(γ),

i. e. (4.3.5.b) commutes.

From now on, we �x a splitting χF as in (4.3.4) satisfying the additional property

(4.3.5.b). We are ready to de�ne the plectic Taniyama element f̃Φ(γ) for arbitrary

γ ∈ AutF (F ⊗Q Q).

4.3.6 (Plectic Taniyama element). Let γ ∈ AutF (F ⊗Q Q). By the Cartesian dia-

gram (4.3.1.2), there exists a unique element f̃Φ(γ) ∈ A×K,f/K× such that

• rK(f̃Φ(γ)) = F̃Φ(γ) and

• NK/F (f̃Φ(γ)) = χF (F̃Φ(γ)|F ab).

We call the map f̃Φ : AutF (F ⊗Q Q)→ A×K,f/K× the plectic Taniyama element. In

diagrammatic form, f̃Φ(γ) is the unique element such that

f̃Φ(γ) F̃Φ(γ)

χF (F̃Φ(γ)|F ab) F̃Φ(γ)|F ab

rK

NK/F res

rF

commutes.

4.3.7 Remark. Clearly this de�nition of f̃Φ depends on the choice of χF . However

let us show that De�nition (4.3.6) of f̃Φ extends Neková°'s de�nition (4.2.7), and

hence by (4.2.7.b) in particular extends the Taniyama element fΦ of (3.1.2):

Let γ ∈ AutF (F ⊗Q Q)1. We use the notation of (4.3.3). There we saw that

F̃Φ(γ)|F ab = VF/Q(u)
∏

x∈Σ c
αx+bx
x and that (4.2.7) de�nes f̃Φ(γ) as the unique ele-

ment such that

f̃Φ(γ) F̃Φ(γ)

χcyc(u)α′F×>0 VF/Q(u)
∏

x∈Σ c
αx+bx
x

rK

NK/F res

rF

(4.3.7.1)

commutes.

On the other hand, (4.3.5) implies

χF

(
VF/Q(u)

∏
x∈Σ

cαx+bx
x

)
= χcyc(u)α′F×>0,
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hence the de�ning diagram in (4.3.6) is precisely the same as (4.3.7.1), thus the two

de�nitions of f̃Φ(γ) agree.

4.3.8 Remark. Since (4.3.1.2) is Cartesian, the splitting χF of the bottom hori-

zontal map induces a splitting, let us denote it by χK , of the top horizontal map:

For γ ∈ Γab
K , the element χK(γ) ∈ A×K,f/K× is the unique element such that

χK(γ) γ

χF (γ|F ab) γ|F ab

rK

NK/F res

rF

commutes. Then

f̃Φ = χK ◦ F̃Φ.

4.4 Variants of the Hilbert modular variety, and

plectic action on their CM points

Let GR be a group that di�ers only in the centre from RF/Q GL2, i. e. G
R �ts into

the Cartesian diagram (1.2.0.3) and R denotes an algebraic torus over Q with Gm ⊂
R ⊂ RF/QGm. For example, for R = Gm the group GGm is the group G considered

in (3.2.2). In (4.2.10) we saw that the subgroup AutF (F ⊗Q Q)0 acts on the CM

points of Sh(G,X). The goal of this section is to �nd an analogue of this plectic

action on CM points for the Shimura variety Sh(GR, XR), for any R.

Let us start by recalling the notation of Section 3.2 and de�ning the variants

Sh(GR, XR) of the Hilbert modular variety.

4.4.1. (Notation) As in Section 3.2 let

• V := F 2 be a 2-dimensional F -vector space.

• G1 := RF/Q GL2 be the restriction of scalars of GL2.

• ψ : V × V → Q be the F -compatible, Q-bilinear alternating form given by

ψ

((
v1

v2

)
,

(
w1

w2

))
= TrF/Q ◦ det

(
v1 w1

v2 w2

)
.

• h0 : S → (G1)R be the morphism of algebraic groups that is (on real points)

given by

h0(i) :=

(
0 −1

1 0

)
∈ G1(R) = GL2(F ⊗ R).
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As noted in (3.2.2), the form (v, w) 7→ ψ(v, h0(i)w) is positive de�nite on

V (R).

• X1 be the G1(R)-conjugacy class of h0.

4.4.2. (Variants of the Hilbert modular variety) Let R be an algebraic torus over Q
with embeddingsGm ↪→ R ↪→ RF/QGm. We will always assume that the composition

of these two embeddings is given by the `usual' embedding Gm ↪→ RF/QGm, which

on Q-points is given by the inclusion Q× ↪→ F×. De�ne the algebraic group GR

over Q by the Cartesian diagram

GR RF/Q GL2

R RF/QGm.

RF/Q(det) (4.4.2.1)

This is diagram (1.2.0.3).

Note that R = RF/QGm results in GRF/QGm = G1. For R = Gm, the above

diagram is the same as (3.2.2.1), so GGm is equal to the group G considered there.

Of course, Gm ↪→ R ↪→ RF/QGm yields inclusions

GGm ↪→ GR ↪→ G1.

In (3.2.2), we also saw that h0 actually takes values in (GGm)R, so in particular we

can view h0 as a morphism S → (GR)R and de�ne XR to be the GR(R)-conjugacy

class of h0. Clearly, we thus have

XGm ⊂ XR ⊂ XRF/QGm = X1.

In (6.2.9) we will calculate that GR has the same adjoint group as G1. Axioms

[Del79, (2.1.1.2-3)] obviously only depend on the adjoint group, and the same is true

for [Del79, (2.1.1.1)], see [Mil17, after Def. 5.5, p. 55]. Thus (GR, XR) is a Shimura

datum and the associated Shimura variety Sh(GR, XR) is the desired variant of the

Hilbert modular variety.

Moreover, similar to (3.2.3) we see that (GR, XR) has the same re�ex �eld as

(G1, X1), so E(GR, XR) = Q.

For the remainder of this section, �x an algebraic torus R as above. We will

often drop the R from notation and simply write (G,X) for (GR, XR) if there is no

danger of confusion.

4.4.3 Remark. The Shimura varieties Sh(GR, XR) interpolate between the two

extreme cases, the Hilbert modular variety (for R = RF/QGm) and the PEL Hilbert
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modular variety (for R = Gm). The groups G
R are precisely the groups that di�er

only in the centre from G1 = RF/Q GL2 in the sense of (1.2.0.2). We will see in

(6.2.9) that this implies that (GR)der = Gder
1 and (GR)ad = Gad

1 .

Moreover, similar to (3.2.1.2) and (3.2.2.2), there is a more explicit description

of the set XR in terms of upper and lower half planes, see (5.1.6).

4.4.4. (Action of F× on F -compatible bilinear forms) We let F× act on the set of

all F -compatible, Q-bilinear alternating forms ψ′ as follows:

(f · ψ′)(v, w) := ψ′(fv, w), f ∈ F×, v, w ∈ V.

Let us calculate the e�ect of an element g ∈ GR(Q) on the form ψ:

ψ(gv, gw) = TrF/Q(det g det(v, w)) = TrF/Q(det(det(g)v, w)) = ψ(det(g)v, w).

Now by de�nition of GR this means that this form is an R(Q)-multiple of ψ. The

same calculation also shows the converse, i. e. that an element g ∈ GL2(F ) preserves

R(Q)ψ if and only if g ∈ GR(Q). Hence

GR(Q) = {g ∈ GL2(F ) | g∗(ψ) ∈ R(Q)ψ}. (4.4.4.1)

In (4.2.10), the key to writing down a plectic Galois action on the CM points

of the PEL Hilbert modular variety Sh(GGm , XGm) was to understand the points

of Sh(GGm , XGm) in terms of abelian varieties with real multiplication and extra

structure as in (3.2.6). We will now prove (3.2.6) in this more general set-up:

4.4.5 Theorem (Moduli interpretation for Sh(GR, XR)). Let (G,X) = (GR, XR) be

the Shimura datum constructed in (4.4.2). Then the complex points of the Shimura

variety

Sh(G,X)(C) := lim←−
U

G(Q)\ [X ×G(Af )/U ] = G(Q)\
[
X ×G(Af )/Z(Q)

]

are in bijection with isomorphism classes of quadruples
(
A, i, R(Q)s, ηZ(Q)

)
, where

• A is a complex abelian variety of dimension [F : Q],

• i : F ↪→ End(A)⊗Z Q is a ring homomorphism,

• s is an F -compatible polarisation of A, and

• η : V (Af )
∼−−→ V̂ (A) is an AF,f -module-isomorphism sending the class R(Af )ψ

to R(Af )s,

satisfying the condition
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(4.4.5.a) There exists an F -linear isomorphism a : H1(A,Q)
∼−−→ V that sends R(Q)s to

R(Q)ψ and satis�es a ◦ hA ◦ a−1 ∈ X, where hA : S→ End(H1(A,R)) denotes

the Hodge structure on H1(A,Q).

Here, the projective limit is taken over all compact open subgroups U ⊂ G(Af ).

Moreover, Z = ZR denotes the centre of G = GR, and Z(Q) denotes the closure of

Z(Q) inside G(Af ).

4.4.6 Remark. In analogy to (3.2.5.d), we call quadruples (A, i, R(Q)s, ηZ(Q))

and (A′, i′, R(Q)s′, η′Z(Q)) isomorphic if there exists a quasi-isogeny f : A → A′

that is F -linear (with respect to i and i′), sends R(Q)s to R(Q)s′ and satis�es

η′Z(Q) = f ◦ ηZ(Q).

Proof of Theorem (4.4.5). Let A = AR denote the set of isomorphism classes of

quadruples (A, i, R(Q)s, ηZ(Q)) as described above. The strategy of the proof is

modelled on the (PEL) Siegel case outlined in [Mil17, �6, especially prop. 6.3].

• De�nition of α.

Let

α : Sh(G,X)(C) −→ A

[h, g] 7−→
[
Ah, i0, R(Q)ψ, gZ(Q)

]
,

where

- Ah is the abelian variety associated to the Q-rational Hodge structure (V, h).

In particular, we identify H1(Ah,Q) with V .

- i0 : F → End(V ) is the usual F -structure on V , which does respect the Hodge

structure h and hence induces i0 : F → End(V, h) = End(Ah)⊗Z Q,

- ψ is viewed as an F -compatible polarisation of Ah (using the identi�cation

H1(Ah,Q) = V ), and

- g is viewed as the map g : V (Af ) → V (Af ) = V̂ (Ah), again using V (Af ) =

H1(Ah,Q)⊗Q Af = V̂ (Ah).

• The map α is well-de�ned.

First of all, (Ah, i0, R(Q)ψ, gZ(Q)) satis�es the necessary conditions: By (the adelic

version of) (4.4.4.1) we see that g preserves R(Af )ψ, and condition (4.4.5.a) holds

with a = id because we identi�ed H1(Ah,Q) with V . Thus [Ah, i0, R(Q)ψ, gZ(Q)]

is an element of A.
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Secondly, choosing (h′, g′) in the same class as (h, g), we see that h′ = q ◦ h ◦ q−1

and g′ = qgz for some q ∈ G(Q) and z ∈ Z(Q). Then q de�nes an F -compatible

isomorphism of Hodge structures H1(Ah,Q)
∼−−→ H1(Ah′ ,Q), i. e. an F -compatible

isogeny Ah → Ah′ . It moreover preserves R(Q)ψ, and together with g′ = qgz

this shows that q de�nes an isomorphism of quadruples (Ah, i0, R(Q)ψ, gZ(Q))
∼−−→

(Ah′ , i0, R(Q)ψ, g′Z(Q)). Thus α is well-de�ned.

• De�nition of β.

In the other direction, we de�ne the map

β : A −→ Sh(G,X)(C)[
A, i, R(Q)s, ηZ(Q)

]
7−→ [a ◦ hA ◦ a−1, a ◦ η],

where hA denotes the Hodge structure of A and a is an isomorphism as in (4.4.5.a).

• The map β is well-de�ned.

First of all, part of condition (4.4.5.a) says that a◦hA◦a−1 ∈ X. Also, [a◦hA◦a−1, a◦
η] ∈ Sh(G,X)(C) = G(Q)\[X×G(Af )/Z(Q)] depends only on the class ηZ(Q), i. e.

is unchanged if η is replaced by η ◦ z for any z ∈ Z(Q). Moreover, a ◦ η is clearly

an AF,f -linear endomorphism of V (Af ), hence an element of (RF/Q GL2)(Af ), and

by (4.4.5.a) and the condition on η we see that a ◦ η preserves R(Af )ψ. Thus

by (the adelic version of) (4.4.4.1) we conclude that a ◦ η ∈ G(Af ) as desired, so

[a ◦ hA ◦ a−1, a ◦ η] is an element of Sh(G,X)(C).

Secondly, if a′ : H1(A,Q)
∼−−→ V is another isomorphism satisfying (4.4.5.a), then

q := a′ ◦ a−1 : V → V preserves R(Q)ψ (by (4.4.5.a) for both a and a′), hence by

(4.4.4.1) is an element of G(Q). This shows

[a′ ◦ hA ◦ (a′)−1, a′ ◦ η] = [q ◦ a ◦ hA ◦ a−1 ◦ q−1, q ◦ a ◦ η] = [a ◦ hA ◦ a−1, a ◦ η],

so β is independent of the choice of a.

Thirdly, choose (A′, i′, R(Q)s′, η′Z(Q)) in the same class as (A, i, R(Q)s, ηZ(Q)).

This means there is an isogeny f : A → A′ with the properties in (4.4.6). Look

at a′ := a ◦ f−1 : H1(A′,Q)
∼−−→ V . Then a′ satis�es (4.4.5.a) for the quadruple

(A′, i′, R(Q)s′, η′Z(Q)): It sends R(Q)s′ to R(Q)ψ by combining (4.4.5.a) for a with

(4.4.6); since f is an isogeny, this means hA′ = f ◦ hA ◦ f−1, hence

a′ ◦ hA′ ◦ (a′)−1 = a ◦ f−1 ◦ hA′ ◦ f ◦ a−1 = a ◦ hA ◦ a−1 ∈ X.

Thus we may take a′ to compute β using the representative (A′, i′, R(Q)s′, η′Z(Q))

81



4.4. VARIANTS OF THE HMV 4. PLECTIC CM THEORY

of [A, i, R(Q)s, ηZ(Q)], resulting in

(a′ ◦ hA′ ◦ a′, a′ ◦ η′) = (a ◦ f−1 ◦ hA′ ◦ f ◦ a−1, a ◦ f−1 ◦ f ◦ η) = (a ◦ hA ◦ a−1, a ◦ η).

Thus β is well-de�ned.

• α and β are inverses of each other.

Let us �rst show that α ◦ β = id: The map β sends [A, i, R(Q)s, ηZ(Q)] to [a ◦
hA ◦ a−1, a ◦ η]; applying α to this results in [Aa◦hA◦a−1 , i0, R(Q)ψ, a ◦ ηZ(Q)]. The

Hodge structure of Aa◦hA◦a−1 is given by hAa◦hA◦a−1 = a ◦ hA ◦ a−1, hence a de�nes

an isogeny A→ Aa◦hA◦a−1 sending R(Q)s to R(Q)ψ by (4.4.5.a). Thus the isogeny

a satis�es the conditions of (4.4.6), and we conclude[
Aa◦hA◦a−1 , i0, R(Q)ψ, a ◦ ηZ(Q)

]
=
[
A, i, R(Q)s, ηZ(Q)

]
,

i. e. α ◦ β = id.

Now let us show that β◦α = id: The map α sends [h, g] to [Ah, i0, R(Q)ψ, gZ(Q)];

applying β using a = id, corresponding to the canonical identi�cation H1(Ah,Q) =

V , gives back [h, g]. Thus

β ◦ α([h, g]) = [h, g].

4.4.7 Remark. As mentioned before, the case R = Gm yields the PEL Hilbert

modular variety, in which case Theorem (4.4.5) was already mentioned in (3.2.6),

and is proved in [Del71, 4.11].

For most authors, �the� Hilbert modular variety is the Shimura variety associated

to G1 = RF/Q GL2, which corresponds to the case R = RF/QGm, see e. g. [vdG88,

Ch. I.7]. In this case, Theorem (4.4.5) is a special case of [Del71, 4.14] and simpli�es

signi�cantly:

The Hodge structure H1(A,Q) of any abelian variety A of dimension [F : Q] with

real multiplication by F is a two-dimensional F -vector space, hence by the proof of

Lemma (2.3.6) the F×-class of any non-zero, alternating, Q-bilinear, F -compatible

form s consists of all such forms and hence always contains a polarisation. Moreover,∧2
F H1(A,Q) ∼= F also implies that any F -linear isogeny will preserve the F×-class

of such a form. In conclusion, we can simply forget about the polarisation as part of

the data. Moreover, condition (4.4.5.a) is automatic because the G1(R)-conjugacy

class X1 consists of all F -compatible (polarisable) Q-Hodge structures on V = F 2.

4.4.8 (Canonical model of Sh(GR, XR)). In the PEL case R = Gm, the canonical

model of the Shimura variety Sh(GR, XR) is a �ne moduli space for a certain moduli
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problem involving abelian varieties with real multiplication, polarisation, and level

structure, see (3.2.8).

For general R, the canonical model of the Shimura variety Sh(GR, XR) is a coarse

moduli space for a similar functor modelled on the set AR in the proof of Theorem

(4.4.5), see [DT04, Remarque 2.8.1)]. The case R = RF/QGm of the Hilbert modular

variety Sh(G1, X1) is explained in more detail in [TX16, �2.3, in particular after

Prop. 2.4]. See also [Hid04, �4.2.1], [Liu16, �2.4.1] and [DS17, �2.5 and �2.7].

4.4.9. (Aut(C)-equivariance) In particular, (4.4.8) implies that for all R the bijec-

tion of Theorem (4.4.5) is Aut(C)-equivariant, i. e. conjugate points correspond to

conjugate abelian varieties. Since [DT04, 2.8.1)] does not give many details and we

will crucially use this equivariance, let us brie�y explain an alternative proof of this

fact, relying only on the coarse moduli space interpretation in the case R = RF/QGm.

Namely, look at the following commutative diagram

AR(C) A1(C)

Sh(GR, XR)(C) Sh(G1, X1)(C),

∼ ∼

where A1(C) := ARF/QGm(C). In this diagram, the vertical maps are the bijections

of Theorem (4.4.5). The bottom horizontal arrow is induced from the inclusion

GR ⊂ G1 and is a closed immersion by [Del71, 1.15.1], and the top horizontal arrow

is chosen to make the diagram commute; explicitly, it maps [A, i, R(Q)s, ηZR(Q)]

to [A, i, F×s, ηZ1(Q)].

If we let Aut(C) act on AR(C) and A1(C) by conjugating the abelian variety (and

its extra structure), then the top horizontal arrow is clearly Aut(C)-equivariant. By

[Del71, 5.4], the bottom horizontal arrow is the base change of a map between

the canonical models de�ned over Q, thus this arrow is also Aut(C)-equivariant.

Finally, by [TX16] the canonical model for Sh(G1, X1) is a coarse moduli space for

such a functor, thus the right vertical map is Aut(C)-equivariant, too. Hence the

left vertical map is Aut(C)-equivariant, which is what we wanted to show.

4.4.10 (Special points of Sh(GR, XR)). In analogy to (3.2.7), special points corre-

spond to CM abelian varieties. If [h, g] corresponds to [A, i, R(Q)s, ηZ(Q)] under

the bijection in (4.4.5), then [h, g] is special if and only if A has CM by a CM alge-

bra, and it again turns out that this CM algebra is automatically a CM �eld that

is a totally imaginary quadratic extension of F .

Now let [A, i, R(Q)s, ηZ(Q)] be a special point of Sh(G,X), where K is a CM

�eld and i : K → End(A)⊗Z Q is an extension of i : F → End(A)⊗Z Q. By Lemma

(2.3.6) the polarisation s is automatically K-compatible. Thus (A, i, s) is a triple as
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in (2.3.4), so we can �nd Φ,Θ, a, t such that

[A, i, R(Q)s, ηZ(Q)] = [CΦ/Φ(a), iΦ|F , R(Q)Et,Θ
−1 ◦ ηZ(Q)].

We claim that conversely, as long as t satis�es (2.3.4.b) and η sends R(Af )ψ0 to

R(Af )Et, a quadruple of the form [CΦ/Φ(a), iΦ|F , R(Q)Et, ηZ(Q)] always satis�es

(4.4.5.a) and hence de�nes a point of Sh(G,X).

Proof of claim. We identify the tangent space at 0 of CΦ/Φ(a) with CΦ. Then, for

f ∈ F , we have

Tr
(
iΦ(f)|Tgt0(CΦ/Φ(a))

)
= Tr

(
(ϕ(f))ϕ∈Φ|CΦ

)
=
∑
x∈ΣF

x(f),

hence the quadruple ful�lls condition (3.2.5.e) (Et is clearly F -compatible because it

is even K-compatible). Since this, in turn, is equivalent to (3.2.4.a) (i. e. condition

(4.4.5.a) in the PEL case), this means that there exists an F -linear isomorphism

a : H1(A,Q)
∼−−→ V that sends Q×Et to Q×ψ0 and satis�es a ◦ hA ◦ a−1 ∈ XGm .

In particular, a sends R(Q)Et to R(Q)ψ0, and since XGm ⊂ XR, we conclude that

[CΦ/Φ(a), iΦ|F , R(Q)Et, ηZ(Q)] is a point of AR.

We continue to suppress uniformizations from notation and will henceforth write

CM points of Sh(G,X) as [CΦ/Φ(a), iΦ|F , R(Q)Et, ηZ(Q)]. Here it is enough if some

element t′ ∈ R(Q)t satis�es (2.3.4.b), but we usually choose t to satisfy (2.3.4.b)

itself.

As promised, we will now de�ne a certain subgroup of the plectic group and an

action of this group on the set of CM points of Sh(GR, XR), generalising (4.2.10).

4.4.11. (Subgroup of the plectic group associated to R) As before, let R be a Q-
algebraic torus with Gm ↪→ R ↪→ RF/QGm. We have subgroups R(Q) ⊂ F× and

R(Af ) ⊂ A×F,f . Let R(Q)>0 := R(Q) ∩ F×>0. We then have an injective map

R(Af )/R(Q)>0 ↪→ A×F,f/F
×
>0.

We de�ne the subgroup (SΣnΓΣ
F )RCM of the plectic group SΣnΓΣ

F by the Cartesian

diagram

(SΣ n ΓΣ
F )RCM SΣ n ΓΣ

F

R(Af )/R(Q)>0 A×F,f/F
×
>0.

χF ◦(1,prod)

We also de�ne

AutF (F ⊗Q Q)RCM := β−1
s

(
(SΣ n ΓΣ

F )RCM

)
⊂ AutF (F ⊗Q Q),
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which is independent of s by (4.1.9.b).

4.4.12 Remark. For R = RF/QGm we clearly have

(SΣ n ΓΣ
F )

RF/QGm
CM = SΣ n ΓΣ

F , AutF (F ⊗Q Q)
RF/QGm
CM = AutF (F ⊗Q Q).

For R = Gm, we have A×Q,f/Q
×
>0 = Ẑ×. The bottom left entries of the de�ning

Cartesian diagrams for the groups (SΣ n ΓΣ
F )GmCM and (SΣ n ΓΣ

F )0 in (4.4.11) and

(4.2.8), respectively, are related by the isomorphism rQ : Ẑ× → Γab
Q or its inverse

χcyc : Γab
Q → Ẑ×. Using the commutative diagrams (2.4.3) and (4.3.5.b), we conclude

that

(SΣ n ΓΣ
F )GmCM = (SΣ n ΓΣ

F )0, AutF (F ⊗Q Q)GmCM = AutF (F ⊗Q Q)0.

For general R, note that Gm ↪→ R induces

(SΣ n ΓΣ
F )0 ⊂ (SΣ n ΓΣ

F )RCM, AutF (F ⊗Q Q)0 ⊂ AutF (F ⊗Q Q)RCM.

4.4.13. (Plectic action on the CM points of Sh(GR, XR)) Let (G,X) = (GR, XR)

and let (K,Φ; a, t) be a type as in (2.3.5), with K a totally imaginary quadratic

extension of F . We look at the CM point

P =
[
CΦ/Φ(a), iΦ|F , R(Q)Et, ηZ(Q)

]
of the Shimura variety Sh(G,X).

Let γ ∈ AutF (F ⊗Q Q)RCM and f̃ ∈ A×K,f such that f̃Φ(γ) = f̃K× ∈ A×K,f/K×.
Let u ∈ R(Af ) be such that χF ◦ (1, prod) ◦ βs(γ) = uF×>0. The existence of u is

guaranteed by the de�nition of AutF (F ⊗Q Q)RCM. Finally denote χ := u
1+cf̃

, which

lies in F×, see (4.4.13.2) below.

De�ne

γ
[
CΦ/Φ(a), iΦ|F , R(Q)Et, ηZ(Q)

]
:=
[
CγΦ/γΦ(f̃a), iγΦ|F , R(Q)Eχt, f̃ ◦ ηZ(Q)

]
.

(4.4.13.1)

This de�nes a group action of AutF (F ⊗Q Q)RCM on the set of CM points of

Sh(G,X), extending the action of ΓQ.

Proof. There are several things to check in order to show that this is well-de�ned

and in fact does give an action of (AutF (F ⊗QQ))RCM on the CM points of Sh(G,X),

namely that (4.4.13.1) de�nes a point of Sh(G,X), does not depend on the choice

of u, f̃ , or the representative (CΦ/Φ(a), iΦ|F , R(Q)Et, ηZ(Q)) of P (i. e. of the uni-

formization), that the resulting point is again a CM point withK-compatible (R(Q)-
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class of) polarisation, and that this de�nes a group action:

• (4.4.13.1) does not depend on the choice of u:

A di�erent choice for u must be of the form u′ = au with a ∈ R(Q)>0. This changes

χ to χ′ = aχ, hence the polarisations Eχt and Eχ′t lie in the same R(Q)-class.

• (4.4.13.1) does not depend on the choice of f̃ :

Let f̃ ′K× = f̃K× = f̃Φ(γ) ∈ AK,f/K
×. Then f̃ ′ = kf̃ for some k ∈ K×, and k

de�nes an isogeny CγΦ/γΦ(f̃a)→ CγΦ/γΦ(kf̃a) that sends the polarisation Eχt to

E χ
1+ck

t and the level structure f̃ ◦ η to k ◦ f̃ ◦ η, i. e. k induces an equality between[
CγΦ/γΦ(f̃a), iγΦ|F , R(Q)Eχt, f̃ ◦ ηZ(Q)

]
and

[
CγΦ/γΦ(f̃ ′a), iγΦ|F , R(Q)Eχ′t, f̃ ′ ◦ ηZ(Q)

]
,

where χ′ = u
1+cf̃ ′

= χ
1+ck

.

• (4.4.13.1) does not depend on the choice of uniformization:

By (2.3.5), a di�erent choice of uniformization yields a di�erent representative

(CΦ/Φ(ka), iΦ|F , R(Q)Et2 , k ◦ ηZ(Q)) of P , for some k ∈ K× and t2 := t
1+ck

. The

right hand side of (4.4.13.1) then becomes[
CγΦ/γΦ(kf̃a), iγΦ|F , R(Q)Eχ t

k·k
, f̃ ◦ k ◦ ηZ(Q)

]
.

But again we can view k as an isogeny k : CγΦ/γΦ(f̃a) → CγΦ/γΦ(kf̃a), which

induces an equality between
[
CγΦ/γΦ(f̃a), iγΦ|F , R(Q)Eχt, f̃ ◦ ηZ(Q)

]
and

[
CγΦ/γΦ(kf̃a), iγΦ|F , R(Q)Eχ t

k·k
, k ◦ f̃ ◦ ηZ(Q)

]
,

as desired.

• (4.4.13.1) de�nes a CM point of Sh(G,X):

We need to check that the right hand side of (4.4.13.1) lies in AR (see Theorem

(4.4.5)). But if we show that f̃ ◦ η is compatible with the R(Af )-classes of the

polarisations, and that R(Q)Eχt contains a polarisation of CγΦ/γΦ(f̃a), then this is

guaranteed by (4.4.10).

- f̃ ◦ η sends R(Af )ψ0 to R(Af )Eχt:
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For v, w ∈ V (Af ), we have

Eχt

(
f̃ ◦ η(v), f̃ ◦ η(w)

)
= TrK/Q

(
utη(v)η(w)

)
= Et (η(uv), η(w))

= ψ0 (urv, w) , for some r ∈ R(Af ).

Here the �rst equality uses the de�nition of Eχt and of χ, the second equality follows

from the AF,f ⊂ AK,f -linearity of η and the de�nition of Et, and the third equality

follows because η sends R(Af )ψ0 to R(Af )Et.

As u by de�nition lies in R(Af ), this calculation precisely shows that f̃ ◦ η sends

R(Af )ψ0 to R(Af )Eχt. This explains why we had to restrict to γ ∈ AutF (F⊗QQ)RCM

� for arbitrary γ ∈ AutF (F ⊗Q Q) we only have u ∈ A×F,f , but we need u ∈ R(Af ).

- R(Q)Eχt contains a polarisation of CγΦ/γΦ(f̃a):

We need to calculate the signs of the imaginary part of χt under embeddings ϕ ∈ ΣK .

Recall that Imϕ(t) > 0 for all ϕ ∈ Φ. To calculate the signs of χ, recall (4.1.11.c)

that

F̃Φ(γ)|F ab = (1, prod)(βs(γ))
∏
x∈Σ

cαxx ,

where (αx)x∈Σ are given by (4.2.8.1). By (4.3.6) and (4.3.5.a) we thus have

NK/F

(
f̃Φ(γ)

)
= χF

(
F̃Φ(γ)|F ab

)
= (χF ◦ (1, prod) ◦ βs(γ))(αF×>0),

where α ∈ F× satis�es sgn(x(α)) = (−1)αx for x ∈ Σ. By choice of f̃ and u, the

last equality implies that

χ ∈ α−1F×>0. (4.4.13.2)

In other words, χ has the same signs as α. These signs are given by (4.2.8.1)

and measure the di�erence between the CM types Φ and γΦ. We conclude that, for

ϕ ∈ ΣK , we have

Imϕ(χt) > 0 if and only if ϕ ∈ γΦ. (4.4.13.3)

Since we know that CγΦ/γΦ(f̃a) has type γΦ, by (2.3.4.b) we conclude that

[CγΦ/γΦ(f̃a), iγΦ|F , R(Q)Eχt, f̃ ◦ηZ(Q)] is a point of Sh(G,X). It is then automat-

ically a CM point.

• (4.4.13.1) de�nes a group action of AutF (F ⊗Q Q)RCM on the CM points of

Sh(G,X):
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Let P = [CΦ/Φ(a), iΦ|F , R(Q)Et, ηZ(Q)] ∈ AR be a CM point with K-compatible

polarisation Et. Let γ1, γ2 ∈ AutF (F ⊗Q Q)RCM. We show

γ2(γ1P) = (γ2γ1)P . (4.4.13.4)

To calculate the left hand side, we �rst let f̃1 ∈ f̃Φ(γ1), u1 ∈ χF ◦(1, prod)◦βs(γ1)

and χ1 = u1
1+cf̃1

∈ K×. Then by (4.4.13.1)

γ1P =
[
Cγ1Φ/γ1Φ(f̃1a), iγ1Φ|F , R(Q)Eχ1t, f̃1 ◦ ηZ(Q)

]
.

Now take f̃2 ∈ f̃γ1Φ(γ2), u2 ∈ χF ◦ (1, prod) ◦ βs(γ2) and χ2 = u2
1+cf̃2

, so we get

γ2(γ1P) =
[
Cγ2γ1Φ/γ2γ1Φ(f̃2f̃1a), iγ2γ1Φ|F , R(Q)Eχ2χ1t, f̃2 ◦ f̃1 ◦ ηZ(Q)

]
.

(4.4.13.5)

To calculate the right hand side of (4.4.13.4), we use the cocycle relation (4.2.7.c),

which allows us to take f̃ = f̃2f̃1 ∈ f̃Φ(γ2γ1) in order to calculate

(γ2γ1)P =
[
Cγ2γ1Φ/γ2γ1Φ(f̃a), iγ2γ1Φ|F , R(Q)Eχt, f̃ ◦ ηZ(Q)

]
, (4.4.13.6)

where χ = u
1+cf̃
∈ K× with u ∈ χF ◦ (1, prod) ◦ βs(γ1γ2). Since χF ◦ (1, prod) ◦ βs is

a group homomorphism, we may take u = u2u1, resulting in

χ =
u2u1

1+c(f̃2f̃1)
= χ2χ1.

Therefore the right hand sides of (4.4.13.5) and (4.4.13.6) are equal, hence we

have shown that (4.4.13.4) holds.

• (4.4.13.1) extends the action of ΓQ to AutF (F ⊗Q Q)RCM:

The re�ex �eld of (GR, XR) is Q, and by (4.4.8) the ΓQ-action on the Q-points of
the Shimura variety Sh(GR, XR) is given by conjugating the corresponding abelian

variety and its extra structure. In particular, this applies to CM points as they are

de�ned over Q, where the Galois conjugate can again be described using Tate's half

transfer. By (4.3.7) this agrees with (4.4.13.1).

For each Q-algebraic torus R with Gm ↪→ R ↪→ RF/QGm as above, we have

de�ned a plectic group AutF (F ⊗Q Q)RCM and an action of this group on the CM

points of Sh(GR, XR). These Shimura varieties are variants of the Hilbert modular

variety, and their moduli interpretation (4.4.5) only di�er in the degree of precision

with which they include polarisations and level structures.
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The calculations in the above proof show that it was crucial to restrict to γ ∈
AutF (F ⊗Q Q)RCM, precisely because then and only then the level structure f̃ ◦ η
sends R(Af )ψ0 to R(Af )Eχt.

4.4.14 Remark. Let us make a few comments about the two extreme cases:

(4.4.14.a) If R = Gm, then Sh(GGm , XGm) is equal to the PEL Hilbert modular variety

Sh(G,X) of (3.2.2). We have de�ned two plectic actions on its CM points,

namely in (4.2.10) and in (4.4.13), which we will compare now:

We already remarked in (4.4.12) that the involved plectic groups AutF (F ⊗Q

Q)0 and AutF (F ⊗QQ)GmCM are the same. Moreover, by (4.3.5.b) we can take u

in (4.4.13.1) to be χcyc(ũ) in (4.2.10.1), and then the two formulae giving the

plectic action agree.

(4.4.14.b) If R = RF/QGm, then Sh(GRF/QGm , XRF/QGm) is equal to the Hilbert modular

variety Sh(G1, X1) of (3.2.1). In this case, (4.4.13) gives an action of the entire

plectic group AutF (F ⊗QQ) on the CM points of the Hilbert modular variety.

This proves [NS16, Prop. 6.8].

4.4.15 Remark. It is an interesting question in what way the group AutF (F ⊗Q

Q)RCM and its action on the CM points of Sh(GR, XR) depend on the choice of

splitting χF . (4.4.14.a) shows that for R = Gm the property (4.3.5.b) prescribes

the values of the splitting χF on the image of VF/Q : Γab
Q → Γab

F , which is all that is

needed. However, for all other choices of R, including R = RF/QGm, this question

remains open.
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5

Plectic action on the set of connected

components of variants of Hilbert

modular varieties

Fix a totally real number �eld F and an algebraic torus R over Q with Gm ⊂
R ⊂ RF/QGm. The goal of this chapter is to de�ne an action of a certain plectic

group AutF (F ⊗Q Q)Rπ0
on the set π0(Sh(GR, XR)) of connected components of the

Shimura variety Sh(GR, XR). Here Sh(GR, XR) is the variant of the Hilbert modular

variety de�ned in (4.4.2). This action of AutF (F ⊗QQ)Rπ0
can be viewed as a plectic

structure, in the vague sense of Section 1.1.2, on π0(Sh(GR, XR)).

In Section 5.1 we start by recalling the description of the set of connected compo-

nents of an arbitrary Shimura variety as a zero-dimensional Shimura variety. Spe-

cialising to Sh(GR, XR), we see in (5.1.9) that

π0(Sh(GR, XR))
∼−−→ Sh(R,VZR),

where VZR is a certain subset of {±1}Σ de�ned in (5.1.6).

In Section 5.2 we recall that the Galois action on the set of connected compo-

nents of a Shimura variety is given by a reciprocity homomorphism. Again spe-

cialising to Sh(GR, XR), we see in (5.2.4) that π0(Sh(GR, XR)) ∼= π0(R(A)/R(Q))

and explicitly describe the action of γ ∈ ΓQ on π0(R(A)/R(Q)) in terms of class

�eld theory. In (5.2.6) we de�ne the group AutF (F ⊗Q Q)Rπ0
and an action of this

group on π0(R(A)/R(Q)), extending the action of ΓQ. We then show in (5.2.9)

that AutF (F ⊗QQ)RCM embeds canonically into AutF (F ⊗QQ)Rπ0
and prove Theorem

(1.2.1) in (5.2.10), namely that the π0-map is AutF (F ⊗Q Q)RCM-equivariant when

restricted to CM points.

In the Appendix 5.3 we formulate a cohomological condition on the algebraic

torus R that implies that the group AutF (F⊗QQ)Rπ0
is a subgroup of AutF (F⊗QQ).
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Namely, we show that if the Shafarevich�Tate group X(R) of R vanishes (condition

(5.3.4.1)), then AutF (F ⊗Q Q)Rπ0
is a subgroup of AutF (F ⊗Q Q). Examples of tori

R satisfying (5.3.4.1) include R = Gm and R = RF/QGm. Moreover, if for instance

the extension F/Q is cyclic, then every R satis�es (5.3.4.1).

For the description of the set of connected components of a general Shimura

variety, we use [Mil17, �5, �12-13]. For background on the Galois cohomology of

tori, see [Tat66, PR94].

5.1 Connected components of Shimura varieties

In this section we recall facts about connected components of Shimura varieties from

[Mil17, �5]:

5.1.1. (Notation) Fix a Shimura datum (G,X). We will write

• Gder for the derived group of G, i. e. the group spanned by all commutators of

elements of G.

• T = G/Gder for the cocentre of G, and ν : G→ T for the quotient map.

• Z for the centre and Gad := G/Z for the adjoint group of G.

• T (R)† := ν(Z(R)) and T (Q)† := T (Q) ∩ T (R)†.

We state [Mil17, Thm 5.17]:

5.1.2 Theorem. Let (G,X) be a Shimura datum and U be a su�ciently small

compact open subgroup of G(Af ). If moreover Gder is simply connected, then the set

of connected components of the Shimura variety ShU(G,X) is given by

π0(ShU(G,X))
∼−−→ T (Q)†\T (Af )/ν(U).

The proof of Theorem (5.1.2) can be found in [Mil17, Thm 5.17]. However, it

will be useful to describe the bijection explicitly.

5.1.3. (π0-map) We use the notation of (5.1.2). As always, we will mostly work in

the limit over all compact open subgroups, but for the moment let us �x a su�ciently

small compact open subgroup U ⊂ G(Af ). Let us describe the map

π0 : ShU(G,X) � T (Q)†\T (Af )/ν(U).

It is given as the composition

G(Q)\ [X ×G(Af )/U ]
∼−−→ G(Q)+\

[
X+ ×G(Af )/U

]
−→ T (Q)†\T (Af )/ν(U)

(5.1.3.1)
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where

• G(R)+ is the preimage in G(R) of the identity component of Gad(R), and

G(Q)+ := G(Q) ∩G(R)+.

• X+ denotes a connected component of X.

The �rst arrow is induced from the inclusion of X+ into X, and is a bijection by

[Mil17, Lem 5.11]. The second map is induced by ν : G(Af ) → T (Af ), forgetting

the X+-coordinate.

5.1.4 Remark. (Zero-dimensional Shimura varieties) The double quotient

T (Q)†\T (Af )/ν(U)

occuring in (5.1.2) looks similar to a double quotient de�ned by a Shimura variety.

Let us make this resemblance even more striking:

Using the notation of (5.1.2), we also write Y := T (R)/T (R)†. By real approx-

imation1, we have Y = T (Q)/T (Q)†. Moreover, Y is �nite by [Mil17, p. 59, after

(34)]. For any compact open subgroup U ⊂ T (Af ), we have the bijection

T (Q)†\T (Af )/U
∼−−→ T (Q)\ [Y × T (Af )/U ]

[g] 7−→ [1, g].
(5.1.4.1)

Proof. It is easy to check that this map is well-de�ned and surjective. For the

injectivity, assume [1, g] = [1, g′] ∈ T (Q)\ [Y × T (Af )/U ] for g, g′ ∈ T (Af ). Then

there exist q ∈ T (Q) and u ∈ U such that (q, qgu) = (1, g′). This means in particular

that q = 1 ∈ T (Q)/T (Q)†, i. e. q ∈ T (Q)† and therefore [g] = [g′] in T (Q)†\T (Af )/U .

We denote the double quotient T (Q)\ [Y × T (Af )/U ] by ShU(T, Y ) although

(T, Y ) is not a Shimura datum because T is abelian and hence a T (R)-conjugacy

class of Hodge structures has to consist of a single element, whereas Y is a �nite set

with usually more than one element.

We still call such ShU(T, Y ) a zero-dimensional Shimura variety, using the con-

vention of [Mil17, p. 62-63], namely that in place of the T (R)-conjugacy class of

Hodge structures we allow a �nite set with a transitive T (R)/T (R)†-action. Here,

this �nite set is precisely Y = T (R)/T (R)†. And, of course, we denote the projective

limit over all compact open subgroups U ⊂ T (Af ) by Sh(T, Y ).

In this way, Theorem (5.1.2) tells us that the set of connected components of the

Shimura variety ShU(G,X) is the zero-dimensional Shimura variety Shν(U)(T, Y ),

1This is [Mil17, p. 63, l. 4]. For a slightly more elaborate explanation in the case of interest,
see (5.1.8).
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and the map

π0 : ShU(G,X) −→ Shν(U)(T, Y ) (5.1.4.2)

is given as the composition of (5.1.3.1) and (5.1.4.1). In the projective limit over all

compact open subgroups U ⊂ G(Af ) we get

π0 : Sh(G,X) −→ Sh(T, Y ). (5.1.4.3)

5.1.5 Example. (Hilbert modular variety and PEL Hilbert modular variety) We

will explicitly describe the map π0 for the variants of the Hilbert modular variety

introduced in (4.4.2). But let us �rst look at two familiar examples in detail:

(5.1.5.a) Let G1 = RF/Q GL2 and X1 = (C \ R)Σ be the Shimura datum associated to

the Hilbert modular variety (3.2.1), where we denote Σ = ΣF = Hom(F,C).

Then:

• Gder
1 = RF/Q SL2, so ν = RF/Q(det) : G1 → RF/QGm. In particular,

T = T1 := RF/QGm. We will also denote ν by dF : G1 → T1.

• Z = Z1 := RF/Q(Gm).

• T (R)† = {g = (gx)x∈Σ ∈ (F ⊗ R)× =
∏

x∈Σ R×x | gx > 0 ∀x ∈ Σ} =

(F⊗QR)×>0
∼= (R×>0)Σ and hence T (Q)† = F×>0 and Y = F×/F×>0 = {±1}Σ.

• G1(R)+ = {g = (gx)x∈Σ ∈ GL2(F ⊗ R) | det(gx) > 0 ∀x ∈ Σ}.

• We choose the component X+
1 = hΣ of X1.

Chasing through the description of the map π0 in (5.1.3) yields the following:

Take [h, g] ∈ ShU(G1, X1), with h corresponding to (zx)x∈Σ ∈ (C \ R)Σ under

(3.2.1.2). The �rst arrow in (5.1.4.2) is given by

[h, g] 7−→ [aha−1, ag] ∈ G(Q)+\
[
X+ ×G(Af )/U

]
,

where a =

(
f 0

0 1

)
∈ G1(Q) = GL2(F ) with f ∈ F× an arbitrary element

satisfying sgn(x(f)) = sgn(Im zx) for each x ∈ Σ, because then the Hodge

structure aha−1 corresponds to (fzx)x∈Σ ∈ hΣ under (3.2.1.2). Hence (5.1.3.1)

is given by

[h, g] 7−→ [dF (a)dF (g)] ∈ T (Q)†\T (Af )/ν(U).

Finally, composing this with (5.1.4.1) and using dF (a) = f ∈ F× = T (Q), we

get (in the inverse limit over U)
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π0 : Sh(RF/Q GL2, (C \ R)Σ) −→ Sh(RF/QGm, {±1}Σ),

[(zx)x∈Σ, g] 7−→ [(sgn Im zx)x∈Σ, dF (g)].

(5.1.5.b) Let (G,X) be the Shimura datum associated to the PEL Hilbert modular

variety, see (3.2.2); in particular, we have X = hΣ t (−h)Σ. Then:

• Gder = Gder
1 = RF/Q SL2, so T = Gm and ν = dF |G : G → Gm ↪→

RF/QGm, where the second arrow is the embedding Gm ↪→ RF/QGm of

(3.2.2).

• Z = Z1 ∩G has Q-points Z(Q) = {t ∈ F× | t2 ∈ Q×}.

• T (R)† = {g = (g)x∈Σ ∈ R× ⊂
∏

x∈Σ R×x | g > 0} = R×>0 and hence

T (Q)† = Q×>0.

• Y = Q×/Q×>0 = {±1}.

• Gad = Gad
1 , hence G(R)+ = {g = (gx)x∈Σ ∈ G(R) | det(gx) > 0 ∀x ∈ Σ}.

• We choose the component X+ = hΣ of X.

Chasing through (5.1.3) in the same way as in (5.1.5.a) yields

π0 : Sh(G,X) −→ Sh(Gm, {±1}),

[(zx)x∈Σ, g] 7−→ [sgn Im zx0 , dF (g)],

for any choice of x0 ∈ Σ.

Before repeating this procedure for the Shimura varieties Sh(GR, XR) of (4.4.2),

let us �rst decribe XR in more concrete terms.

5.1.6 Lemma. The GR(R)-conjugacy class XR is in bijection with the set

{(zx)x∈Σ ∈ (C \ R)Σ | (sgn Im zx)x∈Σ ∈ VZR}, (5.1.6.1)

where VZR is the subgroup2 of {±1}Σ de�ned by

VZR :=
(
R(R) · (R×>0)Σ

)
/(R×>0)Σ ⊂ (R×)Σ/(R×>0)Σ = {±1}Σ.

In other words,

π0(XR) = VZR .

2�VZ� is short for �Vorzeichen�, the German word for signs.
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5.1.7 Remark. Before starting the proof, let us remark that in the cases R =

RF/QGm and R = Gm considered in (5.1.5), we get VZRF/QGm = {±1}Σ and VZGm =

{(1, . . . , 1), (−1, . . . ,−1)} ∼= {±1}. Hence XRF/QGm = (C \ R)Σ and XGm = hΣ t
(−h)Σ. So (5.1.6) includes (3.2.1.2) and proves (3.2.2.2).

Proof of Lemma (5.1.6). Let us temporarily denote GR by G and the set in (5.1.6.1)

by W . First of all, recall that (C \R)Σ is identi�ed with the G1(R)-conjugacy class

X1 of h0 : S → G1,R, see (3.2.1.2). We saw in (3.2.2) that h0 factors through GGm ,

and GGm ⊂ GR = G, so we may view h0 as a morphism h0 : S → GR. Under the

identi�cation in (3.2.1.2), it remains to calculate the orbit G(R) ·(i, . . . , i). We claim

that this orbit is equal to W :

• Step 1: G(R) · (i, . . . , i) ⊂ W .

If (zx)x = (gx · i)x for some (gx)x ∈ G(R), then sgn(Im zx) = sgn(det gx) for all

x ∈ Σ by the usual formula for the imaginary part under Möbius transformations.

As (det gx)x ∈ R(R) by de�nition of G, we get (sgn det gx)x ∈ VZR. This means

(zx)x ∈ W .

• Step 2: If (zx)x ∈ G(R) · (i, . . . , i), and (z′x)x satis�es sgn Im zx = sgn Im z′x for

all x ∈ Σ, then (z′x)x ∈ G(R) · (i, . . . , i).

As GL2(R) acts transitively on C \ R, there exists a (gx)x ∈ GL2(R)Σ such that

gx · zx = z′x for all x. By assumption on the signs of the imaginary parts, we know

that det gx > 0 for all x. Now rescale every gx by a scalar in order to get det gx = 1

and still gx · zx = z′x for all x, which is possible since scalars do not a�ect the action

by Möbius transformations. Thus we get (gx)x ∈ SL2(R)Σ ⊂ G(R), which implies

(z′x)x ∈ G(R) · (i, . . . , i).

• Step 3: For any (εx)x ∈ VZR, there exists (zx)x ∈ G(R) · (i, . . . , i) such that

sgn Im zx = εx for all x.

By de�nition, there exists (λx)x ∈ R(R) such that sgnλx = εx for all x ∈ Σ. Then

(gx)x :=

((
λx 0

0 1

))
x

lies in G(R) by de�nition of G and satis�es det gx = λx for

all x. Hence (zx)x := (gx)x · (i, . . . , i) ∈ G(R) · (i, . . . , i) satis�es sgn Im zx = εx.

Together, steps 2 and 3 imply W ⊂ G(R) · (i, . . . , i).

We can also describe the set VZR in terms of rational points of the torus R:

5.1.8 Lemma. Let R be a Q-algebraic torus as before. Then the inclusion R(Q) ↪→
R(R) induces a bijection

(R(Q) · F×>0)/F×>0
∼−−→
(
R(R) · (R×>0)Σ

)
/(R×>0)Σ = VZR .
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Proof. The map is well-de�ned and injective since an element of R(Q) ⊂ F× that

lies in (R×>0)ΣF clearly lies in F×>0. For the surjectivity: Using the usual canonical

isomorphisms, we can write the above map as

R(Q)/R(Q) ∩ F×>0 −→ R(R)/R(R) ∩ (R×>0)Σ.

The surjectivity now follows because R(Q) is dense in R(R) by real approximation

[Mil17, Thm 5.4] for the torus R, and R(R) ∩ (R×>0)Σ is open in R(R).

Now let us describe the π0-map for Sh(GR, XR):

5.1.9 Example (General Hilbert modular variety). Let (G,X) = (GR, XR) be the

Shimura datum of (4.4.2), with R a Q-algebraic torus as before, and let us identify

XR with the set in (5.1.6.1). We again calculate the quantities of (5.1.3), see (6.2.9)

for the calculation of Z and Gad.

• Gder = Gder
1 = RF/Q SL2, so T = R and ν = dF |G : G→ T .

• Z = Z1 ∩G.

• T (R)† = {g = (gx)x∈Σ ∈ R(R) ⊂
∏

x∈Σ R×x | gx > 0 ∀x ∈ Σ} = R(R) ∩
(R×>0)Σ =: R(R)>0 ⊂ (R×)Σ and hence T (Q)† = R(Q) ∩ F×>0.

• Y = R(R)/(R(R) ∩ (R×>0)Σ) = (R(R) · (R×>0)Σ)/(R×>0)Σ = VZR.

• Gad = Gad
1 , hence G(R)+ = {g = (gx)x∈Σ ∈ G(R) | det(gx) > 0 ∀x ∈ Σ}.

• We choose the component X+ = hΣ of X.

Going through the same steps as in (5.1.5.a), we �nd that

π0 : Sh(G,X) −→ Sh(R,VZR),

[(zx)x∈Σ, g] 7−→ [(sgn Im zx)x∈Σ, dF (g)].

5.2 Plectic Galois action on connected components

Under the hypotheses of (5.1.2), we have given in (5.1.4.3) a rather explicit descrip-

tion of the map π0 : Sh(G,X)→ Sh(T, Y ). Moreover, the Shimura variety Sh(G,X)

has a canonical model over the re�ex �eld E(G,X), so it is natural to expect that

the π0-map is equivariant with respect to a certain action of Aut(C/E(G,X)) on

Sh(T, Y ).
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We quote the following results from [Mil17, (64), p. 119]. Namely, the action on

Sh(T, Y ) is given by a class �eld theoretic recipe similar to the one giving the action

on Shimura varieties associated to tori (compare [Mil17, (60)-(62), p. 114]). The

only di�erence is a component at in�nity of the reciprocity map acting on Y .

5.2.1. (Galois action on connected components) Let (G,X) be an arbitrary Shimura

datum such thatGder is simply connected. We continue to use the notation of (5.1.2).

Let h0 ∈ X and h := ν ◦ h0 : S → TR. Look at the associated cocharacter µh of T ,

see (2.2.5). By De�nition (6.1.11), the re�ex �eld E(G,X) is precisely the �eld of

de�nition of the unique G(Q)-conjugacy class contained in the G(C)-conjugacy class

of µh0 , thus µh is certainly de�ned over E(G,X). [Mil17, (60)] de�nes a morphism

of Q-algebraic groups

r = r(T, µh) : RE(G,X)/QGm −→ T

called the reciprocity morphism.

The action of Aut(C/E(G,X)) on Sh(T, Y ) is then de�ned via the adelic points

of r and class �eld theory: Let σ ∈ Aut(C/E(G,X)) and s ∈ A×E(G,X) such that

artE(G,X)(s) = σ|E(G,X)ab . Write r(s) ∈ T (AQ) as r(s) = (r(s)∞, r(s)f ) ∈ T (R) ×
T (Af ). Then de�ne

σ[y, g]U := [r(s)∞ · y, r(s)f · g], [y, g]U ∈ ShU(T, Y ),

and similarly in the limit over all compact open subgroups U ⊂ T (Af ). Then the

map

π0 : Sh(G,X) −→ Sh(T, Y )

is Aut(C/E(G,X))-equivariant.3

Let us see how (5.2.1) applies to the Hilbert modular varieties Sh(GR, XR):

5.2.2 Example (Galois action on π0(Sh(GR, XR))). We use the general set-up of

Example 5.1.9, so we look at the group GR associated to an algebraic torus R with

Gm ⊂ R ⊂ RF/QGm.

As mentioned before, the re�ex �eld of (GR, XR) is Q, so (5.2.1) gives an action

of Aut(C) described by class �eld theory and the adelic points of the reciprocity

morphism

r : Gm −→ T = R.

To calculate r, take h0 ∈ XGm ⊂ XR as de�ned in (4.4.2). Then the cocharacter

3[Mil17, (64), p. 119] states this and sketches a proof. In the case of interest of CM points of
variants of the Hilbert modular variety, we will prove a more general result in (5.2.10).
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µh : Gm,C → RC associated to h = dF ◦ h0 : S→ RR is given (on C-points) by

µh : Gm → R ↪→ RF/QGm,

z 7→ (z, . . . , z) ∈
∏
x∈Σ

C×x = (F ⊗Q C)×.

In other words, µh is equal to the �xed embedding Gm ↪→ R. Here we used the

assumption of (4.4.2) that

Gm R

RF/QGm

commutes, where the diagonal arrow is given by z 7→ (z, . . . , z) ∈
∏

x∈Σ C×x on

complex points.

The de�nition of r in [Mil17, (60)] then immediately says that r : Gm → R is

equal to µh, i. e. r is equal to the �xed embedding Gm ↪→ R.

Before continuing this example, let us prove the following lemma:

5.2.3 Lemma. Let Gm ⊂ R ⊂ RF/QGm as before. Then

π0(Sh(GR, XR)) = π0(R(A)/R(Q)).

Proof. By (5.1.9) and the de�nition of Sh(R,VZR) and of VZR we have

π0(Sh(GR, XR)) = Sh(R,VZR)

= lim←−
U

R(Q)\
[
VZR×R(Af )/U

]
= lim←−

U

R(A)
/(
R(Q) · (R(R)>0 × U)

)
,

where R(R)>0 = R(R) ∩ (F ⊗Q R)×>0, and the projective limit is taken over all

compact open subgroups U ⊂ R(Af ). Note that R(R)>0 × U is a subgroup of

R(R) × R(Af ) = R(A), and that we embed R(Q) diagonally in R(R) × R(Af ) =

R(A).

Let us write CR := R(A)/R(Q), which is a subgroup of CF = A×F/F× endowed

with the subspace topology. Since CF is a locally compact, complete topological

group, so is CR. Moreover,

R(A)
/(
R(Q) · (R(R)>0 × U)

)
= π0

(
R(A)

R(Q).[1× U ]

)
= π0(CR/U

′),

where we write U ′ for the subgroup (R(Q).[1×U ])/R(Q) of CR. Taking the projec-
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tive limit commutes with π0, so

lim←−
U

π0(CR/U
′) = π0

(
lim←−
U

CR/U
′

)
.

It remains to show that the canonical map

p : CR −→ lim←−
U

CR/U
′

is an isomorphism.

• p is injective:

The kernel of p is the intersection
⋂
U U

′. To show it is trivial is the same as showing

that ⋂
U

R(Q).[1× U ] = R(Q).

Now R(Q) is discrete in R(A), so if U is small enough, then

R(Q).[1× U ] =
∐

r∈R(Q)

r.[1× U ].

We know that the intersection of all U is 1 (because the intersection of all compact

open subgroups of A×F is 1), hence

⋂
U

 ∐
r∈R(Q)

r.[1× U ]

 = R(Q),

as desired.

• p is surjective:

To ease notation, use the fact that the topology on R(Af ) is second countable and

choose a neighbourhood basis of the identity of the form

U1 ⊃ U2 ⊃ . . .

with Un ⊂ R(Af ) compact open subgroups, and
⋂
n Un = 1. Note that this system of

neighbourhoods is co�nal for the system of all compact open subgroups U ⊂ R(Af ),

so we have

lim←−
U

CR/U
′ = lim←−

n

CR/U
′
n.
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Similarly, choose auxiliary open subsets

V1 ⊃ V2 ⊃ . . .

of R(R) with
⋂
n Vn = {1}. Then Wn := Vn × Un is a co�nal system of open

neighbourhoods of 1 in R(A) (because
⋂
nWn = 1), and similarly the images W ′

n of

Wn inside CR form a co�nal system of open neighbourhoods of 1.

Now assume that (ynU
′
n)n ∈ lim←−nCR/U

′
n, with yn ∈ CR. FixN ∈ N. By de�nition

of the projective limit, we have for all m ≥ N

ym ≡ yN mod U ′N ,

i. e.

y−1
m yN ∈ U ′N . (5.2.3.1)

In particular, for all m,n ≥ N we have

y−1
m yn = (y−1

m yN)(y−1
n yN)−1 ∈ U ′N ⊂ W ′

N .

By the co�nality of the system (W ′
N)N , this means that (yn)n is a Cauchy sequence

inside CR. But CR is complete, so the sequence (yn)n converges to a limit y ∈ CR.
We claim that

p(y) = (ynU
′
n)n,

which then implies that p is surjective.

Proof of claim. Since (yn)n converges to y, we in particular have, for all N ∈ N,

y ≡ yN mod W ′
N . (5.2.3.2)

If we can show this congruence modulo U ′N instead of W ′
N , we are done since this

then says

p(y) = (yNU
′
N)N .

Let (an, bn) ∈ R(R)×R(Af ) (resp. (a, b)) denote a lift of yn ∈ CR (resp. y). Since

limn→∞ yn = y in CR, there exist rn ∈ R(Q) such that limn→∞ rn(an, bn) = (a, b) in

R(A). Changing (an, bn) to rn(an, bn), we may assume that

(an, bn)→ (a, b), n→∞, (5.2.3.3)

inside R(A).
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(5.2.3.1) implies that for all m ≥ N (and all N) we have

(a−1
m aN , b

−1
m bN) ∈ U ′N = R(Q).[1× UN ].

In particular, am = sma1 for sm ∈ R(Q). But am → a as m → ∞, so sm → a/a1

as m → ∞. But R(Q) is discrete in R(R), hence (sm)m must become constant, so

a/a1 lies in R(Q) and w.l.o.g. we may assume that sm = a/a1 for all m, i. e. am = a

for all m.

Now (5.2.3.3) becomes

(an, bn) = (a, bn)→ (a, b), n→∞,

which when combined with (5.2.3.2) becomes

yN = (aN , bN)R(Q) ≡ (a, b)R(Q) = y mod U ′N ,

so we are done.

5.2.4 Example. (Galois action on π0(Sh(GR, XR)) = π0(R(A)/R(Q))) (5.2.2) de-

scribes an action of Aut(C) on π0(Sh(GR, XR)). Under the identi�cation of (5.2.3),

we get an action of Aut(C) on π0(R(A)/R(Q)), which we will now describe:

The inclusions Gm ⊂ R ⊂ RF/QGm induce inclusions on the level of adelic points

A×Q ↪→ R(AQ) ↪→ A×F and on the level of Q-points Q× ↪→ R(Q) ↪→ F×. Hence

we also get an induced map on quotients CQ ↪→ CR ↪→ CF , and can pass to the

connected components to get

π0(A×Q/Q
×) −→ π0(R(A)/R(Q)) −→ π0(A×F/F

×). (5.2.4.1)

We denote the left hand arrow by i and the right hand arrow by j. Then γ ∈ Aut(C)

acts on Sh(R,VZR) = π0(R(AQ)/R(Q)) by multiplication by

i
(
art−1

Q (γ|Qab)
)
∈ π0(R(AQ)/R(Q)).

5.2.5 Example. Let us look in more detail at the special cases of Example (5.1.5):

(5.2.5.a) As in (5.1.5.a), let G1 = RF/Q GL2 and X1 = (C \ R)Σ, so that Sh(G1, X1) is

the Hilbert modular variety. Then the connected components of Sh(G1, X1)

are given by

π0(Sh(G1, X1)) = Sh(RF/QGm, {±1}Σ) = π0(A×F/F
×),

the group of connected components of the idele class group of F , which is

isomorphic to Γab
F via the Artin map artF , see (2.4.1).
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Let γ ∈ Aut(C) and s ∈ A×Q such that artQ(s) = γ|Qab . Then γ acts on

Sh(RF/QGm, {±1}Σ) = π0(A×F/F×) as multiplication by the element

r(s) = i(art−1
Q (γ|Qab)) = art−1

F (VF/Q(γ|Qab)) ∈ π0(A×F/F
×),

where the second equality uses the commutative diagram (2.4.3) from class

�eld theory.

(5.2.5.b) As in (5.1.5.b), look at the PEL Hilbert modular variety Sh(G,X). The con-

nected components are given by

π0(Sh(G,X)) = Sh(Gm, {±1}) = π0(A×Q/Q
×).

In this case, r : Gm → R = Gm is the identity, so γ ∈ Aut(C) acts on

Sh(Gm, {±1}) = π0(A×Q/Q×) as multiplication by the element

r(s) = art−1
Q (γ|Qab) ∈ π0(A×Q/Q

×).

By (5.2.4) the action of ΓQ on π0(Sh(GR, XR)) = π0(R(A)/R(Q)) is determined

by the map

ΓQ
art−1

Q−−−→ π0(A×Q/Q
×)

i−−→ π0(R(A)/R(Q)).

We would like to extend this action to the plectic group AutF (F ⊗QQ). It is natural

to do this by extending this map, and it will again not be the full plectic group that

acts but rather a group �tting into a Cartesian diagram.

5.2.6. (Plectic action on π0(Sh(GR, XR))) Let R be an algebraic torus de�ned over

Q with Gm ⊂ R ⊂ RF/QGm as in (4.4.2). We de�ne the group (SΣ n ΓΣ
F )Rπ0

by the

Cartesian diagram

(SΣ n ΓΣ
F )Rπ0

SΣ n ΓΣ
F

π0(R(A)/R(Q)) Γab
F ,

(1,prod)π0
(1,prod)

artF ◦j

(5.2.6.1)

where j : π0(R(A)/R(Q)) → π0(A×F/F×) denotes the right hand arrow in (5.2.4.1).

From now on we denote the left vertical arrow de�ned by this diagram by (1, prod)π0 .

We also de�ne AutF (F ⊗Q Q)Rπ0
by the Cartesian diagram

AutF (F ⊗Q Q)Rπ0
AutF (F ⊗Q Q)

π0(R(A)/R(Q)) Γab
F ,

(1,prod)π0◦βs (1,prod)◦βs

artF ◦j
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which is independent of s by (4.1.9.b). Note that the isomorphism βs : AutF (F ⊗Q

Q)
∼−−→ SΣ n ΓΣ

F induces an isomorphism AutF (F ⊗Q Q)Rπ0

∼−−→ (SΣ n ΓΣ
F )Rπ0

, which

we also denote by βs.

Now let γ ∈ (SΣF n ΓΣF
F )Rπ0

act on π0(R(AQ)/R(Q)) by multiplication by the

element (1, prod)π0(γ). We claim that this de�nes a group action of (SΣ n ΓΣ
F )Rπ0

on

π0(R(AQ)/R(Q)) that extends the action of ΓQ described in (5.2.4) via the embed-

ding ρs : ΓQ ↪→ SΣ n ΓΣ
F .

Of course, we also let γ ∈ AutF (F ⊗Q Q)Rπ0
act on π0(R(A)/R(Q)) by multipli-

cation by (1, prod)π0(βs(γ)), which is independent of s by (4.1.9.b).

Proof of claim. It is a group action because (1, prod)π0 is a group homomorphism.

To show that it extends the ΓQ-action, look at the diagram

ΓQ

(SΣ n ΓΣ
F )Rπ0

SΣ n ΓΣ
F

Γab
Q π0(R(A)/R(Q)) Γab

F ,

ρs

(1,prod)π0
(1,prod)

i◦art−1
Q

artF ◦j

where i : π0(A×Q/Q×) → π0(R(A)/R(Q)) is the left hand arrow in (5.2.4.1). In this

diagram, the composition of the two bottom arrows is equal to VF/Q : Γab
Q → Γab

F

by (2.4.3), so the commutative diagram in (4.1.9.b) precisely says that the outer

trapezium in this diagram commutes. As the bottom right square is Cartesian, the

the embedding ρs : ΓQ ↪→ SΣ nΓΣ
F factors through (SΣ nΓΣ

F )Rπ0
. The commutativity

of the left hand trapezium then precisely shows that the action of (SΣ n ΓΣ
F )Rπ0

restricted to ΓQ coincides with the action in (5.2.4).

5.2.7 Remark. Note that the group (SΣnΓΣ
F )Rπ0

is not necessarily a subgroup of the

plectic group SΣ nΓΣ
F . It will be a subgroup if the bottom arrow artF ◦j in (5.2.6.1)

is injective. Since artF : π0(A×F/F×)
∼−−→ Γab

F is an isomorphism, the bottom arrow

is injective if and only if the following condition holds:

(5.2.7.a) The map

j : π0(R(A)/R(Q)) −→ π0(A×F/F
×),

induced from the inclusion R ⊂ RF/QGm, is injective.

In Section 5.3, we will discuss condition (5.2.7.a) and exhibit many examples of

tori satisfying it, see (5.3.1) and (5.3.7).

Let us continue by looking at special cases of (5.2.6).
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5.2.8 Example. ((PEL) Hilbert modular variety) As always, let us have a closer

look at the special cases R = RF/QGm and R = Gm:

(5.2.8.a) In the case (5.1.5.a) of the Hilbert modular variety, we have R = RF/QGm

and j = id: π0(A×F/F×) → π0(A×F/F×), so R satis�es (5.2.7.a). Moreover

(SΣ n ΓΣ
F )Rπ0

= SΣ n ΓΣ
F , so the entire plectic group acts on π0(Sh(G1, X1)).

(5.2.8.b) In the case (5.1.5.b) of the PEL Hilbert modular variety, we have R = Gm

and j : π0(A×Q/Q×) → π0(A×F/F×). By (2.4.3), the map j corresponds to the

transfer map VF/Q : Γab
Q → Γab

F under class �eld theory. Hence j is injective by

(4.2.2), thus R satis�es (5.2.7.a).

Moreover, (SΣ n ΓΣ
F )Gmπ0

= (SΣ n ΓΣ
F )0 by comparing the de�ning diagrams

in (5.2.6) and (4.2.8): The bottom left entries are isomorphic via the Artin

map artQ : π0(A×Q/Q×)
∼−−→ Γab

Q and the bottom arrows are related by diagram

(2.4.3).

Next, we show that the π0-map

π0 : Sh(GR, XR)CM −→ Sh(R,VZR)

is equivariant with respect to the plectic actions de�ned in (4.4.13) and (5.2.6). Here

Sh(GR, XR)CM denotes the set of CM points of Sh(GR, XR), see (4.4.10).

First of all, we need to compare the group (SΣ n ΓΣ
F )RCM, de�ned in (4.4.11),

which acts on Sh(GR, XR)CM, with the group (SΣ nΓΣ
F )Rπ0

, de�ned in (5.2.6), which

acts on Sh(R,VZR). In (5.2.8) we saw that for R = Gm or R = RF/QGm we have

(SΣ n ΓΣ
F )RCM = (SΣ n ΓΣ

F )Rπ0
. In general, we have

5.2.9 Lemma. Let Gm ⊂ R ⊂ RF/QGm be an intermediate algebraic torus over Q.
Then

(SΣ n ΓΣ
F )RCM ↪→ (SΣ n ΓΣ

F )Rπ0
.

Proof. Look at the diagram

(SΣ n ΓΣ
F )RCM SΣ n ΓΣ

F

R(Af )/R(Q)>0 A×F,f/F
×
>0

π0(R(A)/R(Q)) π0(A×F/F×) Γab
F .

χF ◦(1,prod) (1,prod)

rF

j artF
∼

(5.2.9.1)

Here the top left hand square is the Cartesian square (4.4.11), which de�nes (SΣ n
ΓΣ
F )RCM, the top right hand triangle commutes because rF ◦χF = id, and the bottom
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right hand triangle commutes by (2.4.1.1). Moreover, the bottom left hand vertical

arrow is well-de�ned because clearly the identity component of R(A)/R(Q) contains

(R(R)>0 ·R(Q))/R(Q), and the kernel of the map R(Af )→ R(A)/(R(R)>0 ·R(Q)) is

R(Q)>0. Also j is induced by R ⊂ RF/QGm, and so the bottom left square commutes

by functoriality of taking quotients and applying π0.

Looking only at the outer edges of (5.2.9.1), we conclude that the embedding

(SΣ n ΓΣ
F )RCM ⊂ SΣ n ΓΣ

F factors through (SΣ n ΓΣ
F )Rπ0

by the Cartesian diagram

(5.2.6.1).

We are ready to prove our main result Theorem (1.2.1).

5.2.10 Theorem. Let Gm ⊂ R ⊂ RF/QGm be an intermediate algebraic torus

de�ned over Q. Then the π0-map restricted to CM points

π0 : Sh(GR, XR)CM −→ Sh(R,VZR)

is (SΣ n ΓΣ
F )RCM-equivariant.

Proof. The main ingredients of the proof are the description (5.1.9) of the π0-map,

the interpretation (4.4.5) of (special) points of Sh(GR, XR) as (CM) abelian varieties,

and of course the de�nition of the plectic actions on CM points (4.4.13) and on the

set of connected components (5.2.6).

So let

P =
[
CΦ/Φ(a), iΦ|F , R(Q)Et, ηZR(Q)

]
be a CM point of Sh(GR, XR), with K a totally imaginary quadratic extension of

F and (K,Φ; a, t) as in (2.3.5). Write the CM type Φ as Φ = {ϕx | x ∈ ΣF}, where
ϕx|F = x for all x ∈ ΣF . Let us assume that Imϕx(t) > 0 for all x ∈ ΣF .

(a) Calculation of π0(P):

We start by calculating the point [h, g] ∈ Sh(GR, XR) corresponding to P . The

Hodge structure hΦ : S → GL(H1(CΦ/Φ(a),R)) of the abelian variety CΦ/Φ(a) is

given in (2.3.3): We have H1(CΦ/Φ(a),Q) = K and hΦ on real points is given by

hΦ : C× −→ AutK⊗QR(H1(CΦ/Φ(a),R)) = (K ⊗Q R)× ⊂ GLR(CΦ)

i 7−→



0 −1

1 0
. . .

0 −1

1 0


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with respect to the R-basis


1

0
...

0

 ,


i

0
...

0

 , . . . ,


0
...

0

1

 ,


0
...

0

i




of CΦ = K ⊗Q R.
Using the totally imaginary element α := 1

t
∈ K×, which under ϕx ∈ Φ has pos-

itive imaginary parts βx := Imϕx(α) > 0 for all x ∈ ΣF , we de�ne the isomorphism

of F -vector spaces

a : K
∼−−→ F 2, 1 7→

(
1

0

)
, α 7→

(
0

1

)
.

We conclude that by (4.4.5) we have

h = a ◦ hΦ ◦ a−1 : S −→ (GR)R and g = a ◦ η ∈ GR(Af ) = GL2(AF,f ),

but �rst we need to check that a satis�es condition (4.4.5.a): Indeed, a direct cal-

culation shows that

Et(u, v) = −2 TrF/Q(u1v2 − u2v1) = −2ψ(a(u), a(v)),

where u = u1 + u2α, v = v1 + v2α ∈ K× with u1, u2, v1, v2 ∈ F×. As −2 ∈ Q× ⊂
R(Q), this means that a sends Et to an R(Q)-multiple of ψ as desired.

Moreover, h = a◦hΦ◦a−1 ∈ XR holds by the following calculation of the image of

h under the isomorphism X1
∼= (C\R)Σ of (3.2.1.2): We see that h(i) = (h(i)x)x∈Σ ∈

G1(R) with

h(i)x =

(
0 iϕx(α)
−1

iϕx(α)
0

)
=

(
0 −βx
1
βx

0

)
=

(
βx

1

)(
0 −1

1 0

)(
βx

1

)−1

.

This means that h = Bh0B
−1 with B =

((
βx

1

))
x∈ΣF

∈ G1(R). Hence h

corresponds to B · (i, . . . , i) = (βxi)x∈ΣF , which lies in hΣ = X+
1 = (XR)+. In

particular, h lies in XR and so a satis�es (4.4.5.a).

Using (5.1.9), we conclude that

π0(P) = [(sgn(βx))x∈Σ, det(a ◦ η)] = [(1)x∈Σ, det(a ◦ η)] ∈ Sh(R,VZR).

107



5.2. PLECTIC ACTION ON π0 5. CONNECTED COMPONENTS

(b) Calculation of γ(π0(P)), for γ ∈ (SΣ n ΓΣ
F )RCM.

By (5.2.6), the image of [(1)x∈Σ, det(a ◦ η)] under γ is

γ(π0(P)) = (1, prod)π0 ◦ βs(γ) · [(1)x∈Σ, det(a ◦ η)]. (5.2.10.1)

(c) Calculation of π0(γP):

On the other hand, let us �rst conjugate P by γ and then calculate the image under

the π0-map. After choosing f̃ ∈ A×K,f such that f̃Φ(γ) = f̃K× and u ∈ R(Af ) such

that χF ◦ (1, prod) ◦ βs(γ) = uF×>0, (4.4.13.1) gives

γP =
[
CγΦ/γΦ(f̃a), iγΦ|F , F×Eχt, f̃ ◦ ηZR(Q)

]
,

where χ = u
1+cf̃
∈ F×.

Doing the exact same steps as before, let us �rst calculate the point [h′, g′] ∈
Sh(GR, XR) corresponding to this conjugate quadruple: Write γΦ = {ϕ′x | x ∈ ΣF},
where ϕ′x|F = x for all x ∈ ΣF . Let α

′ := 1
χt
∈ K×. The calculation of the signs of

χt in (4.4.13.3) shows that we have

β′x := Imϕ′x(α
′) > 0, for all x ∈ ΣF .

The Hodge structure of CγΦ/γΦ(f̃a) is given by hγΦ, and using the isomorphism

of F -vector spaces

a′ : K
∼−−→ F 2, 1 7→

(
1

0

)
, α′ 7→

(
0

1

)

we see that

h′ = a′ ◦ hγΦ ◦ (a′)−1 and g′ = a′ ◦ f̃ ◦ η.

Furthermore, we see that h′(i) = (h′(i)x)x∈Σ ∈ GR(R) with

h′(i)x =

(
0 −β′x
1
β′x

0

)
=

(
β′x

1

)(
0 −1

1 0

)(
β′x

1

)−1

,

hence h′ = B′h0(B′)−1 with B′ =

((
β′x

1

))
x∈ΣF

∈ G1(R) and so h′ corresponds

to B′ · (i, . . . , i) = (β′xi)x∈ΣF ∈ hΣ ⊂ XR.

Finally, we get

π0(γP) = [(sgn β′x)x∈Σ, det(a′ ◦ f̃ ◦ η)] = [(1)x∈Σ, det(a′ ◦ f̃ ◦ η)].
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As a′ =

(
1

χ

)
◦ a, we see that

det(a′ ◦ f̃ ◦ η) = χ(1+cf̃) det(a ◦ η) = u det(a ◦ η),

so we conclude that

π0(γP) = [(1)x∈Σ, u det(a ◦ η)]. (5.2.10.2)

(d) Comparison of (5.2.10.1) and (5.2.10.2):

We do this by spelling out the action of γ in (5.2.10.1). By the proof of Lemma

(5.2.9), in particular by diagram (5.2.9.1), the element (1, prod)π0 ◦βs(γ) is equal to

the image of uR(Q)>0 ∈ R(Af )/R(Q)>0 inside π0(R(A)/R(Q)). Chasing through

the identi�cation Sh(R,VZR) ∼= π0(R(A)/R(Q)) of (5.2.3), we see that (5.2.10.1)

equals

(1, prod)π0 ◦ βs(γ) · [(1)x∈Σ, det(a ◦ η)] = [(1)x∈Σ, u det(a ◦ η)],

i. e. is equal to (5.2.10.2).

5.3 Appendix: When is AutF (F ⊗Q Q)Rπ0
a subgroup

of the plectic group?

We conclude this chapter by discussing scenarios in which the torus R satis�es

assumption (5.2.7.a). As a motivating example, we look at tori R = RF ′/QGm

coming from sub�elds F ′ ⊂ F :

5.3.1 Lemma. Let F ′ ⊂ F be a sub�eld, and let R = RF ′/QGm. Let Gm ↪→ R ↪→
RF/QGm be the morphisms of Q-algebraic tori that on Q-points are given by the

inclusions Q× ↪→ F ′× ↪→ F×.

Then R satis�es (5.2.7.a).

Proof. First of all, note that R(A) = A×F ′ and R(Q) = F ′×, so that R(A)/R(Q) is

equal to the idele class group CF ′ = A×F ′/F ′× of F ′.

We want to prove that

π0(CF ′) −→ π0(CF )

is injective. We reduce to the case when F/F ′ is Galois: Indeed, in the general case

let F � be the Galois closure of F over F ′. Then the result for Galois extensions

implies that π0(CF ′) and π0(CF ) both embed into π0(CF �). The map CF ′ → CF �

factors through CF , so the embedding π0(CF ′) ↪→ π0(CF �) factors through π0(CF ),

implying that the map π0(CF ′)→ π0(CF ) is injective as desired.
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So now assume that F/F ′ is Galois, say with Galois group H. Look at the short

exact sequence

0 C0
F CF π0(CF ) 0,

where C0
F denotes the identity component of CF .

Taking H-invariants of this short exact sequence yields the long exact sequence

0 (C0
F )H CH

F π0(CF )H H1(H,C0
F ) . . .

By [Neu13, III.2.7], we have H0(H,CF ) = CF ′ , and by [NSW15, 8.2.6] we have

H0(H,C0
F ) = C0

F ′ and H
1(H,C0

F ) = 0. Hence the long exact sequence yields

(π0(CF ))H = CF ′/C
0
F ′ = π0(CF ′),

so in particular the map π0(CF ′)→ π0(CF ) is injective.

Inspired by the proof of (5.3.1), we can formulate a condition in terms of Galois

cohomology of the torus R that also implies (5.2.7.a).

5.3.2 Proposition. Let Gm ⊂ R ⊂ RF/QGm be as in (4.4.2). Denote a Galois

closure of F over Q by F � and its Galois group by G := Gal(F �/Q). Write Λ :=

X∗(R) for the character group of R. The torus R is split over F �, so Λ is a G-

module, and we assume that

ker
(
Ext1

G(Λ, (F �)×) −→ Ext1
G(Λ,A×F �)

)
= 0. (5.3.2.1)

Then R satis�es (5.2.7.a).

Before starting with the proof, let us simplify notation and assume that F/Q is

Galois:

5.3.3 Remark. (Reduction to the case when F/Q is Galois) Assuming the state-

ment of the proposition for all Galois extensions F/Q, we can deduce the general

statement in the same way as in the proof of (5.3.1): We then have embeddings

π0(R(A)/R(Q)) ↪→ π0(CF �) and π0(CF ) ↪→ π0(CF �), �tting into the commutative

diagram

π0(R(A)/R(Q)) π0(CF �)

π0(CF ).

This implies that the diagonal arrow is also injective, which is what we wanted to

show.
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From now on, we assume that F/Q is Galois with G = Gal(F/Q). Before

completing the proof of (5.3.2), let us make some remarks about the Ext-groups

Ext1
G(Λ, F×) and Ext1

G(Λ,A×F ):

5.3.4 Remark (Ext1
G(Λ,−)). The functors Extp(Λ,−) are the right derived functors

of the functor HomG(Λ,−). As functors from the category of G-modules to the

category of abelian groups, we have

HomG(Λ,−) = (·)G ◦ Hom(Λ,−).

The associated Grothendieck spectral sequence

Epq
2 = Hp(G,Extq(Λ,−)) =⇒ Extp+qG (Λ,−).

degenerates, because Λ is a free abelian group and hence Hom(Λ,−) is exact. Thus

Hp(G,Hom(Λ,−)) = ExtpG(Λ,−), p ≥ 0.

In particular, we get

Ext1
G(Λ, F×) = H1(G,Hom(Λ, F×))

= H1(G,X∗(R)⊗Z F
×)

= H1(G,R(F )),

where we used the G-isomorphisms Hom(Λ, F×) ∼= X∗(R) ⊗Z F
× ∼= R(F ), the

former being induced from the perfect pairing Λ × X∗(R) → Z, the latter being

[PR94, Lemma 6.7, p. 302].

Similarly, by [Tat66, p. 719] we have Hom(Λ,A×F ) = R(AF ), thus

Ext1
G(Λ,A×F ) = H1(G,R(AF )).

Hence (5.3.2.1) is equivalent to

X(R) := ker
(
H1(G,R(F )) −→ H1(G,R(AF ))

)
= 0, (5.3.4.1)

where X(R) denotes the Shafarevich�Tate group of R, see [PR94, p. 307].

Proof of Proposition (5.3.2). By remark (5.3.3) we assume that F/Q is Galois with

G := Gal(F/Q). We follow the same strategy as in the proof of (5.3.1) and start by

looking at the short exact sequence

0 C0
F CF π0(CF ) 0.
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We will always denote the identity component of a topological group A by A0.

Applying the functor HomG(Λ,−) yields

0 HomG(Λ, C0
F ) HomG(Λ, CF ) HomG(Λ, π0(CF ))

Ext1
G(Λ, C0

F ) . . .

We will see below that

(a) HomG(Λ, CF ) = R(A)/R(Q),

(b) HomG(Λ, C0
F ) = HomG(Λ, CF )0, and

(c) Ext1
G(Λ, C0

F ) = 0,

so the above long exact sequence yields

HomG(Λ, π0(CF )) =
R(A)/R(Q)(
R(A)/R(Q)

)0 = π0(R(A)/R(Q)).

Now note that R ⊂ RF/QGm, so Λ = X∗(R) is a quotient ofX∗(RF/QGm) = Z[G],

say Λ = Z[G]/I for a G-stable I ⊂ Z[G]. This means Λ is a cyclic Z[G]-module,

thus

HomG(Λ, π0(CF )) −→ π0(CF ), α 7→ α([id] + I)

is injective, i. e. π0(R(A)/R(Q)) embeds into π0(CF ).

• Proof of (a):

Let us look at the short exact sequence

0 F× A×F CF 0.

We apply the functor HomG(Λ,−) and, using the assumption (5.3.2.1), get the short

exact sequence

0 HomG(Λ, F×) HomG(Λ,A×F ) HomG(Λ, CF ) 0.

Now we use [Vos01, �2.4, p. 3111] that, because R is split over F , for every Q-algebra
A we have

R(A) = HomG(Λ, (A⊗Q F )×).

Applying this fact for A = Q and A = A = AQ gives

R(A)/R(Q) = HomG(Λ, CF ).
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• Proof of (b) and (c):

Since Λ is Z-free, we have

Hom(Λ, C0
F ) = Hom(Λ, CF )0. (5.3.4.2)

To shorten notation, let us temporarily denote Hom(Λ, CF ) by A. Since C0
F is

G-stable, so is Hom(Λ, C0
F ) = A0. So we take G-invariants and get

HomG(Λ, C0
F ) =

[
A0
]G
.

For (b), we are left to show

[
A0
]G

=
[
AG
]0
.

First of all, [AG]0 is connected, so [AG]0 ⊂ A0; but also every element of [AG]0 is

G-invariant, hence [
A0
]G ⊃ [AG]0 .

To show equality, we need to show that [A0]G is connected, because then the inclusion

[A0]G ⊂ AG implies that

[A0]G ⊂ [AG]0.

To show that [A0]G is connected, let us �rst use the de�nition of A and (5.3.4.2):

[
A0
]G

=
[
Hom(Λ, CF )0

]G
= H0(G,Hom(Λ, C0

F )).

Using that Λ is a free Z-module, say of rank m, we see that as abelian groups we

have

Hom(Λ, C0
F ) ∼= (C0

F )m.

By [NSW15, 8.2.5], C0
F = ([R × Ẑ]/Z)r−1 × R, where r = [F : Q], which by

[NSW15, 8.2.4] is uniquely divisible. Thus the same is true for (C0
F )m ∼= Hom(Λ, C0

F ),

so by [NSW15, 1.6.2] we see that Hom(Λ, C0
F ) is cohomologically trivial, i. e.

Ĥ0(G,Hom(Λ, C0
F )) = 0 and H1(G,Hom(Λ, C0

F )) = 0. (5.3.4.3)

The �rst equality means that

H0(G,Hom(Λ, C0
F )) = NG(Hom(Λ, C0

F )),

so the continuity of the norm map NG =
∑

σ∈G σ : CF → CF implies that [A0]G =

H0(G,Hom(Λ, C0
F )) is connected because Hom(Λ, C0

F ) ∼= (C0
F )m is. This �nishes the
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proof of (b).

Finally, using (5.3.4) and (5.3.4.3) we can also deduce (c):

Ext1
G(Λ, C0

F ) = H1(G,Hom(Λ, C0
F )) = 0.

This �nishes the proof of the proposition.

5.3.5 Remark. For completeness, note that the torus R = RF ′/QGm for a sub�eld

F ′ ⊂ F satis�es (5.3.2.1), so that (5.3.2) includes (5.3.1) as a special case:

We still assume that F/Q is Galois with G = Gal(F/Q), and let H := Gal(F/F ′).

Then Λ = X∗(R) = Z[G/H] = CoindGH Z = IndGH Z as G-modules4, hence by

[NSW15, footnote p. 63] we have

HomG(Λ,−) = HomG(IndGH Z,−) = HomH(Z,ResGH −) = (·)H ◦ ResGH ,

where ResGH is the functor from G-modules to H-modules that simply restricts the

G-action to the subgroup H, and Z is equipped with the trivial H-action.

The functor ResGH is clearly exact, hence in the same way as in (5.3.4) we deduce

that

Hp(H,ResGH −) = ExtpG(Λ,−), p ≥ 0.

Thus by Hilbert 90:

Ext1
G(Λ, F×) = H1(H,F×) = 0,

hence R satis�es (5.3.2.1).

We �nish this section by discussing condition (5.3.4.1) and providing more ex-

amples of tori R satisfying it.

5.3.6 Remark. Let F/Q be Galois with Galois group G and Gm ⊂ R ⊂ RF/QGm

as before. Let S = SF denote the set of all places of F . We view Z[S] as a G-module

via the usual action of G on places of F , and let A be the kernel of the G-equivariant

surjective map

Z[S] −→ Z,∑
w∈S

aw[w] 7−→
∑
w∈S

aw.

We apply [Tat66, Thm, p. 717] with M := X∗(R) and r + 2 = 1 to get the

4See [NSW15, footnote p. 61] for the de�nition of the functor CoindG
H from H-modules to

G-modules. Here it is equal to IndG
H (see (4.1.4.1)) because G is �nite.
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following commutative diagram with exact rows and vertical isomorphisms:

. . . Ĥ−1(G,A⊗Z M) Ĥ−1(G,Z[S]⊗Z M) Ĥ−1(G,M)

. . . Ĥ1(G,R(F )) Ĥ1(G,R(AF )) Ĥ1(G,CF ⊗Z M)

∼ ∼ ∼

Thus

X(R) = ker
(
Ĥ−1(G,A⊗Z M)→ Ĥ−1(G,Z[S]⊗Z M)

)
= coker

(
Ĥ−2(G,Z[S]⊗Z M)→ Ĥ−2(G,M)

)
,

so (5.3.4.1) is equivalent to

coker
(
Ĥ−2(G,Z[S]⊗Z M)→ Ĥ−2(G,M)

)
= 0. (5.3.6.1)

For certain �elds F , all tori R with Gm ⊂ R ⊂ RF/QGm satisfy (5.3.6.1):

5.3.7 Example. Let F/Q be Galois and Gm ⊂ R ⊂ RF/QGm as before. Denote

M := X∗(R). Assume that there exists a prime number p with precisely one prime

ideal p above p in F . For example, if F/Q is cyclic, there exist inert primes p by

Chebotarev's Density Theorem [Neu92, VII.13.4], which have this property.

The G-module Z[S] decomposes as
⊕

v Z[Sv], where v runs over the places SQ of

Q and Sv denotes the places of F above v. Let us show that R satis�es (5.3.6.1),

i. e. that the map

Ĥ−2(G,Z[SF ]⊗Z M) =
⊕
v∈SQ

Ĥ−2(G,Z[Sv]⊗Z M) −→ Ĥ−2(G,M)

is surjective: By assumption Sp = {p}, so

Z[Sp] −→ Z, a[p] 7−→ a,

is an isomorphism of G-modules, inducing a G-equivariant isomorphism Z[Sp] ⊗Z

M ∼= M . Thus Ĥ−2(G,Z[Sp]⊗ZM) ∼= Ĥ−2(G,M) is also an isomorphism, hence R

satis�es (5.3.6.1).

5.3.8. (Summary) We have seen that the equivalent conditions (5.3.2.1), (5.3.4.1)

(vanishing of X(R)) and (5.3.6.1) are satis�ed for many tori R, see (5.3.5) and

(5.3.7). We also saw in (5.3.2) that these conditions imply (5.2.7.a).

However, we do not know whether (5.2.7.a) is equivalent to (5.3.2.1), or whether

either of these conditions holds for all tori R. There are examples of �norm one tori�

T which do not satisfy X(T ) = 0, see e. g. [PR94, Ex. 1, p. 308]. The Shafarevitch�
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Tate group of a norm one torus is well-studied because it vanishes if and only if the

Hasse norm principle holds for the corresponding �eld extension. See [MN19] for

more details.

Unfortunately, the norm one torus for the extension F/Q does not contain Gm,

so it does not fall into the setup of (4.4.2). Nonetheless the fact that for certain

�elds F there are tori T ⊂ RF/QGm that do not satisfy X(T ) = 0 seems to us to be

an indication that (5.3.4.1) probably does not hold for all R with Gm ⊂ R either.
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6

Plectic action on cocharacters

Fix a totally real number �eld F . The re�ex �eld of a Shimura datum (G,X) is of

fundamental importance in the theory of Shimura varieties. The goal of this chapter

is to de�ne the plectic analogue of the absolute Galois group of the re�ex �eld, the

so-called plectic re�ex Galois group, for algebraic groups G that di�er only in the

centre from a group of the form RF/QH.

In Section 6.1, we recall from [NS16, �5] how the plectic group SΣnΓΣ
F canonically

acts on the cocharacters of the group RF/QH, and how this action is used to de�ne

the plectic re�ex Galois group of a Shimura datum (RF/QH,X).

In Section 6.2 we look at cocharacters of the groups GR that di�er only in the

centre from RF/Q GL2, where R is an algebraic torus over Q with Gm ⊂ R ⊂
RF/QGm. The Cartesian diagram (1.2.0.3) allows us to view the cocharacter group

X∗(G
R) ofGR as a subgroup ofX∗(RF/Q GL2). The latter carries an action of SΣnΓΣ

F

by Section 6.1, so we can de�ne the subgroup (SΣnΓΣ
F )Rcc of SΣnΓΣ

F as the stabiliser

of the subsetX∗(G
R) ⊂ X∗(RF/Q GL2). In (6.2.6), it is then straightforward to de�ne

the plectic re�ex Galois group of (GR, XR) as the stabiliser of a certain conjugacy

class µXR of cocharacters of GR.

We �nish Section 6.2 with discussing properties of algebraic groups G that di�er

only in the centre from an arbitrary group G1. By de�nition, this means that

diagram (1.2.0.2) is Cartesian. In (6.2.9), we relate the derived group, the adjoint

group, the centre, and the cocentre of G to their respective counterparts of G1 using

this Cartesian diagram. Moreover, if G1 is of the form RF/QH and admits a Shimura

variety, the same methods as for the groups GR can be used to de�ne the plectic

re�ex Galois group associated to G.
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6.1 Plectic action on cocharacters of restrictions of

scalars

6.1.1. (Cocharacters) Let G be an algebraic group de�ned over Q. Then a cochar-

acter of G is a morphism of algebraic groups from the multiplicative group Gm to

G, de�ned over Q. We denote the set of cocharacters of G by

X∗(G) := Hom(Gm,Q, G),

where �Hom� denotes morphisms of group schemes over Q.

The set X∗(G) comes equipped with an action of the Galois group ΓQ. To de�ne

this action, let us recall:

6.1.2. (Galois action on schemes) Let k be a �eld, X0 a scheme over k and X the

base change of X0 to the separable closure k of k. This means we have a Cartesian

diagram

X Spec k

X0 Spec k.

π

a ι

π0

Here ι = Spec(i) for the �xed inclusion i : k ↪→ k, and π0 is the structure morphism.

Now for γ ∈ Γk, we have γ ◦ i = i, which translates to ι◦Spec(γ) = ι. This yields

the unique dotted arrow in the following diagram, de�ning a (right) action of Γk on

the scheme X.

X Spec k

X Spec k

X0 Spec k.

π

γ∗X

a

Spec(γ)

π

a ι

π0

As a concrete example, assume X0 = Spec k[T1, . . . , Tn]/(f1, . . . , fm) is an a�ne

variety. The k-points of X are the simultaneous solutions (xi)i ∈ k
n
to the polyno-

mial equations fj(x1, . . . , xn) = 0, j = 1, . . . ,m. Then γ∗X acts on the k-points of X

by (xi)i 7→ (γ(xi))i.

From now on, we will simply write γ (or sometimes γ∗) for γ∗X or Spec(γ). We

hope this does not cause confusion.

6.1.3. (Galois action on cocharacters) We apply (6.1.2) for the scheme Gm over Q,
and the action of ΓQ on Gm,Q induces an action of ΓQ on X∗(G) by pre-composition

γ : χ 7→ χ ◦ γ, γ ∈ ΓQ, χ ∈ X∗(G). (6.1.3.1)
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Note that, despite its appearance, this is a left action because in reality we are

precomposing by γ∗Gm,Q and (γ1γ2)∗Gm,Q = (γ2)∗Gm,Q(γ1)∗Gm,Q . Also note that χ ◦ γ is

again a morphism of group schemes, i. e. a cocharacter of G.

There is another way of de�ning this action, which will be useful for us. First of

all, note that by base-change

X∗(G) = HomQ−Gr-Sch(Gm,Q, G) = HomQ−Gr-Sch(Gm,Q, GQ). (6.1.3.2)

The absolute Galois group ΓQ acts on both Gm,Q and GQ by (6.1.2). The previous

De�nition (6.1.3.1) then translates (via base-change) to

γ : χ 7→ γ−1 ◦ χ ◦ γ, γ ∈ ΓQ, χ ∈ HomQ−Gr-Sch(Gm,Q, GQ). (6.1.3.3)

To be precise, the right hand side is equal to (γ−1)∗GQ
◦ χ ◦ γ∗Gm,Q .

6.1.4 (Plectic action on cocharacters for restrictions of scalars I). Let H be an

algebraic group de�ned over a number �eld F and let G := RF/QH. Then G is

an algebraic group over Q, hence X∗(G) carries a ΓQ-action as explained above.

However, because G is a restriction of scalars, it carries an action by the plectic

group AutF (F ⊗Q Q) which can be described as follows:

First of all, we can exploit that G(S) = H(SF ) for every Q-scheme S, i. e.

HomQ−Sch(S,G) = HomF−Sch(SF , H),

where SF denotes the base change Spec(F )×Spec(Q) S of S.

Note that X∗(G) is by de�nition the subset of G(Gm,Q) consisting of those Q-
morphisms from Gm,Q to G which are morphisms of group schemes. This property

means that a certain diagram commutes, and translates into the analogous property

in H(Gm,F⊗QQ). Thus

X∗(G) = HomQ−Gr-Sch(Gm,Q, G) = HomF−Gr-Sch(Gm,F⊗QQ, H). (6.1.4.1)

In analogy to diagram (6.1.2), we get for γ ∈ AutF (F ⊗Q Q)

Gm,F⊗QQ Spec(F ⊗Q Q)

Gm,F⊗QQ Spec(F ⊗Q Q)

Gm,F SpecF

γ∗ Spec(γ)
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We conclude that AutF (F ⊗Q Q) acts (on the left) on X∗(G) by precomposition

γ : χ 7→ χ ◦ γ∗, γ ∈ AutF (F ⊗Q Q), χ ∈ X∗(G). (6.1.4.2)

It clearly extends the ΓQ-action (6.1.3.1).

6.1.5 (Plectic action on cocharacters for restrictions of scalars II). We can also

describe the plectic action more explicitly in the following way, using the plectic

group SΣnΓΣ
F : Because G is a restriction of scalars of H, the action of ΓQ on X∗(G)

is the induced action of ΓF on X∗(H), i. e. we have an isomorphism of ΓQ-sets

X∗(G) ∼= Ind
ΓQ
ΓF
X∗(H). (6.1.5.1)

The action of SΣnΓΣ
F is then given by (4.1.4). This de�nition of the plectic action

agrees with the one in (6.1.4) under the isomorphsim βs : AutF (F⊗QQ)
∼−−→ SΣnΓΣ

F

of (4.1.3).

6.1.6 Remark (Plectic equivariant maps on cocharacters). Let Gi = RF/QHi, i =

1, 2, be two algebraic groups over Q that are restriction of scalars, and let f : H1 →
H2 be de�ned over F . Then f induces RF/Q(f) : G1 → G2, which is de�ned over Q,
and thus induces the map

RF/Q(f)∗ : X∗(G1) −→ X∗(G2), χ 7−→ RF/Q(f) ◦ χ.

This map is not only ΓQ-equivariant, but by functoriality in the adjunction (6.1.4.1)

and by De�nition (6.1.4.2) it is also equivariant with respect to the plectic action.

6.1.7 Example. Consider the algebraic torus RF/QGm over Q. Here we consider

Gm as an algebraic group over F , and X∗(Gm) is isomorphic to Z with the trivial

ΓF -action by

Z ∼−−→ X∗(Gm) = HomF−Gr-Sch(Gm,F ,Gm,F ), n 7→ [t 7→ tn].

By (6.1.5.1) and (4.1.4.2), the ΓQ-module X∗(RF/QGm) is isomorphic to Z[Σ], see

(2.1.6). By (4.1.4.2), the plectic action of SΣ nΓΣ
F is given as the linear extension of

(σ, h)[x] = [σ(x)], x ∈ Σ, (σ, h) ∈ SΣ n ΓΣ
F

This means the plectic action on X∗(RF/QGm) factors through the canonical

quotient SΣ, see (4.1.9.a).

6.1.8 Example. Let K be a totally imaginary quadratic extension of the totally

real �eld F . Let Gal(K/F ) = 〈c〉, i. e. denote complex conjugation by c. Consider
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the algebraic torus RK/QGm = RF/QRK/FGm. The ΓQ-module X∗(RK/QGm) is

isomorphic to Z[ΣK ], where ΣK := Hom(K,Q), with ΓQ-action given by

γ[ϕ] = [γϕ], ϕ ∈ ΣK .

In (4.1.6) we have seen how SΣ nΓΣ
F acts on ΣK , and the action on Z[ΣK ] is thus

given by

(σ, h)[cbϕx] = [cb+hxϕσ(x)].

This shows that the plectic action onX∗(RK/QGm) factors through the group SΣn
Gal(K/F )Σ. If K is Galois over Q, then this group is isomorphic to AutF (F ⊗QK)

(resp. Gal(K/Q)# Gal(K/F )) under a modi�cation of βs (resp. πs) from (4.1.3)

(resp. (4.1.5.1)), see [Bla15, (3.2.12)].

6.1.9 Remark. Similar to (6.1.3.3), we can also de�ne the plectic action on cochar-

acters as follows: LetH again be an algebraic group de�ned over F andG := RF/QH.

Starting from (6.1.4.1), base change yields

X∗(G) = HomF−Gr-Sch(Gm,F⊗QQ, H) = HomF⊗QQ−Gr-Sch(Gm,F⊗QQ, HF⊗QQ),

where HF⊗QQ := H ×Spec(F ) Spec(F ⊗Q Q).

In complete analogy to (6.1.3.3), base-change of (6.1.4.2) yields

γ : χ 7→ γ−1 ◦ χ ◦ γ, γ ∈ AutF (F ⊗Q Q), χ ∈ HomF⊗QQ−Gr-Sch(Gm,F⊗QQ, HF⊗QQ).

(6.1.9.1)

To be precise, the right hand side is equal to (γ−1)∗HF⊗QQ
◦ χ ◦ γ∗Gm,F⊗QQ

.

6.1.10 (Galois action on conjugacy classes of cocharacters). Let G be an algebraic

group over Q. In (6.1.3.3) we de�ned a Galois action on X∗(G). This action induces

an action on the G(Q)-conjugacy classes of cocharacters which we will now explain:

By (6.1.3.2), the cocharacters of G are given byX∗(G) = HomQ−Gr-Sch(Gm,Q, GQ).

Recall that an element g ∈ G(Q) acts on the scheme GQ by conjugation as follows:

ad(g) : GQ → GQ ×GQ → GQ

x 7→ (g, x) 7→ gxg−1

To be precise, the map denoted x 7→ g is shorthand for

GQ −→ Spec(Q)
g−−→ GQ

and the second map is the conjugation map (built from the group law G×G→ G).
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We can therefore use (6.1.3.2) to de�ne the cocharacter conjugate to χ ∈ X∗(G)

by g ∈ G(Q) as gχ := ad(g) ◦ χ, i. e.

gχ : Gm,Q
χ−−→ GQ

ad(g)−−−→ GQ. (6.1.10.1)

In order to deduce an action on the conjugacy classes of cocharacters, we need

to show that the ΓQ-action on X∗(G) is compatible with conjugation. We show

γ(gχ) = γg(γχ), γ ∈ ΓQ, g ∈ G(Q), χ ∈ X∗(G). (6.1.10.2)

The calculation is straight-forward:

γ(gχ) = (γ−1)∗G ◦ (gχ) ◦ γ∗Gm
= (γ−1)∗G ◦ (ad(g) ◦ χ) ◦ γ∗Gm
= (γ−1)∗G ◦ ad(g) ◦ γ∗G ◦ (γ−1)∗G ◦ χ ◦ γ∗Gm
= ad(γg) ◦ (γχ)

= γg(γχ).

In the penultimate step, we used ad(γg) = (γ−1)∗G◦ad(g)◦γ∗G and De�nition (6.1.3.3)

of γχ. The former is a scheme-theoretic exercise which comes down to the fact that

the group law, and hence conjugation, on G is de�ned over Q.

6.1.11. (Re�ex �eld of a Shimura datum) Let (G,X) be a Shimura datum. We

recall the de�nition [Mil17, Def. 12.2] of the re�ex �eld E(G,X) of (G,X): Take

any h ∈ X and look at the associated cocharacter µh of G, see (2.2.5). Then the

G(C)-conjugacy class C of µh is independent of the choice of h, hence only depends

on X. Moreover, C contains a unique G(Q)-conjugacy class µX of cocharacters of

G. The re�ex �eld is de�ned to be the �eld of de�nition of µX .

6.1.12 (Plectic Galois action on conjugacy classes of cocharacters). With the nota-

tion of (6.1.10), assume that G = RF/QH for some algebraic group H over F . We

use the description (6.1.9.1) of the plectic Galois action on X∗(G). In exactly the

same way as in (6.1.10.2), one can show that

γ(gχ) = γg(γχ), γ ∈ AutF (F ⊗Q Q), g ∈ G(Q), χ ∈ X∗(G). (6.1.12.1)

In particular, the plectic action on X∗(G) induces an action on G(Q)-conjugacy

classes of cocharacters.

6.1.13 (Plectic re�ex Galois group). Let (G,X) be a Shimura datum with G =

RF/QH for some algebraic group H over F . In analogy to (6.1.11), using (6.1.12) we
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can de�ne the plectic re�ex Galois group of (G,X) to be the stabiliser of µX inside

the plectic group AutF (F ⊗Q Q), see [NS16, Def. 5.1].

6.1.14 Example. (Hilbert modular variety) The Hilbert modular variety is asso-

ciated to the group G1 = RF/Q GL2, see (3.2.1). So the plectic group SΣ n ΓΣ
F acts

on the set X∗(G1), and by (6.1.12) also on the set of G1(Q)-conjugacy classes of

X∗(G1). We can describe this more explicitly as follows:

We use the Q-torus S1 := RF/Q(G2
m), embedded as a maximal torus inside G1 =

RF/Q GL2 as the diagonal matrices. Then we can identify the set of G1(Q)-conjugacy

classes of cocharacters of G1 with

X∗(G1)/G1(Q)-conj. = X∗(S1)/W,

where W denotes the Weyl group of S1.

We have S1(Q) =
∏

x∈Σ

(
∗
∗

)
⊂ G1(Q), hence the cocharacters of S1 are given

by

χ = (χx)x∈Σ : Gm −→ S1

χx : t 7−→

(
tnx

tmx

)
,

for integers nx,mx ∈ Z. The Weyl group W is isomorphic to (Z/2Z)Σ, with the

element wx = (0, . . . , 0, 1, 0, . . . , 0) (with the 1 in the x-th coordinate) acting on

the x-th factor of S1(Q) =
∏

x∈Σ

(
∗
∗

)
by swapping the two entries and acting

trivially on all other factors. Thus in the above notation

X∗(S1)/W ∼= {χ = (χx)x∈Σ | χx : t 7→

(
tnx

tmx

)
with nx ≥ mx for all x}.

We can also describe the plectic Galois action on X∗(S1) explicitly, which will

then also describe the plectic action on the G1(Q)-conjugacy classes of X∗(G1) by

(6.1.6): Note that X∗(G2
m,F ) carries the trivial ΓF -action, hence by (4.1.4.2) the

action of SΣ n ΓΣ
F on X∗(S1) factors through SΣ and is given by

(σ, h) : χ = (χx)x∈Σ 7−→ (χσ−1(x))x∈Σ.
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6.2 Plectic action on cocharacters of more general

groups

In this section we de�ne a plectic action on cocharacters of algebraic groups that

di�er only in the centre from a group of the form RF/QH. The following purely

group-theoretical observations will be very useful:

Assume Γ is a group acting on a set A1, and let A ⊂ A1. We denote the largest

subgroup of Γ stabilising A by StabΓ(A).

6.2.1 Lemma. Let Γ be a group acting on the sets A1 and B1, and let d : A1 → B1

be Γ-equivariant and surjective. Assume that B ⊂ B1 is a subset, and that A ⊂ A1

is given by the following Cartesian diagram of sets

A A1

B B1,

d

i. e.

A = {a ∈ A1 | d(a) ∈ B} = d−1(B).

Then

StabΓ(A) = StabΓ(B).

Proof. An element γ ∈ Γ preserves A if and only if for all a ∈ A we have γa ∈ A, i. e.
d(γa) ∈ B. But d(γa) = γd(a) and d|A : A → B is surjective, so this is equivalent

to γ preserving B.

As a motivating example, we generalise (6.1.8) to certain subtori of RK/QGm, for

a totally imaginary quadratic extension K of F :

6.2.2. (Subtori of RK/QGm) We use the notation of (6.1.8), and abbreviate R1 :=

RF/QGm and T1 := RK/QGm = RF/QRK/FGm for the algebraic tori over Q of (6.1.7)

and (6.1.8), respectively. Let

N := RF/Q(NK/F ) : T1 → R1

be the norm map, which on Q-points is given by

N : (K ⊗Q Q)× =
∏

x∈Σ, b∈Z/2Z

Q× −→
∏
x∈Σ

Q× = (F ⊗Q Q)×,

(zx,b)x,b 7−→ (zx,0zx,1)x.
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It will be useful to calculate the induced map N∗ : X∗(T1) → X∗(R1) on cochar-

acters explicitly: Recall that X∗(R1) = Z[Σ] and X∗(T1) = Z[ΣK ]. By using the

description of the cocharacter [x] in (2.1.6), we see that

N∗ :
∑

x∈Σ, b∈Z/2Z

mx,b[c
bϕx] 7−→

∑
x∈Σ

(mx,0 +mx,1)[x]. (6.2.2.1)

Let R ↪→ R1 be an algebraic subtorus over Q and de�ne T to be the algebraic

torus over Q that makes the following diagram Cartesian

T T1

R R1.

N

Note that in general T will not be of the form RF/QH for some algebraic torus

H over F , hence (6.1.4) does not give a plectic action on X∗(T ).

However, it does give an action on X∗(T1), see (6.1.8), and hence X∗(T ) ⊂ X∗(T1)

inherits an action by the largest subgroup of the plectic group SΣ n ΓΣ
F which sta-

bilises the subspace X∗(T ). This subgroup is StabSΣnΓΣ
F

(X∗(T )) in the notation of

(6.2.1). It contains, of course, the absolute Galois group of Q because T is an alge-

braic torus over Q, but it is in fact much bigger. We can calculate it explicitly as

follows:

The above diagram of tori induces a Cartesian diagram of ΓQ-modules

X∗(T ) X∗(T1)

X∗(R) X∗(R1),

N∗

i. e.

X∗(T ) = {χ ∈ X∗(T1) | N∗(χ) ∈ X∗(R) ⊂ X∗(R1)}. (6.2.2.2)

For example, if R = Gm and Gm ↪→ R1 is the usual embedding which on Q-points
is simply the inclusion Q× ⊂ F×, then the corresponding map on cocharacters is

given by

X∗(Gm) = Z −→ X∗(R1) = Z[Σ],

n 7−→ n
∑
x∈Σ

[x]
(6.2.2.3)
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and thus

X∗(T ) =

{ ∑
ϕ∈ΣK

mϕ[ϕ]

∣∣∣∣∣ mϕ +mϕ = mϕ′ +mϕ′ for all ϕ, ϕ
′ ∈ ΣK

}
. (6.2.2.4)

Using (6.1.6) and the fact that N∗ is surjective (obvious from (6.2.2.1)), (6.2.1)

implies that

StabSΣnΓΣ
F

(X∗(T )) = StabSΣnΓΣ
F

(X∗(R)).

We can be more explicit as follows: The action of the plectic group on X∗(R1)

factors through its canonical quotient SΣ, see (6.1.7). Let S(R) := StabSΣ
(X∗(R))

be the largest subgroup of SΣ stabilising X∗(R) ⊂ X∗(R1), then

StabSΣnΓΣ
F

(X∗(R)) = preimage of S(R) = S(R) n ΓΣ
F . (6.2.2.5)

We denote this group by (SΣ n ΓΣ
F )Rcc.

6.2.3 Example. Let us look at subtori R = RF ′/QGm coming from intermediate

�elds Q ⊂ F ′ ⊂ F :

(6.2.3.a) Clearly, if F ′ = F , then R = R1 and T = T1, so S(R) = SΣ and the full plectic

group acts on the cocharacters of T .

(6.2.3.b) Let F = Q, so R = Gm, embedded in R1 diagonally (on Q-points). Then the

associated T is the algebraic torus introduced in (2.5.1) (the �PEL torus�).

Then X∗(R) ⊂ X∗(R1) = Z[Σ] corresponds to Z(
∑

x∈Σ[x]). Clearly this is

stable under the action of SΣ (in fact, SΣ acts trivially on it), hence again the

full plectic group acts on X∗(T ).

This example also shows that (SΣ n ΓΣ
F )Rcc = SΣ n ΓΣ

F is possible even though

the torus T is not the restriction of scalars of some torus de�ned over F .

(6.2.3.c) General case: This example will show that it is possible that (SΣ n ΓΣ
F )Rcc $

SΣ n ΓΣ
F . We have

X∗(R) ↪→ X∗(R1), [x′] 7→
∑
x|x′

[x],

where x|x′ means that x : F ↪→ Q extends x′ : F ′ ↪→ Q.

Therefore S(R) is equal to all permutations of Σ preserving the partition

Σ =
⊔
x′∈Σ′{x : x|x′}, where Σ′ := Hom(F ′,Q), i. e. σ ∈ SΣ belongs to S(R) if

and only if for all x′ ∈ Σ′ there exists y′ ∈ Σ′ such that {σ(x) : x|x′} = {x ∈
Σ: x|y′}.
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The cases F ′ = F and F ′ = Q give back the previous examples. But in all

other cases, this is a proper subgroup of SΣ, hence also (SΣ nΓΣ
F )Rcc is a proper

subgroup of SΣ n ΓΣ
F .

After this introductory example, we will de�ne a plectic action on the cocharacters

of a group that di�ers only in the centre (see (6.2.9)) from a restriction of scalars.

As the second and most important example, we look at groups that di�er only in

the centre from G1 := RF/Q GL2.

6.2.4 Example (Cocharacters of variants of RF/Q GL2). Similar to (6.2.2) and as

in (4.4.2), let R ↪→ R1 = RF/QGm be an algebraic subtorus over Q and let G = GR.

Recall the Cartesian diagram (4.4.2.1)

G G1

R R1,

dF

where dF := RF/Q(det) : G1 = RF/Q GL2 → RF/QGm = R1. Then X∗(G) is a subset

of X∗(G1), �tting into the Cartesian diagram of sets with ΓQ-action

X∗(G) X∗(G1)

X∗(R) X∗(R1),

(dF )∗

i. e.

X∗(G) = {χ ∈ X∗(G1) | (dF )∗(χ) ∈ X∗(R)}. (6.2.4.1)

The cocharacters X∗(G1) of G1 carry an action by the plectic group by (6.1.4),

and so once again X∗(G) inherits an action by StabSΣnΓΣ
F

(X∗(G)). In analogy to

(6.2.2.2), (dF )∗ is plectic equivariant by (6.1.6), hence (6.2.1) implies that

StabSΣnΓΣ
F

(X∗(G)) = StabSΣnΓΣ
F

(X∗(R)) = (SΣ n ΓΣ
F )Rcc.

For De�nition (6.1.11) of the re�ex �eld in the theory of Shimura varieties, one

does not use the action of the Galois group ΓQ on cocharacters of G, but the induced

action on G(Q)-conjugacy classes of cocharacters of G.

6.2.5 Example (Conjugacy classes of cocharacters of GR). We continue the pre-

vious example. Having de�ned a plectic action on the cocharacters of G, we now

need to make sure this action is compatible with conjugation by G(Q). Note that by

(6.1.12) the full plectic group acts on the G1(Q)-conjugacy classes of cocharacters

127



6.2. GENERAL CASE 6. COCHARACTERS

of G1.

If two cocharacters χ1, χ2 ∈ X∗(G) of G are G(Q)-conjugate, then they are clearly

also G1(Q)-conjugate, and hence by what we know about G1 their plectic images
γχ1,

γχ2 are G1(Q)-conjugate. To conclude that they are G(Q)-conjugate, note that

conjugation factors through the adjoint groups Gad and Gad
1 . But these two groups

are equal by (6.2.8) below.

Thus we may conclude that (SΣnΓΣ
F )Rcc acts on conjugacy classes of cocharacters

of G.

In (6.1.13) we de�ned the plectic re�ex Galois group for Shimura data (G,X),

with G a group of the form RF/QH, as the stabiliser inside AutF (F ⊗Q Q) of a

certain conjugacy class µX of cocharacters. In analogy, we have:

6.2.6. (Plectic re�ex Galois group of (GR, XR)) We continue (6.2.4). Let (G,X) :=

(GR, XR). Let µX be the G(Q)-conjugacy class of cocharacters of G determined by

X, see (6.1.11). Then the plectic re�ex Galois group of (G,X) is de�ned to be the

stabiliser of µX inside (SΣ n ΓΣ
F )Rcc.

6.2.7 Example. We continue (6.2.4). By (6.2.5), we can identify the set of G(Q)-

conjugacy classes in X∗(G) with a subset of X∗(S1)/W , namely those cocharacters

χ with (dF )∗(χ) ∈ X∗(R). Here W again denotes the Weyl group of S1, see (6.1.14).

We can explicitly calculate that for χ = (χx) we have

(dF )∗(χ) =
∑
x∈Σ

(nx +mx)[x] ∈ Z[Σ],

where we identify X∗(R1) with Z[Σ] as in (6.1.7). Hence

X∗(G)/G(Q)-conj. ∼= {χ = (χx) | nx ≥ mx and
∑
x∈Σ

(nx +mx)[x] ∈ X∗(R)}.

Note the resemblance with (6.2.2.1) and (6.2.2.2).

To compare the groups G and G1 of (6.2.4), let us �rst recall some facts about

algebraic groups:

6.2.8 (Adjoint and derived group). Recall that for any connected reductive group

G over Q one has two short exact sequences �tting into the following diagram of
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algebraic groups over Q:

1

Z

1 Gder G C 1

Gad

1

Here

• Z denotes the centre of G,

• Gad = G/Z denotes the adjoint group of G,

• Gder = [G,G] denotes the derived subgroup of G,

• C := G/Gder denotes the cocentre of G,

and the induced dashed arrows are isogenies, i. e. surjective morphisms with �nite

kernel. For example, for G1 = RF/Q GL2 we get:

• Z1 = RF/QGm, embedded diagonally in G1,

• Gad
1 = RF/Q PGL2,

• Gder
1 = RF/Q SL2,

• C1 = RF/QGm = R1 and the map G1 → C1 is equal to dF : G1 → R1.

The calculation of C1 indicates that de�ning G by the Cartesian diagram (4.4.2.1)

means a change in the cocentre, and we can indeed proceed in greater generality:

6.2.9. (Change in the cocentre) Let G1 be a reductive groups over Q. Fix some

subtorus R of C1. De�ne the reductive group G over Q by the Cartesian diagram

G G1

R C1,

d (6.2.9.1)

where d : G1 → C1 denotes the canonical map. In this case, we say that G di�ers

only in the centre from G1, compare (1.2.0.2).
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To justify this terminology, we now successively calculate the groups Z, C, Gad,

Gder associated to G from the corresponding groups Z1, C1, G
ad
1 , Gder

1 of G1 by a

diagram chase:

Step 1: The groups G and G1 have the same derived groups:

By de�nition, we have Gder
1 = ker(d). Now d|G factors through R by the diagram

(6.2.9.1) de�ning G, and R is abelian (because C1 is), hence ker(d) contains Gder.

On the other hand, the Cartesian diagram (6.2.9.1) also implies that G contains

ker(d) = Gder
1 , and hence Gder contains (Gder

1 )der = Gder
1 , where the last equality

holds because Gder
1 is semisimple. We conclude:

Gder = Gder
1 .

Step 2: The cocentre of G is R:

Because R is abelian, the map G → R factors through the cocentre C. This

shows that Gder ⊂ K := ker(G→ R).

Moreover, since Gder = Gder
1 there is a map C ↪→ C1 which factors through R,

i. e. we get a commutative diagram

C C1

R

This means we get the commutative diagram with exact rows

1 K G R 1

1 Gder G C 1

A direct diagram chase shows that Gder = K, hence

C = R.

Step 3: The groups G and G1 have the same adjoint group:

The adjoint group of a reductive group is the same as the adjoint group of its

derived group, hence step 1 implies that G and G1 have the same adjoint group.

Step 4: The centre Z of G is equal to Z1 ∩G:

By step 3 we have

Z = ker(G→ Gad) = ker(G ↪→ G1 → Gad
1 = Gad) = G ∩ Z1.
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6.2.10 (Plectic re�ex Galois group � general case). Assume that G and G1 are

related by the Cartesian diagram (6.2.9.1). We saw that this implies that G and

G1 have the same derived and adjoint groups. They only di�er in the cocentre

C = R ↪→ C1 and the centre Z = Z1 ∩G.
Now if G1 = RF/QH1 is a restriction of scalars, then C1 is of the form RF/QD1

for some algebraic torus D1 over F . This means that the cocharacters of both G1

and C1 carry plectic actions by the full plectic group, and that the induced map

X∗(G1)→ X∗(C1) is equivariant with respect to these actions by (6.1.6).

We can now mimic (6.2.4) to de�ne a plectic group acting on X∗(G): Recall that

StabSΣnΓΣ
F

(X∗(R)) is the largest subgroup of the plectic group stabilising the subset

X∗(R) of X∗(C1). Then (6.2.1) shows that X∗(G) inherits an action by

StabSΣnΓΣ
F

(X∗(G)) = StabSΣnΓΣ
F

(X∗(R)) =: (SΣ n ΓΣ
F )Rcc.

Note that this group is not necessarily of the form S n ΓΣ
F for some subgroup

S ⊂ SΣ because the action of the plectic group on X∗(C1) does not necessarily factor

through SΣ like in (6.2.4).1

Also note that because Gad = Gad
1 , the same argument as in (6.2.5) shows that the

action of StabSΣnΓΣ
F

(X∗(R)) on cocharacters induces an action on G(Q)-conjugacy

classes of cocharacters of G. This allows us to de�ne the plectic re�ex Galois group

of a Shimura datum (G,X) as the subgroup of StabSΣnΓΣ
F

(X∗(R)) �xing the G(Q)-

conjugacy class µX of cocharacters of G.

Let us conclude this section by relating the plectic action on cocharacters of tori

de�ned in (6.2.2) to the action on cocharacters of groups related to RF/Q GL2:

6.2.11 Remark. (Functoriality of the plectic re�ex Galois group) Let Gm ⊂ R ⊂
RF/QGm be an intermediate algebraic torus over Q, and de�ne G = GR as in (6.2.4).

Moreover, letK/F be a totally imaginary quadratic extension, and let T be the torus

de�ned in (6.2.2).

A F -vector space isomorphism a : K
∼−−→ F 2 as in the proof of (5.2.10) induces

an embedding (T1, hΦ) ↪→ (G1, X1) of Shimura data. We choose the isomorphism

a is so that a ◦ hΦ ◦ a−1 lies inside X = XR, hence we also get an embedding

(T, hΦ) ↪→ (G,X). From now on, we will suppress a from notation, so we view hΦ

as an element of X.

The plectic re�ex Galois group of (G,X) is the stabiliser, inside (SΣ n ΓΣ
F )Rcc,

of the G(Q)-conjugacy class µX determined by the cocharacter µ associated to a

�xed h ∈ X. For example, we can take the conjugacy class of the cocharacter µΦ

associated to hΦ ∈ X.

1However, the action of the plectic group on X∗(C1) factors through some �nite quotient of the
plectic group, and so one does at least get a more concrete description of StabSΣnΓΣ

F
(X∗(R)).

131



6.2. GENERAL CASE 6. COCHARACTERS

Now T ↪→ G induces a map X∗(T ) ↪→ X∗(G) that is (SΣ n ΓΣ
F )Rcc-equivariant:

Indeed, X∗(T1) ↪→ X∗(G1) is SΣnΓΣ
F -equivariant by (6.1.6), and so by the de�nition

of the plectic action on X∗(T ) in (6.2.2) and on X∗(G) in (6.2.4) the assertion follows

from the commutative diagram

X∗(T ) X∗(G)

X∗(T1) X∗(G1).

So if γ ∈ (SΣ nΓΣ
F )Rcc lies in the plectic re�ex Galois group of (T, hΦ), then γ �xes

µΦ (viewed as a cocharacter of T ), so in particular it �xes the conjugacy class of

µΦ inside X∗(G), hence γ is an element of the plectic re�ex Galois group of (G,X).

This means that the plectic re�ex Galois group of (T, hΦ) is contained in the plectic

re�ex Galois group of (G,X).

One can easily prove the plectic analogue of [Mil17, 12.3(c)]:

6.2.12 Lemma. For i = 1, 2, let Gi = RF/QHi for some algebraic group Hi over

F . Denote the cocentre of Gi by Ci, let Ri ⊂ Ci be a subtorus and look at the group

GRi
i ⊂ Gi de�ned by the Cartesian diagram

GRi
i Gi

Ri Ci.

Moreover, let (GRi
i , Xi) be a Shimura datum. Let f : H1 → H2 be a morphism

de�ned over F such that RF/Q(f) : G1 → G2 restricts to a morphism of Shimura

data (GR1
1 , X1)→ (GR2

2 , X2).

Then the plectic re�ex Galois group of (GR1
1 , X1) is contained in the plectic re�ex

Galois group of (GR2
2 , X2).

6.2.13 Remark. [Del71, Thm 5.1] says that the re�ex �eld of a Shimura datum is

determined by the re�ex �elds of its special points. Is there a plectic analogue of

this, i. e. is the plectic re�ex Galois group determined by the plectic re�ex Galois

group of its special points? We do not know the answer to this question, not even

in the case where G = RF/QH.

6.2.14 Remark. We are also curious to see how the plectic groups (SΣ n ΓΣ
F )RCM

and (SΣ n ΓΣ
F )Rcc are related.
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