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Abstract

A database of battery materials is presented which comprises a total
of 292,131 data records, with 214,617 unique chemical-property data rela-
tions between 17,354 unique chemicals and up to five material properties:
capacity, voltage, conductivity, Coulombic efficiency and energy. 117,403
data are multivariate on a property where it is the dependent variable in
part of a data series. The database was auto-generated by mining text
from 229,061 academic papers using the chemistry-aware natural language
processing toolkit, ChemDataExtractor version 1.5, which was modified
for the specific domain of batteries. The collected data can be used as a
representative overview of battery material information that is contained
within text of scientific papers. Public availability of these data will also
enable battery materials design and prediction via data-science methods.
To the best of our knowledge, this is the first auto-generated database
of battery materials extracted from a relatively large number of scientific
papers. We also provide a Graphical User Interface (GUI) to aid the use
of this database.

Background & Summary
Batteries are essential components of most electrical devices and have accord-
ingly found widespread applications in technological areas such as portable elec-
tronics, hybrid electrical vehicles, and stationary storage devices of any size. [1]



Given the increasing demand for advanced battery technologies, extensive re-
search is being carried out in this field, especially for the development of ad-
vanced materials for safe, efficient, and high-capacity batteries. Over the last
few decades, an ever-increasing number of academic papers on battery materials
have been published.

These papers are mostly generated from scientists who are reporting their
current developments of new materials based on trial-and-error methods. It is
accepted that such methods prove frustratingly slow for the discovery of new
materials. Finding ways to accelerate the design and development of new mate-
rials has thus become an attractive research target. It is anticipated that data
science may provide a systematic materials-by-design option that achieves this
desired acceleration. In recent years, the development of big-data and machine-
learning methods has facilitated huge progress in chemistry and materials sci-
ence, in fields such as the design and discovery of new catalysts, [2] drugs, [3,4]
and photovoltaic materials. [5–7] In 2011, the Materials Genome Initiative was
launched to deploy big-data methods for the discovery of new materials. [8] This
initiative led to the spin-off of many sub-projects, which have shown that data
mining can be used to reduce the materials discovery timeline. [9–12]

However, a comprehensive database is essential for the data-driven discovery
of new materials. Current data-mining research is mostly based on the datasets
that are obtained from high-throughput experiments or theoretical simulations.
For theoretical simulations, the Materials Project has generated a large compu-
tationally derived database of electrode materials for lithium-ion batteries. [13]
Many scientists have used this database for tasks such as the prediction of elec-
trical properties for anode [14] and cathode materials [15–17]. Sendek et al. [18]
also used this Materials Project database to identify new solid-state electrolytes.
Researchers have complemented these theoretical simulation efforts by creating
battery databases from high-throughput experiments. For example, NASA has a
Prognostics Data Repository which contains three experimental datasets about
batteries. [19–21] Severson et al. published a battery life cycle dataset, which
was then used for predicting battery lifetime. [22] Lao-atiman et al. have created
a zinc-air battery dataset for use in modelling. [23] The methods used to create
these databases were faced with limitations; Severson et al. encountered limited
sample diversity; Sendek et al. were confined to the use of empirical diversity.
Another approach is to create a database from scientific literature. Ghadbeigi
et al. [24, 25] have constructed a battery material database based on experi-
mental data, extracted manually using Datathief (http://datathief.org/).
This database was then used by Kauwe et al. [26], who conducted data-driven
research using machine-learning tools to predict the capacity of battery mate-
rials. However, as their dataset was extracted manually from literature, its size
is relatively small. This paper shows how to overcome this problem, by using
ChemDataExtractor [27] to automatically extract data from a huge collection of
battery research papers, and thence create a large database of battery materials
and their cognate properties.

To the best of our knowledge, this is the first battery materials database that
has been auto-generated from data in the literature. We focused on extracting
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data about battery materials and their functional properties; namely, capacity,
conductivity, Coulombic efficiency, energy density, and voltage. ChemDataEx-
tractor version 1.5, which is based on software developments from [27, 28], was
used for this work, and modified for the specific use of batteries. The workflow
for our database auto-generation includes article retrieval, data extraction, data
cleaning, data post-processing, and evaluation. The resulting database has po-
tential reuse value for enabling materials discovery in the field of batteries using
machine-learning, data-mining and statistical methods.

Methods

Article Retrieval
Article retrieval is the step required to download academic papers, which is im-
plemented by accessing the Application Programming Interface (API) designed
by the publisher for data-mining purposes. The Royal Society of Chemistry
(RSC) and Elsevier provide us with access to the full text of their published
papers. To download these articles for data-extraction use, the web-scraping
package defined in ChemDataExtractor was used, as well as the python HTTP
client libraries "urllib3" and "requests". The working principle of web-scraping
is that when visiting a web page, the web browser makes a GET request to
ask for the response from the server, so that the server makes decisions on the
local user, e.g. permitting the paper download. For journal websites, the HTTP
request often contains an API key that requires users to sign up to make web
scraping a legal and valid process. In addition, the request involves a query
search keyword ("battery" in this project) and publication year (1996-2019).
Once the request has been granted, the server will send CSS, JavaScript and
image format documents to the local clients, as well as the hypertext markup
language (HTML) and extensible markup language (XML) files, which contain
the structured full content of each article, which is exactly what is needed for
data extraction. Accordingly, 197,372 papers were downloaded from the Else-
vier Developer Portal (https://dev.elsevier.com/) and 31,689 papers from
the RSC (https://www.rsc.org/). As these papers were scraped by simply
searching for the word "battery", all papers that were found to mention the
word "battery" or "batteries" in their title, abstract, list of keywords, or the
main content, will have been downloaded. However, some of these papers might
not be about battery materials; for example, they could be about a battery
system that is used in an application, such as robotics, which is irrelevant to
our battery materials database. We found that these papers do not generally
contain many {chemical, property, value, unit} records for battery properties,
normally less than or equal to three records, as one would expect since they
are not describing a battery material. This observation enabled a warning flag,
"R" (relevance), to be added to the Warning field of all data records that are
associated with articles in which fewer than three records are extracted. These
amount to 11,337 data records (ca. 4% of our entire database), which are in-
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cluded in our database by default. However, the user can decide to keep or
remove them using the warning flag, "R", as a filter, should they be wary of
this battery relevance issue.

Document Processing
In order to convert the HTML/XML files into plain text, these files were pro-
cessed using the "reader" package in ChemDataExtractor. These HTML/XML
files have hierarchical structures, where the contents exist within different nested
tags. For example, the <head> tag contains information such as title, author
and DOI. ChemDataExtractor takes advantage of this semantic markup feature
to produce plain text according to the title, journal, abstract, keywords, main
contents, tables, figures, references, etc. As each journal publisher has its spe-
cific HTML/XML formatting style to present a scientific paper, a set of rules
are specifically defined to process the documents in terms of different journals.
By stripping out the embedded markup, the plain text was produced, and a
linear stream of elements containing all data in the papers was created. Even-
tually, these text data were transferred into the Document object that creates
sub-objects such as Title, Heading, Paragraph and Citation.

Natural Language Processing
Natural language processing (NLP) enables computers to analyse textual data.
ChemDataExtractor provides a comprehensive NLP toolkit for the specialised
domain of physics, chemistry, and materials science. It exploits state-of-the-art
NLP techniques, including tokenisation, word clustering, part-of-speech (POS)
tagging and chemical-named entity recognition (CNER). Most of the Chem-
DataExtractor code remains unchanged for this work, compared with the origi-
nal version. [27] However, some adaptations are noteworthy since ChemDataEx-
tractor v1.5 was used as the parent tool for this study. In turn, this version was
altered to meet the specific inorganic battery materials needs of this project.
One such need concerns the fact that many composites and anode/cathode
pairs are presented in papers by two chemical compounds, involving symbols
such as ’/’ and ’-’. Hence, a set of regular expression rules were defined to
extract both components of a composite/battery pair. Several new rules were
also added to extract more specific chemical names in the domain of battery
materials. Also included in the CNER part of ChemDataExtractor are suf-
fixes typical for nanomaterials (e.g. "nanoparticles" and "nanocomposites") as
well as suffixes that are common in the battery field (e.g. "anodes", "cath-
odes", and "electrolytes"). As battery properties reflect the whole system, in-
cluding anode, cathode and electrolyte, these suffixes were logged in a data
field "Type" for our database, so that they can facilitate the classification of
battery materials. The bespoke version of ChemDataExtractor used for this
work is available on https://github.com/ShuHuang/batterydatabase/tree/
master/chemdataextractor_batteries.
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Table 1: Battery capacity data model and its attributes

Class Attributes Data Type Class Attributes Data Type
value string units string
specifier string compound model
current_value string current_units string
cycle_value string cycle_units string
parsers parser lists

Relationship Extraction
A key step for database auto-generation is the extraction of suitable relation-
ships (e.g. relations of chemical name, property name, value and unit) after
the document processing and NLP stages. Tools such as ChemicalTagger [29]
attempt to find a universal grammar to interpret all of the scientific information
in order to extract relations. Yet, this proves difficult given the large variances
of corpora and lexicons. However, with the use of POS taggers and chemical
entity recognisers, it is feasible to write specialised regular expression rules for
a specific narrow domain such as the field of battery materials. ChemDataEx-
tractor version 1.5, making use of NLP techniques, defines models according to
different material properties, by which a chemical record is attributed to a model
specifically. One attribute of the model is the property parser, which includes
the defined rules for the relationship extraction. To extend data extraction from
a single sentence to a broader domain, the interdependency resolution feature
of ChemDataExtractor is used for finding the contextual information.

Table 1 shows an example of the battery capacity model object and its class
attributes defined in ChemDataExtractor. This model is inherited from a unit
model, which is created for the standardisation of the unit format. For a valid
model, the value, units, and compound attributes are required to construct the
{chemical, property, value, unit} database. As the capacity for a battery is
often measured with a certain current and number of cycles, it is also help-
ful to add their values and units to the dataset. In addition, capacity data
that feature information about cycles and current can be useful for predictions
such as capacity degradation. In general, capacity also depends on the charging
method, such as constant Current, Constant Voltage mode (CCCV), and the
cutoff voltages. The method of charging is not included in this database, but
it will considered as a part of future work. The parser attribute plays a key
role in phrase parsing and data extraction, as it defines the rules to obtain the
relationships. For other models, the attributes can also contain solvent, experi-
mental temperature, and apparatus, as the additional reference information for
the relevant chemical-value pairs.

In this project, we have added five property parsers for data extraction of
battery materials (Table 2). These parsers interpret the manually defined gram-
mar into an xpath parse tree from which the data model is constructed. Most
of the data models of these properties have only attributes of compound, speci-



fier, value, and units, and parsers compare these with four additional attributes
for battery capacity (Table 1). The grammar rule of the parsers was written
based on the parser elements shown in Table 3. Using these parser elements, the
grammar rule can be combined with the "+" or "|" operators, and the grammar
is thus flexible to be updated. Figure 1 illustrates the workflow of writing such
a parser. To write a good parser for highly accurate data extraction, each edge
case should be considered while a full unit test is performed at the same time.
The evaluated results improve with increasingly complicated rules, and certain
criteria can be set to determine when the parser is good enough to create a
comprehensive database.

The most important parts of the parser are the chemical identifier, the spec-
ifier of a property, its value and units. Table 2 illustrates the units and the
specifier parse expression for each property. The capacity units comprise the
gravimetric and volumetric units, and specific and theoretical capacities can
be distinguished. Even though the Coulombic efficiency has no units, we have
added "%" as the unit expression. The energy units comprise the specific energy
and the energy density, and the voltage units exclude the case "mV/s", which is
usually used as a scan rate to record spectra. These units will all be eventually
normalised to a standard one.

Table 2: The unit and specifier parse expressions of five property parsers

Property Parse Expressions of Units (above) and Specifier (below)
Capacity W(‘mA’) + W(‘h’) + (W(‘/’) + W(‘g’)) | R(‘^k?g[\—]1$’) | R(‘c?m[\—]3’)

Optional(I(‘theoretical’) | I(‘specific’)) + (I(‘capacity’) | I(‘capacities’))
Conductivity R(‘^m?S$’) + R(‘^ c?m[\—]\d+’)

Optional(I(‘electronic’) | I(‘electrical’)) + (I(‘conductivity’) | I(‘conductivities’))
Coulombic
Efficiency W(‘%’)

I(‘coulombic’) + Optional(I(‘efficiency’))
Energy (W(‘Wh’) + R(r‘^(k?g|m?(L|l))[\—]1$’))

I(‘energy’) | I(‘energies’)+Optional(’density’)
Voltage R(‘^m?V$’)+ R(‘^v(s(.)?|ersus)$’) + Optional(R(‘Li|Na|Ag|K’)) + Not(R(‘/s’))

Optional(I(‘electronic’) | I(‘electrical’)) + (I(‘voltage’) | I(‘potential’))

Table 3: The parser elements

Elements Description Elements Description
R (Regex) Match text with regular expression. T (Tag) Match tags
W (Word) Match case-sensitive token text I (IWord) Match case-insensitive token text
Any Match any single token H (Hide) Ignore the matched tokens
Not Match only if not followed by some text FollowedBy Match only if followed by some text
ZeroOrMore Match zero or more of the expressions OneOrMore Match one or more of the expressions
Optional Match if it exists SkipTo Skips to the next occurrence of text.

In addition to the differences in unit and specifier parse expressions between
each parser, there are also variations in the specific parsing rule. In general, the
parsing grammar includes five overall cases: prefix-value-cem, prefix-cem-value,
value-prefix-cem, cem-value-prefix, and cem-prefix-value. "Cem" represents the
chemical names, "value" contains the value with units, and "prefix" contains the
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Figure 1: Pipeline used to write a parser.

specifier but also text information that might occur near the specifier. By way
of example, consider an example sentence: "The voltage of the lithium battery is
3.4V "; this can be matched to a prefix-cem-value, where the prefix represents
"The voltage of", the cem represents "lithium", and ’3.4V’ is the value.

Given the same sentence "The voltage of the lithium battery is 3.4V ", Figure
2a shows the XML parse tree (i, ii) and the output of voltage data as a Python
dictionary format (iii). The voltage parser interprets the voltage as the speci-
fier tag, and the chemical name "lithium" is within in the tags <names> and
<cem>. The value and units are embedded by the tags <value> and <units>
within the <volt> tag, while the whole structure is a sub-tree of the element
<volt_phrase>. In the ’BatteryVoltage’ dictionary, the keys contain both the
"raw_units" and "raw_value", and the "unit" and "values". The "values"
and "units" are the post-processed outcomes after the raw value and raw units
are standardised in ChemDataExtractor. The capacity property occurs most
frequently in this database auto-generation procedure, and it is often measured
with a given current density or a certain number of cycles. The battery capacity
parser is more complicated than the others. In addition to a more complex parse
rule to improve the precision and recall, we defined two extra properties, i.e.,
"current" and "cycle" in the capacity parser, where we used the "SkipTo" func-
tion to enable the extraction of these properties followed by a capacity. Figure
2b illustrates how a property model is created given the sentence "The maxi-
mum discharge capacity after 25 cycles is 149 mAh/g for Li1.15CoO2 particles at
a current density of 16 mA g−1 at room temperature.". In this <capa_phrase>
parse tree, the tags <cycles>, <capa> and <current> appear in sequence. The
’BatteryCapacity’ dictionary also includes the information of current and num-
ber of cycles, but the units are not standardised since "cycle(s)" is not a real
unit, whereas the current in a battery publication also includes "C-rate", which
cannot be standardised. The C-rate is the current that reflects how fast the
battery is charging or discharging. For instance, a "2C" rate means that the
current will charge/discharge the entire battery in half hour, while a battery
with "C/5" rate charges/discharges in 5 hours.

In summary, the rule-based phrase parsing method is able to extract the
{chemical, property, value, unit} relations, and it is also sufficiently flexible to
be updated for any specific use. A complex parse rule is likely to achieve both
high precision and recall for a battery database. However, the rule-based parser
is strict in its requirement to match the correct contents, and it can fail when a



Figure 2: The (i) xpath code, (ii) parse tree, and (iii) the output of the property
data of (a) battery voltage and (b) battery capacity.



minor mismatch occurs. Also, the specifier, compound and values will not occur
in a single sentence or paragraph, in some cases, thus decreasing the recall of
phrase parsing. To solve this problem, the interdependency resolution part of
ChemDataExtractor is introduced. This interdependency resolution feature has
two goals. One is the extraction of information from the context rather than
a single sentence; the other is the identification of chemical records that are
represented as abbreviations or labels, which can lead to disambiguation. To
obtain the contextual information, ChemDataExtractor follows the logic that
a chronological list of records is stored, after which information is extracted
from the heading, previous sentence, product, and title compound record in an
attempt to determine the relations. This works well, especially for the synthesis
of a compound. [27] Another issue of phrase parsing is that writing a perfect
grammar rule is relatively time consuming. Rule-based parsing requires a great
deal of effort to improve the performance of data extraction, especially when a
huge volume of data are involved.

A semi-supervised probabilistic approach [28] based on the Snowball algo-
rithm [30] provides a potential way to address this problem. However, this algo-
rithm processes many individual sentences, while battery materials information
tends to span far beyond a single sentence. Moreover, the Snowball algorithm
uses bootstrapping and it is therefore a high-precision, low-recall method. The
recall of the battery materials database was already posing a challenge given
the need to extract five properties as well as the chemical information. Thus,
the rule-based parsing approach was used exclusively for this project.

Data Post-processing & Augmentation
Raw data records that emanate directly from ChemDataExtractor contain a
range of invalid data including incomplete chemical names, inaccurate speci-
fiers, and/or incorrect values and units. Several remedial steps are therefore
implemented prior to the final database curation: data cleaning, standardisa-
tion of value and units and normalisation of chemical names. The workflow
that defines the data cleaning rules was characterised by "testing and updat-
ing". In other words, by manually checking the general tendency of the common
incorrect data, the rules were refined and updated. While the data cleaning pro-
cess can lead to a certain loss of data, it greatly improves the accuracy of the
database. For instance, chemical names containing special symbols, or ending
with abnormal words such as "mole", were cleaned from the database. All of
these chemical names were then normalised by ChemDataExtractor as well as
a materials parser, [31] so that these chemicals can be presented as elements
and the number of these elements, which make it easier to process for a future
prediction task. The chemical compounds that could not be normalised were all
removed. Likewise, property values which were much higher or lower than the
average value, or records with a specifier outside of the battery domain, were
also removed. For example, we set the limit of capacity value as a maximum
of 5000 mAh/g and a minimum of 0 mAh/g, since a value outside of this range
is not likely in the area of battery materials. For other properties, the lower



and upper bounds of voltages are 0 and 8 V, energy data are between 0 and
5000 Wh/kg, Coulombic efficiency is within 0% to 100%, and conductivity is
not greater than 100 S/cm and not smaller than 10-20 S/cm. While the ma-
jority of data records with values within these ranges, but near their limits,
appear to be correct, manual spot checks on our database showed that they
carry more of a risk of being erroneous than data on property values that lie
far from such boundaries. This is particularly true for voltage as values near
the limit are likely to refer to the cutoff voltages, instead of the average voltage
that is associated with the material itself. Given the slightly higher risk of such
data being erroneous, a warning flag, "L" (Limit), was assigned to each data
record, whose property values lie within a "near limit" region, as defined by the
ranges: 0-20 and 3000-5000 mAh/g for capacity, 0-1 and 5-8 V for voltage, 0-100
and 3000-5000 Wh/kg for energy, 0%-20% for Coulombic efficiency, and 10-100
S/cm for conductivity. This Warning data field allows the user the option to
decide to keep or filter out these ’near limit’ data for their own specific database
applications; this carries the understanding that 54,928 data records (ca. 19%
of our entire database) will be lost by adopting this option, in return for a very
modest (< 5%) reduction in erroneous data.

A data augmentation process was then performed on the cleaned data,
whereby new data were derived from the literature-extracted data using for-
mulae that relate several of the target properties. For example, the specific
energy (unit: Wh/g) in the battery domain can be calculated from the voltage
(unit: V) multiplied by specific capacity (unit: mAh/g); thus, energy data can
also be derived according to this relation. The equation is given by :

Energy(Wh/g) = Capacity(mAh/g) ∗ V oltage(V )/1000 (1)

This process not only accrues the total amount of information in the auto-
generated database, it also levels out a bit the number of data that are acquired
for each property which is quite different from each other. For example, most
documents have capacity and voltage which can be extracted for the database,
but energy or conductivity property specifiers are not so often mentioned in the
text of papers. This data augmentation step is implemented at the final stage
of post-processing.

A graphical user interface (GUI) was made to help visualise the database
and thence aid the reuse of its data. This GUI provides a tabular view of the
full database as well as figures for visualisation.

Code availability
The source code used to generate the database is available at https://
github.com/ShuHuang/batterydatabase. The code of ChemDataExtractor
1.5 that has been modified for database auto-generation in the battery do-
main is available at https://github.com/ShuHuang/batterydatabase/tree/
master/chemdataextractor_batteries. The GUI application source code can
be found at https://github.com/ShuHuang/batterygui.
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Data Records
The database can be downloaded from Figshare [32], and it has been presented in
three formats: SQL, CSV and JSON. The GUI application integrates the SQLite
database in its source code. Table 4 provides an overview of the data records.
Extracted_name is the normalised compound name as a list of dictionaries, in
which each item of the list represents a chemical compound of a composite if
it exists, and each dictionary consists of chemical elements and the number
of them. Value and Unit are the values of the chemical property that were
normalised through the unit model, and were then converted into a standard
unit in the final version. The data in their originally extracted form are listed in
records, Raw_value and Raw_unit, which sometimes contain multiple values.
In those cases, each value is distributed to each chemical name one-by-one if
there also exist multiple names. If there is only one chemical name, all of the
raw values are assigned to this name, and vice versa. For properties such as
conductivity, the value is usually expressed as a range that depicts a maximum
and minimum window. In this case, the max and min values are extracted
and stored in two data records respectively. For the many cases where multiple
values arise from the same paper, these data need to be distinguished since
they generally relate to the presentation of series of data within a given study.
Access to series of data on battery materials could be particularly helpful to
certain database users. To this end, our database is highly pertinent since
117,403 data records (i.e. 40% of our entire database) relate to series of data.
Thus, a warning flag, "S" (Series), is provided within the Warning data field
of our database, so that users can search on the DOIs of these papers and
the dependent variable of the data series that interests them. "S" is assigned
to the Warning data field for each data record where the values appear more
than three times with the same chemical name, property and DOI. Two other
warning flags may be in this Warning data field: warning flag, "R" (Relevance),
that cautions the user on the relevance of the 11,337 data records that are
more likely to have been extracted from papers on batteries but which are not
about battery materials; and warning flag: "L" (Limits), which is assigned
to data records containing property values that are near to their minimum or
maximum limits. The majority of the 54,928 data records that contain "near
limit" values are valid, but their "near limit" property values are more likely
to constitute erroneous data compared with values of properties that lie well
within their limits. Mixed warnings, such as "LS" and "RL", are also possible
for a given data record. More information about warning flags, "R" and "L",
are provided elsewhere in the paper, in sections Article Retrieval, Data Post-
processing & Augmentation and Technical Validation. The data record, Type,
stores the ca. 9,000 data on each material type (e.g. anode, cathode, electrolyte)
that have been extracted from the literature. The energy data are classified as
"CDE" or "Calculated" in Tag, according to whether these data were extracted
from text or calculated from capacity and voltage via the data augmentation
process. Specifier is the property specifier recognised by the parser. The Info
record contains additional information about a material property record, such



as the cycle and current value that is measured together with capacity. In the
current version of database, the Info value is labelled as ’None’ except where it
pertains to battery capacity. For validation use, a Correctness data record was
incorporated into the database; this indicates whether the extracted data are
true or false, a judgement that has been determined manually.

Table 4: Summary of data records

Data Description Data type
Property Material property types String
Name Chemical compound names String
Extracted_name Normalised chemical name List of dictionaries
Raw_value Extracted value from text String
Raw_unit Extracted unit from text String
Value Normalised value by CDE Float
Unit Normalised unit by CDE String
Tag Text or calculated data String
Info Additional information List of dictionaries
Type Type of materials String
Specifier Specifier of property String
DOI Source article DOI String
Journal Published journal String
Date Published date String
Title Source article title String
Correctness Correctness of data String
Warning Warning String

Technical Validation
The evaluation metrics used in this study are precision, recall and F-score.
Precision is the fraction of the correct ("True") data in the database, recall is
the fraction of the data relation that is extracted from the entire records in
papers, and F-score is the harmonic mean of precision and recall. The metrics
are given by:

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F-score = 2 · Precision ·Recall
Precision+Recall

(4)

where TP denominates true positive, FP false positive, and FN false negative.



As mentioned previously, a Correctness column was added to the database
for validation use. By shuffling the database randomly, a total of 500 data
records were used as a test dataset for evaluating precision. Since the number
of data records for certain property types in this test dataset is much smaller
compared to the other properties, more data records with those properties were
added manually. For a single data record, it was assigned as "True" if the com-
pound name, value, property and unit were matched to the original text from
the paper. The record was classified as "False" if the errors were of one of the
four types: "Incomplete composites" (F1), "Incorrect name" (F2), "Incorrect
match" (F3), and "Interdependency error" (F4). These manually determined
True/False values were added to the Correctness column, which can also be
found in the GUI by sorting Correctness. From these 500 random data records,
51 records with different DOIs were selected for the estimate of recall. For each
DOI, the number of relations in the source paper was counted, and then we
compared it with the number of data records extracted in our database. Recall
is thus determined as the fraction of relations which were extracted from the
entire records in original papers. The details of the recall validation results can
be found in the Supplementary Information. [33–83]

The precision and recall for the five examined material properties are shown
in Table 5. The overall precision is 80.0%, with precision on individual properties
ranging from 75.7-83.3%. 80% is generally considered to be comparable to
human error for manual data extraction, while the small range quoted (∆ =
7.6%) evidences good consistency across all properties. Conductivity and energy
are the two properties with slightly lower precision of around 70%. This is a
reflection of the relatively small number of conductivity and energy data, which
limits the overall performance of this database. The overall recall (59.1%) means
that only about three fifths of the data records were extracted from text; this
is due to the somewhat strict criteria applied to the data cleaning process after
the data extraction stage.

Table 6 shows the four types of errors that may lead to a restriction in
precision. Most errors arise from an "incorrect match" (F3), which typically
occurs in sentences that contain more than one chemical compound or property
value, where the parser fails to attribute the data to the correct one. The second
most common source of error arises from "incomplete composites" (F1), which
means that only a part of the entire composite or device pairs is extracted.
For instance, only the name "rGO" is extracted for the composite material,
"N-ZnSe@rGO". The error "incorrect names" (F2) refers to errors such as
invalid chemical names which should be removed. Both F1 and F2 are a known
problem of CNER. In due course, an improvement in CNER could help improve
the accuracy of the database. Interdependency error accounts for 7% of the data
extraction errors. This, is expected, owing to the logic of the interdependency
rule. However, while the interdependency logic restricts the database precision,
it greatly improves its recall, so it should not be abandoned.

Nonetheless, the relatively modest overall recall is reasonable, when consid-
ering that maintaining a high precision was the priority, i.e. ensuring that the
information that is entered into the database is indeed correct. The property



Table 5: Precision, recall, and F-score values of the database for the five material
properties

Properties Precision Recall F-Score
Capacity 83.3% 63.2% 71.9%
Voltage 79.0% 51.9% 62.6%
Conductivity 76.0% 47.1% 58.2%
Coulombic
Efficiency 77.6% 63.8% 70.0%

Energy 75.5% 66.7% 70.8%
Overall 80.0% 59.1% 68.0%

Table 6: Individual error sources errors of the data and their percentages

Error sources Proportion
Incomplete composites (F1) 31%
Incorrect names (F2) 10%
Incorrect match (F3) 52%
Interdependency error (F4) 7%

parser rules are sufficiently specific to each property, such that most of the re-
maining errors that withhold a higher precision are systematic in their origin.
Thus, the database afforded seems to have the best precision that we can obtain
without reducing the size of the dataset substantially; if we impose even stricter
parser rules, this would naturally increase the precision, but it would lead to a
great loss of data.

To this end, our database auto-generation methods have been geared to
afford a database that is optimally ’fit for purpose’ for data-driven materials
discovery. For example, a user may wish to employ this database as a source
for a data-driven ’design-to-device’ operational pipeline [11] where data are
progressively filtered down to a small short-list of lead candidates for a target
material application. In such a scenario, database entries that are in fact in-
correct will likely be filtered out naturally during downstream analysis, while a
data source that carries a large number of data is imperative for such a data-
driven task. However, it needs to be considered that this database may need
to serve a range of purposes depending on the user motivation. For example, a
user might want a simple ’look-up’ database where quality control is imperative
but the property sought is common. In such a scenario, precision is valued over
number of data. The aforementioned warning flags, L, R and S, account for this
diversity in user motivation, by providing an option for users to remove data
which might be circumspect owing to their values being: near their extreme
limit, questionable in terms of relevance to battery materials, or being part of
a data series. While use of these warning flags will remove a lot of data, the
database afforded would have a higher overall precision of ca. 85%; an increase
of 4.2% or 0.8% from use of the "L" or "R" warning flag, respectively.



The default 80% overall precision of our database can be compared holis-
tically to results from NLP-based approaches that auto-generate experimental
databases for materials science in other fields, albeit these are currently few.
Elton et al. [84] have created a database with chemical-property relationships
using word-embedding techniques. This task is slightly different, in that they
only capture properties as pre-defined target words (e.g. "non-toxic") in the
database, which has a limited range compared to the "value" and "units" that
are identified and enumerated using tools such as ChemDataExtractor. [27]
Since Elton et al. are dealing with words, they employed a similarity-matching
process to validate their data extraction rather than a precision metric. Court
and Cole [28] used an earlier version of ChemDataExtractor (v1.3), [27] to-
gether with the modified Snowball algorithm, [28,30] to create a database of
Curie and Néel temperatures for magnetic materials, and achieved a precision
of 73%. This precision is slightly lower than that in our database, while our
data extraction process is even more complicated, especially with regards to
the fact that our database contains five distinct properties compared to the
two temperature properties of the magnetic database. The extraction of more
properties will inevitably increase the complexity of the sentence parsing that is
needed, since researchers tend to use different styles to describe different prop-
erties. Note that a precision of less than 80% for a database has been shown to
be entirely sufficient for materials discovery using data-driven ’design-to-device’
operational pipelines. [11] This is because any ’rogue data’ in the database is
mitigated by the nature of the downstream analysis. For example, the afore-
mentioned database of Curie and Néel temperatures with 73% precision has
successfully reconstructed phase diagrams of magnetic materials and predicted
phase-transition temperatures using machine-learning (ML) methods. [85] ML
methods will naturally filter out erroneous data as outliers via the intrinsic na-
ture of their data analytics procedure. Meanwhile, Cooper et al. [7] were able to
discover suitable pairs of light-harvesting materials for photovoltaic applications
via a data-driven ’design-to-device’ approach that employed a database of λmax

values which formed part of an NLP-generated database of UV/vis absorption
spectral attributes. [86] They used a different type of downstream analysis: one
that employs a sequence of encoded forms of structure-property relationships to
screen a database for materials, whose property characteristics optimally suit a
target application. The sequential procedure successively filters through smaller
and smaller sub-sets of the original database that obey each structure-property
relationship, until the data sub-set becomes so small that a lead candidate ma-
terial emerges, bearing all of the structure-property relationships required for
the targeted application. The intrinsic nature of this filtering process disregards
erroneous data since they do not comply with established structure-property re-
lationships. Thus, the nature of the downstream analysis successfully mitigates
the non-perfect precision of a database.

The fully processed database contains a total number of 292,313 records.
This comprises a total of 214,617 unique pair-wise data relations; thus 77,696 of
the data extracted from the literature have redundancy, which means that these
data have the same chemical name and property values, but can be extracted



from different papers. Note that there might still be differences not captured by
ChemDataExtractor that can cause a variation in property, even though they
have the same values. Thus, we provide both a merged and full version of the
database, while the unmerged form is the default option. In total, there are
17,354 unique chemically named entities in the database. Table 7 shows how
many of the five properties sought have been found and extracted for this to-
tal number of compounds, classified into the number of chemicals that have a
certain number of properties. While most chemicals have only one or two prop-
erties, less than 10% of compounds have more than three. This table also shows
the impact of the data augmentation step, from which an increasing number of
materials that have more than two properties can be seen. Thus, data augmen-
tation greatly improves the data correlation behaviour in the database. Table
8 illustrates the total number of data records that correspond to each property.
Most of these records consist of voltage and capacity, which seems feasible, given
that battery scientists focus their research on the improvement of capacity with
the measurement of voltage; as such, almost all battery research involves the
measurement of voltage-capacity relationships. Conversely, the scarcity of con-
ductivity data is most likely to be intrinsic to the property measurement itself.
In this project, conductivity does not distinguish between ionic and electronic
conductivities. It is often measured for an electrolyte material, yet rarely tested
in the context of anode or cathode materials. However, the anode and cathode
are key components of batteries and they are therefore the subject of numer-
ous studies. In comparison, fewer studies focus on electrolytes; this reduces the
amount of conductivity data that can be extracted by ChemDataExtractor. The
amount of data on Coulombic efficiency is similarly modest in comparison. This
stands to reason since this property is usually expressed within the figures of a
paper, and this information is often not duplicated in the text, in order to avoid
repetition in a paper; in such cases, it is not detected by ChemDataExtractor.
As mentioned earlier, the energy data have been augmented via the derivation
of data from the availability of the extracted voltage and capacity data and its
inherent relationship to energy. Conversely, the number of energy records is
larger than those of conductivity and Coulombic efficiency. In summary, the
database contains a relatively large number of chemical compounds, while the
difference in the number of chemical names per property is also large.

Figures 3 and 4 illustrate an overview of these database proportions. Figure
3 presents the histograms of the data distribution for the five examined battery
material properties (capacity, conductivity, voltage, energy, and Coulombic effi-
ciency). Figure 4 shows Venn diagrams that describe how many chemicals share
two properties; this provides a guide as to the extent of data correlation.

Usage Notes
The database has been presented in both relational and non-relational formats
including SQL, CSV and JSON. There are merged and full versions of the
database in these formats; the full version is the default option. They can



Table 7: Number of chemicals for which data on one to five properties have been
acquired using ChemDataExtractor (CDE) or were derived from CDE-extracted
data (CDE + calculated data, CDE data only)

Number of
properties

Number of
chemical compound
(CDE only)

Number of
chemical compound
(CDE + Calculated)

1 11,242 11,242
2 3,929 1,351
3 1,562 3,024
4 414 1,403
5 207 334
Total 17,354 17,354

Table 8: Number of data records for each property

Property Total number of data records
Capacity 144,359
Conductivity 7,168
Coulombic
Efficiency 11,003

Energy 15,543
Voltage 114,240
Total 292,313

be easily queried by database languages, SQL or Mongo, as well as a program-
ming language such as Python, R, Java, or Matlab. The structured features
of the data model make it easy for scientists to add more material-property
relationships to the data, as well as to perform queries on database (e.g. read,
search, update, and delete). The database can be found in Figshare [32]. The
most intuitive way to view and reuse the data is by using the GUI that we have
provided in this work. It contains a Table section in which data records can be
presented according to any data type and any sorting. Users can directly type in
material name, property, or DOI in the search box of the GUI to look for a target
material and property. One can also search exclusively for data that carry one
or more of the warning flags, S, L and R. Users can view a basic statistical anal-
ysis of the whole or part of the database via the Figure GUI, which includes pie
chart, bar chart, histogram, and Venn diagram display options. The installer of
the GUI application can be downloaded from Figshare. [32] Users can add more
data as more papers are published, by following the data extraction pipeline
(https://github.com/ShuHuang/batterydatabase); this pipeline can also be
used as a guideline for the data extraction of other material properties.

https://github.com/ShuHuang/batterydatabase
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Figure 3: The data distribution of the five properties for battery materials
examined in this study: (a) capacity, (b) conductivity, (c) voltage, (d) energy,
and (e) Coulombic efficiency.
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