1	Inhibition of F ₁ -ATPase from <i>Trypanosoma brucei</i> by its regulatory protein
2	inhibitor TbIF1
3	
4	Ondřej Gahura ^{1,2} , Brian Panicucci ¹ , Hana Váchová ^{1#} , John E. Walker ² , Alena Zíková ^{1,3*}
5	
6	¹ Institute of Parasitology, Biology Centre Czech Academy of Science, České Budějovice, Czech
7	Republic;
8	² The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge
9	Biomedical Campus, Hills Road, Cambridge CB2 0XY, United Kingdom;
10	³ Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
11	
12	#To whom correspondence should be addressed: Alena Zíková, Institute of Parasitology, Biology Centre
13	Czech Academy of Science, Branišovská 31, 37005, České Budějovice, Czech Republic; Tel.:
14	0042038775482; Email: azikova@paru.cas.cz; website: http://www.paru.cas.cz/en
15	*Present address: Institute of Molecular Biology, Czech Academy of Science, Prague, Czech Republic.
16	
17	Running title: Inhibition of F_1 -ATPase in Trypanosoma brucei
18	Abbreviations: I1-60, monomeric form of bovine IF ₁ , consisting of residues 1 to 60; PF, procyclic
19	form; BF, bloodstream form; k_{on} , rate constant of inhibitor's binding; k_{off} , rate constant of inhibitor's
20	dissociation; K _i , dissociation constant of the inhibitor-enzyme complex
21	Key words: F ₁ F ₀ -ATPase, trypanosome, <i>Trypanosoma brucei</i> , ATP synthase, enzyme inhibitor,
22	F-ATPase, IF ₁ , TbIF ₁
23	Conflict of interest:
24	The authors declare there is no conflict of interest associated with the manuscript.
25	

26 ABSTRACT

27 Hydrolysis of ATP by the mitochondrial F-ATPase is inhibited by a protein called IF_1 . In the parasitic 28 flagellate, *Trypanosoma brucei*, this protein, known as TbIF₁, is expressed exclusively in the procyclic 29 stage, where the F-ATPase is synthesizing ATP. In the bloodstream stage, where $TbIF_1$ is absent, the F-30 ATPase hydrolyzes ATP made by glycolysis and compensates for the absence of a proton pumping 31 respiratory chain by translocating protons into the intermembrane space, thereby maintaining the essential 32 mitochondrial membrane potential. We have defined regions and amino acid residues of TbIF₁ that are 33 required for its inhibitory activity by analyzing the binding of several modified recombinant inhibitors to 34 F₁-ATPase isolated from the procyclic stage of T. brucei. Kinetic measurements revealed that the C-35 terminal portion of TbIF₁ facilitates homodimerization, but it is not required for the inhibitory activity, 36 similar to the bovine and yeast orthologs. However, in contrast to bovine IF₁, the inhibitory capacity of the 37 C-terminally truncated TbIF₁ diminishes with decreasing pH, similar to full length TbIF₁. This effect does 38 not involve the dimerization of active dimers to form inactive tetramers. Over a wide pH range, the full 39 length and C-terminally truncated TbIF₁ form dimers and monomers, respectively. TbIF₁ has no effect on 40 bovine F₁-ATPase, and this difference in the mechanism of regulation of the F-ATPase between the host 41 and the parasite could be exploited in the design of drugs to combat human and animal African 42 trypanosomiases.

43

44 INTRODUCTION

Most eukaryotic cells use the mitochondrial electron transport chain and oxidative phosphorylation to generate ATP under aerobic conditions. The production of ATP is catalyzed by the terminal enzyme of the oxidative phosphorylation pathway, the F-ATPase (also called F_1F_0 -ATPase or ATP synthase). Together with respiratory enzyme complexes I, II, III and IV, the F-ATPase is located in the inner mitochondrial membrane where it uses the electrochemical potential difference for protons across the membrane generated by complexes I, III and IV. The proton flux from the intermembrane space, through the membrane domain of the F-ATPase, into the mitochondrial matrix, drives the turning of the enzyme's rotor. The rotor is 52 composed of a ring of c-subunits in the membrane sector of the enzyme, attached to an elongated central 53 stalk, which lies along the six-fold axis of pseudo-symmetry in the membrane-extrinsic F₁-catalytic domain. 54 This rotation drives the sequential binding of substrates ADP and phosphate and the formation of ATP in 55 each of the three catalytic sites, which are found at interfaces between α - and β -subunits in the F₁-domain 56 (for reviews see [1, 2]). The enzyme can also act in reverse to hydrolyze ATP, changing the direction of 57 rotation of the rotor, and pumping protons from the mitochondrial matrix into the intermembrane space. 58 Under certain conditions, for example during anoxia, this reverse mechanism counteracts the depolarization 59 of the inner mitochondrial membrane. However, in order to minimize the risk of deleterious depletion of 60 ATP, this proton translocation at the expense of ATP is tightly regulated [3] by a mechanism involving an 61 inhibitor protein, known as IF₁. This protein is found throughout eukarya, and has been studied mainly in 62 bovine, human and yeast mitochondria. The bovine protein is a potent unidirectional inhibitor of the ATP 63 hydrolytic activity of the F-ATPase, without effect on the synthesis of ATP [4, 5]. The active form of bovine 64 IF₁ is a dimer where the monomers are held together by an α -helical coiled-coil in the C-terminal regions 65 of the two protein monomers. In the free dimeric inhibitor, near neutral pH, the N-terminal inhibitory region 66 is intrinsically unfolded, whereas under slightly alkaline conditions (ca. pH 8.0), IF₁ becomes inactive by 67 formation of dimers of dimers and higher aggregates that mask the inhibitory region [6, 7]. The formation 68 of the fully inhibited state of the ATPase requires the hydrolysis of two ATP molecules. In the structure of 69 the bovine F_1 -ATPase inhibited by a monomeric form of IF₁ (known as I1-60 and consisting of the residues 70 1-60), the largely α -helical N-terminal region of the inhibitor is bound in a deep groove at the most closed 71 of the three catalytic interfaces of bovine F₁-ATPase. Here, it makes contacts with five of the nine subunits 72 of the enzyme [8]. In the presence of a large molar excess of either unmodified I1-60 or a mutated 73 monomeric form carrying the mutation K39A, the inhibited F_1 -ATPase complex has two or three molecules 74 of IF₁ bound at catalytic interfaces. These complexes represent intermediate stages in the binding of IF₁ to 75 F₁-ATPase in the pathway from the unbound and unfolded inhibitory region to the progressively folded and 76 final fully folded inhibited state of F₁-ATPase [9]. The inhibitor protein from Saccharomyces cerevisiae 77 binds to yeast F_1 -ATPase in a closely similar manner to the binding of bovine IF_1 to bovine F_1 -ATPase

[10]. Moreover, bovine IF₁ is an effective inhibitor of yeast F₁-ATPase and *vice versa* [11, 12]. However, yeast IF₁ is monomeric, not dimeric, as it lacks the C-terminal dimerization domain, and so its activity is not regulated by the formation of higher oligomers [12, 13]. In human mitochondria, IF₁ has been reported to protect cardiac tissue against the loss of ATP during ischemia [14, 15], has been linked to anti-apoptotic activity and oncogenesis in various cell lines and tissues [16, 17], and has been proposed to play an important role in the *in vivo* process of assembly of ATP synthase, by acting to prevent partially assembled complexes with the capability to hydrolyze ATP from doing so [18].

86 The parasitic flagellate, *Trypanosoma brucei* is the causative agent of sleeping sickness. It has a 87 complex life cycle including two main proliferative stages, the procyclic form (PF) in the tsetse fly 88 (Glossina sp.) and the bloodstream form (BF) in the final mammalian host [19]. As these two stages occur 89 in entirely different environments, they differ fundamentally in cell morphology and physiology, including 90 their mechanisms of energy conversion [20]. In the PF, ATP is produced mostly by oxidative 91 phosphorylation where the F-ATPase generates ATP [21]. In contrast, the BF is supplied by virtually 92 unlimited glucose from the blood of the host, and ATP is provided by glycolysis. The BF mitochondria are 93 devoid of respiratory complexes III and IV, and complex I is non-essential and dispensable. Instead, 94 reducing equivalents are channeled via the alternative NADH dehydrogenase, and the electrons are 95 transferred to oxygen by the non-proton pumping alternative oxidase (for reviews see [22, 23]). The 96 essential mitochondrial membrane potential is maintained by the proton pumping activity of the F-ATPase 97 driven by the hydrolysis of ATP [24, 25]. The genome of T. brucei encodes an ATPase inhibitor protein 98 known as TbIF₁. However, as expected, it is expressed only in PF cells. Ectopic expression of TbIF₁ in the 99 BF stage causes the collapse of the mitochondrial membrane potential and a rapid inhibition of growth [26]. 100 As described below, we have characterized $TbIF_1$ and its binding *in vitro* to its cognate F_1 -ATPase. 101 We have defined the regions of TbIF₁ that are essential for the inhibitory activity. We have compared the 102 sensitivity of its activity to pH, and its ability to form homo-oligomers with the bovine ortholog, and 103 demonstrated that $TbIF_1$ is incapable of inhibiting the bovine enzyme. Therefore, since the hydrolytic

- 104 activity of the F-ATPase is absolutely required in the BF of *T. brucei*, compounds mimicking the action of
- 105 TbIF₁ could be developed to selectively inhibit the parasite F-ATPase without affecting the human enzyme
- as new therapies for the treatment of sleeping sickness and related African trypanosomiases.
- 107

108 RESULTS AND DISCUSSION

109 Characterization of TbIF₁ and variants

110 In order to characterize TbIF₁ and to study how its features are involved in the inhibition of F₁-ATPase in 111 T. brucei, several variants of TbIF₁ were expressed in Escherichia coli without the N-terminal 112 mitochondrial targeting sequence (Fig. 1A) and with a C-terminal 6xHis tag used in their purification by 113 affinity chromatography. The proteins include the intact mature TbIF₁ from residues 1-93 and named TbIF₁-114 WT, a C-terminally truncated version, $TbIF_1(1-64)$, N-terminally truncated versions $TbIF_1-\Delta 1-5$, $-\Delta 1-8$, -115 Δ 1-10, - Δ 1-12 and - Δ 1-15, and full-length forms with point mutations, TbIF₁(E24A), TbIF₁(E27A), 116 TbIF₁(P32A) and TbIF₁(Y24W). The purity of the isolated proteins was demonstrated by analysis by SDS-117 PAGE (Fig. 1B), and their sequences were verified by measurement of their intact molecular masses (Table 118 S1). The choice of these mutated forms of $TbIF_1$ was based upon knowledge of the mode of action of the 119 bovine and yeast inhibitor proteins, and on sequence relationships between these proteins and other 120 orthologs with TbIF₁ (Fig. 1A). This sequence alignment demonstrates that the inhibitory region from 121 residues 19-59 is well conserved, especially from residues F25 to L48, which forms the α -helical region 122 that interacts with F_1 -ATPase in the bovine and yeast enzymes, except that residues R25, A28, F34, A43, 123 and A44 [27], identified as being critical for the binding of bovine IF_1 to its cognate F_1 -ATPase, are not 124 conserved in TbIF₁ (Table S2).

125 The N-terminal inhibitory domain of the bovine IF_1 is intrinsically disordered and becomes 126 progressively structured in the process of binding to F_1 -ATPase [9]. The CD spectrum of TbIF₁-WT is 127 typical of a protein with high α -helical content [28], whereas the spectrum of TbIF₁(1-64) is typical of a 128 random structure (Fig. 1C). Thus, it appears that the conserved N-terminal part of TbIF₁ is intrinsically 129 unfolded, as in bovine IF₁, and the α -helical component of the CD spectrum comes from the C-terminal region where residues 33-93 are predicted to form a single α -helix (Fig. 1A) with the potential to form an anti-parallel α -helical coiled-coil (residues 60-93), as in bovine IF₁ [29].

In contrast to the conservation of the sequence of residues 25-88, residues 1-24 of TbIF₁ are largely unconserved. The region from residues 1-18 is predicted to be unstructured, and the regions from 19-27 and 33-93 to be α -helical. In the bovine enzyme, the N-terminal region from residues 1-13 is also unstructured and makes contact the α_{E} -subunit. Residues 14-18 form a short α -helix which is in contact with the N-terminal α -helix of the γ -subunit [8, 10], thereby contributing to the strength of the interaction between the enzyme and the inhibitor [27]. The sequence alignment also revealed a stretch of residues starting at I49 of TbIF₁, which appears to be specific for kinetoplastids (Fig. 1A).

139

140 Oligomerization of TbIF₁

141 The ability of TbIF₁ to form homo-oligomers was examined by two independent approaches. It was 142 demonstrated by covalent cross-linking with dimethylsuberimidate that, similar to the bovine protein, 143 TbIF₁-WT forms dimers at pH values above neutrality, whereas TbIF₁(1-64) did not (Fig. 2A). However, 144 the higher oligomers observed with the bovine protein were not formed by $TbIF_1$ -WT. The oligomerization 145 state was examined also by gel filtration chromatography (Table 1 and Fig. 2B). With the control samples, 146 monomeric bovine I1-60 and full length bovine IF₁, the values obtained at pH 8.0 were approximately twice 147 those expected for monomers and dimers, probably in consequence of the dimers consisting of a partly of 148 an antiparallel α -helical coiled coil structure approximately 130 Å long involving residues 19-81, with a 149 disordered structure from residues 1-18 extending in opposite directions from each monomer [7]. The 150 values obtained with $TbIF_1$ -WT and $TbIF_1(1-64)$ were similarly greater than expected from their calculated 151 molecular masses. By comparison with the bovine values, and assuming that $TbIF_1$ has a similar overall 152 structure to bovine IF_1 , which the sequence similarities suggest, the observed values are consistent with 153 $TbIF_1(1-64)$ being monomeric, and the formation of dimers by $TbIF_1$ both above and below neutral pH. In 154 contrast to the bovine protein, $TbIF_1$ appears not to form oligomers greater than dimers under any of the 155 conditions that were investigated. Therefore, it appears that in contrast to bovine IF_1 , where the transition

from the active dimeric state to the inactive tetrameric and higher oligomeric states is governed by pH [6],
TbIF₁ does not form dimers of dimers and higher oligomers at pH 8.0, and there is no evidence for a pH
regulated active-inactive switch with TbIF₁.

159

160 Influence of pH and the C-terminal region of TbIF₁ on its inhibitory activity

161 The kinetics of the inhibition of F_1 -ATPase by $TbIF_1$ were characterized by measurement of the rate 162 constants of the inhibitor's binding (kon) and dissociation (koff), and the dissociation constant of the 163 inhibitor-enzyme complex (K_i). The kinetic measurements were carried out with F₁-ATPase isolated from 164 the procyclic form of T. brucei [30]. These kinetic data are summarized in Table 2. In contrast to bovine 165 IF_1 where the C-terminally truncated variant has a higher inhibitory potential than the intact protein at pH 166 8.0 [6], K_i , k_{on} and k_{off} do not differ between intact TbIF₁ and TbIF₁(1-64). This difference is unsurprising 167 as $TbIF_1$ does not form tetramers, which is facilitated by the C-terminal part of IF₁ in the bovine protein 168 [7]. Reduction of the pH to 6.5 is accompanied by a significant increase in the affinity of $TbIF_1$ for F_1 -169 ATPase (Table 2). In mammals, a similar phenomenon is explained by the need to prevent ATP depletion 170 by hydrolysis by F-ATPase, accompanying membrane depolarization and acidification of the matrix [31]. 171 The increased affinity of IF₁ affinity counteracts this hydrolysis and helps to maintain sufficient levels of 172 ATP [32]. A similar mechanism may operate also in *T. brucei* during hypoxia [26]. At pH values of both 173 8.0 and 6.5, the deletion of C-terminus does not affect the binding of the inhibitor to F_1 -ATPase. 174 Approximately two-fold decrease in k_{off} and ten-fold increase in k_{on} contributed to a lower value of K_i at 175 pH 6.5 in comparison to pH 8.0 (Table 2), indicating that the inhibitor binds to the enzyme at a higher rate 176 and, in addition, the inhibited complex is more stable under these conditions.

The ability of TbIF₁ to inhibit F_1 -ATPase could either increase gradually with decreasing pH or it could change sharply at a certain threshold pH value. To distinguish between these two possibilities, the purified F_1 -ATPase was inhibited with either intact TbIF₁ or TbIF₁(1-64) at pH values from 6.0-9.0 and residual ATPase activities were measured. The response of TbIF₁ inhibitory potential to pH change was gradual and had no threshold (Fig. 3). Also, as expected, the lack of the C-terminal region of TbIF₁ had no

- 182 effect on the inhibition F₁-ATPase over a range of pH values, and for both intact and truncated TbIF₁, the
- 183 residual activities were very similar, consistent with the C-terminal part of TbIF₁ not being involved directly
- in the interaction with F_1 -ATPase, as in other species [8, 10].
- 185

186 Effect of truncation of the N-terminal region of TbIF₁

187 The inhibitory capacities of TbIF₁- Δ 1-5, - Δ 1-8, - Δ 1-10, - Δ 1-12 and - Δ 1-15 were compared with full length 188 TbIF₁. It was confirmed that the inhibitory effect of intact $TbIF_1$ is greater at pH 6.5 than at pH 8.0, and 189 that at pH 6.5 a concentration of 0.1 µM is more effective than the same concentration at pH 8.0 (Fig. 4A). 190 Removal of the N-terminal region of TbIF₁ up to residue 10, had no effect on the inhibitory capacity of 191 $TbIF_1$, but removal of residues 1-12 and 1-15, impaired the inhibitory capacity of the protein progressively 192 (Fig. 4B). Thus, the region in the vicinity of residues 14-16 defines the N-terminal extremity of the minimal 193 inhibitory sequence of TbIF₁. At pH 8.0, the inhibitory capacities of all the truncated versions followed the 194 same trend as at pH 6.5, except that the inhibitory capacities were lower (not shown), suggesting that the 195 N-terminal region of TbIF₁ from residues 1-16 does not participate in the effects of pH on inhibitory 196 activity.

197 In the structure of bovine F_1 -ATPase inhibited by IF₁, residues 1-7 of IF₁ were not resolved and 198 residues 8-13 have an extended structure [8]. Thus, the increased entropy of this region may destabilize the 199 interaction of the enzyme with the inhibitor [27]. In the bovine inhibited complex, residues 14-18 form a 200 short α -helix, followed by a short loop from residues 19-21 which interacts with the N-terminal α -helix in 201 the α -helical coiled-coil region of the γ -subunit. Despite the lack of conservation of this region of the 202 sequence of the inhibitor protein in S. cerevisiae (Fig. 1A), the yeast IF_1 interacts with its cognate F_1 -203 ATPase in a similar way [10]. The sequences of the N-terminal regions of TbIF_1 and bovine IF₁ also differ 204 extensively (Fig. 1A), and yet deletion of this region has a similar impact on their inhibitory capacities [27]. 205 Therefore, as in the bovine and yeast inhibited complexes, it seems likely that in the complex of TbF₁-206 ATPase inhibited by $TbIF_1$, the N-terminal region of $TbIF_1$ will interact with TbF_1 -ATPase in a similar way 207 to the mode of interaction of the bovine and yeast IF_1 proteins with their cognate F_1 -ATPases.

209 Effects of point mutations of TbIF₁ on inhibition of F₁-ATPase

210 The N-terminal inhibitory domain of IF_1 contains several residues that are strictly conserved in mammals, 211 fungi and kinetoplastids (Fig. 1A). This conservation suggests that they have a general role in the action of 212 IF₁, either directly by participating in the interaction between IF₁ and F_1 -ATPase or indirectly in the process 213 of formation of the inhibited complex, which is complicated by the requirement to fold the inhibitory region 214 from its intrinsically disordered unbound state [9]. Introduction of the mutation Y36W into the conserved 215 residue Tyr-36 of TbIF₁ increased the inhibitory potency of TbIF₁ (Fig 4C). This observation is consistent 216 with the conservation of Asp-394 and Lys-401 in the β-subunit, which interact with Tyr-33 in the bovine 217 inhibited complex (Table S2 and [8, 9]).

218 In bovine inhibited complex, residues 21-46 of the long α -helix of IF₁ are strictly or conservatively 219 conserved in 14 out of 26 residues in comparison to TbIF₁, but not residue Pro-32, which replaces Glu-28 220 in bovine IF₁. In addition to being unconserved, Glu-28 is not in contact with F₁-ATPase in the inhibited 221 complex. The introduction of a proline residue might be expected to change the secondary structure of 222 TbIF₁ by breaking the long α -helix. However, the substitution of this residue by alanine in TbIF₁(P32A) 223 had only a slight effect on the inhibitory capacity of TbIF₁ (Fig. 4C), and so it appears likely that this proline 224 residue has only a minor structural effect on TbIF₁, possibly introducing a kink in the long α -helix rather 225 than changing its secondary structure radically. As expected, the mutation $TbIF_1(P32A)$ had no effect on 226 the α -helical content of TbIF₁ alone, as this region of the protein is presumably disordered as in the unbound 227 bovine IF_1 (Fig. 1C).

Similar to bovine IF_1 and IF_1 in *S. cerevisiae*, the inhibitory activity of $TbIF_1$ is pH dependent (Fig. 3) [13]. It has been proposed that in the yeast protein, this pH dependence involves Glu-21 (residue 30 in the aligned sequences in Fig. 1A). However, this glutamate residue is not conserved in kinetoplastids, and adjacent residues are also poorly conserved (Fig. 1A). Therefore, two other nearby glutamate residues at positions 24 and 27 were mutated separately to alanine, generating $TbIF_1(E24A)$ and $TbIF_1(E27A)$. However, neither mutation enhanced the inhibition of F_1 -ATPase at pH 8.0, and their inhibitory capacity at

- pH 6.5 remained the same as the inhibitory capacity of TbIF₁-WT (Fig. 4C). Thus, the sensitivity of the inhibitory potency of TbIF₁ to pH is explained neither by these point mutations, nor by a change in oligomerization state [6]. An explanation will need to be sought elsewhere.
- 237

Heterologous inhibitory effects of TbIF₁ and bovine IF₁

Bovine F_1 -ATPase was hardly inhibited at all by TbIF₁, but bovine IF₁ had a significant inhibitory effect on the F₁-ATPase from *T. brucei*, albeit considerably less than by TbIF₁ (Fig. 5). In the current absence of structure of TbF₁-ATPase inhibited by TbIF₁, it is difficult to explain these observations in molecular terms. However, most of residues in the β -subunit of bovine F₁-ATPase involved in the interaction with bovine IF₁ [8, 9] are conserved in trypanosomes, whereas other interactions between bovine IF₁ with α - and γ subunits are generally poorly conserved (Table S2). It is among these poorly conserved residues in α - and γ -subunits that an explanation may lie.

246

247 **F**₁-ATPase and TbIF₁ interaction interface as a drug target

248 In the BF of *T. brucei*, the membrane potential of their mitochondria is maintained by the hydrolysis 249 of ATP by ATP synthase. The ATP molecules are supplied from the cytosol and are imported to the 250 mitochondrial matrix by the ADP-ATP translocase. The survival of the parasite in the bloodstream depends 251 on this mechanism [25,33]. Only recently has it been demonstrated that TbIF₁ suppresses the hypoxia-252 related mitochondrial membrane potential phenotype in the PF cells of T. brucei, and that in vivo $TbIF_1$ 253 inhibits ATPase, but not ATP synthesis [26]. The experiments described here show common features and 254 significant differences between $TbIF_1$ and the mammalian inhibitor protein. The inhibitors inhibit the 255 hydrolytic activity of their cognate F_1 -ATPases by probably binding to the enzyme in a similar way. 256 However, they differ in their oligomeric state and in the regulation of their inhibitory activity by pH. 257 Moreover, TbIF₁ has no effect on bovine F₁-ATPase, which is very similar in its structure and properties to 258 the human enzyme. Therefore, it is conceivable that compounds mimicking the action of $TbIF_1$ could be 259 developed to inhibit the ATP hydrolytic activity of the BF of T. brucei, leading potentially to new therapies for the treatment of African trypanosomiases. Recently, the structure of the F_1 -ATPase from *T. brucei* was described [34], and the development of such new therapeutic compounds would be greatly aided by an atomic resolution structure of the *T. brucei* F_1 -ATPase inhibited by TbIF₁. The F-ATPase in *Mycobacterium tuberculosis* is an authenticated drug target for treatment of tuberculosis, and bedaquiline, an inhibitor of the enzyme, is now in clinical use [35,36]. The current findings open a possible pathway for the development of the F-ATPase in *T. brucei* as a drug target.

266

267 EXPERIMENTAL PROCEDURES

268 Cloning, expression, and purification of variants of TbIF₁

269 Fragments encoding truncated versions of $TbIF_1$ were amplified by PCR from genomic DNA from PF T. 270 brucei Lister strain 427 with forward and reverse primers containing NdeI and HindIII restriction sites, 271 respectively. All reverse primers encoded the hexahistidine tag (6xHis). The PCR products were inserted 272 into the expression vector pRUN [37], pre-digested with NdeI and HindIII. Site-directed mutagenesis was 273 carried out with a QuikChange Lightning mutagenesis kit (Agilent Technologies, USA). Oligonucleotides 274 used in amplification and mutagenesis are listed in the Table S3. The sequences of cloned regions were 275 verified by DNA sequencing. Plasmids were transformed into Escherichia coli C41(DE3) [38], and the 276 cells were grown in LB medium. When the OD_{600} had reached ca. 0.4, the expression of the recombinant 277 protein was induced by the addition of 1 mM isopropyl β -D-1-thiogalactopyranoside for 3 hours. Then the 278 cells were harvested, washed in phosphate buffered saline, resuspended at 4°C in buffer containing 20 mM 279 Tris-HCl, pH 7.4, 10% (w/v) glycerol, 100 mM NaCl and 25 mM imidazole supplemented with the 280 cOmplete EDTA-free protease inhibitor cocktail (Roche, Switzerland). They were lysed with lysozyme (75 281 μ g/ml) for 30 min at 4°C in the presence of DNase I (15 U/ml). The lysate was sonicated (5x20 s), and 282 cooled on ice for 1 min between impulses, centrifuged (15000 x g, 30 min, 4°C), filtered (0.45 μ m pores), 283 and applied to a HisTrap nickel affinity column (GE Healthcare, United Kingdom) in the same buffer. The 284 TbIF₁ variants were eluted with a 50 ml linear gradient of imidazole from 20-500 mM. Fractions were 285 analyzed by SDS-PAGE. Those containing $TbIF_1$ were pooled and dialyzed against buffer containing 20

- 286 mM Tris-HCl, pH 7.4, and 10% glycerol (w/v), concentrated by membrane filtration (molecular weight cut-
- 287 off 3.5 kDa, Sartorius, Germany) to 10-20 mg/ml, flash-frozen in liquid N₂, and stored at -80°C.
- 288

289 **Purification of F1-ATPase**

- 290 F₁-ATPase from *T. brucei* was purified from PF strain 427 as described previously [30]. Its specific activity
- 291 was determined as described below [39] and was 56 μ mol×min⁻¹×mg⁻¹.
- 292

293 Protein analysis

The process of purification and the purity of recombinant TbIF₁ variants and F₁-ATPase were monitored by SDS-PAGE in the presence of Tris-glycine. Protein bands were stained with Coomassie Brilliant Blue. The molecular masses of TbIF₁ proteins were verified by liquid chromatography coupled to mass spectrometry (LC/MS) in a 4000 QTrap triple quadrupole mass spectrometer a (AB SCIEX, USA) equipped with electrospray ionization.

299

300 Protein cross-linking

Purified inhibitor proteins were dialyzed into buffer consisting of 20 mM HEPES and 1 mM EDTA, at various pH values, and then diluted to a concentration of 0.1 mg/ml. Dimethylsuberimidate (DMS) dissolved in water was added to give a final concentration of 1 mg/ml. After various periods, the reaction was terminated by mixing the samples with the loading buffer for SDS-PAGE. The cross-linked proteins were analyzed by SDS-PAGE on 15% gels and stained with Coomassie Brilliant Blue dye.

306

307 Analytical gel-filtration

308 Purified TbIF₁ and bovine IF₁, both at a concentration of 3 mg/ml, were dialyzed into buffers with various

- 309 pH values: 20 mM Tris-HCl, pH 8.0 and 7.4, and 10 mM MOPS-NaOH, pH 6.5. All buffers contained 10%
- 310 (w/v) glycerol and 150 mM NaCl. The samples were applied to a Superdex 75 10/300 GL gel-filtration

- 311 column (GE Healthcare, UK) equilibrated in the respective buffer, and calibrated with a gel filtration LMW
- 312 Calibration Kit (GE Healthcare). The uv absorption of the eluate was recorded at 280 nm.
- 313

314 Assay of inhibition of F₁-ATPase

315 The activity of TbF_1 -ATPase was measured with an ATP regenerating assay as described before [27,39]. 316 For estimation of the inhibitory effects of TbIF₁, ATP hydrolysis by F₁-ATPase was initiated, and 15s later 317 the inhibitor protein was introduced in buffer containing 20 mM Tris-HCl, pH 7.4 and 10% (w/v) glycerol, 318 and the absorbance was recorded for 10 min. The initial exponential decay of the ATPase activity following 319

- inhibition is described by the equation:
- 320

$$y_t-y_0=V_0t+[(V_0-V_\infty)/k_{inh}][1-exp(-k_{inh}t)]$$
 (1)

321 where y_t is absorbance at time t, y_0 is absorbance at the point of inhibitor addition, V_0 is the initial rate of 322 the reaction before the addition of inhibitor, V_{∞} is rate of reaction at equilibrium, and k_{inh} is the apparent 323 inhibitory constant. In the presence of a large molar excess of the inhibitor over the enzyme, the reaction 324 can be assessed as pseudo-first order, and k_{inh}, expressed in reciprocal seconds (s⁻¹), is directly proportional 325 to the concentration of inhibitor ([I]):

326

$$k_{inh} = k_{on}[I] + k_{off}$$
(2)

327 Therefore, the slope of the linear regression of kinh plotted against [I] corresponds to the rate constant of the 328 binding of the inhibitor, k_{on} , expressed as $\mu M^{-1}s^{-1}$. To obtain K_i , the dissociation constant of the inhibitor 329 binding to the enzyme complex, expressed as μM , the ratio of final and initial reaction rates (V_a/V₀) was 330 fitted to the equation:

331 $V_{\infty}/V_0 = v_{ins} + (1 - v_{ins})/(1 + [I]/K_i)$ (3)

332 where v_{ins} is the inhibitor insensitive fraction of the initial rate of reaction; its value was set to the proportion 333 of the initial ATPase activity which cannot be inhibited by the specific F_1 -ATPase inhibitor sodium azide. 334 The rate constant of inhibitor dissociation, k_{off}, expressed as s⁻¹, was calculated directly from the following 335 relationship derived from equations (2) and (3):

336
$$V_{\infty}/V_0 = v_{ins} + [(1-v_{ins})k_{off}](1/k_{inh})$$
 (4)

337 Theoretically, k_{off} is given also by the intercept of the v axis of equation (2). However, the approach using 338 equation (4) is independent of [I], which eliminates any impact of possible inaccuracies in the 339 concentrations of inhibitor solutions. An example of data processing and calculations is shown in Fig. S1. 340 To measure the residual F_1 -ATPase activity in equilibrium with different inhibitor variants, 341 F_1 -ATPase was mixed with the inhibitor in 500 µl of assay mixture lacking NADH, phosphoenolpyruvate, 342 pyruvate kinase and lactate dehydrogenase. After 5 min at 37°C, when equilibrium had been reached, a 343 further 500 µl of reaction mixture containing at twice their normal concentrations of constituents to 344 compensate for their absence in the first half of the mixture were added, and the linear decrease of 345 absorbance was recorded for 60 s. The residual ATPase activity was calculated as the ratio of decrease of 346 absorbance in the presence and absence of inhibitor. 347 348 **Circular dichroism** 349 Mutated forms of TbIF₁ were dialyzed into buffer consisting of 100 mM sodium phosphate, pH 8.0 or 6.5, 350 10% (w/v) glycerol, and diluted to a concentration of 0.125 mg/ml. The circular dichroism spectra were 351 recorded from 190-240 nm in a Jasco J715 instrument. 352 353 **Bioinformatic analysis** 354 The mitochondrial import sequence of $TbIF_1$ was predicted with MitoProtII [40]. 355 356 Acknowledgements 357 This work was supported by the Ministry of Education ERC CZ grant LL1205 and Grant Agency of the 358 Czech Republic (18-17529S) (both to A.Z.), by European Regional Development Fund (No. 359 CZ.02.1.01/0.0/0.0/16_019/0000759), and by the Medical Research Council of the United Kingdom by 360 Grant 21 522 MC_U1065663150 and by Programme Grant MR/M009858/1 (both to J. E. W.). We thank 361 Drs J. V. Bason and R. Litvín for help with the kinetic analyses and measurement of CD spectra, 362 respectively.

364 **Contributions of authors:**

- 365 AZ and JEW conceived and supervised the study. OG, AZ, BP and JEW designed the experiments, and OG
- 366 performed the experiments. HV cloned, expressed and purified recombinant inhibitor proteins. AZ, OG,
- BP and JEW wrote the paper.
- 368

369 **References**

- Walker, J. E. (2013) The ATP synthase: the understood, the uncertain and the unknown, *Biochem Soc Trans.* 41, 1-16.
- 2. Walker, J. E. (2017) Structure, Mechanism and Regulation of ATP Synthases in (Wikstrom, M., ed),
- The Royal Society of Chemistry.
- 374 3. St-Pierre, J., Brand, M. D. & Boutilier, R. G. (2000) Mitochondria as ATP consumers: cellular treason
 375 in anoxia, *Proc Natl Acad Sci U S A.* 97, 8670-4.
- 4. Pullman, M. E. & Monroy, G. C. (1963) A Naturally Occurring Inhibitor of Mitochondrial Adenosine
 Triphosphatase, *J Biol Chem.* 238, 3762-9.
- 5. Runswick, M. J., Bason, J. V., Montgomery, M. G., Robinson, G. C., Fearnley, I. M. & Walker, J. E.
- (2013) The affinity purification and characterization of ATP synthase complexes from mitochondria, *Open Biol.* 3, 120160.
- 381 6. Cabezon, E., Butler, P. J., Runswick, M. J. & Walker, J. E. (2000) Modulation of the oligomerization
 382 state of the bovine F₁-ATPase inhibitor protein, IF₁, by pH, *J Biol Chem.* 275, 25460-4.
- 383 7. Cabezon, E., Runswick, M. J., Leslie, A. G. & Walker, J. E. (2001) The structure of bovine IF₁, the 384 regulatory subunit of mitochondrial F-ATPase, *EMBO J.* **20**, 6990-6.
- 385 8. Gledhill, J. R., Montgomery, M. G., Leslie, A. G. & Walker, J. E. (2007) How the regulatory protein,
- 386 IF₁, inhibits F₁-ATPase from bovine mitochondria, *Proc Natl Acad Sci U S A*. **104**, 15671-6.
- 387 9. Bason, J. V., Montgomery, M. G., Leslie, A. G. & Walker, J. E. (2014) Pathway of binding of the
 388 intrinsically disordered mitochondrial inhibitor protein to F₁-ATPase, *Proc Natl Acad Sci U S A.* 111,
 389 11305-10.
- 390 10. Robinson, G. C., Bason, J. V., Montgomery, M. G., Fearnley, I. M., Mueller, D. M., Leslie, A. G. &
- Walker, J. E. (2013) The structure of F₁-ATPase from *Saccharomyces cerevisiae* inhibited by its regulatory
 protein IF₁, *Open Biol.* 3, 120164.
- 393 11. Satre, M., de Jerphanion, M. B., Huet, J. & Vignais, P. V. (1975) ATPase inhibitor from yeast
 394 mitochondria. Purification and properties, *Biochim Biophys Acta*. 387, 241-55.
- 12. Cabezon, E., Butler, P. J., Runswick, M. J., Carbajo, R. J. & Walker, J. E. (2002) Homologous and heterologous inhibitory effects of ATPase inhibitor proteins on F-ATPases, *J Biol Chem.* **277**, 41334-41.
- 397 13. Ichikawa, N., Karaki, A., Kawabata, M., Ushida, S., Mizushima, M. & Hashimoto, T. (2001) The
- region from phenylalanine-17 to phenylalanine-28 of a yeast mitochondrial ATPase inhibitor is essential
 for its ATPase inhibitory activity, *J Biochem.* 130, 687-93.
- 400 14. Rouslin, W. (1988) Factors affecting the loss of mitochondrial function during zero-flow ischemia
- 401 (autolysis) in slow and fast heart-rate hearts, *J Mol Cell Cardiol.* **20**, 999-1007.
- 402 15. Campanella, M., Casswell, E., Chong, S., Farah, Z., Wieckowski, M. R., Abramov, A. Y., Tinker, A.
- 403 & Duchen, M. R. (2008) Regulation of mitochondrial structure and function by the F_1F_0 -ATPase inhibitor
- 404 protein, IF₁, *Cell Metab.* **8**, 13-25.

- 405 16. Formentini, L., Sanchez-Arago, M., Sanchez-Cenizo, L. & Cuezva, J. M. (2012) The mitochondrial
- 406 ATPase inhibitory factor 1 triggers a ROS-mediated retrograde prosurvival and proliferative response, *Mol* 407 *Cell.* **45**, 731-42.
- 408 17. Sanchez-Arago, M., Formentini, L., Martinez-Reyes, I., Garcia-Bermudez, J., Santacatterina, F.,
- 409 Sanchez-Cenizo, L., Willers, I. M., Aldea, M., Najera, L., Juarranz, A., Lopez, E. C., Clofent, J., Navarro,
- 410 C., Espinosa, E. & Cuezva, J. M. (2013) Expression, regulation and clinical relevance of the ATPase
- 411 inhibitory factor 1 in human cancers, *Oncogenesis*. 2, e46.
- 412 18. He, J., Ford, H. C., Carroll, J., Douglas, C., Gonzales, E., Ding, S., Fearnley, I. M. & Walker, J. E.
- 413 (2018) Assembly of the membrane domain of ATP synthase in human mitochondria, *Proc Natl Acad Sci U*414 S A. 115, 2988-2993.
- 415 19. Matthews, K. R. (2015) 25 years of African trypanosome research: From description to molecular dissection and new drug discovery, *Mol Biochem Parasitol*.
- 417 20. Tielens, A. G. & van Hellemond, J. J. (2009) Surprising variety in energy metabolism within 418 Trypanosomatidae, *Trends Parasitol.* **25**, 482-90.
- 419 21. Besteiro, S., Barrett, M. P., Riviere, L. & Bringaud, F. (2005) Energy generation in insect stages of
- 420 Trypanosoma brucei: metabolism in flux, *Trends Parasitol.* **21**, 185-91.
- 421 22. Zikova, A., Hampl, V., Paris, Z., Tyc, J. & Lukes, J. (2016) Aerobic mitochondria of parasitic protists:
- 422 Diverse genomes and complex functions, *Mol Biochem Parasitol*.
- 423 23. Smith, T. K., Bringaud, F., Nolan, D. P. & Figueiredo, L. M. (2017) Metabolic reprogramming during 424 the *Trypanosoma brucei* life cycle, *F1000Res.* **6**.
- 425 24. Nolan, D. P. & Voorheis, H. P. (1992) The mitochondrion in bloodstream forms of *Trypanosoma brucei*
- 426 is energized by the electrogenic pumping of protons catalysed by the F_1F_0 -ATPase, *Eur J Biochem.* 209, 207-16.
- 428 25. Schnaufer, A., Clark-Walker, G. D., Steinberg, A. G. & Stuart, K. (2005) The F₁-ATP synthase complex
 429 in bloodstream stage trypanosomes has an unusual and essential function, *EMBO J.* 24, 4029-40.
- 430 26. Panicucci, B., Gahura, O. & Zikova, A. (2017) Trypanosoma brucei TbIF₁ inhibits the essential F₁-
- 431 ATPase in the infectious form of the parasite, *PLoS Negl Trop Dis.* **11**, e0005552.
- 432 27. Bason, J. V., Runswick, M. J., Fearnley, I. M. & Walker, J. E. (2011) Binding of the inhibitor protein
 433 IF₁ to bovine F₁-ATPase, *J Mol Biol.* 406, 443-53.
- 434 28. Greenfield, N. J. (2006) Using circular dichroism spectra to estimate protein secondary structure, *Nat*435 *Protoc.* 1, 2876-90.
- 436 29. McDonnell, A. V., Jiang, T., Keating, A. E. & Berger, B. (2006) Paircoil2: improved prediction of coiled coils from sequence, *Bioinformatics*. **22**, 356-8.
- 438 30. Gahura, O., Subrtova, K., Vachova, H., Panicucci, B., Fearnley, I. M., Harbour, M. E., Walker, J. E. &
- Zikova, A. (2018) The F₁-ATPase from *Trypanosoma brucei* is elaborated by three copies of an additional
 p18-subunit, *FEBS J.* 285, 614-628.
- 441 31. Rouslin, W. (1987) Factors affecting the reactivation of the oligomycin-sensitive adenosine 5'-
- triphosphatase and the release of ATPase inhibitor protein during the re-energization of intact mitochondria
 from ischemic cardiac muscle, *J Biol Chem.* 262, 3472-6.
- 444 32. Rouslin, W. & Pullman, M. E. (1987) Protonic inhibition of the mitochondrial adenosine 5'-445 triphosphatase in ischemic cardiac muscle. Reversible binding of the ATPase inhibitor protein to the 446 mitochondrial ATPase during ischemia, *J Mol Cell Cardiol.* **19**, 661-8.
- 447 33. Subrtova, K., Panicucci, B. & Zikova, A. (2015) ATPaseTb2, a unique membrane-bound F_oF₁-ATPase
- 448 component, is essential in bloodstream and dyskinetoplastic trypanosomes, *PLoS Pathog.* **11**, e1004660.
- 449 34. Montgomery, M. G., Gahura, O., Leslie, A. G. W., Zikova, A. & Walker, J. E. (2018) ATP synthase
- 450 from *Trypanosoma brucei* has an elaborated canonical F₁-domain and conventional catalytic sites, *Proc* 451 *Natl Acad Sci U S A.* 115, 2102-2107.
- 452 35. Andries, K., Verhasselt, P., Guillemont, J., Gohlmann, H. W., Neefs, J. M., Winkler, H., Van Gestel,
- 453 J., Timmerman, P., Zhu, M., Lee, E., Williams, P., de Chaffoy, D., Huitric, E., Hoffner, S., Cambau, E.,
- 454 Truffot-Pernot, C., Lounis, N. & Jarlier, V. (2005) A diarylquinoline drug active on the ATP synthase of
- 455 *Mycobacterium tuberculosis, Science.* **307**, 223-7.

- 456 36. Preiss, L., Langer, J. D., Yildiz, O., Eckhardt-Strelau, L., Guillemont, J. E., Koul, A. & Meier, T. (2015)
- 457 Structure of the mycobacterial ATP synthase F_0 rotor ring in complex with the anti-TB drug bedaquiline, 458 *Sci Adv.* **1**, e1500106.
- 459 37. Silvester, J. A., Dickson, V. K., Runswick, M. J., Leslie, A. G. & Walker, J. E. (2006) The expression,
- 460 purification, crystallization and preliminary X-ray analysis of a subcomplex of the peripheral stalk of ATP
- synthase from bovine mitochondria, Acta Crystallogr Sect F Struct Biol Cryst Commun. 62, 530-3.
- 462 38. Miroux, B. & Walker, J. E. (1996) Over-production of proteins in *Escherichia coli*: mutant hosts that
- allow synthesis of some membrane proteins and globular proteins at high levels, *J Mol Biol.* **260**, 289-98.
- 464 39. Pullman, M. E., Penefsky, H. S., Datta, A. & Racker, E. (1960) Partial resolution of the enzymes
 465 catalyzing oxidative phosphorylation. I. Purification and properties of soluble dinitrophenol-stimulated
 466 adenosine triphosphatase, *J Biol Chem.* 235, 3322-9.
- 467 40. Claros, M. G. & Vincens, P. (1996) Computational method to predict mitochondrially imported proteins
 and their targeting sequences, *Eur J Biochem.* 241, 779-86.
- 469 41. Cole, C., Barber, J. D. & Barton, G. J. (2008) The Jpred 3 secondary structure prediction server, *Nucleic*470 *Acids Res.* 36, W197-201.
- 471 42. Edgar, R. C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput,
- 472 *Nucleic Acids Res.* **32**, 1792-7.
- 473

474 **Supporting information:**

- 475 Table S1: Intact molecular masses of TbIF₁ and its variants
- 476 Table S2: Interactions between amino acids in subunits of bovine F₁-ATPase and bovine IF₁ and their
- 477 possible conservation in *T. brucei*
- 478 Table S3: List of oligonucleotides
- 479 Figure S1: Analysis of kinetic data illustrated with the example of TbIF₁-WT at pH 8.0

480 TABLES

TABLE 1. Oligomerization of TbIF₁

482	Apparent molecular	weights were	determined by	size exclusion	chromatography	on Superdex 75.
101	i ippui one moreo arai	mengines mere	accommod of	SILC CHCIGSION	omonucography	on baperaen /o.

		Molecular weight		Oligomerization	
Protein	рН	Calculated	Measured	state	
TbIF ₁ -WT	8.0		44.5	Dimer	
	7.4	12.3	42.8	Dimer	
	6.5		38.2	Dimer	
$TbIF_1(1-64)$	8.0		18.9	Monomer	
	7.4	8.7	18.5	Monomer	
	6.5		18.2	Monomer	
bovine IF ₁	8.0	10.4	79.0	Tetramer	
bovine I1-60	8.0	7.6	16.4	Monomer	

Inhibitor protein	рН	$k_{on} (10^{-2} \ \mu M^{-1} s^{-1})$	$k_{off} (10^{-4} s^{-1})$	$K_i (10^{-2} \mu M)$
ThIE	8.0	2.2±0.51	44±14	18.3±3.9
I DIF ₁	6.5	5.1±0.81	4.2±0.30	0.64 ± 0.20
Thus $(1, 64)$	8.0	1.9 ± 0.08	35±23	17.9±1.8
101Γ ₁ (1-04)	6.5	6.0±2.7	2.8±0.47	0.52±0.10

TABLE 2. Kinetic parameters of inhibition of F₁-ATPase by TbIF₁

488 FIGURES

490 FIGURE 1. (A) Predicted secondary structure of $TbIF_1$ and conservation of IF_1 sequences from 491 various species. TbIF₁ has not been characterized from a native source, and therefore the exact point where 492 the mitochondrial import precursor is cleaved is not known experimentally. However, the cleavage site is 493 predicted to occur following residue 22 of the precursor making serine 23 of the precursor to be residue 1 494 of the mature protein. The numbering of the mature protein is used in this figure. The secondary structure 495 was predicted with Jpred [41], and regions with the capacity to form α -helical coils were predicted with 496 Paircoil2 [29]. In this study, truncated versions of TbIF₁ with residues 1-5, 1-8, 1-10, 1-12 and 1-15 deleted 497 are described. In other forms of $TbIF_1$ specific residues (red) were mutated to alanine and Tyr-36 was 498 mutated to tryptophan. The alignment of the sequences of TbIF₁ with inhibitor proteins from other species 499 was generated with MUSCLE [42]. The similarities of residues highlighted in black, dark grey, and light 500 grey as calculated with the Blossum 62 scoring matrix and threshold set to 1 are 100%, <100% and $\geq 80\%$, 501 and <80% and >60%, respectively. Lm, Leishmania major; Tb, Trypanosoma brucei; Sc, Saccharomyces 502 cerevisiae; Ce, Caenorhabditis elegans; Bt, Bos taurus; Hs, Homo sapiens.

503 (B) Analysis of purified of TbIF1 and variants by SDS-PAGE. The gel was stained with Coomassie
504 Blue dye. (C) Circular dichroism spectra of TbIF1 variants. TbIF1-WT, red; TbIF1(1-64), blue;

TbIF₁(P32A), green. Each spectrum was recorded four times at pH 6.5 (solid lines) or pH 8.0 (dashed red
line) and the resulting averaged profiles are shown.

FIGURE 2. (A) Covalent cross-linking of TbIF₁. TbF₁-WT, TbIF₁(1-64) and bovine IF₁ were cross-linked with dimethylsuberimidate and analysed by SDS-PAGE on 15% polyacrylamide gels. The proteins were stained with Coomassie blue dye. The duration of the cross-linking reaction is indicated above the gels. (B) Size exclusion chromatography of TbIF₁-WT and TbIF₁(1-64). The size exclusion chromatography was performed at pH 8.0 (green line), 7.4 (red line), and 6.5 (blue line). Molecular weights of standard proteins are indicated above the respective positions in their elution profile (grey dashed line).

515 FIGURE 3. Effect of pH on the inhibitory activities of $TbIF_1$ (red) and $TbIF_1$ (1-64) (blue) on F_1 -

516 **ATPase.** The error bars represent the standard deviations from three independent experiments. TbIF1 was

517 present at least at 30-molar excess over F₁-ATPase.

FIGURE 4. Effects of N-terminal truncation and point mutations on the inhibitory capacity of TbIF₁. Residual activities of F_1 -ATPase inhibited in (A) by intact TbIF₁ at two concentrations; in (B) by Nterminally truncated versions of TbIF₁ at a concentration of 0.03 μ M; and in (C), by versions with point mutations at a concentration of 0.1 μ M. The experiments were performed at pH 6.5 (blue bars) or 8.0 (red bars). The values in (B) and (C) are normalized to the level of inhibition by TbIF₁-WT at the same concentration (dashed lines). Error bars represent the standard deviations from at least three experiments.

525

526 FIGURE 5. Heterologous inhibition of F_1 -ATPase by IF_1 . The F_1 -ATPases from *T. brucei* and bovine 527 mitochondria were inhibited with 0.1 μ M bovine IF_1 (blue bars) or TbIF₁ (red bars). The residual activity 528 was determined at pH 6.5. Error bars represent the standard deviations from two independent experiments 529 conducted in triplicate.