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1. Abstract 

 

Collagen is used extensively in tissue engineering due to its biocompatibility, near-

universal tissue distribution, low cost and purity. However, native tissues are composites that 

include diverse extracellular matrix components, which influence strongly their mechanical 

and biological properties. Here, we provide important new findings on the differential 

regulation, by collagen and elastin, of the bio-response to the composite material. Soluble and 

insoluble elastin had differing effects on the stiffness and failure strength of the composite 

films. We established that Rugli cells bind elastin via EDTA-sensitive receptors, whilst 

HT1080 cells do not. These cells allowed us to probe the contribution of collagen alone 

(HT1080) and collagen plus elastin (Rugli) to the cellular response. In the presence of elastin, 

Rugli cell attachment, spreading and proliferation increased, presumably through elastin-

binding receptors. By comparison, the attachment and spreading of HT1080 cells was 

modified by elastin inclusion, but without affecting their proliferation, indicating indirect 

modulation by elastin of the response of cells to collagen. These new insights highlight that 

access to elastin dominates the cellular response when elastin-binding receptors are present. 

In the absence of these receptors, modification of the collagen component and/or physical 

properties dictate the cellular response. Therefore, we can attribute the contribution of each 

constituent on the ultimate bioactivity of heterogeneous collagen-composite materials, 

permitting informed, systematic biomaterials design.      
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2. Introduction 

 

Purified extracellular matrix (ECM) components are often utilised for scaffold fabrication 

in tissue engineering applications as they provide both physical and biochemical cues to 

guide tissue development [1]. As such they can recreate the cellular environment of native 

tissue. The ECM of tissue is comprised of a complex organisation of macromolecules such as 

collagen, laminin and elastin, and glycosaminoglycans (GAGs). Fibrillar collagen type I is 

the most abundant of these ECM proteins comprising ~30% of the total protein mass in 

humans [2], where it provides strength, stiffness and cell ligating motifs. Additionally 

isolated collagen possesses appropriate biocompatiblility, biodegradability, purity and cost 

which makes it an ideal candidate as a scaffold precursor material [1].  

Chemical or physical crosslinkers are frequently used to enhance the physical integrity of 

collagen-based biomaterials. Of these, the most commonly used employs 1-ethyl-3-(3-

dimethylaminopropyl)-carbodiimide hydrochloride (EDC) in the presence of N-

hydroxysuccinimide (NHS), as any cytotoxic reagents and products are simply removed by 

washing [3]. This allows discrete control over the mechanical properties and degradation 

kinetics of the collagen-based material [3–5]. Evaluation of thermal shrinkage and primary 

amine content has led to the commonly used ratio of 5 EDC : 2 NHS : 1 COOH group on 

collagen in a 75% ethanol solution for 2-4 hours as an optimal condition. We have chosen to 

use this ratio here as it yields a maximal crosslinking density [4,6–8]. EDC cross-links 

proteins through carboxylic acid groups on aspartic and glutamic acid residues and 

neighbouring primary amine groups, however this can be detrimental to cell interaction [9]. 

In particular native-like cell adhesion through cell-surface heterodimeric, transmembrane 

integrins is lost, which is replaced with non-native interactions that do not support cell 

proliferation [9]. Of the 24 different integrin pairs [10], collagen associates with integrins 

α1β1, α2β1, α10β1,and α11β1, via an inserted A domain (I domain) within the α subunit of the 
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integrin [11,12]. These I domains bind to the consensus GxxʹGExʺ (single amino acid code) 

sequences in collagen [13–16]. The critical dependence on the carboxylic group contained on 

the glutamic acid (E) residue [17] of this sequence gives the intriguing hypothesis that 

chemical crosslinking of collagen competes with integrin adhesion for the same chemical 

groups [9,18], necessitating refunctionalisation of collagen films after cross-linking [19].  

 Despite the recent interest in collagen-based materials, it is ambiguous whether 

collagen-only materials adequately recapitulate the complex mechanical and biochemical 

properties of native tissue. Therefore, inclusion of additional ECM components, such as 

elastin, offers the opportunity to tailor the bio-response to the composite material. Elastin 

represents an attractive additive as it is provides elastic recoil of a range of tissues [20] and  

interacts with cells via a number of cell surface receptors. These include the elastin-binding 

protein (EBP) [21,22], cell surface heparan and chondroitin sulphate-containing 

glycosaminoglycans (GAGs) [23] and cell surface integrins αVβ3 and αVβ5 [24–26]. As such, 

elastin has been examined for biomaterials fabrication. To date a variety of elastin precursors 

have been employed, including native elastin, insoluble elastin (IE), soluble elastin (SE), 

tropoelastin and synthetic elastin-like polypeptides (ELPs) [27]. When fabricated solely from 

purified elastin, for example through electrospinning [28], or by decellularising natural 

tissues [29], elastin-based materials interact with a range of cell types exhibit non-

thrombogenic potential and are remodelled in vivo [30]. As for materials fabricated solely 

from collagen, these elastin-only materials do not fully replicate the complex mechanics and 

biochemical attributes of tissues. Therefore, elastin has been incorporated into composites 

containing other ECM proteins, in particular collagen I, which offer huge potential as they 

possess complex mechanical properties that are similar to native tissue. For example 

inclusion of elastin into collagen-based materials reduces the specific tensile and compressive 

moduli [31]. To further recreate the fibrillar tissue architecture, elastin and collagen have 
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been simultaneously electrospun to produce co-deposited fibrous materials [32], however, to 

reduce complexity, here we have explored amorphous materials of insoluble collagen and 

elastin.  

Although the physical properties of collagen-elastin composite materials are well 

established [31], there is conflicting biochemical data showing both an increased and 

decreased cell proliferation upon elastin addition. This discrepancy is presumably due to the 

different assay parameters utilised for each study [33]. For example short term studies on 

fibroblasts and myoblasts showed little effect of IE addition to collagen [7,18] whilst others 

have observed decreased cell proliferation [34,35]. Similarly vascular smooth muscle cell 

proliferation has been inhibited [31] or promoted [36] with IE addition, although the overall 

consensus is that addition of elastin reduces SMC proliferation [37]. Likewise, SE has been 

shown to increase fibroblast proliferation [38] whilst others observe selective stimulation of 

keratinocyte but not fibroblast proliferation [39]. We hypothesise that this wide range of 

responses is due to cell-type specific ligation with the collagen and elastin components of 

these composites. In particular, we note that the relative contribution of the collagen and 

elastin components to the cellular response, and the timescale over which these effects occur, 

is unclear. Therefore, the aim of this study was to understand the cell-biological response to 

the collagen and elastin components in IE- and SE-collagen composite materials. To 

undertake this analysis we utilised two different model cell lines, rat glioma cells (Ruglis) 

and human fibrosarcoma cells (HT1080s), which exhibited differential binding properties to 

elastin, allowing us to delineate the cellular behaviour in the presence and absence of elastin 

ligation by the cell. This has enabled us to probe the specific bio-activity of collagen-elastin 

composites over biologically important time frames, illustrating the importance of the elastin-

engagement in this response.  
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3. Materials and Methods 

 

3.1.  Materials 

Unless stated otherwise all reagents were purchased from Sigma Aldrich UK. 4 % v/v 

acetic acid was purchased from Alfa Aesar. Silicone moulds for producing films were 

purchased from Lakeland Ltd. (Windermere, UK). 

 

3.2. Amino acid analysis 

Approximately 1mg samples were subjected to amino acid analysis (Department of 

Biochemistry, University of Cambridge, UK). The percentage content of each amino acid 

was determined by correcting against a norleucine standard and then dividing the measured 

µmole of each amino acid/mg of sample by the total µmole of all measured amino acids. 

Cystine and tryptophan were not measured, however they are absent from collagen and 

represent trace amino acids in elastin. The predicted amino acid content was derived from the 

primary amino acid sequence of bovine elastin (UniProtKB-P04985), bovine collagen alpha I 

(I) (UniProtKB-P02453) and bovine collagen alpha 2 (I) (UniProtKB-P02465).  

 

3.3. Slurry preparation  

1 wt% suspensions of bovine insoluble Achilles tendon collagen, insoluble bovine 

neck ligament elastin (IE) and soluble bovine neck ligament elastin (E6527 [40] - SE) were 

swollen in 0.05 M acetic acid overnight at 4 °C. These were homogenised in a beaker on ice 

using a VWR VDI25 homogeniser for 5 min at 6500 rpm followed by 25 min at 13500 rpm 

for collagen, for 5 min at 6500 rpm followed by 10 min at 13500 rpm for IE, and for 5 min at 

6500 rpm followed by 5 min at 13500 rpm for SE. Mixed compositions were obtained by 

manually mixing appropriate volumes of the 1 wt% stock suspensions. All of the protein 
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suspensions had a final concentration of 1 wt%. Suspensions that did not contain IE were 

degassed by centrifuging for 5 min at 3250 g (2500 rpm) in a Hermle Z300 centrifuge. 

Suspensions containing IE were degassed for 2 min at 14 mTorr in a VirTis advantage freeze-

dryer to prevent sedimentation of the IE component. We define SE alone as a solution and SE 

in combination with insoluble collagen as a suspension.  

 

3.4. Film preparation  

Films for SEM and mechanical testing were cast in 40 mm diameter circular silicone 

moulds. 1 mL of suspension was added to each mould, and any bubbles were removed. Films 

for cell adhesion and proliferation analysis were prepared by casting 400 μL or 200 μL of 

slurry into wells of 24- and 48-well plates respectively. Films for cell imaging were cast by 

applying 50 μL protein slurry onto the centre of 13 mm diameter glass coverslips, placed in a 

24 well plate. All samples were dried in a fume hood for 2 days. Films were crosslinked 

using a solution containing a molar ratio of 5 EDC : 2 NHS in 70 % ethanol with a final EDC 

concentration of 12 mM. 800 μL, 400 μL or 5 ml of crosslinking solution was added to each 

sample in 24-well plates, 48-well plates or 40 mm silicone moulds respectively. The samples 

were covered and incubated at room temperature on a rocker at 50 rpm for 2 h. Once cross-

linking was completed the samples were washed for 5 x 5 min in H2O whilst rocking at 50 

rpm. They were then dried in a fume hood for 48 h.  

 

3.5. Enzyme-linked Immunosorbent Analysis (ELISA)   

Films were washed with 3 x 1 mL aliquots of PBS then blocked with 2 % (w/v) bovine 

serum albumin (BSA) in wash buffer (0.1 %(v/v) Tween-20, 1 mg/mL BSA in PBS) for 1 h 

at room temperature. The samples were washed with 3 x 1 mL wash buffer and then 

incubated in 0.75 mL of 1:2000 diluted mouse anti-elastin antibody (clone BA-4) in wash 
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buffer for 1 h at room temperature. The antibody was aspirated, and the samples were washed 

in 3 x 1 mL wash buffer before incubation in 0.75 mL of 1:10000 diluted goat anti-mouse 

IgG-HRP conjugated secondary antibody (DAKO) in wash buffer for 45 min at room 

temperature. The secondary antibody was removed, and the samples washed in 4 x 1 mL PBS 

for 20 min each wash. The samples were transferred to a new 24-well plate and 0.4 mL TMB 

solution (Thermo) added for 20 min at room temperature. 100 L aliquots of solution were 

transferred to a clean 96-well plate and the absorbance was read at 652 nm (A652) on a 

SPECTROstar Nano plate reader (BMG labtech). Values represent means of quadruplicate 

measurements ± standard deviation. 

 

3.6.  Scanning Electron Microscopy (SEM)  

Samples were attached to metal SEM stubs using double-sided conductive carbon 

tape. They were coated with gold for 2.5 min at 20 mA using an Emitech K550 sputter coater. 

SEM images were obtained using a Camscan MX 2600 FEGSEM using an accelerating 

voltage of 10 kV and magnifications of 500x. 

 

3.7. Tensile testing  

Films were cut into 5 mm wide strips using a scalpel. The thickness of each sample 

was measured using a digital micrometer. Before extension, samples were soaked with 

deionised water until they became fully hydrated. Tensile testing was performed using a 

Hounsfield uniaxial tester with a 5 N load cell. Each composition was tested five times. A 

gauge length of 15 mm and an extension rate of 6 mm min
-1

 were used.  

Strain values were measured using a laser on the testing rig. Force vs strain data were 

plotted to derive the stiffness at high strain, failure stress and failure strain of each material 
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(Supplementary Figure 1). The failure stress and failure strain were calculated using 

Equations 1 and 2, where  is the applied stress in Pa, F is the applied force in N, A is the 

sample cross-sectional area in m
2
 and  is the strain of the material. The failure stress and 

strain were calculated from the highest force that was exerted on the sample before it failed 

and its equivalent strain. 

 
 
 

 
 
 

The stiffness was obtained by plotting a line of best fit onto the high strain linear 

portion of the force-strain curve. The stiffness, E in Pa, was derived from the gradient using 

Equation 3, where m is the gradient in N %
-1

 of the resultant force vs strain graph. 

 

 

 

To account for noise, average values from 5 force values were calculated, and each force 

value was set to an initial value of zero. 

 

3.8. Cell Culture 

HT1080 cells derived from a human fibrosarcoma were obtained from the European 

Collection of Animal Cell Cultures, Porton Down, UK. Rugli cells, derived from a rat 

glioma, were from Dr. J. Gavrilovic, University of East Anglia, UK. All cell lines were 

cultured on tissue culture plastic flasks maintained in a humidified incubator with 5 % CO2 at 

37 °C in Dulbecco’s modified Eagle’s medium (DMEM) containing 10 % (v/v) fetal bovine 
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serum and 1 % (v/v) streptomycin/penicillin (complete media). Once 70-80 % confluent the 

cells were passaged into new flasks at 1/10
th

 of the original cell density. Cells were prepared 

for cell adhesion, spreading or proliferation analysis by detaching from the cell culture flasks 

with 0.05 % (w/v) trypsin / 0.02 % (w/v) EDTA and re-suspending in an appropriate volume 

of DMEM or complete media. 

 

3.9. Cell Adhesion analysis  

Where stated, wells of tissue culture plates were coated with SE diluted from a 1 wt% 

stock solution to a final concentration of between 1 and 20 μg/mL or with 5 μg/mL of soluble 

collagen I (First Link (UK) Ltd.). The solutions were removed, the wells were washed 3x 

with PBS then non-specific adsorption to the film or well was blocked with 600 μL or 150 μL 

of 2% w/v bovine serum albumin (BSA) in phosphate buffered saline (PBS) for 24- or 96-

well plates respectively. After 60 min at room temperature the wells were washed 3x with 

PBS then 400 μL or 100 μL of cells were added at a density of 1x10
6
 cells/mL in DMEM to 

24- or 96-well plates respectively. The plates were incubated at 37 °C/5 % CO2 for 1 h and 

non-adherent cells were removed with 3 PBS washes. 300 μL or 75 μL of lysis buffer (81 

mM TriSodium Citrate, 31 mM Citric Acid, 0.1% v/v Triton X-100, 1.85 mg/mL p-

nitrophenyl phosphate (PNP) substrate, pH 5.4) was added to 24- or 96-well plates 

respectively and incubated for 16 h at 4°C. Either 200 μL or 50 μL of 2 M sodium hydroxide 

solution was then added to 24- or 96-wells respectively. 100 μL of solution was transferred to 

a clean 96-well plate and the absorbance read at 405nm (A405) on a SPECTROstar Nano plate 

reader (BMG labtech).  

For inhibition assays, wells were SE or soluble collagen I coated then BSA blocked as for 

cell adhesion analysis. 12.5 µL of 40 mM EDTA (final concentration 5 mM), 80 mM α-
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lactose (final concentration 10 mM), 80 mM β-lactose (final concentration 10 mM), and/or 80 

µg/mL heparan sulphate (final concentration 10 µg/mL) in DMEM were added to each well. 

The volume in each well was made up to 50 µL then 50 µL of Rugli cells was added at a 

density of 2x10
6
 cell/mL (final density 1x10

6
 cell/mL) for 1 h at 37 °C/5 % CO2. Loosely 

adherent cells were removed, and bound cells were detected using a PNP substrate as for cell 

adhesion analysis  

Values are means of quadruplicate measurements ± standard deviation. 

 

3.10. Cell spreading analysis 

Films and soluble collagen coated wells were prepared in a 24-well plate then BSA 

blocked as for adhesion analysis. 400 μL of cells at a concentration of 3x10
5
 cells/mL in 

DMEM were added to each well and incubated at 37 °C/5 % CO2 for 210 min for Rugli cells 

and 180 min for HT1080 cells. These time points were chosen as they represent the duration 

required to observe spreading onto the positive control, soluble collagen I coated, tissue 

culture wells. 100 μL of 25 % w/v glutaraldehyde stock solution was added to each well to 

achieve a final concentration of 5 % w/v then incubated at room temperature for 20 min. The 

fixed cells were washed with 3 x 1 mL PBS then permeabilised with 600 μL of 0.5 %w/v 

Triton X-100 in PBS for 5 min at room temperature. The samples were washed 3x with PBS 

then 600 μL of 0.01 % rhodamine phalloidin (Molecular Probes, made up to manufacturer’s 

instructions) in PBS was added for 30 min at room temperature in the dark. After washing 3x 

with PBS the cell nuclei were stained with 600 μL of 3.5 M DAPI in H2O for 2 min then 

washed 3x with H2O. The samples were mounted onto glass slides using Vectashield antifade 

mounting medium, sealed with nail varnish, and visualised on a Zeiss Observer Z1 

fluorescent microscope using a 20x magnification objective lens. The cell area was obtained 
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by thresholding the rhodamine-phalloidin stained images and measuring the cell-derived 

fluorescent area in ImageJ. The cell number for each image was derived from the DAPI 

stained images by using the nucleus counter plug-in feature of ImageJ. To calculate the 

average cell area the total fluorescent area for each image was divided by corresponding cell 

number. Values represent means of 5 measurements ± standard deviation. 

   

3.11. Cell growth  

Samples in 48-well plates were sterilised using ultraviolet (UV) light for 20 min then 

blocked using 300 μL of filter-sterilised 2 %w/v BSA for 1 h at room temperature. 300 μL of 

cells were added at a density of 3.5x10
4
 cells/mL in complete media to each well. Plates were 

incubated at 37 °C/5 % CO2 for 1, 2 or 4 days, at which point 75 μL of 25 % w/v 

glutaraldehyde stock solution was added to each well to achieve a final concentration of 5 % 

w/v for 20 mins at room temperature. The wells were washed 3x with PBS and then 

permeabilised for 5 min with 300 μL of 0.5 %w/v Triton X-100 in PBS. The wells were 

washed three times with PBS and 300 μL of 3.5μM DAPI in H2O was added for 2 min in the 

dark. Following 3x H2O washes the cell nuclei were visualised using a Zeiss Observer Z1 

fluorescent microscope and a 10x objective lens. The number of nuclei per field of view, of a 

known area, were counted manually and expressed as a cell count/mm
2. 

Values represent 

means of quadruplicate measurements ± standard deviation. 

 

3.12. Elastin fluorescence microscopy 

Films were BSA blocked as for adhesion analysis then incubated in 1:1000 mouse anti-

elastin antibody (clone BA-4, Abcam, UK) in PBS for 1 h. The primary antibody was 

aspirated, washed 3xPBS then incubated in 1:500 AlexaFluor 594 conjugated donkey-anti-

mouse secondary antibody (Jackson Immuno Research) for 1 hour. The samples were washed 
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3x with PBS then mounted onto glass slides using Vectashield mounting media and 

visualised on a Zeiss Observer Z1 fluorescent microscope.  

 

3.13. Statistical analysis 

Unless otherwise stated all error bars indicate standard deviations from the mean. 

Statistical significance was determined with a student t-test with unequal variance where N/S 

indicates >0.05, * indicates p0.05, ** indicates p0.01, *** indicates p0.001 and **** 

indicates p0.0001.  
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4. Results 

 

4.1. Scaffold characterisation 

Composites were generated by blending appropriate volumes of 1 %w/v CN or elastin 

to produce films with increasing, 25%, 50% or 75%, content of soluble (SE) or insoluble (IE) 

elastin. ELISA analysis using an elastin-specific antibody confirmed the presence of elastin 

in these resultant materials (Figure 1). This showed that the amount of elastin incorporated 

into the composite was proportional to the amount of elastin in the slurry. As these films were 

crosslinked, this indicates that the elastin component was retained during EDC/NHS 

crosslinking in 75% ethanol. Although the absorbance measurements were above background 

levels for all the composite materials, detection was approximately 2.5-fold higher for 75% 

SE compared to 75% IE containing composites. Therefore, although the same mass of elastin 

was added, the degree of elastin detection varied. This is presumably due to the fibrillar 

morphology of IE which, effectively prevents the antibody from accessing the centre of the 

elastic fibre. This theory was tested by anti-elastin fluorescent microscopy of the IE 

composite (Figure 2). Autofluorescence, due to the presence of a crosslinking tricarboxylic 

amino acid with pyridinium ring [41] was used to visualise the entire elastin inclusion. This 

was clearly visible throughout the entirety of the large IE inclusions (green in Figure 2). 

Conversely, detection by the BA-4 anti-elastin antibody was restricted to the periphery of 

these inclusions (red in Figure 2). This suggests that only a sub-proportion of the elastin in 

the IE containing scaffolds was accessible by the detection antibody which could explain the 

lower IE to SE detection by ELISA for same nominal mass of elastin. SEM was used to 

image the protein films to determine how the microstructure was affected by the addition of 

SE or IE (Figure 3). This shows that films composed exclusively of CN did not contain large 

fibres but instead implies a roughened morphology. Addition of IE resulted in the presence of 
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large 5–6 μm diameter inclusions, indicated by arrows in Figure 3. These inclusions were not 

evenly distributed with some agglomeration apparent. By comparison, the addition of SE to 

films resulted in a smooth and relatively featureless film.  

Tensile testing of these films showed that all the material compositions possessed a J-

shaped force-strain curve (example shown in Supplementary Figure 1) which is frequently 

observed in a wide range of soft tissues. These showed a general trend that addition of IE 

decreased the material stiffness (Figure 4A), however due to spread of values for the 

100%CN samples this was not statistically significant. Conversely, SE increased the stiffness 

of the composites in a concentration dependent manner with a 3.3-fold increase in the 

modulus at 50% SE content (p=0.0008 against 100%CN). Values are not shown for 75% SE 

inclusion as these films were not sufficiently robust for analysis. The failure stress was 

unaffected by the addition of IE and increased by the addition of SE (Figure 4B). By contrast 

the failure strain increased with IE addition, particularly at the highest 75% elastin content 

(p=0.0002 against 100%CN), with a failure strain of ~21 % (Figure 4C). Addition of SE did 

not influence the failure strain. It should be noted that all of these materials were cross-linked 

with EDC/NHS as this is necessary for stability in cell culture conditions. As cross-linking is 

known to change the mechanical properties of collagen-based materials the same crosslinking 

parameters were utilised across all of the samples. 

 

4.2. Cell adhesion 

HT1080 and Rugli cells were chosen to analyse the cell binding properties of the 

elastin-collagen composite materials as they contain well defined collagen-binding integrins, 

utilising α2β1 and α1β1 respectively [16,42,43], but with potentially differing elastin binding 

capacity. To directly test the elastin-binding profile of these cell lines, adhesion to SE coated 

onto tissue culture plastic, was examined (Figure 5). These data show a dramatic difference in 
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the adhesive response between these lines. Whilst SE can support Rugli cell adhesion at a 

coating concentration of ≥2 μg/ml, little HT1080 cell adhesion was observed with SE coating 

concentrations of up to 20 μg/ml. Inhibition analysis using well-known elastin-receptor 

blocking molecules (EDTA, β-lactose and heparan sulphate for integrin, elastin binding 

protein and GAG-mediated adhesion respectively) showed that Rugli cell adhesion was 

blocked in the presence of EDTA (Figure 5C). By contrast α-lactose alone (a low-activity 

control for β-lactose) resulted in a slight decrease in elastin engagement, however when 

combined with β-lactose or heparan sulphate it did not alter the cellular response. When all 

four inhibitors were added in combination, the degree of cell adhesion was similar to EDTA 

inhibition alone, indicating an integrin-mediated cell binding mechanism in Rugli cells. 

Similarly, Rugli cell adhesion to soluble CN was inhibited by EDTA, but not lactose or 

heparan sulphate, highlighting an integrin-mediated response to collagen (Figure 5D). 

Therefore Rugli but not HT1080 cells can bind to elastin via integrin receptors, making 

comparison of these model cell lines a convenient method to delineate the contribution of 

collagen only (HT1080) and collagen-elastin (Rugli) in our elastin-collagen composites. 

Both HT1080 and Rugli cells could adhere to films fabricated solely from insoluble 

CN (Figure 6) giving absorbance values of 0.84±0.12 and 0.65±0.10 respectively. It should 

be noted that the entire well surface was covered with the film material, ensuring that cell 

adhesion is solely through the film material. These absorbance values were higher than BSA 

coated control wells showing values of between 0.11±0.02 and 0.2±0.1 on a low-adhesion 

surface. Adhesion to CN films was lower than the soluble CN (Abs.405 1.61±0.17 and 

2.42±0.12) and tissue culture plastic controls (Abs.405 1.5±0.04 and 2.27±0.11) for HT1080 

and Rugli cells respectively. The addition of up to 50% SE markedly increased Rugli cell 

adhesion by over 2-fold. This showed significance (p=0.007) over the CN-only control. 

Consistent with the lack of SE adhesion, inclusion of SE did not significantly alter the degree 
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of HT1080 cell adhesion. Although data are shown for 75% SE inclusion, these films were 

not fully resistant to the washing regime employed to remove non-adherent cells, and so only 

fragments remained attached to the wells. As film fragmentation was a dominant effect, 

masking the cell-binding properties, the values from these samples are shown with a dashed 

line and are excluded from analysis here. IE inclusion increased the degree of Rugli cell 

adhesion by ~ 2-fold at 75% IE content. Again, this showed significance (p=0.00034) over 

the CN-only material. Interestingly IE inclusion increased HT1080 cell adhesions by ~ 1.6-

fold, presumably due to changes in the mechanics, roughness or surface area.  

 

4.3. Cell Spreading 

A short-term cell morphological analysis was conducted to determine if the collagen-

elastin composites could elicit appropriate cellular engagement to promote cell spreading. 

Supplementary Figures 2A and 2B show representative fluorescent microscopy images of 

rhodamine phalloidin stained actin (red) and DAPI stained nuclei (blue) for HT1080 and 

Rugli cells respectively. For IE containing films the IE fibres are non-specifically stained 

with DAPI, however the nuclei are still apparent due to their relative intensity and circularity.  

Consistent with our previous reports showing that EDC/NHS crosslinked collagen does not 

support cell spreading [9], HT1080 cells and Rugli cells both possessed a rounded 

morphology on CN-only films. Addition of IE did not affect Rugli cell spreading, regardless 

of the concentration added. Conversely SE addition resulted in the formation of thin cellular 

projections that were not observed on the CN-only films. This appeared independent of the 

SE concentration with a similar morphology on films composed of all SE densities. Similarly, 

HT1080 cell spreading was observed on films containing SE, which, qualitatively, appeared 

to be dependent upon the amount of elastin present. The addition of IE did not lead to 

HT1080 spreading with all cells being round at all IE concentrations. Both HT1080 and Rugli 
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cells possessed a spread morphology on the positive soluble CN I control and a rounded 

morphology on the negative BSA control.  

Quantitative analysis of the cell area on each material (Figure 7) is consistent with the 

qualitative observations. This shows that the cell area is similar on both the CN-only films 

and BSA controls for both HT1080 (205±37 and 172±26 µm
2
) and Rugli cells (186±11 and 

179±14 µm
2
), confirming a lack of spreading on EDC/NHS crosslinked collagen. Addition of 

SE dose dependently increased the HT1080 cell area to 362±52 µm
2
 at 75% SE content. This 

was significantly different to the CN-only films (p=0.00086 at 75% SE). By comparison 

HT1080 cells possessed a cell area of between 157±18 and 198±15 µm
2
 on all IE containing 

composites. The Rugli cell area was sensitive to SE, although this was similar for all SE 

densities with a cell area of between 206±9 and 329±57 µm
2
. This showed significance 

against the CN-only films (p=0.0053 at 75% SE). The Rugli cell area was insensitive to IE 

addition with cell areas of between 166±7 and 195±11 µm
2
 for all compositions. Both cells 

lines spread onto soluble CN coated glass with cell areas of 627±70 and 512±51 µm
2
 for 

HT1080 and Rugli cells respectively.  

 

4.4. Cell proliferation 

We have previously shown that a loss of divalent cation-dependent cell adhesion to 

EDC/NHS crosslinked insoluble CN I inhibits cell proliferation [9]. As SE and IE 

incorporation alters the cell adhesive properties of collagen-based materials, we have 

measured cell proliferation on SE and IE composites (Figure 8). Both cell lines could 

proliferate on a positive soluble CN I coated control, with the number of cells/mm
2
 of 

material increasing ~6- and ~ 18-fold over 4 days in culture for HT1080 and Rugli cells 

respectively. This confirms the proliferative capacity of these cells.  
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Consistent with our previous observations, HT1080 cells did not proliferate on 

EDC/NHS crosslinked CN-only films with ~40-50% fewer cells at day 4 compared to day 1. 

Inclusion of IE or SE had no significant effect on HT1080 cell proliferation over the no-

elastin controls. For example, there were ~50 and 40% fewer cells after 4 days in culture on 

75% IE and 75% SE containing samples respectively. Rugli cells showed low levels of cell 

proliferation on CN-only samples with an approximately 4-fold increase in the cell density 

between day 1 and day 4 in culture. This was significantly below the ~18-fold increase in cell 

number observed on the soluble CN I control. Therefore, although Rugli cells showed 

proliferative capacity on EDC/NHS crosslinked CN, this was ~ 4-5 times lower than for non-

crosslinked collagen. Interestingly, inclusion of IE and SE could dose-dependently increase 

the proliferative response of Rugli cells. This showed significance over the CN-only control 

with p=0.0032 and 0.00017 for 75% SE and 75% IE containing films respectively. Rugli 

proliferation was noticeably higher on the SE compared to IE composites. This was evident at 

all densities of elastin inclusion. For example, inclusion of 25%, 50% or 75% IE resulted in a 

~4-, 7- or 12-fold increase in the cell number between day 1 and day 4. By comparison 

inclusion of 25%, 50% or 75% SE resulted in a ~6-, 16- and 16-fold increase in the Rugli cell 

number over the same duration. Indeed with 75% SE incorporation the degree of cell 

proliferation was approaching that observed on the soluble CN I positive control. Therefore, 

elastin incorporation can selectively increase the proliferation of cell types that possess the 

appropriate elastin-binding receptors.   
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5. Discussion 

 

Matching the mechanical and biochemical properties of soft tissue implants to the 

surrounding tissue is functionally important [44,45]. As major components of numerous soft 

tissues, IE and SE, in combination with CN, was investigated. Analysis of these composites 

showed that the mechanical and cell-ligating properties of CN-based materials can be tailored 

by incorporating elastin. Furthermore, by comparing 2 complementary cell lines, one of 

which utilises elastin-binding receptors, and the other which does not, we determined the 

influence of elastin- and CN-receptor engagement on the cell response over short-term 

(adhesion, spreading) and long-term (proliferation) culture.  

J-shaped force-strain plots were observed for all films, in which the gradient of the 

force-strain profile increases with strain. The initial extension phase of this profile is 

presumably dominated by CN fibril realignment towards the tensile axis, after which further 

extension is via the stiffer CN fibres. These profiles yielded stiffness values that are 

comparable to the literature values of 2–31 MPa, depending on the composition [18,36]. In 

our hands, inclusion of up to 75% IE decreased the stiffness and failure stress of films but 

increased the failure strain. This is consistent, to a reasonable approximation, with disruption 

of the CN network by the large and discrete IE inclusions [18]. By comparison SE had the 

opposite effect to IE inclusion. SE was spread across the entire CN film, without large 

inclusions, and so it is possible that the SE component resisted the applied force in parallel 

with the CN. Our data contradicts others showing that SE decreased the stiffness of CN-based 

films, however, the differing fabrication processes [36] and elastin concentration [18] prevent 

direct extrapolation. No significant influence on the yield strain was observed with up to 50% 

IE or SE content, agreeing with CN-based films manufactured using electrochemical 

alignment [36]. Interestingly we observed an increase in the yield strain with 75% IE 
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inclusion, presumably as the loading was resisted by the IE component. Alternatively, it is 

possible that the physical properties are due to the lower CN content upon increasing addition 

of IE or SE to the total 1% w/v slurry protein content. This fits well with the lack of IE or SE 

influence on the failure strain as the alignment and tensile stretch of each CN fibre does not 

change with lower CN density. However this cannot describe the differences between SE and 

IE composites. Therefore, it is likely that there is a complex interplay between the 

distribution and density these components, with different intrinsic mechanical properties. 

Others have used electrospinning to further refine the physical properties of elastin-CN 

composites, however the architectural properties of these fibres heavily influence cell 

behaviour, and so amorphous blended films were chosen here to reduce the number of 

interconnected parameters, allowing direct comparison to the cell response.  

Currently the cell-binding properties of CN-elastin composites are relatively poorly 

understood. Although elastin addition influences smooth muscle cell behaviour on CN-based 

materials [31,35], the contribution from the elastin and CN component is unknown. The 

major aim of this study was to explore this complex fundamental interplay by assigning the 

cellular response to the CN and elastin elements. Our approach was to compare two different 

model cell lines, one of which utilises elastin binding receptors and the other which is 

insensitive to elastin. For this reason HT1080 and Rugli cells were chosen as they have well 

described CN-binding receptors (α2β1 and α1β1 respectively [13]) and the influence that EDC 

crosslinking exerts on their response to CN-only films is known [9]. We therefore examined 

the elastin-binding capacity of each on SE coated tissue culture plastic. SE solution was 

chosen over IE suspension to enable careful control over the coating concentration. This 

analysis clearly showed that Rugli, but not HT1080 cells, could adhere to SE in an EDTA-

sensitive manner, suggesting integrin-dependence of Rugli adhesion. We should point out 

that enzymatic-based cell detection, and not cell staining, was used here to avoid high non-
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specific, collagen-film-associated, background values. Although we cannot entirely preclude 

the possibility that the materials affect the cell-derived enzymatic activity, cell number linear 

regressions and microscopic observations were used to control for this possibility. As such 

enzymatic detection of these cell lines was used to examine a series of IE and SE-collagen 

composites.  

Consistent with EDC-induced modulation of cell adhesion, spreading and 

proliferation on CN-based materials, both Rugli and HT1080 cell adhesion to CN-only films 

was lower than a soluble CN I control. This has been attributed to EDC-dependent blocking 

of native-like integrin binding to critical carboxylic acid side chains in GxOGER motifs, and 

induction of non-native cell binding mechanisms that do not support cell proliferation [9]. 

Therefore, it highly likely that adhesion on the CN-only films was non-native, which 

correlates well to the subsequent lack of cell spreading and proliferation.    

Inclusion of elastin into collagen films affects numerous different cell-responsive 

facets simultaneously, including the availability of cell-binding motifs, roughness and 

stiffness. Comparison of Rugli against HT1080 cells allowed us to deconvolute the 

contribution of elastin-derived cell-adhesive motifs. The Rugli response was dramatically 

altered by the addition of elastin to collagen-based materials with increased attachment, 

spreading and particularly pronounced proliferation. The integrin-dependent SE-binding 

mechanism of Rugli cells indicate that elastin-derived integrin-binding motifs within elastin 

promote this potent biological effect. These could include the integrin-binding motifs RKRK 

and AAAAAAAAAAKAAKYGAAAGL [26] that ligate with integrins αVβ3 and αVβ5 

[24,25]. However there are reports that the C-terminal region of the elastin monomer, 

tropoelastin, may be lost in mature elastic fibres [46]. As such it is possible that the C-

terminal RKRK motif integrin binding site may be absent in our elastin-collagen composites. 

In addition, although amino acid analysis indicates that collagen and elastin are the major 
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constituent of our protein preparations (Supplementary Figure 3), we cannot completely 

discount the possibility that each could contain traces of other bioactive molecules. For 

example, microfibril-associated glycoprotein can contaminate elastin preparations. 

Notwithstanding these caveats, our data clearly show that elastin addition offers huge 

potential to integrate cell-biological activity in to EDC/NHS crosslinked CN-based materials.  

The Rugli cell response was modulated by both IE and SE, however by mass, SE 

promoted increased cell adhesion, spreading and proliferation than IE. Interestingly this trend 

is similar to the degree of BA-4 detection by ELISA. One possible explanation is the innate, 

densely packed, fibrous architecture of IE, where the elastin molecules within the fibre core 

are not solvent accessible. This was clearly evident from anti-elastin fluorescent microscopy 

of IE samples. As a large proportion of the elastin mass in the IE films is not available for cell 

engagement, comparing the cellular response against elastin mass potentially under-

represents the bio-activity of the IE component. Instead Rugli proliferation and attachment 

correlate linearly with SE and IE detection (R
2
 between 0.992 and 0.882) by ELISA (Figure 

10). When compared in this manner, the cellular response to the IE and SE addition are very 

similar. This is particularly important as the other characteristics of IE and SE containing 

films, such as mechanical properties and roughness profiles, do not correlate with the cellular 

response. Instead, once the relative solvent exposure is accounted for, the Rugli response is, 

predominated by the elastin inclusions.  

We have shown that HT1080 cells do not adhere to elastin. Despite this HT1080 cell 

adhesion and spreading were elevated with the inclusion of SE but not IE. Whilst it is 

unlikely that this response is through direct cell-anchorage to elastin, it could be via SE-

modulation of the collagen component and/or via the physical properties of the material. For 

example, it is possible that elastin alters EDC-dependent inhibition of collagen-cell 

interactions [9] due to altered stoichiometry of the crosslinking reaction by the amine-rich 
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regions on elastin. Alternatively, the influence of SE on the mechanical properties and 

roughness could alter the cellular response. As the mechanical properties and chemistry of the 

CN films change in tandem with SE addition these two explanations cannot be separated 

here. It should also be noted that the relevance of bulk mechanical properties to cell 

behaviour is often not a simple correlation as the small-scale stiffness sensed by the cells is 

not necessarily the same as the bulk stiffness measured by stress-strain techniques. It is also 

possible that SE addition alters the collagen spacing (i.e. by separating collagen fibres) which 

influences the cell response. One surprising finding was that elastin inclusion induced 

HT1080 cell spreading. Although we have shown that HT1080 cells do not adhere to elastin, 

it is possible that elastin is engaging with signalling molecules on these cells. One such 

example is the elastin binding protein which would not possess sufficient affinity to support 

cell adhesion but has been shown to activate signalling cascades [47,48]. 

SE or IE inclusion dramatically increased Rugli but not HT1080 cell proliferation. 

This differential response between the cell lines suggests that the cell proliferative response is 

not solely due to the CN component or physical attributes of the films as these would 

influence both cell lines similarly. Instead it is likely elastin-binding integrin-associated 

signalling cascades promote cell proliferation [49].  

 In summary, comparison of two independent cell lines, each with a differing affinity 

for elastin have shown that addition of elastin-specific cell-binding motifs, or modulation of 

the CN component in an elastin-CN composite both contribute to the ultimate cellular 

response. Moreover, for cells that possess elastin-binding integrins, the elastin component can 

dominate over the EDC crosslinked CN component leading to a cell-inductive long-term 

response.     
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6. Conclusion  

 

SE and IE were successfully incorporated into CN-based materials. Both SE and IE 

significantly altered the mechanical properties of CN-based films where SE increased but IE 

decreased the stiffness and failure stress. Two cell lines were identified which possessed 

differing elastin-binding properties. These allowed delineation of the cellular response to the 

CN and elastin components of the composites. The solvent accessibility of the elastin element 

of the films heavily influenced the behaviour of cells which possessed elastin-binding 

integrins. By comparison, if cells were devoid of elastin-binding integrins then it was the 

indirect influence of elastin, over the physical properties and CN component, that dictated the 

cellular response. Therefore, we have established that the cellular response to CN-elastin 

composites is highly dependent upon the cell surface receptor expression profile. CN and 

elastin are the most abundant protein components of tissues and are ubiquitously employed 

for tissue engineering. Consequently, these data offer the opportunity to control the 

bioactivity that each of the components bestows upon these complex heterogeneous 

materials.    
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9. Figure legends 

Figure 1 : Enzyme linked immunosorbent analysis of the elastin content of IE- (light grey 

bars) and SE- (dark grey bars) containing CN films as detected by the BA-4 anti-elastin 

antibody (y-axis). The composite composition in relative % composition is detailed on the x-

axis. The negative control indicates a no-film reference sample (unfilled bar). Error bars 

indicate S.D. of quadruplicate measurements.   

 

Figure 2 : Phase contrast microscopy (A) and fluorescent microscopy (B-D) of 75%IE-

25%CN composites. Autoflorescence of the IE fibres [41] is shown in (B) and green in the 

merged image (D). BA-4 anti-elastin antibody detection is shown in (C) and red in the 

merged image (D). Arrows highlight peripheral antibody detection on IE fibres in (D). The 

scale bar indicates 200µm. 

 

Figure 3 : Scanning Electron Micrographs of CN only (A), CN-IE (B) and CN-SE 

composites (C). The composition is shown as a relative % of each component. Arrows 

highlight IE inclusions. Scale bar indicates 50µm.  

 

Figure 4 : Stiffness (A), failure stress (B) and failure strain (C) of CN-IE (i) or CN-SE 

composites (ii). The relative % of collagen and elastin is shown on the x-axis. No data are 

shown for 25%CN-75%SE films as these adhered to the mould and could not be removed for 

analysis. Error bars indicate S.D. (n=5). N/S, * and *** indicate >0.05, <0.05, <0.001 

significance from the 100%CN/0%elastin values respectively.   
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Figure 5 : HT1080 (A) or Rugli (B) cell adhesion to SE coated onto tissue culture plastic 

surfaces. The coating concentration of SE is shown on the x-axis and cell derived absorbance 

on the y-axis. Bovine serum albumin (BSA) was used to block non-specific adhesion to the 

tissue culture plastic substrate. The degree of non-specific adhesion to BSA is shown with a 

dashed line. Inhibition of Rugli cell adhesion to SE (C) or soluble CN (D) using EDTA 

(inhibits integrins), β-lactose (β-lac; inhibits elastin binding protein), α-lactose (α-lac; non-

functional control for β-lactose) and heparan sulphate (H/S; inhibits GAG binding). The 

inhibitor inclusion is detailed under the x-axis. Error bars indicate S.D. of quadruplicate 

measurements. N/S, *, **, *** and **** indicate >0.05, <0.05, <0.01, <0.001 and <0.0001 

significance from the 0 μg/ml SE values (A,B) or no-inhibitor controls (C,D) respectively.  

 

Figure 6 : HT1080 (A) or Rugli (B) cell adhesion to CN films containing an increasing 

content of SE (blue, cross) or IE (red, diamond). The relative % of CN or elastin is shown on 

the x-axis and cell derived absorbance is on the y-axis. Adhesion to 25%CN-75% SE films is 

shown with a dashed cross and line as these composites fragmented during the washing 

regime used to remove loosely bound cells. Non-specific adhesion was blocked with bovine 

serum albumin (BSA) for all composites. Cell binding to 5 μg/ml soluble CN I coated tissue 

culture plastic (square), tissue culture plastic (circle) and the negative control BSA-blocked 

tissue culture plastic (triangle) are shown in grey. Error bars indicate S.D. of quadruplicate 

measurements. N/S, ** and *** indicate >0.05, <0.01 and <0.001 significance from the 

100%CN-0% elastin values respectively. 
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Figure 7 : Cell area quantification for HT1080 (A) or Rugli (B) cells on films with increasing 

SE (blue bars) or IE (red bars) content. The relative % CN and elastin content is shown 

beneath each pair of bars. Non-specific adhesion was blocked with bovine serum albumin 

(BSA). The cell area on a negative control (BSA), a positive control (5 μg/ml soluble CN I 

coated glass) and CN-only films are shown with grey bars. Error bars indicate S.D. (n=5). 

N/S, **, *** and **** indicate >0.05, <0.01, <0.001 and <0.0001 significance when 

compared to the 100%CN-0% elastin values respectively. 

 

Figure 8 : Cell count over 4 days in culture for HT1080 (A,B) and Rugli (C,D) cells on SE 

(B,D) or IE (A,C) containing composites. The relative % CN and elastin content is identical 

for all graphs and the legend is shown at the bottom of the figure. A 5 μg/ml soluble CN I 

coated tissue culture plastic positive control is shown (black, cross). Error bars indicate S.D. 

of quadruplicate measurements. N/S, **, *** and **** indicate >0.05, <0.01, <0.001 and 

<0.0001 significance when compared to the 100%CN-0% elastin values at Day 4. 

 

Figure 9 : Direct comparison of the degree of SE (C,D) and IE (A,B) detection by ELISA 

analysis (x-axis - taken from Figure 1) and Rugli cell count at Day 4 (A,C – y-axis - taken 

from Figure 8) or adhesion (B,D – y-axis - taken from Figure 6). Associated background 

values on the bovine serum albumin negative controls were deducted for all values. Linear 

regressions fit with R
2
 values of 0.992 (A), 0.955 (B), 0.882 (C), 0.9386 (D).  
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Supplementary figure 1 : Representative force versus strain tensile test profiles for 

collagen-elastin films. The red dashed lines indicate the calculation of failure force and 

failure strain. The green line shows the gradient used to derive stiffness.  

 

Supplementary figure 2 : Rhodamine-phalloidin (actin assembly; red) and DAPI (cell 

nuclei; blue) stained fluorescent microscopy of HT1080 (A) or Rugli cells (B). The relative 

% composition of CN or elastin is stated for each micrograph. Non-specific interaction was 

blocked with bovine serum albumin (BSA) for all conditions. The positive control, 5 μg/ml 

soluble CN I, and negative control, BSA, are shown for reference. The scale bar indicates 

100μm.  

 

Supplementary figure 3 : Amino acid content of elastin (A) or soluble CN (B) used to 

fabricate films. SE is shown in blue, IE in red and CN in black. Predicted amino acid content, 

derived from the primary amino acid sequences is shown in grey. Threonine, Serine and 

Methionine are not shown due to small amounts of degradation during analysis. Lysine and 

Proline are not shown due to post-translational modification.  
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Figure 9 

A – RUGLI cell count at Day4 vs. IE content B – RUGLI adhesion vs. IE content 

C – RUGLI cell count at Day4 vs. SE content D – RUGLI adhesion vs. SE content 
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