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Objectives: The primary aim was to measure the volume of the scala tympani (ST)

and the length of the straight portion of the cochlear basal turn from micro-computed

tomography (µCT) images. The secondary aim was to estimate the electrode insertion

force based on cochlear size and insertion speed. Both of these objectives have a direct

clinical relevance in robotic assisted cochlear implant (CI) surgery.

Methods: The ST was segmented in thirty µCT datasets to create a three-dimensional

(3D) model and calculate the ST volume. The diameter (A-value), the width (B-value), and

the straight portion of the cochlear basal turn (S-value) were measured from the oblique

coronal plane. Electrode insertion force was measured in ST models of two different

sizes, by inserting FLEX24 (24mm) and FLEX28 (28mm) electrode arrays at five different

speeds (0.1, 0.5, 1, 2, and 4 mm/s).

Results: The mean A-, B-, and S-values measured from the 30 µCT datasets were

9.0 ± 0.5, 6.7 ± 0.4, and 6.9mm ± 0.5, respectively. The mean ST volume was 34.2

µl ± 7 (range 23–50 µl). The ST volume increased linearly with an increase in A- and

B-values (Pearson’s coefficient r = 0.55 and 0.56, respectively). The A-value exhibited

linear positive correlation with the B-value and S-value (Pearson’s coefficient r = 0.64

and r = 0.66, respectively). In the smaller of the two ST models, insertion forces were

higher across the range of insertion speeds during both array insertions, when compared

to the upscaled model. Before the maximum electrode insertion depths, a trend toward

lower insertion force for lower insertion speed and vice-versa was observed.

Conclusion: It is important to determine pre-operative cochlear size as this seems to

have an effect upon electrode insertion forces. Higher insertion forces were seen in a

smaller sized ST model across two electrode array lengths, as compared to an upscaled

larger model. The ST volume, which cannot be visualized on clinical CT, correlates

with clinical cochlear parameters. This enabled the creation of an equation capable of
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predicting ST volume utilizing A- and B-values, thus enabling pre-operative prediction of

ST volume.

Keywords: scala tympani volume, cochlear size, electrode insertion speed, electrode insertion force, robot

assisted surgery

INTRODUCTION

Cochlear implant (CI) technology has evolved over the last
40 years reaching its maturity in terms of basic technological
advancements (1). Throughout the years, surgical importance
has been placed on the optimal placement of the CI electrode
array in order to preserve the intra-cochlear structures (2). The
steps in CI surgery, including cortical mastoidectomy, posterior
tympanotomy, round window (RW) opening and the electrode
array insertion, are performed manually. As a result, the hearing
outcomes of CI recipients may be influenced by the surgical
learning curve of every CI surgeon (3).

Intra-cochlear structures are delicate. Ishii et al. reported
that electrode array insertion force above 35 milli-newtons
(mN) would result in disturbance of the basilar membrane
(4). The ability of humans to manually respond to minute
changes in insertion forces in the range of 35 mN may be
less reliable when compared to the haptic feedback systems
available with automated insertion systems. In addition, it has
been reported that electrode insertion speed has an influence
on structure and hearing preservation (5). Thus, as research
interests turn toward automated and robotic-assisted electrode
insertion, the quantification of the optimal insertion speed that
offers the minimum insertion force along with the ability to
insert the electrode fully inside the cochlea would be beneficial.
During the insertion process, the tip of an electrode array is
angulated toward the lateral wall at the end of the straight
portion of cochlear basal turn and is likely to collide with this.
Appreciating how this straight portion length varies with the
overall variation in other cochlear parameters, such as scala
tympani (ST) volume, would enable automated adjustment of
insertion speeds when approaching the end of the cochlear
basal turn.

Personalized treatment in cochlear implantation is being
developed at multiple timepoints throughout the patient’s
journey, for instance during audio processor fitting (6) and
otological pre-planning software (e.g., OTOPLAN R©) in assessing
cochlear size and choosing electrode array length matching the
cochlear size (7). Robotic assisted CI surgery and controlled
speed electrode array insertion, such as the HEARO R© system and
ROBOTOL R©, respectively (8–10) are in the early stages of clinical
practice. To complement these technological advancements and
to take the concept of personalized CI treatment to the next
level where the electrode insertion speed can be personalized
to the individual’s ST size and volume, a study on the
following objectives is essential. Estimating the ST volume and
length of the straight portion of cochlear basal turn based
on pre-operative assessment of cochlear parameters. Studying
the changes in electrode array insertion force from in-vitro
insertion experiments in different sized ST models with varying

volumes, employing different electrode array lengths inserted
with different insertion speeds.

Therefore, the primary aim of this study was to measure the
volume of the ST from micro-computed tomography (µCT)
images and establish whether there is a relationship with basic
cochlear parameters [length of straight portion of the basal turn
(S-value), basal turn diameter (A-value) and cochlear width (B-
value)]. This would help in the estimation of ST volume from the
pre-operative clinical images. The secondary aim was to study
the electrode array insertion forces of two variants of FLEX
electrodes (FLEX28 and FLEX24), inserted at various insertion
speeds in two different sized ST plastic models. This would allow
us to understand how the electrode insertion forces changes
with the changes in the ST volume indirectly estimated from the
cochlear parameters. ST fluid itself would act as an impedance to
electrode insertion and therefore the knowing the ST volume is
of clinical interest. All this pre-operative information will add to
the wealth of information available to the operating surgeon to
potentially influence intra-operative behavior.

MATERIALS AND METHODS

Image Analysis
Image analysis was performed on thirty µCT image datasets
of cadaveric temporal bones. There were no inner ear
malformations present. Fifteen raw datasets were sourced
from the HEAR-EU project (https://cordis.europa.eu/project/id/
304857), and the other fifteen raw datasets were from Cambridge
(CS and MB). The µCT images [24–30 micron (µ) isotropic
voxel-sizes] were analyzed using Slicer Version 4.10.2 (https://
www.slicer.org/) in the HEAR-EU data, and Stradview (Version
6.1) for the Cambridge data. The reason for using two different
image analysis software was due to the availability of the specific
software at MED-EL Innsbruck and University of Cambridge,
Cambridge, respectively. Three-dimensional (3D) segmentation
of the ST from these combined raw datasets was performed in
this study following the steps described by Dhanasingh et al. (11).
In brief, the image datasets were loaded into two different 3D
segmentation software. Segmentation of the ST was performed
as precisely as possible in the axial plane in every slice of the
cochlea by setting tight grayscale threshold to avoid capturing
undesired structures (Figure 1A). Grayscale thresholding to
capture the desired structures was done individually for every
individual image data set. Figure 1B shows an example of
grayscale thresholding; the grayscale of the otic capsule is 6,089
(bright = bone) and the grayscale of membranous labyrinth
(dark = labyrinth) is −1,014, thus setting the thresholding
−1,014 and 6,089 for this temporal bone. The volume of ST was
measured using the command “segment statistics.”
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FIGURE 1 | Segmentation of ST starts by setting a tight grayscale threshold that distinguishes between the fluid filled ST and the surrounding bony region (A).

Segmentation is done by shading the areas of interest from all image slices (B).

FIGURE 2 | Oblique coronal plane through the basal turn with the cochlear

parameters defined.

The A-value was measured in the oblique coronal plane
starting from the center of the round window membrane
(RWM) and passing through the centre of the cochlea to the
opposite lateral wall, as originally described by Escude et al. (12)
(Figure 2). The B-value refers to the width of the basal turn which

is measured by drawing a line perpendicular to the A-value. The
S-value refers to the length of the straight portion of the cochlear
basal turn starting from the RWM to the inferior end of the B-
value line. Measurements were cross-checked and validated by
two authors.

Electrode Insertion Force Measurement
All electrode insertion experiments were performed in an acrylic
3D model of the ST in two different sizes (Figures 3A,B). The
fabrication process is described by Leon et al. (13). The volume
of the smaller model was 35 µl; whereas the larger model had
the same morphology but was upscaled by 1.5 × to 52.5 µl.
This enabled direct comparison of the impact of size, irrespective
of confounding anatomical variations. Insertion forces were
measured using a commercially available S-shaped, single axis
(compression and tension) load cell with a measuring range up to
5 newtons (N) (Zwick Roell, Xforce HP https://www.zwickroell.
com/accessories/xforce-load-cells/). The ST model was placed
atop the load cell and filled with 0.1% soap solution to act as a
lubricant. The sensor was mounted on a positioning device to
enable the precise adjustment of the cochlear model’s position
and orientation with respect to insertion of the electrode array
(Figure 3C). The experiment was performed across five insertion
speeds (0.1, 0.5, 1, 2, and 4 mm/s) using two different electrode
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FIGURE 3 | (A) Upscaled ST model: A-value 11mm; B-value 8mm; S-value 8.3mm. (B) Small ST model: A-value 7.9mm; B-value 6.4; S-value 5.6mm. (C)

Electrode insertion force measurement test set-up.

array lengths of 24mm (FLEX24) and 28mm (FLEX28) at full
insertion. The volume of FLEX24 and FLEX28 electrode arrays
were calculated as 6.9 and 8.8 µl, respectively. For each length
of the electrode array, the measurements were repeated three
times, plus repeated with three different arrays. Thus, nine
measurements were performed in total per implant length for
each insertion speed.

Statistical Analysis
Regression estimates between the A- and B-values and A- and
S-values (confidence level 0.95) were determined using the data
analysis tool in STATISTICA software (version 14.0, https://www.
tibco.com/products/data-science). Pearson’s coefficient (r) was
used to assess the strength of correlation between measurements.
A multiple linear regression model was designed to formulate
an equation that predicted the ST volume, using the A- and B-
values. Two-way ANOVA test with replication was used to check
the significance in electrode insertion forces comparing between
the electrode length, ST models and the insertion speeds.

RESULTS

Data Analysis
Table 1 summarizes the cochlear parameters as measured by
A-, B-, and S- values, and ST volume from both HEAR-EU
and Cambridge datasets. The mean A-, B-, and S-values of
combined datasets were 9.0 ± 0.5, 6.7± 0.4, and 6.9 ± 0.5mm,
respectively. The mean ST volume was 34.2 ± 7 µl although
this value varied significantly between different samples (range

23–50 µl). The predicted ST volume was calculated applying
Equation 1, applying the A-and the B-values, as described
below.

The ST volume increased linearly with an increase in A-
and B-values (Pearson’s coefficient r 0.55 and 0.56, respectively)
(Figures 4A,B). The A-value correlated with the B- and S-
values (Pearson’s coefficient r 0.64 and 0.66, respectively)
(Figures 4C,D).

Prediction of ST Volume From Basic
Cochlear Parameters
The multiple linear regression model to predict the ST volume
from the A-, and the B-values resulted in the following equation
(Equation 1). The A- and B-values were measured in mm.

Equation 1 : Predicted ST volume
(

µl
)

=
(

A value∗5
)

+
(

B value∗5.8
)

− 49.7

The gray shaded columns in Table 1 corresponded
to the predicted ST volume when applying Equation
1 and the error percentage between the estimated
and measured ST volume. The mean measured and
predicted ST volume was 34.2 µl in both cases,
although the range varied from 23–50 to 26.2–40.0
µl, respectively.

Electrode Insertion Force Measurement
As the electrode enters the cochlea, the tip touches the inner wall
of the ST model at the S-value point (Figure 5).
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TABLE 1 | A-, B-, S-values measured from the µCT images in the oblique coronal view of cochlear basal turn and ST volume measured from 3D segmented model of ST.

Source of µCT datasets A-value (mm) B-value (mm) S-value (mm) Measured ST volume (µl) Predicted ST volume (µl) Absolute error (%)

HEAR-EU (n = 15) 9.4 6.8 7.7 36 36.8 2.2

8.7 6.2 6.8 33 29.7 11

8.9 7.1 7.0 45 36.1 24.7

8.4 6.7 6.6 33 31.2 5.6

9.7 6.9 7.9 49 38.9 26

8.7 6.6 6.9 34 32.2 5.7

9.6 6.9 7.5 50 38.4 30.3

8.6 7.0 7.1 46 34 35.4

8.7 6.1 6.9 28 29.2 4.2

8.6 6.0 7.1 28 28.2 0.55

8.8 6.5 7.5 28 32.1 12.7

9.2 6.8 7.2 35 35.81 2.3

8.8 6.2 6.7 29 30.3 4.3

8.7 6.5 7.0 34 32 7.7

9.3 6.0 7.0 43 37 17.6

Cambridge (n = 15) 9.7 7.2 6.9 36 41 11.4

8.0 6.2 5.8 23 26.3 12.5

8.8 6.4 6.0 29 31.3 7.4

9.0 7.0 6.6 31 35.5 12.8

8.5 6.6 6.3 27 31 12.8

8.7 6.0 6.3 23 28.4 19

9.5 7.0 7.1 36 38.4 6.3

9.1 7.4 6.3 34 38.7 12.2

9.1 7.3 6.8 32 38 15.7

9.4 7.1 7.0 41 38.8 5.7

9.2 7.0 6.9 36 36.9 2.4

9.1 6.4 6.7 30 32.4 7.4

9.5 7.4 7.4 31 41 24.3

8.1 6.5 6.3 32 28.6 11.9

9.5 7.1 6.9 34 39.4 13.6

Range 8.0–9.7 6.0–7.4 5.8–7.9 23–50 26.2–40.9 0.55–35.4

Mean +/- standard deviation 9.0 ± 0.5 6.7 ± 0.4 6.9 ± 0.5 34.2 ± 7 34.2 ± 4.2 12.2 ± 8.7

The S-value was 5.6mm for the smaller sized ST model and
8.3mm for the upscaled model. The insertion force was almost
negligible when measured up to these points for both array
lengths and all insertion speeds (Table 2).

Observation of insertion force in the first portion of the basal
turn (at 15mm of the insertion depth from the ST opening),
indicated a trend for lower insertion forces at lower insertion
speeds, whereby forces increased with higher insertion speeds
(magnified view in Figure 6).

Overall, the insertion forces were lower in the upscaled
model in comparison to the smaller sized ST model for
both FLEX28 and FLEX24 electrodes at its full insertion
depth, irrespective of the insertion speed, as shown in
Figure 6. Two-way ANOVA test with replication showed
a statistical significance of p < 0.0001 in insertion forces
measured in smaller and upscaled ST models. Mean
insertion forces for the insertion speeds are provided in
Table 3.

DISCUSSION

As we move toward personalized cochlear implantation, there
is a clinical need to characterize patient specific anatomical
variations. Specific areas of interest include, but are not limited
to, (i) ST volume relative to basic cochlear parameters, (ii)
electrode insertion force relative to insertion speeds dependent
upon cochlear size, and (iii) the impact of insertion speeds
on the insertion force at the S-value point. This pre-operative
information will add to the wealth of information available to
the surgeon to potentially influence intra-operative behavior.
Furthermore, this information will be crucial to influence the
development of robotic-assisted CI surgery (HEARO R© system),
controlled speed electrode insertion (ROBOTOL R© system), and
patient-specific pre-operative planning tools (OTOPLAN R©).

This study has demonstrated that there are significant
differences in the size of anatomically normal cochlea, in terms
of ST volume and basic cochlear parameters. The range in
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FIGURE 4 | Scatter plots comparing (A) A-value and ST volume; (B) B-value and ST volume; (C) A- and B- values; and (D) A- and S-values.

FIGURE 5 | The point where the electrode tip touches the inner wall of the

cochlear model corresponds to the end of the S-value as pointed by the white

arrow.

ST volume in this study is similar to earlier reports measured
from three uCT datasets (14). For the clinician, knowledge of
the ST volume has specific clinical relevance. Firstly, choice of
electrode array relative to cochlear duct length (CDL) and ST
volume may be predictive of hearing preservation after CI, as
demonstrated by Takahashi et al. (15). The authors elegantly
demonstrated that bony cochlear volume [combined ST and scala
vestibuli (SV)] was a predictive factor for hearing preservation
following CI surgery. Furthermore, pre-operative appreciation of
ST volumemight assist in injection of pharmaceutical agents into
the ST at the time of implantation. When an array is inserted,
the equivalent volume of perilymph is displaced from the ST.
Thus, appreciation of pre-operative ST volume and volume
of the electrode array, will enable prediction of the necessary
concentration of pharmaceutical agent to be injected.

However, ST volume cannot be measured in clinical pre-
operative CT scans owing to their low resolution (∼400mm).
Thus, a system which can predict ST volume is particularly
valuable. In this study, the quasi-linear positive correlation
between ST volume and A- and B-values enabled creation of a
predictive algorithm to facilitate pre-operative prediction of ST
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TABLE 2 | Electrode insertion force (N) measured at the S-value point in the two different sized cochlear model.

Small sized model (S = 5.6mm) Upscaled model (S = 8.3mm)

Insertion speed (mm/sec) 0.1 0.5 1 2 4 0.1 0.5 1 2 4

FLEX28 0 0.0004 0.0008 0.0001 0.0007 0 0.0003 0 0.0003 0.003

FLEX24 0 0.0003 0.0002 0.0004 0.001 0 0.0002 0.0001 0.0002 0.0005

FIGURE 6 | Electrode insertion force measurement of FLEX28 and FLEX24 electrodes in two different sized cochlear model applying five different insertion speeds of

0.1, 0.5, 1, 2, and 4 mm/s. (A) FLEX28 and (B) FLEX24 in the average sized cochlea model. (C) FLEX28 and (D) FLEX24 in the upscaled model. The inner magnified

view shows the insertion force curves for various insertion speeds at 15mm of insertion depth. The purple curve corresponds to the highest insertion speed of 4 mm/s

showing higher insertion forces and the turquoise curve corresponds to the lowest insertion speed of 0.1 mm/s showing lower insertion forces.

volume on the basis of purely the A- and B-values as a novel
finding. These two values are routinely measured pre-operatively
as part of the radiological work-up prior to implantation. This
approach is consistent with findings by Schurzig et al. who
demonstrated that estimation of CDL is more accurate when
considering both A- and B-values, rather than solely the A-
value (16).

The second part of this study assessed the importance of
individual cochlea size by focusing upon electrode insertion force
in ST models of two different sizes/volumes. Results indicated
that cochlear size, electrode array length and insertion speed are
of varying importance to the force that the cochlea experiences
during insertion. Insertion forces increased during insertion. The
lower insertion forces in the upscaled model are likely owing to
the greater cross-sectional dimensions of the ST model around
the electrode array, thus offering less resistance. In clinical setup,

larger ST volume would minimize the physical contact between
the electrode array surface and the intra-cochlear structures
including the basilar membrane. The other assumption is that
with larger ST volume, the helicotrema would also be larger
allowing the cochlear fluid to escape from the ST to the scala
vestibuli. Earlier reports by Kontorinis et al. and Landry et al.
indicated that higher insertion speed was associated with higher
insertion forces (17, 18). Our findings were reflected in a study
recently published by Aebischer et al. (19). The authors reported
higher insertion forces with higher insertion speed across six
different ST models (19). This was reflected in our study as well.
The highest insertion speed of 4 mm/s recorded the highest
insertion forces in both ST models and for both electrode
arrays tested.

The first potential contact that the array may make with
the cochlear lateral wall is at the S-value. When measured,
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TABLE 3 | Mean insertion forces for FLEX28 and FLEX24 electrodes inserted at

various insertion speeds in two different sized ST models.

Electrode type ST model Mean insertion forces at

insertion speeds (Newtons)

Significance

FLEX28 Smaller model 0.025 (4 mm/s)

0.025 (2 mm/s)

0.03 (1 mm/s)

0.016 (0.5 mm/s)

0.034 (0.1 mm/s)

p < 0.0001

Upscaled 0.01(4 mm/s)

(2 mm/s)

0.02 (1 mm/s)

(0.5 mm/s)

0.011 (0.1 mm/s)

FLEX24 Smaller model 0.019 (4 mm/s)

0.02 (2 mm/s)

0.02 (1 mm/s)

0.026 (0.5 mm/s)

0.02 (0.1 mm/s)

p < 0.0001

Upscaled 0.013 (4 mm/s)

0.013 (2 mm/s)

0.013 (1 mm/s)

0.013 (0.5 mm/s)

0.007 (0.1 mm/s)

the insertion force at the S-value was negligible. This may be
related to the highly flexible nature of the FLEX electrodes
utilized during this study. However, the forces start to increase
after an insertion depth of approximately 10mm and that’s
when the electrode start to bend inside the ST models. It
is certainly of clinical interest to compare the insertion force
at the S-value between arrays made of different materials
from different CI brands. This could allow for adjustment of
insertion speed at the S-value point depending on array material.
Recently, Hendricks et al. studied the possibility of preventing
the electrode tip touching the cochlear lateral wall, by magnetic
guidance, by utilizing a modified electrode array with a magnet
at the tip (20). All these research efforts work toward the
aim of structure preservation during implantation to ensure
hearing preservation andminimize the subsequent inflammatory
process. Theoretically, it can be thought that the volume of the
electrode array chosen for implantation in relation to the ST
volume could as well be a deciding factor in the preservation
of residual hearing as the electrode volume could restrict the
vibrational properties of basilar membrane. This could be a study
for the future on the evaluation of hearing preservation based on
the electrode array length and volume chosen matching the ST
volume estimated from the pre-operative cochlear parameters.

The ability to measure insertion forces during cochlear
implantation is not feasible with manual clinician insertion;
however, it may be incorporated into automated insertion
devices. For instance, robotic insertion has the advantage of
quantifiable haptic feedback, enabling direct feedback if insertion
forces rise above a certain threshold. Our finding is in line
with previous clinical reports on higher insertion forces and
lower hearing preservation rates associated with higher insertion
speed (21).

A wide variation in cochlear anatomy has been captured in
this study of thirty µCT datasets. However, the variation in ST
volume, A- and B-values resulted in a weaker correlation, which
could be better defined by adding more datapoints. It would be
more clinically relevant to compare insertion forces in cochleae
of different sizes and shapes, with accurate RW reconstruction,
rather than an upscaled model.

CONCLUSIONS

ST volume was positively correlated with the A- and B-value,
allowing the potential for pre-operative ST volume prediction
from clinical CT scans. The S-value also increased linearly with
the A-value. The ST size influenced electrode insertion force,
in that in general higher insertion forces were observed with
the smaller sized ST model compared to the upscaled model
irrespective of the length of the implant. A trend toward lower
insertion force for lower insertion speed and vice-versa was
observed from the insertion force curves before the electrode
reached its maximum insertion depth. Taken together these
findings indicate that there are significant patient variations
in cochlear size, and this may impact upon insertion forces.
Whilst insertion forces increase during advancement of the
CI, the absolute value may be difficult to sense manually
(measured in milli-newtons). Such small changes in force
would be best measured by automated insertion systems, which
employ more accurate haptic feedback than is possible by the
human hand.
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