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TARGETING INTERVENTIONS IN NETWORKS

ANDREA GALEOTTI, BENJAMIN GOLUB, AND SANJEEV GOYAL

Abstract. Individuals interact strategically with their network neighbors, as in effort

investment with spillovers among peers, or production decisions among firms connected by a

supply chain. A planner can shape their incentives in pursuit of some goal—for instance,

maximizing utilitarian welfare or minimizing the volatility of aggregate activity. We offer an

approach to solving such intervention problems that exploits the singular value decomposition

of network interaction matrices. The approach works by (i) describing the game in new

coordinates given by the singular value decomposition of the network on which the game

is played; and (ii) using that to deduce which components, and hence which individuals, a

given type of intervention will focus on. Across a variety of intervention problems, simple

orderings of the principal components characterize the planner’s priorities.

1. Introduction

Consider a group of individuals who interact strategically, with a network determining how

a player’s action affects others’ incentives. An external entity—a planner—would like that

the group attains a goal and seeks to achieve this goal through an intervention that changes

individuals’ incentives. For instance, consider a group of school pupils who make choices

about educational effort. Suppose that a pupil’s incentives to study are affected by the level

of effort exerted by his friends. A utilitarian educational authority seeks to increase the sum

of pupils’ utilities by offering subsidized tutoring or rewards for achievement to a few pupils.

Whom should she target?

Alternatively, consider firms that are deciding how much to produce, with their decisions

being strategically related—for instance, because they are involved in the same supply chains.

The government can, at a cost, control the distributions of some fundamentals—for instance,

by stabilizing the prices of some inputs. The government aims to maximize the expected
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2 TARGETING INTERVENTIONS IN NETWORKS

consumer surplus. Which control efforts are most worthwhile, and how are they correlated

across sectors?

This paper presents an approach to solving such intervention problems that relies on

summarizing the structure of the network in its singular values and associated principal

components and characterizing which ones a given type of intervention will focus on.

Consider now an abstract description of a network game, generalizing the situations we

sketched above: individuals’ payoffs depend on their own actions—which may be levels of

effort, prices, or other quantities—and the actions of their contacts or neighbors. Individuals’

actions may be strategic complements (pupils choosing levels of effort at studying, firms

collaborating in joint research projects) or strategic substitutes (pricing decisions among

competing firms in certain market structures, local public goods). The goal of the planner

is—in our first problem—to maximize the sum of individuals’ payoffs and she has at her

disposal a limited amount of resources. The investment change agents’ propensities to take

the actions, and through the network effects this changes others’ actions as well. We study the

optimal allocation of these resources across individuals and how it depends on the strategic

nature of interactions and the network describing who interacts with whom.

Let us start with strategic complements and suppose the planner uses her resources to

subsidize individual efforts. A subsidy to an individual encourages this person to work

harder. This raised effort, in turn, pushes up the efforts of his collaborators due to the

strategic complementarity, which, in turn, increases the efforts of their collaborators, and

so forth. Now, it is natural to suppose that the planner’s marginal costs of raising any one

individual’s effort are increasing. This leads to the idea that the planner would like to target

multiple individuals. So the planner is faced with the question of how best to coordinate

her allocation of subsidy across the individuals. With strategic complements, she will want

to move neighbors’ incentives together, since increasing someone’s effort makes it easier

to increase the efforts of his neighbors’. The optimal policy will exploit this potential for

amplification.

Next, consider the case of strategic substitutes. Targeting two neighbors and changing their

incentives in the same direction would waste the planner’s resources, because one individual’s

increase in effort would reduce his neighbors’ incentives for effort; the different aspects of the

planner’s interventions would crowd each other out if she were to target neighbors. Thus,

resources to increase incentives for activity should not be targeted at adjacent individuals.
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Indeed, the best policy will often move neighbors’ incentives in opposite directions to amplify

the effects of an intervention and maximize social welfare.

Our goal is to generalize and formalize these intuitions, and understand how exactly network

structure matters for determining the optimal targeting interventions. We show that the

singular value decomposition—the decomposition of a linear system into orthogonal principal

components—provides a simple and general formalization of these intuitions. In particular, in

the case of strategic complements, a planner will focus on a “most representative component”

of the network—the first principal component. This is a vector capturing a joint movement

that maximizes amplification between neighbors. A subtler insight is that in the case of

strategic substitutes, there is a different vector—the last principal component, corresponding

to the smallest singular value—that is optimal. This targeting scheme minimizes crowd-out

and leverages strategic substitutes.

The more general point is that the considerations involved in maximizing amplification

of planners’ efforts and avoiding crowd-out can be summed up by standard statistics of

the network related to its singular value decomposition, and that this idea carries across a

variety of applications. The mathematical reason behind this observation is that the singular

value decomposition is very convenient for writing quadratic forms in the equilibrium actions.

Quadratic forms turn up naturally in the analysis of the problems we have been discussing.

In general, it is not only the first or last principal component that matters, but all the

components of the decomposition. However, the degree to which they matter can generally

be nicely ordered, in a way that depends on the strategic structure of the problem at hand

and the planner’s objective. To illustrate the versatility of our approach, we propose and

solve two related intervention problems one, minimizing volatility of economic activity in an

investment setting, and two, maximizing consumer and producer surplus in a supply chain.

Research over the past two decades has deepened our understanding of the empirical

structure of networks and how networks affect human behavior. This naturally leads to

considering how policy interventions seeking to change outcomes can effectively exploit

network structure, thereby economizing on scarce resources. Our paper contributes to a broad

and exciting body of work—spread across economics, sociology, public health, marketing,

and computer science, among other fields—which studies how to intervene in networks.

In economics, recent work includes Ballester et al. (2006), Banerjee et al. (2016), Belhaj

and Deroian (2017) Bloch and Querou (2013), Candogan et al. (2012), Demange (2017),
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Dziubinski and Goyal (2017), Fainmesser and Galeotti (2017), Galeotti and Goyal (2009),

Galeotti and Rogers (2013).1

The novelty of the paper lies in (i) the formulation of a class of intervention problems; and

(ii) in the proposal of a unified methodology to solve them. First, our planner’s problems share

a general, economically natural, form—maximizing or minimizing an objective subject to a

total constraint on resources spent to modify the environment. Within this class, the problems

are rich in several ways: they involve a variety of planner’s objectives (e.g., total welfare,

aggregate volatility); they involve different applications (educational effort, investment,

pricing); and they consider different types of strategic interactions: strategic complements

and substitutes. Second, across this class of problems, singular value decomposition—and

the corresponding expression of a matrix via its principal components—offers a natural

mathematical tool for identifying the optimal targets.

The rest of the paper is organized as follows. Section 2 presents the basic model, while

Section 3 sets out notation and basic facts about the singular value decomposition and

presents its application to a canonical network game. Section 4 solves for optimal targets

when a planner can adjust individual incentives with the goal of maximizing social welfare.

Section 5 presents and solves intervention problems in two other economic contexts. Section

6 shows how to relax restrictive assumptions used in the previous Sections. Appendix A

contains proofs of some of the propositions.

2. Basic model

There is a set of individuals N = {1, . . . , n} with n ≥ 2; the individuals are typically

indexed by i. Every individual has an exogenous characteristic bi ∈ R, with the vector of all

characteristics denoted b ∈ Rn. Individual i chooses an action ai ∈ R, simultaneously with

others; the vector of these is denoted a ∈ Rn. The payoffs to individual i given an action

profile a are:

Wi(a) = biai −
1

2
a2i + βai

∑
j∈N

gijaj.

So bi denotes the individuals’ marginal benefits of her own action. The weighted, directed

network with adjacency matrix G has links (i, j) with weights gij; it is a representation of

strategic interactions.

1Prominent contributions in related disciplines include Rogers (1983), Feick and Price (1987), Borgatti (2006),
Kempe et al. (2003), and Valente (2012).
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Suppose that G is a nonnegative matrix. Then β captures the direction of strategic

interdependencies: if β > 0, actions are strategic complements, and if β < 0, actions are

strategic substitutes. We will not generally need the assumption of nonnegative G, though

the remarks we have just made show it can be a helpful case to think about. As Ballester

et al. (2006) observed, any (pure strategy) Nash equilibrium action profile a satisfies

[I − βG]a = b. (1)

If the matrix is invertible, the unique Nash equilibrium of the game can be characterized by

a = [I − βG]−1b. (2)

We will maintain throughout, unless stated otherwise, a standard assumption:

Assumption 1. The spectral radius of βG is less than 1.2

This ensures existence of the inverse in (2), and also the uniqueness and stability of Nash

equilibria (Bramoullé et al., 2014).

The game we have presented is an instance of linear-quadratic game played on a network;

papers that study such games include Goyal and Moraga-Gonzalez (2001), Ballester et al.

(2006) and Bramoullé et al. (2014). For a survey of research in games on networks, see

Bramoulle and Kranton (2016) or Jackson and Zenou (2015).

2.1. A basic network intervention problem. We now introduce a prototypical network

intervention problem. The planner wishes to maximize aggregate utility of individuals; she

has a budget and wishes to use this budget to modify the marginal benefits of individuals,

for example by providing supplemental technologies to some of them. A status quo vector

of characteristics b̂ is given. The planner can change the vector b̂ to b, adjusting every

individual’s marginal benefit. The adjustment cost of changing b̂ to b is

K(b; b̂) =
∑
i∈N

(
bi − b̂i

)2
.

This reflects the idea that the planner faces increasing marginal costs as she seeks to make

larger changes in individual’s incentives.3

In terms of timing, the planner moves first with her intervention, and then the individuals

engage in the simultaneous-move game to choose their actions. Assume that G is such that

2Recall that the spectral radius of a matrix is the maximum absolute value of any of its eigenvalues.
3We extend the analysis to more general costs function in Section 6.
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the equilibrium of the game is unique, and let w∗i be the equilibrium utility of individual i

given the planner’s choice b. Formally, then, the incentive-targeting problem is:

max
b

∑
i∈N

w∗i (IT)

s.t. K(b; b̂) ≤ C,

where C is the given resource constraint or budget.

Note that the planner may intervene either to encourage or discourage action—i.e., increas-

ing or decreasing bi relative to the status quo of b̂i—and both are costly. In particular, the

planner may even choose to change the sign of bi. In specific applications, it may be natural

to assume that actions—such as research effort or prices—take on a positive value only. This

could be reflected by appropriate constraints in the game; alternatively, we can study b̂ large

enough and C small enough to ensure that these constraints are respected at the optimal

solution.

3. Analysis of the game via the Singular Value Decomposition

This section defines notation for and recalls basic facts about the singular value decomposi-

tion (SVD) of a matrix. We then describe how it applies to the game, laying the groundwork

for our main results.

3.1. Singular values and principal components: Notation and definitions. Consider

any n × m matrix M with real entries. A singular value decomposition (SVD) of M is

defined to be a tuple (U ,S,V ) satisfying

M = USV T, (3)

where

(1) S is a n ×m diagonal matrix with non-negative real numbers on the diagonal, sl,

called the singular values of M ;

(2) U is an orthonormal n× n matrix whose columns are eigenvectors of MMT;

(3) V is an orthonormal m×m matrix whose columns are eigenvectors of MTM .

It is a standard fact that an SVD exists.4

Viewing M as a map M : Rn → Rm, the matrices V and U can be seen as bases for the

domain and range, respectively, under which M is represented by a diagonal matrix. The

4A standard reference on SVD is Golub and Van Loan (1996).
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columns of U are called the left-hand singular vectors of M , and the columns of V are

called the right-hand singular vectors. When we refer to the lth-ranked singular value of a

matrix M , we mean the lth-largest, and the lth-ranked singular vector (on a given side) the

corresponding column of U or of V .

For any vector x ∈ Rm, let x = V Tx denote the vector x written in the basis of the SVD,

and similarly, for y ∈ Rn, let y = UTy. The basis of the SVD is one in which the map

corresponding to M is particularly nice: it simply dilates some components and contracts

others, according to the magnitudes of the singular values:

y
l
= slxl for l ∈ {1, 2, . . . , n}.

An important application of the SVD is principal component analysis. We can think of

the columns of M as n data points. The first principal component of M is defined as the

n dimensional vector that minimizes the sum of squared distances to the actual M . The

first principal component is, therefore, a fictitious vector that best summarizes the data set

M . To characterize the other principal components, we orthogonally project all columns of

M off this vector and repeat this procedure. A well known result is that the left singular

vectors of M are, indeed, the principal components of M ; a singular value quantifies the

variation explained by the respective principal component. When we refer to the lth principal

component of M we mean the lth-ranked left singular vector of M .

3.2. Analysis of the game using the SVD: the basic idea. Recall the equation char-

acterizing the equilibrium of the game:

[I − βG]a = b.

The orthogonal decomposition entailed by the SVD gives a useful perspective on comparative

statics and amplification of shocks in the system, which we will describe in this section. This

idea is general and works for any G and any β. To describe some implications simply, and to

relate them to the structure of the network G in a familiar way, we focus on a simple special

case for exposition. Section 6 is devoted to stating the more general forms of the main results.

3.3. A special case. Assume that the matrix G is normal, i.e. that GTG = GGT. This

holds, for example, if G is a symmetric matrix. The usefulness of this assumption is brought

out in the following statement (see, e.g., Meyer (2000)).
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Fact 1. If G is normal and Assumption 1 holds, then there is a SVD of M = I − βG with

U = V . This SVD can be chosen to correspond to a diagonalization G = UΛUT so that

the following hold:

1. Λ is a matrix of the eigenvalues of G in decreasing order on the real line;

2. the ith column of U is the eigenvector of G associated to the eigenvalue of G in the

position (i, i) of Λ;

3. S = I − βΛ.

Generically all the diagonal entries of Λ, i.e., the eigenvalues of G, are positive. The lth

eigenvector of G, ul(G), corresponds to the lth principal component of G. The decomposition

is uniquely determined up to (i) a sign flip of any column of U , and (ii) up to a permutation

that reorders the eigenvalues in Λ and correspondingly reorders the columns of U .

The implication of Fact 1 is that when G is normal and Assumption 1 holds, the same

orthogonal basis works on the left and the right in the SVD of M = I−βG, and the relevant

basis is one in which G is diagonal. Furthermore, if β < 0,5 then the lth principal component

of M = I − βG is the lth principal component of G; in the opposite case of β > 0, the lth

principal component of M = I − βG is the (n− l + 1)th principal component of G.

3.4. Analysis of game using the SVD: details. In this subsection we discuss how the

strategic structure of the game is illuminated by the SVD in the special case of a normal

G. For concrete examples of the principal components involved, see our application of the

decomposition below in Section 4.2.

Substituting the expression G = UΛUT into equation (1), we obtain

[I − βUΛUT]a = b

Multiplying the LHS and the RHS by UT, we obtain an analogue of (2) characterizing the

solution of the game:

[I − βΛ]a = b ⇐⇒ a = S−1b ⇐⇒ a = [I − βΛ]−1b.

This system is diagonal. Hence, for any l ∈ {1, 2, . . . , n},

al =
1

1− βλl
bl. (4)

5Recall this corresponds to strategic substitutes if G is nonnegative.
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The equilibrium action in the lth principal component of G is simply a scaling of the magnitude

of b in that principal component.6 This is what we mean by a “decoupling” of the strategic

interactions along the principal components: shocks to a given principal component are

confined to that component in terms of their effect on actions.

In terms of magnitudes, suppose b changes in the principal component of G corresponding

to a high value of (1 − βλl)−1. In this case, the change in a is large. With respect to the

principal components of a (nonnegative) G, when actions are strategic substitutes (resp.

strategic complements), if the characteristic in the dimension of the lth principal component

of G increases by ε, then the action of the l-th principal component goes up by less (resp. by

more) than ε.

Rewriting in the original coordinates:

ai =
∑
l

uli
bl

1− βλl
.

Thus the contributions to i’s action are proportional to how much i is represented in various

components (uli) as l ranges across all indices; how large the attribute vector is in those

components (bl); and the magnification from the corresponding factor (1 − βλl)
−1. The

SVD provides an useful way to understand the network locations that lead to higher or

lower actions for a given attribute vector. Moreover, the SVD is very convenient for writing

quadratic forms in the equilibrium actions, a fact that we exploit in the rest of the paper.

4. Targeting incentives to maximize welfare

We are now in a position to state our first main result on optimal targeting of interventions

for increasing utilitarian welfare in the problem (IT) of Section 2.1. Recall that the planner

chooses the incentive vector b and, with individuals playing the network game described in

Section 2, has the following optimization problem:

max
b

∑
i∈N

w∗i (IT)

s.t.
∑
i∈N

(
bi − b̂i

)2
≤ C,

where the resource constraint is a given nonnegative number C, and b̂ is a fixed vector of

status quo attributes. We remark that the results we present in this Section generalize beyond

the quadratic cost specification (see Proposition 5 in Section 6.2).

6Note that bl is the magnitude of the orthogonal projection of b onto column l of V = U .
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4.1. The structure of optimal interventions in terms of principal components. Our

first result shows that optimal interventions, in a suitable sense, focus on changing b in some

principal components more than others. Hence, the planner’s priorities can be summarized

in a general way, based on the eigenvalues of the network.

Recall that an arbitrary vector b transformed into its SVD basis coordinates is denoted

by b, with bl being the projection of b onto the lth principal component of G.7 It will be

convenient for the statement of our result to work with relative changes in these components.

Again for an arbitrary vector b, let

b˜ l =
bl − b̂l
b̂l

when these are well-defined (i.e. when the denominators b̂l are nonzero). The quantity b˜
describes the relative increment in a given bl from its status quo level of b̂l; the increment is

measured as a fraction of the initial level.

Proposition 1. Suppose G is normal and Assumption 1 holds. Let b∗ be a solution to the

incentive-targeting problem (IT) with graph G. For a generic8 b̂, we have that b˜∗l > 0 for all

l, and that:

(1) If β > 0 then b˜∗l is (weakly) decreasing in l;

(2) If β < 0 then b˜∗l is (weakly) increasing in l.

The proposition says that, in the relative sense described above, the planner focuses her

budget C most on changing the contribution of an extreme principal component. This is the

one corresponding to λ1, the largest eigenvalue of G, or λn, the smallest eigenvalue of G.

Moreover, the degree of focus on principal components is monotonic in the eigenvalues. If

β > 0 the degree of focus is decreasing in the order of principal components (ranked from

greatest corresponding eigenvalue to least). On the other hand, when β < 0 the targeted

budget is increasing in the order of the principal components. When G is nonnegative, the

former case corresponds to strategic complements and the latter to strategic substitutes.

The idea of the proof is as follows: First, we rewrite the problem (IT) in the coordinates of

the SVD:

max
b

∑
l∈N

αlb
2
l (IT-SVD)

7We are fixing G throughout this section, so that we may drop it as an argument on eigenvalues, etc.
8Nonzero in each component.
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s.t.
∑
l

[bl − b̂l]2 ≤ C.

This transformation uses that (i) orthonormal transformation into the SVD coordinates does

not change sums of squares of coordinates, so the constraint inequality remains identical in

form; (ii) the magnitude of the equilibrium action in the lth principal component of G is

simply a scaling of the magnitude of b in that principal component (recall (4)) by a coefficient

we call αl. In other words, the decoupling of strategic effects permits a convenient expression

of the objective function. Then we make one more transformation, writing the objective and

the constraint equivalently in terms of the relative changes, b˜ :

max
b˜
∑
l∈N

αlb̂
2

l [b˜ l + 1]2 (IT-SVD-REL)

s.t.
∑
l

b̂
2

l b˜2
l ≤ C.

From this it is straightforward to argue using basic optimization theory that at the optimal

solution b˜ ∗, the entries b˜∗l are increasing in the corresponding αl; meanwhile, the αl are

shown to be monotone in the eigenvalues (decreasing in λl when β > 0, and increasing when

β < 0). The details are presented in Section A.1.1 of the appendix.

4.1.1. The case of large budgets. We next show that the optimal targeting strategy of the

planner becomes extreme, focusing mostly on one component, when the resources available

for intervention, C, are appropriately large. We begin with a quantitative result describing

what happens to the planner’s focus as budgets become large.

Proposition 2. Fix a G that is normal and generic9 such that Assumption 1 holds. Also fix

a generic10 b̂, and let b∗ be a solution to the incentive-targeting problem (IT).11

1. Suppose β > 0. For any ε > 0, if

C >
‖b̂‖22

ε2
[
1−

(
1−βλ1
1−βλ2

)2]2 ,
then b˜∗l /b˜∗1 < ε for all l 6= 1.

9What is required is that λ1 and λn are strict bounds on the other eigenvalues.
10Nonzero in each component.
11This depends on the one parameter that has not yet been fixed, C.
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2. Suppose β < 0. For any ε > 0, if

C >
‖b̂‖22

ε2
[
1−

(
1−βλn

1−βλn−1

)2]2 ,
b˜∗l /b˜∗n < ε, for all l 6= n.

From this we can derive as an immediate corollary that most of the budget is spent on

changing an extreme principal component (the one corresponding to l = 1 or l = n, depending

on β), and the share of resources spent on changing the other components becomes negligible:

Corollary 1. Take the assumptions of Proposition 2:

(1) Suppose β > 0. Then as C →∞, we have that [b∗l − b̂l]2/C tends to 1 if l = 1, and to

0 otherwise.

(2) Suppose β < 0. Then as C →∞, we have that [b∗l − b̂l]2/C tends to 1 if l = n, and

to 0 otherwise.

Corollary 1 captures the main take-away: large budgets C imply extreme focus. Proposition

2, the quantitative bound, describes how large C has to be, and what features of the network

structure and the initial attributes b̂ are important in ensuring that the focus is extreme. We

now describe the content of the proposition in more detail. The initial attributes enter via

‖b̂‖22; indeed, the proposition can be read as saying that C/‖b̂‖22 should exceed a number that

depends only ε, β, and the network G. This condition is harder to satisfy when the entries of

b̂ are larger or, holding the average of the entries fixed, when they are more variable.12

We now turn to the role the network plays in Proposition 2. When β > 0 (which corresponds

to strategic complements assuming a nonnegative G), the lower bound that C/‖b̂‖22 must

exceed in Proposition 2 is [1− (1− βλ1)2/(1− βλ2)2]−2; this is large when λ1 − λ2 is small.

This quantity can be interpreted in terms of network structure. When λ1 − λ2 is small, the

structural complexity of G cannot be summarized by one principal component.13 Similarly,

when actions are strategic substitutes, β < 0, heterogeneities in network locations are large

when λn − λn−1 is large.

Corollary 1 implies that if actions are strategic complements, the optimal intervention b is

such that b− b̂ is (very nearly) proportional to the first principal component of G, namely

12Recall that ‖ 1n b̂‖
2
2 is equal to

(
1
n

∑
i b̂i

)2
plus the variance of the entries of the vector b̂.

13The number λ1 − λ2 is related to the spectral gap. See, e.g., Golub and Jackson (2012) for discussions of
how the spectral gap corresponds to network structure, and in particular segregation and homophily.
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u1(G). On the other hand, if actions are strategic substitutes, the planner changes the indi-

vidual incentives (very nearly) in proportion to the last principal component, un(G). Finally,

when the initial attributes are zero (b̂ = 0), we can dispense with all the approximations.

Assuming G is generic in the sense used in Proposition 2, if b̂ = 0, then all of C is spent

either (i) on increasing b1 (if β > 0), or (ii) on increasing bn (if β < 0).14

4.2. Examples. We now illustrate these results by considering two networks—a random

network and a circle network—and two forms of strategic interaction—strategic complements

and substitutes.15 In our computations, to bring out the effects of networks and interaction

clearly, we take a large intervention budget, C = 1000. For the case of strategic complements

we set β = 0.1, and for strategic substitutes we set β = −0.1. Figure 1 and Figure 2 present

optimal interventions for the different treatments. The size of a node corresponds to the

magnitude of the change made to that node’s attribute: i.e., |b∗i − b̂i| at the optimal b∗i .

The colour reflects the direction of change: if node i is green (resp., red) it means that the

intervention has increased (resp., decreased) the attribute from the initial value of b̂i. Tables

1-4 present data on the initial bi, the eigenvectors predicted to be important by the theory

(the “first” and “last” eigenvectors), and on the optimal intervention (∆bi = b∗i − b̂i), the

change in action ∆ai, and the change in utility ∆wi.

  1

  2

  3

  4

  5

  6

  7

  8

(a) Random network

  1

  2

  3
  4

  5

  6

  7
  8

(b) Circle network

Figure 1. Optimal intervention with strategic complements

14Consider the form (IT-SVD) in our discussion after Proposition 1. Plug in b̂ = 0; then it is straightforward
to show that if the focus is not monotonic, effort can be reallocated profitably among principal components
without changing the cost.
15The random network is a Erdos-Renyi graph with p = 0.5, and it satisfies the spectral radius condition.
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Node i b̂i u1: “first” eigenvector ∆bi ∆ai ∆wi
1 0.58 0.51 16.05 23.77 289.92
2 -0.16 0.32 9.92 14.68 110.59
3 0.38 0.40 12.64 18.63 182.49
4 -1.68 0.25 7.80 11.50 69.46
5 0.82 0.24 7.65 11.18 68.90
6 1.81 0.39 12.38 18.09 180.58
7 0.82 0.24 7.65 11.18 68.90
8 -0.19 0.39 12.37 18.08 180.25

Table 1. Targeting in a random network, C = 1000, β = 0.1

Node i b̂i u1: “first” eigenvector ∆bi ∆ai ∆wi
1 0.71 0.35 11.45 14.19 111.26
2 0.00 0.35 10.90 13.73 96.31
3 0.71 0.35 11.43 14.18 110.96
4 0.00 0.35 10.89 13.73 96.24
5 0.71 0.35 11.44 14.19 111.11
6 0.01 0.35 10.93 13.77 96.95
7 0.72 0.35 11.47 14.22 111.73
8 0.00 0.35 10.91 13.76 96.61

Table 2. Targeting in a circle network, C = 1000, β = 0.1

We start with strategic complements. Figure 1 compares optimal intervention in the

random network and the circle network. Optimal intervention entails targeting the nodes

in line with their entry in the eigenvector u1, which is also called the eigenvector centrality

(see Section 4.3). Thus, the optimal intervention raises the bi of each node, and node i’s

eigenvector centrality determines the magnitude of this increase. In the random network,

agent 1 has the highest eigenvector centrality and the change in his attribute is 16.05; by

contrast, node 7 has the lowest eigenvector centrality and his attribute increases by only 7.65.

In the circle network nodes have the same structural positions. So any heterogeneity in

targeting is due only to differences in b̂i.
16 As Figure 2b illustrates, these initial differences are

less important due to the large budget: the magnitude of the intervention and the consequent

change in action is similar across nodes. So, the change in bi’s ranges from 10.9 to 11.5.

Figure 2 illustrates optimal intervention in the case of strategic substitutes. Now the

intensity of intervention varies (roughly) in proportion to the “last” eigenvector, un. This

16In both the networks we study, we choose a nonuniform initial vector b̂ for two reasons. First, it avoids

nongeneric issues with some of the bl being zero (as would be the case for a uniform b̂ in the circle). More
importantly, it illustrates that the conclusions about targeting being in line with certain eigenvectors are not

reliant on any particular structure of the b̂.
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entails raising the bi for some nodes and lowering the bi of others. For example, in the circle

network the optimal intervention is to raise bi’s of nodes {1, 3, 5, 7} from their initial levels,

and to lower those of nodes {2, 4, 6, 8}. This leads in turn to an increase in the actions

of nodes {1, 3, 5, 7} and a fall in the action of nodes {2, 4, 6, 8}. Figure 2a shows that a

combination of positive and negative interventions is involved in the random network, and

here too the interventions track the “last” eigenvector.

To see why this happens, it is instructive to examine the nature of best replies: an increase

in bi raises ai and this exerts, due to the strategic substitutes property, a downward pressure

on neighbor j’s action, aj . A smaller aj in turn pushes up ai further, and that lowers aj even

more, and so forth, until we reach a new equilibrium configuration. This process is amplified

if we simultaneously increase bi and decrease bj. On the other hand, if we were to raise bi

and bj simultaneously, then the pressure toward a higher effort by i and j would tend to

cancel each other; that would be wasteful. 2

  1
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  4

  5

  6

  7

  8

(a) Random Network

  1

  2

  3
  4

  5

  6

  7
  8

(b) Circle Network

Figure 2. Optimal intervention with strategic substitutes

4.3. Relating principal components to network statistics and existing results. If

G is symmetric, its principal components are the eigenvectors of G. In view of Propositions

1 and 2, as well as Corollary 1, we now discuss the first and the last eigenvectors.

First principal component and eigenvector centrality: Suppose our symmetric G is nonnegative

in each entry and irreducible (i.e., that the corresponding graph is connected). By the Perron-

Frobenius Theorem, u1(G) is entrywise positive; indeed, this vector is the Perron vector of the

matrix, also known as the vector of individuals’ eigenvector centralities. Thus, the eigenvector
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Node i b̂i un: “last” eigenvector ∆bi ∆ai ∆wi
1 0.58 -0.55 -17.29 -22.7 265.29
2 -0.16 -0.34 -10.64 -13.98 100.59
3 0.38 -0.14 -4.32 -5.75 15.84
4 -1.68 -0.09 -2.73 -3.63 6.35
5 0.82 0.27 8.84 11.47 72.02
6 1.81 0.44 14.25 18.49 187.21
7 0.82 0.27 8.84 11.47 72.02
8 -0.19 0.44 14.23 18.48 186.77

Table 3. Targeting in a random network, C = 1000, β = −0.1

Node i b̂i un: “last” eigenvector ∆bi ∆ai ∆wi
1 0.71 0.35 11.46 14.21 111.57
2 0.00 -0.35 -10.92 -13.76 96.74
3 0.71 0.35 11.45 14.2 111.25
4 0.00 -0.35 -10.9 -13.74 96.43
5 0.71 0.35 11.42 14.17 110.8
6 0.01 -0.35 -10.89 -13.73 96.11
7 0.72 0.35 11.45 14.2 111.44
8 0.00 -0.35 -10.92 -13.77 96.84

Table 4. Targeting in a circle network, C = 1000, β = −0.1

centrality captures the distribution that is most representative of the various individuals’

neighborhoods. We have shown that, under strategic complementarities, interventions that

aim to maximize aggregate utilities should mostly be focused on the eigenvector centrality.17

It is worth considering this result in light of another widely studied centrality statistic.

Under strategic complements, equilibrium actions are proportional to the individuals’ Bonacich

centralities in the network G (Ballester et al., 2006). If the objective of the planner is linear

in the sum of actions then, under a quadratic cost function, the planner will target individuals

proportionally to their Bonacich centralities (see also Demange (2017)). Bonacich centrality

converges to eigenvector centrality as the spectral radius of βG tends to 1, but, otherwise

(and in particular for the β we have studied) the two vectors can be very different. The

substantive point is that the objective of our planner is to maximize aggregate equilibrium

utilities, not actions, and that explains the difference in the targeting strategy. Indeed, our

17The work on social learning by DeMarzo, Vayanos, and Zwiebel (2003) and Golub and Jackson (2010),
based on the DeGroot (1974) model of opinions, draws attention to eigenvector centrality. They point out
that, in the long run, an individual’s influence on society’s consensus belief is proportional to his eigenvector
centrality.



TARGETING INTERVENTIONS IN NETWORKS 17

planners objective can be written (we introduce a factor of 1/n for convenience) as:

1

n

∑
i

a2i =

(
1

n

∑
i

ai

)2

+
1

n

∑
i

(
ai −

1

n

∑
i

ai

)2

= ā2 + σ2
a,

where σ2
a is the variance of the action profiles and a is their mean. Thus, our planner likes

to increase the sum of actions and also increases their diversity (not intrinsically, just as a

mathematical consequence of his objective).

Last Principal Component: Comparative statics results for network games with strategic

substitutes are less developed, and so the study of optimal intervention has been limited

so far. All our results for games of strategic complements have analogues for the case of

strategic substitutes. The SVD approach permits a simple characterization of optimal targets

in the substitute case: the planner should focus, primarily, on the last principal component

of G. This principal component is the most idiosyncratic or least representative—what is left

over after we have orthogonally projected, one by one, off all the other “more representative”

components (see the discussion in Section 3.1). This is a new finding that has no analogues,

to our knowledge, in the prior network games literature.18

5. Two further applications

This section presents two additional network intervention problems: (i) minimizing ag-

gregate volatility in investment and (ii) maximizing consumers and producers surplus in a

supply chain. In both cases, we apply SVD to identify optimal targets.

5.1. Aggregate volatility. The network game we have presented is closely related to models

of how idiosyncratic shocks contribute to aggregate volatility. A recent strand of research

studies how idiosyncratic shocks in production networks affect aggregate volatility of the

economy—e.g., Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012); see Acemoglu,

Ozdaglar, and Tahbaz-Salehi (2016) for a survey of this literature.19 Other work has studied

18Bramoullé et al. (2014) provides conditions on the most negative eigenvalue of I − βG in order for the
network game to have a unique equilibrium. This eigenvalue is also informative above the stability of
equilibrium. The most negative eigenvalue of I − βG is very different from the eigenvalue of least magnitude
of G. Furthermore, the corresponding eigenvector is not studied in that paper, whereas it is key to the
structure of optimal interventions for us.
19In the production network application, firms are price-taker firms, b̂i is a productivity shock to firm i, ai is
the log output of firm i and the production of good i is obtained via combining other goods; gij indicates
how important is product j for the production of good i. See Acemoglu et al. (2016) for a formal connection
to the network game presented here.
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the role of private information in volatility, e.g., Angeletos and Pavan (2007) and Bergemann,

Heumann, and Morris (2015), recently bringing in a network dimension (de Mart́ı and Zenou,

2015; Bergemann, Heumann, and Morris, 2017).20

Following this latter strand, we interpret actions as levels of investment. The vector b of

exogenous attributes is common knowledge among the individuals, but random from the

perspective of the planner at the time of her decision. The variance-covariance matrix of the

shock vector at the status quo is Ω̂. The planner wishes to minimize the volatility in the

level of aggregate investment:

Var

(∑
i∈N

ai

)
.

She can do this by controlling the variances of the shocks to the exogenous attributes. This

control comes at a cost: K(Ω; Ω̂) is the cost of changing the variance-covariance matrix from

Ω̂ to Ω. We make the following assumption on K:

Assumption 2. K is invariant to rotations of coordinates:

K(Ω̂ + D; Ω̂) = K(Ω̂ + OTDO; Ω̂)

For example, suppose that the cost K(Ω; Ω̂) is equal to the reduction in the sum of

attribute variances. Then K(Ω; Ω̂) =
∑

i ω̂ii −
∑

i ωii = trace(Ω̂ − Ω). This specification

turns out to satisfy Assumption 2.21

Under this assumption, we will study the variance-minimization problem described above—

formally,

min
Ω

Var

(∑
i

ai

)
(VM)

s.t. K(Ω; Ω̂) ≤ C.

Proposition 3. Assume G is normal and Assumptions 1 and 2 hold. Suppose Ω∗ solves

(VM). Consider the variance reduction chosen by the planner in the lth principal component

of G:

∆l = VarΩ∗(ul(G) · b)− VarΩ̂(ul(G) · b).

20The focus of those papers is on understanding how private information shapes aggregate volatility in a
game with linear best replies. Thus, the underlying game that is studied is one of asymmetric information.
Following Golub and Morris (2017) we can extend our complete-information analysis to linear best-response
games in which bi is private information.
21To see this, note that the trace is the sum of the eigenvalues, and this does not change under conjugacy
transformations of the argument.
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Then:

1. If β > 0, then ∆l is weakly decreasing in l.

2. If β < 0, then ∆l is weakly increasing in l.

The proposition says that the amount of variance reduction per principal component of G

is monotone in their ranking. In particular, the first principal component will receive the

most focus when investments are strategic complements and the last principal component

will receive the most focus when investments are strategic substitutes.

The idea of the proof is to consider any solution and to show that if it did not satisfy the

conclusion, then it would be possible to find a different variance reduction that does better.

The strategy for finding the rearrangement is to study the problem in the eigenvector basis,

where the formula for VarΩ (
∑

i ai) is simple due to the “decoupling” of the system. It shows

that the contribution to aggregate volatility of the variance of each principal component of

G is monotone in the corresponding eigenvalue. This monotonicity dictates how to rearrange

variance reductions to achieve a bigger effect. In particular, we permute them among the

eigenvectors. Assumption 2 on the cost function K ensures that this rearrangement is feasible.

Proof of Proposition 3. Take β > 0. Given our normalization E[b] = 0, the variance of

aggregate investment, for any Ω, is

VarΩ

(∑
i

ai

)
= EΩ[aTa]

=
∑
l

EΩ[b2l ]

(1− βλl)2

=
∑
l

ωll
(1− βλl)2

,

where in the second line we have changed into the SVD basis by setting Ω = UTΩU .

Now applying this with Ω = Ω∗ and Ω = Ω̂ we find

VarΩ∗

(∑
i

ai

)
= VarΩ̂

(∑
i

ai

)
+
∑
l

ωll − ω̂ll
(1− βλl)2

.

The change in volatility of aggregate investment is a convex combination of the decrease in

the variance of each principal component, and the weight, (1− βλl)−2, on the variance of

principal component l of G is an increasing function of its eigenvalue λl. because β > 0.

Let D = Ω∗ − Ω̂ and D = Ω∗ − Ω̂. (Note that ∆l defined in Proposition 3 is equal

to Dll.) There is a permutation matrix (and therefore an orthonormal matrix) P so that



20 TARGETING INTERVENTIONS IN NETWORKS

D̃ := PDP T has decreasing entries along the diagonal. We can define

D̃ = UD̃UT = (UP )D(UP )T.

By the assumption on K, the cost of the change

Ω̂→ Ω̂ + D̃

is the same as the cost of the change

Ω̂→ Ω̂ + D.

In other words,

K(Ω̂ + D̃; Ω̂) = K(Ω̂ + D; Ω̂).

But VarΩ̃∗ (
∑

i ai) is lower under Ω̂+D̃, unless the variance-covariance matrix did not change

in this transformation, which could be the case if and only if the ordering of the reductions

∆l was already as the result claims. This proves the claim for β > 0; the proof for β < 0 is

analogous and omitted. �

5.2. Pricing in a supply chain. Next, we consider a pricing game between suppliers in a

supply chain. The intervention reduces variability of marginal costs across suppliers in order

to maximize consumer surplus, producer surplus and welfare.

Price formation in networked markets is an active area of research. This research has

focused on buyer-seller networks and on networks of intermediaries. To the best of our

knowledge, existing work does not address the study of optimal intervention in these markets;

for surveys of this literature, see Condorelli and Galeotti (2016), Goyal (2017) and Manea

(2016).

We consider a set of final goods F = {1, 2, . . . , F}. Final goods are made using the set of

inputs N = {1, 2, . . . , N}; supplier i produces input i ∈ N . Following Vives (2001); Singh

and Vives (1984), a representative consumer with quadratic utilities chooses how much to

consume of each final good. Given price vector P = {P1, . . . , PF}, the utility of the consumer

is

U(Q) =
∑
f∈F

(
γQf −

1

2
Q2
f − PfQf

)
.

Here, for simplicity, we assume that final goods are independent; the analysis can easily be

generalized to the case where final goods can be substitutes and complements in consumption.

The consumer’s optimization leads to a linear demand of final goods: Qf = γ − Pf . The
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utility of the representative consumer is

U∗ =
1

2
Q2
f .

We now describe how inputs are transformed into final goods. Let T be a N -by-F matrix

with typical element tif . In order to produce one unit of final good f , firm f requires tif units

of each input i ∈ N ; without loss of generality, we set, for each i ∈ N , ti · ti = 1.22 We assume

that the final goods are competitive and so the price of final good f equals the marginal cost

of production of good f .23 We can thus write Pf(p) :=
∑

i∈N tifpi, or, in matrix notation,

P (p) = T Tp. The vector of demand for inputs is q(p) = TQ(T Tp). The demand of supplier

i, which depends on all prices, is

qi(p) =
∑
f∈F

tifQf =
∑
f∈F

tif [γ − Pf ] = γ
∑
f∈F

tif −
n∑
j=1

(ti · tj)pj.

For a given price profile, p, the profit of supplier i with a constant marginal cost ci is

Πi(p) = qi(p)[pi − ci].

Consider the simultaneous-move pricing game among suppliers, each having profit function

Πi and each taking action pi. The Nash equilibrium pricing profile p solves the system

[I + TT T]p = b, (5)

where b = c + γT1. This is equivalent to system (1) with G = TT T, β = −1 and the

endogenous variables are suppliers’ prices, a = p. In other words, the pricing game is a

special case of the network games we have studied above.

Two observations follow. First, the matrix of interaction across suppliers G = TT T is

symmetric (and therefore normal); furthermore β = −1 and so Assumption 1 holds. Second,

the SVD of G = TT T is related to the SVD of T . Since T may not be a square matrix, the

SVD of T reads T = USV T, where the columns of V and U are the right and left singular

vectors of T , respectively. It follows that the SVD of G = TT T is given by (U ,Λ,UT),

where Λ = SST = S2. Hence, the singular values of G are the square of the singular values

of T , and the principal components of G, i.e., the right singular vectors of T , are bundles of

final goods, which are the best fit of the underlying technology of production T .

22This is a normalization: we choose the relevant units of each input i such that the Euclidean length of each
vector ti is equal to one.
23Constant markups can be added without significantly changing our analysis.
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In this application, we refer to the columns of U as fundamental bundles of final goods

and we define p = UTp and b = UTb. We can then rewrite the equilibrium price system (5)

as follows:

p = [I + Λ]−1b⇐⇒ p
l
=

bl
1 + λl

. (6)

Now suppose that the production technology is common knowledge among market par-

ticipants (the vector c of marginal costs is common knowledge), but it is random from the

perspective of a planner at the time of the intervention. The variance-covariance matrix

of marginal costs prior the intervention is Ω̂ and the planner can change it to Ω at a cost

K(Ω− Ω̂), which satisfies Assumption 2.

We study the optimal choice of Ω under the constraint K(Ω− Ω̂) ≤ C, for three objectives:

expected consumer surplus, CS(p), producer surplus, PS(p) and social welfare, SW (p) =

CS(p) + PS(p). The change of these three quantities, when we move from Ω̂ to Ω, turns

out to be a convex combination of the respective changes in the variances of the marginal

costs of the fundamental bundles of final goods, and the weight associated to the lth-ranked

fundamental bundle is a function of the lth-ranked singular value. Formally,

EΩ[CS(p)]− EΩ̂[CS(p)] =
∑
l

λl
(1 + λl)2

[ωll − ω̂ll] (7)

EΩ[PS(p)]− EΩ̂[PS(p)] =
∑
l

λ2l
(1 + λl)2

[ωll − ω̂ll] (8)

EΩ[SW (p)]− EΩ̂[SW (p)] =
∑
l

λl
(1 + λl)

[ωll − ω̂ll] . (9)

where we recall from Section 5.1 that ωll = V ar(ul · c) under Ω and ω̂ll = V ar(ul · c) under

Ω̂.

Proposition 4. Assume K satisfies Assumption (2).

1. Suppose Ω∗ maximizes expected producer surplus or expected total welfare. Then the

variance reduction in the marginal cost of the lth fundamental bundle of final goods is

decreasing in l.

2. Suppose Ω∗ maximizes expected consumer surplus. Let the l̄th fundamental bundle of

final goods be such that λ(l̄) ≥ 1 and λ(l̄ + 1) < 1.24 The variance reduction in the

marginal cost of the lth fundamental bundle is increasing in l if l ≤ l̄ and, otherwise,

decreasing.

24Set l̄ = n+ 1 if λ(n) > 1 and set l̄th = 0 if λ(1) < 1.
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Proof of Proposition 4. Consider expression (8) and note that the weight to the variance

reduction of the marginal cost of the lth fundamental bundle is increasing in λl. The proof

then follows by replicating the proof of Proposition (3). The same arguments apply to the

expected welfare. Next, consider the expression (7) for the expected consumer surplus. Note

that the weight to the variance reduction of the marginal cost of the lth fundamental bundle

is increasing in λl for λl ∈ (0, 1) and it is decreasing in λl for λl > 1. The proof then follows

by using the same techniques introduced in the proof of Proposition 3. The three expressions

(7)-(9) are derived in Lemma 1 in the Appendix. �

There are two main effects identified by Proposition 4. The first effect is a pass-through

effect across suppliers. The pricing game is a game of strategic substitutes and, therefore,

shocks in marginal costs which alter the price of some suppliers are attenuated by the strategic

response of other suppliers. This effect is summarized in expression (6) that indicates that

shocks are attenuated the most along the highest-ranked principal components. The second

effect is a quantity effect. Any shock to marginal costs is passed through to suppliers’ prices

and affects the price of final goods, and so the final consumption of the representative

consumers. In particular, the equilibrium prices of final goods are

P = T Tp⇐⇒ P = STp,

where the equivalence follows using the SVD of T . Hence, the quantity effects are the stronger

along the main principal components.25

When the objective of the planner is to maximize consumer surplus, these two effects

are countervailing: the pass-through effect pushes the planner to target less representative

fundamental bundles, whereas the quantity effect pushes her in the direction of the more

representative fundamental bundles. In this case, the solution is generally to target variance

reduction on intermediate principal components. When the objective is the producer surplus,

the planner only cares about the pass-through effect and so the focus of variance reduction is

on the main principal components.

6. Generalizations: Non-normal G, different cost functions, and nonlinear

systems

The assumption of normal G and linear systems has been convenient for presenting

key aspects of our approach. However, these assumptions will often not hold in practical

25If the prices of the lth and (l + 1)st fundamental bundles both increase by ε, then the change in P l equals
slε—larger than the change in P l+1, which is equal to sl+1ε



24 TARGETING INTERVENTIONS IN NETWORKS

applications. To conclude the formal analysis, we show that many of the insights of the

previous sections generalize to a case without these assumptions. Our perspective is that

the special cases above are most useful for intuition, while the generalizations here are more

robust and portable.

We begin by relaxing the assumption of normal G; we then study a nonlinear system.

6.1. Incentive targeting: Beyond normal G. We extend the analysis of Section 4 to

non-normal G. We describe this case within the following, slightly more general, framework.

Individuals take endogenous actions a = (a1, . . . , an) which, in equilibrium, satisfy

a = M−1b̂,

where b̂ is a vector of idiosyncratic characteristic. In the setting of Section 4, we have

M = I − βG for an arbitrary matrix G such that M is invertible.26 The planner can

intervene and change b̂ to b at a cost with the aim of maximizing the objective

W (a) = F (aTa),

where F is an increasing function (at least on the domain of a achievable through intervention).

When F is a linear function the objective corresponds to the one studied in Section 4.

We use the SVD of M to rewrite the argument of the objective function as a convex

combination of the contribution that each principal component of M has in determining the

argument of F , and thus in turn the welfare W . This gives a simple way to describe the

marginal benefit of targeting a specific principal component l: that is, the effect of targeting

the individuals in the economy proportionally to their representation in the lth principal

component. Formally, the SVD of M corresponds to the formula M = USV T and therefore,

using the transformed coordinates b = UTb, we obtain

aTa = bT[STS]−1b =
n∑
l=1

1

s2l
b2l .

Hence, the objective function is

W = F

(
n∑
l=1

1

s2l
b2l

)
.

It is now apparent that the analysis of optimal intervention can be carried out in the same

way as in Section 4. The result is that, under the optimal intervention, the degree of focus of

26This amounts to the (generically satisfied) requirement that 1/β is not an eigenvalue of G.
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the planner to principal component l of M is decreasing in its corresponding singular value

sl.
27

6.2. More general cost functions in incentive-targeting. Consider any function (b; b̂) 7→
K(b; b̂) and assume the following about it.

Assumption 3. If O is an orthonormal matrix and x ∈ Rn then

K(b̂ + x; b̂) = K(b̂ + Ox; b̂).

That is, the costs of interventions are rotationally symmetric, in the sense that they stay

fixed when we rotate a given change vector x around b̂.28 Moreover, assume that costs are

increasing as we scale the distance from b̂:

Assumption 4. If x ∈ Rn while s > 1 then

K(b̂ + sx; b̂) > K(b̂ + x; b̂).

Now we can study the following generalization of the incentive-targeting problem

max
b
F (aTa) (IT-G)

s.t. K(b; b̂) ≤ C.

As in Section 4, define

b˜ l =
bl − b̂l
b̂l

.

Our main result on this is:

Proposition 5. Assume M is invertible and Assumptions 3-4 hold. Suppose b∗ solves

(IT-G). Then for generic b̂, we have that b˜∗l is decreasing in sl.

This generalizes Proposition 1. There are two key implications. First, as shown in the

proof, what is necessary for our conclusion is that the cost of intervention is an increasing

function of the Euclidean distance of the new b from the base point b̂; Assumptions 3-4

guarantee this property. Second, the proof of Proposition 1 can easily be modified to dispense

with normality of G. The only cost is that the result must be stated in terms of singular

values of M rather than eigenvalues of G. The disadvantage of that is that the singular

27The only difference with the case in which M = I − βG and G is normal is that the singular values sl of
M will not be equal to 1− βλl, where λl are eigenvalues of G, and the singular vectors of M will not be
eigenvectors of G
28The quadratic cost function we consider in the basic setting satisfies Assumption 3
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values of M depend on β, so we can no longer make clean statements about how strategic

complements and substitutes differ. The advantage is that there is still a clean summary, of

the priorities of the planner in terms of classical invariants of a matrix capturing the strategic

interactions.

6.3. Nonlinear systems. In this section we will study the volatility-control problem of

Section 5.1 for a nonlinear system. Consider an economic system in which the endogenous

investment profile a solves the following system:

ai = fi(hi · a + bi) for each i = 1...n,

where fi is a differentiable function. Fix a solution â of this system corresponding to b̂, and

assume that the conditions of the implicit function theorem hold, so that locally the solution

is unique. The system is susceptible to mean-zero shocks to the productivity vector b̂, so

that b̂ changes to b̂ + x̌. These shocks are small in a sense we will make precise. The interest

is to control aggregate volatility, i.e., the variance of aggregate actions.

Rewrite the system as

a = f(Ha + b),

where H is the matrix with rows hi. Let ǎ denote the change to a; furthermore we denote

by Fi the change of fi. We see that

ǎ = FHǎ + F x̌ +O(‖x̌‖2).

Define G = FH . Then

[I −G] ǎ = F x̌ +O(‖x̌‖2).

We decouple the system by using the SVD of M = I −G, i.e. the formula M = USV T;

hence,

ǎ = S−1F x̌ +O(‖x̌‖2). (10)

We obtain two insights. First, in this non-linear economy, a shock in the idiosyncratic

characteristics of the lth principal component of M passes through to the investments of that

principal component multiplied a factor of s−1l .

Second, we can understand how idiosyncratic productivity shocks affects aggregate volatility.

In fact,

Var

(∑
i

ai

)
= E

[
ǎTǎ

]
= E

[
ǎTǎ

]
= E

[
(F x̌)TS−2(F x̌)

]
+O(E‖x̌‖4)
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In the last line we plugged in (10). We have taken the terms that appear such as E[ǎTv],

where v = O(‖x̌‖2), and bounded them by O(E‖x̌‖4). This follows because E[ǎ] is close to

0, with an error of order O(‖x‖2).
Thus, our analysis of variance-reduction generalizes as long as the quadratic term in x̌ is

small enough to neglect. More precisely, if the planner can control variance of x̌ subject to

Assumption 2, the optimal variance reduction will be such that the variance reduction of lth

principal component of F x̌ is decreasing in sl.

7. Concluding remarks

We have developed a framework to study optimal interventions when individuals interact

strategically with their neighbors. We solve this class of intervention problems by exploiting

singular value decompositions of matrices capturing strategic interactions. This approach

allows us to consider different interaction structures as well as strategic interactions of different

types. Our results therefore can speak to applications ranging from interventions in schools

leveraging peer effects among pupils, interventions in oligopoly markets with differentiated

products to combat surplus losses due to market power, and interventions in production

networks to control aggregate volatility.

The quantities that come out as being important in our analysis have some connections to

ones that have been studied in the network literature but, more importantly, offer a new set of

network statistics that are simple to describe and may be of interest to empirical researchers.

For instance, in the basic peer effects application, the optimal targets focus on the first

principal component: this corresponds to eigenvector centrality of the matrix of interactions,

a widely-studied network statistic. But it is the last principal component—i.e., the one

corresponding to the least singular value of the network—that matters most under strategic

substitutes. The last singular component captures the “local” structure of the network,

explaining how best to avoid crowd-out among neighbors. This aspect of the network, to our

knowledge, has not been identified as important in network games, and yet we show it is the

essential one in games of strategic substitutes.

In general other principal components matter, and they capture a range of structural

aspects of the network, ranging from more global summary statistics (for large eigenvalues

of the matrix of interactions) to more local (for smaller ones). The fact that principal

components have been a powerful and illuminating tool in applied mathematics and across

many fields of economics suggests that a variety of further insights may be drawn from them
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in the network context using the characterizations of optimal interventions that we have

established.
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Appendix A. Omitted Proofs

A.1. Incentive-Targeting.

A.1.1. Proof of Proposition 1. The first step is to transform the maximization problem into

the basis of the SVD, where it will be clearer which components should be optimally targeted.

To this end, we first rewrite the cost and the objective in the SVD basis, using the fact that

norms don’t change under the orthonormal transformation V T which takes variables to their

“underlined” coordinates:

K(b; b̂) =
∑
i

(
bi − b̂i

)2
= ‖b‖22 = ‖b‖22 =

n∑
l=1

(
bl − b̂l

)2
,

and ∑
i∈N

w∗i =
1

2

∑
i∈N

a2i =
1

2
‖a‖22 =

1

2
‖a‖22 =

1

2

n∑
l=1

a2l .

By defining

αl =
1

2(1− βλl(G))2
, (11)

and, recalling (4), the maximization problem can be rewritten as

max
b

n∑
l=1

αlb
2
l (IT-SVD)
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s.t.
n∑
l=1

[bl − b̂l]2 ≤ C.

We now transform the problem so that the control variable is b˜ :

max
b˜

n∑
l=1

αlb̂
2

l [b˜ l + 1]2 (IT-SVD-REL)

s.t.
n∑
l=1

b̂
2

l b˜2
l ≤ C.

Note that, for all l the αl defined by (11) are well-defined (by Assumption 1) and strictly

positive. This has two implications.

First, if b˜ ∗ solves (IT-SVD-REL), then the constraint in that problem binds. For otherwise,

without violating the constraint in (IT-SVD-REL), we can slightly increase or decrease any

b˜2
l . Either the increase or the decrease is guaranteed to increase the corresponding [b˜ l + 1]2

(since the αl are all strictly positive).

Second, b˜ ∗ satisfies b˜∗l ≥ 0 for every l. Suppose that for some l, we have b˜∗l < 0. Then

[−b˜∗l + 1]2 > [b˜∗l + 1]2. Since every αl is positive, we can improve the objective without

changing the cost by flipping the sign of b˜∗l .
We now complete the proof by using the structure of the solution to (IT-SVD-REL) that

follows from standard optimization theory. Observe that the Lagrangian corresponding to

the maximization problem (IT-SVD-REL) is:

L =
n∑
l=1

αlb̂
2

l

[
b˜ l + 1

]2
+ µ

[
C −

n∑
l=1

b̂
2

l b˜2
l

]
.

Taking our observation above that the constraint is binding at b˜ = b˜ ∗ together with standard

results on the Karush–Kuhn–Tucker conditions, the first-order conditions must hold exactly

at the optimum with a positive µ:

0 =
∂L
∂B l

= 2b̂
2

l

[
αl(1 + b˜∗l )− µb˜∗l ] l = 1, 2, . . . , n. (12)

We will take a generic b̂ such that b̂l 6= 0 for each l. If for some l we had µ = αl then

the right-hand side of (12) would be 2b̂
2

lαl, which, by the generic assumption we just made

and the positivity of αl, would contradict (12). Thus the following holds with a nonzero

denominator:

b˜∗l =
αl

µ− αl
. (13)
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It is immediate that if β > 0, αl decreases in l and so b˜∗l decreases in l. If β < 0, αl increases

in l and so b˜∗l increases in l.

A.1.2. Proof of Proposition 2: Consider first the case β > 0. First note that

b˜ l
b˜1

=
1− α1

µ

1− αl

µ

≤
1− α1

µ

1− αl

α1

where the equality follows by (13) from the proof of Proposition 1, and the inequality follows

because µ > α1 (a fact also argued in the proof of Proposition 1). Hence, because αl ≤ α2

for any l 6= 1, for b˜ l/b˜1 < ε it is sufficient that

1− α1

µ

1− α2

α1

< ε, which holds if and only if 1− α1

µ
≤ ε

(
1− α2

α1

)
:= δ.

Now we will fix δ and argue that if C exceeds some level, then 1− α1

µ
< δ. For convenience,

we write the condition on δ as µ
α1
−1 < δ µ

α1
. At the optimum, the constraint in (IT-SVD-REL)

binds (as argued in the proof of Proposition 1), i.e.,

C =
∑
l

b̂l
2
(

αl
µ− αl

)2

=
∑
l

b̂l
2

(
1

µ
αl
− 1

)2

.

Then note that if µ
α1
− 1 ≥ δ µ

α1
then

C =
∑
l

b̂l
2

(
1

µ
αl
− 1

)2

≤
∑
l

b̂l
2

(
1

µ
α1
− 1

)2

≤ ‖b̂‖
2
2

δ2
=
‖b̂‖22
δ2

,

where the first inequality follows because α1 ≥ αl and in the second inequality we have used

the hypothesis that µ
α1
− 1 ≥ δ µ

α1
and that µ > α1. Thus if µ

α1
− 1 ≥ δ µ

α1
then C ≤ ‖b̂‖22

δ2
.

Taking the contrapositive, if C >
‖b̂‖22
δ2

then µ
α1
− 1 < δ µ

α1
. Using the definition of δ in terms

of ε completes the first part of the statement.

The proof for the case of β < 0 is analogous, and therefore omitted.

A.1.3. Proof of Corollary 1: Consider β > 0. From Proposition 2, it is clear that as C →∞,

we have b˜∗l /b˜∗1 → 0 for all l 6= 1. By definition of b˜ , this translates into

b∗l − b̂l
b∗1 − b̂1

· b̂1
b̂l
→ 0.
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For the generic b̂ we are considering, with all entries nonzero, the fraction b̂1/b̂l is a fixed

constant. Thus for all l 6= 1, as C →∞,[
b∗l − b̂l

]2
[
b∗1 − b̂1

]2 → 0.

Since in (IT-SVD) in the proof of Proposition 1 (Section A.1.1) the constraint is

n∑
l=1

[
b∗l − b̂l

]2
= C.

Now, dividing the previous equation by
[
b∗1 − b̂1

]2
, and using the previous statement about the

limit, makes it clear that
[
b∗1 − b̂1

]2
/C → 1, and thus, from the constraint,

[
b∗l − b̂l

]2
/C → 0

for l 6= 1.

The argument for β < 0 is analogous.

A.2. Pricing game.

Lemma 1. Consider the pricing game and consider a change from Ω̂ to Ω the change in the

expected consumer surplus, producer surplus and welfare are given by expressions 7-9.

Proof. Consumer surplus equals the equilibrium utility of the representative consumers, i.e.,

CS(p) = 1
4

∑
f [Qf (p)]2, and therefore

EΩ [CS(p)] =
1

4
EΩ

[
[γ1F − T Tp]T[γ1F − T Tp]

]
= EΩ

[
γ21T

F1− 2γ1T
FT

Tp
]

+ EΩ

[
pTΛp

]
,

where in the last equation we have used the SVD of TT T. Hence

EΩ [CS(p)]− EΩ̂ [CS(p)] = EΩ

[
pTΛp

]
− EΩ̂

[
pTΛp

]
= [I + Λ]−2Λ

[
EΩ

[
bTb
]
− EΩ̂

[
bTb
]]

= [I + Λ]−2Λ
[
EΩ

[
cTc
]
− EΩ̂

[
cTc
]]
,

which is equivalent to (7). Next, PS(p) =
∑

i Πi(p) and so

EΩ[PS(p)] = E
[
[p− c]T[p− c]

]
= EΩ

[
pTp + cTc− 2pTc

]
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Hence

EΩ [PS(p)]− EΩ̂ [PS(p)] = EΩ

[
pTp + cTc− 2pTc

]
=

[
(I + Λ)−2 + I − 2(I + Λ)−1

] [
EΩ[cTc]− EΩ̂[cTc]

]
=

Λ2

(I + Λ)−2
[
EΩ[cTc]− EΩ̂[cTc]

]
,

which is equivalent to (8). The expression for (9) follows by combining (7) and (8). �

A.3. Proof of Proposition 5. The key point in the proof is to use our assumptions on K

to ensure that it is an increasing function of ‖b − b̂‖2. Indeed, for any x, we can find an

orthonormal transformation O that maps x to ‖x‖21. Thus, by Assumption 3, K is fully

determined by its values on K(b̂ + s1; b̂) as s ranges over [0,∞]. We know by Assumption 4

that these are increasing in s, let’s say according to some function k : R→ R. Putting these

facts together we can see that K(b̂ + x; b̂) = k(‖x‖2).
Thus (IT-G) is equivalent to

max
b

aTa (IT-G-S)

s.t. ‖b− b̂‖22 ≤ C,

which is identical to the problem we studied in section 4 except for the lack of normality.

The proof of proposition 5 is at this stage analogous to the proof of Proposition 1. The only

difference is that we define a = UTa and b = V Tb, and define αl in the proof of that result

to be sl, the corresponding singular value, avoiding the eigenvalues altogether.
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