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Measuring motion of vulnerable road users

relative to moving HGV

Yanbo Jia and David Cebon

Abstract—This paper focuses on measuring the motion of a
cyclist moving adjacent to a heavy goods vehicle V), from
the detections of ultrasonic sensors installed algrthe side of the
vehicle. The measurements are used in a prototypeoltision
avoidance system that predicts the future relativenotion and
assesses the likelihood of a collision. An array afltrasonic
sensors is adopted to cover the near side of the NM3awhere most
of fatal collisions with cyclists occur. A method embining
quadratic programming and Kalman filtering is developed in
this paper for recovering the bearing angles of theyclist from
the detected distances provided by off-the-shelf thsonic
sensors. The algorithms are developed for use inaktime and
practical constraints are considered. The simulatio and testing
results prove the effectiveness of the proposed rheid for a
reasonable range of the speed differential betweeine cyclist and
the HGV.

Index Terms—collision avoidance, heavy goods vehicles, motion
estimation, quadratic programming, ultrasonic sensts,
vulnerable road users

|.  INTRODUCTION

HGVs are a major contributing factor for accident

involving cyclists, especially those resulted intaféies.
Between 2009 and 2013 they were involved in ar@ugdarter
of cyclist deaths in the UK [1].

Transportation Research Laboratory (TRL) invesddat
HGV-related accidents between 2006 and 2008. Téyegrted
that on average, HGVs cause 27 deaths and 72 sénjouies
to cyclists each year in the UK. Among these, -$idside
collisions account for 43% of fatalities and 36% s&frious
injuries to cyclists [2]. In recent years, reseaanld commercial
systems have started focusing on collision prewventior
cyclists and pedestrians, based on either camdya([&h [4]
[5]) or sensor fusion of camera and radar [6].

Existing technologies have also looked into pratect
cyclists on the nearside of heavy vehicles, by:

(i) providing the driver with side-view cameras,036view
cameras [7], or simply more wing mirrors [8] for tiee
visibility of blind spots;

(i) utilising ultrasonic sensors on the side o thehicle to
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detect cyclists who are in close proximity;

(iiif) use of radar based technology [9] for cychisbnitoring.

A collision avoidance strategy was introduced if][and
[11], aimed at estimating the motion of the cyaléative to the
truck and intervening in the truck's motion whecodlision is
predicted. The methods of collision prediction &tailed in
[10]. There are a variety of sensing methods faedéag
objects around a vehicle (summarized in [11]), udéhg
camera, radar, lidar and ultrasonic sensors. Uliiassensors
were selected in this study because:

1) The characteristics of the detection geometry aedl w
suited to ultrasonic sensors. The lateral distdrama the
cyclistto the HGV is normally less than 2m, whiohtches
the detection range of a typical ultrasonic sensor.
Ultrasonic sensors can provide distance measursnoént
acceptable accuracy (5mm of error can be achieved);
Ultrasonic sensors can work in a variety of weather
conditions (including fog, rain, low and high tematires,
etc) and any light levels;

The low cost of ultrasonic sensors makes
commercially attractive.

An ultrasonic sensor suitable for detecting hunfessa beam
width typically less than 2m, which is significantéss than the

2)

3)

4) them

$ength of a typical lorry (>10m). So it is necagst deploy

multiple sensors to cover the near side of an HGV.

Ultrasonic sensors have been used in various apiglits in
recent years. In [12] the authors describe spa@instruction
of orthogonal planes using a rotary array of utirés sensors.
In [13], 24 ultrasonic sensors were used, spactddam angular
displacement of 15° and mounted on top of the rdbatchieve
navigation of autonomous mobile systems. Multiglesors are
also used for improving accuracy in distance measent [14]
and [15]. For parking assistance on automobiles;, §&nsors
are often deployed to locate objects by triangataflL6]. None
of these research or commercial systems tracksntiteon of
the objects they detect.

An array of multiple ultrasonic sensors is alsonatd the
layout of SONAR sensors (‘multi-beam echo soundarsed
in 'bathymetry’ and underwater navigation. With SKXR\
target positioning relies on beamforming (or bedeersng),
which require processing raw reflected waves [THe sensors
are used to scan a line across the sea floor uealdria towing

David Cebon, Prof., BE, PhD, FREng, FIMechE, ishwilepartment of
Engineering, University of Cambridge, Trumpingtoime®t, Cambridge CB2
1PZ, UK (e-mail: dc@eng.cam.ac.uk)

Corresponding author: David Cebon (email: dc@emg.ae.uk).



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATIONNUMBER (DOUBLE-CLICK HERE TO EDIT) < 2

vessel and the data is used to map the topograeipyh() of the
sea-floor.

Given the distance to the target measured by ohias
sensors, it is not possible to pinpoint the exaditpn of a
target because the bearing angle from the sensbe target is
unknown. The position of a target alongside a Velgould be
anywhere on the arc with the same radius as shovigi 1.
This is termed 'position ambiguity’. To construet ttyclist's
motion relative to the truck, it is necessary tocorer the
bearing information (Fig. 2). This paper discussesovel
approach for bearing angle estimation, purely basedhe
detected distances from ultrasonic sensors. Theoapip
discussed in this paper is designed for cyclisionagstimation
and tracking for a collision avoidance system ([48H [11])
whose focus is to prevent side-to-side collisioetsveen HGVs
and cyclists.

Detected distance

Ultrasonic sensor

Fig. 1 lllustration of position ambiguity by ultrasonic sensor detection

Cyclist (Pey, Pey)

UB line

Ultrasonic sensor:
(Psxr Psy)

UAline  __----77

Fig. 2 lllustration of the bearing angle for the utrasonic sensor detection

Ultrasonic sensors are installed at the cyclisttaugder height
position on the HGV [10]. This allows the sensarsépture a
narrow side profile of the cyclist bicycle combiioat,
eliminating the risk of detections being from ditfat parts of
the bicycle and cyclist. The detections are alweyssistent
and the whole problem can be simplified to thaestimating
the location and motion of a point mass and theraprlating
to the combination of the rider and the bicycleeTield testing
of the system described in [11] has proved thectffeness of
this methodology.

The methods proposed in this paper are concerrtdbiject
localisation. They are not in the same categothasomputer
vision based methods, such as [18], [19], [20]],[222] and
[23], which are generally concerned with front-ecallision
warnings or traffic monitoring from roadside canserdor are
they related to wave based methods for radar [Bd] sonar
[17], which are concerned with bearing calculatiand are not
cyclist detection. The approach described in thépep is
unique. The combination of an array of multipleghai
performance ultrasonic sensors, processed usinglrtia

Programming and Kalman Filtering, provides an aaimur
measurement of (past and) current position of fleéist and a

prediction of future relative motion. This was mweviously

possible.

Il.  POSITION ESTIMATION ALGORITHM

A. Overview of the Propose Algorithms

Fig. 3 is a schematic diagram of the overall algoni for
cyclist position information. It shows how the ftims of the
cyclist can be estimated in real time, based oreatied
distances from ultrasonic sensors. Each ultras@ginsor
outputs the measured distances with its sensor Tihis
information is first sent to a processor that clsei€khere are
any possible triangulations formed between neighbgu
sensor detections (discussed in more detail iméx¢ section).
As there can be multiple detections at each tirep, & process
called ‘ID sequencing is introduced to help disdospurious
sensor detections that are irrelevant to the matfom cyclist.
An optimization algorithm using a quadratic prograimg (QP)
approach is used to determine the best set oftimeangles)
and the corresponding positions of the cyclist. @lrikan filter
is then used to smooth the trajectory of the cydased on a
kinematic model of the cyclist’s relative motiorhd steps are
detailed below.

Target bearings
resulted from

Target
positions

Smoothed
target
positions

Quadratic
Programmi

Sensor IDs
associated
with
Triangulation

Ultrasonic
Sensor Output

Kalman
Filtering

ID sequencing

The best ID string

Fig. 3 Schematic for position estimation in real the

B. Triangulation

If two neighbouring ultrasonic sensdus. and US«+1 have
overlapping detection ranges and the cyclist falt® the
overlap area, there will be two detected distamigesndd,, .,
available to process at the same time in the da¢are, as
shown in Fig. 4. Two sensors and the target fotriaagle, and
it is straightforward to find out each angle inside triangle by
applying cosine rules. It is not necessarily trhat tany two
detections from neighbouring sensors at the same tould
form a triangulation. The detailed methods for fiomgn
triangulations are described in [11]. Once a tridatjpon is
found, it is necessary to check whether the catledlaearings
are valid or not by comparing them with the maximangle
that forms the field of view of the sensors. Thearbegs
resulting from triangulations can be used to previequality
constraints’ in the Quadratic Programming step (a&s).
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TRUCK
Ay

Fig. 4 lllustration of triangulation for cyclist po sition

C. Sensor ID Sequencing

It is important to associate detected distanceh wgjitecific
objects correctly. This is termed as ‘data assiociain object
tracking tasks. The purpose of this paper isltistitate a new
method for motion estimation only; therefore, dasaociation
methods will not be used. Instead it is assumatdhly one
object is in view of the sensor system at any tirstimating
the motion of multiple cyclists moving in an armfyultrasonic
sensors is the subject of ongoing work.

For the case where only one object of interesbigerned, it
is also possible that there is more than one deteat a time,
due to (i) ultrasonic reflections from neighboursensors; (ii)
environmental noise and random reflections or seaswrs.

This problem can be compounded by occasional spsiriol)

detections from noisy sensors. As a result, it vi@and
necessary to eliminate sensor detections that ptedethe
forming of a smooth cyclist trajectory.

A heuristic method of ID sequencing for one obp#déhterest
is detailed in [11]. In summary, the output of tBesequencing
step is a string of sensor IDs, with each elememesponding
to a time step during the period to inspect (PHitpaologically.
All possible ID combinations are generated for B¢ and for
all these combinations, the differences betweemets in
each combination are calculated. These differeimchsate the
motion ‘trend’ of the cyclist. If they are positivihe cyclist is
moving forwards relative to the truck; if they aregative, the
cyclist is moving backwards.

If valid triangulations are found during the PHetassociated
sensor IDs with shorter detected distances in g&@uoigulation
pair are used as ID ‘boundaries’ that divide thié Ifd string
into several sections. In each ID section, the sames for
sequencing IDs are applied, i.e.:

1) ID discontinuities are not allowed;
2) non-monotonic ID sections are not allowed,;
3) IDs associated with outliers are ignored.

D. Problem formulation of position estimation

It is assumed that an array of ultrasonic sensdrsstalled on
the nearside of HGV to cover the entire laterag gifithe truck.
The front sensor is assigned with ID number 1, evttile rear

is set at the mid-point on the front edge of thkisle, with x
axis along the longitudinal direction agaxis pointing to the
left of the vehicle (shown in Fig. 2).

A reference line (UA) is defined for each sensainfing
along the outwards normal to the side of the vehithe line
from the sensor to the target is a position vedtbe angle from
the reference line to the position vector is deafias the target
bearingd. Clockwise rotation of is defined as positive.

Given the lateral and longitudinal positions of arigasonic
sensor(P,, P,,,) in this coordinate system and the detected
distanced, the cyclist positiorn(F,,, P.,) relative to the HGV
can be expressed by the following equations:

Py =P, +d-sind €))

Py = Py +d - cost )

On the right hand side of both equations (1) angdt(@ only
unknown parameter i8. Therefore, the problem essentially
becomes to choose a value fiagiven the detected distance and
sensor positions on the truck.

E. Quadratic Programming

Equation formulation

It is not possible to solve (1) and (2) indepentjerds the
number of equations is smaller than the numbem&hawns,
rendering the equations indeterminate mathematicklbr a
single object, given a series of detected distances
(di,b,ds,...,d) for a short period of timety(ty,...,t), it is
necessary to find out the corresponding bearifigs,... fn)
so that the longitudinal positionBc 1, Pex,2, Pexa...,Rx.n) and
lateral positionsFcy1, Peyo2 Peys,...,Ryn) can be determined,;
i.e. the following equations must be solved:

Pcy,i = Psy,i + di . COSBL' (3)

ch,i = Psx,i + di * sin; 4)

wherei=2,3,..n.

Using simple numerical differentiation, the cyckstelocity
V and the acceleratiof relative to the HGV can be obtained,
as follows:

_ (ch,j - ch,j—l)

ch,] (tj —ti, ) (5)
chj — (Pcy,j _Pcy,j—l) (6)
' (t —tj-1)
Acxl — (ch,l - ch,l—l) (7)
' (V(tl - ’-;}—1 ) )
cy,l = Veyl-1
Aevs (ti—t-1) ®

sensor has number N. The choice of N depends oitlgeh wherej=2,3,..n; andl=3,4, ..n andtis the time stamp for each

length and sensor spacing.
A coordinate system defines the positions of ulinés
sensors on the truck as well as the cyclist’s mosifThe origin

detection. Givenn samples,n-2 lateral and longitudinal
acceleration terms, can be obtained from (7) apd (8

It is worth highlighting that the subscrigtg and| represent
instances for detections over a contiguous perfdihe, and
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these detections can be from one single sensorevera The term(n — 3) A2, in (15) does not contain any bearings
sensors, depending on the relative speed betweerbjbct and and therefore does not affect the optimizationltesund can be
the truck. It is important not to misread thesessuipts as neglected. The tern2-A4., - (XiL;A4.,) contains linear
sensor ID numbers. functions of the bearing angles.

Combining equations (5) and (7), the longitudinal Each acceleration terdy,, can be expressed in a function of
acceleratioricx, at thelth’s step of the object can be expressegearing anglegsing,_,, sinf,_,, sinf,) as shown in Equation

as. . ) (9). Replacing A.,; by sinf, and defining 0=
Acxy = Wy *5in)_p + Wy * sinf)_, @)  [sind,,sind,, .., sin6,]" (superscript T means transpose), the
+Ws, * sind; + Wy, objective function can be rewritten in quadratimio
Where 1=3,4 ...,n, W represents the coefficients whose 1
detailed expressions are provided below. f(@) = EGTQG) +LO (16)
Wy = di-z (10) whereQ is ann by n matrix and is called the quadratic matrix,
(tio1 = ti2) - (= tia) andL is an-variable row vector and is called the linear matrix
This cost function can be minimized subject to sets
W,, = —(t —ti2) dayy (11) 'equality’ and 'inequality’ constraints, using ofi¢he standard
(e ) (G - 6o)? 'quadratic programming' (QP) methods [25]. The &gua
4 constraints are defined by:
Wy =——o (12) Aeq® = Beg (17)
(t, — ti—1) ] ) ) )
while the inequality constraints are:
w,, (ti1 — 61-2) " Py Ain® < Gy, (18)

T (o — =) - (G — tog)?

Equality constraints provide strict limits on somé the
(t; —ti—2) " Poyy—q d Y P

— : 3 (13) variables in® and thus enable more accurate optimization
(tl‘ét__tlt‘Z) ) (tIIJ_ fi-1) results. These are derived from possible triangriatfound in
b1l Tsxlc2 the sensor outputs. In constructing matrides and Beg, the
(i1 —ti2) (= t1-1)? number of inequality constraints should not be equareater

i ) than the number of variables @, otherwise the problem is
For each acceleration teu,,;, the only unknowns ain. over-constrained and QP cannot converge to a saluti

2, Sinl.1, and si). Treatingsing as a whole, the expression of e inequality constraints in (18) are associatéth wo

Ay, €an then be seen as a summation of three line@ste tynes of conditions: angle limits and motion limiEor angle
cog) can be obtained onaind, is determined. Consequently, |imits, each element i® must be limited to its own upper and

the positionscx,, andPcy, can be found. lower boundaries which come from the expected waftthe
o ) sensor beams. For motion limits, element® ishould follow a
2) Objective Function trend that conforms to the motion of the objecttiet to

) ] ] ) sensor. If the cyclist overtakes the truck, tharimg associated
It is hypothesised that the best sef @hlues in the time span \yith each sensor changes fromae to +ve in each sensors

PTI are the ones that yield the smoothest longidi yeiection range, and vice versa when the truckéstaking the

acceleration profile. These are found by finding et of0  cycjist. If the cyclist stays in one sensor's rarige a short

values that minimize the objective function: period of time, it is necessary to be consisteti tie motion
n trend deduced from previous step

J= Z(Acx,l - /ch)z (14) If no prior knowledge about cyclist's motion is availablésit

= safe to assume that the cyclist is travelling singlar speed to

the truck. In this case, it's impossible to posdiaroconstraints

where, 4., is the average longitudinal acceleration of th%ther than upper and lower bounds

cyclist during the PTI. The objective in (14) indies that the It is possible to estimate the relative yaw angtsed on the

minimum ofJ can be achieved whed,, , equalsi.,, whichis  trajectory of the cyclist and this is used in [td predict the
an unknown parameter at the start of the optinomatis we fyture position of the bicycle. For the collisiscenarios that

have naa priori knowledge of the cyclist motion. we are trying to measure, the yaw angle betweelistymd
Expanding (14) in polynomial form and treatidg, as a lorry is relatively small. If the angle is largbe approach
coefficient, this equation can be rewritten as: velocity is likely to be high and a collision isswitable.
n n For the objective function (14) under constant bedion
] = Z(Acx,z)z —-2-A4,- (z Acxt) assumption® can _onIy be solved when the value &f is
= = (15) known. In practicel,, is inherited from previous steps. When
+ (n— 3)A4%, no previous knowledge dof,, is available, it is estimated using

an iterative method that takes guessesAigr. An initial
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estimate foi,, is made by selecting values in the range from - 1 0 dt O

2m/g to 2m/$ with a resolution of 0.1mfsWith each sample 4. =10 1 0 at

for A, a candidate fo® can be derived using QP. Each kr 0 0 1 O

candidate for® is passed to (3) and (4) to get the cyclist 0 0 0 1

positions for the PTI and the accelerations ust)ddq (8). The B.. — ldtz ldtz dt dt

standard deviation of the lateral acceleratiorcalsulated. kf 2 2

After running through all the candidates @y a series of

standard deviations is obtained. Comparing theasedard  The ‘control input'U is the cyclist acceleration, ana

deviations, the smallest deviation is chosen ane ttiepresents Gaussian white noise in the process. ridise is
correspondingd is then selected as the best estimation f@ssumed to have zero mean and a variance matmededsG.
cyclist bearings. The sample for,, that produces® is A A3 }
believed to be the best estimation for the acciteraluring the — 0 — 0
PTI. It is possible that this calculation can beainlined to 4 4 2 5
reduce the computation time. 0 AL 0 AL
Another possible assumption is constant longitudiakocity G = 4 2 1.502 (22)
for the object during PTI, in which cask,, is changed to 0 At3 ) .
and the objective functioh(14) becomes. 2 0 At 0
n At3
J =) (19) e
=3
The standard quadratic form of this function camathe L )
sameQ term but different. term. The constraints (17) and (18) The measurement equation is expressed as:
still hold. Hypy = Cp - Si vy (23)

The resultingsing,, corresponds to the most recent detection
and can be used in real time to derived the ciglistirrent
location based on Equation (3) and (4).

1100 0
Ckf‘[0100

with H being the output vector, andeing the measurement
noise, which is also of Gaussian white distributiand its
covariance matrix is denoted Rs

[20

Gx
2
Oy
The Kalman filter works in two stages: time updaied

F. Kalman Filtering for Position Estimation

In practice, there are some inaccurate detectioligonic
pings are not always reflected from the same pofnthe
cyclist) and signal dropouts. It is therefore diffit to obtain a
smooth trajectory for the cyclist purely based aradyatic
programming.

R (24)

0

Further smoothing is needed to produce a trajecham
which velocities and accelerations can be derivethd- used
for estimating the future motion. A Kalman filteaw selected
to smooth the output of QP process. Kalman filegeswidely
used in guidance, navigation and control systemsédhicles,
as well as motion tracking [26]. Using a modella# system, a
Kalman filter can smooth a time series of measurgspe
containing noise and other inaccuracies.

The cyclist’s motion can be described purely inm=rof its
kinematics. The state vector expressing the kiniesat coined
asSand it is constructed by cyclist’s positions antbeiies in
both longitudinal and lateral directions:

S =[P Pcy: Vexs ch]T (20)

The state space equation for Kalman filter can btem as:

Si+1 = Ak " St + Bip - Uy + 0y (21)

measurement update [26]. Time update, also known as
prediction, is for predicting values of the curretdte variables
and error covariance estimates, to obtainatipeiori estimates

for the next time step. The following two equatiars called
time update equations, with being the model covariance
matrix:

Sii1 =Arr+Si + Bis+ U (25)

Ziv1 = Axp " 214 'Aka + G (26)

The ‘N indicates that the derived value is anrastie, and the
superscript ‘- means aa priori estimate. The measurement
update equations incorporate a new measurementthieta
priori estimate to obtain an improvacposterioriestimate.

Once new measurements are available, these edirase
updated based on a weighted average of the essinaaig
measurements, with more weighting being assigned to
estimates with higher certainty.

In the measurement update stage, the Kalman Kais
updated using (27). With the updated Kalman gdie,stateS
is recalculated considering measureméhtin (28). The
covariance matrix is further updated in the meantime, as per
(29).
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Kiv1 =201 Cup' (Cop - Ziq - Cip”

Z 27

+R) 1 (27

Sie1 = Sipq + Kigq " [Hyeq — Crr *Sizal (28)
Zip1 = —Kip1 " Cep)Zia (29)

The variabld in (29) is a 4 by 4 identity matrix.

Equations (25) to (29) are the core equations Kabnan
filter which can be run recursively to find the bestimate of
the state vector. In this study, it was found reabte to assume
U, is 0, because the experimental tests were pertbraie
essentially constant relative velocities. Howevehis
assumption needs to be verified for a wider rarfg®oditions.

To start the Kalman filter, the initial state idiesmted as a
column vector with 4 zero elements and the initialue of
covariance matri¥ is set ass. The algorithm is recursive and
therefore is suitable for real time application.

Ill.  SIMULATION RESULTS

A. Constant velocity simulations

A simple simulation model was set up to test thea@proach
for deducing a cyclist's trajectory from knowledgé the
detected distances. A sensor spacing of 0.8m vfaseden the
model and a triangular range was assumed for eatdosin
the simulation. This shape defined the upper amgtdimits
for the target bearing angle. The sampling rate wwamlly
fixed at 7.5Hz to match the outputs of commercialsilable
sensors. Various constant relative velocities veineulated,
ranging from -15 to 15 km/h. A negative relativeesg
indicates that the truck overtakes the cyclist.ve®a cyclist
manoeuvres were tested in the model. These were:

1) Cyclist travelling parallel to the truck, with atdsal
spacing of 1.2m, moving from the rear end towards t
front of the truck;

2) Cyclist travelling diagonally, starting at 1.2m aw@om
the truck laterally, from the rear end and clodsiogrards
the front end;

3) Cyclist travelling diagonally, starting at 1.2m aw@om
the truck laterally, from the front end and clostogvards
the rear end.

1) Parallel Motion

For the parallel motion tests, the relative spefeith® cyclist
was set as 3km/h. Fig. 5 shows the results of thedigtic
programming step for five outputs from a singlessenFig. 5(a)
shows the estimated positions of the cyclist comgbavith its
true simulated positions. The positions of the eenghat are
associated with these samples are plotted as wigll. 5(b)
shows estimated and true target bearings relatitieet sensor.

During the time span when 5 samples are colleétied $(a)),
the detected distances are all from the same sdngbis case,

6

the deviation of the estimated positions from tlie fpositions
is relatively large because the objective funci®not strictly
convex and the optimization stops when a local mimn is
found for the objective function. These local miaimmay not
be the desired solutions. Two or more sets of bgarcould
lead to the same minimum value of the objectivetlier same
dataset. When the sample number is increased tmdQwo
sensors are involved, the estimation is signifigaimproved,
as shown in Fig. 6(a). The bearing angles increpge 18° as
the cyclist passes the first sensor (Fig. 6(bpmfi0.3 to 0.9s.
The reading at 1.1s comes from the second sensothes
bearing angle ‘'flies back' to -17°, then increaseshe cyclist
passes the second sensor. The agreement betweégnghand
estimated values of the bearings is good.

Fig. 7 is for the same manoeuvre as describedgng-and
Fig. 6, but showing just the bearing angles. F{@) ¥ for the
case where the sample size is 15 and Fig. 7(lrisize 20.
These two graphs show a similar pattern of accufacyhe
estimated positions. When more sensors are invatvé QP,
the estimated positions almost overlap the truéipas. Given
that the sampling rate is fixed, when more senasnvolved
in the QP, more samples are needed.

Conversely, more samples require a longer calaulatime,
which is less favourable because less time is @il for
predicting and avoiding potential collisions. Adar sample set
for QP can also lead to a greater computationah®agl, as the
size of the matrices increase (especially for gativey all of the
ID combinations in the ID sequencing stage). Ibmas in the
PTI are selected for a good accuracy, yet efficbc@mputation
for real time estimation.
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Fig. 7 Comparison of different sample set sizes fahe quadratic programming

2) Converging and Diverging Motion

The QP should be able to calculate the cycliségettory no
matter what the motion of the cyclist relative be truck. The
simulation results shown in Fig. 8 are for a manvoewhere
the cyclist moves at an angle relative to the truelk. 8(a)
illustrates the case when the cyclist moves froeréar end of
the truck to the front, while steering away frone tinuck. In
Fig. 8(c), the cyclist moves from the front endtloé truck to
the rear. This equates to a manoeuvre where tble tnertakes
the cyclist. The lateral distance between the twodases as the
manoeuvre progresses. Both figures show that thmated
positions of the cyclist match the true positioosuaately. Fig.
8(b) and (d) show that the bearing angles are astin
accurately by the QP process.

Both a faster sampling rate and a larger numbeyaaiples
improve the accuracy of the QP algorithm. In piagtithe
sampling rate depends solely on the type of ultrizssensors.
In a real-time system, the number of samples irh eQf
calculation needs to be kept constant becausentiisber
determines the sizes of most of matrices in theutation.
Given that both the sampling rate and the numbesaaiples
are essentially fixed, it is of interest to undanst how the
relative speed of the motion between the cyclist te truck
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affects the performance of the optimization.

To evaluate the performance of the QP across aeranfg
relative speeds, the bearing associated with eactple was
compared with the true bearing. The maximum, averkaed
minimum value of the bearing errors for all the ptes at each
run of the QP were recorded. These values areepldtir
relative speeds ranging from -15 km/h to 15 km/Rign 9 with
the sample size in each QP calculation being fatetb. In the
figure, the three ‘+’ signs in each vertical lime ghe maximum
positive, average, and maximum negative bearingrerr
respectively.

It is noticeable that QP produces large estimatiwar when
the relative speed is zero. If the cyclist stayoime sensor’'s
detection range for the PTI and the detected distaloesn’t
change, QP fails to estimate the relative motiothef cyclist
correctly. However, this scenario is regarded &8 bacause
that there is no relative motion between the cyalisl the truck.
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Fig. 8 Comparison of diagonal manoeuvres: (a) cysli steers away from the
truck on the front side; (b) estimated cyclist beaings for the manoeuvre in (a);
(c) equal to truck overtakes the cyclist and steeraway from the cyclist; (d)
estimated cyclist bearings for the manoeuvre in (c)

Fig. 9 shows that the mean error is close to zerd a
essentially independent of the relative speed. 8laee some
speeds where the errors are very small, and someeewthey
are larger. This variation is a result of interantbetween the
sampling time, the speed, the start position ottleist and the
field of view of the sensors.

Comparisons for different sample sizes were coredlict [11]
and it was concluded that higher sample sizes an loetter
optimization results, but there is no benefit ofrgmsing the
sample size above 15 for these test conditions.



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATIONNUMBER (DOUBLE-CLICK HERE TO EDIT) <

Black---QuadraticProgramming

0 Y /Lr.
Aadaas

N/

—4

o

bearing angle errors[degree]

-1

20 5 10 15

-15 -10 5
cyclist speed relative to HGV [km/h]
Fig. 9 Comparison of absolute bearing errors for dferent relative speed
between the cyclist and the HGV

B. Constant acceleration assumption for quadratic
programming

This section investigates the efficacy of the camist

acceleration approach. In the simulations, the istyavas C.

assigned a relative longitudinal acceleration ofstrfor the
relative speed range of 1km/h to 15km/h and -irfus the
range of -1km/h to -15km/h. The cyclist startedrrthe rear

end of the truck for the case with a positive ietatpeed, and

the front end for a negative relative speed. Alpelnmanoeuvre
was used with the lateral distance being 1.2m. Sdmapling
rate was 7.5Hz and the size of the sample set wa8dth
versions of the QP calculation were used: constalocity and

constant acceleration.

9

to the true value; however, it would add signifitgario the
computational time because more runs of QP woulteeeled.

It can be concluded that the results are not piyfec

accurate, but are still good enough for estimatitg
longitudinal acceleration and significantly moreaate than
using constant velocity model in constructing tHe&guations.

15
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-~ estimated accleration
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acceleration error [m/s]
o
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O
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Estimation results using QP only and QP wh Kalman filter, cyclist
5kph faster than the HGV, cyclist parallel to HGV

Optimization Results for QP and Kalman
Filtering

In practice, the ultrasonic sensors use the stsinmgéection
from the cyclist to form successful registratiohke ultrasonic
waves reflected to the sensor are not always frensame point
on the side of the cyclist, because the closesitgoom the
cyclist to the sensor varies depending on the siyslposture
and relative positions. So the detected distanegistered by
the ultrasonic sensors are likely to be noisy.

Fig. 10 offers some comparisons between the bearingAt each time step, the QP optimization is run foe PTI

resulted from the QPs with both constant velocitydel and
constant acceleration model for a relative speétmth. It can

be seen that the model with constant acceleratmmksabetter
for the QP than the constant velocity model whesrdlis no

knowledge of the acceleration of the cyclist. Vesiynilar

results were found for simulations at other relaspeeds [11].

25

—+ true theta
—»—estimated theta using const vel
-+~ estimated theta, using const acc

theta value [degree]
)
T

which includes a fixed number of samples, withltds sample
being the latest detection. The cyclist positianshie PTI are
deduced accordingly. On the next time step, theptaset is
updated by including the newest detected distance
removing the oldest data. The QP is conducted Her rtew
series of cyclist positions in the current PTl.the real-time
process, only the last element of the each QPsrstored as it
represents the most recent position for the cyclibe QP is
then conducted for the new series of cyclist posgiin the
current PTI.

The QP does not use the optimization results froavipus
steps as equality constraints in the next stepedas it outputs
a fresh final position from each time step. Thesoms for this

are as follows:
1) The optimized results could be derived from incstesit

o0
o

12 14
detected time [s]

Fig. 10 Comparison of the bearings using the two Qmodels with a relative
speed of 6km/h.

The estimated accelerations for each relative speed
plotted in Fig. 11 The maximum absolute acceleraéror is
0.2m/€ while a majority of the estimated accelerationgama
the 'true’ values. For instance, at a relative dpé8km/h, the
acceleration error is -0.1mM/sThe scale of the error als
depends on the resolution of the acceleration saswdl a finer
resolution would produce an estimate of the acattar closer

3)

[0]

detections, and feeding the inaccurate resulthdonext
run of QP might accumulate more errors in the true
positions;

Adding too many equality constraints can over-c@ist
the QP and thus deliver erroneous results.

It is better to keep the errors in each data poglependent
and to filter the noise in a second step than tumeclate
biased errors that cause long-term drift and dfecdlit to

correct.

When the first run of QP finishes (i.e., 15 samilage been

accumulated), the Kalman filter is activated to sthahe data.
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Each time there is a new estimate from the QR<#hman filter
weighs this new measurement against the positierigedi by
the model and outputs a better estimate of theentiposition.

To model variation in the width of the cyclist wherewed
from the side, the noise in detected distancessrased to be a
Gaussian white noise process with a standard dewviatf
0.05m.

The examples below are used to show the performafrite
Kalman filter. In the examples, the relative spaes 5km/h
and the lateral distance started at 1.2m. The sagpte was
7.5Hz and the size of each QP sample set was 15.

The parameters in the Kalman filter were tuned ralipdior
a balanced performance for various relative speadd
manoeuvres. Fig 12 shows the trajectories of thbstyand the
sensor positions in the truck coordinate systene fedative
motion is from left to right. The QP-only methodngeates an
error exceeding 10cm at some points in time. Thelisty
positions are not consistent longitudinally as hé tcyclist
moves back and forth, and these cannot be useckdicting
the future position of the cyclist. The Kalmanéiltimproves
the position estimations by eliminating the longdinal
inconsistencies. At the beginning of the Kalmartefihg
process, the estimated positions are closer togb#wuse the
initial velocity of the cyclist in the state vectiw set to zero.
With more measurement inputs to the Kalman filtdre
estimation improves. The errors involved in cyclisisitions
are no greater than 5cm and this is tolerable fedipting the
future positions of the cyclist.

E
e J
£
‘g’ -
(=%
—+—cyelist true position
-2.561 _ . esimated position B
with QP only
2581 —»—Kalman filtered results| 7
\ . \ , \ | | \
-7 -6 -5 -4 -3 -2 -1 0

nosition v ml]
Fig. 12 Estimation results using QP only and QP wlit Kalman filter, cyclist
5kph faster than the HGV, cyclist parallel to HGV

Fig. 13 shows a case when the cyclist steers amay the
HGV while maintaining all other parameters the saifiee
lateral speed of the cyclist is set to 0.1m/s. Aosther
trajectory is estimated by Kalman filter. The pigsit errors
after Kalman filtering are considered to be suéfitly accurate
for the position prediction step.

10

-1.8+

position x [m]

—~—-¢cyclist true position
—e— esimated position using QP only b
—— Kalman filtered results

Il Il Il Il Il Il Il Il
-7 -6 -5 -4 -3 -2 -1 0
position y [m]

Fi

g. 13 Estimation results using QP only and QP wlit Kalman filter, cyclist
5kph faster than the HGV, getting closer to the frat end of HGV

IV. EXPERIMENTAL MEASUREMENTS

Twelve ultrasonic sensors were mounted onto thiesidé of
a 4 axle Scania tipper, with a gap between sersong 0.8m
(see Fig. 14). A real time signal analysis and @drgrogram
was developed using Simulink Real Time (formerlpkn as
‘XPC target’). The solver for QP and the Kalmarnefilwere
coded in an Embedded MATLAB function to perform the
calculations in real-time. A dummy cyclist mounted a
moving platform was used during the test and foddwa
specified speed profile. Details of the testing set and
procedures are described in [11] and [27].

Tipper Truck

» Dummy on Tripod
Fig. 14 Testing set up for experimntal mesuremem

Various dummy speeds were used, with the maximwgadp
differential set to 5km/h. A speed differential egding 5km/h
would result in loss of detections by the experitakultrasonic
sensors used in the prototype system [11].

An example is provided in Fig. 15 which has a dummy
speed of 3km/h. It is noticeable that Kalman fil{gtack
crosses) significantly reduces estimation errorhefQP. The
maximum error in lateral position is approx. 5cm.

The standard deviation of the estimation errors and
maximum detection errors for all five differentatiVe speeds
are provided in Table 1. These results demonsthatethe real
time processing system can track the dummy to aapdable
level of accuracy.

Itis important to check whether similar performamould be
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achieved when cyclists moves at an angle relatitbe truck.
Fig. 16 shows the estimated positions using QP Wétman
filter for the dummy moving at various speeds. Tdreor
characteristics are summarized in Table 2. Thelteeshow a
similar level of accuracy to the parallel caserfidative speeds
up to 5km/h, with RMS errors less than 5cm fortrebaspeeds
up to 5km/h.

- i |
225+
E
=
g 22pF == T e b = R I
2
z
=5
7.15|| —nearside belt for the dummy B
- —-trace of the side of dummy
esimated position
21 using QP only i
" || ¢ Kalman filtered results
T T T T T 1 L L L L
-9 -8 -7 -6 -5 -4 -3 -2 -1 0

position x [m]
Fig. 15 Testing result of a moving dummy at 3km/hni parallel with a
stationary truck

—»—speed: lkm/h E
speed: 2km/h

——speed: 3km/h g

——speed: 4km/h

—e—speed: Skm/h

----- neatside belt position

-==-trace of the side of dummy | |

position y [m]
[5]
o

-6 -5 -4 3 -2 -1
position x [m]

Fig. 16 Estimated position comparisons for differenspeeds for the dummy

travelling diagonally

The limited range of differential speeds possibla result of
low sampling rate possible with the experimentatasionic
sensors. This paper aims to determine the fedgikofi the

11

V. CONCLUSIONS

This paper describes algorithms for estimating rédative
position and motion of a cyclist based on detectrom a set
of ultrasonic sensors mounted along the side afrigy.I This
approach is the first of its kind to use ultrasoseénsor arrays
for tracking cyclists moving alongside trucks, ambre
specifically, to perform position estimation usiquadratic
Programming, which takes in distance informatiome(o
dimension) and outputs positions (two dimensionBje
proposed package of methods does not require fustbrother
sensory inputs.

The following conclusions can be drawn:
1) Quadratic programming is effective in estimating th
cyclist position by optimising the bearing angltatiee to
the sensor. The objective in the QP is to minimntlse
deviation of the cyclist’s longitudinal acceleratirom a
constant value. The constant acceleration modeh&o€QP
works better than the constant velocity model isesa
when there is na priori knowledge of the cyclist motion.
The constant velocity model provides good accuany
requires significantly less computation.
A Kalman filter was designed to improve the estiorat
accuracy in the presence of sensor noise. It sogmifly
improved the prediction accuracy.
Experimental tests with an array of twelve senswsnted
along the side of a lorry demonstrated that the ined
system of QP and Kalman filter can estimate cyclist
position with an RMS error of less than 5cm foheit
parallel or diagonal motion at relative velocitigp to
5km/h. This is considered to be sufficiently actertor
implementation in an automated collision avoidance
system. A wider range of relative speeds coulddhéezed
for sensors that operate at a higher sampling éeqy
The system is designed for real time operation thadests
with the demonstrator proved that QP process candue
to work in real time.

2)

3)

4)
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VIl. TABLES
Dummy Mean Standard
Dummy Mean Standard speed relative to| |\ deviation of
speed relative to| | . orors deviation of the stationary (in cm) lateral errors (in
the stationary (in cm) lateral errors (in truck (in km/h cm)
truck (in km/h _ cm) 1 01 4.3
1 1.8 4. 2 0.2 2.3
2 _O. I 3.6 3 1.1 2.8
3 1.C 4.1 4 1e 34
4 0 4.t 5 0.6 1.c
5 2.6 3.4 Table 2 Position estimation accuracy for cyclisiing diagonally w.r.t. a
Table 1 Position estimation accuracy for cyclistving in parallel with a stationary truck
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