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ABSTRACT  

Complex network topology is characteristic of many biological systems, including anatomical 

and functional brain networks (connectomes). Here, we first constructed a structural 

covariance network from MRI measures of cortical thickness on 296 healthy volunteers, aged 

14-24 years. Next, we designed a new algorithm for matching sample locations from the Allen 

Brain Atlas to the nodes of the SCN. Subsequently we used this to define, transcriptomic brain 

networks by estimating gene co-expression between pairs of cortical regions. Finally, we 

explored the hypothesis that transcriptional networks and structural MRI connectomes are 

coupled. 

A transcriptional brain network (TBN) and a structural covariance network (SCN) were 

correlated across connection weights and showed qualitatively similar complex topological 

properties: assortativity, small-worldness, modularity, and a rich-club. In both networks, the 

weight of an edge was inversely related to the anatomical (Euclidean) distance between 

regions. There were differences between networks in degree and distance distributions: the 

transcriptional network had a less fat-tailed degree distribution and a less positively skewed 

distance distribution than the SCN. However, cortical areas connected to each other within 

modules of the SCN had significantly higher levels of whole genome co-expression than 

expected by chance. 

Nodes connected in the SCN had especially high levels of expression and co-expression of a 

human supragranular enriched (HSE) gene set that has been specifically located to 

supragranular layers of human cerebral cortex and is known to be important for large-scale, 

long-distance cortico-cortical connectivity. This coupling of brain transcriptome and 

connectome topologies was largely but not entirely accounted for by the common constraint 

of physical distance on both networks. 
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1. INTRODUCTION 

Many natural systems have a complex network topology. Nervous systems form anatomical 

networks with graph-theoretically non-random properties like small-worldness, high-degree 

hubs and modules (Bullmore and Sporns, 2009). Brain networks conserve these topological 

features from the micro (synaptic) scale of C. elegans to the macro scale of whole human brain 

connectomes derived from statistical analysis of human magnetic resonance imaging (MRI) 

data (Fornito et al., 2016). A similar topological profile has also been described for networks of 

gene expression, in which each node is a gene and each edge represents the strength of 

correlation or co-expression of genes between samples collected in different tissue types or 

across different individuals or different time-points (Belcastro et al., 2011).   

Here we define a brain network whose nodes represent brain regions and whose links are 

based on pairwise correlations in whole-genome gene expression across brain regions. We 

then investigate the relationship between this transcriptional brain network (TBN), or 

transcriptome, and a structural covariance network (SCN), or connectome, constructed from 

MRI data on 296 healthy participants.  

A structural covariance network describes the existence of positively correlated brain regional 

anatomical measurements – such as cortical thickness or volume – between pairs of brain 

regions (Wright et al., 1999). Structural covariance networks are replicable, heritable, and 

representative of disease-related changes in topology (Alexander-Bloch et al., 2013). However, 

the neurobiological substrate of inter-regional structural covariation remains poorly 

understood. There is some evidence that structural correlation is related to anatomical 

connectivity between regions; but MRI networks based on inter-regional correlation of cortical 

thickness (CT) are only moderately similar to diffusion tensor imaging (DTI) networks based on 

tractographic analysis of white matter projections between cortical areas (Gong et al., 2012).   

Genotype has a major influence on structural features of the human cortex such us areal 

expansion (Chen et al., 2013) and cortical thickness (Fjell et al., 2015). Moreover, brain regions 

sharing high genetic covariance are known to have a complex network organization (Docherty 

et al., 2015). In addition to genotype, transcriptomic spatiotemporal profiles also have a strong 

impact on neurodevelopmental processes (Wong et al., 2017), cell types (Kang et al., 2011) 

and cognitive specialization (Johnson et al., 2009). For example, recent studies of the mouse 

brain have revealed that structurally covariant regions (Fulcher and Fornito, 2016) and highly 

connected nodes (Yee et al., 2017) have similar transcriptional profiles. However, the role of 
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transcriptomic similarities in the morphological features of the human cortex remains 

unexplored. 

Gene expression in all regions of human cortex can be estimated using the transcriptomic 

dataset made publicly available by the Allen Institute for Brain Science (AIBS). The AIBS used  

microarray data to produce the first comprehensive genome-wide atlas of gene expression in 

the brain that can be mapped into MNI anatomical space (Hawrylycz et al., 2012). Previous 

analysis of these data has demonstrated that the transcriptional profile of cortical tissue is 

fairly homogenous compared to variations between cortex and subcortex (Hawrylycz et al., 

2012). However, cortical gene expression has been shown to correlate with resting state 

functional connectivity (Hawrylycz et al. 2015), revealing a strong association with genes 

enriched for ion channel and synaptic ontology terms (Hawrylycz et al., 2015; Richiardi et al., 

2015). Functional connectivity has also been specifically related to expression of a set of 

human supragranular expressed (HSE) genes (Krienen et al., 2016; Vértes et al., 2016) that are 

highly expressed in the supragranular layers of human cortex (lamina 2, 3), where most 

cortico-cortical projections originate (Zeng et al., 2012). Nonetheless, the coupling between 

the co-expression of HSE genes and the cortico-cortical covariation in nodal structure defined 

by the SCN has not previously been assessed. Moreover, HSE genes have a differential 

expression signature across cell types that delineate the cytoarchitectural boundaries of the 

cortex (Zeng et al., 2012).  Although previous studies have explored  the association between 

cortico-cortical connectivity and the underlying cytoarchitectonics (Beul et al., 2015), the 

transcriptomic similarity between cytoarchitectonic classes for the complete human cortex has 

not been established.  

Here we explored the hypothesis that putative metrics of anatomical connectivity of the 

human cortex – such as inter-regional correlations of cortical thickness – should be related to 

gene co-expression, and specifically to co-expression of HSE genes. In what follows, we first 

develop a new method for matching samples from the AIBS to MRI regions of interest in the 

native space of each postmortem AIBS brain (AIBS postmortem data available at 

http://human.brain-map.org/). On this basis we construct a transcriptional brain network 

(TBN) and describe, for the first time, its properties as a complex network using graph 

theoretical analysis, as well as its similarities with the structural covariance network (SCN; 

connectome). Additionally, we assess the transcriptional similarities between regions with the 

same cytoarchitecture based on the Von Economo atlas (von Economo, 1929), which divides 

the cortex according to laminar structure. Finally, we explored the relationship between the 

two networks, testing the specific hypotheses: (i) that regions connected as part of the same 

http://human.brain-map.org/
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modules of the SCN have higher levels of whole genome and HSE gene co-expression than 

regions in different modules; (ii) that highly connected regions overexpress HSE genes; (iii) that 

regions connected in the SCN have higher levels of HSE gene co-expression than regional 

nodes that were not anatomically connected; and (iv) that the relationships between structural 

correlation and gene co-expression were not entirely attributable to common constraints of 

physical connection distance on both these spatially embedded networks.   
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2. METHODS 

2.1 Participants 

2135 healthy young people in the age range 14-25 years were recruited from schools, colleges, 

NHS primary care services and direct advertisement in north London and Cambridgeshire. This 

primary cohort was stratified into 5 contiguous age-related strata: 14-15 years inclusive, 16-17 

years, 18-19 years, 20-21 years, and 22-25 years. Recruitment within each stratum was evenly 

balanced for sex and ethnicity and satisfied exclusion criteria including any history of 

treatment for psychiatric disorder or drug or alcohol dependence, or any history of 

neurological disorder, head injury or learning disability. A demographically balanced cohort of 

300 participants was sub-sampled from the primary cohort for structural MRI scanning in one 

of the following sites: (1) Wellcome Trust Centre for Neuroimaging, London; (2) Medical 

Research Council Cognition and Brain Sciences Unit and (3) Wolfson Brain Imaging Centre, 

Cambridge.  

Written informed consent was provided by all participants as well as written parental assent 

for participants less than 16 years old. The study was ethically approved by the National 

Research Ethics Service and was conducted in accordance with NHS research governance 

standards.  

2.2 MRI data acquisition 

Structural MRI scans were acquired in three different locations (two in Cambridge and one in 

London) using identical 3T MRI systems (Magnetom TIM Trio, Siemens Healthcare, Erlangen, 

Germany; VB17 software version). The setup, acquisition and post-processing were previously 

described (Weiskopf et al., 2013). Briefly, the multi-parametric mapping (MPM) protocol yields 

3 multi-echo fast low angle shot (FLASH) scans with different predominant weightings: T1 

(TR=18.7ms, α=20°), Proton Density (PD) or Magnetization Transfer (MT) (TR=23.7ms, α=6°). 

Multiple gradient echoes were generated for each FLASH acquisition with alternating readout 

polarity echo times (TE): (i) for T1-weighted (T1w) and MT-weighted (MTw) 6 six equidistant 

acquisitions between 2.2 and 14.7 ms and (ii) for the PD-weighted (PDw) 8 equidistant 

acquisition with TE between 2.2 ms and 19.7 ms. By applying previously developed models 

describing the image intensity of FLASH scans (Helms et al., 2008a, 2008b; Weiskopf et al., 

2011) to the resulting T1w, MTw and PDw images, we calculated the parameter maps of the 

apparent longitudinal relaxation rate R1 (R1=1/T1), the MT saturation, and the effective 

proton density PD*. Here, only R1 quantitative maps were used. Apparent R1 maps were 
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corrected for local RF transmit field inhomogeneities and imperfect RF spoiling (Preibisch and 

Deichmann, 2009) to create quantitative R1 maps (Weiskopf et al., 2013). 

Other acquisition parameters were: 1 mm3 voxel resolution, field of view (FOV) = 256 × 240 

mm, 176 sagittal slices, parallel imaging using GRAPPA factor 2 in anterior-posterior phase-

encoding (PE) direction, RF spoiling phase increment = 50°, 6/8 partial Fourier in partition 

direction, non-selective RF excitation, readout bandwidth BW = 425 Hz/pixel. A pilot study 

demonstrated satisfactory levels of between-site reliability in MPM data acquisition (Weiskopf 

et al., 2013).  

2.3 MRI reconstruction, cortical parcellation and SCN construction 

We used a standard automated processing pipeline (FreeSurfer v5.3) for skull stripping, tissue 

classification, surface extraction and cortical parcellation (http://surfer.nmr.mgn.harvard.edu) 

applied to longitudinal relaxation rate (R1) maps. All scans were quality controlled by 

experienced researchers to reduce the impact of motion artifacts and improve cortical 

thickness estimation. Freesurfer reconstructions were visually inspected and manually edited 

up to 10 times. At each iteration, control points and grey/white matter edits were included 

and Freesurfer recon-all reconstruction was repeated. Only those cortical reconstructions that 

finished without error were included in the analyses. 4 out of the 300 MRI scans collected 

were excluded because they did not meet these QC requirements, resulting in a final MRI 

sample of 296 subjects (19.11 ± 2.93 years [mean ± standard deviation], 148 females). 

Cortical thickness (CT) measurements were estimated by reconstructing the pial surface and 

the boundary between grey matter and white matter (Dale and Sereno, 1993; Dale et al., 

1999) and measuring the distance between these surfaces; see Figure 1A.  

Due to under-sampling of the right cerebral hemisphere in the gene expression data (see 

below; Hawrylycz et al., 2012) we focused attention on the left hemisphere of both the MRI 

and gene expression data. We used a high-resolution parcellation of the left hemisphere that 

comprised 152 cortical regions, each with an approximate surface area of 500 mm2. 

Consequently, MRI data corresponding to the right hemisphere were discarded. The cortical 

parcellation of the left hemisphere was created in FreeSurfer template (fsaverage) space by 

sub-dividing the anatomically defined regions in the Desikan-Killiany atlas (DK, Desikan et al., 

2006) (Romero-Garcia et al., 2012); see Figure 1A. R1-weighted images of each subject were 

co-registered to the FreeSurfer surface template using rigid transformations to obtain the 

transformation matrix 𝑇𝑅1. Inverse transformations (𝑇𝑅1
−1) were used to warp the parcellation 
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scheme from standard stereotactic space to the space of each individual R1-weighted image. 

CT values were averaged across all vertices included in each cortical parcel. This process was 

repeated for each subject resulting in a (296 × 152) matrix of cortical thickness estimates at 

each of 152 regions for each of 296 participants.  

The structural covariance matrix of a group of subjects is defined by estimating the inter-

regional correlation of cortical thickness between all possible pairs of regions defined by an 

anatomical parcellation (He et al., 2007). Thus, SCN construction relies on the identification of 

spatial patterns of morphometric similarities between brain regions within a group of subjects. 

The inter-regional correlations in cortical thickness were estimated to construct a (152 × 152) 

structural correlation matrix. A hard threshold was applied to this matrix so that an arbitrary 

percentage (also called connection density) of the most strongly positive CT correlations were 

retained as non-zero elements in a binary adjacency matrix or, equivalently, edges between 

regional nodes in a graph of the structural covariance network. Brain networks were visualized 

using BrainNet viewer (Xia et al., 2013) (http://www.nitrc.org/projects/bnv/). 

2.4 AIBS gene expression dataset 

We used the whole genome expression atlas of the adult human brain created by the Allen 

Institute for Brain Science (http://human.brain-map.org) (Hawrylycz et al., 2015, 2012). The 

AIBS dataset includes samples from post-mortem brains of six donors (3 Caucasian, 2 African-

American, 1 Hispanic) aged 24-57 years. Custom 64K Agilent microarrays were used to 

measure expression of all genes in the genome at several hundred cortical and subcortical 

locations in each donor’s brain. Given the strong expression differences between subcortical 

and cortical tissue, the present study only includes samples labeled as “Cortical” by the AIBS. 

As a consequence, no subcortical samples were used to estimate the gene expression of 

cortical parcels even if subcortical genomic samples intersected cortical parcels due to 

registration misalignment of the AIBS and MRI datasets (Hawrylycz et al., 2012). According to 

AIBS annotation, 48171 out of 58692 probes can be mapped onto genes. Here, we used 

Richiardi et al.’s (2015) criterion to reannotate the probe sequences using the genome 

assembly hg19 (UCSC Genome Browser; http://sourceforge.net/projects/reannotator/; (Arloth 

et al., 2015)). After the reannotation a final set of 49770 probes was associated with genes. For 

genes that were mapped by multiple cRNA hybridization probes, the probe showing highest 

average expression across samples was selected. Previous studies have shown the high 

between-study consistency of this probe-to-gene mapping method (Miller et al., 2011). As a 

result, 20,647 gene expression values were evaluated in 3702 brain samples. As AIBS only 

http://www.nitrc.org/projects/bnv/
http://human.brain-map.org/
http://sourceforge.net/projects/reannotator/
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sample two of the six donors in the right hemisphere and given the strong expression 

similarities between hemispheres and in order to increase the number of gene expression 

samples per cortical region, all right hemisphere samples were reflected to their contralateral 

position in the left hemisphere (Figure 1B). Consequently, the final gene expression profile of 

each region was estimated as the mean of both ipsilateral samples (from all six donors whose 

left hemisphere was sampled) and contralateral samples (from the two donors whose right 

hemisphere was also sampled).  

 

Figure 1: A schematic overview of data analysis. A: Cortical thickness was estimated from R1-

weighted MRI scans on 296 healthy young participants. The left hemisphere (LH) was sub-

divided into regional nodes by a fine-grained parcellation of 152 nodes based on the Desikan-

Killiany atlas. B: Reflection of AIBS gene expression profiles sampled in the right hemisphere 

(RH, yellow dots) onto the LH (red dots) to increase sample density. C: Regional gene 

expression profiles from the AIBS Human Brain Atlas were mapped to the same cortical 
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parcellation template to estimate regional expression profiles and a co-expression matrix. The 

gene expression matrix was thresholded to construct a binary graph which had a modular 

community structure. D: Modules of the structural covariance network, and cytoarchitectonic 

classes defined by von Economo, were used to test the hypothesis that whole genome co-

expression and HSE gene co-expression were greater between nodes in the same topological 

module or cytoarchitectonic class. 

2.5 Matching MRI parcellation with sample locations 

We developed a new method to map the anatomical structure associated to each tissue 

sample by using the MRI data provided by the AIBS for each donor. T1-images of the six donors 

were processed following the FreeSurfer pipeline. The high-resolution parcellation with 152 

cortical regions in the left hemisphere, used in the analysis of the NSPN MRI data, was warped 

from fsaverage space to the surface reconstruction of each AIBS donor’s brain. The surface-

based parcellation of each donor’s brain was transformed into a volumetric parcellation that 

covered the whole cortex and extended 2mm into the subjacent white matter to include those 

cortical samples that had been excluded due to registration misalignment; Figure 1C. 91% of 

the total AIBS gene expression cortical samples were located within the resulting volumetric 

parcels. The matching algorithm excluded 210 out of 1802 samples that were located in the 

cortex according to their MNI coordinates because they did not fall into any parcel in the 

corresponding donor’s brain reconstruction. On the other hand, 166 samples that did not fall 

into any parcel in the MNI-152 1mm brain were associated with a cortical region when the 

corresponding donor’s brain was considered. As a result of this matching algorithm based on 

individual donor’s brains, 62% of the samples were re-annotated to a close-by but different 

brain parcel compared with the matching based on the MNI-152 brain. Sample reannotations 

were particularly relevant for the high-resolution parcellation defining cortical regions with 

small areas. The proportion of reannotated samples was smaller (46%) when the data were 

parcellated by the more coarse-grained Desikan-Killiany atlas. 

In the high resolution parcellation used here, gene expression had to be linearly interpolated 

for one parcel that contained zero AIBS samples (inferior supramarginal gyrus). Figure S1 

shows the number of AIBS samples covered by each cortical region. Gene expression values for 

each cortical parcel were estimated as the median normalized gene expression over all six 

donors and compiled to form a (152 × 20,647) matrix representing the expression of each of 

20,647 genes at each of 152 left hemisphere cortical regions; Figure 1C. Code used to estimate 

these gene expression levels can be downloaded here: 
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https://github.com/RafaelRomeroGarcia/geneExpression_Repository and Freesurfer 

reconstructions of each donor’s brain are available at the Cambridge Data Repository 

(Romero-Garcia et al., 2017). 

2.6 Transcriptional brain network construction  

The (152 × 152) gene co-expression matrix was estimated by the pairwise Pearson’s 

correlations between whole genome expression profiles in each possible pair of cortical 

regions (Figure 1C). A hard threshold was applied to this matrix so that an arbitrary percentage 

(also called the connection density) of the most strongly positive transcriptional correlations 

was retained as non-zero elements in a binary adjacency matrix or, equivalently, as edges 

between regional nodes in a graph of the transcriptional brain network (TBN). 

2.7 Human supragranular enriched (HSE) genes and gene ontologies 

The human supragranular enriched (HSE) gene list comprises 19 genes: BEND5, C1QL2, 

CACNA1E, COL24A1, COL6A1, CRYM, KCNC3, KCNH4, LGALS1, MFGE8, NEFH, PRSS12, SCN3B, 

SCN4B, SNCG, SV2C, SYT2, TPBG and VAMP1 (Zeng et al., 2012). The z-score normalized 

expression profile of each HSE gene in each of 152 cortical regions was extracted from the 

whole genome transcription matrix. The 19 normalized gene expression values were averaged 

to create an HSE gene expression index. Coupling between SCN and HSE co-expression was 

compared with gene co-expression of the whole genome and with the co-expression of each of 

the 5917 gene sets defined in the Molecular Signatures Database version 6.0 (MSigDB) 

collection (Liberzon et al., 2011). This collection includes gene ontologies for biological 

processes (4436 gene sets), cellular components (580 gene sets) and molecular functions (901 

gene sets).  

2.8 Network analysis and community structure 

Global topological properties of the structural correlation and transcriptional networks were 

analyzed using the following graph theoretical measures: clustering coefficient (𝐶𝑝), path 

length (𝐿𝑝), local efficiency (𝐸𝑙𝑜𝑐), global efficiency (𝐸𝑔𝑙𝑜𝑏), small-worldness (σ) and 

assortativity (a). Such topological properties are strongly influenced by more fundamental 

features of the network, including the number of nodes, number of connections, and degree 

distribution. To control these effects, network measures for the empirical networks were 

compared with those for 1000 randomized networks generated using a random rewiring 

process (Maslov and Sneppen, 2002). At a nodal level, we estimated the degree centrality as 

https://github.com/RafaelRomeroGarcia/geneExpression_Repository
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the number of edges connecting each node to the rest of the network and the participation 

coefficient as a measure of the diversity of intermodular connections at each node. Global 

topological metrics were computed using the Brain Connectivity Toolbox 

(https://sites.google.com/site/bctnet/) (Rubinov and Sporns, 2010). 

High degree nodes, also known as hubs, are often densely inter-connected to form a rich club. 

The rich club coefficients (ɸ(𝑟)) of a thresholded network were computed as the sum of edges 

within the subgraph defined by retaining only nodes with degree greater than an arbitrary 

threshold. The rich club metric was normalized (𝑟𝑛𝑜𝑟𝑚(𝑘)) by computing the ratio of the rich 

club coefficient of the real network (ɸ(𝑘)) to the mean rich club coefficient of 1000 

randomized networks (ɸ𝑟𝑎𝑛𝑑(𝑘)). Each network was decomposed into a set of modules, each 

module comprising a community of nodes that were densely connected to each other but 

sparsely connected to nodes in other modules (Figure 1C). This community partitioning was 

performed using the Louvain algorithm (Blondel et al., 2008) with two resolution parameters 

(γ=1 and γ=2) in conjunction with consensus clustering (Lancichinetti and Fortunato, 2012). To 

optimise this procedure, the Louvain algorithm, implemented in the Brain Connectivity 

Toolbox, maximizes the metric defined by Newman (2006) comparing the density of intra-

modular connections to the density expected to occur by chance in a random network: 

𝑄 =
1

4𝑚
∑ (𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
) 𝛿(𝑠𝑖, 𝑠𝑗)𝑖𝑗                                                      (1) 

where m is the total number of edges in a network, 𝐴𝑖𝑗  is the adjacency matrix, 𝑘𝑖 and 𝑘𝑗 are 

the degree of nodes i and j, 𝛿(𝑠𝑖, 𝑠𝑗) is the Kronecker delta, and 𝑠𝑖 and 𝑠𝑗 are the communities 

of nodes i and j, respectively. Because the Louvain algorithm is non-deterministic, we used 

consensus clustering to detect a stable consensus community structure. This modular 

decomposition algorithm was applied 1000 times. A (152 × 152) consensus matrix (M) was 

created defining each element 𝑚𝑖𝑗  as the number of times that node i and node j had been 

assigned to the same module. Finally, the community partitioning algorithm was applied to the 

consensus matrix, providing a stable modular structure of the original network (Kwak et al., 

2009).  

2.9 Gene co-expression within modules derived from SCN and Von Economo 

To assess the spatial overlap between SCN communities and gene co-expression, we averaged 

the gene co-expression values between each pair of regions located within the same SCN 

module. As this intra-modular gene co-expression is affected by trivial characteristics of the 

https://sites.google.com/site/bctnet/
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community partition, raw values were compared with those derived from random modular 

partitions. To test against appropriately designed surrogate data, 1000 pseudo-random 

communities were created by iteratively permuting the module labels associated with pairs of 

nodes located at the same distance from each module’s centroid. This procedure randomly 

shifts the position of the modules along the cortex without splitting apart the components of 

the module (Figure S2) (Bethlehem et al., 2017). The resulting null distribution of community 

partitions preserves the number and size of modules, as well as the spatial contiguity of the 

empirical community partition. The 95th percentile of the null distribution was used as a 

statistical threshold to retain or reject the null hypothesis of no significant gene co-expression 

within modules. Figure 1D illustrates the estimation of the mean gene co-expression within 

the two community partitions considered in this paper: modules derived from the SCN, and 

the von Economo atlas (Figure S3). This atlas groups brain regions according to 

cytoarchitectonic criteria (von Economo, 1929). Thus, the complete cortex was divided into: (i) 

granular cortex; primary motor/precentral gyrus, (ii) granular association isocortex Type I, (iii) 

granular association isocortex Type II, (iv) secondary sensory cortex, (v) primary sensory 

cortex. Due to their unique cytoarchitectonical features (vi) limbic regions (including 

entorhinal, retrosplenial, presubicular and cingulate) and (vii) insular cortex (which contains 

granular, agranular and dysgranular regions) were considered as separate classes (Seidlitz et 

al., 2017; Vasa et al., 2017; Vértes et al., 2016).  
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3. RESULTS 

3.1 Topological and spatial properties of the transcriptional brain network (TBN) and the 

structural covariance network (SCN) 

Following thresholding to 10% edge density, nodes in both the TBN and SCN were part of a 

single connected component. Topologically, both networks were small-world (as defined by 

greater than random clustering combined with near random path length or global efficiency) 

with a modular community structure and a rich club of highly interconnected hub nodes 

located in different areas (Figure 2). These properties were also observed when graphs with 

5% and 15% connection density were considered (Figure S4 and S5). 
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Figure 2: Global topology of gene co-expression (left) and structural covariance networks 

(right). A: Gene co-expression matrix and structural covariance matrix identically ordered in 

alignment with the modular community structure of the transcriptional network. B: Global 

topological metrics estimated in TBN, SCN and comparable random networks: Cp = clustering 

coefficient; Lp = path length; Eloc = local efficiency; Eglob = global efficiency; σ = small-world; a = 

assortativity; Q = modularity. Error bars represent standard deviations. C: Top 10% of nodes 

with highest degree (hub nodes) D: Rich club coefficient curves for TBN, SCN and random 

networks. 

 

The degree distribution of both networks was fat-tailed compared to a random graph (Figure 

3A, left panel), the SCN having more highly-connected hubs than the TBN. In both networks, 

the distance distribution was skewed towards shorter distances, compared to a random graph, 

but there was a tail of long distance connections that was particularly prominent in the TBN 

(Figure 3A, right panel). Structural covariation strength and gene co-expression strength both 

decreased monotonically as a function of increasing physical distance between nodes (R2=0.20 

and R2=0.14, respectively; Figure 3B, first and second panel). Akaike’s information criterion 

(AIC) demonstrated that an exponential function of distance provided a better fit than a linear 

function for both structural covariance (𝐴𝐼𝐶𝑙𝑖𝑛𝑒𝑎𝑟 = −0.33 and 𝐴𝐼𝐶𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 = −0.55) and 

gene co-expression (𝐴𝐼𝐶𝑙𝑖𝑛𝑒𝑎𝑟 = 5.13 and 𝐴𝐼𝐶𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 = 5.11). Gene co-expression and 

structural covariance were significantly correlated (R2=0.05, P<10-10; Figure S6). This 

relationship remained significant after correcting for inter-regional distance (R2=0.02, P<10-10; 

Figure 3B, third panel). Nodal degree was significantly related to the average Euclidean 

distance between connected nodes in the SCN (R2=0.56, P<10-10; Figure 3C, first panel), i.e., 

high degree hubs had more long-distance connections to other nodes; but there was no 

relationship between distance and degree in the TBN (R2<10-3, P=0.84; Figure 3C, second 

panel). Nodal degree was not correlated between the structural covariance and transcriptional 

networks (R2=0.03, P=0.13; Figure 3C, third panel), i.e., the high degree hubs of the SCN did 

not correspond to the hubs of the TBN.  
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Figure 3: Nodal topology and connection distance of structural covariance network (SCN) and 

transcriptional brain network (TBN). A. (left) Degree distribution of both networks (solid lines) 

and a comparable random network (dashed line); (right) connection distance distribution of 

both networks (solid lines) and a comparable random network (dashed line). B. (left) Effect of 

inter-regional distance on structural covariance; (middle) effect of inter-regional distance on 

gene co-expression; and (right) gene co-expression versus structural covariance. C. (left) 

Degree versus connection distance in the SCN; (middle) degree versus connection distance in 

the TBN; and (right) nodal degree in TBN versus nodal degree in SCN. 

 

3.2 Whole genome co-expression in relation to the modular community structure of the SCN 

The spatial location of TBN modules was partially overlapping with the community structure of 

the structural covariance network (Figure 4A). Gene co-expression was significantly higher 

between regional nodes that belonged to the same module of the SCN than between nodes 

that belonged to randomly defined modules that preserved the number, size and spatial 
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contiguity of the SCN modules (Figure 4B, left panel; P<0.001). This result was replicated for 

different SCN connection densities (5%, 10% and 15%) and modularity resolution parameters 

(γ=1 and γ=2) (all P<0.05; Figure S7). Gene co-expression was also significantly increased 

within regions grouped according to the cytoarchitectonic criteria of von Economo (P<0.02; 

Figure 4B, right panel; (von Economo, 1929)). In other words, gene co-expression was 

increased between regions that belonged to the same cytoarchitectonic class.  

 

 

Figure 4: Community structure of the structural covariance network and transcriptomic brain 

network. A: Modular decomposition of the whole genome transcriptional brain network (TBN; 

7 modules; left); modular decomposition of the structural covariance network (SCN; 9 

modules; middle); modular decomposition of the transcriptional brain network restricted to 

HSE genes (8 modules, right); and two alluvial diagrams showing how regions were aligned to 

the same or different modules in the SCN and the two transcriptional networks;. B: (left) 

Distribution of whole genome co-expression between regions assigned to the same random 

modules compared to the whole genome co-expression between regions assigned to the same 

modules of the empirical SCN; (right) co-expression of the whole genome and the HSE gene set 

within each module of the SCN, within each cytoarchitectonic class of the von Economo (VE) 

atlas, and within comparable random modules. Error bars represent standard deviations.   



Structural covariance MRI and human cortical gene expression 
Romero-Garcia et al (2017) NeuroImage 
 

18 
 

3.3 HSE gene expression and structural covariation 

Expression of the HSE gene set was explored due to its particular transcriptional profile in 

supragranular layers of the human cortex and its association with long-range cortico-cortical 

connectivity (Zeng et al., 2012). HSE genes showed a heterogeneous expression and co-

expression pattern across the cortex that partially overlapped with the anatomical patterning 

of modular structure (Figure 4A) and nodal degree (Figure 5A) of the SCN. HSE genes were 

over-expressed (compared with the whole brain mean expression level) in von Economo 

classes 1 (granular, primary motor cortex) and 2 (association cortex); whereas HSE genes were 

under-expressed in classes 4 (secondary sensory cortex), 6 (limbic regions) and 7 (insular 

cortex) (Figure 5B; P<0.005, FDR-corrected). HSE gene expression was significantly positively 

correlated with nodal degree (R2=0.17; P<10−7; Figure 5C) and participation coefficient 

(R2=0.23; P<10−8; Figure S8) of the SCN. SCN nodal degree was not correlated with community 

size (Figure S9) and it was higher in von Economo classes 1,2,3 and 4 than in classes 5,6 and 7 

(Figure 5D). 

Correlation between structural covariance and gene co-expression was higher for HSE genes 

(R2=0.09, P<10−10) than when the complete genome was considered (R2=0.053, P<10−10; 

permutation test) and this difference was statistically significant (𝐹1,11475=485, P<10−10, after 

regressing out the effect of the distance; Figure 5E). Additionally, correlation between 

structural covariance and gene co-expression was higher for the HSE genes than for all the 

other gene ontologies defined in the MSigDB collection (Figure 5F). After the HSE genes, cation 

channel complex and multicellular organismal signaling gene ontologies showed the strongest 

correlation with structural covariance of the 5917 ontologies analyzed (R2=0.078 and R2=0.077, 

respectively). 

Gene co-expression between connected regions in the structural covariance network (SCN 

edges) was higher for HSE genes than for the complete genome and for all other 5917 gene 

ontologies (Figure 5G). By contrast, pairs of regions that were unconnected in the structural 

covariance network at 10% connection density, i.e., SCN non-edges, showed gene co-

expression levels close to zero that are more negative for HSE genes than for the whole 

genome and for the gene ontologies co-expression, suggesting that regions with dissimilar CT 

pattern (SCN non-edge) have (weakly) opposite HSE expression levels (Figure 5H).  These 

results were also replicated at connection densities of 5% and 15% (Figure S10 and S11).   
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Figure 5: Structural covariance and HSE gene co-expression. A: HSE gene expression (top) and 

SCN nodal degree (bottom). B: HSE gene expression in different cytoarchitectonic classes 

defined by the von Economo atlas. C: Nodal degree in structural covariance network versus 

HSE gene expression. D: Mean nodal degree in different cytoarchitectonic classes defined by 

the von Economo atlas. E: Co-expression (whole genome, blue; or HSE genes only, red) versus 

structural covariance. Dashed vertical line indicates the threshold value of structural 

covariance used to define a binary graph of edges and non-edges. F: Correlations between 

structural covariance and (i) whole genome co-expression (scalar value represented as a 

dashed blue vertical line), (ii) HSE gene co-expression (scalar value represented as a dashed 

red vertical line), (iii) co-expression of each of the 5917 gene ontologies defined in the MSigDB 

collection (represented in grey as a probability density). Each value of the distribution 

represents the proportion of MSigDB gene sets showing the corresponding correlation with 

SCN. G: Co-expression (whole genome, blue; HSE genes only, red; and each of the 5917 gene 

ontologies, grey distribution) for SCN edges. H: Co-expression (whole genome, blue; HSE genes 

only, red and each of the 5917 gene ontologies, grey distribution) for SCN non edges 

(unconnected regions). 

 

3.4 Effects of spatial distance on structural covariance and gene co-expression 

A linear function of inter-regional log distance explained 16% of the variance in strength of 

structural covariance (Figure S12). HSE gene co-expression explained 9% of the variance in 

strength of structural covariance; and cytoarchitectonic class membership explained 6% of the 

variance. Linear multiple regression demonstrated that the combination of log distance and 

HSE gene co-expression collectively explained 22% of the variance in strength of structural 

covariance.   
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4. DISCUSSION 

Here we have compared the organization of a structural covariance network, derived from 

cortical thickness measurements in 152 left-hemisphere regions in 296 healthy young 

participants, to the organization of a transcriptional network, derived from gene expression 

measurements in the same 152 regions in 6 adult post mortem brains. Since transcriptionally 

and histologically similar brain regions are more likely to be anatomically connected (Goulas et 

al., 2016), and since structural covariance is a putative marker of anatomical connectivity, we 

made two, hypothetically related predictions: i) that co-expression of genes should be 

correlated with the strength of structural covariance between regions; and ii) that the 

topology of the structural covariance network should be coupled to the topology of the 

transcriptional brain network. Considering co-expression of the nearly complete genome, we 

found no more than modest support for these predictions: the two networks had qualitatively 

similar topology, their edge weights were significantly correlated and there was evidence for 

greater whole genome co-expression between brain regions that were assigned to the same 

topological module of the SCN’s community structure. But there was stronger evidence in 

support of links between structural covariance or SCN topology and regional co-expression of a 

much smaller set of (19 HSE) genes, known to be enriched specifically in human supra-granular 

cortex.  

4.1 Gene expression and co-expression in the brain 

The neocortex displays a remarkable conservation of gene expression across individuals 

(Hawrylycz et al., 2015), cortical areas (Hawrylycz et al., 2012) and species (Oldham et al., 

2006; Zeng et al., 2012). In accordance with the cortical homogeneity of the transcriptional 

profile, we found that most of the inter-regional gene co-expression values were extremely 

significant. Nevertheless, regional differences in cortical gene transcription are subtle but 

important. Studies based on non-human animals reveal that different cell types display a 

robust transcriptional signature where neurons, oligodendrocytes, astrocytes and microglia 

tend to up-regulate and down-regulate the expression of specific subsets of genes (Grange et 

al., 2014; Ko et al., 2013; Lein et al., 2007). This transcriptional signature of cell type-specific 

genes can be used to define both major compartments and smaller anatomical structures of 

the mouse brain (Grange et al., 2014; Ko et al., 2013). In humans, the grouping of genes 

according to their co-expression pattern also reveals a modular structure that distinguishes the 

major cell classes of the underlying brain tissue (Eising et al., 2016; Oldham et al., 2009). Prior 

studies of the Allen Human Brain Atlas showed, in agreement with mouse studies, that the 
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gene expression pattern reflects the specialization of primary sensorimotor areas and 

subdivisions of the frontal lobe (Hawrylycz et al., 2012). In keeping with these results, we 

found that gene co-expression was significantly related to spatial proximity: two cortical 

regions that are close together will have more similar gene expression profiles (Bernard et al., 

2012; Hawrylycz et al., 2015, 2012; Lein et al., 2007). It has been proposed that the effect of 

anatomical closeness on transcriptional similarity reflects phylogenetic and ontogenetic 

distance between regions (Zapala et al., 2005).  

4.2 AIBS samples matching 

The method for matching AIBS samples to MRI regions of interest in the present study does 

not rely on manual interventions and relies on more conservative assumptions about 

homogeneity of gene expression across short distances in the brain than previous studies. In 

particular, prior work assigned each MRI region of interest to the anatomical structure (as 

defined in the AIBS dataset) containing the nearest AIBS sample across all donors and then 

averaged gene expression from all samples falling within that AIBS anatomical region (Vértes 

et al., 2016; Whitaker et al., 2016). In contrast, French and Paus (2015) took a more 

straightforward approach where a sample was mapped into a FreeSurfer region if its MNI-152 

coordinates were inside a FreeSurfer cortical region. However, this required visual inspection 

due to spatial distortions being introduced by coregistration of donors’ brains to standard 

MNI-152 space. In this work, we provide a fully automated method for matching MRI 

parcellation with Allen Brain Atlas samples in each donor’s native space in order to take into 

account inter-individual difference of cortical morphology.  

4.3 Transcriptional brain networks 

Gene co-expression networks traditionally refer to networks where the nodes represent genes 

and edges denote significant associations of expression levels across samples in a dataset (for 

a review, see Fontenot and Konopka, 2014). In this type of network, edges link pairs of genes 

that are over/under expressed in the same tissue. In contrast, the transcriptional brain 

network, proposed here, describes transcriptional relationships (edges) between spatially 

delimited cortical regions (nodes). Previous studies have shown a strong association between 

resting-state fMRI connectivity and transcriptional similarity between brain regions (Hawrylycz 

et al., 2015; Richiardi et al., 2015). In this study, we used, for the first time, network analysis 

and graph theoretical measures to explore the topological characteristics of the TBN in order 
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to compare the transcriptional relationships between brain regions to the human brain 

connectome based on anatomical measures derived from MRI data. 

4.4 Whole genome co-expression and structural covariance 

Using graph theoretical methods to analyse the topology of the transcriptomic brain network 

we found evidence for topological segregation (high clustering coefficient and modules) and 

topological integration (short path length, high global efficiency and a rich club). This was a 

qualitatively similar profile to the complex topology of the structural covariance network. 

However, the extent of overlap between whole genome co-expression and structural 

covariance networks was limited. For example, there was a significant but weak correlation 

between edge-wise whole genome co-expression and structural covariance; the strength of 

structural covariance decayed much faster as a function of physical distance than the strength 

of whole genome co-expression; and only in the SCN (not TBN) was nodal degree significantly 

related to mean connection distance. The coupling between whole genome co-expression and 

structural covariance strengthened somewhat when the analysis was restricted to the 10% of 

network edges representing the strongest correlations in cortical thickness between regions 

(Figure 5). Analysis of the modular community structure of both networks provided stronger 

(but still modest) evidence of overlap between the structural covariance network and the 

whole genome transcriptome. Whole genome co-expression was significantly stronger 

between pairs of nodes that belonged to the same module of the experimentally estimated 

SCN compared to pairs of nodes belonging to a null distribution of pseudo-modules, generated 

by permuting empirical modules on the cortical surface while preserving module size, 

contiguity and distance. 

These results should be considered in the context of some relevant prior studies (Chen et al., 

2011; Chen et al., 2013, 2012) that evaluated genetic influences on cortical areal expansion by 

correlating the individual genetic profile with the deformation (stretching or compression) 

needed to map each subjects’s cortical surface into a standard space. The association between 

genotype and area expansion was used to define the boundaries of a genetic subdivision of the 

cortex and depict its genetic patterning. Resulting genetic subdivision revealed a hierarchical, 

modular organization consistent with specialized functional and lobar subdivisions. Moreover, 

this genetic subdivision followed closely the developmental changes of cortical thickness, with 

age-related cortical shrinkage trajectories varying as a function of inter-regional genetic 

similarity (Fjell et al., 2015). Genetic associations between regional measures of cortical 

thickness have been previously described by Docherty et al. (2015). This twin-based study 
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revealed that genetic relationships between structurally-determined regions exhibit small-

world properties (Docherty et al., 2015). Using the AIBS dataset, (Pui-Yee Wong et al., 2017) 

have recently described that cortical thinning in adolescence is associated with the expression 

of genes coding for glucocorticoid and androgen receptors. Fulcher and Fornito (2016) showed 

that transcriptomic correlations are stronger between hub nodes than between non-hubs of 

the mouse brain connectome derived from tract-tracing data.  

4.5 HSE gene co-expression and structural covariance 

For the HSE gene set, we concentrated on the relationships between HSE gene co-expression 

and structural covariance. HSE gene co-expression was significantly correlated with structural 

covariance; high degree hubs in the structural covariance network had higher levels of HSE 

gene expression than less central, low degree nodes; and nodes that belonged to the same 

SCN module or the same cytoarchitectonic class had higher levels of HSE gene co-expression 

than pairs of regions that belonged to different modules or classes.   

These results constitute further evidence that structural covariance and network topology is 

linked to gene co-expression and are compatible with what is known about HSE genes. HSE 

genes are overexpressed in the supragranular layers (II and III) of the cerebral cortex in 

humans, but under-expressed in the same layers of mouse cortex (Zeng et al., 2012). This small 

but substantial species-differential expression is hypothesized to drive the shift from 

predominantly cortico-subcortical connectivity in non-primate mammals to the major 

emphasis on cortico-cortical projections in the human brain (Zeng et al., 2012). This is 

consistent with the overexpression of HSE genes in von Economo classes 1 (precentral gyrus) 

and 2 (association cortex) described here because, according to histological findings, these 

regions have an especially prominent supragranular layer III that includes pyramidal neurons 

as well as intra-cortical axons (von Economo, 1929). We hypothesize that the high levels of 

SCN nodal degree in these regions may be related to the large proportion of the full thickness 

of the cortex that is taken up by layer III in these areas, as well as its role as a principal source 

of cortico-cortical efferent projections. Similarly, neuronal size in layer III is the only 

cytoarchitectonic metric that has been previously associated with anatomical connectivity 

strength derived from DTI (van den Heuvel et al., 2015). Two prior fMRI studies in humans 

have shown that HSE gene (co)-expression is related to functional connectivity between 

cortical areas. Krienen et al. (2016) reported stronger HSE transcriptional similarity within than 

between resting state fMRI networks (RSNs), which share many similarities to modules. 

Likewise, Vértes et al. (2016) showed that HSE genes are significantly over-represented among 
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the genes that are most over-expressed in cortical areas with high inter-modular degree and 

long mean connection distance. The data reported here add to this literature by 

demonstrating for the first time that HSE gene co-expression is also linked to MRI measures of 

structural covariance and brain anatomical network topology. Thus the evidence is growing 

that HSE genes play an important role in the formation of human connectome topology, 

especially high degree hubs and long distance connections. It would be interesting in future 

studies to explore the effects of sequence variation in HSE genes on human connectome 

phenotypes and their development.       

4.6 Methodological issues  

First, it is important to note that the gene expression dataset provided by AIBS included six left 

hemispheres but only two right hemispheres, due to the expression similarities between 

hemispheres (Hawrylycz et al., 2012). Given the severely reduced sampling of the right 

hemisphere, we pooled all the samples into the left hemisphere and, consequently, only MRI 

data from the left hemisphere was included in the analyses. As CT is highly similar between 

homologous regions across hemispheres (R2=0.83, P<10−59; Figure S13), our results may be 

generalized to whole brain or inter-hemispheric connectivity; however, additional gene 

expression data in the right hemisphere will be necessary to confirm this hypothesis. Third, the 

tissue samples used in the microarrays were not homogenously distributed across the cortex. 

As a result, gene expression of each cortical region was calculated by averaging a different 

number of AIBS samples, leading to a variable signal-to-noise ratio across regions. Fourth, AIBS 

data were based on 5 male donors and one female, with a mean age of 42.5 years, whereas 

the MRI data were collected from 296 healthy gender-balanced subjects with a mean age of 

19.1 years. Although structural covariance remains similar after age-correction of cortical 

thickness (R2=0.96, P<10−100; Figure S14), age- and gender-related changes in brain gene 

expression (Berchtold et al., 2008), as well as other individual differences, may be an 

important confounding factor when comparing transcriptomic and neuroimaging data. 

5. CONCLUSIONS 

Structural covariance based on MRI measurements of cortical thickness, and a transcriptional 

brain network had similar complex topological properties, showing organizational patterns 

that partially, but not completely, overlapped. The high degree hubs of structural covariance 

networks were coupled specifically to regional expression and co-expression of a set of genes 

known to be important for long-range cortico-cortical connectivity of the human brain.  
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