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Universality of filamentous aggregation phenomena
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We use perturbative renormalization group theory to study the kinetics of protein aggregation phenomena
in a unified manner across multiple timescales. Using this approach, we find that, irrespective of the specific
molecular details or experimental conditions, filamentous assembly systems display universal behavior in time.
Moreover, we show that the universality classes for protein aggregation correspond to simple autocatalytic
processes and that the diversity of behavior in these systems is determined solely by the reaction order for
secondary nucleation with respect to the protein concentration, which labels all possible universality classes. We
validate these predictions on experimental data for the aggregation of several different proteins at several different
initial concentrations, which by appropriate coordinate transformations we are able to collapse onto universal
kinetic growth curves. These results establish the power of the perturbative renormalization group in distilling
the ultimately simple temporal behavior of complex protein aggregation systems, creating the possibility to study
the kinetics of general self-assembly phenomena in a unified fashion.

DOI: 10.1103/PhysRevE.99.062415

I. INTRODUCTION

The formation of protein filaments is a ubiquitous example
of a self-assembly phenomenon that has fundamental implica-
tions for biology [1,2], medicine [3–5], and materials science
[6–8]. For instance, biofilaments of actin and tubulin are key
components of the cellular cytoskeleton, which is implicated
in cell shape regulation and cell division [1,2], while a partic-
ular class of protein filaments, known as amyloids, are asso-
ciated with over 50 medical disorders, including Alzheimer’s
and Parkinson’s diseases [3–5]. One of the most intriguing
yet least understood aspects of protein filament formation
is its generality, i.e., the fact that many different proteins,
with unrelated sequence or fold, are able to self-assemble
into such filamentous structures [9,10]. A central question in
this area is thus to establish whether certain aspects of the
aggregation process are universal, i.e., are independent of the
molecular specifics and are thus conserved across different
protein systems.

Historically, renormalization group (RG) theory ap-
proaches [11] have emerged as the fundamental tool for
explaining how microscopically different systems can display
universal features at the macroscopic level in areas ranging
from condensed matter physics to particle physics. Asymp-
totic analysis seeks to obtain the simplified intermediate
asymptotic behavior of a system of equations [12], for in-
stance, through the identification and solution of an amplitude
equation [13] or the discovery of a slow manifold [14]. Since
asymptotic analysis involves identifying a reduced lower-
dimensional description of the behavior of a physical sys-
tem, we might expect disparate systems to display universal
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features asymptotically, just as in classical RG problems.
In this context, Goldenfeld and co-workers [14–16] demon-
strated a deep connection between RG theory and asymptotic
analysis of singular perturbation problems and developed a
highly general perturbative RG approach to asymptotic analy-
sis that was shown to be superior in accuracy to many standard
methods. In this paper we apply perturbative RG theory to
protein aggregation kinetics and find that the macroscopic
behavior of these phenomena is universal in time. In partic-
ular, we find that disparate protein aggregation systems can
be categorized into universality classes that are indexed by a
single scaling exponent which is set solely by the dependence
of fibril self-replication on the supply of monomeric protein.
Within these universality classes, kinetic profiles for the ag-
gregation of proteins with a wide range of distinct structures
and biological roles collapse onto a single universal curve,
irrespective of specific experimental conditions. The experi-
mentally reported scaling behavior of protein aggregation [17]
emerges as a direct consequence of this universality.

II. PERTURBATIVE RG APPROACH TO
PROTEIN AGGREGATION

A. Kinetic equations for protein filament formation

Protein aggregation is the result of an interplay between
multiple molecular events (Fig. 1). Generally, protein ag-
gregation is initiated by a primary nucleation step, whereby
monomers in solution come together spontaneously to form
the smallest stable aggregate, followed by filament growth
through elongation at one or both ends of the aggregates
[1]. For many protein systems, including the aggregation
of disease-related species such as Alzheimer’s amyloid-β
peptide, aggregation is accelerated by secondary processes
that, unlike primary nucleation, depend on the actual fibril
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FIG. 1. Schematic representation of the well-established ele-
mentary steps of protein filament formation and definition of the
associated rate constants.

concentration and hence lead to an autocatalytic multiplica-
tion of the fibrillar structures; key examples of such secondary
processes are filament fragmentation [17–22], lateral branch-
ing [23–25], and surface-catalyzed secondary nucleation
[26–31]. The interplay between these different microscopic
steps of aggregation can be captured by means of a master
equation approach [32,33], which tracks the time evolution
of the population of aggregates of different sizes. In the
context of protein aggregation, however, the experimentally
accessible information about the aggregation process is com-
monly encoded in the time evolution of three coarse-grained
fields: the number and mass concentrations of fibrils, de-
noted by P(t ) and M(t ), and the free monomer concentration
m(t ). The time evolution of these experimentally observable
quantities, which correspond to the principal moments of
the filament distribution, can be derived explicitly in terms
of the underlying mechanisms of aggregation from the non-
linear master equation describing the time evolution of the
entire distribution of aggregate sizes [33]; for an aggregating
system evolving through primary and secondary nucleation
pathways, this procedure results in the general set of kinetic
equations [33]

dm(t )

dt
= −2k+m(t )P(t ) = −dM(t )

dt
, (1a)

dP(t )

dt
= knm(t )nc + k2m(t )n2 [mtot − m(t )], (1b)

where mtot = M(t ) + m(t ) is the conserved total monomer
concentration. Equation (1a) describes the consumption of
monomers and consequent buildup of aggregate mass through
the elongation of existing filaments with rate constant k+.1

1We have implicitly assumed that both ends of a filament elon-
gate with the same rate constant k+, thus explaining the factor of
2 in Eq. (1a). Our framework can however be generalized in a
straightforward manner to account for a different elongation rate
at each end. Moreover, in Eq. (1a) we have neglected sink terms
for the change in monomer mass concentration due to primary and
secondary nucleation events. These terms can be neglected relative to
growth at the filament ends, since for most known protein aggrega-
tion processes the ratios of the nucleation rates to the rate of growth
are ν1 = knmnc−2

tot /2k+ � 1 and ν2 = k2mn2−1
tot /2k+ � 1. Indeed, the

Equation (1b) describes the rate of formation of new fibrils
through primary and secondary nucleation, with the rate con-
stants for these processes being kn and k2. The key difference
between primary and secondary nucleation processes is that
the rate of the latter depends on the existing fibril population.
The dependence of the rates of primary and secondary nucle-
ation on the concentration of precursor monomer is captured
by means of the reaction orders nc and n2, respectively.
Various possible secondary nucleation processes correspond
to different values of the reaction order n2: Filament frag-
mentation, which is independent of monomer concentration,
corresponds to n2 = 0, lateral branching corresponds to a
linear dependence on the monomer concentration (n2 = 1),
and surface-catalyzed secondary nucleation is usually de-
scribed by higher reaction orders (n2 � 2). It is important
to note that both primary and secondary nucleation of new
filaments are believed to be nonclassical, multistep nucle-
ation processes featuring metastable oligomeric intermediate
species. These species are likely micellar in nature, possess
low β-sheet content, and are thus structurally distinct from
mature fibrils, as observed both in experiments [34] and in
computer simulations [30,35–37]. The rate law employed in
our model equation (1b) is a coarse-grained description of
these nonclassical nucleation processes, which can be justified
from an explicit consideration of the free-energy landscape
in aggregate size and structural space (see [37,38] for further
details). This calculation shows that the exponents nc and n2,
which represent the reaction orders of primary and secondary
nucleation with respect to the free-monomer concentration,
are not related to the overall physical size of the nucleating
aggregates as in classical nucleation theory. Instead, nc and
n2 are related to the portion of the nucleating aggregate
that actively participates in the conformational conversion of
oligomers to fibrils [37,38].

B. Perturbation expansion

Equations (1) do not admit exact solutions in general
[26,39] and we instead seek asymptotic solutions. The pertur-
bative RG approach is intimately connected with asymptotic
analysis [14–16]; as a first step, it is thus useful to recast
Eqs. (1) into a singular perturbation problem. To do so,
we introduce dimensionless monomer and aggregate number
concentrations as

μ(t ) = m(t )

mtot
, �(t ) = κP(t )

2k+
(2)

steady-state average length of filaments is �1/
√

ν2 [see [32,39] or
consider the ratio M(t )/P(t ) from Eqs. (15) and (16), which gives
the average length of aggregates]. Since filaments consist typically
of several thousands of monomers, it follows that 1/

√
ν2 � 1. For

systems where secondary nucleation is the dominant mechanism of
formation of new aggregates, this implies that ν1 � ν2 � 1.
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and a dimensionless time variable as t ′ = κt , where κ =√
2k+k2mn2+1

tot . In this manner, Eqs. (1) become

dμ(t ′)
dt ′ = −μ(t ′)�(t ′), (3a)

d�(t ′)
dt ′ = 2εμ(t ′)nc + μ(t ′)n2 [1 − μ(t ′)], (3b)

where the following dimensionless parameter emerges
naturally:

ε = λ2

2κ2
. (4)

Here λ =
√

2k+knmnc
tot and κ =

√
2k+k2mn2+1

tot are the char-
acteristic rates that describe aggregate proliferation via pri-
mary [1] and secondary nucleation [17,26,39,40], respec-
tively. Equations (3a) and (3b) can then be combined and
reformulated as

−d2 ln μ(t ′)
dt ′2 = 2εμ(t ′)nc + μ(t ′)n2 [1 − μ(t ′)]. (5)

In many cases, secondary processes dominate over primary
nucleation for the formation of new filaments, i.e., ε � 1.
Typical values for ε are in fact ε ∼ 10−2 for the yeast prion
Ure2p [22], ε ∼ 10−3 for sickle-cell hemoglobin (Hsb) [26],
ε ∼ 10−5 for the amyloid-β (Aβ) peptide [28], and ε ∼ 10−7

for the islet amyloid polypeptide (IAPP) [27]. We have thus
recast Eqs. (1) into a singular perturbation problem [Eq. (5)],
where the relevant perturbation parameter emerges naturally
as the ratio between the rates of primary and secondary
nucleation. Consequently, a second-order perturbation series
solution μ(t ′) = μ(0)(t ′) + εμ(1)(t ′) + ε2μ(2)(t ′) + O(ε3) can
be found for Eq. (5) by applying the initial conditions μ(0) =
1 and dμ(0)/dt ′ = 0 to yield

μ(t ′) = 1 − εet ′ + ε2

2c
e2t ′ + R, (6)

where c = 3/(2n2 + 4) and R denotes other terms that either
are of order ε3 or vanish in comparison to the dominant
terms at the respective order in ε for large t ′. The perturbative
solution (6) approximates the exact solution of (1) for early
times, i.e., the solution to the linearized form of Eqs. (1)
obtained when m(t ) = mtot, but it fails to capture the behavior
at later times [Fig. 2(a)]. This is due to exponentially divergent
terms (UV divergence), a phenomenon originally pointed out
by Ferrone et al. [26] that has challenged the derivation of
accurate expressions for the aggregation kinetics. Physically,
this divergence emerges because the perturbative expansion
assumes constant monomer concentration, hence leading to
unbounded multiplication of aggregates through secondary
nucleation and growth.

C. Perturbative RG

To tame this divergence we impose timescale invariance
on our perturbative solution. This amounts to resumming the
perturbation series for μ at the observation time t ′ such that
its dependence on the time that has elapsed since μ was at
its initial concentration (here t ′ = 0) is removed. We start by
defining a new variable τ = eκt to simplify the mathematics.

Following the conventional workflow of the perturbative RG
[14–16], we then introduce an arbitrary past-time cutoff σ

which we will vary between the initial time and the observa-
tion point τ and write τ = (τ − σ ) + σ in Eq. (6) [Fig. 2(b)].
This past-time cutoff is equivalent to the UV cutoff in con-
ventional momentum-space RG; timescale coarse graining by
rewriting μ(τ ) in terms of μ(τ − σ ) and increasing σ is di-
rectly equivalent to coarse graining by reducing the UV cutoff
and integrating out the high-frequency degrees of freedom in
momentum space. Doing so, we obtain, from (6),

μ(τ − σ, σ ) = 1 − ε(τ − σ ) + ε2

2c
(τ − σ )2εσ

+ ε2

2c
[σ 2 + 2(τ − σ )σ ] + R. (7)

The next step is to renormalize μ by multiplying Eq. (7) by a
renormalization constant ρ(σ ), whose second-order perturba-
tion expansion in ε is

ρ(σ ) = ρ0(σ ) + εδρ1(σ ) + ε2δρ2(σ ). (8)

Here δρ1(σ ) and δρ2(σ ) are counterterms, chosen to absorb
the UV divergent terms in σ at the respective orders in ε

[14–16]. The constant initial monomer concentration is thus
effectively replaced by a running coupling which evolves with
the RG scale. This yields (see the Appendix for details)

δρ1(σ ) = σρ0(σ ), δρ2(σ ) = σ 2ρ0(σ )

(
1 − 1

2c

)
(9)

and we thus arrive at the renormalized second-order expansion

μ′(τ − σ, σ ) = ρ0(σ )

{
1 − ε(τ − σ )

+ ε2

[
τ 2 − σ 2

2c
− σ (τ − σ )

]
+ R

}
, (10)

where a prime indicates the renormalized solution. The renor-
malized solution, however, cannot depend on σ once the
observation scale τ is reached. We thus require [14–16]

∂μ′(τ, σ )

∂σ

∣∣∣∣
σ=τ

= 0. (11)

This condition gives the perturbative RG equation, which, to
second order in ε, reads

∂ρ0(τ )

∂τ
= −ε

(
1 − ετ

θ

)
ρ0(τ ) + O(ε3), (12)

where we have introduced the parameter

θ = c

1 − c
= 3

2n2 + 1
. (13)

This procedure is entirely analogous to performing a pertur-
bative momentum-space RG calculation in statistical physics
or quantum field theory; in this analogy, the electron charge or
mass is replaced by the initial monomer concentration ρ and
the RG procedure yields renormalized values for this quantity
at different timescales [16]. The RG equation describes a
fixed point; here it is a similarity solution that no longer
diverges in time. The critical points of the conventional RG
are equivalent to bifurcation points in parameter space in
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this dynamical RG approach and can be interpreted similarly:
Minute fluctuations in the system parameters at these points
give rise to qualitative changes in the system properties. The
flow of the renormalization constant, or initial condition, with
respect to the initial time is precisely the long-wavelength
motion we seek.

In (12) we recognize the expansion of the function
1/(1 + ετ/θ ) = 1 − ετ/θ + O(ε2) such that the solution to
the second-order perturbative RG equation (12) can be found
to be

ρ0(τ ) =
[

1 + ετ

θ

]−θ

. (14)

Finally, substituting ρ0(σ ) into Eq. (10), increasing σ to τ ,
and rewriting the result in terms of the original dimensional
parameters, we find the following renormalized solution for
the total aggregate mass:

M(t )

m(0)
= 1 −

[
1 + λ2

2κ2θ
eκt

]−θ

. (15)

A closed-form solution for the aggregate number
concentration P(t ) can be obtained from Eq. (1a) by simple
differentiation, P(t ) = −1/[2k+m(t )]dm(t )/dt , as

P(t )

P(∞)
=

[
1 + 2κ2θ

λ2
e−κt

]−1

, (16)

where P(∞) = κθ/2k+. Figure 2(a) shows a comparison
between the RG solution (15) and the numerical solution of
Eqs. (1). By “removing” the UV divergence, the second-order
perturbative RG solution succeeds in providing a highly
accurate approximate description of aggregation kinetics
when, as is usually the case, ε � 1 [Fig. 2(a)]. We note
that the obtained generalized logistic solution (15) satisfies
M(0)/m(0) = 1 − (1 + ε/θ )−θ � ε (for ε � 1) and yields
M(t ) = 0 only for t → −∞; the quantity εm(0) corresponds
to the critical concentration at which the term in Eq. (1b)
associated with secondary nucleation becomes larger than the
term relating to primary nucleation. This method fails only
when secondary growth processes are not present, such as

in the growth of actin filaments without branching; in this
case controlled by primary nucleation, however, the kinetic
equations admit an exact solution [1].

III. UNIVERSALITY OF FILAMENTOUS PROTEIN
SELF-ASSEMBLING SYSTEMS

A. Self-similarity of protein aggregation

We now discuss some key consequences of our RG ap-
proach to protein aggregation. The first key prediction is that
the time course of fibril mass formation has a self-similar form

M(t )

m(0)
= �θ

(
λ2eκt

2κ2

)
, (17)

where

�θ (x) = 1 −
(

1 + x

θ

)−θ

, θ = 3

2n2 + 1
. (18)

This means that all instances of filamentous growth kinetics
dominated by secondary processes are controlled by a single
effective variable x = λ2eκt/2κ2 containing all dimensional
parameters. Therefore, given the same value for the reaction
order of secondary nucleation n2, all realizations of protein
aggregation become identical upon an appropriate rescaling
of the time variable, irrespective of the specific experimental
conditions or the specific molecular details of the protein sys-
tem under consideration. This arises since all such realizations
are in the same basin of attraction of the fixed point indexed
by this particular value of n2, and thus fall into the same
universality class, regardless of their individual values for nc,
k2, etc. In Fig. 3(a) we have tested this prediction under dif-
ferent conditions on a range of unrelated protein aggregation
systems, ranging from infectious prion systems to amyloido-
genic proteins: bovine insulin [17], the WW domain [21], the
yeast prion Ure2p [22], and IAPP [27]. We find that, upon
appropriate rescaling, experimental aggregation data recorded
at different initial monomer concentrations for WW, Ure2p,
and insulin collapse onto a single universal curve described by
Eq. (17) with n2 = 0 and corresponding to systems dominated
by filament fragmentation. The aggregation of IAPP is driven
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FIG. 2. (a) Comparison of the perturbative solution (6) (dashed red curve) and the RG solution (15) (solid blue curve) with the numerical
solution to Eqs. (1) (dashed black curve) for n2 = 0 and ε = λ2/2κ2 = 3 × 10−3. (b) Schematics of the RG approach to filamentous aggregation
kinetics and analogy to the RG procedure for high-energy physics. A running time variable σ connects the observed monomer concentration
at time τ = eκt with the known initial monomer concentration. The RG procedure (12) describes how the initial monomer concentration ρ is
renormalized as the renormalization scale σ runs between the initial time and τ . The amyloid structure figure is extracted from [41].
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FIG. 3. Universality of protein filament formation kinetics. (a) Experimental data of filament mass formation at different initial monomer
concentrations for insulin (2, 4, and 6 μM) [17], the WW domain (50, 100, 200, and 500 μM) [21], and the yeast prion Ure2p (20, 25, and
38 μM) [22] collapse onto a single universal curve upon appropriate rescaling of the time coordinate, where t0 = −1/κ ln(ε). The universal
curve (blue dashed line) is Eq. (17) with n2 = 0. Upon rescaling, the aggregation kinetics data for IAPP [27] recorded at three different
initial monomer concentrations (700, 800, and 1000 μM) collapse onto a different universal curve, Eq. (17) with n2 = 4 (red dashed line).
(b) Classification of different filamentous protein systems into universality classes on the basis of the scaling exponent β of maximal growth
rate. In this plot, universality classes corresponding to a different reaction order for secondary nucleation n2 (monomer dependence) are
described by straight lines with slope β = (n2 + 1)/2 (shaded dashed lines). Data are shown for Sup35 and insulin (n2 = 0) [17], Aβ40
(n2 = 1) [31], actin in the presence of the Arp2/3 complex, activated by the WASP protein (n2 = 1.1) [25], Aβ42 (n2 = 2), IAPP (n2 = 4) [27],
and sickle-cell hemoglobin (n2 = 31) [26]. In (b), each data set has been rescaled by the data point with the lowest monomer concentration; c0

thus indicates the lowest value of monomer concentration in each data set and r0 indicates the respective value for the maximal growth rate.

by surface catalyzed secondary nucleation with n2 = 4 and
thus, as expected, experimental data of IAPP fibril formation
at varying initial monomer concentrations collapse but onto a
different universal curve.

B. Scaling behavior

The RG also provides insights into the scaling behavior of
protein aggregation [17,27,40]. Indeed, a direct implication of
the RG is not only that filamentous assembly displays scaling
behavior, but most importantly that the characteristic scaling
exponents must depend solely on the universality class. This
prediction is verified directly for the scaling of the reaction
half-time t1/2, which, from (17), is found to scale as t1/2 ∝
mγ

tot, where the exponent is

γ = −n2 + 1

2
. (19)

Another important example is the scaling of the maximal
growth rate rmax = max[dM(t )/dt] with initial monomer
concentration. In this case, rmax ∝ mβ

tot, where the scaling
exponent

β = n2 + 1

2
(20)

is once again solely dependent on n2.

C. Classification of protein aggregation systems
into universality classes

Since elements of the same universality class share the
same scaling behavior, scaling exponents are the most di-
rect way to classify different protein aggregation systems

into universality classes using experimental data, as shown
in Fig. 3(b). Notably, the different universality classes that
we find for protein aggregation can be related to simple
autocatalytic processes. Indeed, the universal curves (17) are
solutions to the RG equation, which is found to be equivalent
to the generalized logistic equation

dM(t )

dt
= θκ{1 − [M(t )/K]1/θ }M(t ), (21)

with K = mtot. Generalized logistic equations represent the
simplest description of autocatalytic growth with finite re-
sources and thus emerge most commonly in population dy-
namics, where K is known as the carrying capacity, i.e., the
maximum population size that the environment can sustain
indefinitely, given the available energy resources, e.g., in the
form of nutrients. For protein aggregation, we find that K
is directly related to the chemical potential of monomers
kBT ln(mtot ), i.e., the thermodynamic driving force for self-
assembly. Thus, we may interpret monomer concentration as
the available energy resources and we can interpret the reac-
tion order n2, which labels our different universality classes,
as describing the dependence of fibril proliferation on these
resources. Protein systems with n2 < 1, such as insulin or the
prion protein Sup35, have small 1/θ and are characterized by
a weak dependence of proliferation on the available resources
such that their growth curves respond only gently to changes
in the monomer chemical potential. In the limiting case of
fragmentation (n2 = 0), there is no resource dependence for
the secondary process responsible for autocatalysis, and re-
source dependence is almost solely due to fibril elongation.
By contrast, the assembly of protein systems with n2 > 1 and
large 1/θ , such as Aβ42 or sickle-cell hemoglobin, is strongly
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dependent on the available resources such that the approach
of M(t ) to the carrying capacity is much more gradual as
the remaining resources dwindle. The growth of systems with
n2 = 1, such as Aβ40 in the concentration range 5–10 μM, is
equally as limited by resource depletion as it is accelerated by
the accumulation of substrate the resources are converted into
and is described by a logistic universal function.

Systems where the production of new aggregates is dom-
inated by primary nucleation can be equally classified in
universality classes in terms of the reaction order for primary
nucleation nc [1].

IV. SUMMARY AND OUTLOOK

By applying perturbative RG approaches to protein ag-
gregation, we have found that the kinetics of these phe-
nomena display universal behavior and that the resulting
universality classes correspond to simple autocatalytic pro-
cesses. The dependence of the rate of fibril self-replication
on the available protein monomer resources provides a nat-
ural characterization of these universality classes. Looking
forward, our work raises the natural question of whether, using

perturbative RG, the kinetics of general self-assembly systems
could also be classified into universality classes similar to
those found for filamentous systems. In this sense, the ap-
proach presented in this work could represent an important
starting point for constructing a unified dynamical theory of
self-assembly.
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APPENDIX: DERIVATION OF RENORMALIZED EXPANSION

In this Appendix we provide the details pertaining to the derivation of the renormalized expansion (10). We start from the
naive perturbation solution (7), which we renormalize by multiplying it by the renormalization constant ρ(σ ) [Eq. (8)]. This
yields

μ′(τ − σ, σ ) = ρ0(σ ) − ε[(τ − σ )ρ0(σ ) + σρ0(σ ) − δρ1(σ )] + ε2

[
(τ − σ )2

2c
ρ0(σ ) + (τ − σ )σ

c
ρ0(σ ) + σ 2

2c
ρ0(σ )

− δ1(σ )(τ − σ ) − δρ1(σ )σ + δρ2(σ )

]
+ R. (A1)

We now choose the counterterm δρ1(σ ) to absorb the UV divergent terms in σ at order ε:

δρ1(σ ) = σρ0(σ ). (A2)

Inserting (A2) in the second-order term in Eq. (A1), we obtain

μ′(τ − σ, σ ) = ρ0(σ ) − ε(τ − σ )ρ0(σ ) + ε2

[
(τ − σ )2

2c
ρ0(σ ) + (τ − σ )σ

c
ρ0(σ ) + σ 2

2c
ρ0(σ ) − (τ − σ )σρ0(σ ) − σ 2ρ0(σ )

+ δρ2(σ )

]
+ R. (A3)

Choosing δρ2(σ ) to absorb the UV divergent terms in σ at order ε2 yields

δρ2(σ ) = σ 2ρ0(σ ) − σ 2

2c
ρ0(σ ). (A4)

We thus obtain the renormalized expansion

μ′(τ − σ, σ ) = ρ0(σ ) − ε(τ − σ )ρ0(σ ) + ε2

[
(τ − σ )2

2c
ρ0(σ ) + (τ − σ )σ

c
ρ0(σ ) − (τ − σ )σρ0(σ )

]
+ R

= ρ0(σ )

{
1 − ε(τ − σ ) + ε2

[
τ 2 − σ 2

2c
− σ (τ − σ )

]
+ R

}
, (A5)

which is Eq. (10).
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