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Abstract

The behavioural diversity seen in biological systems is, at the
most basic level, driven by interactions between physical ma-
terials and their environment. In this context, we investigate
the a-life properties of falling paper systems, in which dif-
ferent paper shapes are dropped into free fall and their be-
haviours observed. These systems have a simple embodiment
but highly complex interactions with the environment. Using
a synthetic methodology, i.e. understanding by building, we
explore how morphology can be used to program certain in-
teractions into the dynamics of a free-falling V-shaped paper.
We demonstrate that morphology can encode a stochastic hi-
erarchy of possible behaviours into the system. This hierar-
chy can be described by a set of conditional switching prob-
abilities and represented in a morphological ‘state machine’.
We draw a parallel with developmental processes, showing
how these can emerge from interaction with the environment.
Next, we demonstrate how Bayesian optimisation can be used
to optimise morphology in response to a fitness function, in
this case minimizing falling speed. Bayesian optimisation al-
lows us to capture the system stochasticity with minimal sam-
pling. By manipulating non-living raw materials such as pa-
per, we are able to analyse how morphology can be used to
control and program interactions with the environment. With
this bottom-up approach we ultimately aim to demonstrate
principles that turn materials into agents that show non-trivial
behaviours comparable to those of living organisms.

Introduction
Living systems exhibit extraordinary levels of autonomy
and behavioural diversity. This is driven by the embodied
interaction between the physical and informational worlds
(Pfeifer et al., 2007). At the most basic level, however, be-
havioural diversity emerges from the interaction of physical
materials and components. Hence, investigating how non-
trivial behaviours emerge from the interaction between mor-
phology and the environment is a key focus for the design of
embodied artificial life-forms.

A particular question is how to design such interactions
in a way that gives rise to useful behaviours. There is a
growing interest in designing such life-forms over multiple
levels of abstraction, from materials to components to robots
(Howard et al., 2019). This parallel evolution could facilitate

the wide-scale adaptation to environmental niches, with be-
havioural emergence driven by physical interaction with the
environment forming one of the most basic building blocks
of this process. There is also increasing interest in the use
of data-driven modelling to resolve the reality-gap problem
(Mouret and Chatzilygeroudis, 2017). Synthetic methodolo-
gies, i.e. understanding by building, have seen significant
up-scaling in recent years (Howison et al., 2020; Vujovic
et al., 2017; Saar et al., 2018), providing large amounts of
ground-truth data on which to train models.

In this context, we are particularly interested in systems
with a simple embodiment but complex interactions. Such
systems represent the emergence of interaction driven be-
havioural diversity at a fundamental level. We focus specifi-
cally on ‘falling paper systems’ (Pesavento and Wang, 2004;
Tanabe and Kaneko, 1994; Zhong et al., 2011). By manipu-
lating a simple raw material like paper and releasing it into
an environment, we can create systems that exhibit prop-
erties more complex than might be anticipated from their
individual elements. The dynamics of falling paper shapes
are driven by highly non-linear interactions with the envi-
ronment. Yet, at a high level these dynamics manifest as
coherent, non-trivial behaviours.

In this paper we explore the properties of falling paper
from an a-life perspective. We revisit the V-shaped falling
paper system (Howison et al., 2019), in which a ‘V’ paper
shape with an affixed mass is dropped (Fig.1). We inves-
tigate this system at the organism level by analysing how
falling behaviours can transition between states. By formal-
ising these transitions in a behavioural ‘state’ diagram we
can analyse how morphology encodes developmental-like
behaviours into the system. Next, we analyse the system
at the population level and use Bayesian optimisation to find
a morphology that minimizes falling speed (similar to fly-
ing seeds). Bayesian optimisation is highly interesting from
an a-life perspective as it offers a structured way to design
embodied artificial lifeforms in the real-world.
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Figure 1: Schematic of V-shaped falling paper (VSFP) sys-
tem, adapted from Howison et al. (2019). (a) A paper V-
shape is defined by four morphological parameters. m andw
are fixed at 10mm and 5g, while l and θ may vary. (b) When
dropped from a height of 3m there are four distinct falling
behaviours: (1) plummeting; (2) undulation; (3) helicopter
rotation; (4) asymmetric rotation. (c) The parameter space
can be segmented into areas of behavioural dominance.

Falling paper
‘Falling paper systems’ are the focus of our research. When
different paper shapes (and those of other materials) are
released into free fall, a wide range of distinct falling be-
haviours is observed. For example, circular shapes manifest
steady, chaotic or tumbling behaviours depending on mor-
phological and environmental factors (Field et al., 1997).
Understanding falling paper systems has been a goal since
the time of Maxwell, who first proposed the problem in the
1800s (Maxwell, 1854; Finn, 2007). Usually researched by
fluid dynamicists, physicists and mathematicians, the topic
can offer a lot to the a-life community.

Physical embodiment Falling behaviours are grounded in
the physical embodied world. Paper shapes can be defined
by a range of morphological parameters such as density,
elasticity and shape. Meanwhile, the environment is char-
acterised by various properties including viscosity, temper-
ature and the presence of air flows. When paper shapes
are released into the environment the combination of these

properties induces highly complex interactions, from which
emerge stable and distinct behaviours. As discussed, the
most basic emergence of behavioural diversity is driven by
embodied physical interactions. Indeed, the dynamics of
falling papers are very similar to those of stable insect flap-
ping behaviours (Bergou et al., 2007).

Behavioural stochasticity Falling paper systems are non-
deterministic. The same shape dropped with the same ini-
tial conditions can exhibit completely different dynamics.
However, there is structure in the system in the form of be-
havioural attractors. Certain shapes are more likely to con-
verge to certain behaviours, and there is a hierarchy of likely
behaviours a shape could exhibit. Further still, this hierar-
chy is intrinsically coupled with both the morphology and
the environment. This raises interesting questions about be-
havioural programmability and morphological computation
(Müller and Hoffmann, 2017; Nakajima et al., 2013).

Energetics The system is energetically non-conservative,
converging to a ‘dead state’ in the absence of an exter-
nal energy source. This energetic transience is analogous
to biological systems, and in the context of a-life offers
a framework to systematically study the interaction driven
emergence of dynamic developmental processes including
growth, adaptation, resource utilisation and evolution (Tay-
lor et al., 2016).

Complexity The complexity of falling paper systems can
be arbitrarily scaled up. We can introduce almost infinite
richness into the environment by simply adding various air
flows. Simultaneously, we can increase the morphological
complexity by altering properties such as shape and porosity,
introducing smart materials, or by combining different ma-
terials to create hybrid structures. By increasing the degrees-
of-freedom within the system, we can increase the complex-
ity of interactions and ultimately the system’s behavioural
diversity. Modulating system complexity may allow us to
improve the performance and scope of evolutionary pro-
cesses (Mitchell et al., 1993; Walker, 2017).

Synthetic methodologies There is a growing interest in
using a synthetic methodology for designing embodied a-life
agents, for example using evolution (Vujovic et al., 2017;
Nygaard et al., 2018) or Bayesian optimisation (Saar et al.,
2018; Rieffel and Mouret, 2018). This approach is well
suited for falling paper, where the system behaviours are
intrinsically linked to the complex interaction with the en-
vironment. Conventional modelling is unable to capture this
interaction. Luckily, experiments can be carried out quickly
and with minimal equipment: paper, cutting tool and a cam-
era. When combined with modern robotic automation, we



have already demonstrated how many hundreds of experi-
ments can be carried out (Howison et al., 2020).

The V-shaped falling paper system
As our case study we revisit the V-shape falling paper
(VSFP) system. A V-shaped paper shape with an affixed
mass is dropped from a height. The system morphology is
fully defined by the four parameters shown in Fig 1a: the
wing length l, wing angle θ, wing width w and affixed mass
m. l and θ may vary, while w and m are fixed at 10mm and
5g. The VSFP system is inspired by plant dispersal mecha-
nisms, where seeds have evolved to fly as far away from the
parent tree as possible (Lee and Choi, 2017).

In our previously published study (Howison et al., 2019)
we reported on the behavioural diversity seen within the
VSFP parameter space. There are four distinct falling be-
haviours: plummeting, undulating, helicopter rotation and
asymmetric rotation (Fig. 1b). As the morphological param-
eters l and θ vary, so the particular behaviour on which the
systems is likely to settle also changes. Figure 1c shows how
the design parameter space can be segmented into areas of
different dominant behaviours. This representation reveals
the population-level structure within the parameter space.
However, as mentioned falling paper systems are stochastic
so these boundaries are approximations, not absolute rules.
The VSFP system is a conceptually simple system, with a
design space of only 2 dimensions.

Experimental procedure
A detailed experimental procedure can be found in Howison
et al. (2019). Here, we reproduce the relevant procedures for
this paper. An Endurance MakeBlock XY engraving/cutting
machine was used to cut shapes out of Silvine A4 Graph
Refill paper. The paper has a weight of 80 grams per square
metre. The affixed mass—for which 2 standard M4 steel
washers were used— was affixed to the tip using superglue,
with one washer on either side of the shape. Each shape, ex-
amples was manually dropped from a height of 3m into still
air and using a tip up initial condition. Shapes fell against a
black backdrop, and were recorded using a Logitech BRIO
camera recording at 120 fps.

Behavioural analysis
The video data was viewed by a human observer to assign
behavioural labels to each experiment. This includes the fi-
nal behavioural state and the transient behaviours observed
prior to convergence to a final state. Experiments were lim-
ited by the drop height, in this case 3m. Assigning labels
to transient behaviours is challenging as the system can pass
through multiple behaviours very fast. This human percep-
tion and labelling of behaviours is, in itself, an interesting
aspect of falling paper systems.

The video data can also be used to extract the falling
speed. For a particular experiment with morphological pa-

rameters x = [l θ], the falling time t(x) was manually ex-
tracted from the video data, and used to calculate the average
falling speed v(x), e.g.

v(x) =
h

t(x)
(1)

where h = 3 m is the drop height. Note that this falling
speed is the average of transient and converged behaviours,
rather than the falling speed of a particular behaviour.

Behavioural switching of falling paper
A key area of research in the future design of embodied
agents is developmental processes, e.g. growth and learn-
ing Doursat and Sánchez (2014); Kriegman et al. (2018).
These form a vital part of a biological systems life, and are a
driving force behind the emergence of complex behavioural
repertoires. In this context the transient behaviours of
falling-paper systems are highly interesting. As papers fall
their behaviours switch. Sometimes the behaviours con-
verge, whereas other times switching dominates the fall.
There seem to be behavioural ‘attractors’ to which mor-
phologies are likely, but not guaranteed to converge, and
these attractor states are intrinsically encoded into the mor-
phology and environment of the system.

In the VSFP system we have observed that during its life-
time a falling paper can switch between multiple behaviours
before reaching a final state (final being dictated by the avail-
able drop height). Figure 2a shows an example of the sys-
tem switching from helicopter rotation to plummeting, while
Figure 2b shows switching from undulating to helicopter ro-
tation.

We draw a parallel between the transient behaviours of
falling paper and developmental processes seen in nature.
The physical interaction with the environment can induce
a change in the dynamics of the falling paper, allowing it
to switch to a new behavioural attractor state. This switch-
ing is completely self-induced since the only energy input is
the initial potential energy. For certain shapes, this switch-
ing appears to be highly unstable. For others, there seem to
be attractor states from which the behaviour rarely deviates.
In the context of a-life this allows the investigation of how
physical interaction with the environment can induce very
basic developmental processes.

Behavioural complexity
We can quantify the complexity of the transient processes
encoded into different morphologies by counting the num-
ber of behaviour switches in each experiment. For example,
some areas of the design space quickly converge to the final
state while others may cycle through one or more alternative
behaviour states before convergence. The parameter space
was discretized into a 7× 7 grid. The morphologies at each
point were fabricated and then tested five times. We anal-
ysed the data-set of 245 experiments to calculated the mean



Figure 2: Examples of behavioural transitions in the VSFP
system, showing (a) switching from helicopter rotation to
plummeting and (b) undulating to helicopter rotation.

number of switches at each point in the 7× 7 discretized pa-
rameter space. Using linear interpolation we extended this
to estimate the mean number of behavioural switches any-
where in the parameter space. Figure 3 shows this, along
with the behavioural boundary lines from Figure 1c.

We see that the mean number of behaviours does not
correlate with the boundaries of the dominant behavioural
regions. Plummeting and undulating behaviours seem to
manifest simpler developmental processes, whereas the heli-
copter rotation behaviour exhibits the most complex switch-
ing process, with a maximum mean of 2.6 switches. This
analysis offers an alternative perspective on the VSFP sys-
tem. Rather than segmenting the design parameter space by
dominant behaviours, we can also segment it by the com-
plexity of the transient processes. Returning to the par-
allel with developmental processes, we see that morphol-
ogy directly influences the system’s capacity to exhibit basic
growth and adaptation.

Conditional behavioural switching
The number of behavioural switches across the parameter
space provides a high-level understanding of the transient
behaviours in the system. We can extend our analysis by
looking at the specific structure of transient processes that
lead to a particular behaviour. The switching we see between
behaviours is conditional, e.g. each behaviour is dependent
on the previous states. Furthermore, certain states can only
be reached dependent on previous conditions or states. We
term this transitory behaviour ‘conditional switching’. This
framework allows us to identify global rules that control be-

Figure 3: The mean number of behavioural switches
across the parameter space along with dominant behavioural
boundaries.

havioural switching and to identify attractor states that have
a high probability of emergence, and may therefore be more
energetically favourable. This abstraction of passive tran-
sient behaviours to a probabilistic interpretation is similar
to approaches in other systems. For example, the ‘condi-
tional model’ describing passive hand behaviours that can
be achieved only through conditional actions (Hughes et al.,
2018).

To formalise this we use the idea of state machines, an ab-
stract concept whereby a machine can have different states,
but at a given time fulfills only one of them. We can define
the conditional probability of switching between different
states, and can represent these as a state diagram. We anal-
ysed the transient behaviours of morphologies that tend to
converge to helicopter or asymmetric rotation behaviours in
the VSFP system. By calculating the frequency and direc-
tion of switching, we constructed a conditional behavioural
switching diagram indicating the possible switching events
in the system (Fig. 4). The diagram indicates the conditional
probability of any state switching to any other.

This representation allows us to visualise the paths within
the behaviour space that can be taken between the initial
condition and end state. It summarises the behaviours of a
range of morphologies with a common behavioural end state
attractor. We can see a hierarchy of attractor states, and these
are completely determined by the mechanical design and in-
teraction with the environment. It also provides a structure
for the design of certain behaviours and developmental se-
quences. For the helicopter diagram (Fig.4a), we see that
it is highly unlikely to sustain a plummeting behaviour, but
that it is relatively likely to observe a helicopter or asymmet-
ric rotation behaviour. Meanwhile, the asymmetric rotation
(Fig.4b) shows a similar probability of sustaining a plum-
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Figure 4: Stochastic behavioural ‘state machine’ showing the conditional likelihood for behavioural transitions for (a) helicopter
and (b) asymmetric rotation behaviours.

meting behaviour, but different likelihoods of switching be-
tween other behaviours. Generally, the there seems to be
more switching in paths in the helicopter than asymmetric
rotation diagrams.

Behavioural programmability
The simplicity of falling paper systems allows us to explore
the design of real-world behaviours. As we have discussed,
the VSFP system is highly complex, with a range of con-
ditional behavioural hierarchies across the design parameter
space. This stochastic nature makes design challenging, as
similar designs may appear to perform very differently. In
simulation we could overcome this by using evolutionary
algorithms with many thousands of iterations, e.g. Cheney
et al. (2014). However when we rely on synthetic method-
ologies this isn’t feasible.

A promising approach for the structured optimisation of
real-world designs is the Bayesian optimisation algorithm
(BOA) (Frazier, 2018; Lizotte, 2008). This is a global black-
box optimisation approach for expensive-to-evaluate func-
tions. BOA uses Gaussian process regression (GPR) (Ras-
mussen, 2003) to build a data-driven probabilistic system
model that updates and improves with increasing function
evaluations. This GPR model is in turn used inform a sam-
pling strategy to efficiently discover high-performing re-

gions of the function parameter space. It has seen usage
for controller learning (Calandra et al., 2016; Rieffel and
Mouret, 2018), but its use as a morphology optimisation tool
has been limited (Saar et al., 2018; Rosendo et al., 2017).

We aim to optimise the falling speed v in the VSFP sys-
tem by using Bayesian optimisation to search for a morphol-
ogy that minimizes it. This problem is directly bio-inspired.
Certain seeds in nature have evolved to fall slowly, allowing
them to travel away from the parent tree. Such behaviours
rely heavily on the interaction between the seed and air. It
is interesting to see if our system, within this albeit simple
design space, converges to the same behaviours.

Bayesian optimisation
We start by defining the minimisation problem

min
x∈A

f(x) (2)

where f is our objective function, x is our input and A is
the feasible set of input values. In this case, f corresponds
to the falling speed v of a particular morphology and x to
the morphological parameaters x = [l θ]. There are two key
steps to each iteration of Bayesian optimisation; Gaussian
process modelling and the acquisition function. We describe
these here.



Figure 5: Bayesian optimisation results. The minimum observed and predicted falling speed is shown in blue, the observed
speed at each iteration is shown in red. The morphology shape at each iteration is shown, as is the corresponding behaviour.

At any given stage in the optimisation, assume the
objective function has been evaluated n times at the
points x1:n = [x1, . . . , xn]

T and function values f1:n =
[f(x1), . . . , f(xn)]

T . These points are used as training data
to generate a Gaussian process model of the system, which
models the mean and variance of the objective function
across the parameter space. This is achieved by first calcu-
lating the covariance matrix K, for which we use the Matern
kernel with a smoothness parameter of 5/2,

k(xi, xj) = σ2
f

(
1 +

√
5r

σl
+

5r2

3σ2
l

)
e
−

√
5r
σl (3)

where i, j = 1, . . . , n, r =
√
(xi − xj)T (xi − xj), σl is

the characteristic length scale and σf is the signal standard
deviation. The point-pair covariance matrix takes the form:

K =


k(x1, x1) k(x1, x2) . . . k(x1, xn)
k(x2, x1) k(x2, x2) . . . k(x2, xn)

...
...

. . .
...

k(xn, x1) k(xn, x2) . . . k(xn, xn)

 (4)

The kernel hyperparameters—σl and σf—are determined
by maximising their marginal likelihood, using local itera-
tive gradient descent (Rasmussen, 2003). Following Bayes’
theorem, this is the same as maximising the marginal like-
lihood of the training data, given the model parameters.
Hence, the expected value µ(xk) and confidence σ(xk) of
any point xk in the parameter space can be determined:

µ(xk) = kT
kK
−1f1:n (5)

σ2(xk) = −kT
kK
−1kk (6)

where kk = [k(x1, xk), . . . , k(xn, xk)]. During each itera-
tion of Bayesian optimisation, the Gaussian process model
is updated to incorporate the new training data and better
predict the system behaviour.

The Gaussian process model provides information about
the expected objective function along with the prediction
confidence. The second step of Bayesian optimisation is the
acquisition function, which determines which data point to
sample next. For this, an acquisition function is used. In
this study we use the expected improvement (EI) acquisi-
tion function, which chooses sampling points based on the
expected amount of objective function improvement based
on the currently available data points. For any point xk, the
expected improvement is defined as

EI(xk) = E[max(0, µ(xbest)− f(xk))
|xk ∼ N(µ(xk), σ

2(xk))]
(7)

The next point is therefore chosen by maximizing the ex-
pected improvement, i.e.

xn+1 = argmaxEI(x) (8)

As the Bayesian optimisation algorithm progresses, more
data points are gathered and the Gaussian process model
predictions become more accurate. Since we are optimis-
ing on a potentially unknown black-box function, we cannot
know for sure when an optimal solution has been found; this
makes implementing a stopping condition somewhat chal-
lenging.

Optimisation results
We implemented the BOA using the MATLAB bayesopt
function. We operated the algorithm with a fixed budget of
iterations, after which the optimal solution corresponds to
the best observed objective function. Following the experi-
mental procedure set out previously, shapes were manufac-
tured using the morphological parameters suggested by the
BOA and a single drop test carried out. The falling speed v
was extracted from the video data and supplied to the BOA.

The optimal solution has morphological parameters l =
82.9mm and θ = 51.1o, a falling speed of v = 0.933m/s



and corresponded to an asymmetric falling behaviour. Fig-
ure 5 shows various results from the optimisation process.
The best observed falling speed after each iterations (the
blue line in Fig.5) falls quickly from around 4m/s to around
1.5 m/s, after which it slowly decreases to below 1m/s. The
GPR model estimated falling speed at each iteration follows
a similar trend; however, it tends to overestimate the min-
imum falling speed. The regions in the behavioural land-
scape (Fig.1c) corresponding to each iteration are primarily
helicopter and asymmetric rotation.

Figure 6a shows the fitness landscape as estimated by the
GPR model, along with the sampled points. The behavioural
boundaries from (Fig.1c) are also shown. We see that the
majority of sample evaluations occurred in the rotation be-
havioral regions of the parameter space. We would expect
this as these clearly have a lowed falling speed. The op-
timal solution is central in the asymmetric behavioural re-
gion, roughly as far as possible from the boundaries with
adjacent behaviours. We speculate this is the most stable re-
gion of the behavioural landscape. Referring back to Figure
3 we see that this area corresponds to an average number
of behavioural switches of around 1.5, generally lower than
the helicopter rotation behaviours. As mentioned earlier, the
behaviour state diagrams (Fig. 4) indicate there are more
switching events in the helicopter rotation system than the
asymmetric system. This adds further explanation for the
results of the optimisation process.

Bayesian optimisation offers a structured framework in
which to optimise morphologies in the real-world. However,
even with such a sophisticated search method we are un-
able to explore the system at a lower level, e.g. behavioural
switching. This is one of the limitations of many design op-
timisation processes. In defining a fitness function and op-
timisation algorithm we immediately limit the power of the
system (Lehman and Stanley, 2011).

Discussion and conclusion
This paper has presented the various a-life like properties
of falling paper systems, specifically the VSFP system. We
explored how morphology can be used to program certain
interactions into the behaviours of falling-paper. The con-
text of this study lies in the apparent reliance on the interac-
tions between physical components and the environment, on
all levels, for the emergence embodied behavioural diversity
seen in nature. Falling paper systems represent the funda-
mental emergence of behaviours at the organism level and
structure at the population level.

A key finding is demonstrating the stochastic behavioural
patterns based on embodied interactions. The number of be-
havioural switches a falling paper is likely to exhibit depends
strongly on its morphological parameters. Furthermore, for
a particular dominant behaviour we can construct a prob-
abilistic state transition diagram to visualise this structure.
We draw a parallel with developmental processes. The ‘de-

P
redicted

falling speed (m
/s)

Figure 6: Bayesian optimisation sampling strategy and mod-
elling. The Gaussian process regression (GPR) model shows
the predicted falling speed at each point in the parameter
space. The white markers indicate where the BOA sampled
within the parameter space.

velopment’ of behaviours in the falling paper system can be
programmed within the morphology. The relationship be-
tween and embodied interaction and emergent developmen-
tal processes is an interesting field of further research.

We also demonstrated the use of Bayesian optimisation
for designing falling behaviours. Bayesian optimisation of-
fers a structured framework for design optimisation in real-
world systems, and is well suited to handle the stochasticity
of falling paper systems. In the context of designing embod-
ied artificial lifeforms, Bayesian optimisation demonstrates
the power of data-driven modelling. The GPR model can
capture complex embodied interactions via the function ap-
proximation that maps design inputs to fitness outputs. De-
spite the success of this approach, it is clear that to fully
harness the power of embodied interactions in this systems
requires a search process that can take account of the be-
havioural diversity and transience. Bayesian optimisation,
for example, is not adaptive to changes in fitness function.
Growing research into novelty search algorithms is another
key area to research (Mouret and Clune, 2015).
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