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ABSTRACT

The adage “there’s an app for that” holds true in modern app stores.
Indeed, app stores usually go further and provide multiple apps
with very similar functionality; examples range from flashlight
apps to alarm clocks. We call these functionally-similar apps. When
searching for these apps, users are often presented with a vast
array of choices, but no distinction is made in the user interface
to highlight the relative privacy risks inherent in choosing one
app over another. Yet the availability of many functionally-similar
apps raises the question of whether some apps are significantly less
invasive than others. In this paper, we take several steps toward
answering this question. We begin by enumerating 2 500 groups of
functionally-similar apps in the Google Play Store. Within groups
of apps, we use static analysis to understand the real-world risks
coming from apps with aggressive permission usage. By leveraging
an established ranking system, and combining it with real-world
data from over 28 000 Android devices, we quantify the improve-
ments that can be made if users installed apps with privacy in
mind. We observe that at least 25.6% of apps contain libraries that
gratuitously exploit available permissions and find that 43.5% of
apps could be swapped for comparable alternatives that require
fewer permissions. Permissions saved may deliver important pri-
vacy and security improvements, including preventing access to
the calendar (in 24% of cases), sending text messages (12%) and
recording audio (8%). This is particularly important for apps which
embed third-party libraries, since library code executes with the
same permissions as the app itself.
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1 INTRODUCTION

App stores are littered with groups of functionally-similar apps
competing for market share. The functionally-similar apps we
focus on are general-purpose in nature, such as flashlight or alarm
clock apps, meaning they can feasibly be replaced with alternatives
if the need arises. When a user searches for general-purpose apps,
they are presented with a (usually large) list of apps matching their

WiSec ’17 , Boston, MA, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of
WiSec ’17, July 18-20, 2017, http://dx.doi.org/10.1145/3098243.3098266.

Alastair R. Beresford
Computer Laboratory
University of Cambridge
Cambridge, United Kingdom
alastair.beresford@cl.cam.ac.uk

Ivan Martinovic
Department of Computer Science
University of Oxford
Oxford, United Kingdom
ivan.martinovic@cs.ox.ac.uk

search criteria. However, the app store fails to indicate to users
the relative risk to their privacy that may come from choosing one
app over another. As a result, users are left to grapple with app
metadata, with some blindly trusting the search ranking algorithms
and favouring more highly-ranked results [13]. None of these are
good approaches to obtain privacy-preserving apps.

App store ranking algorithms are a closely guarded secret, but
cursory analysis suggests that the popularity, age and user rat-
ing of an app plays a key role in ranking. It is unclear, however,
whether the privacy-preserving nature of an app (or lack thereof)
factors into ranking. Taylor and Martinovic developed an alter-
nate app ranking system [21] that penalises apps with aggressive
permission usage, after analysing relative permission usage within
functionally-similar apps. Permission usage is defined as aggressive
if an app uses one or more dangerous permissions that are rarely
used by functionally-similar apps. For example, a flashlight app
that reads contact information uses the READ_CONTACTS permission
aggressively, since typical flashlight apps do not read contact in-
formation. In this paper, we build on the aforementioned ranking
system by measuring the additional risk coming from apps that use
permissions aggressively and understanding the extent to which
this risk can be mitigated. We exclusively focus on Android dan-
gerous permissions, i.e., any of the 24 system permissions denoted
as guarding sensitive user data [1]. For this reason, we refer to
dangerous permissions as permissions for the rest of the paper.

Android 6.0 introduced run-time permissions to empower users
to selectively reject permissions that are undesirable [1]. Unfortu-
nately, many users blindly accept run-time permissions because of
conditioning or lack of understanding. Recently, Eling et al. showed
that this was the case for approximately 40% of users [6]. More-
over, users are known to ignore permission warnings altogether [5].
Additionally, while run-time permissions are a step in the right
direction, they are not triggered on compatible Android versions
unless the apps themselves target API level 23 or higher; this is
not always the case.! A user may also approve permissions to an
aggressive app to extract (perceived or actual) added functional-
ity. Thus, for myriad reasons, permissions continue to be granted
both consciously and unconsciously by users. We aim to quantify
the (potential) additional harm that comes as a result of granting
these permissions.

Aggressive permission usage does not necessarily indicate ma-
licious intent by the app developer. Indeed, general-purpose apps
may separate themselves from functionally-similar alternatives by

!t also remains unclear whether app developers have incentive to implement run-time
permissions at all.
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using permissions in novel ways to provide attractive new function-
ality. This is both a strength and weakness of the app ecosystem.
Users are able to find many highly functional apps to choose from,
but the use of additional permissions by some apps presents an
increased risk to the privacy and security of users since such apps
may steal sensitive data or be vulnerable to an exploit which does
so. To make matters worse, third-party libraries that are embed-
ded within apps enjoy the permissions granted to the host app,
and many libraries gratuitously leverage available permissions (see
Section 3.1). Thus, what started out ostensibly as app develop-
ers using permissions in novel ways, has devolved into providing
third-parties with the means to capture and exfiltrate additional
data.

We build on the aforementioned alternative app ranking system
along several dimensions. We use contextual permission analysis
(as summarised in Section 2 and detailed in [21]) to identify apps
using permissions aggressively. We then compile a dataset of 1400
apps with aggressive permission usage and subject them to static
analysis to assess their real-world danger. Finally, we leverage a
database of alternative apps that are functionally-similar, but use
fewer permissions, to understand the improvements that can be
made to 28 000 real-world devices.

Concretely, our contributions are as follows:

e We identify 1400 apps that use permissions aggressively
and perform static analysis on them to understand in-
creased threats to privacy coming as a result of their li-
braries leveraging aggressive permissions.

e We analyse a dataset of over 28 000 real-world devices and
their lists of installed apps to quantify the tangible benefits
of favouring privacy-preserving apps over those that use
permissions aggressively.

2 APPROACH

Generating the dataset for our study was a three-part process. First,
we enumerated groups of functionally-similar apps in the Google
Play Store (Section 2.1). Next, we analysed permission usage within
groups of functionally-similar apps to identify apps using permis-
sions aggressively (Section 2.2). Finally, we downloaded a sample
of apps with aggressive permission usage and subjected them to
static analysis to understand the (potential) negative impact of their
aggressive permission usage (Section 2.3).

2.1 Finding Functionally-Similar Apps

To understand the choices users are given when they search for
functionally-similar general-purpose apps, we first need to derive
popular general-purpose app search queries made on the Google
Play Store. To compile this corpus, we first crawl the descriptions of
all apps in the app store and extract the most frequently occurring
(non-stop) words. We then run these words against the Google Play
Store autosuggest API to determine its suggestions. These sugges-
tions represent popular search queries but these queries may not
necessarily return groups of functionally-similar general-purpose
apps. To filter unsuitable search queries, we run each search query
on the app store and collect the Top 20 apps. Using app descriptions
as a proxy for functionality, we use a text similarity measure to
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ensure that the app descriptions of apps in each set of search results
are within a threshold of similarity to each other. We manually
identified a suitable similarity threshold. App descriptions are a
good proxy for functionality since developers typically describe
the functionality of their apps carefully in order to attract users.
Further detail on finding functionally-similar apps can be found
in [21].

2.2 Aggressive Permission Usage

We arbitrarily limited our search queries to those that returned
at least 20 functionally-similar apps and chose the Top 20 from
each group to analyse. Our next step was to analyse permission
usage by apps within search results to identify those apps that
were using permissions aggressively. We define permission usage
as aggressive if 10% or fewer functionally-similar apps in a group
use a particular permission. Aggressive permission usage may
be for the purposes of providing additional functionality, but this
functionality can be considered tertiary, since other functionally-
similar apps provide the required functionality without needing to
leverage such a permission. For this reason, we refer to a permission
being used aggressively as an extraneous permission for that app.

2.3 Dataset Generation

Combining the concepts of finding functionally-similar apps and
detecting aggressive permission usage, we aim to uncover unnec-
essary privacy risks present in real-world apps, especially those
risks coming from embedded libraries. To this end, we randomly
generated a list of 1400 apps that used extraneous permissions
as defined above. Additionally, we downloaded the . apk files for
these apps from the Google Play Store and subjected them to static
analysis.

We performed static analysis along two dimensions. First, we
measured the extent to which third-party libraries could gratu-
itously leverage and benefit from extraneous permissions. Second,
we examined the context that extraneous permissions were used in,
to uncover potentially concerning behaviour from apps using such
permissions. The details of our static analysis tools and techniques
are explained in Section 3.

3 STATIC ANALYSIS

3.1 Measuring Library Empowerment

To measure the benefit of extraneous permissions to embedded
libraries, we determined whether the libraries embedded within
each app called permission-protected Android API methods that
were guarded by the extraneous permissions used by the app. To
this end, we first decompiled the . apk files of the apps in question
using apktool [11] to obtain the . smali code for each app. Android
API calls were extracted from the .smali code and PScout [2]
permission mappings were used to derive the permissions needed to
make the relevant API call. Third-party libraries were detected using
library signatures provided by the authors of FlexDroid [20], but
could also have been done using techniques such as those presented
in [3]. If library code contained one or more API calls that are
guarded by extraneous permissions used by an app, we consider that
library to be empowered by the use of these extraneous permissions.
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Table 1: Percentage of apps using extraneous permissions
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Figure 1: Breakdown of which rare permissions libraries
were able to gratuitously leverage.

Across our dataset of 1400 apps, 358 (25.6%) apps used one or
more extraneous permissions that could be gratuitously exploited
by libraries embedded within them. Of these 358 apps, approxi-
mately 72% had libraries that were able to access one permission,
while 28% had libraries that were able to access two or more per-
missions. Library ability to access multiple extraneous permissions
monotonically decreased with an increase in the number of per-
missions. Interestingly, one app in our dataset used at least five
extraneous permissions that its embedded libraries were also able
to access.

Fig. 1 shows a breakdown of which extraneous permissions em-
bedded libraries were able to leverage. Libraries were able to lever-
age location permissions in most cases, and were able to access the
device’s camera, microphone, contacts, user accounts and external
storage in fewer cases. This is worrying, since these permissions
are typically not used by apps that are functionally-similar to the
offending app, yet as a result of their use, embedded libraries may
now enjoy additional privileges unnecessarily.

3.2 Analysing Contextual Integrity of
Extraneous Permission Usage

Wijesekera et al. propose the notion of contextual integrity to
ensure “information flows are appropriate, as determined by the
user” [24]. By instrumenting the Android platform and collecting
data on the context under which permissions are used, the authors
showed that many apps use permissions without user interaction,
i.e., in the background. The authors learnt from their user studies
that 80% of participants would have preferred to block one or more
permission requests and 35% of permission requests overall. In
general, study participants wanted to block permission requests
because they did not seem to be required to support app functional-
ity or they were not comfortable sharing such information. Along
similar lines, we are interested in understanding whether extra-
neous permissions are leveraged in the background without user
interaction. The idea is that extraneous permission usage is already
worrying, and it should be even greater cause for concern if such

necessary in the first place if it enabled the app to provide tangible
(i.e., not happening in the background) functionality to the user.

To measure how well apps using extraneous permissions per-
formed with regard to “contextual integrity”, we leveraged the
EviCheck tool [19] and modified it for our purpose. EviCheck is a
static analysis tool that certifies and verifies fine-grained permis-
sion usage policies for Android apps. With EviCheck, we are able to
statically analyse apps to determine the context under which APIs
guarded by permissions are used. EviCheck understands permis-
sions being used in contexts such as inside services, when activities
are started, and when buttons are clicked.

We constructed an EviCheck policy to warn when an app
used any of ACCESS_FINE_LOCATION, CAMERA, READ_CALENDAR,
READ_CONTACTS, RECORD_AUDIO, or SEND_SMS when the app is not
visible to the user, i.e., in a service/receiver used by the app or
when the app is otherwise in the background. We then calculated
the percentage of apps with a policy violation from the group of
those apps that used the extraneous permission in the first place.
This result is shown in Table 1. From the table, the most likely
extraneous permissions to be used in the background are SEND_SMS
(26%), ACCESS_FINE_LOCATION (22%) and READ_CONTACTS (16%).
Using the camera or microphone happened in fewer cases, at
4% and 2% respectively. There were no observable incidences of
background access to the device calendar.

4 IMPROVEMENT ON REAL-WORLD
SMARTPHONES

Device Analyzer is a research project which collects usage statistics
from smartphones [22] in which participants install a data gathering
app on their smartphone to support research. The Device Analyzer
dataset currently contains over 100 billion records of data from
over 28 000 users across the world. Among this data is the list of
installed apps on devices and usage patterns for these apps.

We leverage lists of installed apps on devices from the Device An-
alyzer dataset and combine them with the output of the alternative
ranking system [21], to understand the real-world improvement
that can be gained if less aggressive apps were chosen by users.

4.1 App Usage Statistics

From the Device Analyzer dataset, users were seen to have a mean
of 201 apps installed per device. However, this figure includes
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Figure 2: Number of distinct third-party apps with visi-
ble/foreground or foreground priority on devices over time.

OEM/Android system apps and thus are not (third-party) apps that
will have suitable replacements. By taking the intersection of apps
installed on devices and third-party apps currently available in the
Google Play Store, we determined that each device in the Device
Analyzer dataset had a mean of 56 relevant apps installed. Directly
performing analysis on this set of apps, however, may give an
over-estimate of the utility of the alternative ranking system, since
although apps are installed, there is no guarantee that they are still
used.

Therefore we defined third-party apps as “used” if they had fore-
ground or visible priority set at any point, according to Android’s
RunningAppProcessInfo.importance level. This provides a con-
servative estimate of the improvement that can be derived since
we ignore unused apps and apps that run exclusively in the back-
ground.

Fig. 2 shows the mean number of apps that were used across all
Device Analyzer devices plotted against time. In general, the num-
ber of apps with either visible or foreground priority was slightly
higher than those with foreground priority only. We considered
apps with visible/foreground priority for our calculations. Addi-
tionally, we arbitrarily chose a threshold of four weeks to decide if
an app meets the criteria of being used. That is, any app not seen
within four weeks of the most recently seen app is considered to be
unused. This is important because many devices have contributed
months or years of data to Device Analyzer. By setting a four week
threshold, we ensure that old (possibly uninstalled or no longer
used) apps are discarded.

4.2 Replacing Apps

Using app lists from 28,476 devices in Device Analyzer, we observed
that, on average, 43.5% of apps could be replaced with a functionally-
similar app with less aggressive permission usage. We next analysed
the ratings of the apps (out of five stars) to understand whether
replacement apps were considered to be high-quality by those users
that used them. Approximately 81.5% of recommended alternative
apps were +/-0.5 stars of the rating of the app they were intended
to replace. This suggests that recommended alternative apps may
be well-received by users.

Next, we wanted to understand the overall improvement in per-
mission usage by devices that can be obtained if all recommenda-
tions are adopted. Note that this would represent an upper limit on
the permissions that could be saved. To measure the permissions
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Figure 3: Change in the number of permissions no longer
used on devices if all recommendations are followed.

saved, we started with generating the union of the sets of permis-
sions used by each app in the original list of third-party apps on
a device; this is the Old Permission List. We then simulated what
the app list on a device would look like if all recommendations
were adopted, being careful to include those apps that did not have
suitable replacements. We then calculated the union of the sets of
permissions used by each app in the simulated app list; this is the
New Permission List. By taking the set difference of New Permission
List and Old Permission List, we determined the number of devices
that had changes in the overall number of permissions used by
third-party apps and what the permissions were.

A histogram of permission usage change for our dataset is shown
in Fig. 3. From the figure, approximately 37% of devices retained
their overall permission usage (i.e., they had a saving of 0 permis-
sions) after replacing apps with more preferable functionally-similar
alternatives. This is understandable, since eliminating a permission
altogether requires the replacement of all third-party apps that
use that particular permission. It may be the case that some apps
that use a particular permission simply do not have a replacement,
or that the permission in question is vital to delivering required
functionality. It is encouraging, however, to see that approximately
31% of devices reduced permission usage by one permission and
13% of devices had a saving of two permissions. This is while at the
same time fulfilling the original required functionality of apps on
the device.

Note that a small proportion of devices actually used more per-
missions (-1 in Fig. 3) when all app recommendations were adopted.
This is because an app (in rare cases) may be considered to be less
aggressive in its permission usage although it uses a greater num-
ber of distinct permissions, if its permission usage more closely
matches the permission usage for apps of that functionality. As a
simplified example, a phonebook app that uses only the camera
permission may be considered more aggressive than another phone-
book app that uses two permissions to read and write contacts. This
is because camera usage in the set of phonebook apps in general
would be very rare and thus the former would be more heavily
penalised.

Finally, we examined which permissions were saved when app
recommendations were adopted. This result is shown in Fig. 4. For
brevity we omit permissions that account for less than 1% of occur-
rences. The most commonly saved permission is WRITE_CALENDAR.
Because of permission groups, the WRITE_CALENDAR permission also
allows an app to read calendars on a device. Calendars are typically
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Figure 4: Details of which permissions were saved.

used to store reminders for events a user is interested in, and thus
can be a rich avenue for additional profiling data. Some other no-
table commonly saved permissions include SEND_SMS, CALL_PHONE,
RECORD_AUDIO, and CAMERA. These permissions can cost a user finan-
cially or record from the device’s microphone/camera. For devices
with permission savings, third-party apps can no longer access the
sensitive resources in question.

A privacy-preserving alternative app ranking system can thus
serve to complement run-time permissions: by penalising aggres-
sive apps that are incompatible with run-time permissions, and
penalising compatible apps that have libraries that gratuitously
leverage permissions that are granted.

5 DISCUSSION

A critical pillar underpinning the validity of our results relates to
the accuracy with which groups of functionally-similar apps can be
obtained. Prior work on the alternate ranking system [21] validated
that groups of functionally-similar apps were found with high
accuracy. However, some false positives are inevitable. To improve
the precision of finding functionally-similar apps, natural language
processing could be applied to app descriptions. Additionally, app
components such as Activities could be analysed to consider the
text they contain or methods they call to obtain greater confidence
that apps are similar. Code similarity could also be leveraged for a
similar effect.

We used static code analysis to understand the extent to which
libraries benefited from aggressive permission usage by apps.
Roughly one quarter of apps had libraries that were able to
leverage permissions that were used aggressively and there was an
edge case where an app used five permissions aggressively and
contained libraries that were able to utilise all five. This highlights
the fact that while adding features (necessitating new permissions
outside of the norm) to apps may be a good thing, third-parties
may also obtain more user data simply because they inherit
the permissions granted to the host app. It is worth exploring
approaches such as FlexDroid [20], that seek to separate privileges
between apps and their bundled libraries. Additionally, it is great
cause for concern that some of the permissions that are used
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aggressively are being used in the background, i.e., not as a direct
response to user interaction with the app, such as being used in
the click handler for a button.

Static analysis tools suffer from their own limitations. One major
limitation is that they do not properly handle native code or dy-
namic code that is determined at runtime. Programming techniques,
such as reflection, can also be used to obfuscate app behaviour. Thus,
the results we present may actually underestimate the gravity of
the actual situation. For a more complete picture, dynamic code
can be tagged for manual analysis, or apps can be run dynamically
on instrumented platforms.

6 RELATED WORK

Felt et al. [8] measured whether users paid attention to or under-
stood permission information as presented to them during app
installation. They observed that only 17% of study participants
paid attention to install-time permissions and a lower 3% correctly
answered comprehension questions about the permissions. Since
then, Android has introduced run-time permissions, but it remains
unclear what the effect on user comprehension has been as a re-
sult of this. Very recently however, Eling et al. [6] showed that
approximately 40% of users will accept run-time permissions for
minimal reward. Kelley et al. [12] did a related study and found that
users are generally unaware of the risks to security and privacy
that come from mobile apps. Complementary to this, we study
the additional risks to user privacy coming from extraneous per-
missions and measure the extent to which the negative effects can
be mitigated. Felt et al. [7] further looked at permission usage by
Android apps and designed a tool called Stowaway that could mea-
sure app over-privilege. In a similar vein, we aim to replace such
over-privileged apps with functionally-similar alternatives.

In this work, we identify apps using permissions aggressively
using a combination of contextual analysis of app functionality and
static analysis on the apps in question. Taylor and Martinovic [21]
provide the groundwork for scalable identification of groups of
functionally-similar apps using text mining of app descriptions.
Sarma et al. [18] address the problem from a similar direction, but
use the (more coarse-grained) category that an app belongs to in
addition to its permission usage to identify anomalies. Peng et
al. [16] propose a risk scoring scheme using similar analyses and
show that their models outperform related work. Along similar
lines, Gorla et al. [10] cluster by description topic before analysing
permission usage, in an attempt to identify outliers. The main
difference between these pieces of work and our work, is that we
gain greater contextual understanding by getting more fine-grained
through analysing permission usage in functionally-similar apps.

Other authors also use text mining and natural language process-
ing to understand app functionality and permission usage. An early
example is Pandita et al. [14], who developed WHYPER, a system
that aims to validate the need for a particular permission from the
natural language description of an app. WHYPER was able to flag
apps that did not justify the usage of one or more permissions.
Watanabe et al. [23] proposed a framework called ACODE, and
found that it gave similar performance to WHYPER. WHYPER was
later outperformed by Qu et al. [17].
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More generally, several authors leverage permission usage
patterns to identify malfeasance. We briefly describe them for
brevity. Wijesekera et al. [24] assessed the extent to which apps
used permission-protected resources when users were unaware.
We extend on this by understanding whether apps using extraneous
permissions did so in ways that users are typically uncomfortable
with. Chia et al. [4] show that some apps attempt to mislead users
into granting additional permissions. Frank et al. [9] proposed
a clustering approach and showed that low-reputation apps
typically deviated from the typical permission request patterns
of high-reputation apps. Finally, Papamartzivanos et al. [15]
demonstrate the feasibility of a crowdsourcing solution to detect
app privacy violations. Complementary to these pieces of work,
we measure the potential harm caused by permission-hungry apps
and quantify the improvements that can be made.

7 CONCLUSION

In this paper, we examined the real-world privacy impact of apps
using apparently extraneous permissions. Using a sample of 1400
apps, we determined that approximately one quarter of them con-
tained libraries that were able to leverage permissions that appear
to be used extraneously. In most cases, this allowed libraries to
access the location of a device, and in other cases allowed access
to the camera, microphone or contact address book. Worryingly,
we found that many extraneous permissions were sometimes used
in the background, i.e., not as a result of user interaction with the
app. Finally, by using real-world data from over 28 000 users, we
showed that up to 43.5% of apps can be replaced with a preferable
functionally-similar alternative. As smartphones become more in-
grained in our daily lives, it is becoming increasingly important
to understand the consequences of using the apps we choose. By
highlighting these concerns and showing that alternative choices
are available, we aim to transfer power to preserve privacy to the
hands of users, where it should always be.
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