
Hidden States, Hidden Structures:

Bayesian Learning in Time Series

Models

James Murphy

Darwin College

University of Cambridge

This dissertation is submitted for the degree of

Doctor of Philosophy to the University of Cambridge

November 2013

Declaration

This dissertation is the result of my own work and includes nothing which

is the outcome of work done in collaboration except where specifically in-

dicated in the text. No part of this dissertation has been submitted for any

other qualification.

James Murphy

Publications

Work from this thesis has been accepted for publication in the following

journal and conference articles.

[1] J. Murphy and S. Godsill, “Joint Bayesian removal of impulse and

background noise,” in Proceedings of IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pp. 261–264, IEEE, 2011.

[2] H. Christensen, J. Murphy1, and S. Godsill, “Forecasting high-frequency

futures returns using online Langevin dynamics,” IEEE Journal of Selected

Topics in Signal Processing, vol. 6, no. 4, pp. 366–380, 2012.

[3] J. Murphy and S. Godsill, ”Simultaneous localization and mapping

for non-parametric potential field environments,” in Workshop on Sensor

Data Fusion: Trends, Solutions, Applications (SDF2012), pp. 1–6, IEEE,

2012.

[4] J. Murphy and S. Godsill, “Structure inference for networks with gen-

eral non-parametric inter-object relationships,” in Proceedings of 15th In-

ternational Conference on Information Fusion, IEEE, July 2012.

1 joint first author

Abstract

This thesis presents methods for the inference of system state and the learn-

ing of model structure for a number of hidden-state time series models,

within a Bayesian probabilistic framework. Motivating examples are taken

from application areas including finance, physical object tracking and au-

dio restoration. The work in this thesis can be broadly divided into three

themes: system and parameter estimation in linear jump-diffusion systems,

non-parametric model (system) estimation and batch audio restoration.

For linear jump-diffusion systems, efficient state estimation methods

based on the variable rate particle filter are presented for the general lin-

ear case (chapter 3) and a new method of parameter estimation based on

Particle MCMC methods is introduced and tested against an alternative

method using reversible-jump MCMC (chapter 4).

Non-parametric model estimation is examined in two settings: the es-

timation of non-parametric environment models in a SLAM-style problem,

and the estimation of the network structure and forms of linkage between

multiple objects. In the former case, a non-parametric Gaussian process

prior model is used to learn a potential field model of the environment in

which a target moves. Efficient solution methods based on Rao-Blackwellized

particle filters are given (chapter 5). In the latter case, a new way of learning

non-linear inter-object relationships in multi-object systems is developed,

allowing complicated inter-object dynamics to be learnt and causality between

objects to be inferred. Again based on Gaussian process prior assump-

tions, the method allows the identification of a wide range of relationships

between objects with minimal assumptions and admits efficient solution,

albeit in batch form at present (chapter 6).

Finally, the thesis presents some new results in the restoration of audio

signals, in particular the removal of impulse noise (pops and clicks) from

audio recordings (chapter 7).

Acknowledgements

There are a great many people without whom this thesis and research would

not have been possible.

Firstly, I would like to thank my supervisor, Prof. Simon Godsill, for his

guidance, his insightful ideas, helpful comments and for his reassurance

from time to time that things were not going too badly. Without his advice

this work would certainly not have been possible. It has been a pleasure

to work with him and I have greatly enjoyed the PhD process under his

guidance.

I am grateful to the EPSRC for providing funding, and to Cantab Cap-

ital Partners for further funding during the writing of this thesis.

I would like to thank the SigProC group at the Cambridge University

Engineering Department (CUED) for hosting me as a visitor throughout

my PhD. Thank-you for welcoming me into a friendly and inclusive re-

search group. Many helpful discussions, interesting ideas and entertaining

lunchtimes have stemmed from the coffee room. In particular I would like

to thank my fellow PhD students Jens and Tim for their openness, helpful-

ness and for going through this experience alongside me.

Many people in both the Mathematics and Engineering departments

have helped with the sometimes complicated administrative aspects of my

PhD. My advisor Prof. Chris Rogers has always been ready to give support

and guidance, and has helped me throughout the PhD.

Finally, I would like to thank my family. My parents, Veronica and

Kevin, have given me unwavering support both through the PhD process

and more generally throughout my life. Thank-you for always being there

for me, for the many things you have taught me and for the love I have

always felt from you.

My fiancée Kate has given me limitless support and encouragement

throughout. She has put up with a lot. Without her tolerance, humour and

love this would have been a much more difficult and lonely experience.

Thank-you all.

Contents

1 Introduction 1

1.1 Thesis Outline . 5

1.2 Main Contributions . 7

2 Bayesian Inference for State Space Models 9

2.1 State Space Models . 10

2.1.1 Finite State Spaces . 13

2.1.2 Linear Gaussian Models 16

2.1.3 Filtering in the General Case 20

2.1.4 Smoothing in the General Case 24

2.1.5 Parameter Estimation 27

2.2 Markov Chain Monte Carlo 37

2.2.1 Site-by-Site, Gibbs and Independence Sampling . . . 39

2.2.2 Adaptive MCMC . 41

2.2.3 Variants of MCMC . 46

2.2.4 Diagnostics . 54

2.3 Sequential Monte Carlo Methods (Particle Filters) 55

2.3.1 Basic Algorithm . 57

2.3.2 Variants . 63

2.3.3 Smoothing . 70

2.3.4 Parameter Estimation 74

3 Linear Jump Diffusion: Online Inference 83

3.1 Related Work . 84

CONTENTS

3.2 Model . 86

3.2.1 Conditionally Linear State Transition Model 86

3.2.2 Observation Model . 92

3.3 State Inference . 93

3.3.1 Variable Rate Particle Filter (VRPF) 93

3.4 Backward Sampling for VRPF 97

3.4.1 Using Final Filter Jumps 99

3.4.2 Backward Sampling of Jumps 101

3.5 Application: Trend-following in Finance 105

3.5.1 A Model for Trend Following in Finance 107

3.6 Results . 109

3.6.1 Backward Sampling 112

3.6.2 Foreign Exchange Data 118

3.7 Conclusions . 119

4 Linear Jump Diffusion: Parameter Inference 123

4.1 Gibbs Sampler for Parameters 125

4.1.1 Jump Rates . 125

4.1.2 Sampled State . 126

4.1.3 Hybrid Scheme . 128

4.2 Sampling Jumps: Reversible Jump MCMC 129

4.3 Particle MCMC methods . 134

4.3.1 Particle Filter Algorithm 136

4.3.2 Particle Independence Metropolis-Hastings (PIMH)

Sampler . 139

4.3.3 Particle Marginal Metropolis-Hastings (PMMH) Sampler142

4.3.4 Particle Gibbs (PGibbs) Sampler 142

4.3.5 Smoothing in PMCMC Proposals 144

4.4 Jump Inference within Particle MCMC methods 146

4.4.1 Sampling Jumps: Particle Gibbs 152

4.4.2 Sampling Paramters and Jumps: PMMH 152

4.5 Results . 153

CONTENTS

4.5.1 State Estimation . 153

4.5.2 Parameter Estimation 159

4.5.3 Exploration of Likelihood 165

4.5.4 Parameter and State Estimation 167

4.5.5 Financial Data . 174

4.6 Conclusions . 177

5 Simultaneous Mapping and Tracking 179

5.1 Related Work . 181

5.2 Model . 184

5.2.1 Motion Model . 184

5.2.2 Potential Field Prior Model 185

5.2.3 Observation Model . 191

5.3 Inference . 191

5.3.1 Inferring the Potential 192

5.3.2 Particle filter . 193

5.3.3 Fast covariance updates 195

5.4 Results . 197

5.5 Conclusion . 201

5.5.1 Further work . 202

6 Group Structure Inference 207

6.1 Related Work . 209

6.2 Model . 214

6.2.1 Physical (Langevin) Model 215

6.2.2 Gaussian Process Prior for fij 219

6.3 Inference . 219

6.3.1 Overcoming Correlation 220

6.3.2 Gibbs sampler for f∗ijt 222

6.3.3 Sampling Process Noise 226

6.3.4 Structural Sparsity . 227

6.3.5 Algorithmic complexity 228

CONTENTS

6.4 Results I . 229

6.5 Sparse Approximation . 235

6.5.1 Classical Sparsity . 236

6.5.2 Bin-based Sparsity . 237

6.5.3 Consistency and Errors 240

6.5.4 Prediction . 243

6.5.5 Bin-based Sparsity Results 244

6.6 Noisy Observations . 247

6.6.1 State Inference via Gibbs Sampling 249

6.6.2 Bridge Proposals . 253

6.6.3 State Inference via Particle Gibbs 255

6.7 Results with Noisy Observations 261

6.7.1 Path Estimation Methods 261

6.7.2 Linkage Inference with Noisy Observations 265

6.8 Conclusion . 269

6.8.1 Further Work . 274

7 Sparse Audio Restoration 277

7.1 Gabor Signal Decomposition 280

7.2 Signal Model . 284

7.3 Structured Sparsity . 287

7.4 Inference . 291

7.5 Marginalized Inference . 297

7.5.1 Sampling Gabor Coefficients 298

7.5.2 Sampling Noise Variance 301

7.6 Results . 302

7.7 Conclusions . 311

8 Conclusion 313

8.1 Recommendations for Future Work 314

CONTENTS

A Useful Gaussian Identities 317

A.1 Affine Argument Transform 317

A.2 Product of Two Multivariate Gaussian PDFs 317

A.3 Quotient of Two Multivariate Gaussian PDFs 318

A.4 Product of Univariate Gaussian PDFs 318

A.5 Linearly Dependent Elements 319

B Matrix Fraction Decomposition 321

C PMCMC Derivations 323

D Numerical Solution of Langevin SDEs 325

D.1 Euler-Maruyama Schemes . 328

D.2 Higher Order Scheme . 330

D.2.1 Multivariate Scheme 335

D.3 Transition Densities . 337

D.4 Trade-off Between Particle Filter Types 340

D.5 Multi-Step Schemes For Inference 341

D.6 Comparison of Numerical Schemes 343

CONTENTS

Chapter 1

Introduction

Time series arise in any situation in which data are collected periodically.

They are common throughout science, technology and the humanities. As

both sensors and computing power become cheaper more ubiquitous there

are ever more opportunities to gather and analyse such data. Many meth-

ods have been developed to do so, but amongst the most successful tech-

niques of recent years have been Bayesian statistical approaches. These are

based on the idea of quantifying uncertainty in knowledge about the sys-

tem as probability distributions over the possible states of the properties

of interest. Since observations are imperfect, uncertainty about the system

is always present in estimation; Bayesian methods aim to formalize and

quantify this in a coherent and rational way.

Several justifications exist for Bayesian inference, reflecting different

ways of viewing the meaning of uncertainty. The objective Bayesian view

is that uncertainty about the plausibility of a statement measured by prob-

ability is something that, ideally, should be universally agreed upon, given

the same data. Thus, the aim of objective Bayesians is to create methods

that require minimally subjective components such as priors. In this way

these methods try to instill Bayesian reasoning with a validity that can be

universally accepted [5]. This is especially appealing when trying to com-

municate the findings of a Bayesian analysis.

1

2 CHAPTER 1. INTRODUCTION

On the other hand, subjective Bayesians see probability as a measure of

an individual’s beliefs about the plausibility of statements. They argue that

this is a more honest view because, in practice, objective Bayesian analysis

cannot really give true objectivity, but rather only a more objective form of

subjectivity. Bruno de Finetti, a key advocate of the subjective interpreta-

tion of probability, stated that there was no such thing as probability [6], by

which he meant to reject all interpretations of probability as anything other

than a statement of subjective belief. He went so far as to liken the notion of

the objective existence of probability as a measure of plausibility to a mis-

leading superstition similar to a belief in witches and fairies. An obvious

criticism of subjectivist analysis is to question whether conclusions drawn

can be meaningful to anyone other than the individual drawing them. A

counter-argument is that all methods are subjective in some way and that

the subjective approach, by clearly articulating the assumptions and pro-

cess upon which an analysis is based allows outside observers to decide

for themselves whether to reject or accept the findings based on their own

subjective assumptions [7]. A sufficiently strong case presented in such a

way should be widely convincing without making potentially misleading

claims to objectivity.

In either case (and this thesis leans more closely to the subjective view),

it is necessary to establish that probability and Bayesian inference are ra-

tional and coherent methods for dealing with certain types of uncertainty,

specifically, uncertainty about things that can be known (so-called epistemic

and aleatory uncertainty). Several approaches have been proposed for this,

with perhaps the most influential being Cox’s theorem [8] which estab-

lishes, under a certain set of (apparently) intuitive axioms, that any meas-

ure of belief can be mapped to a probability measure. The intuitiveness

of the axioms and additional implicit assumptions made in the proof have

been criticized in a number of ways and the proof has been modified to ac-

count for some of these [9]. Such proofs are most strongly favoured in the

objective school, since they establish the universal applicability of probabil-

3

ity to belief. De Finetti, an actuary by training, argues along different lines,

that a coherent and rational method of computing plausibility must be such

that by offering odds on all possible outcomes according to the computed

beliefs, a subject is not exposed to certain loss through some series of bets

(a Dutch book) [6]. He established that the axioms of probability, and thus

Bayesian inference, can be established as a system to do this (although not

necessarily the only one [10] except under additional assumptions). Such

arguments put prediction at the heart of probabilistic inference.

It is worth noting that Bayesian inference is not able to reach meaningful

conclusions about problems involving all types of uncertainty. Bayesian

inference rests on probability theory which in turn rests on the idea that it

is possible to assign numerical values to the probability of the occurrence

of events. However, this does not cover all types of uncertainty and in

particular does not cover uncertainty when there is no underlying fact. For

example, the statement “John behaved maturely” is a subjective statement

that does not admit probabilistic interpretation [11]. It may be argued that

the vagueness of this statement can be removed by defining the meaning of

‘mature’, but it is obvious that, by requiring further clarification, there is a

type of uncertainty about which probability cannot reason, in this case the

sense of the word ‘mature’. Non-probabilistic uncertainty is not considered

in this thesis, however approaches do exist for reasoning in such situations;

see e.g. [11] and the references therein.

Nevertheless, Bayesian inference is a practically successful, coherent

and often tractable way of dealing with the types of uncertainty that can be

quantified as probability. The central component of any scheme for reason-

ing about this sort of uncertainty is a means of updating beliefs in the light

of evidence. In Bayesian inference this update rule is given by Thomas

Bayes’ eponymous 1763 theorem [12] and its subsequent generalization by

Pierre-Simon Laplace [13], which can be summarized in modern notation

4 CHAPTER 1. INTRODUCTION

as

p(X | Y) =
p(Y | X)p(X)

p(Y)
, (1.1)

where p(X) is the probability of an event X and p(X | Y) is the conditional

probability of an event X given that an event Y has occurred. This is a

simple consequence of the definitions of probability and can be seen quite

easily with the aid of a Venn diagram. If X is interpreted as a set of proper-

ties of interest, and Y is interpreted as a set of observations related to those

properties then this theorem allows prior beliefs p(X) about those proper-

ties to be updated using evidence arising from observations to give new

posterior beliefs p(X | Y) about the state of X after having made observa-

tions Y.

As well as the prior belief p(X), calculation of the probability distribu-

tion p(X | Y) using equation (1.1) requires a way of determining the like-

lihood of the observations given a certain set of properties p(Y | X). Most

Bayesian time series methods rely on a model of system behaviour in order

to calculate this likelihood. A common approach is to assume that observed

data is generated by a noisy process, for example the imperfect readings of

a sensor, from an underlying true system state, which evolves over time

according to a dynamical model. The true state of the system at any time

is hidden, but observations reveal information that can be used to learn

about that hidden state. In many cases, it is not necessary to calculate the

observation probability p(Y) because, since probabilities must integrate to

1, it can be treated as a normalizing constant of the probability distribution

p(X | Y).

Often, the observation generating model used in likelihood calculation

is not truly known. In such cases the model chosen can itself be thought of

as part of the prior assumptions of the inference system. The fidelity of the

observation generating model to the true system can have a substantial im-

pact on the accuracy of inference that can be made. If swans are assumed

always white, and crows always black, encountering a black swan might

1.1. THESIS OUTLINE 5

well lead to incorrect conclusions (i.e. that what was seen was, in fact, a

crow). It is therefore important to model the behaviour of the underly-

ing system as closely as possible. However, if this behaviour, or aspects

of it, are unknown, either because parameters of the model are unknown

or because the model itself is obscure it is desirable to incorporate this un-

certainty into the inference process. In some cases, such as when trying

to understand relationships between objects or the structure of an environ-

ment, aspects of the model structure themselves can be the properties of

interest. Assuming that underlying systems exist and can be considered

knowable in some sense, this uncertainty is a valid subject of Bayesian in-

ference. By incorporating hidden system structure into the set of unknown

system properties, the machinery of Bayesian inference can be used to learn

these from the data. Unfortunately naive approaches to this very often lead

to extremely difficult or intractable inference problems.

The aim of this work is to develop tractable methods for the inference

of both hidden states and aspects of hidden model structure in some types

of time series, and to do so within a Bayesian probabilistic framework. It is

hoped that this will improve the accuracy of state inference, and will allow

useful insights into the nature of the systems in question to be derived from

observations. Motivating examples are taken from a number of application

areas including finance, physical object tracking and audio restoration.

1.1 Thesis Outline

Chapter 2 briefly outlines some of the important techniques in the applic-

ation of Bayesian inference to time series problems, with a particular fo-

cus on methods for the non-linear problems that occur most frequently

throughout this work.

Chapter 3 examines the problem of state inference in jump-diffusion

systems with linear diffusion dynamics through the use of the recently in-

troduced variable rate particle filter. A general model for such systems is

6 CHAPTER 1. INTRODUCTION

developed and solved, and an efficient computational method for state in-

ference is presented. As an example of the application of such methods,

they are applied to the development of a trend-following system for fin-

ance.

Chapter 4 extends the work of chapter 3 to include estimation of model

parameters for the jump-diffusion models studied there. Particle MCMC

methods are developed for this problem, showing how the transdimen-

sional filtering problem of estimating jump parameters can be cast in such

a way as to be tackled with Particle MCMC methods, and these are com-

pared to more standard reversible jump MCMC methods.

Subsequent chapters turn attention to the development of methods for

systems with non-linear Langevin dynamics. As examples, the methods

developed are applied to physical tracking applications. In the systems ex-

amined, the aim is to not only learn the hidden states of the model, but also

to learn something about the structure of the system itself. Unlike standard

parameter learning, fixed functional forms are not assumed for the struc-

tures being learnt. Instead, limited non-parametric assumptions are made

and the form of these aspects of the systems in question are inferred from

the data.

Chapter 5 introduces a non-linear model for the tracking of objects mov-

ing in a structured environment. The aim of the work is to simultaneously

track objects moving throughout the environment and to learn the struc-

ture of the environment in which they are moving. This is closely related to

simultaneous localization and mapping (SLAM) problems in robotics. In

this case, the environment is modelled as an initially unknown potential

field through which objects moves. By making only non-parametric Gaus-

sian process prior assumptions about this field, a wide range of field shapes

can be learnt from observations.

Chapter 6 extends the idea of object tracking to the multivariate case.

Again the aim is to not just track the objects in question, but to learn some-

thing about their environment, in this case, the way they interact with each

1.2. MAIN CONTRIBUTIONS 7

other. A non-parametric method again based on Gaussian process priors

is presented for this. In order to allow efficient solution it uses a bin-based

approximation of the observations. The method is able to learn non-linear

relationships and causality between objects, and a way of estimating the

sparse structure of the network of relationships is given. It is related to

methods used for inference in gene regulatory networks and is applicable

in a broad range of settings.

Chapter 7 takes some of the sparse structure ideas from the preceding

chapter and applies them to the removal of impulse noise in audio signals.

A more efficient solution of a previously presented method is given.

Chapter 8 draws some overall conclusions and makes recommenda-

tions for future work.

1.2 Main Contributions

This thesis presents a number of results that, it is believed, extend the cur-

rent state of the art in several areas. Along with a number of less significant

innovations, the main contributions of this thesis are as follows.

• An alternative method to reversible jump MCMC for parameter in-

ference in linear jump-diffusion systems, based on Particle MCMC

methods (chapter 4)

• A new approach to non-parametric mapping in a SLAM-style prob-

lem, with a particular emphasis on tracking objects in structured en-

vironments. The approach uses a non-parametric Gaussian process

prior model to learn a potential field model of the environment in

which a target moves. Efficient solution methods based on Rao-Blackwellized

particle filters are given for this model (chapter 5)

• A new way of learning non-linear inter-object relationships in multi-

object systems is developed, allowing complicated inter-object dy-

namics to be learnt and causality between objects to be inferred. Again

8 CHAPTER 1. INTRODUCTION

based on non-parametric Gaussian process prior assumptions, the

method allows the identification of a wide range of relationships between

objects with minimal assumptions and admits efficient solution, al-

beit in batch form at present (chapter 6)

Some further contributions include

• An efficient Rao-Blackwellized particle filter for state inference in jump-

diffusion models (chapter 3)

• A bin-based approach to sparse Gaussian process learning that is par-

ticularly suited for use in certain types of model and with certain in-

ference methods (chapter 6)

• An algorithm for the removal of impulse noise (pops and clicks) in

audio recordings (chapter 7)

Chapter 2

Bayesian Inference For State

Space Models

This chapter gives a brief overview of some of the important techniques for

Bayesian inference for state space models, with an emphasis on non-linear

Markovian time-series models. Section 2.1 introduces the main concepts

of state space models and reviews in outline some of the inference tech-

niques that can be applied, such as sequential and batch state estimation

(filtering and smoothing, respectively) and parameter estimation. It also

gives details of two special cases in which state estimation is tractable: the

finite state space case, and the linear Gaussian case. Section 2.2 introduces

Markov chain Monte Carlo (MCMC) methods which are a fundamental

tool in Bayesian state space analysis, especially in the batch case. Such

methods are especially useful for parameter estimation and also form use-

ful components in sequential Monte Carlo methods. Section 2.3 examines

sequential Monte Carlo methods, also known as particle filters in the time

series context. These provide a powerful set of methods for online state

estimation in non-linear state space models.

9

10 CHAPTER 2. BAYESIAN INFERENCE FOR STATE SPACE MODELS

Figure 2.1: The structure of Markovian state space models for time series.
The x variables represent the latent state of the system at each observation
time and the y variables represent observations made of the system. Ar-
rows represent causal relationships between variables; it is also common
to show this system as the undirected graph given by replacing the arrows
with undirected edges. In this case that is equivalent (describes the same
conditional independence relationships), as is the directed graph with the
edges between xt and xt+1 reversed

2.1 State Space Models

State space models are common models of time series, based on the as-

sumption of an underlying system that evolves in a definable way, from

which observations are generated through another definable process. Both

the system evolution and observation generation are most usually defined

probabilistically, leading to a probability distribution over subsequent states

and observations given the system’s history to that point. A common as-

sumption is that the system evolution can be described as a Markov process,

in which subsequent states are conditionally independent of all preceding

states given the current one. Their simpler mathematical description makes

inference in Markov systems much more tractable than in the general case,

but a large class of useful models can still be described by such systems. In

sequential applications Markov models also benefit from reduced storage

overhead, because it is unnecessary to store any but the current state.

Figure 2.1 shows the structure of the type of Markov models used for

time series modelling. Observations at any given time are assumed to de-

pend only on the current system state. The transition between states x at

2.1. STATE SPACE MODELS 11

one observation time to the next is described by a state transition function

in each period, giving the dynamical model of the system. Similarly, the

generation of observations y from the state is described by an observation

function. These functions can change with time, and, in the models dealt

with here are probabilistic, meaning that the transition function from one

period to the next can be described as a conditional probability distribu-

tion p(xt+1 | xt) giving the probability density of the next state xt+1, con-

ditional on the current state xt. Similarly the observation model can be

expressed as a conditional probability density p(yt | xt) of the observa-

tion yt given the current system state xt. Discrete or continuous valued

observations and states (or a mixture of both) can be incorporated in these

models, as can multi-dimensional states and observations, giving rise to

multivariate transition and observation densities. For example, in a simple

tracking model, the state might be composed of an object’s position and

velocity. This might be augmented with a discrete indicator variable in-

dicating whether the object was applying its own internal thrust in each

period.

Observations do not directly reveal the system state, which is hidden

(or latent), hence such models are often known as hidden Markov models

(HMMs). A very common aim in constructing these models is to learn

about this hidden state from a sequence of observations. An obvious way

to do so is via the probability of the hidden states conditioned on the re-

ceived observations, p(x1:t | y1:t), where x1:t is used as shorthand for the

set {x1, x2, ..., xt} and similarly y1:t. For the Markov models described, this

distribution can be calculated from the transition and observation functions

as

p(x1:t | y1:t) ∝ p(x1)

T∏

t=2

p(xt | xt−1)

T∏

t=1

p(yt | xt),

using Bayes’ theorem and the the conditional dependence structure shown

in figure 2.1. The distribution p(x1) is a prior belief on the distribution of

12 CHAPTER 2. BAYESIAN INFERENCE FOR STATE SPACE MODELS

x1, and the distribution p(x1:t | y1:t) is the posterior distribution of the latent

states given the observations. The constant of proportionality is given by

p(y1:t)
−1; this is relegated to the proportionality constant because it is the

same for all possible state sequences x1:t, and is a normalizing constant for

the probability distribution over x1:t. The problem of state estimation is

then that of calculating this distribution, either exactly or approximately.

In some cases, a point estimate of the state is required and, in that case, the

state sequence that maximizes this distribution, the maximum a posteriori

(MAP) state estimate, is a good candidate.

A special case of the state estimation problem is the filtering problem

in which the aim is to determine the current state of the system, given

observations up to that moment. In probabilistic terms, filtering is con-

cerned with the distribution p(xt | y1:t). A further special case is fixed-lag

smoothing, in which the system state is to be estimated after seeing some

fixed amount L of further observations; the corresponding distribution of

interest is p(xT−L | y1:T). The estimation of one or an entire sequence of

states from a given set of observations extending up to or beyond the end

of the state sequence being estimated is called fixed-interval smoothing and

the corresponding distribution is p(xt1:t2
| y1:T) with 1 ≤ t1 ≤ t2 ≤ T .

A further related problem is that of prediction, in which the aim is to de-

termine the state of the system at times beyond the last observation. The

corresponding distribution is p(xt | y1:s) with t > s.

Inference for state space models can be tackled in a number of ways,

as briefly outlined in the rest of this section. There are two important spe-

cial cases for which exact inference methods exist. These are finite state

space models, in which all state variables take one of a finite number of val-

ues, and linear Gaussian models, in which the state and observations are

continuous-valued, and where transition and observation functions take

the form of linear transformations of the current state, distorted by addit-

ive Gaussian noise. These are dealt with in the following two sections.

2.1. STATE SPACE MODELS 13

2.1.1 Finite State Spaces

If the state space of the model is finite, that is, the system state can only

be in one of a finite number of values at each point in time, a number of

efficient exact algorithms exist for state inference, including ones to find

the filtering and (marginal) smoothing distributions and one to find the

MAP state sequence.

Current State Distribution - Forward Filter

For finite state space models, the filtering distribution p(xt | y1:t) can be

found exactly, albeit in quadratic time in the number of states in the state

space. As with many filtering algorithms, the easiest formulation is as a

prediction-correction algorithm, with a first step making a prediction p(xt |

y1:t−1) of the next state given only the current observations, and the follow-

ing step ‘correcting’ this prediction using the incoming observation to give

p(xt | y1:t). The prediction step can be formulated as an integration over all

current states, evaluating the probability of arriving at each time t state by

any possible route via a time t− 1 state, so that

p(xt | y1:t−1) =

∫

St−1

p(xt | xt−1)p(xt−1 | y1:t−1)dxt−1. (2.1)

The distribution p(xt−1 | y1:t−1) is the posterior filter distribution after the

previous observation. In finite state spaces the predictive distribution is

given by a finite sum over the state space at t− 1

p(xt | y1:t−1) =
∑

St−1

p(xt | xt−1)p(xt−1 | y1:t−1),

where, because every possible state at t−1 must be considered as a route to

each successor state at t, this operation is quadratic in the size of the state

space.

The predictive probability for each state can be updated in light of the

observation at time t using an application of Bayes’ theorem and the con-

14 CHAPTER 2. BAYESIAN INFERENCE FOR STATE SPACE MODELS

ditional probability structure from figure 2.1:

p(xt | y1:t) =
p(yt | xt)p(xt | y1:t−1)

p(yt | y1:t−1)

∝ p(yt | xt)p(xt | y1:t−1). (2.2)

The denominator in the first line does not depend on the state xt and so can

be treated as a normalizing constant. Since p(xt | y1:t) is a probability dis-

tribution, its sum over all possible states must be 1, and therefore the filter

probabilities can be found by normalizing the values found using equation

(2.2) so that they sum to 1.

Smoothing Distribution - Forward-Backward Algorithm

To calculate marginal smoothing distribution p(xt | y1:T), a backward pass

can be added to the forward filter. The marginal smoothing distribution

can be written as the product of the forward predictive density used during

filtering and the likelihood of the future observations given xt:

p(xt | y1:T) = p(xt | y1:t−1, yt:T)

∝ p(xt | y1:t−1)p(yt:T | xt), (2.3)

with p(yt:T)
−1 as the constant of proportionality. For t < T , this backward

likelihood can be found via the recursion

p(yt:T | xt) = p(yt | xt)

∫

St+1

p(yt+1:T | xt+1)p(xt+1 | xt)dxt+1.

In the finite state case this integral can again be calculated as a finite sum

with quadratic complexity in the size of the state space (because all val-

ues of xt+1 must be considered for each value of xt). The distribution

p(yt+1:T | xt+1) is this backward distribution from the previous step, so

the integral can be calculated recursively, with p(yT | xT) given by the final

filter distribution from the forward step. By combining the forward and

backward distributions as shown in equation (2.3) and normalizing, the

2.1. STATE SPACE MODELS 15

marginal smoother distributions for each state can be found.

In the finite state space context, this algorithm is known as the forward-

backward algorithm. It is an instance of a two-filter smoothing formula [14;

15], with a forward filter calculating p(xt | y1:t), and another separate filter

sometimes known as a backward information filter, working backwards from

T to calculate p(yt+1:T | xt).

MAP State Sequence - Viterbi Algorithm

Because it calculates the marginal smoother distributions, the forward-backward

algorithm cannot be used to give the most likely state sequence. However,

this can be obtained, again in time quadratic in the size of the state space,

using the Viterbi algorithm [16], which was first developed as a decoding

algorithm for convolutional codes over noisy channels. It is a forward-

recursive dynamic programming algorithm that, at each observation time

t, determines the highest probability sequence of states ending in each state

st ∈ St, i.e. finding

x̃st

1:t = argmaxx1:t−1
p(x1:t−1, xt = st | y1:t),

along with the probability of these paths, or something proportional to it

ktp(x̃
st

1:t | y1:t), where kt is constant. If a set of such paths and probabilities

are known at time t, then the equivalent paths can be found at time t + 1

by noting that each of these must follow one of the previous maximum

probability paths up to time t, since there is no higher probability route to

the ancestor of the current state, whatever that might be. The maximum

probability path to each state can be found by evaluating the probability

of getting to the state via each of the maximum probability paths from the

previous step, i.e. by evaluating

p(x̃st

1:t, xt+1 = st+1 | y1:t+1) ∝ p(x̃st

1:t | y1:t)p(yt+1 | xt+1 = st+1)

×p(xt+1 = st+1 | xt = st),

16 CHAPTER 2. BAYESIAN INFERENCE FOR STATE SPACE MODELS

for each st and st+1 pair. For each st+1 the route with maximum probability

is chosen and stored along with its probability (to proportionality). At any

time of interest t, the maximum probability path is simply the path to the

value st with the highest probability.

Approximations

Quadratic complexity in the number of states might lead to problems that

are practically intractable in reasonable time for problems with large state

spaces. In this case approximate algorithms will still be required. For ex-

ample, a finite state version of the particle filter can be used in finite state

spaces for approximate state inference.

2.1.2 Linear Gaussian Models

Another important special case (used extensively in this thesis) is the continuous-

valued case with transition and observation functions that can be described

as linear transforms of the current state subject to additive Gaussian noise

and a known control signal. These systems have the form

p(xt | xt−1) = Ftxt−1 + Btut + εt

p(yt | xt) = Htxt + ηt

where εt ∼ N (0,Qt) and ηt ∼ N (0, Rt) and where Ht, Ft and Bt are known

matrices and ut is a known signal.

Kalman Filter

In the linear Gaussian case marginal filtering distributions can be calcu-

lated exactly as a series of Gaussians marginal posterior distributions. This

is known as the Kalman filter [17]. It can be derived straightforwardly as a

Bayesian prediction-correction method in the same way as the filter in the

finite state case [18]. In this case, the integral in equation (2.1) can be solved

in closed form as long as the previous filter distribution is also Gaussian by

2.1. STATE SPACE MODELS 17

using identity (A.2) in appendix A. Assuming a previous filter density of

p(xt−1 | y1:t−1) ∼ N
(
μt−1|t−1, Σt−1|t−1

)
, this gives the Gaussian predictive

density for xt

p(xt | y1:t−1) ∼ N
(
μt|t−1, Σt|t−1

)

with

μt|t−1 = Ftμt−1|t−1 + Btut (2.4)

Σt|t−1 = FtΣt−1|t−1F
′
t +Qt. (2.5)

Using equation (2.2), a further application of identity (A.2) and some re-

arrangement using the Woodbury matrix identity, these predictions can be

corrected using the time t observation to give the posterior state distribu-

tion at t as

p(xt | y1:t) ∼ N
(
μt|t, Σt|t

)

where

μt|t = μt|t−1 + Kt(yt −Htμt|t−1) (2.6)

Σt|t = (I− KtHt)Σt|t−1 (2.7)

Kt = Σt|t−1H
′
t

(
HtΣt|t−1H

′
t + Rt

)−1
. (2.8)

That this posterior is itself Gaussian is an example of the self-conjugacy of

the Gaussian distribution. The requirement that the preceding posterior

state distribution p(xt−1 | y1:t−1) be Gaussian therefore holds as long as the

initial prior distribution p(x1) is itself Gaussian. In fact, the Kalman filter

does not rely on Gaussian noise and, even without this assumption, can be

shown to provide the optimal linear estimator of the state in the squared

error sense [17].

A useful additional piece of information that can be derived from the

18 CHAPTER 2. BAYESIAN INFERENCE FOR STATE SPACE MODELS

Kalman filter is the likelihood of the observations p(y1:T) via the prediction

error decomposition (PED) [19]. The likelihood can be decomposed as

p(y1:T) = p(y1)

T−1∏

t=1

p(yt | y1:t−1),

and the individual terms in the product calculated as

p(yt | y1:t−1) =

∫
p(yt | xt)p(xt | y1:t−1)dxt.

Since the predictive state distributions p(xt | y1:t−1) and the observation

densities p(yt | xt) are both Gaussian, this integral can be calculated in a

similar way to that in equation (2.1) for the predictions, giving

p(yt | y1:t−1) ∼ N (μyt , Σyt) (2.9)

where

μyt = Htμt|t−1

Σyt = HtΣt|t−1H
′
t + Rt.

This calculation is particularly useful in parameter estimation, when it can

be used to evaluate the likelihood of the observations under different sys-

tem parameters p(y1:T | θ) for various θ.

The Kalman filter also offers the simplest way of performing fixed-lag

smoothing in linear Gaussian systems, which can be achieved by augment-

ing the state space with the state at previous times so that x+t = [xt xt−1 ... xt−s]
′.

The state transition and observation matrices are then augmented to be of

the form

F+t =



 Ft 0d×s

Ids 0ds×1



 , H+t =
[
Ht 0p×ds

]
,

where In is an n × n identity matrix, 0m×n is an m × n matrix of zeros, d

2.1. STATE SPACE MODELS 19

is the dimensionality of xt and p is the dimensionality of the observations.

This gives a system in which the desired fixed-lag smoothing estimate is

given by the appropriate element of the augmented filter solution.

Fixed Interval Smoother

Fixed interval smoothers in the linear Gaussian case can be derived in sev-

eral ways, including via the two-filter formulation in equation (2.3). An

alternative approach that leads to some of the most popular smoothers is

via the forward filtering, backward smoothing recursion [20; 21; 15]. This relies

on writing the smoothing distribution in terms of the filtering distribution

at t and the smoothing distribution at t + 1 (which is assumed available),

giving

p(xt | y1:T) =

∫
p(xt | xt+1, y1:t)p(xt+1 | y1:T)dxt+1

= p(xt | y1:t)

∫
p(xt+1 | xt)

p(xt+1 | y1:t)
p(xt+1 | y1:T)dxt+1. (2.10)

The first line makes use of the conditional independence relationship shown

in figure 2.1 to write p(xt | xt+1, y1:T) = p(xt | xt+1, y1:t). In the linear Gaus-

sian case, this is tractable, since it can be written

p(xt | y1:T) = N
(
xt;μt|t, Σt|t

) ∫ N (xt+1; Ftxt, Qt)

N
(
xt+1;μt+1|t, Σt+1|t

)N
(
xt+1;μt+1|T , Σt+1|T

)
dxt+1,

where μt+1|T and Σt+1|T are the mean and variance of the smoothing distri-

bution of xt+1 given observations to T (simply the final filter distributions

when t = T − 1). Using identities (A.2) and (A.3) from appendix A, sev-

eral applications of the Woodbury matrix identity and noting that a Gaus-

sian integrated over its arguments evaluates to 1 (along with some tedious

algebra), it is possible to arrive at the Rauch-Tung-Striebel fixed interval

smoother [20], given by

p(xt | y1:T) = N
(
μt|T , Σt|T

)

20 CHAPTER 2. BAYESIAN INFERENCE FOR STATE SPACE MODELS

with, for t < T ,

μt|T = μt|t + Ct

(
μt+1|T − μt+1|t

)

Σt|T = Σt|t + Ct

(
Σt+1|T − Σt+1|t

)
C ′

t

Ct = Σt|tF
′
tΣ
−1
t+1|t

.

The algorithm starts at t = T with the final filter distribution, and proceeds

backwards to t = 1. Several variants of the smoother exist, including the

Modified Bryson-Frazier smoother [22], which avoids inversion of the cov-

ariance matrix and so might in some cases be preferable. It is also possible

to derive smoothers via the two-filter formulation seen in the Forward-

Backward algorithm above, although care must be taken in this case to

avoid unintegrable backward likelihoods; see [21; 15] for further details.

2.1.3 Filtering in the General Case

Other than in these special cases, the calculation of filtering and smoothing

distributions is intractable and approximations are necessary. Essentially,

all methods must approximate the integral in equation (2.1) and the multi-

plication of densities in equation (2.2), which amounts to a (possibly non-

linear) transform of the state estimate, which is a random variable. The

following sections attempt to briefly outline the most relevant of these ap-

proximations to this work.

For the filtering problem, an approach to cope with non-linear or non-

Guassian systems is to modify the Kalman filter. The first such method,

the extended Kalman filter (EKF) was introduced by NASA in order to model

non-linearities in spacecraft dynamics at around the same time as the de-

velopment of the Kalman filter [23]. The EKF estimates the first two mo-

ments of the state distribution and works by linearizing non-linear trans-

ition and observation functions about the current mean state estimate us-

ing their Taylor series expansions. In the EKF approximation, the mean of

a nonlinear function of a random variable h(x) is approximated as (in the

2.1. STATE SPACE MODELS 21

univariate case)

E (h(x)) =
∫

h(x)p(x)dx (2.11)

≈
∫ (

h(x̄) + (x− x̄)
∂h

∂x

∣
∣
∣
∣
x̄

)

p(x)dx

= h(x̄) if x̄ = E (x) ,

where the contents of the brackets on the second line can be recognized as

the Taylor series expansion of h(x) about x̄ truncated after two terms. The

variance is given similarly (when x̄ = E (x)) as

V (h(x)) =

(
∂h

∂x

∣
∣
∣
∣
x̄

)2

V (x) . (2.12)

With additive Gaussian noise, the EKF turns out to be identical to the

Kalman filter described in section 2.1.2, but with a modified prediction

mean

μt|t−1 = f(μt−1|t−1, ut−1)

where f is the non-linear state transition function, and the Ft and Ht matrices

in the other calculations replaced with the Jacobian matrices of the respect-

ive functions at the current state estimate, so that

Ft =
∂f

∂x

∣
∣
∣
∣
μt|t,ut

Ht =
∂h

∂x

∣
∣
∣
∣
μt|t−1

where h is the observation function.

The EKF is simple to implement and, if calculation of the Jacobians

is not too complicated, takes similar computational effort to the stand-

ard Kalman filter. However, the method has several drawbacks. In some

cases, calculation of the Jacobians can be difficult and they are not even

guaranteed to exist, for example if the functions f and h contain discon-

tinuities. Even worse, in highly non-linear cases where the system is not

well approximated by the first two terms in the Taylor series, serious er-

22 CHAPTER 2. BAYESIAN INFERENCE FOR STATE SPACE MODELS

rors can arise, with the EKF estimates diverging from the true values. [24]

gives an analysis of this, and notes that one such case where linearization

provides a biased, inconsistent estimator is that of transforming from polar

to Cartesian coordinates, a very important transform in tracking problems

due to the range and bearing output of many sensors. Further terms can be

considered in the Taylor series (for example, [25] considered the first two

derivatives), although this rapidly increases the complexity of the method.

A fairly recent alternative to the EKF is the unscented Kalman filter (UKF)

first proposed in [26] and treated in more detail in [27] and [24]. This over-

comes a number of the problems of the EKF by introducing an unscented

transform in order to approximate the required non-linear densities and is

based on the idea “that it is easier to approximate a probability distribution

than it is to approximate an arbitrary non-linear function” [24]. Like the

EKF it approximates the required distributions using their first two mo-

ments. It uses a weighted collection of sigma points xi chosen in sample

space so that their mean and covariance is that of the current state estimate

and then applies the required non-linear function to each of these points.

This yields a transformed set of points, the sample mean and covariance of

which can be taken as the required estimates. This is equivalent to approx-

imating the integral in equation (2.11) as

E (h(x)) ≈
∑

i

wih(x
i), (2.13)

with the xi chosen such that p(x) ≈
∑

i wiδ{xi}, with this approximation in

particular matching the first two moments of p(x). The variance is approx-

imated similarly as

V (h(x)) =
∑

i wi

(
h(xi) − h̄

)2
,

where h̄ denotes the mean approximation given by equation (2.13). As will

be seen below, this is similar to the approximation used by the particle filter,

but there are important differences. Most importantly, the sigma point ap-

2.1. STATE SPACE MODELS 23

proximation is not used to represent the target densities in the UKF, rather

it is used to estimate the first two moments of the target densities; it is these

moments that are used to represent the densities. Another difference is that

the choice of sigma points is deterministic, and their weights can be negat-

ive, making the UKF more akin to traditional quadrature methods for the

approximation of integrals. Indeed, the integral approximation used by

the UKF is closely linked to Gauss-Hermite quadrature rules [28; 29]. The

choice of sigma points is flexible, but the general scheme suggested by [26]

is to have 2d+1 sigma points in d-dimensional space, located up and down

each of the principle axes of the covariance matrix of x from its mean, with

an additional point at the mean itself. [30] and [24] gives further guidance

on choosing sets of sigma points to mitigate higher-order effects.

The UKF has been found to outperform the EKF in terms of error for

a large number of problems e.g. in [27; 31; 24] involving significant non-

linearities in the state transition or observation functions. The method can

be shown to be accurate for Gaussian inputs to the third order Taylor series

terms for all non-linearities [24] and to at least the second order for non-

Gaussian inputs [30; 27]. This, combined with the relatively small number

of sigma points required makes the method a good choice in a lot of com-

putationally limited situations.

Another important approach that has received much attention in recent

years is the particle filter. Like the UKF, this also relies on a sample-based

approximation of distributions and integrals, but in this case the approx-

imation uses importance sampling to draw the samples randomly from an

importance distribution q so that xi ∼ q(x) (with q having the same sup-

port as p or, more technically, that p and q define equivalent probability

measures). The expectation of a function of x is thus given by the approx-

24 CHAPTER 2. BAYESIAN INFERENCE FOR STATE SPACE MODELS

imation

E (h(x)) =
∫

h(x)
p(x)

q(x)
q(x)dx (2.14)

≈
∑

i

h(xi)
p(xi)

q(xi)
. (2.15)

This approximation has the nice property that as the number of samples ap-

proaches infinity, the approximation approaches the true expectation asymp-

totically. The variance is defined similarly. In this context the samples xi are

called particles and the product wi =
p(xi)

q(xi)
gives a ‘weight’ to each particle.

It is clear that here, unlike in the UKF, weights cannot be negative.

The particle filter itself is built around sequential updates of these im-

portance sampling approximations, which is achieved through increasing

the dimensionality of the problem and sample space at each new time

period. This makes the use of non-Markovian models easier with this

method. Further details of the particle filter are given in section 2.3.

Because of its random sampling approach, the particle filter generally

has a high computational cost, because many particles are required in order

to give good representations of the distributions they approximate, requir-

ing many evaluations of the importance, transition and observation func-

tions. On the other hand, the particle filter allows the approximation of ar-

bitrary densities to arbitrary precision thanks to its asymptotic convergence

to the true distributions of interest. Thus, the choice of filtering method is,

as ever, a compromise that must be assessed for the application at hand.

2.1.4 Smoothing in the General Case

There are several approaches to fixed interval smoothing in the general

case, both approximate and asymptotically exact (in that they will asymp-

totically approach the true smoothing distribution as the effort expended

on them approaches infinity). Smoothing algorithms can be built around

the approximate filtering techniques from the section above using two ap-

2.1. STATE SPACE MODELS 25

proaches: the two-filter approach seen earlier in the Forward-Backward

algorithm in section 2.1.1, and the forward-filtering backward-smoothing

approach seen in deriving the RTS smoother in section 2.1.2.

Smoothing methods based on the EKF generally use a modified version

of the backward-smoothing steps found in the RTS smoother, identical to

those in section 2.1.2, except with F ′
t replaced with the transpose of the

Jacobian of the state transition function at μt|t. This gives a forward-filter

backward-smoother approximation based around linearization of the trans-

ition and observation functions. Recently, [32] introduced a forward-filtering

backward-smoothing algorithm based around the UKF, using a similar for-

mulation to that of the RTS smoother, and which is shown to perform

equally well to the two-filter version. It relies on a Gaussian assumption

about the shape of the approximating distributions; this is not the case for

the UKF [24], but is a common assumption when using the UKF in practice

[27].

Two-filter versions of the UKF are given in [29] and [21]. Such two-filter

smoothing methods are discussed in detail in [21; 15]. There it is noted that

care must be taken in developing these methods due to the target distribu-

tion of the backward smoother p(yt:T | xt) not being a probability distri-

bution for xt and, in some cases the integral of this with respect to xt may

be unbounded. This can make the formulation of methods that propagate

this non-probability (and possibly non-finite) measure correctly tricky in

the general case. In [21; 15] this is tackled by the introduction of an artifi-

cial prior γ(x0) on x0, along with an artificial recursive formula to allow the

calculation of priors γ(xt) on subsequent xt. This allows the artificial prob-

ability distribution p̃(xt | yt:T) ∝ p(yt:T | xt)γ(xt) to be used and propag-

ated in place of p(yt:T | xt) and thus the standard EKF and UKF methods to

be applied directly to the backward filtering problem. See section 2.3.3 for

additional details.

Similarly, it is also possible to create fixed-interval smoothers based

around the particle filter via both the forward-filtering backward-smoothing

26 CHAPTER 2. BAYESIAN INFERENCE FOR STATE SPACE MODELS

and two-filter formulations. These are covered in more detail in section

2.3.3. Some versions of these smoothers have the advantage that the samples

drawn are from the joint posterior over the state space p(x1:T | y1:T) rather

than just from the marginal distributions p(xt | y1:T).

A different approach to smoothing is to use a Markov chain Monte

Carlo (MCMC) algorithm with the required smoothing distribution as its

target. Section 2.2 covers MCMC methods in more detail, but it straight-

forward to set up such an algorithm in most cases. This is most usually

done via Gibbs sampling allowing the state at time t to be sampled from its

conditional distribution

p(xt | x1:t−1, xt+1:T , y1:T) ∝ p(xt | xt−1)p(xt+1 | xt)p(yt | xt). (2.16)

It is also possible to sample from the conditional joint distribution of the

state over several periods; see sections 6.6.1 and 6.6.2 for examples. Though

easy to set up, such methods suffer from a couple of important problems.

Neighbouring states can be closely correlated, especially when the state

transition model does not contain much noise. This limits the size of in-

dividual moves meaning that mixing (the speed with which the sampler

explores the posterior) can be slow. Due to this, it can also be difficult for

these methods to escape local maxima in the posterior. Some strategies to

avoid such problems are covered in section 2.2.3.

A recent alternative to MCMC methods for smoothing, covered in more

detail in chapter 4 is the Particle Independence Metropolis Hastings (PIMH)

sampler introduced by [33]. This is a hybrid method that uses a particle

filter to draw samples x ′
1:T of the state and evaluate their approximate like-

lihood Z ′ ≈ p(y1:T | x ′
1:T). It can then be shown that, by accepting this pro-

posal with probability min(1, Z ′/Z), where Z is the approximate likelihood

of the current sample, exact samples can be drawn from the smoother dis-

tribution; see section 4.3.2. Like some versions of the particle filter based

smoother, this method is also able to draw samples from the joint state dis-

tribution.

2.1. STATE SPACE MODELS 27

In some cases state spaces have variable dimension, for example if the

state is composed of an unknown number of events occurring at random

times. Both MCMC and PIMH can deal with this situation. In the case of

MCMC, this is via reversible-jump MCMC introduced in [34] (see section

2.2.3), whereas in the PIMH case, it can be done through the use of variable

rate particle filters [35] as shown in chapter 4 for an example with a partially

variable-dimensioned state space.

2.1.5 Parameter Estimation

The definitions of transition and observation functions along with their

noise properties in state space models, typically involve a number of para-

meters. In some cases these are known in advance, but in many cases they

are not and it is desirable to estimate them from the data. In some cases,

estimation of these parameters is the primary objective of the model. In

a Bayesian setting, the parameter estimation problem corresponds to de-

termining the distribution

p(θ | y1:T) ∝ p(y1:T | θ)p(θ),

where p(y1:T | θ) is the likelihood of the observations given the parameter

and p(θ) is a prior distribution on the parameter value. In a non-Bayesian

setting, maximum likelihood methods that attempt to find the value of θ

maximizing p(y1:T | θ) are commonly used to find point estimates of θ.

The Bayesian ‘equivalent’ are MAP methods that attempt to find values

of θ maximizing p(θ | y1:T). In fact, there is a fundamental philosophical

difference between Bayesian and Frequentist approaches to parameter es-

timation, see e.g. chapter 37 of [36]; the latter are not considered further

here.

Batch Parameter Estimation

Numerous methods for both approximate and (asymptotically) exact batch

parameter estimation have been developed. They can be broadly divided

28 CHAPTER 2. BAYESIAN INFERENCE FOR STATE SPACE MODELS

Figure 2.2: The risk of MAP estimation is that it can find an estimate with
high posterior density that does not correspond well to the region with the
greatest posterior probability

into point estimation techniques that aim to find MAP estimates of θ and

fully Bayesian approaches that aim to determine the distribution p(θ | y1:T).

Point estimates are often much easier to calculate and to use in subsequent

calculations. However, there is a danger such point estimates can find solu-

tions that give high posterior density values, but which do not lie in the

areas containing most of the probability mass, as illustrated in figure 2.2.

In some simple cases the posterior is analytically tractable and so MAP

parameter estimates can be found by analytical optimization of the pos-

terior with respect to θ. Alternatively, if the posterior can be evaluated at a

point θ, numerical optimization methods can be used to find MAP estim-

ates. Such methods are generally applicable, but can be computationally

expensive if the likelihood is difficult to evaluate. There are many possible

optimization approaches, including methods such as gradient ascent and

conjugate gradient methods for unimodal posteriors. For multimodal pos-

teriors, such methods risk becoming stuck at a sub-optimal local maximum,

so methods such as simulated annealing [37] or genetic algorithms may be

required to attempt to find global optima.

A useful method for MAP estimation that is very often applicable for

state space models is the popular Expectation Maximization (EM) algorithm,

originally proposed in [38]. This allows the problem of parameter estima-

tion to be tackled iteratively via a two step process by introducing a set of

2.1. STATE SPACE MODELS 29

hidden states x, the distribution of which should be easy to find given the

observations and parameters. In state space models these naturally corres-

pond to the hidden model states x1:T and the algorithm then consists of a so-

called E-step, which finds the distribution p(x1:T | y1:T , θ(i))where θ(i) is the

current estimate of θ, and an M-step that generates a new estimate of θ by

maximizing a function of θ that turns out to be Ex1:T
(log p(x1:T , y1:T | θ)) +

log(p(θ)) over the x1:T distribution found in the E-step. The idea is that

each of these steps should be much simpler than direct optimization of

p(θ | y1:T) and by repeated iteration a (local) maximum will be reached.

Following [39], this can be seen by writing the log-posterior in terms of a

distribution q(x) over the hidden states, and the parameter θ:

log p(θ | y) = L(q, θ) + KL(q||p(x | y, θ)), (2.17)

where KL(q||p(x | y, θ)) is the Kullback-Liebler divergence between distri-

butions q and p(x | y, θ), defined as

KL(q||p(x | y, θ)) =

∫
q(x) log

q(x)

p(x | y, θ)
dx ≥ 0.

This is a non-symmetric measure of the difference between two probability

distributions [40]. It cannot be negative and is zero when the two distri-

butions are identical. Thus, L(q, θ) must be a lower bound on log p(θ | y),

given by

L(q, θ) =

∫
q(x) log

p(x, y | θ)

q(x)
dx+ log p(θ) + log p(y).

This form for L can be verified by applying the the chain rule of probability

log p(x, y | θ) = log p(x | y, θ) + log p(y | θ) to the above expression.

Since log p(θ | y) is independent of q, equation (2.17) indicates that the

bound L(q, θ) can be maximized with respect to q for any given value of θ

when the Kullback-Liebler divergence is minimized, i.e. when q(x) = p(x |

y, θ). In state space models, this is given by the fixed interval smoothing

30 CHAPTER 2. BAYESIAN INFERENCE FOR STATE SPACE MODELS

distribution and thus the smoothing algorithms of the preceding sections

can be used to find it (perhaps approximately). This is the E-step of the

algorithm.

Assuming that the distribution of x is found using the current para-

meter estimate θ(i), the corresponding lower bound is given by

L(q, θ) =

∫
p(x | y, θ(i)) log

p(x, y | θ)

p(x | y, θ(i))
dx+ log

p(θ)

p(y)

=

∫
p(x | y, θ(i)) log p(x, y | θ)dx−

∫
p(x | y, θ(i)) log p(x | y, θ(i))dx+ log

p(θ)

p(y)

= Ex

(
log p(x, y | θ) | y, θ(i)

)
+ log p(θ) + constant w.r.t. θ (2.18)

This expectation (plus the prior term) can be maximized with respect to

θ to give a new estimate of θ that again increases the lower bound on

log p(y | θ). Thus, the E-step forms this expectation and the M-step maxim-

izes it. By repeating these steps the algorithm will converge to a local max-

imum of p(y | θ) [41]. In fact, it is not necessary to maximize the expectation

with respect to θ, only to increase the lower bound. This is helpful in situ-

ations where the maximization step is intractable, since it allows approxim-

ate or partial maximization to be used. Similarly, the expectation step also

need only increase the lower bound. Algorithms making use of these par-

tial optimization steps are called generalized expectation-maximization (GEM)

algorithms. In non-linear cases, it might be impossible to guarantee to in-

crease the lower bound when forming the expectation, due to the use of an

approximate smoothing method. In this case stochastic expectation maximiz-

ation (SEM) can be used; see section 2.3.3.

The algorithm outlined here does not specify the details of its applica-

tion in practice, and the maximization step might be difficult; indeed, find-

ing an analytic expression for the expectation might be difficult, depending

on the complexity of the joint model and the form of q(x). However, it gives

an idea of how and when EM can be applied and EM algorithms exist for

many useful cases. An EM algorithm for estimating the parameters of a

linear Gaussian system (the state and observation matrices and the noise

2.1. STATE SPACE MODELS 31

covariance matrices) is given by [42]. For finite state space models, a GEM

approach to parameter estimation is given by the Baum-Welch algorithm

[43], which pre-dates the more general version of EM in [38]. [44] derives

a GEM algorithm for non-linear system estimation based on the EKF and

[45] develops one for jump Markov linear systems.

EM methods produce a single point MAP estimate for the parameters,

but a fully Bayesian treatment requires estimation of the distribution p(θ |

y1:T). A natural question is whether the EM framework can be extended

to such estimation by forming a lower bound based on a distribution over

θ, rather than just a point estimate, so that the bound is given by L(q)

with q(x, θ) a function over both parameters. In this case x and θ are being

treated identically, so the form of log p(θ | y) in equation (2.17) is replaced

with

log p(θ | y) = L(q) + KL(q||p(x, θ | y)). (2.19)

where the lower bound is given by

L(q) =
∫

qx(x)qθ(θ) log
p(X, Y, θ)

qx(x)qθ(θ)
dxdθ. (2.20)

The optimal choice for q is therefore q(x, θ) = p(x, θ | y). However, no way

of finding this will, in general, be available.

The problem can sometimes be made tractable by considering only q

distributions from a restricted family and then finding the member of this

family that maximizes the lower bound. There are multiple ways of re-

stricting q, and any restriction leads to an approximation of the solution;

lesser restrictions are likely to lead to solutions closer to the true one. This

idea is the basis of approximate variational Bayesian methods. A common

restriction on q is to consider the factorized family q(x, θ) = qx(x)qθ(θ)

(complete factorization over all variables corresponds to the mean field ap-

proximation used in physics). Rearranging equation (2.20) in terms of one

32 CHAPTER 2. BAYESIAN INFERENCE FOR STATE SPACE MODELS

of these factors, e.g. q(θ) gives

L(q) =
∫

qθ(θ)

[∫
qx(x) log p(x, y, θ)dx

]

dθ+

∫
qθ(θ) log qθ(θ) + c, (2.21)

where c is constant with respect to θ; a similar expression can be found with

respect to q(x). The term inside the square brackets can be recognized as

Eq(x)(log p(x, y, θ), so the aim is to maximize this lower bound with respect

to q(θ). It can be shown (by writing log p̃(y, θ) = Eq(x)(log p(x, y, θ) +

const. and recognizing the result as a negative Kullback-Leibler divergence

between p̃ and qθ; see e.g. [39]) that this is minimized when

log qθ(θ) = Ex (log p(x, y, θ)) + constant w.r.t. θ,

and similarly for q(x). The EM algorithm can be recovered as a special

case of this, when qθ(θ) = δ{θ}, i.e. q is restricted to have a delta function

θ marginal. In this case maximizing equation (2.21) with respect to qθ(θ)

leads to the maximization over θ found in the M-step, equation (2.18).

As with EM methods, this general formulation does not specify the de-

tails of practical variational schemes, and these may be (and often are) diffi-

cult to derive. The problems involved are often only tractable for distribu-

tions in conjugate families, since in that case only finite sets of parameters

need be updated [46]. However, variational schemes have been developed

in some useful cases. In particular [46; 47] derive a variational Bayesian

scheme for parameter estimation in the linear Gaussian case.

If variational Bayesian methods are computationally efficient but of-

ten difficult to derive and approximate, sampling methods are their op-

posite: often easy to derive and asymptotically exact, but computationally

demanding. Like the EM algorithm, most sampling approaches, take ad-

vantage of the fact that for state space models it is often easier to estimate

the joint posterior distribution p(x1:T , θ | y1:T) over states and parameters

than the posterior over parameters alone p(θ | y1:T). In doing this they

make use of the fact that marginalization in sampling methods is trivially

2.1. STATE SPACE MODELS 33

easy: simply retaining the variables in each sample over which marginaliz-

ation is required produces a sample based approximation of the marginal

distribution.

There are a number of sampling-based approaches to parameter estim-

ation. The simplest of these are MCMC schemes (see section 2.2) target-

ing the posterior p(x1:T , θ | y1:T). These can usually be constructed via

a Gibbs sampler that, for a parameter θi, targets the conditional p(θi |

x1:T , y1:T , θ−i), where θ−i is the set of parameters excluding θi. It is often

possible to find forms of this distribution that can be efficiently sampled,

for example having standard distributions. However, if not and if the state

transition and observation function can be evaluated, it is possible to use a

Metropolis-within-Gibbs scheme (see section 2.2) by targeting

p(θi | x1:T , y1:T , θ−i) ∝ p(y1:T | x1:T , θ)p(x1:T | θ)p(θi | θ−i)

= p(θi | θ−i)p(x1 | θ)

T∏

t=1

p(yt | xt, θ)

T∏

t=2

p(xt+1 | xt, θ),

where this latter equality is due to the model structure in figure 2.1. Eval-

uation of this density (the full joint likelihood) is expensive and is required

for each sample of each parameter, so this ‘sledgehammer’ formulation

should only be used as a last resort, but can be handy if all else fails.

As with state estimation, the Particle MCMC methods of [33] offer al-

ternatives to MCMC for parameter estimation using a hybrid of sequential

Monte Carlo and MCMC methods. In fact, [33] offers two different meth-

ods applicable to parameter estimation: the Particle Marginal Metropolis-

Hastings (PMMH) sampler and the Particle Gibbs (PGibbs) sampler. These

are described in detail in sections 4.3.3 and 4.3.4, respectively. The PMMH

sampler allows samples to be drawn from p(x, θ | y), whereas the PGibbs

sampler allows exact samples of p(x | y, θ) to be drawn using a particle

filter, which is useful when efficient Gibbs samplers for p(θ | x, y) are avail-

able.

34 CHAPTER 2. BAYESIAN INFERENCE FOR STATE SPACE MODELS

Online Parameter Estimation

If sequential parameter estimates are required, different methods must be

employed. Filters making use of online parameter estimates are often called

adaptive filters and these have been investigated since shortly after the de-

velopment of the Kalman filter in the early 1960s. For linear Gaussian

state space models, the problem consists of learning the state transition,

observation and noise covariance matrices; [48] summarizes much of the

early work in this area, dividing it into Bayesian [49], maximum likeli-

hood, correlation of innovations [50], and covariance matching methods.

The Bayesian methods in [48] give a general but computationally demand-

ing recursive update for the distribution of parameters that is only really

tractable in closed form for certain special cases, in particular noise covari-

ance estimation, when conjugate priors can be used.

More recent Bayesian approaches have been based around multiple model

(MM) methods, first introduced in [49]. These are extensively reviewed

in [51] and are based on the assumption that the system is unknown but

drawn from one of a number of alternative models. The filter is run for

each of these models and their posterior probability is sequentially up-

dated. There are multiple ways of combining the state estimates from this

collection of models to get overall state estimates, but a truly Bayesian ap-

proach leads to a state estimate that is a mixture model over all models in

the model set. The MM approach is based on the assumption that there

is a single underlying model across all time periods but the idea has been

extended to incorporate systems in which the model can change over time.

These interacting multiple model (IMM) algorithms were first introduced

by [52] and are also reviewed in detail in [51]. Transitions between models

are governed by a finite state space Markov chain and thus the models are

known jump Markov (linear) models. Recursive Bayesian estimation can be

used to give a posterior distribution over models.

IMM methods can be applied to parameter estimation problems by de-

fining a series of models with a range of parameter values arranged, for

2.1. STATE SPACE MODELS 35

example, in a grid over the parameter space. This has the obvious draw-

back of requiring a number of models exponential in the number of para-

meters to be estimated, so is only suitable for small parameter spaces. Fur-

thermore, it is limited to a discrete set of parameter values and requires a

transition model to be defined between parameter values, which may not

be obvious. However, the IMM method has been applied to noise estima-

tion in linear systems in e.g. [53] and [54] where, in the latter of these, it is

used as a benchmark estimator and performs well.

The recent work of [54] introduces a sequential variational Bayesian ap-

proach to the adaptive filtering problem for linear Gaussian models through

the careful use of a dynamic model for the parameters that maintains con-

jugate distributions for the noise covariance terms. [54] also draws a link

between this method and earlier innovation correlation methods such as in

[50]. It is suggested in [54] that this method can be extended to work with

the EKF and UKF models.

Many of the methods for sequential parameter estimation in linear sys-

tems can be extended to non-linear cases using the EKF and UKF, at least in

an informal way, e.g. [55], [56]. With non-linear filters it is also possible to

include parameters in an augmented state space with their own dynamic

models; this technique has been used in particle filtering [57], though not

without criticism (see section 2.3.4). Much recent effort in non-linear se-

quential parameter estimation has been focussed on parameter estimation

techniques for particle filters, and these are covered in section 2.3.4.

Likelihood-Free Parameter Estimation

Likelihood-free parameter estimation deals with the problem of parameter

(and usually also state) estimation for systems for which it is impossible to

evaluate the likelihood of the observed data. This can occur in situations

in which the state or observation density cannot be directly evaluated, but

where it is possible to simulate from these densities. In some cases, simula-

tion might simply be much easier than evaluation of the density of interest

36 CHAPTER 2. BAYESIAN INFERENCE FOR STATE SPACE MODELS

[58], but in certain special cases exact methods for the simulation of dif-

fusions exist [59; 60] that allow exact sampling from the diffusion in cases

where the transition density is only approximately tractable. Some of the

methods already encountered can be used in certain situations in which it

is not possible to calculate a likelihood. For example, the bootstrap particle

filter [61] (see section 2.3), allows approximate estimation in cases in which

evaluation of the state transition density impossible, but simulation is pos-

sible. Particle MCMC methods [33] based on this filter can be used in sim-

ilar situations and allow exact (in an MCMC sense) samples to be drawn

from the posterior of the parameters even when the transition density can-

not be evaluated. These methods are used for parameter estimation in e.g.

[58]. Both these methods rely on having tractable observation densities, so

are not suitable in all likelihood-free situations (i.e. when the observation

density is not tractable).

Another class of likelihood-free methods are approximate Bayesian com-

puting (ABC) methods, first introduced in the field of population genet-

ics by [62]. The most basic version of this idea is to draw a parameter

sample θ from its prior p(θ), then to simulate the observations (or state

in a directly observed system) using this set of parameters. If the result-

ing simulated observations are equal to the actual observations then θ is

a sample from the posterior p(θ | y). This is a simple consequence of

Bayes’ rule p(θ | y) ∝ p(y | θ)p(θ). In general, in continuous models

this will happen with probability 0 and so the method relies on the approx-

imation of accepting θ as a sample from the posterior when the simulated

observations ysim lie within some distance of the true observations y, i.e. if

‖ysim − y‖ < h. This approximation can be shown to converge to the true

posterior as h→ 0, although the error scales with O(hd), where d is the di-

mensionality of the observation space. This motivates a search for good low

dimensional summary statistics for the observations, and automatic meth-

ods to find them e.g. [63]. There are several refinements to this method.

For example, the basic rejection sampling method can be replaced by one

2.2. MARKOV CHAIN MONTE CARLO 37

based on MCMC [64] in an algorithm similar to a pseudo-marginal MCMC

scheme (see section 2.2.3). A recent review of ABC methods is given in [65].

2.2 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) methods were first introduced in [66],

which presented the famous Metropolis algorithm, later extended to the

non-symmetric case and given a more statistical focus in [67], leading to the

Metropolis-Hastings algorithm. These are algorithms for drawing samples

from a target distribution π by setting up a Markov chain with the target as

its stationary distribution. They have become extremely popular in statistics,

starting with [68] in the early 1990s, as methods of drawing samples from

the usually intractable posterior distributions arising in Bayesian statistical

approaches. The basic Metropolis-Hastings algorithm works by drawing a

sample from a proposal distribution q and accepting this proposal as the

next state of a Markov chain with an acceptance probability α given by

α(x, y) = min

(

1,
π(y)q(x | y)

π(x)q(y | x)

)

, (2.22)

where x is the current state of the chain and y is the proposal. Following

[69], this can be shown to work because the chain thus created has a trans-

ition kernel p(xt+1 | xt) given by

p(xt+1 | xt) = α(xt, xt+1)q(xt+1 | xt) + δ{xt+1=xt}

(

1−

∫
α(xt, y)q(y | xt)dy

)

,

with the first term on the right hand side arising from accepting a pro-

posal and the second term arising from the probability of rejecting any

proposal. Taking equation (2.22) for α(xt, xt+1) and α(xt+1, xt) and mul-

tiplying each by the corresponding denominator of the fraction inside the

minimum gives

π(xt)q(xt+1 | xt)α(xt, xt+1) = π(xt+1)q(xt | xt+1)α(xt+1, xt).

38 CHAPTER 2. BAYESIAN INFERENCE FOR STATE SPACE MODELS

Combing this with the transition kernel gives rise to the detailed balance

equations

π(xt)p(xt+1 | xt) = π(xt+1)p(xt | xt+1), (2.23)

which can be seen by noting that the terms arising from rejection cancel

because in that case xt = xt+1 and thus π(xt) = π(xt+1). Integration with

respect to xt then gives

∫
π(xt)p(xt+1 | xt)dxt = π(xt+1),

meaning that xt+1 is distributed according to the target density π, if xt is

distributed according to π(xt). Thus, π is the stationary distribution of the

chain, meaning that if for some t the state of the chain is distributed π

then it will continue to be thereafter. It remains to show that the chain

will ever reach that distribution. Fortunately, it can be shown that for a

chain with a stationary distribution, the only further conditions required

for the chain to converge to that distribution and for that distribution to be

the limiting distribution, i.e for limn→∞ ‖Pn(xt, ∙) − π(∙)‖ = 0, where Pn is

the distribution of the chain after n steps, are that the chain be irreducible

and aperiodic; see [70] and [71]. Irreducibility requires that q must be such

that all possible states can be reached. Aperiodicity requires that q cannot

only return to certain of states with a period greater than 1. In general,

these conditions on q, along with domain considerations that ensure that q

can reach the whole of the support of π, are “very weak” [72] and are the

only restrictions on its choice.

The purpose of MCMC methods is to draw a series of samples Xt that

can be used to approximately evaluate the expected value of function f of

a random variable with the target distribution π, using the approximation

Eπ(f(X)) ≈ f̄N =
1

N

M+N∑

t=M+1

f(Xt).

2.2. MARKOV CHAIN MONTE CARLO 39

In fact, this is the only meaningful way to use MCMC samples: even eval-

uating the probability of a variable drawn from the target being in some

region S is evaluating a counting function f(x) = I{x∈S}. It is therefore very

important that this approximation holds, and this is dealt with by the er-

godic property of Markov chains e.g. [72; 73] that states that this holds in

probability for positive recurrent (for which the existence of a stationary

distribution is a sufficient condition), aperiodic Markov chains, i.e. that

p(f̄N → Eπ(f(X))) = 1.

The ergodic property is often referred to as meaning that the time average

of a process path converges to the space (or ensemble) average. Ergodicity

allows a law of large numbers and central limit theorem to be developed

for these methods, which ensure the correct asymptotic behaviour and es-

tablish rates of convergence of samples to the true values, respectively [70].

2.2.1 Site-by-Site, Gibbs and Independence Sampling

Almost any proposal distribution will give a Markov chain with the target

distribution as its stationary distribution, but the choice of proposal can

affect the number of steps taken for the chain to converge to that distri-

bution, as well as its mixing properties, that is, the time it takes to explore

the support of the stationary distribution once that has been reached. For

example, if almost every proposal is rejected, reaching and exploring the

target is likely to be a slow task, with very high correlation between suc-

cessive samples (as most will be the same as their predecessor).

In high dimensions, this problem can be particularly acute, since areas

of high target probability can be very small, with only low probability of

proposals hitting them. To alleviate this, a single component or subset of

components of the state can be updated at each step instead of the entire

state. This was, in fact, the original scheme proposed by [66]. The accept-

40 CHAPTER 2. BAYESIAN INFERENCE FOR STATE SPACE MODELS

ance probability for a proposal yi for this site is given by

α(xi, yi | x−i) = min

(

1,
π(yi | x−i)qi(xi | yi, x−i)

π(xi | x−i)qi(yi | xi, x−i)

)

, (2.24)

where xi is the component (or block of components) being updated and x−i

is the remaining portion of the state (so that x = xi ∪ x−i). The conditional

target distribution π(∙ | x−i) is called the full conditional of the ith compon-

ent. The acceptance ratio in equation (2.24) can be derived from that in

equation (2.22) by setting the proposal q(y | x) = qi(yi | x)δ{y−i=x−i}.

A special version of site-by-site updating is given by the Gibbs sampler,

introduced by [74] and [68]. This uses the full conditional as the proposal

density, i.e. q(yi | xi, x−i) = π(yi | x−i), leading to complete cancellation

of the fraction in equation 2.24 and thus the acceptance of all proposals.

When the full conditionals are tractable and easy to sample, such schemes

are popular [75] because they are often computationally efficient and do

not require the design of a proposal.

The choice of which components to sample together is referred to as a

blocking scheme and it can make a significant difference to the mixing rate

of the chain. This is because a sampler drawing a block of n components is

sampling in the n-dimensional hyperplane defined by the corresponding n

axes in sample space; single site updates are sampling along the line of one

of the state space axes. Thus, if the corresponding distribution in that hy-

perplane is relatively compact, only small moves will be likely, leading to

slow convergence. For example, the rate of convergence of a Gibbs sampler

for a bivariate normal can be shown to be given by the square of the correla-

tion between components [73], with highly correlated distributions conver-

ging more slowly. This can be seen intuitively in figure 2.3. Thus, blocking

together highly correlated components can improve efficiency [69].

A simple proposal method that can be used effectively inside site-by-

site schemes is the independence sampler, first discussed by [67] and general-

ized by [70], in which the proposal function does not depend on the current

2.2. MARKOV CHAIN MONTE CARLO 41

Figure 2.3: Strongly correlated components (left) can cause slow con-
vergence for site-by-site schemes compared to uncorrelated components
(right) because these schemes can only sample in the direction of one axis
in each step

state, giving an acceptance probability of

α(x, y) = min

(

1,
π(y)q(y)

π(x)q(x)

)

.

In [76] this algorithm is compared to one-dimensional importance and re-

jection sampling and is found to work well when the proposal distribution

is similar to the target distribution, but with heavier tails [69]. If the ratio

infx
q(x)
π(x)
= 0, then the algorithm is not geometrically convergent and thus

can become stuck at certain points [73]. On the other hand, if this is not

the case, then rejection sampling is possible, since a proposal distribution

that can be scaled to be larger than π everywhere can be found (see e.g.

[36]) and is probably preferable. In [73] it is therefore noted that “it is rare

for the independence sampler to be useful as a stand-alone algorithm,” but

that “within a hybrid strategy which combines and mixes different MCMC

methods, the method is extremely easy to implement and often very effect-

ive.”

2.2.2 Adaptive MCMC

The proposal density and its relation to the target are crucial factors in de-

termining the performance of MCMC schemes. However, before running

42 CHAPTER 2. BAYESIAN INFERENCE FOR STATE SPACE MODELS

Figure 2.4: Example, from [78], of adaptive MCMC destroying ergodicity.
Red lines show true mean, green dotted lines show sample mean for the
chain shown. The adaptive scheme (bottom right) that does not target π

is formed by using both kernel 1 and kernel 2 (top row) at various points,
both of which individually target π. The mixture distribution formed using
a mixture of kernels 1 and 2 (bottom left) does target the correct distribution
π

an MCMC algorithm practically nothing might be known about the shape

of the target distribution, so designing a proposal that produces ‘good’ res-

ults might be impossible. One possibility is to use a range of proposals with

different properties to avoid the pathologies of any particular method [77].

Furthermore, as MCMC sampling progresses it will start to reveal inform-

ation about the target distribution and the performance of the proposals.

It is tempting, therefore, to use this information to refine the proposal, for

example reducing its variance if rejection is too high.

These are examples of adaptive MCMC strategies, defined in the broad-

est sense as being MCMC strategies that use different transition kernels

at each step. In general, however, such schemes must be used with great

caution because they may not be ergodic with respect to π, even if all in-

dividual transition kernels target π. It should be noted that this is not the

same as using mixture model proposals, which are single proposal densit-

ies and are therefore covered by the basic case. These are less desirable as

2.2. MARKOV CHAIN MONTE CARLO 43

proposals because each component of the mixture has to be evaluated to

evaluate the mixture density at a particular point. Non-convergence when

using multiple kernels with the same stationary distribution is perhaps sur-

prising but its effects can be seen in several simple but compelling counter-

examples such as those in [78], [79] and [80]. Samples from the set-up in

[78] are shown in figure 2.4. It is therefore important to understand which

adaptive strategies do preserve π-ergodicity; this has been studied in par-

ticular by [81], [79] and [80].

The simple hybrid algorithm [77] with a kernel chosen independently

of the current state at each step either randomly (random sweep) or in a cycle

(systematic sweep) has been shown to converge correctly in [70]; [80] gives a

straightforward proof. In fact, the individual kernels need not have π as a

stationary distribution, as long as they can be combined to produce a single

iteration of an MCMC sampler that does [77; 70]. This formulation can be

seen to include the Gibbs sampler in which each kernel does not target π,

since only some components are updated. However, when taken together,

a full set of Gibbs update steps (i.e. updating every site) should target π.

Some caution must still be exercised: [80] gives an example of a system-

atic sweep scheme that destroys irreducibility of the chain by making some

states unreachable.

A related adaptive scheme allows the probability of choosing to up-

date a particular component in a random sweep scheme to depend on the

current state of the chain. In this case the acceptance probability must be

modified in order to preserve π as the stationary distribution [69] from that

in equation (2.24) to

α(xi, yi | x−i) = min

(

1,
π(yi | x−i)s(i | yi, x−i)qi(xi | yi, x−i)

π(xi | x−i)s(i | xi, x−i)qi(yi | xi, x−i)

)

,

where s(i | yi, x−i) is the conditional probability of modifying site i.

Two other algorithms that allows continuous adaptation without dam-

aging ergodicity are the adaptive direction sampling (ADS) and the related

adaptive Metropolis sampling (AMS) algorithms of [82] and [72]. ADS

44 CHAPTER 2. BAYESIAN INFERENCE FOR STATE SPACE MODELS

works by augmenting the state space to include a (fixed size) set of previ-

ous state points upon which adaptation is based. This is done by sampling

along a line between the existing point and one of the previously visited

states, with the idea that such a line is increasingly likely to traverse the

high probability regions of the target. The algorithms were observed to

have “inconsistent performance” on some problems on which traditional

methods performed well. In general, algorithms that can incorporate the

adaptive parameters into an extended state space retain ergodicity by us-

ing a single proposal on this extended state space.

General conditions on adaptation to preserve π-ergodicity have now

been discovered [79; 80] and can be summarized broadly as precluding in-

finite adaptation in the kernel. More technically, they can be boiled down

to the diminishing adaptation condition [80; 83] specified by

lim
n→∞

sup
x∈X

‖PΓn+1
(x, ∙) − PΓn

(x, ∙)‖ = 0 in probability

where PΓn
(x, ∙) is the nth transition kernel and X is the state space, and the

technical bounded convergence condition

{Mε(Xn, Γn)}
∞
n=0 is bounded in probability, ε > 0,

for Mε(x, γ) = inf{n ≥ 1 : ‖Pn
γ (x, ∙) − π(∙)‖ ≤ ε}.

[84] notes that this latter is “a technical condition that is satisfied for al-

most all reasonable adaptive schemes”. An alternative approach is taken

by [79], which also establishes ergodicity and some other results for chains

with vanishing adaptation and shows that adaptive versions of the random

walk Metropolis and independent Metropolis-Hastings algorithm can be

constructed to satisfy the conditions given.

Since infinite adaptation is forbidden, a very simple solution is to stop

adaptation after a certain fixed time period [78]. A more sophisticated ad-

aptive MCMC and the first successful application of diminishing adapta-

tion is the adaptive Metropolis algorithm of [85] and the corresponding ana-

2.2. MARKOV CHAIN MONTE CARLO 45

lysis that showed that it retained ergodicity. This algorithm uses a Gaussian

proposal with a covariance matrix that can adapt based on the entire state

space history seen up to that point. The adaptation must be performed ac-

cording to a specific formula that allows the ergodicity property of the res-

ulting chain to be proven. [81] relaxes some of these conditions and gives

an adaptive version of the standard random walk Metropolis algorithm.

The establishment of bounds on the adaptation process within which

ergodicity is maintained has lead to numerous proposed adaptive schemes

within those bounds. [86] proposed a single component version of the ad-

aptive Metropolis algorithm. [83] propose two further schemes: state de-

pendent scaling, which attempts to alter the scale of a Gaussian proposal to

be optimal at the current point, and regionally adapted Metropolis, which

divides the state space into a number of disjoint regions and then attempts

to scale Gaussian proposals in each of these regions to be optimal. [86]

proposes delayed rejection adaptive Metropolis in which, if a proposal is

rejected, a number of refined proposals can be submitted, allowing local

adaptation, while still retaining the desired stationary distribution. The ad-

aptive version of this algorithm builds this delayed rejection strategy into

an adaptive Metropolis algorithm, giving both local and global adaptability

and an ability to counter poor calibration of either.

A different approach is taken by the regeneration algorithm of [87]. This

is based on the idea of Markov chain regeneration which, in discrete state

spaces, occurs when the chain revisits some nominated state, and which

with some work can be extended to continuous state space Markov chains.

At regeneration points the sample path of the Markov chain to the next

regeneration is independent of the sample path from the previous regen-

eration point to the current one. This allows the transition kernel of the

chain to be adapted at that time using the entire history of the chain up to

that point as a basis for the adaptation. The algorithm allows an unlim-

ited amount of adaptation but in high dimensional spaces is limited by the

difficulty of obtaining frequent regeneration [87].

46 CHAPTER 2. BAYESIAN INFERENCE FOR STATE SPACE MODELS

Adaptive MCMC continues to be an active area of both theoretical and

applied research, for example [88] develops some further limit theorems

for adaptive MCMC and [89] apply adaptive MCMC to image restoration.

Optimal Acceptance Rates

If adaptive methods can adjust their proposals to control the acceptance

rate, it is natural to ask what acceptance rates they should target. There are

some limited theoretical and experimental results on this. Results in [90]

and [91] that show that for one-dimensional samplers with Gaussian pro-

posals and targets, 0.44 is the optimal acceptance rate. It is also shown that

under certain conditions the optimal acceptance rate for MCMC methods

with Gaussian proposal and target is exactly 0.234 as the dimensionality of

the system goes to infinity.

2.2.3 Variants of MCMC

Along with adaptive MCMC a wide variety of other methods exist for im-

proving the efficiency and applicability of MCMC. This section briefly de-

scribes a few important variants, including methods to suppress wasteful

random walk behaviour; slice sampling, an alternative sampling scheme

to Metropolis-Hastings; ensemble methods for highly multimodal posteri-

ors; reversible jump MCMC for variable dimensional state spaces; exact

sampling methods; and pseudo-marginal methods that allow sampling us-

ing only unbiased likelihood estimates.

Suppressing Random Walk Behaviour

The standard Metropolis-Hastings algorithm is based around a random

walk, with proposals made in random directions at each step. Even if every

proposal is accepted, this still requires roughly n2 steps in order to reach

points n step-sizes away, due to the diffusion behaviour of random walks.

This can lead to slow convergence and mixing, because it takes many steps

2.2. MARKOV CHAIN MONTE CARLO 47

to reach the stationary distribution and subsequently to explore it. Par-

ticularly if each step is expensive to compute, it can be desirable to try to

reduce this random walk behaviour by trying to encourage moves in use-

ful directions. Several methods have been proposed to try to help with this,

and such methods are worth investigation when standard MCMC methods

exhibit slow exploration of the state space.

Overrelaxation [92], generalized to systems with non-Gaussian condi-

tional distributions in [93], aims to suppress random walk behaviour in or-

der to improve performance in highly correlated systems by drawing Gibbs

samples that are negatively correlated with the previous samples in such a

way as to leave the conditional distribution unchanged. For non-Gaussian

systems [93] extended this method using order statistics: k proposals are

drawn from the conditional, ordered along with the current sample, and

then the one at the opposite position in the order to the current sample is

selected (i.e. if the current sample is in ith place, sample k − i from the

ordered list including the original sample is chosen). Again this can be

shown to leave the conditional distributions unchanged, but can lead to

dramatic speed-ups in simulation when the conditional densities are easy

to sample. Clearly, this method is only useful when an ordering is possible

on the samples and so, in general is only applicable to one-dimensional

conditionals.

The Hamiltonian Monte-Carlo of [94] uses gradient information about

the target in addition to the target function itself in order to direct the mo-

tion of the MCMC random walk. The method uses a state augmented with

momentum variables and is, conceptually, related to the ADS scheme [82]

discussed above, which also aims to use recent moves to choose the direc-

tion of the current sampling step. A step in the chain can either randomly

update the momentum variables or use them to direct the current motion

according to mechanical principles, with the target function acting as an

energy function, hence its gradient being used to update the momentum

from step to step.

48 CHAPTER 2. BAYESIAN INFERENCE FOR STATE SPACE MODELS

Figure 2.5: The intuition behind slice sampling is to uniformly sample in
a space of one higher dimension than the target function π by introducing
an auxiliary variable u. Only the non auxiliary part of the samples fall-
ing beneath the target are retained, but these are drawn from a probability
density proportional to the target

Slice Sampling

Slice sampling [95; 96] is an alternative MCMC scheme to Metropolis-Hastings

which is based on an efficient implementation of the intuition that the dens-

ity of a function in an area can be approximately measured by counting the

number of uniformly random samples drawn from an enclosing box that

lie underneath it. The number of samples underneath the function in each

area will be proportional to the density of the function there. Thus, by re-

taining only these samples, a set of samples with density proportional to

that of the target function can be created. Figure 2.5 shows this idea.

[95; 96] set out an efficient, locally adaptive scheme for this, illustrated

in figure 2.6. The idea (in one dimension) is roughly as follows. Starting at a

current sample xi, the auxiliary variable u ′ is drawn from a line bounded by

the current target value π(x ′). A slice is then generated as a line (hyperplane

in the general case), with ends determined initially by being some width w

away from the current sample xi, but being allowed to move outwards until

they are outside the target (i.e. until u ′ > π(xL) and u ′ > π(xR)). The width

w is a parameter of the method chosen by the user. A sample for x ′ is then

drawn from this slice and, if it falls below the target i.e. if u ′ < π(x ′) it is

2.2. MARKOV CHAIN MONTE CARLO 49

Figure 2.6: Slice sampling scheme from [96], starting at xi and sampling x ′

retained as a sample from π. Otherwise, the corresponding end point xL or

xR to which it is closest is moved inwards and the process repeated. It is

possible to show that this scheme satisfies detailed balance and thus is an

MCMC scheme that targets π.

Slice sampling can be used in similar situations to Metropolis-Hastings,

including in the update of individual components of the state from their

full conditional densities. It offers an alternative scheme that, while it still

contains a step-size parameter w, is somewhat less sensitive to its choice

than Metropolis-Hastings is to the width of its proposal density. Like Metropolis-

Hastings or Gibbs sampling, slice sampling can be used as a sampling

component within larger MCMC schemes and merits investigation in cases

when standard Metropolis-Hastings or Gibbs schemes exhibit poor beha-

viour. [96] shows how overrelaxation can be used with slice sampling in

order to suppress random walk behaviour.

Simulated Tempering and Extended Ensemble MCMC

The convergence phase of MCMC can be thought of as being related to

stochastic optimization, since it is generally aiming to find areas of high

probability density in the target distribution. As with optimization, multi-

modal target distributions can cause difficulty for MCMC schemes, with

the chain risking getting stuck for very long periods in local target max-

50 CHAPTER 2. BAYESIAN INFERENCE FOR STATE SPACE MODELS

ima if the step size is insufficient to escape them. Hamiltonian and ADS

type methods can accentuate this problem by encouraging the chain re-

main trapped in these areas. Therefore efforts have been made to incorpor-

ate heuristic techniques from multi-modal optimization such as simulated

annealing [37] into MCMC methods to help improve mixing. Simulated

annealing aims to allow better exploration of a multimodal target through

the introduction of a series of related, but less ‘peaky’ distributions, often

produced through exponentiation of the target by an exponent between 0

and 1. These can be thought of as corresponding to energy or temperature

levels, with transitions throughout the distribution easier at high energies

(exponents near 0).

A naive attempt to apply simulated annealing to MCMC might start

with the highest energy distribution and progress to lower energy distribu-

tions over time, as in simulated annealing. When the lowest energy level

(the target distribution) is reached, a random walk could be run from there

with the aim of starting in an area of high target density. Such a scheme

can, however, be shown to produce biased samples. [97] and [98] proposed

a modified scheme, simulated tempering, which removes this bias, allowing

simulated annealing ideas to be used within MCMC schemes by allow-

ing the chain to make transitions between the various energy levels. Only

samples coming from the lowest energy level, the true target distribution,

are retained. The idea of this is that by having the ability to move into

easier to explore higher energy levels, the chain will be able to to mix more

effectively, accessing more of the target space more quickly.

A related idea is that of extended ensemble MCMC, including (similar or

identical) methods known by the names replica exchange Monte Carlo [99],

Metropolis-coupled MCMC [100] and parallel tempering. Unlike simulated

tempering which uses a single chain that can transition between energy

levels, these methods create an independent chain at each energy level,

and introduce a transition kernel that can exchange the value of the chains

at neighbouring energy levels, an idea first introduced in [99]. This can be

2.2. MARKOV CHAIN MONTE CARLO 51

shown to preserve the stationary distributions at each energy level and al-

lows high energy chains which should be able to explore the space easily to

‘transmit’ their new positions to lower energy chains. [101] reviews a large

number of related methods in this area. The almost independent nature of

the chains lends these methods to efficient parallel implementation, at least

with parallelization up to the number of chains.

A tricky practical problem with the implementation of these methods

is the choice of appropriate energy levels; [102] considers theoretical ap-

proaches to optimal scaling of these.

Exact Sampling

A different idea is that of exact sampling or coupling from the past, originally

proposed by [103]. This is based around the idea of coupled Markov chains

(ones that share a random number generator). The idea is that once two

coupled chains get into the same state, since they share a random num-

ber generator, they will never separate in the future. This is called coales-

cence. If coupled chains were started from all possible initial states then,

after they had coalesced, they must be in a state from the stationary dis-

tribution since any possible starting value would have arrived at that co-

alesced state. However, it is not sufficient just to simulate forward until

coalescence occurs because the conditions under which coalescence occur

might themselves affect the distribution (e.g. if points only coalesce when

one state element reaches 100 then sampling after seeing coalescence will

deliver biased samples).

To get around this, simulation is run to time 0 from some point in the

past, −T . If by time 0 coalescence has not occurred then simulation is re-

started from further back, e.g. −2T . Once the starting point is far back

enough so that coalescence has occurred by time 0, the time 0 sample can be

taken as an exact sample from the stationary distribution. However, there

are usually far too many possible starting points (often an infinite amount)

for simulation from them all to be feasible, so the method only works if

52 CHAPTER 2. BAYESIAN INFERENCE FOR STATE SPACE MODELS

a small number of chains can be used to bound the entire ensemble. For

example, if one dimensional chains never cross then simulations can be

run from the most extreme starting points and when these chains have

coalesced, it is certain that all possible chains would have done so. This

algorithm is more easily applied to finite state spaces, but coalescence is

related to the idea of regeneration used by [87] in continuous spaces. [104]

links the idea of perfect sampling to regenerative versions of simulated

tempering schemes and relaxes the backward-time idea described above

so that forward-time simulation can be used.

Reversible Jump MCMC

In some problems the dimensionality of the state space can be unknown, for

example in model selection problems where the number of parameters of

the model is itself one of the unknown parameters. In this case the stand-

ard MCMC method must be adapted to allow a variable-dimensionality

state space. This can be done through the use of reversible jump MCMC

(RJMCMC), first introduced by [34].

RJMCMC formalizes the use of a proposal and its reverse that move

between spaces of different dimensionality. It does this through the use

of invertible mappings h((x, u)) = (x ′, u ′), differentiable in each direc-

tion, (diffeomorphisms) that map from variables in one space X (so that

x ∈ X) to another space of possible different dimensionality X ′ (so that

x ′ ∈ X ′). The u and u ′ variables are collections of the random variables

necessary to generate the proposals, for example the standard Gaussian

random variables in a random walk proposal. Thus h : X × U → X ′ × U ′

and h−1 : X ′ × U ′ → X × U. These transforms replace the standard pro-

posals in the acceptance ratio in equation (2.22), with the requirement for

differentiability arising from the use of a change of variables in the integ-

ration of the detailed balance equation (2.23); see e.g. [34; 105] for further

details.

In practice reversible transition proposals between spaces can be used

2.2. MARKOV CHAIN MONTE CARLO 53

as the h transforms (see, for example, chapter 4), and these can be used in

place of the standard proposal density and its reverse in equation (2.22).

Thus RJMCMC is widely and easily applicable to many problems, particu-

larly in model estimation.

Pseudo-Marginal MCMC

A recent introduction to the MCMC sampling field has been the Particle

MCMC methods of [33]. These methods are covered in detail in chapter

4, but are essentially an application of the pseudo-marginal MCMC ideas

introduced in [106] and extended and formalized in [107], using sequen-

tial Monte Carlo to obtain an unbiased approximation of the target density.

Pseudo-marginal MCMC is based on using an unbiased Monte-Carlo ap-

proximation r(x) of the target in place of the target π(x) in the acceptance

probability in equation (2.22). This can be seen to work (following [108]) by

introducing a variable

w(x) =
r(x)

π(x)
, (2.25)

which quantifies the Monte-Carlo error in r(x). The variables x and w can

be sampled using standard MCMC by introducing a target distribution

p̃(w, x) = p(w | x)r(x) over x and w using a proposal q(x ′, w ′ | x,w) =

p(w ′ | x ′)q(x | x ′). The conditional p(w | x) is easy to sample through the

relationship of w and x in equation (2.25).

The acceptance ratio of a chain targeting (x,w) is given by

α((x ′, w ′), (x,w)) =
p̃(x ′, w ′)p(w | x)q(x | x ′)

p̃(x,w)p(w ′ | x ′)q(x ′ | x)

=
r(x ′)q(x | x ′)

r(x)q(x ′ | x)
, (2.26)

using the definitions of p̃ and r(x). The marginal of the target of this chain

54 CHAPTER 2. BAYESIAN INFERENCE FOR STATE SPACE MODELS

p̃(x,w) can be written as

p̃(x) =

∫
p̃(x,w)dw

= π(x)

∫
p(w | x)w(x)dw

= π(x)E (w | x) ,

where the relationship in equation (2.25) is used to go from the first to

second line. So, if E(w | x) = c, where c is constant, then the marginal

p̃(x) will be proportional to the target π(x). For this to be the case it is

necessary for

E (w | x) = E

(
r(x)

π(x)
| x

)

=
1

π(x)
E (r(x) | x) = c,

i.e. for E (r(x) | x) = cπ(x). This is satisfied (with c = 1) when r(x) is an

unbiased estimator of π(x) for all x. Therefore, this method allows unbiased

estimators of a target to be used as in equation (2.26) to create an MCMC

method with the true target as its stationary distribution. For state space

models, particle filters provide such an unbiased estimator of likelihood

and so can be used to draw samples from a target, as in Particle MCMC

methods [33].

2.2.4 Diagnostics

The methods outlined so far in this section allow MCMC samples to be gen-

erated from the target distribution once the chain has converged to the sta-

tionary distribution. The question of how to tell when a chain has reached

its stationary distribution still remains. Diagnostics of this must always be

heuristic, since in general nothing is known about the target distribution

and so any test of ‘convergence’ can only measure convergence between

MCMC steps and not against the true distribution. There is always the

risk, therefore, of misdiagnosis of slowly mixing chains as converged. The

2.3. SEQUENTIAL MONTE CARLO METHODS (PARTICLE FILTERS) 55

problem is somewhat analogous to that of detecting the optimum in global

optimization: it is easy to tell that a local optimum has been reached but

essentially impossible (in reasonable time) to determine whether or not it

is the global optimum.

Such problems “lead many theoreticians to conclude that all diagnostics

are fundamentally unsound" [109]. Nevertheless, there have been a very

large number of suggestions for ways in which MCMC convergence can

be detected. [109] lists thirteen different convergence diagnostics from the

literature each with their own pathological cases and successes. Further

sets of convergence diagnostics are examined in [110] and [111]. Many dia-

gnostics, such as that found in [69], are based on the statistical comparison

of the output of multiple chains with different starting points, with con-

vergence being assumed if they are sufficiently similar. Visual inspection

also remains popular, with [112] and [113] providing some enhanced visu-

alization methods for assessing convergence. A risk with any convergence

criteria is that its use will introduce some systematic bias into the samples

produced. This is examined for a number of convergence diagnostics in

[114].

A recent general guide to MCMC convergence analysis is given in [115].

The conclusion of this and other studies is that MCMC diagnostics can be

useful but should be used with caution since all have faults and to be most

effective a number should be used together so as to minimize their chance

of serious misdiagnosis.

2.3 Sequential Monte Carlo Methods (Particle Filters)

Sequential Monte Carlo (SMC) methods, often known as particle filters in the

domain of state space models, are approximate methods able to sequen-

tially sample from a sequence of distributions of increasing dimensional-

ity. They are based on importance sampling as shown in equation (2.15)

and can be thought of as approximating a distribution π(x) of interest as a

56 CHAPTER 2. BAYESIAN INFERENCE FOR STATE SPACE MODELS

weighted collection of samples (particles) xi so that

π(x) ≈
∑

i

wiδ{xi},

with weights given by each sample’s importance weight π(xi)

q(xi)
, where q is

the importance distribution from which samples were drawn. Integration

over this distribution can then be approximated as a sum, so that

Eπ(h(x)) =

∫
h(x)π(x)dx ≈

∑

i

wih(x
i).

Unlike MCMC methods, they can be updated sequentially as more data

becomes available, and so are of particular interest for on-line estimation.

In state space models, they can be used to draw samples from successive

filtering distributions for the full sequence of state variables p(x1:t | y1:t).

SMC methods can also be used to sample from other distributions via the

SMC sampler algorithm [116], which can be used in similar applications as

MCMC methods. Choices of intermediate distributions similar to those

in simulated tempering can allow highly multimodal distributions to be

sampled effectively.

The idea of using importance samples in filtering evolved from earlier

approximation schemes that used grid-based approximations either based

on point masses on regular grids [117], or on spline approximations of vari-

ous complexities, e.g. [118]. Limited computational resources in the 1970s

meant work in that era tended to focus on more sophisticated interpola-

tion schemes to reduce the storage burden of dense grids [119]. The early

1980s saw a hiatus of interest in such approximations, but by the late 1980s

increases in computing power, particularly storage, “motivated a renewed

look at simpler methods” [119]. [120] used piecewise linear approximations

and [119] proposed piecewise constant approximations to the densities of

interest. A general problem with such methods was that the construction

of the grid, especially when the density functions involved are multimodal,

2.3. SEQUENTIAL MONTE CARLO METHODS (PARTICLE FILTERS) 57

can be nontrivial [120; 119; 61]. Sequential use of importance sampling

approximations first appeared in [61]. The name particle filter seems to

have originated in [121], although individual samples were referred to as

particles before this, for example in [122].

2.3.1 Basic Algorithm

Importance sampling can be used to approximate the integrals of functions

over the filtering distribution as in equation (2.15) to give

∫
h(x1:t)p(x1:t | y1:t)dx1:t ≈

∑

i

p(xi
1:t | y1:t)

q(xi
1:t)

h(xi
1:t)

where q(x1:t) is an importance density for the sample. This can be thought

of as defining an approximate distribution for p(x1:t | y1:t) as

p(x1:t | y1:t) ≈
∑

i

p(xi
1:t | y1:t)

q(xi
1:t)

δ{xi
1:t}

=
∑

i

wi
tδ{xi

1:t}, (2.27)

where wi
t is an importance weight for sample i. [123] calls this the empirical

measure for the filter. Sequential updating of this density is sufficient for fil-

tering and can be arranged by careful choice of the importance distribution

q to make it sequentially calculable, so that

q(x1:t) = q1(x1 | y1)

t∏

s=2

qs(xs | x1:s−1, y1:s).

Using this definition, q can be defined recursively as

q(x1:t) = q(x1:t−1)qt(xt | x1:t−1, y1:t),

meaning that a sample of x1:t can be drawn from q by augmenting an ex-

isting sample from q(x1:t−1) via a new xt sample from the qt distribution,

which can be calculated at time t. Using this importance density, the em-

58 CHAPTER 2. BAYESIAN INFERENCE FOR STATE SPACE MODELS

pirical measure in equation (2.27) can be expressed recursively as

p(x1:t | y1:t) ≈
∑

i

p(yt | xi
t)p(x

i
t | xi

1:t−1)

p(yt | y1:t−1)qt(x
i
t | xi

1:t−1, y1:t)
wi

t−1δ{xi
1:t}

=
1

p(yt | y1:t−1)

∑

i

wi∗
t δ{xi

1:t}

where

wi∗
t =

p(yt | xi
t)p(x

i
t | xi

1:t−1)

qt(x
i
t | xi

1:t−1, y1:t)
wi

t−1. (2.28)

This form is chosen because the observation likelihoods p(yt | y1:t−1) are

generally intractable, but by defining the tractable unnormalized weight

wi∗
t and noting that the empirical density must be a normalized probability

density, normalized weights as in equation (2.27) can be calculated as

wi
t =

wi∗
t∑

i wi∗
t

.

This sequential update of the weights in equation (2.28) is the basis of the

sequential importance sampling (SIS) algorithm. Furthermore, the unnor-

malized weights can be used to estimate the observation likelihood, since

the normalizing constant at each time is p(yt | y1:t−1)
−1, which is approx-

imated by
(∑

i wi∗
t

)−1
, so that

p(y1:t) ≈
t∏

s=1

∑

i

wi∗
t .

In fact (and crucially for the use of the particle filter inside pseudo-marginal

MCMC type methods) this can be shown to be both a consistent [123] and

unbiased estimator of the likelihood [124] (proposition 7.4.1); a simpler

proof of this latter is given in [125].

Using the state transition density as the importance density in each time

period, i.e. choosing qt(x
i
t | xi

1:t−1, y1:t) = p(xi
t | xi

1:t−1), yields a particularly

simple form of the filter, known as the bootstrap filter [61]. In this case the

2.3. SEQUENTIAL MONTE CARLO METHODS (PARTICLE FILTERS) 59

weight update in equation (2.28) simplifies to wi∗
t = p(yt | xi

t)w
i
t−1. This

form has the advantage that it is not necessary to evaluate the state trans-

ition density at any point, merely to sample from it. On the other hand, the

performance of this importance distribution can be very poor if the state

transition model has very little noise, since this results in a densely concen-

trated importance function that might not align well with the true posterior

filtering distribution. The bootstrap method appears to have been intro-

duced independently several further times: in [122], as the condensation

method of [126] and as the sequential imputations method of [127]

Sequential Importance Resampling

The idea of importance sampling is to distribute samples into ‘important’

areas in the sample space, i.e. areas in which the target distribution has

high mass. The perfect importance distribution is the target distribution

itself, in which case all samples will have equal weight. In general, the

variance of the sample weights gives a good idea of the quality of the ap-

proximation and is closely related to the Monte Carlo variance of estimates

of functions calculated using the samples (equal in the case when calculat-

ing E (h(x)) with h(x) = 1, although in this case Monte Carlo methods are

rather redundant). Thus, it is generally sensible to try to maintain low vari-

ance amongst the sample weights. In an attempt to quantify this [128; 76]

introduced the concept of effective sample size, defined as

NESS =

(
∑

i

(wi
t)

2

)−1

which attempts to quantify the variance of the importance sampling es-

timator in terms of an estimator based on NESS samples from the target

distribution.

Unfortunately for the SIS scheme, it has been shown that weight vari-

ance will increase (stochastically) over time [129] (based on a theorem from

[128]) and that typically this will lead to an exponential increase in the vari-

60 CHAPTER 2. BAYESIAN INFERENCE FOR STATE SPACE MODELS

ance of estimated quantities [123]. In practice this means that after some,

usually small, number of filtering steps almost all the weight will be asso-

ciated with a single sample and the effective sample size will be very close

to 1. This sample need not be a good approximation of the filter density, it

is simply the best of a potentially very bad bunch.

To combat particle degeneration, the filtering distribution can be res-

ampled, a process that aims to produce a new set of samples approximating

the filter distribution but with a more even weight distribution. This new

set of samples should maintain the property that the estimates of integrals

of functions over it are unbiased. A resampled distribution can be given by

p(x1:t | y1:t) ≈
∑

i

Ni

N
δ{xi

1:t},

with E
(
Ni | w1:N

t

)
= Nwi

t sufficient to ensure that this new approximation

is unbiased. Here Ni can be thought of as the number of offspring of sample

i in the new approximation. It should be noted that the Monte Carlo vari-

ance of estimates based on this new approximation cannot be better than

that of those based on the old approximation, so the latter should always

be used for making these estimates [121; 130].

There are several popular approaches to resampling, the simplest be-

ing multinomial sampling, which simply involves drawing with replace-

ment from the current set of samples, using their weights as their selection

probability. Other popular approaches that aim to reduce Monte Carlo vari-

ance include residual resampling, which uses Ni = bNwi
tc+I{u<Nwi

t−bNwi
tc}

where u ∼ U(0, 1), stratified sampling, and systematic sampling [122]. These

latter two approaches aim to sample the existing samples more evenly

by arranging them by weight and sampling from each of N partitions.

These methods are compared in [131], which finds stratified and system-

atic sampling methods perform best, followed by residual and then mul-

tinomial resampling; [121] note that stratified sampling will reduce Monte

Carlo variance, although [131] found that these methods were not always

2.3. SEQUENTIAL MONTE CARLO METHODS (PARTICLE FILTERS) 61

superior in practice.

Algorithm 1 Sequential Importance Resampling (SIR) filter

Initialize N particles: xi ∼ q1(x1), wi∗
1 =

p(xi
1
)p(y1|xi

1
)

q1(x
i
1
)

Normalize weights: wi
1 =

wi∗
1∑

j w
j∗
1

for t = 2 to T do
Resample (if required):

Draw N samples from resampling scheme and weight accordingly
Propagate samples:
for i = 1 to N do

Sample: xi
t ∼ qt(xt | xi

t−1)

Weight: wi∗
t =

p(xi
t|xi

t−1
)p(yt|xi

t)

qt(xi
t|xi

t−1
)

end for
Normalize weights: wi

t =
wi∗

t∑
j w

j∗
t

end for

Adding a resampling step to the SIS algorithm gives the sequential im-

portance resampling (SIR) algorithm that is the most common form of the

particle filter in use. This algorithm can be summarized as shown in al-

gorithm 1 [129]. Resampling can be performed every step or only when

a measure of sample diversity such as ESS falls below a certain threshold

[127]; this latter approach is probably preferable as it does not result in un-

necessary loss of sample diversity due to resampling when not required.

Resampling causes some samples to be duplicated whilst others disap-

pear and this inevitably causes a loss of diversity in early sample periods

due to many samples sharing common ancestry; figure 2.7 illustrates this.

This means that though they do approximate the distribution p(x1:t | y1:t),

approximations of the distribution of x become increasingly poor with in-

creasing lag. These distributions can be found through the use of smooth-

ing methods as described in section 2.3.3.

Another drawback of resampling is that the samples produced are no

longer independent and so analysis of the properties of the approximation

is more complicated as classic limit theorems relying on independence of

samples no longer apply [132]. However, several important results have

62 CHAPTER 2. BAYESIAN INFERENCE FOR STATE SPACE MODELS

Figure 2.7: Illustration of the degeneracy of particle filter ancestry. Dark
paths show ancestry of all current particles. These degenerate to a single
common ancestor path at long lags. Orange path is true state path

been established for these methods, perhaps most importantly that they

give consistent estimators of the distributions of interest. [133] gives what

claims to be the first mathematically well-founded convergence results for

interacting particle approximations, establishing that

lim
N→∞

E

(
∣
∣ 1
N

∑

i

f(xi
t) − πt(f)

∣
∣

)

= 0,

where πt is the target distribution at time t and f is a test function over

the samples. [132] reviews a number of further convergence results for

interacting particle systems, along with the conditions under which they

hold.

Central limit theorems provide a means to establish not only the even-

tual convergence of the algorithms, but also to say something about the

rate at which they do so. [134] gives the first central limit theorem for the

paths of interacting particle systems and further related results are given in

[124]. [135] gives a central limit theorem for sequential Monte-Carlo meth-

ods that applies to a large class of methods, including those using MCMC

steps, “under minimal assumptions on the distributions” and looks at the

asymptotic long-term stability of the algorithms.

2.3. SEQUENTIAL MONTE CARLO METHODS (PARTICLE FILTERS) 63

There have also been a number of empirical studies of the performance

of particle filter methods, such as [136] and [137], though these inevitably

tend to be based around specific models.

2.3.2 Variants

Particle filters have been very popular methods for non-linear filtering and

many refinements have been proposed to the basic algorithm, including

many for specific applications. This section will attempt to present a few

of the most significant and generally applicable variants in something of a

unified context.

The main areas of design latitude in the particle filter are the choice of

proposal function and the resampling method. In fact these can both be

seen as modifying the overall importance density, since

q(x1:t | y1:t) = qt(xt | x1:t−1, y1:t)q1:t−1(x1:t−1 | y1:t−1), (2.29)

where, in the basic filter with multinomial resampling, q1:t−1(x1:t−1 | y1:t−1) =
∑

i wi
tδ{xi

t}, since each new sample at t chooses an ancestor for earlier peri-

ods. However, it was established in the previous section that the optimal

importance density is

p(x1:t | y1:t) = p(xt | x1:t−1, y1:t)p(x1:t−1 | y1:t), (2.30)

so it is conceivable that schemes could be designed for both qt and q1:t−1

that better approximate this despite its general intractability. Schemes deal-

ing with qt are known as adapted (or approximately adapted) schemes and

attempt to adapt the proposal at each step to the latest observation us-

ing either approximate schemes or MCMC kernels. Schemes dealing with

q1:t−1 include the auxiliary particle filter, a biased resampling scheme, and

the resample-move scheme based on MCMC kernel moves and these attempt

to better choose the sample of earlier x1:t−1 states.

64 CHAPTER 2. BAYESIAN INFERENCE FOR STATE SPACE MODELS

Adapted and Approximately Adapted Proposals

According to a comparison of equations (2.29) and (2.30), the optimal pro-

posal density for the next state qt is given when qt(xt | x1:t−1, y1:t) = p(xt |

x1:t−1, y1:t). In general, this density will be intractable; it also leads to a

simple but often intractable form for the weight update in equation (2.28)

wi∗
t = p(yt | x1:t−1)w

i
t−1. In the special case when the state transition model

is (discrete-time) non-linear Guassian with linear Guassian observations

the proposal density and the weight update can be calculated analytically

[129].

In other cases, the idea of the adapted proposal can still be useful as

a guide for proposal design, leading to approximately adapted proposals,

which can be produced using a number of approximation methods. In par-

ticular [129] suggests local linearization of the state space model similar

to the approximation used in the EKF and [138] suggests the use of the un-

scented transform as in the UKF to approximate the adapted proposal. This

latter method has been especially popular due to its ease of application and

effectiveness. In these cases, the standard weight update must be used, but

as long as the approximation density is tractable this is straightforward.

Auxiliary Particle Filter

The key insight behind the auxiliary particle filter, introduced in [139],

is that, in the optimal importance density above q1:t−1(x1:t−1 | y1:t−1) =

p(x1:t−1 | y1:t). Clearly p(x1:t−1 | y1:t) cannot be approximated before the

observation yt is available, so the distribution of the original particles xi
1:t−1

cannot be optimal. Auxiliary particle filtering attempts to approximate this

distribution at time t and use it as the distribution from which to (re)sample

xi
1:t at time t. The approximation is based on the observation

p(x1:t−1 | y1:t) ∝ p(x1:t−1 | y1:t−1)p(yt+1 | x1:t−1, y1:t−1)

≈
∑

i

wi
t−1δ{xi

1:t−1
}

∫
p(yt | xt)p(xt | xi

1:t−1)dxt,

2.3. SEQUENTIAL MONTE CARLO METHODS (PARTICLE FILTERS) 65

where the first term is approximated by the particle approximation at t− 1.

In general the integral is not tractable, but if it can be approximated this can

still provide a useful importance distribution for xi
1:t−1. The idea presented

in [139] is to approximate

p(xt | xi
1:t−1) ≈ δ{μi

t},

where μi
t is some easy to calculate point approximation of xt given the pre-

ceding states, for example the mean of the state transition density so that

μi
t = Ep(xt|xt−1)(xt | xt−1). Then the integral is approximated as p(yt | μi

t),

so that

p(x1:t−1 | y1:t) ∝̃
∑

i

wi
t−1δ{xi

1:t−1
}p(yt | μi

t),

where ∝̃ means “approximately proportional”. This can be sampled by

drawing ancestors with probability

ui
t =

wi
t−1p(yt | μi

t)
∑

j w
j
t−1p(yt | μ

j
t)

.

A collection of ancestors sampled with these probabilities is no longer an

unbiased approximation of p(x1:t−1 | y1:t−1), but can be made so by weight-

ing each particle by wi
t−1/ui

t. This can be seen as another application of im-

portance sampling, since the unbiased estimator

p̂(x1:t−1 | y1:t−1) =
∑

i

wi
t−1δ{xi

1:t−1
}

=
∑

i

wi
t−1

ui
t

ui
tδ{xi

1:t−1
}

can be sampled by drawing weighted samples with
∑

i ui
tδ{xi

1:t−1
} as an im-

portance density (which by construction is defined on exactly the support

of the target
∑

i wi
t−1δ{xi

1:t−1
}). The auxiliary particle filter algorithm is set

out in algorithm 2.

66 CHAPTER 2. BAYESIAN INFERENCE FOR STATE SPACE MODELS

[137] compare the auxiliary and bootstrap filters using a time-varying

autoregressive test model and conclude that “the auxiliary particle filter

gives a slight but systematic improvement in performance”.

Algorithm 2 Auxiliary Particle Filter

Initialize N particles: xi ∼ q1(x1), wi∗
1 =

p(xi
1
)p(y1|xi

1
)

q1(x
i
1
)

Normalize weights: wi
1 =

wi∗
1∑

j w
j∗
1

for t = 2 to T do
Calculate propagation weights:
for i = 1 to N do

Calculate μi
t (approximate summary statistic)

Calculate propagation weight: ui∗
t = wi

t−1p(yt | μi
t)

end for
Normalize propagation weights: ui

t =
ui∗

t∑
j u

j∗
t

Select N particles to propagate according to weights ui
t

Propagate samples:
for i = 1 to N do

Sample: xi
t ∼ qt(xt | xi

t−1)

Weight: wi∗
t =

p(xi
t|xi

t−1
)p(yt|xi

t)

u
a(i)
t qt(xi

t|xi
t−1
)

where a(i) is the ancestor index of i

end for
Normalize weights: wi

t =
wi∗

t∑
j w

j∗
t

end for

MCMC Methods: Resample-Move and MCMC Based Particle Filters

The resample-move algorithm of [140] introduced the idea of using MCMC

kernels within particle filtering methods in order to ‘rejuvenate’ the particle

collection. MCMC rejuvenation can be applied at any point during the

particle filtering process to resample the current particle distribution from

the true distribution p(x1:t | y1:t) by using an MCMC kernel that targets

this distribution. The current particle positions are used as the starting val-

ues of the MCMC chain with the intuition that these particles are ‘close’ to

being samples from the target distribution. Sampling the entire distribu-

tion p(x1:t | y1:t) will take at least O(t) time, so cannot be used as part of

2.3. SEQUENTIAL MONTE CARLO METHODS (PARTICLE FILTERS) 67

a sequential update step. Therefore, resample-move algorithms resample

the the xt−L:t variables, for some fixed lag L. This makes them particularly

successful in fixed-lag smoothing applications [130]. MCMC resampling is

done by noting that

p(x1:t | y1:t) =

t∏

s=t−L

p(ys | xs)

t∏

s=t−L

p(xs | xs−1)p(x1:t−L−1 | y1:t−L−1)

≈
t∏

s=t−L

p(ys | xs)

t∏

s=t−L+1

p(xs | xs−1)
∑

i

1

N
p(xL | xi

L−1)δ{xi
1:t−L−1

},

using the sample-based approximation of p(x1:t−L−1 | y1:t−L−1). This can

be resampled by selecting a sample xi
1:t−L−1 from the sample-based approx-

imation of p(x1:t−L−1 | y1:t−L−1), and then sampling the variables xt−L:t by

running a Markov chain with acceptance probability

α(x
(k)
t−L:t, x

′
t−L:t) =

∏t
s=t−L p(ys | x ′

s)
∏t

s=t−L+1 p(x ′
s | x ′

s−1)p(x
′
L | xi

L−1)
∏t

s=t−L p(ys | x
(k)
s)
∏t

s=t−L+1 p(x
(k)
s | x

(k)
s−1)p(x

(k)
L | xi

L−1)
,

where x
(k)
t is the current state of the chain. A similar approach is taken in

[141], where successive MCMC fixed-lag approximations are represented

approximately using a sample-based representation and updated sequen-

tially.

The resample-move algorithm is usually presented as a standard SIR

filter with the addition of a move step after resampling. In this present-

ation, the algorithm can be seen as simply producing a refined proposal

distribution q1:t−1 for the particle ancestors at the next stage, since it uses

an ancestor proposal of the form

q1:t−1(x
i
1:t−1 | y1:t) ≈ p(xi

1:t−1 | y1:t−1)

with the approximation here being provided by MCMC samples from (ap-

proximately) the target distribution p(x1:t−1 | y1:t−1). Though an MCMC

step could be used to target the more optimal p(xi
1:t−1 | y1:t) the resulting

68 CHAPTER 2. BAYESIAN INFERENCE FOR STATE SPACE MODELS

collection would, as with the auxiliary particle filter, be a biased approxim-

ation of p(xi
1:t−1 | y1:t−1) and so to use this particle collection in the sequen-

tial update it would need to be weighted to correct for this. However, the

weighting required is p(yt|x1:t−1)
p(yt|y1:t−1)

; though the denominator can be found

through normalization, the numerator may still be intractable (although

not in, for example, the non-linear state transition, linear observation case,

so this idea might be useful there).

MCMC resample-move was not the first algorithm to attempt to restore

particle diversity by moving particles. It was preceded by kernel density

type methods e.g. [61], which resampled from a kernel density approxima-

tion of p(x1:t | y1:t) rather than the point mass distribution coming from the

importance sampling approximation. This effectively adds random noise

to the samples as they are resampled, but choice of the kernel width can be

tricky, especially in high-dimensional spaces.

While the resample-move algorithm presented in [140] uses a standard

proposal step to generate new state samples, the MCMC-based particle fil-

ter method of [142] uses an MCMC step to generate samples from the next

target distribution p(xt | y1:t). This is no longer a sequential importance

sampling scheme, but an approximate sequential MCMC scheme that re-

lies on a sample-based approximation of the preceding filter distribution

and also on approximating the marginal p(xt | y1:t) as

p(xt | y1:t) =

∫
p(xt | xt−1, yt)p(xt−1 | y1:t)dxt−1

≈
∫

p(xt | xt−1, yt)p(xt−1 | y1:t−1)dxt−1

≈
1

N

∑

i

p(xt | xi
t−1, yt)

∝
∑

i

p(yt | xt)p(xt | xi
t−1),

allowing approximate samples to be drawn recursively from p(xt | y1:t) via

an MCMC chain set up to target the distribution p(yt | xt)p(xt | xi
t−1) for

each sample xi
t−1, i.e. making a proposal x ′

t ∼ Q(x ′
t | x

(k)
t) where x

(k)
t is the

2.3. SEQUENTIAL MONTE CARLO METHODS (PARTICLE FILTERS) 69

current sample, and accepting it with probability

α(x
(k)
t , x ′

t) =
p(yt | x ′

t)p(x
′
t | xi

t−1)Q(x
(k)
t | x ′

t)

p(yt | x
(k)
t)p(x

(k)
t | xi

t−1)Q(x
′
t | x

(k)
t)

.

[142] recommends starting the chain with a sample from the transition

model x
(1)
t ∼ p(xt | xi

t−1).

The need for the first approximation in the above method p(xt−1 | y1:t) ≈

p(xt−1 | y1:t−1) can be obviated by sampling the joint density p(xt, xt−1 |

y1:t) rather than the marginal, since

p(xt, xt−1 | y1:t) ∝ p(yt | xt)p(xt | xt−1)p(xt−1 | y1:t−1)

so, given a sample-based approximation of the previous filter distribution

p(xt−1 | y1:t−1) this can be sampled by choosing a sample xi
t−1 from the

previous filter approximation and proposing (xt, xt−1)
′ ∼ Q((xt, xt−1)

′ |

(xt, xt−1)
(k)). This proposal is then accepted with probability

α =
p(yt | x ′

t)p(x
′
t | x ′

t−1)Q
(
(xt, xt−1)

(k) | (xt, xt−1)
′
)

p(yt | x
(k)
t)p(x

(k)
t | x

(k)
t−1)Q

(
(xt, xt−1) ′ | (xt, xt−1)(k)

) .

This is the insight behind the MCMC-Particles algorithm of [136].

An interesting modification of the MCMC based particle filter algorithm,

also proposed in [142], is the use of RJMCMC proposal steps to allow the

dimensionality of the state xt to change with time (used there to account

for a variable number of tracked objects); a similar idea could also be used

in the MCMC-Particles algorithm.

Rao-Blackwellization

Rao-Blackwellization in the context of particle filtering is the idea of mar-

ginalizing part of the state because it has a tractable conditional distribution

when conditioned on the remaining parts of the state, i.e. part of the state

is conditionally linear Gaussian or of finite state. Denoting the condition-

70 CHAPTER 2. BAYESIAN INFERENCE FOR STATE SPACE MODELS

ally tractable states xL and the intractable states xN, this amounts to the

factorization

p(x1:t | y1:t) = p(xL,1:t | xN,1:t, y1:t)p(xN,1:t | y1:t) (2.31)

≈
∑

i

p(xL,1:t | xi
N,1:t, y1:t)w

i
tδ{xi

N,1:t}, (2.32)

where the second line shows the importance sampling approximation. This

latter approximation makes it apparent that, if p(xL,1:t | xi
N,1:t, y1:t) is avail-

able in closed form, the overall approximate distribution will be a mixture

distribution. In the case of xL being conditionally linear Gaussian, the dis-

tribution p(xL,1:t | xi
N,1:t, y1:t) can be found using the Kalman filter and the

distribution in equation (2.32) will be a Gaussian mixture. This approach

is sometimes referred to as the mixture Kalman filter. Rao-Blackwellization

can be shown to reduce the variance of the particle weights [143] and often

allows systems that would otherwise be computationally intractable to be

tackled with particle filters, e.g. [144].

2.3.3 Smoothing

As already noted, the particle filter as presented in the preceding sections

produces samples from the smoothing distribution p(x1:T | y1:T) as part

of its operation (this is not strictly necessary, since for filtering in Markov

models only the most recent marginal distribution need be stored at each

step). However, the estimates produced in this way, called filter-smoother

estimates in [145], become increasingly poor at increasing lags due to the

degeneracy of particle paths in early periods, as illustrated in figure 2.7.

Because of this degeneracy the filter-smoother is a very inefficient estim-

ator of the smoothing distribution. On the other hand, it can be calculated

in linear time and produces samples from the joint smoother distribution

rather than from just the marginal smoothing distributions p(xt | y1:T).

As with other methods, smoothing algorithms can be developed in two

broad flavours: forward-filtering backward-smoothing and two-filter ap-

2.3. SEQUENTIAL MONTE CARLO METHODS (PARTICLE FILTERS) 71

proaches. Perhaps the simplest method is the forward-filtering backward

smoothing method in [129] that allows samples to be drawn from the mar-

ginal smoothing distributions using a particle approximation to equation

(2.10):

p(xt | y1:T) = p(xt | y1:t)

∫
p(xt+1 | xt)

p(xt+1 | y1:t)
p(xt+1 | y1:T)dxt+1

≈ p(xt | y1:t)
∑

j

w
j

t+1|T
p(x

j
t+1 | xt)

p(xj
t+1 | y1:t)

≈
∑

i

wi
tδ{xi

t}

∑

j

w
j

t+1|T
p(xj

t+1 | xi
t)

∑
k wk

t p(xj
t+1 | xk

t)

=
∑

i

wi
t|Tδ{xi

t},

where

wi
t|T = wi

t

∑

j

w
j

t+1|T
p(xj

t+1 | xi
t)

∑
k wk

t p(xj
t+1 | xk

t)
.

The first approximation rests on a particle approximation of the integral

and the second approximation rests on particle approximations of p(xt |

y1:t) and p(x
j
t+1 | y1:t) =

∫
p(x

j
t+1 | xt)p(xt | y1:t)dxt. This algorithm re-

quires calculation of p(x
j
t+1 | xi

t) for all i, j and thus has time complexity of

O(TN2). The initial smoothing weights are given by the final filter weights,

i.e. wi
T |T
= wi

T . This algorithm results in a particle based smoothing distri-

bution constructed using re-weighted versions of the original forward filter

samples at each time period.

The forward-filtering backward-sampling method of [146] allows samples

to be drawn from the approximate joint state distribution at a cost of O(TN)

per sample. The first (time T) sample XT is drawn from the final filter dis-

tribution XT ∼ p(xT | y1:T). Subsequent samples, working back in time to

72 CHAPTER 2. BAYESIAN INFERENCE FOR STATE SPACE MODELS

t = 1, can be drawn from

p(xt | Xt+1, y1:T) = p(xt | y1:t, Xt+1)

∝ p(Xt+1 | xt)p(xt | y1:t)

≈
∑

i

wi
tp(Xt+1 | xi

t)δ{xi
t},

which can be sampled by drawing Xt = xi
t with probability wi

tp(Xt+1|xi
t)∑

j w
j
tp(Xt+1|x

j
t)

.

It is also possible to draw an approximate MAP path from the particle

filter, and this can be done forward in time, by treating the particle filter

samples as a randomly placed but finite set of states at each time period. In

this case, the samples can be treated like a finite state space grid of states

and the Viterbi algorithm given in section 2.1.1 can be used to find the MAP

path at an O(N2) time cost in each period [147].

The two-filter approach to smoothing in particle filters is complicated

by the fact that the distribution p(yt+1:T | xt) that must be targeted by the

backward information filter is not a probability distribution with respect

to xt and need not even be finite [21; 15]. Early versions of the two-filter

particle smoother [122] ignored this possibility. A generalized version of

the two-filter smoother was introduced in [21] that deals with this problem

by instead targeting an artificial backward distribution p̃(xt | yt:T) in the

backward filter that is a probability distribution with respect to xt. This is

done by introducing an artificial prior γt(xt) so that

p̃(xt | yt:T) =
p(yt:T | xt)γt(xt)

p(yt:T)
.

Any prior γt(xt) can be used, although it should have the same support as

the true prior p(xt) (which in the general non-linear case will not be tract-

able) and must be able to be calculated exactly; [123] recommend using a

heavy tailed approximation of the true prior p(xt), which can be defined

recursively by defining γ1(x1) and γt(xt | xt−1). The two filter decom-

position is given in equation (2.3), and the particle approximation can be

2.3. SEQUENTIAL MONTE CARLO METHODS (PARTICLE FILTERS) 73

constructed as

p(xt | y1:T) ∝ p(xt | y1:t−1)p(yt:T | xt)

∝
∫

p(xt | xt−1)p(xt−1 | y1:t−1)dxt−1

p̃(xt | yt:T)

γt(xt)
(2.33)

≈
∑

i

wi
t−1p(xt | xi

t−1)
∑

j

w̃
j
t

γt(x̃
j
t)

δ
{x̃

j
t}

=
∑

j

w
j

t|T
δ

{x̃
j
t}

where

w
j

t|T
∝

w̃
j
t

γt(x̃
j
t)

∑

i

wi
t−1p(x̃

j
t | xi

t−1).

Here (w̃j
t, x̃

j
t) is the jth weighted sample from the backward information

filter at time t, i.e. approximating p̃(xt | yt:T). Thus, the smoother output

is a re-weighted collection of the samples from the backward filter. This

backward filter is approximated as

p̃(xt | yt:T) ∝ p(yt | xt)p̃(xt | yt+1:T)

= p(yt | xt)

∫
p(xt | xt+1)γt(xt)

γt+1(xt+1)
p̃(xt+1 | yt+1:T)dxt+1

≈ γt(xt)p(yt | xt)
∑

i

w̃i
t+1

p(xt | xi
t+1)

γt+1(x
i
t+1)

δ
{x̃

j
t+1

}
.

Since this is very similar to the approximation used for the forward fil-

ter, many of the same techniques used there to improve performance can

be applied. As with the forward-filter backward-smoother, the two-filter

smoother takes O(TN2) time. [15] claim that the two-filter smoother is

faster, has lower error and higher effective sample size than the forward-

filter backward-smoother, but [145] does not find much to choose between

them other than that the two filter smoother is somewhat faster to run.

In [145] a variation on the two-filter smoother is introduced that allows

the positions of the smoother particles to be resampled from an arbitrary

74 CHAPTER 2. BAYESIAN INFERENCE FOR STATE SPACE MODELS

proposal distribution, by using the following expansion in terms of both

forward and backward filters in place of equation (2.33):

p(xt | y1:T) ∝
∫

p(xt | xt−1)p(xt−1 | y1:t−1)dxt−1

× p(yt | xt)

∫
p(xt | xt+1)γ(xt)

γt+1(xt+1)
p̃(xt+1 | yt+1:T)dxt+1

∝̃
∑

i

wi
t−1p(xt | xi

t−1)p(yt | xt)
∑

j

w̃
j
t+1

p(x̃j
t+1 | xt)

γt+1(x̃
j
t+1)

.

Since this is given in terms of xt it can be sampled using, for example, im-

portance sampling or MCMC in order to generate new xt samples from the

smoother distribution. This will be an O(N2) operation at each time point,

since evaluation of this distribution for any xt is O(N), but will generate a

fresh set of samples to represent the smoothing distribution which might

be better suited to the task if they can be chosen appropriately.

In [145], an importance sampling scheme similar to auxiliary particle

filtering is used to choose N particle pairs (with one particle from each of

the forward and backward filters) which can then be propagated to give

samples of xt with which to approximate the smoothing distribution. This

formulation allows a neat approximation (approximating a sum over pair

selection weights with its limiting integral) to find approximate marginal

(rather than pairwise) weights for selecting each particle, allowing pairs to

be drawn in O(N) time, and giving this smoothing algorithm O(TN) time

complexity overall; see [145] for full details. An alternative fast smoothing

scheme is given by [148], which can reduce the time cost of smoothing to

O(TN log N) through the use of space partition trees.

2.3.4 Parameter Estimation

Parameter estimation using particle filters can be divided into two distinct

flavours: batch estimation in which particle filters are used as a component

in batch parameter estimation, and online estimation in which the para-

meters are estimated simultaneously with the state. A review of methods

2.3. SEQUENTIAL MONTE CARLO METHODS (PARTICLE FILTERS) 75

of both types is given in [149].

Batch Methods

Particle filters can be used as components of pseudo-marginal MCMC schemes

to perform exact inference, as seen in sections 2.1.5 and 2.2.3. These meth-

ods rest on the fact that, as seen in section 2.3.1, the particle filter can be

used to give an unbiased estimate of observation likelihood. The main

methods in this area are the Particle MCMC methods of [33] (especially

the PMMH sampler and Particle Gibbs methods); these are examined in

more detail in section 4.3.

An alternative to exact estimation of the parameters is to use particle

filters as a means to do approximate parameter estimation. On first consid-

eration such methods might seem of little interest when exact parameter

estimation methods are available, however such approximate parameter

estimates are often substantially quicker to calculate than exact estimates

and so are of interest in situations where this is an important considera-

tion. Some of these methods can be based on sufficient statistics calculated

sequentially from the particle filter without storing the set of particle paths.

In the case of huge datasets such methods might be the only computation-

ally tractable options for parameter estimation. These methods are mainly

concerned with finding point estimates of the parameters and work by us-

ing stochastic optimization techniques on the likelihood or posterior to find

maximum likelihood or MAP parameter values. The main alternatives are

stochastic gradient ascent and stochastic versions of the EM algorithm.

Stochastic EM algorithms were introduced by [150] and, in this con-

text, replace the deterministic (and often intractable) E-step of the original

algorithm with the calculation of a Monte Carlo approximation to the ex-

pectation Ex|y,θ(i) (log p(x, y | θ)) appearing in equation (2.18), i.e. using

Ex (log p(x, y | θ) | y, θ) ≈
∑

i

wi log p(xi, y | θ), (2.34)

76 CHAPTER 2. BAYESIAN INFERENCE FOR STATE SPACE MODELS

where (wi, x
i) are weighted Monte Carlo samples drawn from p(x1:T | y1:T , θ).

While many methods can be used to generate the samples for the approx-

imation (and even single samples can be used), particle filters lend them-

selves naturally to the use of their particle collection as such sample col-

lections. In this case, the approximation in equation (2.34) is given by the

weighted sum of logs of the full data likelihood for the particle filter which,

for Markov models, is given by

∑

i

wi log p(xi, y | θ) =
∑

i

wiSi,T (x
i
1:T , y1:T , θ)

where

Si,T (x
i
1:T , y1:T , θ) =

T∑

t=1

log p(yt | xi
t, θ) +

T∑

t=2

log p(xi
t | xi

t−1, θ) + log p(xi
1 | θ).

This can be written recursively as

Si,t(x
i
1:t, y1:t, θ) = Si,t−1(x

i
1:t−1, y1:t−1, θ) + log p(yt | xi

t, θ) + log p(xi
t | xi

t−1, θ),

which allows the expression in terms of θ to be built up while running the

particle filter. If a sufficient statistic Tt is available for the parameters so that

p(θ | Tt) = p(θ | x1:t, y1:t) and can be sequentially updated, then only this

needs to be stored, rather than the entire path and observation history [151].

Only the final values of this statistic for each particle T i
t will be necessary to

form the required expectation. Finding such statistics is model dependent,

but is often possible, e.g. [151] for bearings only tracking models and [152]

for linear state models with non-linear observations.

The M-step of the algorithm then consists in maximizing this approx-

imation with respect to θ. In some cases this will be straightforward to do

analytically, but, as with EM, a generalized version of the algorithm can

be produced by simply requiring the M-step to choose a new value of θ

that increases this expression, allowing approximate or partial optimiza-

tion methods to be used. The use of stochastic EM for batch parameter

2.3. SEQUENTIAL MONTE CARLO METHODS (PARTICLE FILTERS) 77

estimation in non-linear state space models is examined in [153]; [154] uses

it in an online setting.

The Monte Carlo approximation of the expectation in the E-step in equa-

tion (2.34) requires that the Monte Carlo samples approximate the distribu-

tion p(x1:T | y1:T , θ). However, as noted in section 2.3.3, the filter-smoother

approximation of this becomes increasingly poor with increasing lag and

thus becomes increasingly poor overall as the length of the time series in-

creases. This leads the performance of the method to degrade when used

with long time series [154]. A possible solution is to use a particle smoother

to draw samples from p(x1:T | y1:T , θ) to create the sample collection; this

approach is used in [145], making use of the O(N) particle smoothing al-

gorithm presented there, but could also be used with the backward-sampling

method in [146] and variants thereof.

Gradient ascent approaches to parameter estimation are conceptually

similar to stochastic EM, with an approximation of the gradient of the log-

likelihood with respect to θ being calculated using the particle collection.

This can be found using Fisher’s identity [155]:

∇ log p(y | θ) = Ex (∇ log p(x, y | θ) | y, θ) ,

which makes the form of the approximation immediately clear by compar-

ison to that derived for stochastic EM as

∇ log p(y | θ) ≈
∑

i

wi∇Si,T (x
i
1:T , y1:T , θ),

where ∇Si,T is given by taking gradients of the individual terms in Si,T .

This expression shows the close link between gradient ascent and stochastic

EM. If a gradient ascent step is used as the M-step in EM then they do the

same thing. Examples of the gradient ascent approach applied to batch

estimation are given in [156] and [157]. It is used for online estimation in

[158], which gives extensive derivations of the log-likelihood and related

terms. There it is noted that, while the standard particle filter estimate of

78 CHAPTER 2. BAYESIAN INFERENCE FOR STATE SPACE MODELS

the likelihood p(y1:T | θ) is unbiased, the estimate of the log likelihood is

not, though this can be corrected as shown in [158].

Online Methods

The most obvious way to estimate parameters online in the particle filter

framework is to simply add them to the state as static elements. However,

this rapidly leads to degeneracy of the estimates, with values only being

sampled for these parameters in the first period (since they remain con-

stant from one period to the next). Subsequent resampling steps will lead

to the loss of some of these values and the sample will steadily degener-

ate. Such early ‘convergence’ leads to the discarding of information arising

from subsequent observations, and thus cannot be efficient.

This problem was recognized early in the development of particle filters

and, in an attempt to overcome it, [61] and [159] sampled parameters from

kernel densities as a way to reintroduce variety into the samples, effectively

adding random jitter to the parameter samples. [57] gives a generalized

version of these algorithms in an auxiliary particle filter, but acknowledge

that the method “suffers from the obvious drawback that it throws away

information about parameters in assuming them to be time-varying when

they are, in fact, fixed”.

An alternative scheme for introducing diversity into the parameter es-

timates is provided by the resample-move scheme [140] first encountered in

section 2.3.2. This scheme can be used to rejuvenate the parameter samples

in a similar way to the state rejuvenation shown in that section. In the

parameter case, the target distribution for the MCMC rejuvenation is p(θ |

x1:t, y1:t). This parameter distribution may depend on the entire state and

observation sequence so could take at least O(t) time to calculate, which

makes it unsuitable for use in a sequential method. However, it can be

made suitable for sequential use if sequentially updateable sufficient stat-

istics Tt are available such that p(θ | x1:t, y1:t) = p(θ | Tt). This distribution

can then be used as the target of the Markov chain using the acceptance

2.3. SEQUENTIAL MONTE CARLO METHODS (PARTICLE FILTERS) 79

ratio

α(θ, θ ′) =
p(θ ′ | Tt)qθ(θ | θ ′)

p(θ | Tt)qθ(θ ′ | θ)

to sample new parameters θ ′. This method is thus able to restore parameter

sample diversity without introducing artificial dynamics. The method has

proved popular, although as illustrated in [154] estimates produced in this

way do not always converge to the correct values, and are inefficient be-

cause the particle filter is not a consistent estimator of the sufficient stat-

istics p(Tt | x1:t, y1:t). This is because these are based on path estimates

p(x1:t | y1:t) and, as noted in the previous section, these degenerate at long

lags, leading to degraded estimates overall for long time series. This prob-

lem is much more serious for parameter and model estimation than for

state estimation because these former depend on the entire state sequence

whereas the state, if the dynamic model has good ‘forgetting’ properties

(see e.g. [149]), only depends on relatively recent state values, which are

well estimated.

A related approach to resample-move is to estimate both parameters

and recent state using MCMC, similar to the approximate sequential MCMC

type methods seen in section 2.3.2. Such methods include those of [151],

[152] and [141] and, as seen above, are necessarily based on sufficient stat-

istics in order to make them tractable.

The online approaches covered so far have tackled the problem of para-

meter estimation in a fully Bayesian way, but, as seen, these methods all

suffer deficiencies. An alternative is to attempt to find point parameter es-

timates (either maximum likelihood or MAP) whilst using particle filtering

to for state estimation. Here the gradient ascent and stochastic EM methods

used for batch estimation can be adapted for sequential use. A simple ap-

proach is via a Robbins-Monro type stochastic approximation scheme [160],

in which each iteration makes a move in the proposed direction weighted

by a decreasing step size. This is the approach taken in [161] and [158],

80 CHAPTER 2. BAYESIAN INFERENCE FOR STATE SPACE MODELS

which use gradient ascent with the update step

θt+1 = θt + ηt+1∇ log p(yt | y1:t−1)

where ηt+1 is the (steadily decreasing) step size. The gradient of the mar-

ginal change to the log-likelihood can be calculated as

∇ log p(yt | y1:t−1) = ∇ log p(y1:t) −∇ log p(y1:t−1),

although this estimate, along with the estimate of all additive functionals

(i.e. functions
∑t

k=1 ϕ(xk) calculated sequentially, which includes many

sufficient statistics) has variance that scales with O(t2) due to the particle

degeneracy problem [162]. In [156; 162] an alternative method for calcu-

lating this is proposed whose variance only scales with O(t), although this

has quadratic complexity in the number of particles. A similar approach

can be developed for EM algorithms; see [149] and the references therein.

In fact a more general class of additive functionals can be calculated that ef-

fectively allows estimates to be based on an approximation of the forward-

filter backward smoother estimates of state [163], albeit at O(N2) time cost

(though in [163] it is suggested that this could be reduced to O(N log N)

using space partition methods as in [148]).

[154] attempts to reduce the computational burden of a related method

(applicable only in certain cases) through the introduction of a pseudo-

likelihood function that shares a maximum with the true likelihood, but

which can be calculated more efficiently through the use of a blocking idea

on the past state and observations. Online EM is then used to optimize the

resulting pseudo-likelihood estimate.

Online parameter estimation in particle filters remains an active area of

research with no solution yet gaining complete acceptance or widespread

use. The degeneracy problem produces what may be a fundamental limit

for many methods, including the fully Bayesian approaches proposed to

date. Some of the most recent maximum likelihood point estimation tech-

2.3. SEQUENTIAL MONTE CARLO METHODS (PARTICLE FILTERS) 81

niques appear to offer a way around this problem, albeit at the price of

computational complexity, and are therefore promising developments.

82 CHAPTER 2. BAYESIAN INFERENCE FOR STATE SPACE MODELS

Chapter 3

Online Inference for Linear

Jump Diffusion Models

This chapter concerns Bayesian filtering for continuous time linear jump

diffusion models, for which efficient computational inference is possible. A

state space approach is taken (see section 2.1), in which it is assumed that

the dynamical model of the process under investigation follows a linear

jump diffusion process. This chapter considers the problem of sequential

filtering and backward sampling for these systems. The methods proposed

are applied to various synthetic and real data, and a model is proposed

for trend following in foreign exchange data. The problem of parameter

estimation for such models is considered in chapter 4.

The class of models considered is restricted to those that, aside from

their jump components, are linear Gaussian and time invariant, although

this latter assumption could be relaxed within the framework presented.

The time distribution of jumps can be freely chosen; jump sizes are as-

sumed to be Gaussian, although this can be relaxed with a minor modi-

fication to the inference algorithm. The observation function is assumed to

be a linear transform of the underlying process subject to additive Gaus-

sian noise. These assumptions allow for efficient inference based on the

Rao-Blackwellized particle filter.

83

84 CHAPTER 3. LINEAR JUMP DIFFUSION: ONLINE INFERENCE

The rest of the chapter is structured as follows. Section 3.1 briefly re-

views some related work. Section 3.2 introduces the general dynamical

model in the form of a governing multivariate stochastic differential equa-

tion. It shows how to solve this equation (in a distributional sense) in or-

der to derive the state transition densities required by the filter. Section

3.3 presents the VRPF algorithm for the jump diffusion model. Section 3.4

shows how to draw samples from the smoother distribution. Section 3.5

presents details of a specific two factor model jump diffusion model for

the purpose of trend following in finance. Section 3.6 gives the results of a

number of tests of the algorithms presented throughout the chapter, along

with the results of applying the trend following model to some foreign ex-

change data. Finally, section 3.7 draws conclusions from this work.

Some of the work in this chapter is based on my earlier work. The

description of the model (section 3.2) and the variable rate particle filter

(VRPF) algorithm (section 3.3) are based on those that appeared in [2] and

[164]. The finance model (section 3.5) is based on the trend following model

found in [2] and [164].

3.1 Related Work

Jump diffusion models have found their primary uses in finance, econo-

metrics, physics and object tracking applications. In finance and econo-

metrics they have been used to model the evolution of securities prices

for option pricing, starting with [165], risk processes in insurance [166],

credit risk [167] and the evolution of electricity spot prices [168; 169; 170];

in physics, they have been used to model neutron scattering e.g. [171];

and in object tracking the presence of jumps in a dynamic model has al-

lowed the motion of maneuvering objects to be more accurately modelled

[35; 172; 173]. Jump diffusion models can be useful in certain applications

in place of regime switching models [168; 173]; in these cases jumps can be

viewed as instantaneous switches into other dynamic regimes and, in the

3.1. RELATED WORK 85

case of multivariate state processes, can be used to reset or adjust some ele-

ments of the state process, allowing continuous variation of certain types

of ‘regime’. For example in the finance model presented in this chapter,

jumps in the ‘trend’ process can be used to effectively switch the trending

regime (in direction or in intensity); with a little modification, jumps can

reset the trend process allowing them to switch from an existing trend to

no prevailing trend.

The work in this chapter is closely related to tracking applications, since

it is concerned with process inference from noisy observations via a state

space approach. Financial applications, in which jump diffusion systems

are most commonly encountered do not usually consider the possibility

of noisy observations. [174] presents a particle filter based method for in-

ference in general (non-linear) jump diffusion models. They note that the

optimal filtering problem has “received little attention” for such systems.

The filtering method used here applies to linear jump diffusion systems

and is based on the earlier work on variable rate particle filters (VRPFs) in

[175; 35; 173; 172]. It makes use of Rao-Blackwellization to marginalize

non-linear parts of the state, greatly improving efficiency and accuracy. By

making the assumption that non-linear or non-Gaussian state transitions

occur instantaneously at a countable number of random times, the variable

rate particle filter can increase the number of elements in its stored state

sequence only when one of these transitions occurs. The remaining state

(between nonlinear transitions) can be inferred using the more accurate and

computationally efficient Kalman filter. These ideas have been successfully

applied to target tracking problems where the tracked objects are capable of

executing sudden sharp maneuvers due to some internal or external thrust

(modelled as the application of an instantaneous force), but follow simple

linear dynamical models between thrusts [35; 173; 172].

The work here differs from some of this earlier work by introducing

a slightly more general dynamical model, allowing jumps and diffusion

components in all elements of the process. By assuming Gaussian jumps

86 CHAPTER 3. LINEAR JUMP DIFFUSION: ONLINE INFERENCE

it also allows more of the state to be marginalized out of the particle filter,

requiring only jump times and the element of the state process they affect

to be stored at each jump time. It also extends the methodology by present-

ing a straightforward and efficient method for drawing samples from the

approximate smoother distribution; these are useful in some of the para-

meter estimation techniques presented in chapter 4. A specific instance of

the model and inference algorithm in two state dimensions is applied to

trend following in finance and this is demonstrated with an example of its

application to foreign exchange data.

3.2 Model

The models considered are state space models of the form described in sec-

tion 2.1, requiring a dynamical (state transition) model and an observation

model in order to define them. This section outlines these for the jump dif-

fusion processes under consideration and shows how the conditional trans-

ition model necessary for the Rao-Blackwellized filter can be calculated. As

the systems being modelled are in continuous time, the most natural way to

describe their state transitions is as stochastic differential equations (SDEs),

the weak solution of which gives the state transition density.

3.2.1 Conditionally Linear State Transition Model

The linear time invariant jump diffusion state transition model for a K-

dimensional process can be expressed as the multivariate SDE

dXt = AXtdt+ BdWt + CdJt, (3.1)

where Xt is a K-dimensional system state vector, A, B and C are constant

K × K matrices, dWt is the instantaneous change of a Brownian motion

diffusion process and dJt is the instantaneous change of a finite jump pro-

cess defined below. The matrix A describes the interaction between the

components of the state process, B is the Cholesky decomposition of the

3.2. MODEL 87

covariance matrix of the diffusion process and C is the Cholesky decom-

position of the jump size covariance matrix, assuming that jump sizes are

Gaussian random variables. It is possible, within the inference framework

presented here, to relax this final assumption to any jump size distribution,

which can, if required, depend on the current time and system state.

In order to apply standard filtering techniques an expression for the

distribution of the system state at a future time T , given its state (or state

distribution) at the current time S (S < T) must be derived from this model.

This can be done by first considering the diffusion system without the pres-

ence of jumps, which describes the system evolution between jumps, and

then accounting for the jumps. Without jumps the system is governed by

the SDE

dXt = AXtdt+ BdWt, (3.2)

This system is linear time-invariant (LTI) Gaussian, meaning it can be

solved in closed form using Itô calculus [176]; for LTI models this is a well

known procedure. The solution (integrating from time S to T) is given by

the stochastic integral

XT = eA(T−S)

[

XS +

∫T

S

e−AtBdWt

]

. (3.3)

If XS is Gaussian distributed then XT is itself Gaussian distributed because

the stochastic integral is also a Gaussian random variable. Gaussian dis-

tributions are fully determined by their first two moments, so XT is fully

specified by its expectation and covariance. Since the expectation of the

stochastic integral is zero the expectation of XT is

E(XT) = eA(T−S)E(XS). (3.4)

The covariance of XT can be found by noting the independence of XS

and
∫T

S
e−AtdWt (since the integral depends on independent random in-

novations that occur after time S), and the fact that the latter integral has

88 CHAPTER 3. LINEAR JUMP DIFFUSION: ONLINE INFERENCE

an expectation of 0 in all components, so that some of the terms in the ex-

pansion given by

cov(XT) = E
(
(XT − E(XT)) (XT − E(XT))

′) (3.5)

are equal to zero. Substituting in the expressions for XT and E(XT) in (3.3)

and (3.4), respectively, and, for notational convenience, defining

Q(r, s) = E

((∫ s

r

e−AtBdWt

)(∫ s

r

e−AtBdWt

) ′)

, (3.6)

this gives

cov(XT) = eA(T−S)

[

Q(S, T) + cov(XS)

]

(eA(T−S)) ′ (3.7)

Using a multivariate instance of the Itô isometry applied to a determin-

istic process the expectation in the definition of Q in equation (3.6) can be

calculated as

Q(r, s) =

∫ s

r

e−AtBB ′(e−At) ′dt, (3.8)

giving a deterministic expression for the covariance of XT . The calcula-

tion of the integral expression for Q(r, s) in (3.8) is not completely trivial

but can be obtained using matrix fraction decomposition [177] or by series

expansion of the exponential functions [172; 164]. The series expansion is

only plausible for low dimensional systems and relies on the numerically

unstable calculation of the Jordan normal form of the A matrix in the case

when A is not diagonalizable, so the former method is preferred for its gen-

erality and superior numerical stability. Appendix B gives further details

on calculation of this integral.

Without jumps, then, the transition density is given by

p(XT | XS) ∼ N
(
E(XT |XS), cov(XT |XS)

)
(3.9)

where N (μ, Σ) indicates a multivariate Gaussian distribution of mean μ

3.2. MODEL 89

and covariance Σ. The conditional expectation and covariance in equation

(3.9) are given by the expressions in equations (3.4) and (3.7).

No closed form solution for the system with jumps in equation (3.1) sys-

tem exists in general. However, by conditioning on jump times the system

can be treated as if jump times are known a priori. This allows separation of

the system into a tractable LTI Gaussian part (time between jumps), solved

as shown above, and a nonlinear, non-Gaussian part (the jumps).

The arrival process for jumps can be chosen freely. Care must be taken

to distinguish which state component(s) a given jump occurred in. In what

follows, this is achieved through the indicator functions Ijump
i
(τk) which

indicate whether the kth jump occurred in the ith state component by taking

the value 1 when the jump is in the specified component and 0 otherwise.

The time of the jump of the kth jump is denoted τk.

Jump sizes Sk are modelled as following a multivariate Gaussian distri-

bution so that

Sk ∼ N (0,Djk) , (3.10)

with

Djk = diag
(
Ijump

1
(τk), ..., Ijump

K
(τk)

)

This allows the jump process Jt to be defined as

Jt =
∑

k∈{k|τk<t}

Sk (3.11)

so that dJt = Sk at τk.

A straightforward choice of jump arrival process is to have the jumps

in each component follow an independent Poisson arrival process with rate

90 CHAPTER 3. LINEAR JUMP DIFFUSION: ONLINE INFERENCE

λi. This gives

τk − τk−1 ∼ min (exponential (λ1) , exponential (λ2))

= exponential (λ1 + λ2) .

There is no necessity to limit the jump process to an exponential inter-

arrival distribution; for example, gamma distributions were used in some

earlier tracking work [172]. Indeed, non-memoryless jump distributions

could be used to create processes with time-varying stochastic volatility by,

for example, causing jumps to cluster in areas of high activity.

Calculation of the state transition density conditional on knowing the

jump types and times can be accomplished by treating the transition as

multiple segments of different types, defined by the jumps. For example, if

a single jump occurs between times S and T at time τ ∈ (S, T], the transition

can be though of as occurring in three parts: a pre-jump diffusion from S

to τ, the jump itself and a post-jump diffusion from τ to T . With no jumps

or multiple jumps between S and T this can be modified appropriately by

considering a single diffusion section from S to T or multiple diffusion and

jump sections, respectively.

Following the diffusion from S to τ (where τ is the instant before the

jump occurs) the conditional distribution of the state can be calculated ex-

actly as in the non-jumping case above, giving a Gaussian state distribution

with first and second moments given by

E(Xτ|τ, XS) = eA(τ−S)XS

cov(Xτ|τ, XS) = eA(τ−S)Q(S, τ)(eA(τ−S)) ′,

using the formulae in equations (3.4) and (3.7), respectively.

Across the period of the jump, from time τ to τ+ (where τ+ is the instant

immediately after the jump occurs) the state distribution can be calculated

by noting that jump sizes are assumed to be Gaussian distributed with zero

mean and independent of any other innovations as in (3.37), giving a Gaus-

3.2. MODEL 91

sian post-jump distribution given by

E(Xτ+ |τ, XS) = E(Xτ|τ, XS)

cov(Xτ+ |τ, XS) = cov(Xτ|τ, XS) + ΣJτ
.

where the jump covariance matrix ΣJτ
is given by

ΣJτ
= DjτCC ′Djτ .

The expressions in equations (3.4) and (3.7) can then be used to calculate the

first two moments of the Gaussian state distribution following the diffusion

from τ+ to T , which are given by

E(XT) = eA(T−τ)E(Xτ+ |τ, XS),

cov(XT) = eA(T−τ)

[

Q(τ, T) + cov(Xτ+ |τ, XS)

]

(eA(T−τ)) ′.

Written in terms of XS only, these moments are given by

E(XT |τ, XS) = eA(T−S)XS, (3.12)

which does not depend on the jump, so is the same for any number of

jumps in the period, and

cov(XT | τ, XS) = eA(T−τ)

[

Q(τ, T) + ΣJτ

]

(eA(T−τ)) ′

+ eA(T−S)Q(S, τ)(eA(T−S)) ′. (3.13)

For an arbitrary set of jumps between S and T , this is given by

cov(XT | TS:T , XS) =

|T |−1∑

i=2

eA(T−Ti)[Q(Ti, Ti+1) + ΣJi
](eA(T−Ti)) ′

+ eA(T−S)Q(S, T1)(e
A(T−S)) ′, (3.14)

where TS:T is an ordered list of the jump times from S to T , augmented with

92 CHAPTER 3. LINEAR JUMP DIFFUSION: ONLINE INFERENCE

the final time T , so that Ti is the ith jump between S and T and, if there are

n jumps in total, Tn+1 = T ; ΣJi
is the covariance matrix corresponding to

the ith jump.

These allow the required conditional state transition density (condi-

tional the jump times) to be defined as

p(XT | TS:T , XS) ∼ N (E(XT | TS:T , XS), cov(XT | TS:T , XS)) (3.15)

3.2.2 Observation Model

In the models considered here a linear observation model is used, so that

an observation yi made at time ti can be expressed as a linear function of

the system state corrupted by additive Gaussian noise, i.e.

yi = HXti
+ εi,

with εt ∼ N (0, Σobs). As per the standard state space model assumption

shown in figure 2.1, observations yi are assumed to be conditionally inde-

pendent of all other observations and elements of the state process given

the value of the state process at the time of the observation Xt.

For such linear Gaussian observation models, Rao-Blackwellization, as

covered in section 2.3.2, allows the entire state other than the jump times

to be inferred using the Kalman filter, since conditional on the jump times,

the system is linear Gaussian. For observation models that are themselves

nonlinear or non-Gaussian in some components, more components of the

state will need to be inferred using the particle filter.

If nonlinear or non-Gaussian observation functions are necessary, the

inference algorithm presented below in section 3.3 requires some modific-

ation, with more components of the state needing to be estimated via the

particle filter. In such cases, though, the analytical methods for weight up-

date calculation in e.g. [129] (see section 2.3.2) will be applicable between

jumps.

3.3. STATE INFERENCE 93

3.3 State Inference

The inference algorithm must take a series of observations y1:N = {yi |

i ∈ 1, ...,N} and use these to infer the posterior filtering distribution of the

underlying state Xt at time t, along with the set of jump times τ and their

types. Rao-Blackwellization means that only jumps need be estimated by

the particle filter. Due to the random arrival of jumps, different state paths

will include different numbers of jumps meaning that the non-linear state

space can have varying dimension between particles. This section shows

how the variable rate particle filter of [35] can be applied to this problem,

allowing particles to consist of state spaces (jump collections) of varying

sizes.

Given inferred jump times, the filtering distribution of the process state

p(Xtj
| y1:j) at time tj can be inferred using the Kalman filter to infer the

filtering distribution for Xtj
conditioned on the set of jumps of each particle

in the filter. The posterior filtering distribution for the state process is then

given by the weighted sum of these distributions and is thus approximated

by the Gaussian mixture

p(Xtj
| y1:j) ≈

∑

p∈Ptj

w
p
tj

p(Xp
tj

| y1:j, T
p

t0:tj
), (3.16)

≈
∑

p∈Ptj

w
p
tj
N (μp

j|0:j
, C

p

j|0:j
). (3.17)

where p(X
p
tj

| y1:tj
, T p

t0:tj
) is the posterior filtering density obtained from

the Kalman filter conditioned on particle p’s set of jump times between t0

and tj; this has mean μ
p

j|0:j
and covariance C

p

j|0:j
given by equations (2.6) and

(2.7). It is useful to store these filter mean and covariances for each particle

to allow them to be sequentially updated.

3.3.1 Variable Rate Particle Filter (VRPF)

In order to infer the marginalized jump times and types, the variable rate

particle filter algorithm of [35] is used. In what follows, it is assumed

94 CHAPTER 3. LINEAR JUMP DIFFUSION: ONLINE INFERENCE

that a collection of particles is available representing the posterior filter-

ing density at tj−1, the time of the (j − 1)th observation (in the case where

the state prior is specified at the initial observation time t0 = t1, this can be

a single particle with an empty set of jumps and the state mean and cov-

ariance equal to their prior values). When a new observation is received at

tj this particle collection must be updated to a new one that represents the

posterior filtering density after making that observation. Figure 3.1 shows

this process in outline for a single particle in the collection and algorithm 3

briefly outlines the algorithm.

The first step in updating each particle is to decide the number of suc-

cessor particles (children) M
p
j each particle p will have in generation j (step

1 in figure 3.1 and algorithm 3). This is performed by a residual resampling

step (see section 2.3.1), in which

M
p
j = bNw

p
tj−1

c+ S(p) (3.18)

with S(p) ∼ M(N−R, w̄
1:Nj−1

j−1), where R =
∑N

p=1 bNw
p
tj−1

c, w̄i
j−1 =

Nw
p
tj−1

−bNw
p
tj−1

c

N−R

for all p = 1, ...,N and M(∙, p1:M) is the multinomial distribution with se-

lection probabilities p1, p2, ...pM. N here is the target number of particles

in each generation, and Nj−1 is the number of actual particles in genera-

tion j − 1, which might be different from the target N because identical

non-jumping particles can be collapsed (see below) in order to save com-

putation.

Initially, each child particle is a copy of its parent, with the same jumps

from time t0 to tj−1, and the parent’s weight is divided evenly, so that the

weight of each offspring particle q is

w
q
tj−1
=

w
p
tj−1

M
p
j

. (3.19)

Once the number offspring has been chosen, new jumps (times and

types) τ
q
∗ are sampled for each child q (step 2 in figure 3.1 and algorithm 3)

3.3. STATE INFERENCE 95

Figure 3.1: An update step for a single particle of the variable rate particle
filter. Shaded rectangles represent particles consisting of collections of
jumps represented by dots. Representative particle weights are illus-
trated along the right-hand side by circles, with diameter corresponding
to weight. See text for further information on numbered steps

96 CHAPTER 3. LINEAR JUMP DIFFUSION: ONLINE INFERENCE

from a jump proposal distribution, given the parent’s jump times and types

T p
t0:tj−1

, so that

τq
∗ ∼ qjump(τ∗ | tj−1, T

p
t0:tj−1

). (3.20)

The use of jump distributions other than that of the model is particularly

useful for processes with very rare jumps, since near-term jumps can be

proposed and only accepted if deemed likely after incorporating the in-

formation from the latest observation.

Some of these newly proposed jump times will occur before the current

observation time tj (e.g. the orange jumps in the first and last particle in

step 2 of figure 3.1); such offspring are termed jumping particles, since they

contain a jump between the previous and current observations. The other

particles have proposed jumps beyond the current observation time and are

called non-jumping. For jumping particles, jumps continue to be sampled

until no more are proposed before the current observation time, allowing

for the possibility of multiple jumps between observations.

The next step (step 3 in figure 3.1 and algorithm 3) collapses all non-

jumping offspring into a single offspring particle. This is possible since all

non-jumping particles are identical up to the time of the current observa-

tion tj, with a set of jump times the same as that of their parent particle. This

step is different from most resampling schemes because in most applica-

tions there are not large numbers of identical offspring. Here, however,

this fact allows calculation to be streamlined by only having one particle

representing all identical offspring. The weight of the single particle into

which all non-jumping particles is collapsed is the sum of the weight of all

non-jumping particles, so that

w
NJ(p)
tj−1

=
N0

M
p
j

w
p
tj−1

,

where NJ(p) is the single representative non-jumping offspring of parent p

and N0 is the number of non-jumping offspring originally sampled (of M
p
j

offspring).

3.4. BACKWARD SAMPLING FOR VRPF 97

The particles of this reduced particle set (containing a number of jump-

ing particles and at most one non-jumping particle) are then re-weighted in

light of the observation at tj (step 4 in figure 3.1 and algorithm 3). For the

Rao-Blackwellized filter used here, the weight update is given by

w
q
tj
∝ w

q
tj−1

p(T q
tj−1:tj

|tj−1, T
q

t0:tj−1
)p(yj|y1:j−1, T

q
t0:tj
)

qjump(T
q

tj−1:tj
|tj−1, T

q
t0:tj−1

)
, (3.21)

where T q
s:t is the set of jumps of particle q between times s and t, and

p(T q
tj−1:tj

|tj−1, T
q

t0:tj−1
) is the model’s jump distribution, given the set of

jumps T q
t0:tj−1

at time tj−1 . The denominator here is the proposal dens-

ity for the jumps used in equation (3.20). Using a jump proposal function

equal to the conditional jump distribution gives the bootstrap filter with

the correspondingly simpler weight update

w
q
tj
∝ w

q
tj−1

p(yj|y1:j−1, T
q

t0:tj
). (3.22)

The term p(yj|y1:j−1, T
q

t0:tj
) is the observation likelihood given the jump

time collection and can be obtained from the PED of the Kalman filter in

equation (2.9). Once this has been done for all offspring particles, they can

be added to the new particle collection for time tj (step 5 in figure 3.1 and

algorithm 3).

This process is repeated for all particles in the time tj−1posterior particle

collection, giving a new particle collection representing the posterior filter-

ing distribution at time tj. The weights of the particles are given by nor-

malizing them so that they sum to 1 (step 6 in figure 3.1 and algorithm 3).

3.4 Backward Sampling for VRPF

For some versions of the Particle MCMC parameter estimation algorithms

described in chapter 4 it is useful to be able to draw a sample from the (ap-

proximate) smoothing distribution p̂(Xt1:N
, Tt0:tN

| y1:N). Such samples can

be obtained by using the forward-filtering backward-sampling approach of

98 CHAPTER 3. LINEAR JUMP DIFFUSION: ONLINE INFERENCE

Algorithm 3 Variable rate particle filter (VRPF) algorithm outline

Initialization (j = 0): Create initial particle collection Pt0
of 1 particle with

no jumps
while observations available do

j = j+ 1

Observe yj

0 Initialize a new (empty) particle collection, Ptj
= ∅

foreach particle p ∈ Ptj−1
(the previous particle collection) do

1a Choose the number of successor particles M
p
j for p using a resid-

ual resampling scheme; see equation (3.18)
end
foreach particle p ∈ Ptj−1

(the previous particle collection) do
1b Assign an equal share of particle p’s weight to all children
Initialize a set of particle p’s children, Qp = ∅
Initialize count of non-jumping children N0 = 0

foreach successor particle q do
2a Sample new jumps τ

q
∗ for the particle from the jump proposal

distribution in equation (3.20)
if min(τq

∗) < tj then
2b add the jump to the particle’s set of jumps
2c add the particle to children i.e. Qp := Qp ∪ q

2d sample any further jumps before tj

else
2d note the particle as non-jumping; N0 := N0 + 1

end

end
3a Collapse non-jumping successor particles into a single particle.
i.e. create a particle q0 with the same jumps as its parent p and
weight equal to the share of the parent’s weight due to non-jumping
children.
(set τ

q0

t0:tj
= τ

p
t0:tj−1

and w
q0

tj−1
= w

p
tj−1

N0/M
p
j
)

3b add this particle q0 to the set of children, Qp = Qp ∪ q0

foreach child particle q ∈ Qp (set of children) do
4 Re-weight particle q in light of current observation as in equa-
tion (3.22)

end
5 Add all child particles to new particle collection Ptj

= Ptj
∪ Qp

end
6 Normalize particle weights in new particle collection so they sum to 1
Result: New particle collection represents posterior filtering density
after seeing given observation; this becomes current particle collection

end

3.4. BACKWARD SAMPLING FOR VRPF 99

[146], as described in section 2.3.3.

For notational clarity, it will be assumed in this section that observations

occur at integer times, so that ti = i, though this assumption can easily be

relaxed. Furthermore, let T be the entire set of jumps occurring from t0 to

tN.

3.4.1 Using Final Filter Jumps

The simplest approach to obtaining a sample from the joint smoother dis-

tribution for the jumps (times and types) T and the process state at all ob-

servation times X1:T is to use the output of the final stage of the particle

filter as an approximate smoother sample of the jumps, i.e. to use the filter-

smoother for the jump times. A sample can be drawn from the approximate

smoother distribution

p̂(T | y1:N) =
∑

i

wi
Tδ{T i}

where T i is the set of all jumps of particle i, by selecting a particle from

the final particle collection, according to the particle weights wi
T and taking

that particle’s entire jump history as the sampled value T ∗ = T i. This

can be used to obtain a joint sample of jumps and process states using the

decomposition

p̂(X1:N, T | y1:N) = p̂(T | y1:N)p(X1:N | T , y1:N),

and the fact that given a set of jump times T ∗ it is possible to sample the

process states exactly from their smoother distribution p(Xt1:N
| y1:N, T ∗).

This is done using a standard backward sampling result adapted to ac-

count for jumps, conditioned on the sampled jump times collection, and is

described in the rest of this section. The superscript ∗ is used to indicate

already-sampled values of the corresponding variables.

The standard approach to backward sampling for linear Gaussian mod-

100 CHAPTER 3. LINEAR JUMP DIFFUSION: ONLINE INFERENCE

els [178; 179; 180] can be straightforwardly adapted to account for the pres-

ence of jumps, based on the decomposition

p(X1:N | y1:N, T) = p(XN | y1:N, T)
N−1∏

n=1

p(Xn | Xn+1, y1:n, T1:n+1).

This relies on the conditional independence structure of the model for the

fact that p(Xn | Xn+1:N, y1:N, T) = p(Xn | Xn+1, y1:n, T1:n+1). Given a

sample of the subsequent state X∗
n+1, a sample of X∗

n can be drawn from

the distribution p(Xn | X∗
n+1, y1:n, T ∗

1:n+1), which is given by

p(Xn | X∗
n+1, y1:n, T ∗

1:n+1) ∝ p(X∗
n+1 | Xn, T ∗

n:n+1)p(Xn | y1:n, T ∗
1:n+1),

where p(Xn | y1:n, T ∗
1:n+1) is the filtering distribution for Xn conditional on

the sampled jump times T ∗
1:n+1. For linear Gaussian models, this is Gaus-

sian and can be obtained using the Kalman filter. Thus p(Xn | y1:n, T ∗
1:n+1) =

N
(
Xn;μ

∗
n|n

, Σ∗
n|n

)
, where μ∗

n|n
and Σ∗

n|n
are the mean and covariance cal-

culated from the Kalman filter after the nth observation using the jump set

T ∗. The transition density p(X∗
n+1 | Xn, T ∗

n:n+1) is that from equation (3.15),

again a Gaussian, N
(
X∗

n+1; F
∗
nXn, Q∗

n

)
, where F∗n and Q∗

n are the state trans-

ition and covariance matrices from n to n + 1 corresponding to jumps T ∗

and defined by equations (3.12) and (3.14).

Algebraic manipulation using the Gaussian distribution identities in

appendix A allows the backward sampling distribution of Xn to be found

in terms of these known quantities.

p(Xn | X∗
n+1, y1:n, T ∗

1:n+1) ∝ N
(
X∗

n+1; F
∗
nXn, Q∗

n

)
N
(
Xn;μ

∗
n|n, Σ∗

n|n

)

∝ N (Xn | μ, Σ) (3.23)

with

Σ−1 = (F∗n)
′(Q∗

n)
−1F∗n + (Σ

∗
n|n)

−1,

μ = Σ
(
(F∗n)

′(Q∗
n)
−1X∗

n+1 + (Σ
∗
n|n)

−1μ∗
n|n

)
.

3.4. BACKWARD SAMPLING FOR VRPF 101

This distribution gives the conditional smoother distribution for Xn given

a sample X∗
n+1, so can be used to sample Xn by drawing from the Gaussian

distribution in equation (3.23). The backward sampling process is star-

ted with a sample of XN drawn from the final Kalman filter distribution

N
(
XN;μN|N, ΣN|N

)
.

3.4.2 Backward Sampling of Jumps

In order to improve the diversity of samples generated by backward sampling,

jumps and process states can be jointly back-sampled using the particle

filter output and an algorithm similar to the forward-filtering backward-

sampling algorithm of [181; 146] (see section 2.3.3).

The joint smoother density of the jumps and process states can be writ-

ten as

p(X1:N, T | y1:N) = p(XN, τN | y1:N)

N−1∏

n=1

p(Xn, τn | Xn+1, τn+1:N, y1:n),

where τn = Tn−1:n is the collection of jumps from n − 1 to n (and hence τ1

does not exist). This relies on the model structure for the fact that p(Xn, τn |

Xn+1:N, Tn:N, y1:N) = p(Xn, τn | Xn+1, Tn:N, y1:n), although note that the

structure of the jump process has not been assumed to be Markovian.

The distribution p(XN, τN | y1:N) is approximated by the final filter

density from the particle filter as

p(XN, τN | y1:N) ≈
∑

i

wi
Nδ{τi

N
}N
(
XN;μ

i
N|N, Σi

N|N

)
.

This distribution can be sampled as p̂ (τN | y1:N)p̂ (XN | τN, y1:N) by first

sampling a particular τ∗N = τi
N from the particle approximation p̂ (τN | y1:N)

by choosing a particle according to the final particle weights wi
T . XN can

then be sampled from a Gaussian distribution with mean and covariance

corresponding to the selected particle, sampling X∗
N from p̂ (XN | τ∗N, y1:N) =

N
(
XN;μ

i
n|n

, Σi
n|n

)
.

102 CHAPTER 3. LINEAR JUMP DIFFUSION: ONLINE INFERENCE

Subsequent samples are then drawn from the following distribution,

with T ∗
N−1:N = τ∗N.

p(Xn, τn | X∗
n+1, T

∗
n:N, y1:n) ∝ p(X∗

n+1, T
∗

n:N | Xn, τn, y1:n)p(Xn, τn | y1:n)

= p(X∗
n+1 | τn+1, Xn)p(T

∗
n:N | τn)p(Xn, τn | y1:n).

Once again, p(Xn, τn | y1:n) is approximated by the particle collection after

observation n, so that

p̂(Xn, τn | X∗
n+1, T

∗
n:N, y1:n) ∝

∑

i

p(X∗
n+1 | τn+1, Xn)p(T

∗
n:N | τn)

× wi
nδ{τi

n}N
(
Xn;μ

i
n|n, Σi

n|n

)
.

The transition density p(X∗
n+1 | τn+1, Xn) is that from equation (3.15), given

by the Gaussian N
(
X∗

n+1; FnXn, Qn

)
, with Fn and Qn defined as in the pre-

ceding section. This allows the above distribution (denoted by p̂n for brev-

ity) to be written, via the identity in equation (A.2), as

p̂n ∝
∑

i

N
(
X∗

n+1; FnXn, Qn

)
p(T ∗

n:N | τi
n)w

i
nδ{τi

n}N
(
Xn;μ

i
n|n, Σi

n|n

)

=
∑

i

Wi N (Xn;μi, Σi) δ{τi
n} (3.24)

where

Wi =
wi

n|Σi|
1
2 |Fn|p(T ∗

n:N | τi
n)

(2π)
k
2 |Σi

n|n
|
1
2 |Qn|

1
2

× exp

[

−
1

2

(
(X∗

n+1)
′Q−1

n X∗
n+1 + μ ′

n|nΣ−1
n|n

μn|n − μ ′
iΣ
−1
i μi

)]

(3.25)

and

Σ−1
i = F ′

nQ−1
n Fn + (Σ

i
n|n)

−1 (3.26)

μi = Σi

(
FnQ−1

n X∗
n+1 + (Σ

i
n|n)

−1μi
n|n

)
. (3.27)

3.4. BACKWARD SAMPLING FOR VRPF 103

Using the decomposition

p̂(Xn, τn | X∗
n+1, T

∗
n:N, y1:n) = p(Xn | X∗

n+1, τn, y1:n)p̂(τn | X∗
n+1, T

∗
n:N, y1:n),

a joint sample of τn and Xn can be drawn by first drawing τ∗n from the

approximate smoother distribution p̂(τn | X∗
n+1, T

∗
n:N, y1:n), followed by

drawing X∗
n from p(Xn | X∗

n+1, τ
∗
n, y1:n). An expression for p̂(τn | X∗

n+1, T
∗

n:N, y1:n)

can be found by integrating the expression in equation (3.24) over Xn, so

that

p̂(τn | X∗
n+1, T

∗
n:N, y1:n) =

∫
p̂(Xn, τn | X∗

n+1, T
∗

n:N, y1:n)dXn (3.28)

=
1

∑
i Wi

∑

i

Wi δ{τi
n}. (3.29)

This distribution is easily sampled by calculating Wi for each particle i in

the particle collection, normalizing these so they sum to 1 and then select-

ing a particle according to the weights thus calculated. The sample τ∗n is

taken to be that particle’s jumps, i.e. τ∗n = τ
j
n if particle j is selected. Given

the sample τ∗n, a sample X∗
n is drawn from p(Xn | X∗

n+1, τ
∗
n, y1:n) as given in

equation (3.23), with μn|n and Σn|n corresponding to the selected particle.

The overall jump sample is updated as T ∗
n−1:N := τ∗n ∪ T ∗

n:N.

This sampling procedure is repeated until a sample X∗
1 is drawn, at

which point a complete sample of the jumps and state sequence will have

been drawn from the smoothing distribution. The full process is outlined

in algorithm 4.

For jumps distributed exponentially in time, the distribution p(T ∗
n+1:N |

τi
n) is the same for each particle, owing to the memoryless property of the

exponential distribution and so does not need to be calculated since it can

be considered part of the proportionality constant and will be corrected for

by the normalization in equation (3.29).

The algorithm in this section is essentially the same as the JBS-RBPS al-

gorithm in the technical report [182] (using Algorithm 2 in that report for

104 CHAPTER 3. LINEAR JUMP DIFFUSION: ONLINE INFERENCE

Algorithm 4 Backward sampling of jump times from approximate
smoother distribution p̂(X1:N, T | y1:N)

1 Run VRPF algorithm (algorithm 3) to obtain particle collections P1:N rep-
resenting the approximate posterior filtering densities p̂ (Xn, τn | y1:n) after
each observation n

2 Sample final period values:
| 2a Select a particle j from the final particle collection PN from the
| particle filter with probability according to its weight
| 2b Set τ∗N = τ

j
N, i.e. jumps of particle j from N− 1 to N; T ∗

N−1:N = τ∗N

| 2c Sample X∗
N ∼ N

(
μ

j

N|N
, Σ

j

N|N

)

while n ≥ 1 do
3 Evaluate Wi (equation (3.25)) for each particle i in the particle collec-
tion Pn

4 Sample period n values:
| 4a Normalize the Wi so they sum to 1; see equation (3.29)
| 4b Using normalized Wi as weights, select a particle j

| 4c Set τ∗n = τ
j
n, i.e. jumps of particle j from n− 1 to n;

| T ∗
n:N = T ∗

n−1:N ∪ τ∗n

| 4d Sample X∗
n ∼ N

(
μ

j

n|n
, Σ

j

n|n

)
; see equations (3.27) and (3.26)

5 n := n− 1

end

OUTPUT: T ∗
1:N and X∗

1:N are a sample from the approximate smoother
distribution p̂(X1:N, T | y1:N)

3.5. APPLICATION: TREND-FOLLOWING IN FINANCE 105

index selection). If jumps (times and types) alone are required, without

a sample of X1:T , this can be achieved using the related Forward-Filter

Backward Sampling algorithm of [183; 184], which produces approxim-

ate samples from the jump parameter distribution p(T | y1:N) without

sampling the linear Gaussian portion of the state. The method of [183; 184]

uses a similar forward-filtering, backward sampling idea to that shown

in this section, but values of Xn are not sampled during the backward

sampling pass. Instead, their linear Gaussian structure is exploited to mar-

ginalize out the jump parameters. The algorithm in [183; 184] can also be

used in place of that shown in this section to draw samples for both jump

parameters and X1:N, by first drawing a sample of jumps T ∗
1:N from their

smoother distribution, and then backward sampling X∗
1:N, conditioned on

these jumps using the backward sampling method in section 3.4.1.

3.5 Application: Trend-following in Finance

Multivariate linear jump diffusion models of the type presented above can

be used to model momentum effects in financial assets, as shown in our

earlier work in [2], upon which this section draws heavily.

Momentum strategies have been the source of much academic debate

(e.g. [185; 186; 187; 188; 189]) because they appear to defy even the weak

form of the Efficient Market Hypothesis (EMH) of [190], which states that

prices should not be predictable from analysing their past history. This

form of the EMH is consistent with random-walk behaviour of asset prices

and suggests that no form of technical analysis (price prediction based solely

on studying previous price history) can generate above average returns

without taking above average risks [185]. However, technical analysis re-

mains in widespread use in public markets [191] and various forms have

been shown to have at least some predictive power [191; 192; 193; 194].

Momentum effects in particular have been extensively studied (e.g. [195;

187; 196; 197; 198; 199], amongst others) and have been found to exist in

106 CHAPTER 3. LINEAR JUMP DIFFUSION: ONLINE INFERENCE

a number of markets including foreign exchange [198], commodities [200]

and equities [197]. Proposed explanations of these effects include the non-

instantaneous reaction of the market to news events [195], meaning that

the effects of events take place over several trading periods, and herding

behaviour [201], in which, for example, investors clamour for assets that

have recently performed well, further increasing their price. Though this

herding behaviour has been termed “irrational exuberance” [201], irration-

ality of investors is not required to explain momentum effects [188; 202].

Some advocates of market efficiency contest that trading costs would wipe

out any practical benefit of momentum trading [185; 189]. But, despite ef-

ficient market objections to momentum trading, the continuing existence

and profitability of momentum-based funds has led to obvious ongoing in-

terest. Momentum effects have been found at a range of frequencies from

multi-monthly [187], to intraday [203], though this latter study found them

to be more profitable at higher (intraday) frequencies. A range of meth-

ods have been used to attempt to find trends in price data, including some

very simple strategies such as buying shares that performed well over a

previous time period, which have been shown to be effective under certain

circumstances [187].

Here, it is proposed that trend information be found by using model

based tracking algorithms, using a variant of the jump diffusion model de-

scribed above. As with all model based tracking applications the fit of the

dynamical model to the true dynamics has a substantial effect on track-

ing performance [204]. However, the underlying dynamics of financial as-

set values are much less clear than in the physical case, despite extensive

study of the behaviour of asset prices, e.g. [205; 206; 207; 208; 209]. Though

the ‘stylized facts’ established in this literature can help point out short-

comings of an asset price model, they do not prescribe a specific model of

asset dynamics. Numerous models have been proposed, largely dependent

on the application and their analytical tractability; popular models include

GARCH models in econometrics [210], exponential Brownian motion mod-

3.5. APPLICATION: TREND-FOLLOWING IN FINANCE 107

els in Black-Scholes option pricing [211], stochastic volatility models to fit

volatility clustering and option price smiles [212] and jump diffusion and

Lévy process models to fit heavy tails, e.g. [213] and [214], respectively.

Such random walk models, however, do not allow for a predictable trend

in asset prices. Since it is the aim of this model to determine such a trend

(if one exists), the model used must introduce a ‘trend’ term. The model

described here is similar in spirit to the “near constant velocity” physical

tracking models described in [204]. It can also be viewed as an extension of

the Langevin dynamics used in [172]. By allowing for jumps in the trend

process, the models attempt to ameliorate the problem of changing trends,

which can cause difficulty for momentum strategies [215], since at the point

a trend changes, a momentum strategy following that trend can make sig-

nificant losses if it is unable to identify the change quickly and alter its

position appropriately.

3.5.1 A Model for Trend Following in Finance

The model considered here is a two-dimensional model consisting of a

‘value’ x1 and ‘trend’ x2 component. Both components are mean-reverting

random processes subject to Gaussian noise of constant volatility and ran-

dom jumps. Including mean reversion in the model reflects a view that

trends are likely to fade over time. Figure 3.2 illustrates the types of changes

in trend and price that can be accommodated by such a model. Observed

prices y are modelled as observations of the value process x1 subject to

Gaussian noise. Noise in the state dynamics is modelled as being Gaussian

and independent for each process, as is the distribution of jump sizes in

each process. Using the notation introduced in section 3.2, the governing

SDE for the state dynamics in this model is given by



dx1,t

dx2,t



 =



θ1 1

0 θ2







x1,t

x2,t



dt+



σ1 0

0 σ2



dWt +



σj1 0

0 σj2



dJt, (3.30)

108 CHAPTER 3. LINEAR JUMP DIFFUSION: ONLINE INFERENCE

Figure 3.2: Types of jumps that can be modelled

which corresponds to the following values for the A, B and C matrices in

equation (3.1):

Xt =



x1,t

x2,t



 , A =



θ1 1

0 θ2



 , B =



σ1 0

0 σ2



 , C =



σj1 0

0 σj2



 .

(3.31)

A simple observation model is assumed in which the ith price obser-

vation, yi, observed at time ti, is the result of an observation of the value

process x1,ti
, perturbed by Gaussian noise of a fixed variance:

yi = x1,ti
+ vti

, (3.32)

where vti
∼ N (0, σ2

obs). This gives an observation density, conditional on

the state at time ti, of

yi ∼ N (x1,ti
, σ2

obs). (3.33)

and corresponds to observation matrix H and covariance Σobs

H = [1 0], Σobs = σ2
obs. (3.34)

Jumps in each process are modelled as being independent and follow-

ing a Gauss-Poisson process, with jump times τk following a Poisson ar-

rival process with rate λi, i ∈ {1, 2}, for each process, and jump sizes Sk

3.6. RESULTS 109

distributed as a multivariate Gaussian, so that

Sk ∼ N



0,



Ijump
1
(τk) 0

0 Ijump
2
(τk)







 (3.35)

τk − τk−1 ∼ min (exponential (λ1) , exponential (λ2)) (3.36)

= exponential (λ1 + λ2) (3.37)

with Jt being defined as in equation (3.11).

This model has nine parameters: the mean reversion coefficients θ1 and

θ2, the diffusion noise variances σ2
1 and σ2

2, the jump rates λ1 and λ2, the

jump size variances σ2
J1

and σ2
J2

, and the observation noise variance σ2
obs.

It generalizes the model in [2] by introducing the possibility of random in-

novations (both jumps and diffusion) in the value process, and by allowing

this process itself to be mean reverting, which could be of use when dealing

with price movements in certain asset classes such as currency pairs. The

model from [2] is easily recovered by setting the parameters relating to the

x1 process σ1, θ1, σj1 and λ1 to 0, leaving the five parameters in [2]. This

latter model is referred to as the Langevin model, owing to the governing

SDE of its dynamical model resembling a Langevin equation. The model

with jumps, diffusion and mean reversion in both processes is referred to

at the full model.

3.6 Results

In order to demonstrate the operation of the VRPF filter it was applied to

data generated from the two-factor model described in section 3.5.1. The

results are shown in figure 3.3. The two sets of results show the estimates

derived from the filter immediately after each observation, and at a lag of 5

observations. This latter is a particle approximation to the posterior fixed-

lag smoother distribution p(Xt−L | y1:t), where L is the lag in observation

periods. It is given by the collection of fixed-lag smoother distributions

p(Xi
t−L | y1:t, τ

i) corresponding to each particle in the particle collection at

110 CHAPTER 3. LINEAR JUMP DIFFUSION: ONLINE INFERENCE

Figure 3.3: Typical VRPF filter output for two factor model. The true pro-
cess is shown red and inferred posterior distribution is shown by grey
shading (processes have been scaled to fit in range [1.2, 2.2]). Red bars in-
dicate true jump positions with shading intensity representing jump size.
Inferred jumps are shown by grey bars with height indicates total weight
of particles containing a jump between observation times. Upper figure
shows filter output, lower figure shows fixed lag smoother output at lag of
5 observations

3.6. RESULTS 111

time t, weighted by the particle weights, so that

p(Xt−L | y1:t) ≈
∑

i

wi
tp(X

i
t−L | y1:t, τ

i)

=
∑

i

wi
tN
(
Xt−L;μ

i
t−L|t, Σ

i
t−L|t

)
,

where μi
t−L|t

and Σi
t−L|t

are the mean and covariance of the process state

obtained given the jump sequence of particle i from a fixed lag smoother

of lag L. This smoother estimate can be provided by the Kalman filter itself

by incorporating lagged states into the filter’s state space or using a fixed-

interval smoother such as the Rauch-Tung-Striebel smoother; see sections

2.1.2 and 2.1.2, respectively.

In figure 3.3 the fixed-lag approximation is significantly better than the

immediate filter output, especially in terms of jump detection in the x2

(trend) process, which is poor in the filter. The response to jumps is quicker

and more accurate in the fixed-lag approximation, which can be seen by the

fact that the state estimates regain the true signal more quickly after jumps

(for example, this is visible after jumps in the x2 process between t = 150

and 200).

Due to resampling, the quality of the fixed-lag approximation can be

poor at long lags, since the particle history degenerates to a handful of com-

mon ancestor particles beyond a certain number of generations. Figure 3.4

shows the mean squared error per observation for a range of lags. It indic-

ates that for this data the error falls rapidly to a lag of about 5, then levels

off, increasing slightly at very long lags, with the variance of the estimates

increasing for long lags. The expected squared estimate error at time t is

defined as

E
(

error2
)
=

∫
(x̂t − xt)

2p(x̂t)dx̂t,

= E
(
x̂2

t

)
− 2xtE (x̂t) + x2

t ,

where x̂t is the state estimate and xt is the true system state at time t. Since

112 CHAPTER 3. LINEAR JUMP DIFFUSION: ONLINE INFERENCE

the output of the filter (i.e. the distribution p(x̂)) is given by a Gaussian mix-

ture (with one component for each particle in the collection, corresponding

to the Kalman filter distribution for that particle’s particular set of jumps),

this error is given by

E
(

error2
)
=
∑

i

wi(σ
2
i + μ2

i − 2xtμi) + x2
t , (3.38)

where wi is the weight of particle i, and μi and σ2
i are the mean and vari-

ance of the posterior distribution corresponding to the jumps in particle i

at time t. In order to calculate the mean error of the fixed lag estimates, the

mean of this error is taken over all times for which the estimate is available

(which will stop L periods before the final observation).

In some cases, it might be preferable to use the expected absolute error.

For a Guassian mixture estimate x̂ ∼
∑

i wiN
(
μi, σ

2
i

)
of a quantity x, an

analytic expression can be derived for this as follows.

E (|x− x̂|) =

∫x

−∞
(x− x̂)p(x̂)dx̂+

∫∞

x

(x̂− x)p(x̂)dx̂

=
∑

i

wi

∫x

−∞
(x− x̂)N

(
x̂;μi, σ

2
i

)
dx̂

+
∑

i

wi

∫∞

x

(x̂− x)N
(
x̂;μi, σ

2
i

)
dx̂

=
∑

i

wi(x− μi)[2Φ(x;μi, σ
2
i) − 1] + 2σ2

iN
(
x;μi, σ

2
i

)
,

where Φ(x;μ, σ2) is the Gaussian CDF at x for a Gaussian distribution with

mean μ and variance σ2.

3.6.1 Backward Sampling

To compare the results of backward sampling, samples were drawn from

the smoother distribution p(X1:T | y1:T) for a range of series lengths and

using various numbers of particles in the forward filter. Figure 3.5 shows

the mean squared errors of each of these tests, including, as a reference

3.6. RESULTS 113

Figure 3.4: Mean squared fixed lag smoother error per observation by lag
(a lag of 0 is the filter). Mean taken over 30 different data sets of length 300
observations. Shaded area shows ± one standard deviation. Right hand
plot shows detail over first 10 lags

the expected mean squared error of the forward filter distributions calcu-

lated by equation (3.38). Both graphs show very similar mean squared er-

rors with and without back sampling of jump times. This is surprising,

since back sampling jumps might be expected to decrease the overall error,

since samples should better approximate the smoother distribution. The

result could be due to the final particle filter approximation to the smoother

distribution being more sharply concentrated in a few areas of high likeli-

hood, owing to the particle filter’s resampling process keeping well-fitting

particles and discarding others. This would lead to samples from the fi-

nal particle distribution being of high likelihood and low error, but with

a limited distribution that would not well reflect the true smoother distri-

bution, especially in cases of multimodality. This situation is illustrated in

figure 3.6, though it is not certain that this is what is occurring here. These

results are consistent with those in [183; 184], in which a large improve-

ment in sample diversity but only a “small improvement in [RMS] accur-

acy from the smoother” [184] was found when comparing results from the

filter-smoother and forward-filtering backward sampling methods for lin-

ear Gaussian jump-diffusion systems.

114 CHAPTER 3. LINEAR JUMP DIFFUSION: ONLINE INFERENCE

Figure 3.5: Mean squared state error per observation by series length (top)
and number of particles (bottom) for a range of jump sampling methods.
Error bars show one standard deviation. Series length test (top) run with 50
particles, 10 different sets of data per series length and 100 samples per set
of data. Particle number test (bottom) run with series of 400 observation.
Filter results show expected mean squared error as given in equation (3.38)

3.6. RESULTS 115

Figure 3.6: Two different approximations to the smoother distribution; the
approximation on the left will give lower error to the true value but is a
worse approximation to the true smoother distribution than that on the
right

The tests with varying numbers of particles show that, as expected, in-

creasing the number of particles generally decreases the error for both the

back sampler and filter, although this effect is not especially pronounced

beyond about 500 particles for this model and data. Series length does not

have a significant effect on error, except for short series, where the uncer-

tainty in the prior and thus error in initial samples is amortized over fewer

observations.

The advantage of back sampling can be seen in figures 3.7 and 3.8,

which show the results of sampling from the approximate smoothing dis-

tributions with and without backward sampling (’Back Sampling Jumps’

and ‘Final Particles Jumps’, respectively). Figure 3.7 shows the positions of

sampled jumps using each method. This illustrates the degeneracy of the

samples drawn from the filter-smoother distributions; in early time periods

there are perhaps two ancestor paths that represent the entire smoother dis-

tribution, although the location of the jumps found are generally good. In

contrast, the back sampled jumps are diverse throughout the sample, clus-

tering around the true jumps. The average number of jumps has also been

found to be consistently closer to the true number of jumps using jump

back sampling.

Figure 3.8 shows the distribution of jump time and process state samples

116 CHAPTER 3. LINEAR JUMP DIFFUSION: ONLINE INFERENCE

Figure 3.7: 200 samples of jump times drawn from the final particle filter
(filter-smoother) distribution (top) and by using VRPF backward sampling
(bottom); red bars show true jump times

for each of the two sampling methods. Samples drawn from the filter-

smoother distributions have only a few jump times occurring in all samples,

especially in early periods, whereas samples for which jump times were

also back sampled have more diffuse jump time distributions, clustering

about the true jump times. The advantage of back sampling jump times

is also clear in the process state estimation, especially in early stages. For

example, for the particle filter jumps, jumps in all samples at around obser-

vations 25, 80 and 240 lead to the true process lying outside three standard

deviations of the samples, whereas for the back sampled jumps this is not

the case. A couple of mis-sampled jumps between observations 140 and

150 lead to excessive variance in samples using filter-smoother jumps when

compared to the back sampled jumps.

In this case, back sampling takes around one tenth the time of running

the particle filter itself, so is a useful method for drawing a relatively small

number of diverse samples from the approximate smoother distribution.

3.6. RESULTS 117

Figure 3.8: Distribution over 400 back samples for samples drawn without
(top) and with (bottom) jump resampling. x2 process only shown. Red
line shows true x2 process, shading shows 1 (darkest shading), 2 and 3
(lightest shading) standard deviations of back samples at each observation
time. Sampled jump times are shown as proportion of back samples having
a jump between t and t + 1 for each integer observation time t, with true
jumps marked by red bars

118 CHAPTER 3. LINEAR JUMP DIFFUSION: ONLINE INFERENCE

Parameter Full Model Langevin Model Langevin Model in [2]
σ1 5
σ2 4 4 4.1
σj1 50
σj2 45 45 70
σobs 8 8 20
θ1 0
θ2 -0.1 -0.1 -0.2
λ1 0.05
λ2 0.05 0.05 0.2

Table 3.1: Parameter values used for the Full and Langevin models

3.6.2 Foreign Exchange Data

The model in section 3.5 was applied to five currency pairs over 14 years.

Currency pairs were chosen because they might be expected to be mean

reverting (at least to some extent), rather than having a pattern of long-

term growth as might be seen with equities. In order to turn the output of

the filter into a trading strategy a very simple approach was taken: if the

mean predicted price ratio at t + 1 was greater than the current price ratio

at time t, the denominator currency was held for the period from t to t+ 1

(as it was predicted to become more valuable), otherwise the numerator

currency was held from t to t+1. Much more sophisticated strategies could

be developed, with the trading decision based on the predicted probability

of an up or down move in the price ratio, as estimated by the filter. Figure

3.9 shows the result of applying this strategy to five currency pairs from

March 1999 to March 2013. Both the full model and the Langevin model

were tested with parameters given in table 3.1. These parameters were

based on those used for the similar model in [2] and on inspection of the

filter results, to ensure that these were correctly scaled for the data. In each

one year period, each series was offset by its initial value so that it started

at 0; series were also scaled by 1000 (this put them in a more familiar range

for choosing parameters, but has no other effect on the results).

The results in figure 3.9 are somewhat positive for the four series in-

3.7. CONCLUSIONS 119

volving the US Dollar (making positive returns of between about 0.7% and

2% per year). However for the EUR/GBP series, the strategy consistently

and steadily lost value, which cautions against too much optimism. Differ-

ent parameter values might improve the performance here. In our earlier

work [2], a similar model was found to produce positive returns across a

portfolio consisting of a large basket of assets, although the filter output

was processed in a somewhat different way to produce a trading strategy.

Figure 3.10 shows an example strategy for a single year of JPY/USD

data. It nicely illustrates some of the successes and problems encountered

when applying trend following algorithms to financial data. The algorithm

performs well during the strong trends from day 55 to 90 and especially

from day 210 to 250. Here the price ratio continues along a clear trend for a

significant period of time, which allows the filter to pick up on the under-

lying trend and to profit from that. In contrast, in the period between about

day 85 and day 200 there is no clear trend for the filter to follow, with the

price oscillating somewhat; here the algorithm achieves very little and fre-

quently gets the direction wrong. Finally, from day 50 to 60 the algorithm

chooses to buy dollars, correctly following the prevailing trend. However,

at the end of this buying period a nasty surprise awaited it, in the form of a

large price fall. This more than wipes out the profit of following the earlier

part of the trend and, although the algorithm detects and adapts quickly to

the downward trend that ensues, it gets badly burnt at the point at which

the trend changes. This is typical of trend following strategies; they must

be sufficiently profitable in periods where trends continue to compensate

for the inevitable losses when trends reverse. Overall, in this period the al-

gorithm picked the correct direction in just 43% of cases, but made a small

profit of around 0.2% (due to correctly following strong trends).

3.7 Conclusions

This chapter showed how the variable rate particle filter can be applied to

give an effective and computationally efficient method to infer the state of

120 CHAPTER 3. LINEAR JUMP DIFFUSION: ONLINE INFERENCE

Figure 3.9: Portfolio return using a simple trading strategy based on
the VRPF filter on five currency pairs from March 1999 to March 2013.
Solid lines show results using full model; dashed lines show results using
Langevin model

Figure 3.10: Example trading strategy derived using (full) model and VRPF
filter. Data is JPY/USD from March 2011-March 2012 (increasing series
value indicates increasing USD value). Green shading indicated a decision
to buy USD, red shading indicates a decision to buy JPY

3.7. CONCLUSIONS 121

linear jump diffusion processes, given noisy observations.

The results in this chapter show that back sampling the jump times

as well as the process state can significantly increase the diversity in the

particle samples, giving samples that better represent the process state and

jump times (particularly the uncertainty within the latter). This is particu-

larly noticeable in early periods of the filter as particle diversity frequently

declines to a very few common ancestors at long lags with computationally

reasonable numbers of particles. The back sampling methods presented

here are particularly useful as they can be used within the Particle MCMC

parameter estimation described in chapter 4.

Though the financial results of applying these methods to follow trends

in foreign exchange data were, at best, mixed, they illustrate the application

of the algorithm in a concrete setting and do manage to identify and follow

trends in the data when such trends exist. Financially they suffered from

problems common to trend following algorithms, such as difficulty in peri-

ods with no clear trend, and suffering large losses when trends suddenly

reversed.

122 CHAPTER 3. LINEAR JUMP DIFFUSION: ONLINE INFERENCE

Chapter 4

Parameter Inference for Linear

Jump Diffusion Models

This chapter presents a number of methods for Bayesian parameter estim-

ation in linear jump diffusion models of the type described in chapter 3.

This is practically useful because such models have a wide range of applic-

ations (see chapter 3) and in many practical cases the choice of parameters

for the models is far from intuitive. For example, the trend following model

described in section 3.5 requires nine parameters to specify, the choice of

which is not obvious either from knowledge of the asset types or from in-

spection of their previous behaviour. Estimation in a principled way from

past data is therefore desirable.

Most existing parameter estimation methods for jump diffusion pro-

cesses have focussed on directly observed jump diffusions rather than ones

observed only via noisy observation. This obviates the need for simul-

taneous state and parameter estimation, since states are assumed known.

Parameter estimation in such models has been tackled primarily using max-

imum likelihood (MLE) methods e.g. [216; 217; 169; 218] though other

methods such as the method of moments [219] and least-squares fitting

[220] have also been used. [174] suggest the use of particle filter likelihood

maximization approaches, although these are prone to difficulties (see sec-

123

124CHAPTER 4. LINEAR JUMP DIFFUSION: PARAMETER INFERENCE

tion 2.3.4). The Bayesian estimation proposed here has the advantage of

providing distributional parameter estimates as opposed to the point es-

timates obtained from MLE methods.

When presented with a batch of observations from which to estimate

parameters, both the model parameters θ and the underlying system state

and jumps, X and T , are unknown and must be estimated. To do so, Gibbs

sampling is employed, which allows samples to be drawn from the joint

distribution p(X, T , θ | y). Several Gibbs sampling schemes can be used for

the parameters, relying on less or more marginalization of the state process,

leading to traditional or collapsed samplers [221].

Two methods for drawing samples of the jump sequence T are presen-

ted here: reversible jump Markov chain Monte Carlo (RJMCMC) [34], or

one of two Particle MCMC methods [33]. A modified version of the vari-

able rate particle filter from chapter 3 is shown to be compatible with these

latter methods. Both reversible jump and Particle MCMC methods allow

asymptotically exact samples to be drawn from the joint jump and process

state posterior distribution, in contrast to the approximate samples pro-

duced by the particle filter and backward sampling methods of the previ-

ous chapter. However, the estimation methods in this chapter are offline

estimation methods suited for batch estimation rather than sequential in-

ference.

The rest of this chapter is structured as follows. Section 4.1 gives details

of the Gibbs samplers that can be used for parameter estimation. Section 4.2

outlines the RJMCMC scheme that can be used for state estimation. Section

4.3 introduces Particle MCMC methods and gives details of the specific

schemes that can be used for jump diffusion models. Section 4.5 gives the

results of a number of tests comparing the various methods proposed for

parameter and state estimation. Finally, section 4.6 draws some conclusions

from this work.

4.1. GIBBS SAMPLER FOR PARAMETERS 125

4.1 Gibbs Sampler for Parameters

The simplest Gibbs sampling approach, which can be applied to any para-

meter, is the Metropolis-within-Gibbs scheme. In this, a parameter θi is

sampled from its conditional distribution p(θi | θ−i, T , y) using

p(θi | θ−i, T , y) ∝ p(y | θ, T)p(T | θ)p(θi | θ−i). (4.1)

The conditional likelihood of the observations p(y | θ, T) can be evaluated

using the PED from the Kalman filter as described in section 2.1.2. The

conditional likelihood of the jump sample p(T | θ) can be evaluated from

the jump transition density, since

p(T | θ) = p(T1 | θ)

|T |∏

j=2

p(Tj | Tj−1, θ).

The distribution in equation (4.1) is not, in general, easy to sample.

Sampling can be performed for each parameter θi using a Metropolis-Hastings

step, with proposal q(θ∗
i | θ ′

i), where θ ′
i is the current sample and θ∗

i is the

proposal, and acceptance probability

paccept =
p(y | θ−i, θ

∗
i , T)p(T | θ−i, θ

∗
i)p(θ

∗
i | θ−i)

p(y | θ−i, θ
′
i, T)p(T | θ−i, θ

′
i)p(θ

′
i | θ−i)

q(θ ′
i | θ∗

i)

q(θ∗
i | θ ′

i)
.

This sampling mechanism is general, but is slow, because it requires evalu-

ation of the likelihood, and can be inefficient if the proposal distribution is

not well matched to the target distribution, leading to high rejection rates

and poor mixing. In the absence of other information, a simple symmetrical

Gaussian random walk proposal is used with variance chosen to match the

scale over which a particular parameter is expected to vary.

4.1.1 Jump Rates

The jump rates λ{1,2} can be sampled efficiently if appropriate conjugate

priors are chosen, since the inter-jump time for the x1 and x2 processes

126CHAPTER 4. LINEAR JUMP DIFFUSION: PARAMETER INFERENCE

are modelled as being independent and exponential with rate λi. In this

case a Gamma(αλi
, βλi
) prior on λi is conjugate and leads to the posterior

distribution

p(λi | T , y, θ−λi
) = Gamma(αλi

+ ni, βλi
+ T),

where ni is the number of jumps in process xi and T is the total observed

time of the process (i.e. tend−tstart). This distribution can easily be sampled,

leading to an efficient Gibbs sampler for the jump rates. It differs from the

standard posterior distribution for the exponential rate parameter given n

i.i.d. observations of the process because, in addition to the jumps that do

occur, it must also take into account the fact that a jump does not occur

between the final jump and the final observation, which also conveys some

information about the jump rate (especially when there are no jumps).

For the avoidance of confusion, the Gamma distribution here is defined

as

Gamma(α,β) =
βα

Γ(α)
λα−1 exp(−λβ),

whereas some definitions (including that of the gampdf function in Matlab)

use 1/β as the second parameter.

The prior parameters can be interpreted (in a sense) as effectively ‘adding’

αλi
− 1 additional jumps to the jump sequence and ‘adding’ βλi

extra time

units to the observation period when compared to the likelihood distribu-

tion for λi, which is given by L(λi) = Gamma(ni + 1, T). Figure 4.1 shows

the effect on the posterior of an increasing number of jumps observed in a

100 time unit sequence; increasing the α prior parameter effectively moves

this posterior a number of steps to the right.

4.1.2 Sampled State

For some parameters an alternative to the Metropolis-within-Gibbs scheme

above is to sample the system state X and use this sample in order to sample

4.1. GIBBS SAMPLER FOR PARAMETERS 127

Figure 4.1: Posterior distribution of λi for values of ni ranging from 0 (blue)
to 20 (red), for α = 1, β = 1 and T = 100

the relevant parameters. Doing this allows the jump variance σ2
J{1,2}

for

each process, and the the observation noise variance σ2
obs to be estimated

efficiently given suitable conjugate priors.

According to the observation model, observations are equal to the value

of the x1 process perturbed by zero-mean independent Gaussian noise with

a constant variance σ2
obs. Thus, given a sample of x1 and the observations,

the difference between them can be used to infer the observation noise. In

this case, an inverse gamma IG(αobs, βobs) prior distribution on σ2
obs is a

conjugate prior, leading to the easy-to-sample posterior distribution

p(σ2
obs | X, y) = IG

(

αobs +
N

2
,βobs +

1

2

N∑

n=1

(x1,tn
− yn)

2

)

,

where N is the total number of observations.

Similarly the jump variance σ2
J{1,2}

can be inferred given the system

state before and after a jump (which can be obtained from the backward

sampling algorithm in section 3.4.1). According to the model, jumps sizes

are independent and normally distributed with zero mean, thus an inverse

gamma IG(αJi
, βJi
) prior distribution on σ2

Ji
leads to the posterior distri-

128CHAPTER 4. LINEAR JUMP DIFFUSION: PARAMETER INFERENCE

bution

p(σ2
Ji

| T , X, y) = IG



αJi
+

|Ji|

2
, βJi

+
1

2

|Ji|∑

j=1

(x+i,τj
− x−i,τj

)2



 ,

where |Ji| is the number of jumps in the xi process and x−i,τj
and x+i,τj

are the

values of the process xi before and after the jump τj.

Other parameters can also be estimated given a sample of X using a

Metropolis-within-Gibbs step similar to that employed when sampling from

equation (4.1) but replacing p(y | T , θ)with p(X | T , θ). However, sampling

the state and using the sample to evaluate likelihood introduces an unne-

cessary ‘sampling noise’ into the likelihood being considered. This can be

significant in areas where the likelihood is relatively flat, since this ‘noise’

can be at a much larger scale than the variation in the likelihood itself, and

can lead to poor results.

4.1.3 Hybrid Scheme

In order to accommodate that some parameters can be efficiently sampled

after sampling X (call these θX), whilst others are best sampled with X mar-

ginalized out (call these θm), a sampling scheme incorporating both types

of sampling can be devised as follows.

1. Sample X, T , θm ∼ p(X, T , θm | y, θX)

(a) Sample T ∼ p(T | θm, θX, y) by RJ-MCMC or Particle Gibbs (see

sections 4.2 and 4.3.4)

(b) Sample θm ∼ p(θm | T , θX, y) by Metropolis-within-Gibbs (see

above)

(c) Sample X ∼ p(X | θm, θX, T , y) by backward sampling (see sec-

tion 3.4.1)

2. Sample θX ∼ p(θX | X, θm, τ, y)

4.2. SAMPLING JUMPS: REVERSIBLE JUMP MCMC 129

In this scheme, steps 1a and 1b form a collapsed Gibbs sampler [221] for

T and θm. After these are sampled, a sample can be drawn for the hidden

state X via backward sampling. This sample can then be used in step 2 to

sample the parameters that are best sampled conditional on X. The validity

of this scheme can also be seen by viewing Steps 1a and 1b as drawing

samples from p(T , [X] | θm, θX, y) and p(θm, [X] | T , θX, y), respectively,

where [X] denotes a sample of X that is discarded and so in practice need

never be sampled. This is valid because these samples of X are never used

in sampling any other variables.

4.2 Sampling Jumps: Reversible Jump MCMC

Sampling from the jump distribution p(T | y, θ) can be achieved using

reversible jump MCMC [34]. The state of the chain consists of the entire

jump sequence T and therefore proposals must be such that a series of

accepted proposals is able to transform any jump sequence into any other

possible jump sequence.

To this end three simple proposal types are allowed: a move proposal, in

which one jump time (and possibly type) is altered locally; a birth proposal,

in which a new jump is created; and a death proposal, in which an existing

jump is removed. These are shown in figure 4.2 and allow any starting se-

quence of jumps to be transformed to any other through a series of moves,

births and deaths.

Because the dimension of the state space can change (with birth and

death proposals), proposals are actually a map between one state space

and the random variables used to generate the proposal, and another state

space (of possibly different dimension), along with the random variables

used to generate a reverse proposal. Together, the state/random variable

sets have the same dimension and normal MCMC (with a change of vari-

130CHAPTER 4. LINEAR JUMP DIFFUSION: PARAMETER INFERENCE

Figure 4.2: The three basic types of proposal for state sequence updates,
along with their reversals: (a) move, (b) death and (c) birth

ables) can be applied. In this case the acceptance ratio is given by [34]

α(T , T ′) = min

(

1,
p(T ′ | y, θ)g ′(u ′)

p(T | y, θ)g(u)

∣
∣
∣
∣
∂(T ′, u ′)

∂(T , u)

∣
∣
∣
∣

)

(4.2)

where u is the set of random variables necessary to propose T ′ from T (and

vice versa for u ′), and g(u) is the density from which these are proposed. In

order for the dimensionality to balance, it is required that

dim(T) + dim(u) = dim(T ′) + dim(u ′). (4.3)

The proposals from (T , u) to (T ′, u ′) take the form of deterministic func-

tions of u and T , so that h(T , u) = (T ′, u ′). These must be reversible, so

that h−1(T ′, u ′) = (T , u) exists and, due to the appearance of the derivat-

ive in equation (4.2), must be differentiable, since ∂(T ′,u ′)
∂(T ,u)

=
∂h(T ,u)
∂(T ,u)

. See

[34; 105; 222] for full details and proof that this satisfies detailed balance.

For example, a birth proposal maps the current set of N jumps T ∈

(R × T)N (where T is the space of jump types, and assuming that jump

times are in R), along with a new jump proposal consisting of a time, type

and place in the sequence u ∈ R× T× Z+ to a new space T ′ ∈ (R× T)N+1

4.2. SAMPLING JUMPS: REVERSIBLE JUMP MCMC 131

and the place of the jump in the new sequence u ′ ∈ Z+. Thus, for u = (J, i)

where J is a new jump (time and type) and i is the index of the latest earlier

jump the existing sequence (or 0 if there are none), the birth map is

hbirth(T , (J, i)) =













T1:i

J

Ti+1:N





 , i+ 1





 . (4.4)

Here u ′ = i + 1 and i is deterministic given the time of J and the current

sequence T . The reversal of this proposal is

h−1
birth(T

′, u ′) =







 T ′
1:u ′−1

T ′
u ′+1:N ′



 ,
(
T ′

u ′ , u
′ − 1

)


 ,

where N ′ is the number of jumps in T ′ (i.e N + 1). This can be seen intuit-

ively as a death proposal, since it removes the jump in the u ′th position in

the sequence. Thus, birth and death proposals can really be seen as a single

proposal type.

Since equation (4.4) can be rewritten as

hbirth(T , (J, i)) =



P



T

J



 , i+ 1





where P is a permutation matrix that gives T ′ in the correct order, the Jac-

obian of the birth map is given by

∂hbirth(T , u)

∂(T , u)
=



P 0

0 1



 ,

and its determinant is therefore 1. In this case, the acceptance ratio in equa-

tion (4.2) simplifies to one that closely resembles the standard MCMC ac-

ceptance ratio. A similar result holds in the reverse (death) direction.

The generation of the random quantities for the birth proposal consists

of generating a jump (time and type); the index is a deterministic function

132CHAPTER 4. LINEAR JUMP DIFFUSION: PARAMETER INFERENCE

of these. Since

gbirth(J, i | T) = gi(i | J, T)gJt
(Jtime | T , Jtype)gJx

(Jtype | T),

a possible gbirth is given by

gi(i | J, T) = δ
{argmax

i(T
+

i,time<Jtime)}

gJt
(Jtime | T , Jtype) = U(t0, tmax) (4.5)

gJx
(Jtype | T) = U(T),

where T +i, time is the set of jump times augmented with T +0,time = t0 and

T +N+1,time = tmax, the initial and final possible jump times, and U(T) is a

uniform distribution over jump types.

In the opposite direction, the random generation is simply a matter of

choosing the index of a jump to kill and so the simple uniform proposal can

be used:

g ′
birth(i

′ | T ′) =
1

N ′

N ′∑

j=1

δ{j}. (4.6)

Using these uniform g for generation of the random elements of the

proposals, the following straightforward proposals and acceptance ratios

can be used.

Birth Birth proposals involve generating a new jump J (and index i) from

gbirth(J, i | T), as specified by the proposals from (4.5), above. This

jump can then be added into the jump set as shown in equation (4.4),

to create a jump set proposal T ′. This proposal can then be accepted

with probability

αbirth(T , T ′) = min

(

1,
p(y | T ′, θ)p(T ′)g ′

birth(i
′)

p(y | T , θ)p(T)gbirth(J, i)

)

= min

(

1,
p(y | T ′, θ)p(T ′)(tmax − t0)|T|

p(y | T , θ)p(T)(N+ 1)

)

,

4.2. SAMPLING JUMPS: REVERSIBLE JUMP MCMC 133

where N is the number of jumps in T and |T| is the number of differ-

ent types of possible jumps.

Death Death proposals are simply the reverse of birth proposals and can

be created by choosing a jump J (index i) to kill using equation (4.6).

By removing this jump from the current jump sequence, a proposal

jump sequence T ′ is generated. By noting that the death proposal

is simply the reverse of a birth proposal, this can be accepted with

probability

αdeath(T , T ′) = min

(

1,
p(y | T ′, θ)p(T ′)gbirth(J

′, i ′)

p(y | T , θ)p(T)g ′
birth(i)

)

= min

(

1,
p(y | T ′, θ)p(T ′)N

p(y | T , θ)p(T)(tmax − t0)|T|

)

,

Move Move proposals do not change the state dimension and so can be

treated as standard MCMC proposals. The strategy for creating move

proposals used here is to randomly choose a jump i to move from the

existing jump sequence. The time of this jump τ is then moved. Thus

the random generation for this proposal can be expressed as

gmove(τ, i | T) = gτ(τ | i, T)gi(i | T),

So that the proposed new jump sequence T ′ has its ith jump replaced

with one of the same type, but at time τ (the map that does this is

straightforward). A simple move proposal can be created using a

uniform random selection of the particle to move and a truncated

Gaussian random addition to the current jump time (truncated so that

the new jump does not move beyond the current neighbouring jump

times or the ends of the possible interval). This gives

gi(i | T) =
N∑

i=1

δ{i}

gτ(τ | i, T) = N ∗
(
τ ; T time

i , σ2
move

)
,

134CHAPTER 4. LINEAR JUMP DIFFUSION: PARAMETER INFERENCE

where T time
i is the time of the ith jump in T , and N ∗ indicates a Gaus-

sian distribution truncated at the relevant times.

This proposal T ′ can then be accepted with probability

αmove(T , T ′) = min

(

1,
p(y | T ′, θ)p(T ′)

p(y | T , θ)p(T)

)

,

which can be seen because both the original and proposed jump time

will be within the non-truncated region of the proposal distribution

and so the proposal is effectively symmetric.

It is also possible, but not necessary, for move proposals to propose a

change of jump type, but that is not considered here.

In all of the above cases, the likelihood p(y | T) can be calculated using

the PED of the Kalman filter (see section 2.1.2) and the prior p(T) can be

calculated from the jump model. Storage of intermediate state distributions

allows this calculation to be performed more efficiently, since the likelihood

need only be evaluated from the position of the jump preceding the selec-

ted one onwards (since no part of the likelihood calculation is affected for

observations before that point). This would be expected to roughly double

the speed of acceptance probability evaluation, since the selected jumps are

uniformly distributed throughout the sequence.

4.3 Particle MCMC methods

Particle MCMC (PMCMC) methods were recently proposed in [33] as a

way of using the approximate particle filter to draw asymptotically exact

samples from distributions of interest. In particular, they can be used for

exact sampling of hidden parameter and state variables in state space mod-

els. They rely on the particle filter’s ability to calculate an estimate of the

system likelihood and use this to calculate (exact) acceptance probabilit-

ies for the proposals generated. In this way they can be seen as a form of

pseudo-marginal MCMC method, as discussed in section 2.2.3. They work

4.3. PARTICLE MCMC METHODS 135

by constructing an extended target distribution over all the variables gen-

erated by the particle filter (i.e. all particle states and ancestor indices),

which has the required posterior distribution as a marginal distribution.

Since obtaining samples from marginals is straightforward given a set of

joint samples, this allows samples to be drawn from the required posterior

by discarding other auxiliary variables.

Three PMCMC methods are proposed in [33], the Particle Independ-

ence Metropolis-Hastings (PIMH) sampler, the Particle Marginal Metro-

polis Hastings (PMMH) sampler, and the Particle Gibbs (PGibbs) sampler.

The first of these, PIMH, allows exact samples to be drawn from the pos-

terior distribution p(x0:T | y1:T) of a state sequence x0:T given a series of

observations y1:T (this notation is used throughout this section). PMMH

allows draws to be made from the joint distribution of the state sequence

and model parameters θ (or subsets thereof), p(x0:T , θ | y1:T). Blocking

strategies may be employed on the parameters θ in order to increase the

probability of proposal acceptance, resulting in a Metropolis-within-Gibbs

scheme, using the particle filter to evaluate acceptance probabilities. The

PIMH and PMMH methods are both Metropolis-Hastings methods in which

a proposal is generated via the particle filter (and a separate proposal mech-

anism for parameters) and accepted according to an acceptance probabil-

ity defined in terms of tractable quantities derived from the particle filter.

The final method, Particle Gibbs (PGibbs) is different in character, in that

it targets the extended target distribution using a Gibbs sampler, in which

samples are drawn using a series of draws from conditional distributions;

a slightly modified version of the particle filter facilitates this for the state

sequence.

The following sections outline the PMCMC methods and, in section 4.4,

shows that the VRPF algorithm of section 3.3.1 can be adapted to work

within them allowing exact samples to be drawn from p(T , θ | y).

136CHAPTER 4. LINEAR JUMP DIFFUSION: PARAMETER INFERENCE

4.3.1 Particle Filter Algorithm

In order understand the Particle MCMC algorithms, it is necessary to make

a precise statement of the particle filter algorithm used within them. The

following notation is used throughout this section.

• xt = {xi
t | i = 1, ...,Nt} is the particle collection at time t, where xi

t is

the state of particle i

• wt = {wi
t | i = 1, ...,Nt} is the set of un-normalized particle weights at

time t, where wi
t is the un-normalized weight of particle i

• vt = {vi
t | i = 1, ...,Nt} is the set of normalized particle weights at time

t, where vi
t is the weight of particle i

• x̃t = {(xi
t, v

i
t) | i = 1, ...,Nt} is the collection of weighted particles

at time t, which can be interpreted as the probability distribution
∑Nt

i vi
tδ{xi

t}

• ai
t is the ancestor (parent) of particle i at time t. This arises during the

resampling stage of the particle filter, when the state history of each

new particle at time t is drawn from the previous set of particles at

t− 1; the particle that supplies the history for each given new sample

is its ancestor

Initialization: draw initial particles from prior; for all i = 1, ...,N0

xi
0 ∼ p(x0),

vi
0 = 1/N0.

Begin update step (t to t+ 1): assume that the particle collection x̃t is a

collection of samples from the approximate filter distribution p̂ (xt | y1:t).

This ‘incoming’ collection can contain any number of particles.

Resample: for each particle i = 1, ...,Nt in the new generation, choose a

4.3. PARTICLE MCMC METHODS 137

parent particle ai
t+1 from the resampling distribution

ai
t+1 ∼ R(ai

t+1 | vt).

The resampling function R must have the same support as the in-

coming particle collection (i.e. there must be a non-zero chance of

choosing any non-zero weighted incoming particle).

Propagate: sample a new particle state from a proposal distribution for

each particle:

xi
t+1 ∼ q(xi

t+1 | x
ai

t+1

t , y1:t+1).

Weight: calculate an un-normalized weight wi
t+1 for each particle in light

of the observation at t+ 1 as

wi
t+1 =

p(yt+1 | xi
t+1)p(x

i
t+1 | x

ai
t+1

t)vi
t

q(xi
t+1 | x

ai
t+1

t , y1:t+1)R(a
i
t+1 | vt)

. (4.7)

In the simplest case of the bootstrap filter with multinomial resampling

(such that q(xi
t+1 | x

ai
t+1

t , y1:t+1) = p(xi
t+1 | x

ai
t+1

t) and R(ai
t+1 | vt) =

vi
t), this weight becomes

wi
t+1 = p(yt+1 | xi

t+1).

Note that wi
0 is not defined.

Normalize weights: normalize the particle weights so that they sum to 1.

vi
t+1 =

wi
t+1

∑Nt+1

i=1 wi
t+1

.

This gives a particle collection x̃t+1 that is an approximation of the

posterior filtering distribution at t+ 1, p(xt+1 | y1:t+1).

Next step or terminate: if more observations are available, repeat from the

138CHAPTER 4. LINEAR JUMP DIFFUSION: PARAMETER INFERENCE

start of the update loop, otherwise terminate.

For the algorithm thus described an approximation to the observation

likelihood can be calculated. The exact likelihood is given by

p(y1:t) = p(y1)

T+1∏

t=1

p(yt+1 | y1:t),

where

p(yt+1 | y1:t) =

∫
p(yt+1 | xt+1)p(xt+1 | y1:t)dxt+1,

The distribution p(xt+1 | y1:t) is approximated by by the particle collection

after resampling and propagation, but before re-weighting by the observa-

tion:

p̂ (xt+1 | y1:t) =
1

Nt+1

Nt+1∑

i=1

p(xi
t+1 | x

ai
t+1

t)

q(xi
t+1 | x

ai
t+1

t , y1:t+1)

vi
t

R(ai
t+1 | vt)

δ{xi
t+1

}.

The resampling distribution R is effectively just another importance distri-

bution in a similar way as q, which allows some particles to be over- or

under-sampled compared to their weight vi
t, as noted in [223] as part of the

generalized sequential importance sampling framework given there. An

appropriate choice of R can be used to give auxiliary particle filters, for

example (see section 2.3.2). Given the weights in equation (4.7) this gives

p̂ (yt+1 | y1:t) =
1

Nt+1

Nt+1∑

i=1

wi
t+1,

and

p̂ (y1:t+1) =

T∏

t=1

1

Nt

Nt∑

i=1

wi
t. (4.8)

4.3. PARTICLE MCMC METHODS 139

The joint distribution of the particle state and ancestor variables using

this algorithm is given by

ψ(x0:T , a1:T) =

N0∏

i=1

p(xi
0)

T−1∏

t=0

Nt∏

j=1

R(aj
t+1 | vt)q(x

j
t+1 | x

a
j
t+1

t). (4.9)

4.3.2 Particle Independence Metropolis-Hastings (PIMH) Sampler

The PIMH sampler applies Metropolis-Hastings sampling to the extended

space of all variables (x0:T and a1:T) generated in the above particle filter

algorithm, along with one additional selector variable k, which serves to

select a particular particle from those drawn. The insight behind the PIMH

algorithm is that this sampling can be arranged so that the marginal dis-

tribution of the selected samples xk
0:T is the required target distribution

p(x0:T | y1:T).

Proposals are drawn by running the particle filter above and then draw-

ing a particle k from the final filter distribution (i.e. with probability vk
T).

The ancestral path of this particle (notated xk
0:T) is then used as a sample for

the path x0:T , so that the sample is

xk
0:T =

(
x

b0

0 , x
b1

1 , ..., x
bT−1

T−1 , x
bT

T

)
,

where bt is the index of the selected particle’s ancestor at time t so that

bt−1 = abt
t for t = 1, ..., T with bT = k. The proposal distribution for all

variables is therefore

Q(x0:T , a1:T , k) = ψ(x0:T , a1:T)v
k
T . (4.10)

The target distribution over all the variables x0:T , a1:T and k can be anything

with the target distribution p(x0:T | y1:T) as the marginal distribution for

xk
0:T . Therefore, the following target distribution is suitable (noting that

140CHAPTER 4. LINEAR JUMP DIFFUSION: PARAMETER INFERENCE

a
bt+1

t+1 = bt).

π̃(x0:T , a1:T , k) = π̃(xk
0:T , ak

1:T , k)π̃(x−k
0:T , a−k

1:T | xk
0:T , ak

1:T , k)

=
p(xk

0:T | y1:T)
∏T

t=0 Nt

ψ(x0:T , a1:T)

p(xb0

0)
∏T−1

t=0 R(bt | vt)q(x
bt+1

t+1 | xbt
t)

(4.11)

The first fraction in equation (4.11) corresponds to the marginal π̃(xk
0:T , ak

1:T , k) =

π̃(ak
1:T , k)π̃(xk

0:T | ak
1:T , k). The distribution of xk

0:T (conditional on the chosen

path) is given by the target distribution, so that π̃(xk
0:T | ak

1:T , k) = p(xk
0:T |

y1:T), and the prior on the chosen path π̃(ak
1:T , k) =

(∏T
t=0 Nt

)−1

, corres-

ponding to the ak
1:T and k each being uniformly distributed over the particle

collection at the corresponding time given only xk
1:T . This is exactly what

occurs in a particle filter with resampling, because although a particular

xk
0:T is selected according to its weight, its location in the set of all variables

is effectively uniform random over all paths owing to the resampling step

that randomly selects ancestors for each particle in the new generation.

The second fraction in equation (4.11) is the conditional distribution of

the variables x−k
0:T and a−k

1:T , conditioned on the kth path, given by xk
0:T , ak

1:T

and k. This distribution is given by the conditional distribution of those

variables as generated by the particle filter, which can be seen by consider-

ing the distribution of the particle filter variables in equation (4.9), condi-

tioned on a particle path b0:T , i.e.

ψ(x−b0:T

0:T , a
−b0:T

1:T | x
b0:T

0:T , a
b0:T

1:T) =

N0∏

i=1,i 6=b0

p(xi
0)

T−1∏

t=0

Nt∏

j=1,j 6=bt

R(a
j
t+1 | vt)q(x

j
t+1 | x

a
j
t+1

t)

=
ψ(x0:T , a1:T)

p(xb0

0)
∏T−1

t=0 R(bt | vt)q(x
bt+1

t+1 | xbt
t)

(4.12)

Since the marginal distribution of π̃(x0:T , a1:T , k) over xk
0:T , ak

1:T and k is

proportional to the posterior of interest, samples drawn from π̃(x0:T , a1:T , k)

will have xk
0:T , ak

1:T and k marginally distributed according to p(xk
0:T | y1:T),

as required. In order to target this distribution using proposals from equa-

tion (4.10) it is necessary to calculate an acceptance ratio, and for this to be

4.3. PARTICLE MCMC METHODS 141

tractable. The acceptance ratio is given by

paccept = max

(

1,
π̃(x ′

0:T , a ′
1:T , k ′)

Q(x ′
0:T , a ′

1:T , k ′)

Q(x0:T , a1:T , k)

π̃(x0:T , a1:T , k)

)

,

where the x0:T are the current values of the x variables and x ′
0:T are the

proposed values, and similarly for other variables. The key element of this

acceptance ratio is the ratio of target and proposal distributions, given by

π̃(x0:T , a1:T , k)

Q(x0:T , a1:T , k)
=

p(xk
0:T | y1:T)

p(xb0

0)v
k
T

∏T
t=0 Nt

∏T−1
t=0 R(bt | vt)q(x

bt+1

t+1 | xbt
t)

,

which can be seen from equations (4.10) and (4.11). The denominator here

can be re-written as

p(xb0

0)v
k
T

T∏

t=0

Nt

T−1∏

t=0

R(bt | vt)q(x
bt+1

t+1 | xbt
t) =

p(xk
0:T)p(y1:T | xk

0:T)

p̂ (y1:T)
. (4.13)

The derivation of this key step is given in Appendix C. This means that the

ratio

π̃(x0:T , a1:T , k)

Q(x0:T , a1:T , k)
=

p̂ (y1:T)

p(y1:T)
, (4.14)

and the acceptance ratio is given by

paccept = max

(

1,
p̂ ′ (y1:T)

p̂ (y1:T)

)

, (4.15)

where p̂ ′(y1:T) is the approximate likelihood obtained from the particle fil-

ter used to generate the proposal, and p̂ (y1:T) is the approximate likelihood

obtained from the particle filter used to obtain the current sample. Since

these are calculated from the particle filter, this acceptance ratio is tractable

and thus the method can be used to draw exact samples from the target.

142CHAPTER 4. LINEAR JUMP DIFFUSION: PARAMETER INFERENCE

4.3.3 Particle Marginal Metropolis-Hastings (PMMH) Sampler

The method described above only allows samples to be drawn from p(x0:T |

y1:T) as long as the parameters of the system do not change from one sample

to the next. However, it is straightforward to extend the method to allow

sampling from p(x0:T , θ | y1:T), where θ are system parameters (or some

subset of them).

The proposal distribution Q in equation (4.10) can be modified to in-

clude a proposal from a parameter proposal distribution qθ(θ
′ | θ), becom-

ing

Q(x0:T , a0:T−1, k) = ψ(x0:T , a0:T−1)qθ(θ
′ | θ)vk

T . (4.16)

The target distribution can then be extended to have the true joint distri-

bution of the parameters and states p(θ, x0:T | y1:T) as a marginal, with

p(θ, xk
0:T | y1:T) replacing p(xk

0:T | y1:T) in equation (4.11). Following the

same logic as above, the acceptance ratio for this proposal and target pair

is given by

paccept = max

(

1,
p̂ ′(y1:T | θ ′)qθ(θ | θ ′)p(θ ′)

p̂(y1:T | θ)qθ(θ ′ | θ)p(θ)

)

. (4.17)

Applying this method to individual parameters or small blocks allows it to

be used as part of a Metropolis-within-Gibbs scheme for parameter estim-

ation problems where the likelihood p(y1:T | θ) is not tractable.

4.3.4 Particle Gibbs (PGibbs) Sampler

The Particle Gibbs algorithm is slightly different in flavour to those above;

instead of using the output of a particle filter as a proposal that is accep-

ted with some probability, it uses a modified particle filter algorithm, the

conditional SMC sampler, to directly sample conditional distributions of

the extended target π̃. This is particularly useful in cases where an efficient

Gibbs sampler can be devised for p(θ | x0:T , y1:T), since that can then still

4.3. PARTICLE MCMC METHODS 143

be used for parameter estimation, with the PGibbs method being used to

draw samples of the state space variables.

The PGibbs sampler algorithm to sample from p(θ, x0:T | y1:T) uses a

Gibbs sampler to first sample p(θ | x0:T , y1:T) from its full conditional,

and then sample p(x0:T | θ, y1:T) by sampling from the extended target π̃

and taking the marginal xk
0:T as a sample from the required target. The al-

gorithm is

• Sample θ ∼ p(θ | x0:T , y1:T).

• Sample X0:T ∼ p(x0:T | θ, y1:T) via the steps:

Sample x−k
0:T , a−k

1:T ∼ π̃(x−k
0:T , a−k

1:T | k, xk
0:T , ak

1:T , θ),

Sample k ∼ π̃(k | x0:T , a1:T , θ),

X0:T = xk
0:T is a sample from p(x0:T | θ, y1:T).

Note that in this sampler the variables x
kold
0:T and a

kold
1:T , where kold is

the incoming sample of k, are not resampled and remain unchanged. If

k does not change from one sample to the next, these variables never get

resampled and so the algorithm relies on k changing in order to achieve

good mixing across all variables.

Sampling from π̃(x−k
0:T , a−k

1:T | k, xk
0:T , ak

1:T , θ) involves running a particle

filter that samples all paths except the one specified by k. This is because

this conditional of the target is given by the second fraction in equation

(4.11), so that

π̃(x−k
0:T , a−k

1:T | k, xk
0:T , ak

1:T , θ) =
ψ(x0:T , a1:T)

p(xb0

0)
∏T−1

t=0 R(bt | vt)q(x
bt+1

t+1 | xbt
t)

= ψ(x−b0:T

0:T , a
−b0:T

1:T | x
b0:T

0:T , a
b0:T

1:T), (4.18)

by equation (4.12), which is the conditional particle filter distribution for

all variables, conditioned on those states and ancestors in the path selected

by k. Thus, this distribution can be sampled by running a particle filter, but

keeping the states and ancestors of the path selected by k unchanged. This

144CHAPTER 4. LINEAR JUMP DIFFUSION: PARAMETER INFERENCE

does not mean that the weights of this path need to remain unchanged, as

these are not sampled variables. Therefore, when it comes to selecting a

new path, there is some probability that the previous path (or some early

part of it) will be re-selected.

In order to select a path, a sample must be drawn for k from

π̃(k | x0:T , a1:T , θ) ∝ π̃(x0:T , a1:T , k | θ)

=
p̂ (y1:T)

p(y1:T)
ψ(x0:T , a0:T−1)v

k
T

∝ vk
T . (4.19)

This can be seen from equation (4.14) and the definition of Q in equation

(4.10). Since the collection vT forms a normalized probability distribution

over k, vi
T gives the probability of choosing k = i here.

4.3.5 Smoothing in PMCMC Proposals

The PGibbs algorithm above can suffer from the problem of poor mix-

ing owing to the fact that that variables involved in the previously selec-

ted path are not resampled. This problem can be overcome somewhat

by changing the relationship between k and the bt variables to be non-

deterministic, which allows the introduction of smoothing in the selec-

ted paths. This was proposed in two responses [224; 225] to the original

PMCMC paper [33], with the former of these giving a description of the

scheme.

In the formulation above, bt is chosen deterministically to give the path

of a selected particle k and the particle k = i is chosen with probability vi
T .

As noted in section 2.3, a path from the particle filter xk
0:T selected according

to this probability is an approximate draw from p(x0:T | y1:T). However,

as shown in e.g. [146], the smoothing estimates obtained in this simple

way from the particle filter are frequently rather poor, particularly in early

stages, owing to the loss of early stage particle diversity due to resampling.

An alternative proposal mechanism is to draw proposals from the smoother

4.3. PARTICLE MCMC METHODS 145

distribution using the forward-filtering backward-sampling method of [146].

This is done by choosing

p(bT = i) = vi
T ,

and then

p(bt = i | bt+1) ∝ vi
tp(x

bt+1

t+1 | xi
t), (4.20)

which can be shown to draw samples from the approximate smoother dis-

tribution. The probability of choosing bt = i is calculated by calculating

the expression on the right of equation (4.20) for each particle i at time t

and then normalizing to give p(bt = i) = ui
t with

ui
t =

vi
tp(x

bt+1

t+1 | xi
t)

∑Nt

j=1 v
j
tp(x

bt+1

t+1 | x
j
t)

.

Using this method changes the proposal distribution for the PIMH al-

gorithm to

Q(x0:T , a0:T−1, b0:T) = ψ(x0:T , a0:T−1)v
bT

T

T−1∏

t=0

ubt
t , (4.21)

where b0:T replace k as the path selection variables. The target distribution

π̃ can be adjusted straightforwardly to account for this by setting

π̃(x0:T , a1:T , b0:T) =
p(xk

0:T | y1:T)
∏T−1

t=0 ubt
t∏T

t=0 Nt

ψ(x0:T , a1:T)

p(xb0

0)
∏T−1

t=0 R(bt | vt)q(x
bt+1

t+1 | xbt
t)

. (4.22)

This target retains p(x0:T | y1:T) as its marginal with respect to xk
0:T and

leaves the key ratio π̃/Q unchanged from that in equation (4.14), leading to

a tractable acceptance probability.

For the PGibbs method, the conditional distribution π̃(b0:T | x0:T , a1:T , θ)

must be sampled in place of that for k in equation (4.19). From the new

target and proposal distributions in equations (4.22) and (4.21), and from

146CHAPTER 4. LINEAR JUMP DIFFUSION: PARAMETER INFERENCE

the ratio π̃/Q from equation (4.14), this can be found as

π̃(b0:T | x0:T , a1:T , θ) ∝ π̃(x0:T , a1:T , b0:T | θ),

=
p̂ (y1:T)

p(y1:T)
ψ(x0:T , a0:T−1)v

k
T

T−1∏

t=0

ubt
t ,

∝ vk
T

T−1∏

t=0

ubt
t ,

and so b0:T can be drawn so as to sample from the approximate smoother

distribution.

In our work in chapter 6, the use of the smoother in this way has been

found to substantially improve early-stage performance in the PGibbs meth-

ods, even in light of the additional computational effort; see sections 4.5

and 6.7. Backward sampling requires evaluation of the state transition

density, so this method is not applicable in situations in which this is not

available. For models where the transition density is intractable, the only

available Particle MCMC method is one based around a simulation-only

bootstrap particle filter with no backward sampling. For such models, al-

ternative methods such as those based on the construction of bridging dis-

tributions as proposed in [33] might be necessary to overcome early-stage

path degeneracy in the particle filter.

4.4 Jump Inference within Particle MCMC methods

The Particle MCMC methods described in section 4.3 employ a standard

particle filter to evaluate the likelihood approximation used in the accept-

ance ratio of the PIMH and PMMH algorithms, and a conditional version of

the standard filter for sampling in the PGibbs method. The VRPF algorithm

described in section 3.3.1 is not a completely standard particle filter of the

form used in the Particle MCMC methods of [33], and so the use of such a

filter within those methods must be established as valid. There are two pos-

sible approaches to this: a proof that the VRPF algorithm as stated in sec-

4.4. JUMP INFERENCE WITHIN PARTICLE MCMC METHODS 147

tion 3.3.1 works within the Particle MCMC algorithms to produce samples

from the correct target distribution, or modification of the VRPF algorithm

in such a way that it can be cast as a standard particle filter, to which the

methods and proofs of [33] apply directly. Here, the second approach is

taken, as it can draw on existing work in framing the VRPF as a standard

particle filter in [226] and [227].

The filtering problem of estimating jump times and system state can be

factorized as

p(X1:T , T1:T | y1:T) = p(X1:T | T1:T , y1:T)p(T1:T | y1:T).

The conditional distribution of the states given the jumps is linear Gaus-

sian and so can be determined via standard methods (e.g. Kalman filter-

ing), which corresponds to Rao-Blackwellization of the filter. It is there-

fore sufficient for the particle filter (and therefore the PMCMC methods)

to estimate the jump parameters given the observations, by sampling from

p(T1:T | y1:T).

Following the development in [226] and [227], define a Markov process

(τj, θj)j∈N consisting of jump times τj ∈ R+ and their parameters θj ∈ Θ. In

the case of the Gaussian jumps described previously, Θ consists of a finite

set of values indicating which element(s) of the state process (e.g. position

x or trend ẋ) the jump took place in. A general choice, however, is Θ = X ,

where X is the state space of the target being tracked, so that Xt ∈ X for all

t. This allows the jump parameter θ to be specified as a jump size in any

(or several) components of the state. Define a continuous time counting

process νt, counting the number of jumps from time 0 to time T as

νt =

∞∑

j=1

I[0,t](τj),

where I[0,t](x) is 1 if 0 ≤ x ≤ t and 0 otherwise. Also, let kn = νtn be the

number of jumps to the nth observation time, occurring at tn. The system

148CHAPTER 4. LINEAR JUMP DIFFUSION: PARAMETER INFERENCE

state at a time tn (i.e. immediately after the nth observation), is given by

Zn = (kn, τ1:kn
, θ1:kn

), where

Zn ∈ En =

∞⋃

k=0

{k} × Υn,k × Θk

with Υn,k = {τ1:kn
: 0 < τ1 < ... < τkn

< tn} ⊂ (R+)k. The En form a series

of state spaces for the nth state, with En−1 ⊂ En because Υn−1,k ⊂ Υn,k.

These can all be embedded in a state space E

E =

∞⋃

k=0

{k} × Υk × Θk

with Υk = {τ1:k : 0 < τ1 < ... < τk} ⊆ (R+)k, and Υn,k ⊂ Υk, so that En ⊂ E

for all n. Thus, Zn ∈ E for all n.

The state transition density p(Zn | Zn−1) for this system is given by

p(Zn | Zn−1) = p(kn, τ1:kn
, θ1:kn

| kn−1, τ1:kn−1
, θ1:kn−1

)

= S(tn, τkn
)

kn∏

j=kn−1+1

p(τj | τj−1)p(θj | τj, θj−1, τj−1), (4.23)

where S(tn, τkn
) = pτ(τ > tn | τkn

), a survivor function giving the prob-

ability that no jump occurs between τkn
and tn. The observation density

p(ytn | Z1:n) is given by

p(yn | Z1:n) =

∫
p(yn | Xtn)p(Xtn | Z1:n)dXtn .

For the conditionally linear Gaussian model p(Xtn | Z1:n) is given by N (Xtn ;μtn , Σtn),

where μtn and Σtn can be found (as a function of Z1:n) using the Kalman

filter as described in section 3.2.1, and the initial state prior p(X0). For lin-

ear Gaussian observations p(yn | Z1:n) = N (yn;Xtn , Σobs), and so, since

the observation noise has zero mean and is independent of the state noise,

p(yn | Z1:n) = N (yn;μtn , Σtn + Σobs) . (4.24)

4.4. JUMP INFERENCE WITHIN PARTICLE MCMC METHODS 149

Thus, the trans-dimensional state-space filtering problem can be cast

as a standard state space filtering problem with the state at each time in

the fixed state space E, and the state sequence after the nth observation

Z1:n ∈ En.

Mapping from this set-up to the one previously introduced is straight-

forward, since TS:T is the set {(τi, θi) : S ≤ τi ≤ T }, ordered by time, and kn

is the number of jumps from time 0 to tn.

Resampling

The VRPF algorithm given in algorithm 3 in chapter 3 uses a residual res-

ampling scheme. This is a valid resampling scheme within the PIMH and

PMMH schemes, as noted in [33], as long as a further step is introduced

after resampling that assigns each offspring particle to a random index in

the next generation. This is necessary because an assumption in the de-

rivation of PMCMC methods is that the probability of a successor of a

given index i having a particular ancestor can be calculated and has the

same support as the incoming particle collection (i.e. all non-zero weighted

particles have a non-zero chance of being selected). Unmodified residual

resampling, as used in the VRPF in chapter 3, cycles through each particle

in the current generation and chooses a number of offspring, which are

assigned into the next available offspring indices. Under this scheme, the

calculation of a particular offspring having a given parent is not obvious.

Neither does an offspring particle have a non-zero chance of having any

non-zero weight parent.

However, as noted in [228], the Particle Gibbs scheme in [33] was only

established under the assumption of Multinomial resampling. [228] relaxes

this assumption to allow residual resampling (even without the randomiz-

ation step, provided residual resampling is used at every stage), as well as

systematic resampling. Thus residual resampling, as used in the VRPF al-

gorithm of chapter 3, can be used within all types of Particle MCMC meth-

ods.

150CHAPTER 4. LINEAR JUMP DIFFUSION: PARAMETER INFERENCE

Algorithm

The particle fitler algorithm for jump inference within Particle MCMC meth-

ods can be stated as shown in algorithm 5.

Unbiasedness

A key property of particle filters that allows them to be used in PIMH and

PMMH algorithms is that they provide an unbiased estimate of the obser-

vation likelihood p(y1:T | θ). This means that the marginal of the target

distribution is indeed the required target distribution, allowing pseudo-

marginal methods such as PIMH and PMMH to be constructed correctly.

A proof of the unbiasedness of the particle filter observation likelihood es-

timate is given in [125], which holds for the (standard) particle filter given

in algorithm 5.

Collapsing Offspring

The variable rate filter in chapter 3 used a scheme in which offspring of

a given particle having no jumps between the current and next observa-

tion times were collapsed into a single particle, which was then assigned

increased weight. In order to keep the algorithm as a standard particle fil-

ter for use in Particle MCMC methods, this is not done here. However, it

is worth keeping track of particles with the same ancestor and no jumps in

the next period, since this allows weight computation to be performed only

once for this group of particles, since they are identical. This idea can also

be extended to multiple stages by keeping track of all groups of identical

particles at each stage. All particles in the next generation that are children

of one of these particles and have no new jumps added will have identical

states, allowing weight computation to be shared.

This calculation sharing is simply a way of increasing computational

efficiency and is not necessary.

4.4. JUMP INFERENCE WITHIN PARTICLE MCMC METHODS 151

Algorithm 5 Particle Filter for Jump Inference within PMCMC

Initialization (n = 0): Initialize N particles with no jumps, i.e.
Z
(p)
0 = {k

(p)
0 , τ

(p)
1:k0

, θ
(p)
1:k0

}, with k
(p)
0 = 0, τ

(p)
1:k0
= ∅, θ

(p)
1:k0
= ∅ for p = 1, ...,N

while observations available do
n = n+ 1

Observe yn (observation at time tn)
Sample Ancestors: Either multinomial or residual resampling with in-
dex randomization

Multinomial: sample a
(p)
n ∼ M(a(p)n , v1:N

n−1) for all p = 1, ...,N, where
M(∙, v1:N) is the multinomial density with weights v1, v2, ..., vN

Residual: sample # of offspring o
(p)
n−1 = bNv

(p)
n−1c +M(p) with M(p) ∼

M(N − R, v̄1:N
n−1), where R =

∑N
p=1 bNv

(p)
n−1c and v̄i

n−1 =
Nv
(p)
n−1
−bNv

(p)
n−1

c
N−R

for all p = 1, ...,N; Assign ancestors a
(i)
n randomly such that o

(p)
n−1

particles at step n have ancestor p

foreach particle p ∈ 1, ...,N do

Propose new state Z
(p)
n = {kn, τ1:kn

, θ1:kn
} from proposal density q:

Z
(p)
n ∼ q(Z

(p)
n | Z

a
(p)
n

n−1 , y1:n)

Weight: calculate unnormalized weight w
p
n as

w
p
n =

p(Z
(p)
n |Z

a
(p)
n

n−1
)p(yn|Zn)

Nq(Z
(p)
n |Z

a
(p)
n

n−1
,y1:n)

where p(Z
(p)
n | Z

(p)
n−1) and p(yn | Zn) are given by equations (4.23)

and (4.24), respectively
end

Normalize particle weights to give normalized weights v
(p)
t such that

v
(p)
n = w

(p)
n∑N

p=1 w
(p)
n

Result: Particle collection approximates posterior filtering density after
nth observation

end

152CHAPTER 4. LINEAR JUMP DIFFUSION: PARAMETER INFERENCE

Conditional Particle Filter

For Particle Gibbs methods, a conditional particle filter is used, in which

new particle paths are drawn conditional on a single retained particle path.

In that case all variables other than those on the selected path are res-

ampled. This is arranged by performing standard resampling and propaga-

tion (next jump sampling) steps as described, but generating N − 1 suc-

cessor particles at t+ 1 and taking care not to assign the index of the selec-

ted (non-sampled) particle at t+1 during the resampling step. The selected

particle up to t + 1 is then added to this collection at its specified index.

Weighting in light of the observation is carried out as normal.

4.4.1 Sampling Jumps: Particle Gibbs

The Particle Gibbs method described in section 4.3.4 offers an alternative

method to reversible jump MCMC for sampling jump times. In this case,

the conditional VRPF described in section 4.4 is used to sample the jump

times and types T from p(T | θ, y1:T) (to which backward sampling can be

added as described in sections 3.4 and 4.3.5).

4.4.2 Sampling Paramters and Jumps: PMMH

The PMMH algorithm in section 4.3.3 offers a way of using the likelihood

estimates obtained from the particle filter to derive acceptance ratios for

Metropolis-within-Gibbs sampling of parameters for models in which the

likelihood is intractable but for which sample paths can be simulated. A

new parameter value for a parameter (or block of parameters) θi can be pro-

posed from a proposal distribution and this proposal accepted with prob-

ability given by the approximate likelihood ratio from equation (4.17). In

this framework, the particle filter can be used to fill the likelihood evalu-

ation role taken on by the Kalman filter when estimating parameters for

linear Gaussian models.

Since the PMMH method also produces samples of the state (in this

4.5. RESULTS 153

case the jumps) it is possible to use a collapsed Gibbs sampler similar to

that described in section 4.1.2, but with steps 1a and 1b replaced with a

single step to sample θm, T ∼ p(θm, T |, θX, y) via PMMH. In fact, it is most

likely that parameters in θm will be sampled one at a time from p(θmi
, T |

θm−i
, θX, y), since block proposals are unlikely to be accepted.

4.5 Results

This section presents a series of tests, attempting to compare the various

methods for state and parameter estimation proposed in this chapter. A

two-factor model similar to that proposed in section 3.5 is used throughout

for the evaluation. State estimation methods are compared first using true

parameter values, followed by a comparison of parameter estimation meth-

ods using true state (jump) values. Better performing methods in each of

these areas are then compared when estimating state and parameter values

simultaneously. Finally, an attempt is made to estimate parameters of the

finance model in section 3.5 on real data. The results of this are compared

to the parameters estimated for a similar model in [2].

All implementations of the algorithms used in this section are in Mat-

lab and are not especially optimized. Where possible, components (e.g.

the Kalman filter likelihood evaluation) are re-used between algorithms to

make comparisons fairer.

4.5.1 State Estimation

There are five methods available for state estimation: PIMH (with and

without backward sampling), PGibbs (with and without backward sampling)

and RJMCMC. In order to understand the general features of these meth-

ods, state estimation was attempted on data generated from the model with

known parameters. These true parameters were used during subsequent

state estimation. All particle filters were run with a nominal 100 particles

(i.e. the number of samples after resampling is 100, though due to the struc-

154CHAPTER 4. LINEAR JUMP DIFFUSION: PARAMETER INFERENCE

Parameter Value
σ1 0.5
σ2 0.1
σj1 8
σj2 3
σobs 1
θ1 -0.3
θ2 -0.2
λ1 0.001
λ2 0.1

Table 4.1: Parameter values used in generating results in this chapter for
the model described in section 3.5

ture of the VRPF algorithm, some of these are likely to be identical and thus

collapsed together).

The parameters used for all the tests in this section are given in table

4.1. Data generated from these parameters is typical of the sort of data gen-

erated by this model (other than sequences that grow exponentially). The

jump rate λ1 in the x1 process is low, so that almost all jumps are found in

the x2 process. An example of observations generated using these paramet-

ers can be seen in figure 4.3, in which the observations are shown in green

in the top panel; the underlying x1 process is shown in light grey in that

panel, and can also be seen in the top panels of figures 4.5-4.6.

The results in figures 4.3 and 4.5-4.6 show inferred jump positions in

the x1 and x2 processes in the first two panels, with the grey bars indicating

the proportion of samples in which a jump was inferred to be present in

each time period between successive observations (i.e. between t and t +

1, meaning that the grey bars are integer-aligned). The red bars indicate

the true positions of jumps, with the intensity of their colour indicating

the relative intensity of the jump. A scaled version of the corresponding

process (black line) is superimposed in these panels. The final panel shows

the total number of accepted proposals against the number of proposals

made. For the PGibbs sampler, this is calculated by looking at the number

of samples that differ from the previous one.

4.5. RESULTS 155

Figure 4.3: PIMH state estimation without (top) and with (bottom) back-
ward sampling. Top panel shows observations in green, x1 process in
light grey. Second panel shows x2 process in black, true jumps as red
bars and proportion of samples containing a jump in each inter-observation
time period as grey bars. Third panel shows number of accepted samples
against number of proposals. Remaining panels show are as above, for the
method with backward sampling

156CHAPTER 4. LINEAR JUMP DIFFUSION: PARAMETER INFERENCE

The results for the PIMH sampler in figure 4.3 illustrate the low accept-

ance rates that can plague this algorithm. Without backward sampling, the

acceptance rate is less than 1%. Backward sampling significantly improves

the acceptance rate to 2.5% in this test, although this rate is still low. For

both of these algorithms, especially that without backward sampling, this

leads to very peaky jump-time distributions. However, these methods ac-

curately infer the position of all the major jumps in the sample. The burn-in

period for the figures shown is 100 samples. The run time to produce the

samples was 6018s and 6463s without and with backward sampling, re-

spectively, meaning that back-sampling adds about 7.4% to the runtime.

Figure 4.4 examines the impact of the number of nominal particles on the

acceptance rate and runtime for this algorithm with backward sampling.

Increasing the number of particles appears to increase the acceptance rate

approximately linearly in the range examined, though further tests with

very high numbers of particles would be interesting. It is to be expected

that at a certain point the return from increasing particle number will di-

minish. Runtime increases linearly with number of particles, as would be

expected.

The results using the PGibbs algorithms in figure 4.5 show good jump

estimation, with much better sample diversity (each sample is different

from the previous one). There is very little visible difference between the

results with and without backward sampling of jump times. This is due

to the Rao-Blackwellization of the particle filter, with only jumps being

included in the particle state. This means that particle ancestor diversity

degenerates more slowly. For long time series it is likely that backward

sampling would perform better. The burn-in period for the figures shown

is 100 samples. The run time to produce the samples was 6167s and 6519s

without and with back sampling, respectively, meaning that back-sampling

adds about 6% to the runtime in this case. The backward sampling PGibbs

algorithm is about 1% slower than the equivalent PIMH algorithm.

The RJMCMC state sampling approach illustrated in figure 4.6 also pro-

4.5. RESULTS 157

Figure 4.4: Acceptance rate (blue, solid) and runtime (red, dotted) for PIMH
algorithm with back-sampling with varying number of (nominal) particles

duces good jump time estimation with high sample diversity (the accept-

ance rate here is around 40%). More RJMCMC samples have jumps in areas

between the true jumps than the PGibbs samples; however, it is not clear

whether this is a better or worse representation of the posterior, and in both

cases the level of these false positives is low. The burn-in period for the fig-

ure 4.6 is 1000 samples, and the runtime to produce the samples was 892s,

meaning that RJMCMC is around 70 times faster than the PMCMC meth-

ods per sample, though each accepted sample only differs slightly from the

previous one.

Though it is not evident here (probably because of the fairly short state

sequences involved and the Rao-Blackwellized structure of the filtering

problem), results in chapter 6 show that the addition of backward sampling

to PGibbs improves sample diversity, especially in early parts of the state

sequence. Thus, the conclusion from these results is that PGibbs and RJM-

CMC produce the best results when attempting to exactly sample the state

sequence using known parameter values. PIMH methods suffer form very

high rejection rates and so do not produce good sample diversity.

158CHAPTER 4. LINEAR JUMP DIFFUSION: PARAMETER INFERENCE

Figure 4.5: PGibbs state estimation without (upper three panels) and with
(lower three panels) backward sampling

4.5. RESULTS 159

Figure 4.6: RJMCMC state estimation

4.5.2 Parameter Estimation

Three different parameter estimation methods (conditional on the jump se-

quence) have been proposed: marginalized Gibbs sampling in which the

state sequence X is not sampled; sampling the state X, and then using Gibbs

sampling on this sample to estimate parameters; and a collapsed Gibbs

sampler that selectively uses the previous two methods for different para-

meters. This section compares these methods by applying them to para-

meter estimation problems with known jumps. For the model considered

here it is always possible to estimate jump rates directly from a jump se-

quence and so these are Gibbs-sampled directly in all cases.

Inverse gamma priors were used for the observation noise variance σ2
obs

and for the jump variance σ2
j{1,2}

. This distribution was chosen because

it provides a conjugate prior when estimating these values directly from

samples of either states X or jump times; it is also fairly heavy tailed (see

figure 4.7), allowing for the possibility of very large jump scales. An al-

160CHAPTER 4. LINEAR JUMP DIFFUSION: PARAMETER INFERENCE

Parameter Prior Parameters
Diffusion variance σ2

{1,2}
Gamma α = 1, β = 2

Jump size variance σ2
j{1,2}

Inverse Gamma α = 1, β = 1

Jump size std. dvn. σj{1,2}
Uniform a = 3σ2

i , b = 10σ2
i

Observation variance σ2
obs Inverse Gamma α = 1, β = 1

Negated mean reversion −θ{1,2} Gamma α = 1, β = 10

Jump rate λ{1,2} Gamma α = 3, β = 1

Table 4.2: Distributions and hyper-parameters for the parameter priors
used in parameter estimation

ternative prior for the jump variance is a uniform distribution of between

a and b times the size of the diffusion noise variance for the process. This

type of prior is perhaps a better encoding of actual prior expectations of

jump scale, which can be expected to significantly exceed the scale of the

diffusion process (since otherwise a ‘jump’ is fairly meaningless). As it des-

troys conjugacy, this type of prior has only been used with the marginalized

sampler as it is straightforward to incorporate in the Metropolis-within-

Gibbs sampler used for jump size variance there. Gamma priors were used

for the diffusion noise variances σ2
{1,2}

, the (negated) mean reversion coeffi-

cients −θ{1,2}, and jump rates λ{1,2}. The gamma distribution is a conjugate

prior for the jump rates and was chosen as a prior for the diffusion noise

and mean reversion coefficients because it offered flexible, vague priors

that could be biased to the areas in which these parameters are realistically

expected to be (fairly near to zero for the mean reversion rates, with very

little chance of being smaller than -1, and more likely to be smaller than

larger for the diffusion noise variance). These prior beliefs are reflected in

the (hyper-)parameters chosen for the prior distribution, given in table 4.2,

with the resulting priors shown in figure 4.7. In reality, however, for the

large number of observations in a series (typically several hundred) these

priors have a very limited effect compared to the data (except in regions

where they are zero).

Figures 4.8-4.11 show the results of parameter estimation for a sequence

of observations generated from the model using the range of parameter

4.5. RESULTS 161

Figure 4.7: Priors (blue) and their logs (red) for the parameters given in
table 4.2

Figure 4.8: Parameter estimation by including X in state space (true para-
meter values indicated by red lines). For each parameter, left chart (blue
horizontal line) shows state sequence of MCMC chain, right chart show
histogram of MCMC samples

162CHAPTER 4. LINEAR JUMP DIFFUSION: PARAMETER INFERENCE

Figure 4.9: Parameter estimation via collapsed Gibbs sampler, using
sample of X for estimation of jump variance (σ2

j{1,2}
)

Figure 4.10: Parameter estimation using fully marginalized Gibbs sampler

4.5. RESULTS 163

Figure 4.11: Parameter estimation using fully marginalized Gibbs sampler
with uniform prior on jump standard deviation p(σji | σi) ∼ U(3σi, 10σi)

estimation algorithms. For each parameter two plots are shown, the first

(blue line) showing the parameter value evolution with sample number

(useful for gauging convergence) and the second (grey bars) showing a

histogram of sampled parameter values post-burn in. The true parameter

value is marked with a red line in both cases. The estimates in figures 4.8-

4.11 were generated using a sequence of 600 observations.

Figure 4.8 shows the parameter estimation results using a sampled state

sequence X. The estimates are reasonably close to the true values in most

cases, although estimation of the mean reversion coefficients θ1 and θ2

looks to converge to incorrect values. The shape of the likelihood with re-

spect to these variables makes this sort of mis-estimation somewhat likely

(see section 4.5.3). It is not clear that the estimate for σ2 has converged at

all. Because there were no jumps in the x1 process, there was no data avail-

able from which to estimate σj1 ; it was therefore sampled from its prior,

leading to poor estimation.

The collapsed sampler used in figure 4.9 (in which jump variances are

164CHAPTER 4. LINEAR JUMP DIFFUSION: PARAMETER INFERENCE

estimated from a sample of the state X) achieves good parameter estim-

ation, with the true parameters falling within the estimated distributions

for all parameters (other than σj1). The sample of the state sequence X

could also have been used to estimate the observation noise variance σ2
obs,

however this leads to failure of the algorithm. Inclusion of σ2
obs in the para-

meters estimated by using a sample of X appears to lead to instability, with

σ2
obs increasing uncontrollably and leading all other parameters to become

unstable until numerical failure occurs. This is probably because increas-

ing σ2
obs means that observations have increasingly little influence on the

sampled state sequence, leading to increasingly erratic state sequences be-

ing sampled. This causes parameter estimates derived from these state se-

quences to begin to diverge, resulting in a feedback loop that produces

ever more extreme state sequence samples (especially with respect to jump

magnitude), rapidly leading to numerical instability and failure of the es-

timation. Jump rates are estimated directly from the jump sequence and all

other parameters are estimated using the marginalized Gibbs sampler.

The marginalized samplers used in figures 4.10 and 4.11 seem to per-

form very well, with rapidly converged estimates of the parameters that

encompass the true parameter values. In figure 4.11 a uniform prior on

the jump variance is used (as opposed to the inverse gamma prior used

in the other parameter inference tests in this section). This prior limits the

jump variance to lie between 9 and 100 times the diffusion noise variance

of the given process, which is designed to encode the belief that jump vari-

ance will be significantly larger than the diffusion noise variance, but not

without limit. In this test this resulted in very low acceptance rates for pro-

posals for the σj2 parameter, albeit in a range close to the correct value.

In all these tests, the jump rate λ2 was slightly over-estimated. Given

this is directly inferred from the true jump sequence in these tests, this bias

is perhaps surprising. The most likely explanation is that it is caused by the

inverse Gamma prior applied to the jump rate (with parameters α = 1, β =

1), which has a maximum at 0.5.

4.5. RESULTS 165

4.5.3 Exploration of Likelihood

Estimation of certain parameter values has proved difficult in this model.

Of particular interest are two pairs of parameters that seem to interact

strongly with each other to cause difficulty and ambiguity in their estima-

tion, namely the observation noise variance σ2
obs and x1 process diffusion

noise volatility σ1; and the two mean reversion parameters λ1 and λ2. In

both cases, fairly strong negative correlation has been observed between

the two parameters during some estimation attempts. Figure 4.12 shows

the shape of the log-likelihood function for a certain set of 800 generated ob-

servation from the model for both parameter pairs in the region of the true

parameter values. This reveals that both pairs of variables are negatively

correlated in regions of high likelihood (dark red). The mean reversion

coefficients in particular show a very flat likelihood surface around a large

range of values in which the parameter values can be reversed without

a very large effect on the log-likelihood. This goes some way to explain-

ing the switches seen between parameter values in figure 4.9. Figure 4.13

shows the log-likelihood function with respect to the mean reversion para-

meters for a selection of randomly selected parameter values. These show

that the strength of the L-shape in the log-likelihood varies significantly

with respect to the mean reversion and other parameters, with mean rever-

sion parameters near 0 showing the strongest such effects. Estimation of

these parameters is likely to be more difficult and ambiguous if they fall in

those ranges.

In general, the likelihood function for this parameter estimation prob-

lem is fairly flat around the true parameters. This can be seen by look-

ing at the likelihood function evaluated using the true jumps at a number

of points in parameter space with parameters perturbed by up to some

amount from the true parameters. Table 4.3 shows the results of this for

parameters perturbed by up to 10%, 25%, 50% and 100% from their true

values (by adding uniform random values to each true parameter scaled

to the appropriate percentage of the true value) and for random parameter

166CHAPTER 4. LINEAR JUMP DIFFUSION: PARAMETER INFERENCE

Figure 4.12: Log-likelihood function with respect to mean reversion para-
meters (left) and σ2

obs and σ1 (right). All other parameters and jump times
set to true values. Yellow star indicates true values

Figure 4.13: Log-likelihood function with respect to mean reversion para-
meters (λ1 on horizontal axis, λ2 on vertical axis) for a selection of randomly
chosen parameter values. Yellow star indicates true values

4.5. RESULTS 167

Parameters Log-likelihood
true –1055.5

true ±10% –1056.2 (1.8)
true ±25% –1065.0 (9.5)
true ±50% –1093 (35)
true ±100% –1319 (454)

random –1371 (410)

Table 4.3: Mean log-likelihood for various parameter sets (standard devi-
ation shown in brackets where applicable) using true jump positions

values within reasonable ranges. The log-likelihood values are were calcu-

lated on data generated from the model consisting of 600 observations; the

same data was used for all tests.

The values obtained for the parameters perturbed by 10% and 25% are

very close to those for true parameters (and within one standard deviation).

Even with 50% perturbation the log-likelihood is only slightly increased.

The log-likelihood for random parameters is much greater, indicating that

the parameter values do significantly affect the likelihood, but that in the

region of the true parameters, the likelihood function is relatively flat. It is

therefore likely that parameter estimations will be somewhat diffuse and,

especially in cases where jumps are also estimated, could differ signific-

antly from the true parameters while still being plausible parameter values

for the data observed.

4.5.4 Parameter and State Estimation

Due to their apparent superiority in state estimation, only the PGibbs with

backward sampling and RJMCMC methods were used in the tests in this

section. Parameter estimation via collapsed and marginalized Gibbs samplers

were tested for parameter estimation, since both these methods performed

well in the parameter estimation tests. This gave four possible methods for

joint parameter and state estimation, all of which were tested on synthetic

data generated using the same parameters as in the parameter estimation

tests above. 600 observations were generated and the same data was used

168CHAPTER 4. LINEAR JUMP DIFFUSION: PARAMETER INFERENCE

estimated jumps true jumps no jumps

Estimated parameters
PGibbs, Marginalized -1078.9 (12.4) -1079.5 -1272.4
RJMCMC, Marginalized -1084.1 (18.4) -1068.9 -1325.0
PGibbs, Collapsed -1094.3 (11.5) -1127.1 -1236.7
RJMCMC, Collapsed -1097.9 (11.3) -1116.6 -1235.4
RJMCMC (5k), Marginalized -1116.0 (18.6) -1079.8 -1204.4
RJMCMC (5k), Collapsed -1101.7 (12.9) -1118.1 -1219.1

True parameters
PGibbs, Marginalized -1222.7 (55.7) -1055.5 -2271.8
RJMCMC, Marginalized -1206.9 (92.1) -1055.5 -2271.8
PGibbs, Collapsed -1309.4 (61.3) -1055.5 -2271.8
RJMCMC, Collapsed -1309.8 (35.6) -1055.5 -2271.8

Table 4.4: Mean log-likelihood (standard deviation shown in brackets
where applicable) for parameter and jump estimates derived using vari-
ous state and parameter estimation techniques. RJMCMC (5k) results refer
to tests run using 5000 samples

for all tests. For RJMCMC methods, 10000 state and parameter samples

were generated, with state and parameters being sampled alternately. A

burn-in of 1000 samples was used. These methods took around 6 hours

to run. For the PGibbs methods, 800 state samples were generated using

a particle filter with 100 particles, with 7 samples of the parameters gen-

erated for each state sample, giving 5600 parameter samples. The runtime

for these methods was also around 6 hours, with the number of samples be-

ing chosen so that the computational effort for both RJMCMC and PGibbs

methods was comparable. Figures 4.14-4.17 show the state and parameter

estimates obtained from each of these algorithms, and table 4.4 gives the

log-likelihood values for parameter and state estimates obtained using each

method. In calculating these values, the posterior mean parameters were

used as the estimated parameters and a selection of 50 jump time samples

chosen randomly from the post-burn in period were used as the estimated

jumps.

With PGibbs state estimation, both the collapsed and marginalized sampler

4.5. RESULTS 169

Figure 4.14: State and parameter estimates with PGibbs state estimation,
collapsed Gibbs parameter estimation

170CHAPTER 4. LINEAR JUMP DIFFUSION: PARAMETER INFERENCE

Figure 4.15: State and parameter estimates with PGibbs state estimation,
marginalized Gibbs parameter estimation

4.5. RESULTS 171

give good parameter estimation results (figures 4.14 and 4.15). These res-

ults and those in table 4.4 show the two methods performing fairly simil-

arly, with the marginalized Gibbs sampler having a slight advantage and

giving slightly tighter posterior distributions for the parameters. The jump

inference results are good, with the PGibbs method identifying all the ma-

jor jumps in the sequence without introducing any significant spurious

jumps. The algorithm correctly identified that all jumps were in the x2

process.

With RJMCMC state estimation (figures 4.16 and 4.17) the state estima-

tion results are slightly worse, though still good. Most of the major jumps

are identified although in some cases a jump is identified in the x1 process;

in the cases where this happens, consideration of the underlying process

suggests that this is usually reasonable, as the x1 process experienced rapid

changes at those points. The RJMCMC method seems more prone to identi-

fying spurious jumps, albeit with low probability. With RJMCMC state es-

timation the marginalized sampler for parameter estimation again seems

to produce slightly better results for parameter estimation, though seems

to result in more spurious jumps being identified (with low probability).

For the data in these tests it would appear that PGibbs state estimation

is slightly superior to RJMCMC, because it identifies the jumps in the cor-

rect processes and produces fewer spurious jumps. For parameter estim-

ation on this data, the fully marginalized Gibbs sampler produces better

results than the collapsed sampler, giving better likelihood values in table

4.4 and appearing to give somewhat tighter parameter distributions, with

more convincing convergence.

The parameter estimation results in all tests show typical estimation res-

ults for this problem, with jump frequency being under-estimated whilst

jump scale is over-estimated. This probably reflects the difficulty in dis-

tinguishing large diffusion moves from small jumps, so that only larger,

more clearly recognizable jumps are classified as such. Examination of the

likelihood in table 4.4 suggests that the likelihood function is fairly flat in

172CHAPTER 4. LINEAR JUMP DIFFUSION: PARAMETER INFERENCE

Figure 4.16: State and parameter estimates with RJMCMC state estimation,
collapsed Gibbs parameter estimation

4.5. RESULTS 173

Figure 4.17: State and parameter estimates with RJMCMC state estimation,
marginalized Gibbs parameter estimation

174CHAPTER 4. LINEAR JUMP DIFFUSION: PARAMETER INFERENCE

Figure 4.18: Representation of the likelihood values seen in table 4.4

the region of the estimated and true jumps with the estimated parameters,

although with the true parameters, the difference between the estimated

and true jumps is more marked, as illustrated in figure 4.18. The estimates

found seem to at a high-likelihood point in state and parameter space.

Further testing comparing the results of many runs would be desirable

to make a full assessment, but the runtime of these tests is around 6 hours

for each method, making large scale testing computationally demanding.

Another method, PMMH sampling to implement Metropolis-within-

Gibbs for each parameter, is also possible, but the very low acceptance rates

of the PIMH algorithm found during state-only estimation (at least with re-

latively small numbers of particles) led to the dismissal of this idea, since

it is likely that the proposal rejection rate will be very high. This method

might be plausible if the PIMH algorithm were run with a large number

of particles, but the computational burden of this would be very high, al-

though much of the processing for each particle is independent and thus a

high number of particles might be achievable via parallelization.

4.5.5 Financial Data

To test parameter estimation on real data, the parameter estimation al-

gorithm was applied to daily data coming from S&P500 index over the

period October 2010 to March 2013, comprising about 600 observations. By

4.5. RESULTS 175

Parameter Estimated value Value in [2]
σobs 7.1 (0.46) 20
θ2 -0.73 (0.14) -0.2
σ2 8.4 (1.1) 4.1
σj2 45 (7.7) 70
λ2 0.053 (0.02) 0.2

Table 4.5: Mean parameter estimates (standard deviation) for the Langevin
model used in [2], using 600 daily observation of S&P500 from October
2010 to March 2013

using a fairly standard financial series and the Langevin dynamical model

from [2] (detailed in section 3.5) it is possible to compare the parameters es-

timates to those in [2], which were estimated by choosing parameters that

produced good portfolio returns in backtesting, rather than directly from

the data. Figure 4.19 shows the results of the parameter estimation using

this data and model, and table 4.5 gives the parameter estimates. These

show that the estimates in [2], though not catastrophically wrong, are some

way away from those derived using a principled estimation procedure. The

parameters in used [2] overestimated the jump size and frequency (though,

as seen earlier, the parameter estimation here is prone to underestimation

of jump frequency), and underestimated the diffusion variance. The per-

sistence of trends in the data was also overestimated, with the estimated

mean reversion θ2 being substantially quicker than that estimated in [2].

The rapid speed of the estimated mean reversion indicates that in this data

long term trends might not be very prevalent.

Applying the parameter estimation using the full (nine parameter) model

on the same data produces the results seen in figure 4.20 and table 4.6. Be-

cause the model allows random innovations in the x1 process, the estim-

ated observation variance is much smaller. The scale of the trend process is

greatly reduced (close to zero), again indicating limited long-term trending

behaviour (its mean reversion speed is much slower, but this effect is likely

to be negated by its small scale).

176CHAPTER 4. LINEAR JUMP DIFFUSION: PARAMETER INFERENCE

Figure 4.19: Parameter estimation for the Langevin model used in [2], using
600 daily observation of S&P500 from October 2010 to March 2013; green
lines show mean parameter value over post-burn in samples

Figure 4.20: Parameter estimation for the full model from section 3.5, using
600 daily observation of S&P500 from October 2010 to March 2013; green
lines show mean parameter value over post-burn in samples

4.6. CONCLUSIONS 177

Parameter Estimated value
σobs 1.6 (0.85)
θ1 -0.034 (0.043)
θ2 -0.071 (0.12)
σ1 10 (1.0)
σ2 0.47 (0.42)
σj1 34 (4.2)
σj2 1.4 (0.97)
λ1 0.073 (0.035)
λ2 0.042 (0.027)

Table 4.6: Mean parameter estimates (standard deviation) for the full model
from section 3.5, using 600 daily observation of S&P500 from October 2010
to March 2013

4.6 Conclusions

This chapter has introduced methods for parameter estimation for linear

jump-diffusion models of the type used in [2; 172; 35] and chapter 3. The

methods developed are applicable to a wider class of models, including

ones with more state processes, non-linear observation models and non-

linear state transition models (although those that allow for Rao-Blackwellization

have a significant computational advantage). Section 4.4 showed that a

modified version of the VRPF used in chapter 3 for jump estimation, can,

by following the development of [226], be cast as a standard particle fil-

ter, which is compatible with the assumptions of Particle MCMC meth-

ods. This allows Particle MCMC methods to be used to estimate the (trans-

dimensional) jump sequences encountered in the jump-diffusion models

examined here.

It is encouraging that several different estimation methods produce con-

sistent parameter and state estimates. Having a range of methods available

allows for at least some degree of verification between them. Though pro-

ducing similar results, particle MCMC algorithms compared favourably to

RJMCMC algorithms for parameter estimation in this problem, and have a

number of advantages. PMCMC algorithms are undoubtedly slower than

RJMCMC methods for the same number of samples but do not require the

178CHAPTER 4. LINEAR JUMP DIFFUSION: PARAMETER INFERENCE

design of proposals, which means that they can be simpler to implement

and less sensitive to the proposal mechanism (though in this work very

simple proposals were used for the RJMCMC). In order to achieve sim-

ilar quality results (in terms of the likelihood of the estimated values) it

seemed that a similar amount of computational time was required for both

PMCMC and RJMCMC methods; using a similar number of samples (as

in the RJMCMC (5k) tests in table 4.4) produced somewhat worse results.

PMCMC methods can also make use of particle filter methods developed

for online state estimation. PMCMC methods lend themselves to parallel-

ization, unlike standard MCMC methods, because although particle filters

are interacting systems (via resampling), the evaluation of weights and pro-

posal generation is independent for each particle in a particular generation

and thus can be parallelized. This suggests that parallelization of the or-

der of the number of particles can be exploited and as suggested by figure

4.6 hundreds or even thousands of processors (as found on modern GPUs)

could yield useful performance improvements.

Tests on real financial data broadly support the choice of parameters in

[2], although the specific parameter values are somewhat different (func-

tionally they are likely to be similar). However, parameter estimation on

S&P500 data appeared to indicate limited evidence for the presence of trends,

at least in the period tested.

Chapter 5

Simultaneous Mapping and

Tracking in Potential Field

Environments

This chapter presents a new method of simultaneous localization and map-

ping (SLAM) for objects moving in a potential field environment. Only

weak nonparametric assumptions are made about the shape of the poten-

tial function through the imposition of a Gaussian process prior. An ef-

ficient Bayesian method for the inference of object position and environ-

ment structure is presented, based on a Rao-Blackwellized particle filtering

scheme. The method improves tracking performance compared to stand-

ard tracking methods and reveals hidden structure (such as obstructions)

in structured environments, as illustrated by its application to urban car

tracking. Applications of the technique demonstrated here include path

planning and multi-target tracking applications, in which it is possible to

observe (perhaps noisily) some targets moving through the environment.

By using this method to learn about environment structure from the pas-

sage through it of some targets, better track inference for subsequent targets

or better path planning should be possible, by taking this environmental

structure into account.

179

180 CHAPTER 5. SIMULTANEOUS MAPPING AND TRACKING

Methods for SLAM usually focus on the problem from the perspective

of a robot or other sensor platform receiving local information about its en-

vironment from on-board sensors. Here, the slightly different but closely

related problem of tracking targets in a structured but unknown environ-

ment is addressed. Knowledge of the environment structure can enhance

tracking performance by, for example, allowing candidate positions in im-

plausible areas to be rejected. If the target moves in a compact area, or if

further targets will be tracked through the area, learning the environment

structure can be beneficial to future tracking performance.

The approach taken here attempts to address this problem by modelling

the environment structure as a static potential field through which the tar-

get moves. This allows the environment structure to influence the motion

of the target, with the target likely to move from areas with high potential

to those with low potential. For example, a road along which a car can

move might be modelled as a low-potential channel, with deviations from

this channel resulting in a restoring force back towards its centre. Such en-

vironment maps can be inferred from observations of the target as it moves

throughout the environment using a formulation similar to that found in

traditional SLAM problems.

Prior knowledge of the environment structure and information gleaned

from the tracking of other entities in the same environment can also be in-

corporated in order to create collaborative maps. By putting a non-parametric

Gaussian process prior (see e.g. [229]) on the shape of the potential field

map, it is possible to infer very general shapes of environment structure, re-

quiring the specification of only a characteristic length scale for the field as

a hyperparameter. This scale is often easy to choose, for example the char-

acteristic length scale for modelling roads might be approximately their

width, but can also itself be estimated. Since the model is formulated prob-

abilistically and solved in a fully Bayesian way, estimates of the uncertainty

in the environment map are also available throughout the domain of in-

terest.

5.1. RELATED WORK 181

The use of a potential field map, in common with many SLAM setups,

leads to a nonlinear state-space formulation of the SLAM problem. In com-

mon with other SLAM models, it is possible to derive a Rao-Blackwellized

particle filtering method for efficient inference. The results in this chapter

are produced using a simulation-based bootstrap particle filter, although

it is shown how an adapted particle filter such as that used in [230] could

also be applied. The incorporation of a potential field in the motion model

leads to a Langevin stochastic differential equation that cannot be solved

in closed form. Therefore numerical schemes such as those described in

appendix D must be used for both simulation and evaluation of the state

transition function. The structure of the environment is inferred via its in-

fluence on the motion of the target using a method related to that used in

[3], [4] and in chapter 6.

This chapter is organized as follows. Section 5.1 gives a brief overview

of related work. Section 5.2 outlines the motion, potential field and obser-

vation models necessary for inference. Section 5.3 shows how these models

can be used to track a target and infer the potential field in which it moves.

Section 5.4 gives illustrative results comparing the proposed model with a

standard tracking model using the bootstrap filter for single target track-

ing with repeated motion through the same environment; and Section 5.5

draws conclusions and suggests further work. Much of the work in this

chapter first appeared as my earlier work [3].

5.1 Related Work

Tracking objects in structured environments, where their motion is some-

how restricted, is a common problem. For example, cars generally move

along roads. If the environment structure is known, e.g. via a map, this

information can be used to improve tracking accuracy, as in [231; 232; 233;

166; 234], amongst others, and recently covered in overview in [235]. These

take a range of approaches to tracking on roads, including constructing

182 CHAPTER 5. SIMULTANEOUS MAPPING AND TRACKING

likelihood functions from the map [235], constraining targets to lie only

on roads [234; 232; 233; 166], and using variable interacting models corres-

ponding to different road segments [231]. All these methods rely on a priori

knowledge of the environment.

In robotics applications, potential fields have been used extensively to

constrain motion paths in path planning applications for known environ-

ments due to their analytical tractability and flexibility [236]. In such ap-

plications targets are modelled as attractive potentials and obstacles mod-

elled as repulsive potentials, encouraging the motion of the robot towards

its target whilst avoiding collisions. They were first introduced in robotics

in the mid 1980s in [237], and have been studied widely since, with atten-

tion paid to the particular form of the potential functions used [238; 239],

methods of path planning within them and, more recently, the inclusion of

time-varying environment maps [240; 236]. According to the recent review

in [241] potential field approaches account for about 11% of path planning

algorithms found in the literature in recent years, a figure that has remained

steady since their introduction in the 1980s, suggesting they remain applic-

able.

In many problems the environment structure is not known in advance,

so hard constraints arising from a map cannot be enforced. In these cases,

maps must be learnt in parallel with target tracking. A similar situation is

found in SLAM problems where a map of the environment has to be con-

structed in parallel with sensor localization, with position and map estim-

ates being co-dependent. For example, if a sensor gives range and bearing

measurements to some unknown landmarks, then knowledge of the land-

mark positions allows the sensor position to be inferred, but sensor position

is necessary in order to determine the location of the landmarks.

Due to its importance in robot navigation, the SLAM problem has been

extensively studied; see the reviews [242; 243]. Of particular interest to the

problem considered in this chapter is the formulation of SLAM as a non-

linear state-space problem [244], with the observer location and environ-

5.1. RELATED WORK 183

ment map jointly forming the system state. Early work used the extended

Kalman filter to solve this problem [244] and other nonlinear state infer-

ence algorithms such as the unscented Kalman filter have also been ap-

plied. More recently, Rao-Blackwellized particle filtering has been applied

successfully to the problem, popularized with the introduction of the Fast-

SLAM algorithms of [245] and [230].

Though commonly applied to maps of landmarks in space arising from

repeatedly encountered visual features, other map structures are also pos-

sible. In [246] a grid-based occupancy map of the environment is learnt,

again using a Bayesian approach based on the particle filter, with efficiency

refinements proposed for such models in [247]. In [248] a map based on

finely distributed points is proposed for use with laser rangefinders, in

which map points represent object detections by the rangefinder. Such

point-cloud maps have also been used with Microsoft’s Kinect sensor, a

widely available consumer-grade depth camera [249]. Somewhat similar

approaches can be used with vision based systems, when the map consists

of easily identified visual features such as corners [250]. A different type

of map is used in [251], where probabilistic topological maps consisting of

graphs of landmarks are constructed, with edges representing adjacency.

In [252] a problem conceptually similar to the one in this chapter is ex-

amined. There, the problem is that of learning a map of transportation

routes and nodes along with target positions and other information from

GPS tracking data. In that work, a complex hierarchical Bayesian model is

developed allowing for the use (and inference) of different modes of trans-

port and even the intention of the target. Transport nodes and target goals

are determined in an offline EM pass, however, so the algorithm might be

unsuitable for sequential learning.

Previous work to estimate road map information from large-scale data-

bases of GPS traces (reviewed, for example in [253]) is also somewhat re-

lated, in that it attempts to infer environment structure, in this case road

network structure, from tracking data. However, in this case tracking is

184 CHAPTER 5. SIMULTANEOUS MAPPING AND TRACKING

not performed simultaneously and the primary aim is to derive road map

information, rather than to enhance tracking. The methods employed rely

on having a large corpus of GPS traces available for the area of interest.

5.2 Model

The state space model used here consists of three components: a model for

the motion of target objects, a model for the potential fields within which

they move and a model for the observations made of their position. Spe-

cifying these model components allows inference of both object position

(tracking) and the potential field (mapping) from noisy observations.

5.2.1 Motion Model

In this work the motion model for tracked objects resembles a near constant

velocity model (see e.g. [204]), applied to objects in a potential field. For

an object moving in a potential field U, the force exerted by the field on the

object is given by the negative gradient of the field at its location xt, so that

Ffield = −∇U(xt). The object is also assumed to be subject to random forces

(corresponding to noisy motion, resistance or internal thrust). This, com-

bined with Newton’s second law of motion, gives a second order Langevin

SDE for the object’s position, which can be written as a pair of first order

SDEs as

dxt = ẋdt, dẋt = −
∇U(xt)

m
dt+ BdWt (5.1)

where ẋt represents the target’s velocity at t, B is the Cholesky decompos-

ition of the noise covariance Σ and dWt is a vector of the infinitesimal in-

crements of a Gaussian noise process of the same dimensionality as xt. If

independent noise of constant variance σ2 in each dimension is assumed,

B = σ√
m

I. Such SDEs cannot be solved analytically for general fields U (al-

though they can be solved if U is constant, linear or parabolic, in which case

they become, in the first two cases the near constant velocity model and in

the final case solvable linear SDEs; see chapter 3). In the absence of an ana-

5.2. MODEL 185

lytic solution, the SDE (5.1) must be numerically integrated, which can be

done using, for example, the method in appendix D using the integrator

given in equations (D.12) and (D.13). In this case, the f(xt) function found

in that integrator is given by − 1
m
∇U(xt) and the Jacobian of f, Jt, is given

by the Hessian of − 1
m

U. The integration method in appendix D allows

‘pseudo-observations’ of the potential’s gradient to be made, as shown in

section 5.3.1. These, along with the Gaussian process prior on the form of

the potential field (described in the following section), allow the shape of

the potential field to be inferred.

5.2.2 Potential Field Prior Model

In order to infer the potential field some prior assumptions about its func-

tional form are required, since otherwise observations made at one point

could not be related to its value elsewhere. However, since it is assumed

that no prior knowledge of the environment is available, it is desirable to

make minimal assumptions about the shape of the field. In order to do

this a Gaussian process prior is applied to its functional form. This is a

non-parametric prior assumption that allows the shape of the field to take

a wide range of forms. A book-length treatment of Gaussian processes is

given in [229].

Gaussian Processes

The Gaussian process prior assumption on the shape of a function U can

be stated as being the assumption that, at any finite set of points P in the

domain of the function, the joint distribution of the corresponding function

values U(p) for p ∈ P is multivariate Gaussian, with mean and covariance

being given as deterministic functions μ and K of the point locations, which

186 CHAPTER 5. SIMULTANEOUS MAPPING AND TRACKING

can be stated mathematically as

p















U(p1)
...

U(pn)















∼ N















μ(p1)
...

μ(pn)








,








K(p1, p1) . . . K(p1, pn)
...

. . .
...

K(pn, p1) . . . K(pn, pn)















. (5.2)

A common choice of μ in the absence of other information is for it to be

zero everywhere.

This probabilistic formulation allows the distribution of the function

value to be evaluated throughout its domain. For example, if the function

value is known at a set of points P, so that Y = [U(p1) . . . U(pn)]
′ is a vector

of the values of U(p) for p ∈ P, then the joint distribution of these known

values with the values of the function U at a set of ‘test points’ P∗ (where it

is unknown) is given by



 Y

U∗



 ∼ N



0,



 K K∗

K ′
∗ K∗∗







 , (5.3)

where U∗ = [U(p∗1) . . . U(p∗m)]
′ for p∗i ∈ P∗ and where the mean has been

assumed to be 0 everywhere. Here, the (i, j)th element of the K matrix is

given by the covariance function K(pi, pj), and similarly, that of the K∗ and

K∗∗ matrices is given by K(pi, p∗j) and K(p∗i, p∗j), respectively. Therefore

conditional distribution of U∗, given the known values of U in Y is given

by

p(U∗ | Y) ∼ N
(
K ′
∗K
−1Y, K∗∗ − K ′

∗K
−1K∗

)
. (5.4)

Observations distorted by additive Gaussian noise can be incorporated

by adding a noise term to the variance of the observations in question. If

Z is a set of noisy observations of the function U or its partial derivatives,

so that Z = Y + ε with ε ∼ N (0, Σnoise), the joint distribution of these noisy

5.2. MODEL 187

observations with U at a set of test points (as in equation (5.3)) is given by



 Z

U∗



 ∼ N



0,



K+ Σnoise K∗

K ′
∗ K∗∗







 , (5.5)

and the conditional distribution of U∗ in this case is given by

p(U∗ | Z) ∼ N
(
K ′
∗(K+ Σnoise)

−1Z,K∗∗ − K ′
∗(K+ Σnoise)

−1K∗

)
, (5.6)

where K, K∗ and K∗∗ have the same meaning as before. Other types of

observation noise are more difficult to incorporate and require a Gaussian

approximation [229]. This allows the distribution of U to be found at an

arbitrary set of test points given noisy observations of the function value at

various points.

As will be shown in section 5.3.1, the motion of the target can be used to

derive a set of noisy observations of the gradient of the potential rather than

its value. This requires different covariance values to be used describing the

covariance between function derivatives and values. These are given in the

following section and allow such observations to be easily incorporated.

Covariance Functions and Derivative Observations

In this work, the covariance between the value of the function U at two

points x1 and x2 is taken to be given by the commonly used squared expo-

nential covariance function, so that

cov (U(x1), U(x2)) = exp
(
− 1

2l2 ‖x1 − x2‖2
2

)
, (5.7)

where l is a characteristic length parameter for the Gaussian process U,

and can be thought of as a hyperparameter of the process. By choosing a

covariance function that results in close correlation of nearby points, local

smoothness is favoured (in a probabilistic sense) without making it an ab-

solute requirement. The influence of observations diminishes rapidly bey-

188 CHAPTER 5. SIMULTANEOUS MAPPING AND TRACKING

ond a certain distance, allowing wide variation of the function value through-

out its domain. Many other covariance functions are possible (see, for ex-

ample [229]), allowing different situations to be modelled, such as stronger

or weaker spatial dependence or periodicity, but these are not considered

here.

As is shown below, it is the gradient of the potential U rather than its

value that can be (indirectly) observed via its effect on the object. Second

partial derivatives of the potential are also needed for the numerical integ-

ration scheme in equation (D.12) (since the f that appears there is propor-

tional to the gradient of the potential field ∇U used here). These higher de-

rivatives can be calculated at specific points in a similar way to the function

values discussed above. This is done by replacing the appropriate elements

of the mean and covariance of the joint distribution in equation (5.8) with

values appropriate for calculation of the derivatives.

For the mean, this means that if the ith element of the observation vector

(on the left hand side of equation (5.8)) corresponds to a derivative observa-

tion, then the ith element of the mean vector of the normal distribution (on

the right hand side of equation (5.8)) should be replaced with the corres-

ponding derivative of the function mean. In the case here where the mean

is zero everywhere, this too is always zero.

For the covariance, the (i, j)th element of the covariance matrix must

correspond to the covariance between a derivative and whatever type of

quantity is in the jth position in the vector on the left. So, for example if both

the ith and jth elements are derivatives then the (i, j)th covariance element

must be the covariance between two (partial) derivatives. For example, the

joint distribution of the function value at xa and its partial derivative with

respect to direction xj at a point xb is given by




Uxa

∂Uxb

∂xj



 ∼ N



0,




cov(Uxa , Uxa) cov

(
Uxa ,

∂Uxb

∂xj

)

cov
(

∂Uxb

∂xj
, Uxa

)
cov

(
∂Uxb

∂xj
,

∂Uxb

∂xj

)







 . (5.8)

5.2. MODEL 189

Therefore, expressions for the covariance between values, first deriv-

atives and second derivatives of U, and all combinations thereof, are re-

quired. These can be found by differentiating the covariance between func-

tion values [254], since

cov

(
∂Ux1

∂xj

, Ux2

)

=
∂

∂x(1)j

cov(Ux1
, Ux2

),

where Ux1
is the value of the process U at point x1 and xj is the jth dimen-

sion of the domain of U. Here the derivative with respect to x(1)j refers

to differentiation with respect to the jth dimension of the first argument of

the covariance function. This idea extends to higher derivatives and to the

covariance between derivatives.

For the squared exponential covariance function in equation (5.7) the

presentation is simplified by writing Δxj = x1,j− x2,j for the signed distance

between points x1 and x2 in the j dimension and noting that

∂

∂x(i)j

cov(Ux1
, Ux2

) =
∂(Δxj)

∂x(i)j

∂

∂(Δxj)
cov(Ux1

, Ux2
),

with

∂(Δxj)

∂x(i)j

=






1 i = 1

−1 i = 2

due to the signed nature of Δxj. This means that differentiation in the

second argument of the covariance leads to negation of the expression. Let-

ting

E = exp

(

−
1

2l2

∑

k

(Δxk)
2

)

,

190 CHAPTER 5. SIMULTANEOUS MAPPING AND TRACKING

the relevant covariance relations are given by

cov (Ux1
, Ux2

) = αE, (5.9)

cov

(
∂Ux1

∂xi

, Ux2

)

= −
α

l2
ΔxiE (5.10)

cov

(
∂Ux1

∂xi

,
∂Ux2

∂xj

)

=
α

l2

(

δij −
ΔxiΔxj

l2

)

E, (5.11)

cov

(
∂2Ux1

∂xi∂xj

, Ux2

)

=
α

l2

(
ΔxiΔxj

l2
− δij

)

E, (5.12)

cov

(
∂2Ux1

∂xi∂xj

,
∂Ux2

∂xm

)

=
α

l4

(
ΔxiΔxjΔxm

l2
− δijΔxm − δimΔxj − δjmΔxi

)

E, (5.13)

and

cov

(
∂2Ux1

∂xi∂xj

,
∂2Ux2

∂xm∂xn

)

=

α

l6

(
ΔxiΔxjΔxmΔxn

l2
− δijΔxmΔxn − δimΔxjΔxn

− δinΔxjΔxm − δjmΔxiΔxn − δjnΔxiΔxm

− δmnΔxiΔxj + l2 (δinδjm + δjnδim + δmnδij)

)

E.

(5.14)

The first two of these are given in [254].

Because Δxj is signed, swapping the argument in which differentiation

occurs leads to the sign of the covariance function being reversed. So, for

example,

cov

(

Ux1
,
∂Ux2

∂xj

,

)

= −cov

(
∂Ux1

∂xj

, Ux2

)

,

and similarly for the other expressions.

If noisy observations (with additive Gaussian noise) of some of these

quantities are available (first derivatives in the potential field case), they

can be incorporated by adding a noise term when considering the variance

of that particular observation. For example, noisy first derivative observa-

tions would require a noise term to be added to the covariance in equation

5.3. INFERENCE 191

(5.11) so that it becomes

cov

(
∂Ux1

∂xi

,
∂Ux2

∂xj

)

=
α

l2

(

δij −
ΔxiΔxj

l2

)

E+ δ{x1=x2,i=j}σ
2
i,x1

where σ2
i,x1

is the noise variance of the observation of the first derivative in

the ith dimension at x1(= x2 when applicable).

5.2.3 Observation Model

The inference framework described in Section 5.3 allows for arbitrarily com-

plicated observation functions, subject to the limitations of the particle filter

[255]. For the examples in this chapter, however, a simple Gaussian obser-

vation model is used, where the observation yi at time ti, is the true object

position at that time xti
distorted by additive Gaussian noise:

yi = xti
+ ηi, (5.15)

with ηi ∼ N (0, σ2
obsI).

5.3 Inference

The target’s state X = [x ẋ] ′, consisting of its position x and velocity ẋ,

and the shape of the potential function U within which it moves can be in-

ferred from a series of noisy observations y1:n at observation times t1, ..., tn

by applying a Rao-Blackwellized particle filter to the state-space model de-

scribed above. This idea is similar to that used in the the FastSLAM al-

gorithm of [245] and [230], where a particle filter is used for tracking, and

a map (in this case the potential field and in the case of FastSLAM, a set of

landmarks) can be efficiently inferred conditioned on the tracks obtained

from the particle filter.

192 CHAPTER 5. SIMULTANEOUS MAPPING AND TRACKING

5.3.1 Inferring the Potential

Given a series of sampled state estimates Xt1:tn integration of the motion

model (5.1) via the numerical scheme in equation (D.12) can be used to

make a ‘pseudo-observation’ of the potential function U (at positions xt1:tn)

at each observation time [3]. If values for xt, ẋt and xt+h are known for

some t (as is the case for a single particle in a particle filter), then from the

first component of the numerical integration in equation (D.12) it is known

that

xt+h = xt + hẋt +
1

2
h2f(xt) + BZ2,t +O(h3). (5.16)

Rearranging this and replacing f(xt) with − 1
m
∇Uxt , gives

−∇Uxt =
2m

h2
(xt+h − xt − hẋt) −

2mB

h2
Z2,t −O(h) (5.17)

≈
2m

h2
(xt+h − xt − hẋt) + εt (5.18)

where εt ∼ N
(
0, 4m2

3h
Σ
)

. The O(h) term from the integration error has

been ignored, since for small h this will be small relative to the O(h−
1
2)

εt term. This means (xt+h − xt − hẋt) can be treated as an observation of

−∇U at xt, distorted by Gaussian noise, which can be incorporated easily

into the Gaussian process as noted in section 5.2.2. The observation noise

variance scales with 1/h, meaning that a higher observation frequency does

not increases the information available about U (since the number of ob-

servations also scales with 1/h), except in the region where the O(h) term

becomes significant (close to h = 1). Of course, this only refers to inference

of the potential field; more frequent observations are likely to improve the

estimation accuracy of the object state. Intuitively, this can be understood

by considering that a short motion corresponding to small h will only be

deflected slightly by the underlying field, whereas a long motion with large

h will suffer more deflection.

5.3. INFERENCE 193

5.3.2 Particle filter

To formulate the particle filter it is assumed that a particle representation of

the posterior distribution of preceding object states and the corresponding

potential field p(Xt1:tn−1
, U | y1:n−1) at tn−1 is available, so that

p(Xt1:tn−1
, U | y1:t−1) = p(U | Xt1:tn−1

, y1:n−1)p(Xt1:tn−1
| y1:n−1)

≈
∑

i

wi
t−1p(U | Xi

t1:tn−1
)δ{Xi

t1:tn−1
}, (5.19)

where δ{Xi
t1:tn−1

} is a delta function at the trajectory of the ith particle Xi
t1:tn−1

and where the weights wi must sum to 1. The distribution p(U | Xi
t1:tn−1

) is

the distribution of the potential field corresponding to the trajectory Xi
t1:tn−1

and is given by the Gaussian process approximation, along with the pseudo-

observations of the gradient of U derived from the object trajectory Xi
t1:tn−1

using equation (5.18). Using these, the value of U can be calculated at any

point of interest, and so a sample of U need not be stored in each particle.

When a new observation yn becomes available at time tn new samples

of the joint state Xtn are drawn from an easy-to-sample proposal density

q(Xi
tn

| Xi
t1:tn−1

, yt1:tn). Given these new samples, the particle approxim-

ation of the posterior filtering density can be updated using the standard

weight update

wi∗
t = wi

t−1 ×
p(Xi

tn
| Xi

t1:tn−1
)

q(Xi
tn

| Xi
t1:tn−1

, yt1:tn)
p(yn | Xi

tn
), (5.20)

wi
t =

wi∗
t∑

i wi∗
t

, (5.21)

where p(Xi
tn

| Xi
t1:tn−1

) is the state transition density for the model, given

by the object dynamics, in this case approximated by the transition density

from a numerical integration scheme such as that in equation (D.15). This

transition density (and quite possibly also the proposal function) requires

the value of the potential field U or its derivatives at a number of points.

These can be derived for each particle from the object trajectory for that

194 CHAPTER 5. SIMULTANEOUS MAPPING AND TRACKING

particle Xi
t1:tn−1

, allowing the distribution of the potential field and its de-

rivatives to be evaluated at any points in its domain using the method in

section 5.3.1. This allows the transition density to be calculated as

p(Xi
tn

| Xi
t1:tn−1

) =

∫
p(Xi

tn
| Ui, Xi

t1:tn−1
)p(Ui | Xi

t1:tn−1
)dUi, (5.22)

and similarly for the proposal density q if U is required in forming that.

This amounts to Rao-Blackwellization of the Gaussian process approxim-

ation of the potential field, using the particle filter mechanism to infer the

nonlinear portion of the state consisting of the position and velocity of the

object.

In the calculation of p(Xi
tn

| Xi
t1:tn−1

) in the Rao-Blackwellized scheme

proposed here, the integration over Ui in equation (5.22) requires, in ef-

fect, that the necessary values of Ui be treated as a random variables when

evaluating p(Xi
tn

| Ui, Xi
t1:tn−1

). As these have Gaussian distributions, this

is tractable in many cases. For example, section D.3 in appendix D gives

transition densities for the numerical scheme in appendix D when the U

function is random, as required. This relies on the fact that U is independ-

ent of the process noise in the current period, but as noted in section D.4,

U depends only on earlier realizations of the process noise and observation

noise (via equation (5.18)) and so U and its derivatives will be independent

of random variables occurring in the numerical integration scheme (e.g. Z1,

Z2 and Z3 in equation (D.12)), which derive from the process noise in the

current period.

When using a bootstrap filter (in which the state transition density is

used as the proposal density), both the process noise variables and the

value of ∇U must be sampled to obtain a proposals for the new state sample

Xi
tn

for particle i at time tn using the numerical scheme in appendix D.

Since, in this case, the derivatives of the potential function are being dir-

ectly sampled, these samples should be used directly in the inference of the

potential field in place of the estimates derived from the subsequent state

given in equation (5.18). For multi-step integration schemes this will res-

5.3. INFERENCE 195

ult in multiple samples of these quantities along the sample path, which

could lead to large numbers of pseudo-observations of the potential field.

A practical caveat of using sampled gradients directly is that, because the

samples are point samples without any noise, they can lead to numerical

instability in the Gaussian process estimation due to badly conditioned co-

variance matrices. In practice, therefore, it is usually necessary to apply

a small amount of artificial Gaussian ‘observation’ noise to the samples in

order to overcome this.

For non-bootstrap filters, proposals can be made from any proposal dis-

tribution q(Xtn | U,Xt1:tn−1
, yt1:tn), which may be (approximately) adap-

ted to the latest observation ytn . In order to calculate the weight update

in equation (5.20) it must be possible to evaluate both the proposal and

state transition densities. For this reason, a numerical integration scheme

with a tractable density such as that in equation (D.15) must be used. This

need to evaluate transition densities for non-bootstrap schemes can lead

to a potential trade-off between such schemes and simulation-only boot-

strap schemes, because simulation-only schemes can allow the use of more

accurate numerical integration with intractable transition densities; see sec-

tion D.4. Multi-step schemes can also be used with non-bootstrap schemes,

although these requires the use of methods such as sequential imputations

to sample intermediate state distributions; see section D.5.

Once a proposal is made, the proposed state Xi
tn

can be used to obtain

a further noisy pseudo-observation of the force exerted on the target by the

potential field corresponding to the proposal using equation (5.18).

5.3.3 Fast covariance updates

The most computationally expensive part of Gaussian process calculations

is the inversion of the the (K + Σnoise) matrix in equation (5.6) when calcu-

lating the process distribution at test points. If K is an n × n matrix (cor-

responding to n pseudo-observations of the state), K∗∗ is an m × m matrix

(corresponding to m test points) and K∗ is a n × m matrix, then inverting

196 CHAPTER 5. SIMULTANEOUS MAPPING AND TRACKING

K is an O(n3) operation using a naive implementation and O(n2.373) in the

best known implementation [256]. In general n � m, since there are likely

to be many more observations than test points.

Upon adding p more observations this calculation has to be repeated,

so it is desirable to sequentially update this inverse as new observations

arrive (in a way that is cheaper than recalculating the inverse itself). This is

easier to do if the Cholesky decomposition of (K + Σnoise) is stored instead

of its inverse. This has the additional advantage that use of the Cholesky

factor in place of the matrix inverse is more numerically stable [229]. Here

the lower Cholesky factor L is used, which is a lower triangular matrix such

that (K + Σnoise) = LL ′. It is always possible to find this since covariance

matrices are positive definite. Given L, the term (K+Σnoise)
−1F in equation

(5.6) (where F is either Z or K∗) can be easily calculated by letting

x = (K+ Σnoise)
−1F

where x is the required result, so that F = LL ′x. Writing y = L ′x gives F =

Ly. Since L is lower-triangular these equations can be straightforwardly

solved first for y, then for x by forward and back substitution, respectively

(repeating this over each column of F when it is a matrix). This operation

takes O(n2) operations when F = Z and O(n2m) when F = K∗.

Updating L upon arrival of a new observation, amounting to adding a

number of rows and columns to the (K+ Σnoise)matrix, is straightforward.

Let A = (K+Σnoise) be the covariance matrix prior to the arrival of the new

observations. The required matrix is the lower Cholesky factor of

A+ =



A v

vT c



 ,

where v is a n × p matrix and c is a p × p matrix, corresponding to adding

p new observations (where it would be expected that p � n). Writing

5.4. RESULTS 197



L 0

b d



 for the lower Cholesky factor of A+, the Cholesky decomposition

can be written as

A+ =



L 0

b d







L ′ b ′

0 d ′



 =



LL ′ Lb ′

bL ′ bb ′ + dd ′



 ,

which requires that

v = Lb ′,

c = bb ′ + dd ′.

The first of these can be solved for b by forward substitution in an O(n2p)

operation and, once b is found, d can be found by taking the lower Cholesky

factor of c − bbT in an O(p3) operation. This allows the lower Cholesky

factor of (K + Σnoise) to be sequentially updated as more observations be-

come available, with the update having lower computational complexity

than inverting the matrix as long as n2p < (n + p)2.373, which is guaran-

teed if p ≤ 0.373n

5.4 Results

In order to test the tracking and map inference in a real-world setting, a

single-target tracking test was set up in which the target, a car, performed

several laps of the same circular route. This aimed to illustrate the fact

that environment structure (in this case road structure) can be learnt by the

algorithm, and that this can be used to improve tracking performance. This

application is intended to demonstrate the technique and illustrate the way

that it could assist with multi-target tracking or path planning applications

in situations when some target motion in a structured environment has

already been observed.

GPS tracking data was collected for several car journeys around Cam-

198 CHAPTER 5. SIMULTANEOUS MAPPING AND TRACKING

Figure 5.1: Potential field map generated for Mitcham’s Corner data using
undistorted GPS observations. Dark blue areas are areas of low potential
and yellow areas are areas of high potential. The letters A-D show the
locations of traffic lights. Maps from Google Maps

bridge, UK. The data was collected using Google’s MyTracks app on an

HTC Desire Android smartphone. The GPS output seemed to be of high

quality, with little noise. This was converted to a 2d position in metres us-

ing the latitude and longitude GPS readings (using the local conversion in

Cambridge of 111.271km per degree of latitude and 68.372km per degree of

longitude). Curvature of the Earth was ignored on this small scale, but for

wider area applications this would become an important consideration. It

was found that scaling the input data so that characteristic length scales of

l ≈ 1 could be used for the Gaussian process improved numerical stability

(for example distances in tens of metres was used with this data).

The dataset “Mitcham’s Corner” consists of four loops of about 2.2km

through a set of city streets with a variety of road features (traffic lights,

roundabouts, junctions). The “Sleaford Street” dataset consists of five loops

of a 0.8km route around a set of narrow residential streets with several

junctions.

Using the Mitcham’s Corner dataset to infer a potential field model for

the car’s environment gave the results in Figure 5.1. These results show

5.4. RESULTS 199

Figure 5.2: Detail of tracking on Mitcham’s Corner data (four circuits)
without (left) and with (right) map inference. Blue lines show inferred
tracks, green lines show ground truth (noise free GPS data) and red stars
show generated noisy observations

clear ‘channels’ (dark blue) in the potential field along roads, with ‘hills’

in the field where they might intuitively be expected around the edge of

corners. The inferred potential map also reveals some hidden features of

the road not visible from a standard road map. For example, the traffic

lights at A, B, C and D are clearly visible as bumps across the road, due to

the speed reduction necessary before arriving at them.

In order to test tracking performance with simultaneous map inference,

GPS tracking data was used as ground truth and noisy observations were

generated by adding Gaussian noise to the GPS positions according to the

model in equation (5.15). The proposed method was then compared to

bootstrap particle filtering using the same object dynamics without a poten-

tial field (i.e. with U = 0 everywhere). The results are shown in Table 5.1.

Simultaneous mapping and tracking significantly improves tracking per-

formance. A detail from tracking on the Mitcham’s Corner data is shown

in Figure 5.2. This shows how, by inferring a potential map, much closer

tracking to the detailed road layout was possible.

The system can also be used to establish a map using previous obser-

vations (possibly from multiple other object’s tracks), which can be used

as a prior for subsequent tracking. To test the usefulness of this the last

circuit of each of the two routes (subject to Gaussian noise) was used as an

200 CHAPTER 5. SIMULTANEOUS MAPPING AND TRACKING

Data Map & Track Track only
Mitcham’s Corner 12.8 (0.3) 16.7 (1.5)
Sleaford Street 12.6 (0.6) 17.7 (0.6)

Table 5.1: RMS error per observation (in metres) for comparison of simul-
taneous mapping and tracking and tracking only results. Standard devi-
ations from 10 trials shown in brackets

Data Perfect Noisy None
Mitcham’s Corner 13.5 (1.9) 12.4 (0.7) 15.3 (2.2)
Sleaford Street 17.4 (3.4) 14.0 (2.5) 17.8 (4.2)

Table 5.2: RMS error per observation (in metres) for tracking with a range of
inferred prior maps. Standard deviations from 10 trials shown in brackets

out-of-sample test path to be tracked, while the previous circuits were used

as training data to infer the map. Two versions of this training were tried:

one training with the undistorted GPS data (‘perfect’) and the other with

data distorted with the same level of Gaussian noise as the out-of-sample

track (‘noisy’). The results are shown in Table 5.2. These show that using

a map inferred from previous observations improves subsequent tracking.

Perhaps surprisingly, training using noisy observations was more effective

than with the noise-free GPS observations. This could be because the noise

free observations define the roadways on the map too narrowly compared

to the noisy data, introducing errors when used with noisy data.

For these tests a bootstrap particle filter with 500 particles was used.

The single-step numerical integration scheme in equation (D.12) was used

for forward simulation. The standard deviation of the observation noise

σobs was set to between 10m and 30m. The process noise was modelled as

independent in each direction (making the B matrix diagonal) with stand-

ard deviation of between 1ms−2 and 3ms−2. The characteristic length scale

l for the Gaussian process was set at 15m.

The bootstrap particle filter used here is unlikely to be the best tracking

model for this data. However, it does offer a good way to assess the effect-

iveness of the potential field model. Better tracking algorithms could be

developed by using more sophisticated particle filters (for example an aux-

5.5. CONCLUSION 201

Figure 5.3: Example of simultaneous tracking and potential map inference
for Sleaford Street data (five circuits). Lines, points and colours have the
same interpretation as in Figures 1 and 2. The scale shows distance in tens
of metres. Note the potential channels along roads, with hills at corners.
Some road obstacles (parked cars on narrow streets) are visible, for example
in the lower right

iliary particle filter with UKF proposals), or by modifying the dynamical

model of the tracked object in equation (5.1), to better reflect its true dy-

namics. For example, for car tracking an intrinsic model that incorporated

some knowledge of car dynamics such as their acceleration and braking

force ranges could be used.

5.5 Conclusion

This chapter presents a new method of sequentially learning about the

structure of an unknown environment while tracking targets moving within

it. Unlike existing constrained tracking techniques, no knowledge of the

environment structure is necessary in advance, although it is possible to

incorporate such knowledge if available. For example, road maps could

be used to set the mean of the Gaussian process prior in a similar way to

the construction of a likelihood function based on road maps used in [235].

Learnt structural information can be incorporated directly into the tracking

202 CHAPTER 5. SIMULTANEOUS MAPPING AND TRACKING

process in order to enhance its performance. The environment is modelled

as a potential field map, but only weak non-parametric assumptions need

be made about the shape of that field and thus the model is applicable to

a wide range of settings. An efficient Bayesian solution method based on

the Rao-Blackwellized particle filter is demonstrated. The method can im-

prove tracking performance in structured environments as illustrated by

its application to urban car tracking. Map inference can reveal hidden en-

vironment structure such as the location of traffic lights, junctions and ob-

structions in the urban car tracking example here. The method also offers

a way of incorporating existing prior knowledge (e.g. from maps or from

previous tracks) into a tracking model, which can be updated using feed-

back from the environment.

The method suffers from the fact that calculations involving the Gaus-

sian process are O(n3) in the number of observations n, which makes it

unsuitable for use with long time series. It also suffers from particle path

degeneracy in early stages, which reduces the quality of the map produced.

Both of these problems can be overcome, however, and ways to do this are

are discussed below.

5.5.1 Further work

There are a number of immediate extensions of this work that could im-

prove its performance and applicability.

In order to increase particle diversity in the particle history, periodic

backward sampling can be used in the resampling step of the particle filter

using the method of [146]; see section 2.3.3. Since the resampling step aims

to redraw samples from p(Xt1:tn | y1:n), it is legitimate to use backward

sampling there, and this would be particularly beneficial in this case (and

other SLAM problems) since the map depends on the entire state history for

each particle. Using a back-resampling step allows more diverse particle

histories to be produced, which should lead to better map estimates cor-

responding to early observations. Such a back-resampling step would be

5.5. CONCLUSION 203

expensive, but would only be necessary periodically, when the past particle

history has degenerated sufficiently. MCMC move steps could be also be

added to the particle filter (see section 2.3.2) in order to improve particle

diversity. It might also be possible to apply some of the recent forward

smoothing work in e.g. [163] to create map estimates as forward function-

als based on smoothing estimates of the state, though this requires that re-

latively simple, sequentially updateable sufficient statistics of the map can

be devised, which is an open question.

A key improvement to the method would be to use a sparse approx-

imation to the Gaussian process potential field map. There are a number

of suitable methods (see, for example, chapter 8 in [229] or [257; 258; 259;

260; 261]). In particular the Projected Process (PP) approximation appears to

offer a good compromise between error and runtime [229]. This method re-

duces the computational complexity of calculating the mean and variance

of the Gaussian process at a test point to O(m) and O(m2), respectively,

where m is much smaller than the number of observations n. Initialization

takes O(m2n) time and must be repeated each time a new point is added

to the active set, the set of m points that define the process, but this need not

happen after every observation. An alternative simple method is the Subset

of Datapoints (SD), in which a subset of the datapoints is chosen and used

in the standard way in place of the full dataset. This has O(m3) initializa-

tion complexity, and the same complexity as the PP method for mean and

variance calculation. Since these methods do not scale with the number of

observations n (or scale only weakly), they can make the method plausible

for long time series and continuous online estimation use.

Not all new points need to be added to the active set and several heur-

istic schemes have been proposed to select points to be added. These are

generally greedy schemes, with points being assessed, and the active set

being built, dependent on the order in which the points are seen, though

some are not, e.g. [257; 261]. Greedy schemes are well suited to sequential

applications such as that here and are implemented by evaluating a met-

204 CHAPTER 5. SIMULTANEOUS MAPPING AND TRACKING

ric for each new point and adding the point to the active set if this metric

is above some threshold. Such metrics include differential entropy score

[259], novelty (predictive variance at the observation point) [258] and (ap-

proximate) information gain [260].

Figure 5.4 shows a comparison of the SD and PP schemes with the

standard non-sparse Gaussian process approach, using a greedy algorithm

to select points via the novelty criteria. This shows that the PP scheme in

particular offers good replication of the full Gaussian process, at least for

this 1d example, while having greatly reduced computational complexity.

This makes it an good candidate for a sparse approximation for the Gaus-

sian processes used in this chapter, although the time complexity is pro-

portional to n when adding a new point to the active set, which might be

problematic for very long time series with many highly novel observations.

Sparse GP implementations based on heuristic criteria for the inform-

ation content of observations (such as the novelty criteria, which depends

solely on observation position) will be most efficient when many observa-

tions lie close together and can therefore be approximated by a few rep-

resentative observations. Long linear tracks, for example, could still cause

computational problems for sparse methods, with each new point contain-

ing substantial information and thus being added to the active set. This

can be overcome by exploiting the fact that observations in Gaussian pro-

cesses using the squared exponential covariance function, as here, have

weak long-range interaction. Because of this, multiple smaller overlap-

ping Gaussian process ‘tiles’ could be used to cover the space of interest

whilst only introducing a small approximation error. Observations would

fall onto at most four of these tiles (at overlapping corners) and the tile

whose centre lay closest to the test point would be used for estimation at

that test point. The amount of overlap and the tile size could be tuned for

the application. On its own this strategy is insufficient to reduce the O(n3)

worst case, since all observations could fall within a single tile. However,

5.5. CONCLUSION 205

Figure 5.4: Gaussian process approximation showing mean (solid black),
and ± three standard deviations (grey shading) to a function (red) in the
interval [-10, 10], based on observations (green crosses) derived from true
process with additive Gaussian noise with variance 2. The top panel shows
a standard Gaussian process approximation using 300 observations; the
middle panel shows the Projected Process approximation using 36 points
selected greedily (selected if novelty score was above a threshold of 0.55);
the bottom panel shows standard Gaussian process approximation using
the same 36 points

206 CHAPTER 5. SIMULTANEOUS MAPPING AND TRACKING

combined with sparse GP methods within each tile, the pathological cases

of both techniques can be overcome.

Chapter 6

Non-Parametric Group

Structure Inference

This chapter examines the problem of Bayesian learning of dynamic net-

work structures for groups of interacting stochastic time series in continu-

ous time, linked by a restricted but useful class of non-linear dynamic

Bayesian networks (DBNs). The motivating application for this work is the

tracking of multiple interacting physical objects and, in particular, learn-

ing about the relationships between them, although the methods could be

applied to problems of estimating the interaction of time series, including

causal relationships, in other domains. Indeed, related models have been

successfully applied to the statistical inference of genetic regulatory net-

works and financial time series (see section 6.1).

The method presented in this chapter is able to learn the functional form

of non-linear relationships between a group of interacting physical objects

from a series of noisy observations of their position. This is based on non-

parametric assumptions about the form of these interactions, specifically

the imposition of a Gaussian process prior on that form. This allows a

fully Bayesian solution of the problem, with sampling of the posterior be-

ing achieved through an efficient MCMC scheme. This is made possible for

long time series by the introduction of a bin-based sparse Gaussian process

207

208 CHAPTER 6. GROUP STRUCTURE INFERENCE

approximation, which eliminates the cubic complexity of standard Gaus-

sian process methods with the number of observations and thus allows

long series of observations to be used for inference.

Observations can be noisy and can arise from a wide range of obser-

vation models, including non-linear and non-Gaussian models. In this

chapter, a range of methods are proposed to allow the use of such ob-

servations for structure inference, including a simple to implement Gibbs

sampler, a sampler based on proposals from bridging distributions to im-

prove mixing, and a Particle Gibbs method able to cope with highly non-

linear models. An adaptation of the Particle Gibbs algorithm is presented

that allows object trajectories to be sampled individually, helping to over-

come curse-of-dimensionality problems that would otherwise hamper in-

ference in systems with many objects.

Interactions between pairs of objects are assumed to occur along vec-

tors derived from their joint state and have strength functionally related to

a one dimensional quantity, also derived from that joint state. So, for ex-

ample, functions of some aspect of object state (e.g. magnitude) or relative

state (e.g. distance) can be used; multiple types of relationships can be in-

corporated within the same framework (e.g. based on magnitude, distance

and relative velocity). It is the forms of these potentially non-linear ‘link-

age’ functions that are inferred, with only limited assumptions made about

their form. Within this framework many useful systems can be described,

including systems of objects connected by springs and dampers, electro-

statically or gravitationally connected systems, flocking and coordinated

motion models, and systems in which objects avoid collisions.

In this chapter inference is specialized to networks of objects whose re-

lative positions determine their interaction. This describes physical situ-

ations in which interaction occurs along the line between two objects, in a

distance-dependent way such as those arising from springs, gravity, elec-

trostatics, and collision avoidance.

The method presented here substantially extends that presented in earlier

6.1. RELATED WORK 209

work in [4]. Some of the key shortcomings of that work have been ad-

dressed, in particular the cubic time complexity with respect to the number

of observations, and the ability to cope with noisy observations.

The chapter is structured as follows. Section 6.1 surveys related work

in network inference and object tracking. Section 6.2 presents the model of

object interaction and dynamics, and gives a specific model applicable to

distance-based relationships in tracking problems. Section 6.3 shows how a

Gibbs sampling scheme can be developed for this model and discusses the

algorithmic complexity of this scheme, which corresponds to that presen-

ted in [4]. Section 6.4 presents results from this algorithm on synthetic data.

Section 6.5 gives details of the sparse bin-based Gaussian process scheme

that allows large datasets to be tackled and presents results that suggest

this scheme is consistent. Section 6.6 shows how noisy observations can

be used for inference and presents a range of schemes for simultaneous

state and linkage inference. Section 6.7 presents results of these algorithms,

including successful inference of the structure of a group of eight objects

linked in a complicated structure. It also gives details of a Particle Gibbs

scheme that allows object paths to be sampled individually. Section 6.8

draws conclusions and gives some suggestions for future development of

the ideas presented.

6.1 Related Work

Networks in which an object directly influences its neighbours provide

a useful description of many situations. They have been used to model

observed data in a number of areas including sociology [262] (even be-

fore electronic computation), economics and finance [263], computer vis-

ion [264], genomics [265; 47; 266; 267] and tracking [142; 268; 269; 270].

In order to gain insight into system structure, inference of the structure

of the network has increasingly become a focus of research. In particular,

the development of DNA microarrays in the mid 1990s and the resulting

210 CHAPTER 6. GROUP STRUCTURE INFERENCE

vast increase in the quantity and availability of gene expression data has

led to substantial interest in the statistical inference of gene regulatory net-

works (GRNs). Several approaches have been proposed for modelling such

networks, including Boolean networks, e.g. [271], systems of differential

equations e.g. [272], and, of particular interest here, Bayesian networks;

[273; 266] review these various approaches in the context of GRNs.

Bayesian networks [274] model systems of variables as directed acyclic

graphs (DAGs), with nodes corresponding to variables and edges repres-

enting causal links between them. In network learning, properties of the

objects of interest are represented by the variables (in the case of GRNs,

gene expression levels), with the aim being to infer the graph structure that

links them. Such network inference can be tackled via a number of ap-

proaches, but methods divide into two classes: scoring methods, that aim

to find an optimal structure according to some metric of network ‘good-

ness’; and more fully Bayesian methods based on sampling of network

structures, that aim to produce a posterior probability distribution over

network structures.

Scoring methods such as [275; 265; 276] are usually based on one of a

handful of information criteria developed for model selection that aim to

balance the model’s quality of fit to the data with its parsimony. This is an

application of Occam’s razor to model selection; see e.g [36] for a discussion

of this principle. One common criterion is the Bayesian Information cri-

terion (BIC) [277], equivalent to an approximate penalized likelihood and

used, for example, in the structural EM approach of [275]. Another popu-

lar criterion is the Bayesian Dirichlet equivalent (BDe) introduced by [276],

which is the posterior density of a discrete-valued model using a Dirichlet

prior with certain hyperparameters on the transition probabilities between

states. Maximizing this metric therefore corresponds to finding the MAP

solution under that particular prior.

Sampling methods are generally more demanding [278], but, when they

do not become trapped in local posterior minima, have the advantage of

6.1. RELATED WORK 211

Figure 6.1: Bayesian network representing causal relationships from A →
B, A→ C and B→ C

giving some idea of the distribution of possible network structures. An

early example of such a method is [279], based on defining the proposal

step in a Metropolis-Hastings algorithm as a move to a ‘neighbouring’ net-

work containing one edge more or fewer than the current sample. [267]

describes a more recent sampling approach that attempts to address the

problem of local minima through a sophisticated MCMC scheme and a

parameterization of candidate structures based on the ordering of network

graphs by the parent relations between nodes, which is able to reduce the

sample space from O(2N2
) network structures to O(N!) orderings [280].

A limitation of Bayesian networks is that they are designed to describe

static systems and cannot, therefore, account for loops in the graph, such

as those arising from feedback mechanisms; see figures 6.1 and 6.2. This

has driven the use of dynamic Bayesian network (DBN) models for net-

work inference in GRNs. In these models the system is represented as a

set of linked time series, one for each object of interest, generally with a

Markovian structure [281]. DBNs have long been used in various branches

of signal processing, including tracking (see below), econometrics [282],

audio processing [283], vision [264], etc., and correspond to multivariate

state space models. State inference, parameter estimation and likelihood

evaluation in these models can be tackled if their structure is known using

the methods outlined in section 2.1.

Approaches for learning the structure of DBNs are similar to those for

Bayesian networks. This was first attempted for GRNs in [284], which

212 CHAPTER 6. GROUP STRUCTURE INFERENCE

Figure 6.2: Structure (left) with feedback that cannot be represented with a
static Bayesian network, and the corresponding dynamic Bayesian network
structure (right), shown for two time periods

used a model with discrete-valued variables and applied the BDe scoring

criteria in order to find the MAP network structure; [285] and [281] take

similar BDe-based approaches. Discrete-valued variables do not always fit

real data well [285] and so learning methods for continuous-valued DBN

structure have been examined by a number of authors. For linear Gaus-

sian DBNs, several computationally efficient approaches exist. An early

example is given in [42], which gives an EM approach for finding the max-

imum likelihood state transition matrix (and other system parameters) in

such a system. Building on this, [47] gives a variational Bayesian approx-

imation to the distribution of the state transition matrix, which is applied

to GRN inference. It is also worthy of note that an elegant Gibbs sampler

for the elements of the state transition matrix can be derived along the lines

of [178].

Learning of non-linear continuous DBNs was first examined in [285;

286], based on earlier similar work on Bayesian networks [287]. The method

is based on the assumption that the effect on a gene expression level of

all other genes is the sum of non-linear functions of the expression levels

of those genes, plus additive Gaussian noise. These non-linear functions

are unknown and are estimated using non-parametric spline assumptions

about their shape. This approach is similar in outline to that used in this

6.1. RELATED WORK 213

chapter. Network learning is performed using a scoring criterion, based on

a Laplacian approximation of the likelihood function and penalized (via

the prior) based on the number of parents of each node. This is similar

in spirit to the BIC criterion. [288] extends this to include differential re-

lationships between variables. Recently a more fully Bayesian approach

following similar modelling assumptions has been developed by [289], in

which an MCMC scheme is used to sample from the network structure and

sampled indicator variables are used on links to allow sparsity in network

structure to be inferred.

The motivating application of the work in this chapter is multi-object

tracking. Since objects in such applications are composed of multiple state

variables (e.g. position and velocity in various dimensions) that have known

internal dynamics (motion models derived from physical considerations),

the dynamic Bayesian networks have a somewhat more complicated struc-

ture than those found in GRN problems, as shown in figure 6.3. Methods

that attempt to identify the structure between objects have, so far, mainly

focussed on group tracking e.g. [290; 291; 269], where groups are densely

connected subsets of objects, or have used ad-hoc networks constructed

on a frame-by-frame basis using simple measures such as object separa-

tion as in [142]. In this latter method, as well as in [136], Markov random

fields (MRFs) are used over the current group structure to model assump-

tions about object behaviour such as collision avoidance. [269] and [292]

track groups of targets and make linear assumptions about the relation-

ship between objects within a group using a ‘virtual leader’ idea, in which

the virtual leader is a linear combination of group members. The work of

[293; 270] is able to infer true network structures between targets. Interac-

tion between objects is modelled as piecewise linear, with inferred relation-

ships operating at most ranges, but an approximate repulsion term oper-

ating at short separations to avoid collisions. The recent and related work

of [294] also uses a linear dynamical assumption to model and infer causal

relationships between physical objects during tracking. In [293] such tech-

214 CHAPTER 6. GROUP STRUCTURE INFERENCE

Figure 6.3: Dynamic Bayesian network structure of the type found in phys-
ical tracking applications, representing a structure similar to that on the left
of figure 6.2

niques are applied to financial time series in order to infer relationships

between stock prices and therefore identify suitable candidate stocks for

pair trading strategies.

6.2 Model

The model of networked objects employed here is one in which each object

in the network has a state consisting of a number of continuous variables,

for example position and velocity in Euclidean space. Though it would be

possible to extend the framework to discrete or categorical variables this is

not considered here. A Markovian time structure is assumed for the sys-

tem, so that the next state of all objects is determined by their current state

(plus noise). The interaction model is based on deriving, for each pair of

objects i and j (i.e. from their joint state), some vector Δij with dimension-

ality equal to that of the object state space and some scalar quantity Dij. It

must be possible to obtain these deterministically given the joint state of

the two objects. The vector Δij describes the ‘direction’ of the interaction

between the objects and the scalar Dij is such that a function fij of this de-

6.2. MODEL 215

termines the strength of the interaction. The effect on object i from object j

is then fij(Dij)Δij. The total interaction effect on object i, written Fi, is given

by the sum of the interaction effects from all other objects in the system, i.e.

Fi(xt) =

N∑

j=1

fij(Dijt)Δijt. (6.1)

This aggregate term is the only term for which any sort of observation is

possible, and thus the problem is one of determining a large number of in-

dividual effects from a series of their aggregate effects observed over time.

This is a similar model to that used in [285; 286], although there the per-

object effect fij was simply a univariate function of the univariate state of

object j (which can be recreated here by setting Dij = xjt and Δij = 1 for

univariate xjt). Since the individual effects at each time are occurring under

different conditions, further assumptions about the functional nature of the

interactions are necessary in order to relate interactions at one time to those

at other times. In this work, an attempt is made to minimize these assump-

tions through the use of non-parametric Gaussian process (GP) priors.

Object tracking is a motivating example of this work, so this section

outlines a concrete object tracking example of this type of problem, in an

attempt to motivate and illustrate the approach. The method is applied to

interacting systems of physical objects in which inter-object forces depend

on the distance between the objects, but this is by no means the only ap-

plication to which it could be put.

6.2.1 Physical (Langevin) Model

Stochastic systems of multiple objects where inter-object forces depend only

on object positions, and in which objects are also subject to random forces

of constant variance (for example wind buffeting, thermal noise, etc.), can

be written as a particular type of Langevin system, due to Newton’s second

216 CHAPTER 6. GROUP STRUCTURE INFERENCE

Figure 6.4: The influence of other objects on an object i in a physical model.
The arrows show force with fijt being the force on object i at time t due to
object j and Fit being the total force from other objects on object i at time t.
Dt

ik is the distance between objects i and k at time t and Δt
ik is a unit vector

from i to k at time t

law of motion F = ma:

Mdẋt = F(xt)dt+ BdWt (6.2)

dxt = ẋtdt, (6.3)

where xt is the collection of the positions of every object in the system at

time t and ẋt is the collection of the velocities of every object at time t. Wt

is a collection of the appropriate number of independent Brownian motion

noise processes and B is the Cholesky decomposition of the system’s noise

covariance Σ; it is assumed that this noise covariance does not depend on

the system state and is constant over time. In the case of independent noise

for each object in each dimension, B will be diagonal, with the diagonal

elements corresponding to object i given by si, the standard deviation of

the state transition density for that object. M is a diagonal matrix of object

masses, so that its ith diagonal component is the mass of the object whose

state the ith component of xt corresponds to. This is similar to the motion

model for object in a potential field used in chapter 5.

6.2. MODEL 217

If the function F is written as a vector of the effects of interaction on each

individual object so that

F(xt) =










F1(xt)

F2(xt)

...

FN(xt)










,

where the Fi are those from equation (6.1), then the motion of an individual

object is governed by the second order SDE system

midẋit = Fi(xt)dt+ BdWt

dxit = ẋitdt,

where xit contains the components of xt corresponding to the ith object in

equations (6.2) and (6.3) and mi is the mass of the ith object. Dijt is defined

as the inter-object distance between objects i and j at time t, and Δijt as a

unit vector pointing from object i to object j at time t, so that

Dijt = ‖xjt − xit‖2
,

and

Δijt =




0

1
Dijt
(xjt − xit)



 .

where 0 is a column vector of zeros equal in length to the individual object’s

position vector xit. This ensures that Δijt is the same size as the entire object

state and that interaction only affects the velocity components of that state.

In this setup fij(Dijt)Δijt represents the force acting on object i due to object

j in a direction towards that object (since Δijt points from i to j) at time t.

The magnitude of the force is given by fij(Dijt), a function of the inter-

object distance; it is these fij functions that are to be inferred.

218 CHAPTER 6. GROUP STRUCTURE INFERENCE

This setup allows a number of common interactions to be represented

in a straightforward way. For example, fij(Dijt) = kij(Dijt − lij) gives a

linear spring with natural length lij and spring constant kij. Gravitational

relationships can be represented by fij(Dijt) = Gmimj(Dijt)
−2, where G is

the gravitational constant and mi and mj are the masses of objects i and j;

electrostatic forces can be represented similarly. Collision avoidance might

be encoded as a function which is highly negative when Dij is small and

zero elsewhere, creating repulsion at close range. For unconnected pairs of

objects fij(Dij) = 0 everywhere.

Given the system state at a discrete set of times T , for example as the

output of a tracking algorithm, it is necessary to extract the aggregate ef-

fect of object interaction, Fi in equation (6.1) (section 6.6 describes how the

algorithm can be used directly with noisy observations). As in chapter 5,

it is possible to relate the motion of each object to the force that it experi-

ences due to external factors by inverting the state transition function. As

in the previous chapter, integration of the governing equations (6.2) and

(6.3) cannot be done analytically for general fij and so numerical integra-

tion is necessary to derive an approximate state transition function. In this

chapter, the numerical integration scheme in section D.2.1 of appendix D is

used, although other schemes could also easily be considered. This allows

F, xt, ẋt and xt+h to be related as

xt+h = xt + hẋt +
1

2
h2F(xt) + BZ+O(h3),

where h is the time step size for the numerical integration and Z is a mul-

tivariate Gaussian random variable with zero mean and covariance 1
3
h3I

(with I being an appropriately sized identity matrix). Rearranging this for

F gives

F(xt) =
2

h2
(xt+h − xt − hẋt) −

2B

h2
Z−O(h). (6.4)

6.3. INFERENCE 219

Writing yt =
2

h2 (xt+h − xt − hẋt) as a ‘pseudo-observation’ of F at time t,

yt ≈ F(xt) + vt, (6.5)

where vt ∼ N
(
0, 4

3h
Σ
)

is the ‘observation‘ noise. The O(h) term from the

integration error has been ignored in this approximation, since if h is small

this will make only a small contribution to the observation noise.

6.2.2 Gaussian Process Prior for fij

If yit is the part of pseudo-observation yt pertaining to the component Fi,

then for objects in d-dimensional space, each yit gives d observations of

the sum of N of these fij functions at a known set of points (the Dijt). In

general d � N, but with sufficient observations in time, information about

the fij can be recovered.

In order to make inference about the fij possible some assumption about

their form is necessary. As in chapter 5, a Gaussian process prior with

squared exponential covariance is assumed for each of the fij, albeit here in

one dimension, giving the covariance between the function at two points a

and b as

cov(f(a), f(b)) = exp

(

−
1

2l2
‖(a− b)‖2

2

)

, (6.6)

where l is a hyper-parameter giving a characteristic length scale for the

process. As described in section 5.2.2, this allows the distribution of the

function at unknown test points to be evaluated given a series of noisy

observations.

6.3 Inference

To reveal system structure, the noisy (pseudo-)observations of the aggreg-

ate effect of other objects yt must be used to infer the shape of the indi-

vidual fij functions. Inference is performed using a Gibbs sampler to infer

220 CHAPTER 6. GROUP STRUCTURE INFERENCE

the values of fij each time they occur in an observation of yt. The value

of fij(Dijt), henceforth written as fijt, must therefore be inferred for all

i, j ∈ 1...N and t ∈ T\tlast, where T is the set of observation times of the sys-

tem (the observation at the final observation time tlast is not useable because

the system state at t and t+ h is required to make a pseudo-observation of

F(xt), resulting in one fewer observation of F than of the system state).

6.3.1 Overcoming Correlation

If the locations of these pseudo-observations are closely spaced, i.e. the

relevant objects are at similar distances for several observations, the correl-

ation between the function values at those points induced by the Gaussian

process prior will be very strong, which can lead to slow convergence with

Gibbs samplers, as described in section 2.2. In order to make the problem

more tractable, new variables f∗ijt can be sampled in place of the fijt. These

are defined as

f∗ijt = fij(Dijt) + εijt, (6.7)

with εijt ∼ N
(
0, σ2

ij

)
, where σ2

ij is an auxiliary variable that makes the

problem easier to solve by introducing artificial noise into the pseudo-

observations, thus reducing correlation between these variables and help-

ing the Gibbs sampling scheme converge. If the fij function is deterministic

(as assumed throughout this work), reducing σ2
ij to zero reduced the ap-

proximation thus introduced in the posterior to zero, so that the posterior

distribution of the f∗ijt variables will be that of the fijt.

Under the approximation introduced by equation (6.7), equation (6.1) is

replaced with

Fi(xt) =

N∑

j=1

f∗ijtΔijt. (6.8)

Without this approximation and in the presence of closely spaced fijt vari-

6.3. INFERENCE 221

ables the sampler can become trapped in a local posterior maximum where

the function is smooth but does not well match the observations. This can

be particularly troublesome if no good starting point is known, in which

case a starting point of fij = 0 might be chosen, however this initial smooth

(but bad) function shape can be difficult to escape.

To get good approximate samples of fijt requires small or preferably

zero values of σ2
ij. In order to achieve this, two schemes can be adopted.

One is to treat the σ2
ij as model variables, sampling them as described be-

low. This has the advantage that no particular speed of convergence toward

zero must be specified, and the value of σ2
ij can also increase, potentially al-

lowing better mixing. A threshold can be used, so that if σ2
ij ranges widely,

only samples for which σ2
ij is below the specified threshold are included in

the final set of samples. This bears some similarity to ideas like simulated

tempering [97; 98], where a relaxation parameter varies by sample, with

final samples only being taken when the least relaxed distribution (the tar-

get) is being sampled. On the other hand, under this scheme it might take

a long time to generate a sufficient number of samples with low σ2
ij. Al-

ternatively, it might be possible to treat σ2
ij like the temperature in a simu-

lated annealing scheme [37], slowly converging to 0. This would have the

advantage that the scheme would reach the required low level of σ2
ij, but

requires a “cooling schedule” for reducing σ2
ij to be decided in advance,

which might be difficult. There is also a risk that such a scheme would pro-

duce biased samples, and this would need to be verified before it could be

used. Such fixed-cooling schemes have not been investigated further here.

Sampling σ2
ij

The σ2
ij parameters can be sampled using a Metropolis-within-Gibbs scheme

in which each σ2
ij is sampled from its conditional p(σ2

ij | f∗, X, σ2
−ij) in turn.

With respect to σ2
ij,

p(σ2
ij | f∗, X, σ2

−ij) ∝ p(f∗ij | X, σ2
ij)p(σ

2
ij), (6.9)

222 CHAPTER 6. GROUP STRUCTURE INFERENCE

where f∗ij is the set of f∗ijt for all t ∈ T . This is because the observations Y

(yt at all t) are conditionally independent of σ2
ij given the f∗ijt variables. The

first term on the right hand side in equation (6.9) is given by the Gaussian

process prior on fij:

p(f∗ij | X, σ2
ij) = N

(
0, K + σ2

ijI
)

where K is the covariance matrix of the fij(Dijt) terms for all t ∈ T . Unfor-

tunately this expression cannot be easily rearranged to give a distribution

in terms of σ2
ij from which to sample and so a Metropolis-Hastings sampler

must be used to generate each Gibbs sample from p(σ2
ij | f∗, X, σ2

−ij). The

choice of prior for σ2
ij in this case is fairly free, though it must ensure that σ2

ij

does not go negative and, since small values of σ2
ij are ultimately expected,

might reasonably favour these. In this work exponential priors favouring

small σ2
ij have been used.

6.3.2 Gibbs sampler for f∗ijt

There are two possible approaches for sampling the f∗ijt variables: site-by-

site sampling of each f∗ijt as used in [4], and block sampling of f∗ijt for all

values of t ∈ T together. In what follows, let X represent the entire set of

system states (xt and ẋt at all t), from which all Δijt, Dijt and yt can be

derived as shown above, let Y be the set of all observations, and let S be the

set of σ2
ij for all (i, j) pairs. In all that follows, sampling with no relaxation

term can be achieved by replacing occurrences of f∗ijt directly with fijt.

Site-by-Site Sampling

The conditional distribution of a single f∗ijt given all other system variables

is given by

p(f∗ijt | f∗−ijt, X, S) ∝ p(Y | f∗, X)p(f∗ijt | f∗−ijt, X, S), (6.10)

6.3. INFERENCE 223

where f∗−ijt indicates the set of all f∗ variables except f∗ijt and S is the set of

all σ2
ij parameters. The second term on the right hand side is given by the

Gaussian process prior on fij so that

p(f∗ij | X, σ2
ij) = N

(
0, K + σ2

ijI
)

, (6.11)

where f∗ij represents the full set of f∗ijt variables for all t ∈ T . With respect

to f∗ijt,

p(f∗ijt | f∗ij−t, X, σ2
ij) = N

(
f∗ij−t; μ̄, σ̄2

)
, (6.12)

with

μ̄ = K ′
∗(K+ σ2

ijI)
−1f∗ij−t,

σ̄2 = K ′
∗(K+ σ2

ijI)
−1K∗.

where f∗ij−t is a vector of the f∗ijm values at all times m ∈ T\t. K is a co-

variance matrix with its (m,n)th element giving the covariance between

fij(Dijm) and fij(Dijn) according to equation (6.6), for all observation times

m,n ∈ T\t. K∗ is a column vector with its mth element giving the covari-

ance between fij(Dijm) and fij(Dijt) for m ∈ T\t.

The first term on the right hand side in equation (6.10) is given by con-

sidering how observations Y are generated with respect to the f∗ijt variable.

In the non-symmetric case this is given by

p(Y | f∗, X) ∝ p(yit | f∗, X), (6.13)

and in the symmetric case where fij = fji it is

p(Y | f∗, X) ∝ p(yit, yjt | f∗, X) (6.14)

= p(yit | f∗, X)p(yjt | f∗, X). (6.15)

224 CHAPTER 6. GROUP STRUCTURE INFERENCE

The distribution of yit is given by

p(yit | f∗, X) = N

(

yit;

N∑

k=1

f∗iktΔikt,
4

3h
Σi

)

, (6.16)

where Σi is the sub-matrix of the noise covariance Σ corresponding to object

i. For generality and notational convenience, it is assumed henceforth that

the covariance of yit is Σit, so that in this case Σit =
4

3h
Σi. Then, using

identity (A.5) from appendix A, p(yit | f∗, X) can be written with respect to

f∗ijt as

p(yit | f∗, X) ∝ N
(
f∗ijt;μit∗, σ

2
it∗

)
(6.17)

with

σ2
it∗ =

(
Δ ′

ijtΣ
−1
it Δijt

)−1

μit∗ = σ2
it∗Δ

′
ijtΣ

−1
it



yit −
∑

k 6=j

f∗iktΔikt



 .

Combining this with the expression in equation (6.12) using identity (A.4)

an easy-to-sample expression for p(f∗ijt | f∗−ijt, X, σ2) is obtained:

p(f∗ijt | f∗−ijt, X, σ2) = N

(
σ2

it∗μ̄+ σ̄2μit∗

σ2
it∗ + σ̄2

,
σ2

it∗σ̄
2

σ2
it∗ + σ̄2

)

. (6.18)

This Gibbs sampling step is repeated for each of the f∗ijt to give (after a

burn-in period) a sample-based estimate of the value of each f∗ijt.

Block Sampling

It is also possible to sample the set of variables f∗ij (containing all f∗ijt vari-

ables for t ∈ T) in a single sampling step by noting that

p(f∗ij | f∗−ij, X, S) ∝ p(Y | f∗, X)p(f∗ij | X, S),

6.3. INFERENCE 225

with p(f∗ij | X, S) given by the Gaussian process prior in equation (6.11) and,

with respect to f∗ij,

p(Y | f∗, X) ∝
∏

t∈T

p(yit | f∗, X) (6.19)

in the non-symmetric case or

p(Y | f∗, X) ∝
∏

t∈T

p(yit | f∗, X)p(yjt | f∗, X) (6.20)

in the symmetric case, with p(yit | f∗, X) given in terms of f∗ij by equation

(6.17). Since the noise in yit is independent of that at other times, p(Y | f∗, X)

can be written in terms of f∗ij as

p(Y | f∗, X) ∝ N
(
f∗ij;M,Q

)

with M = [μi1∗ μi2∗ ... μiT∗]
′ and Q = diag([σ2

i1∗ σ2
i2∗ ... σ2

iT∗]). Using iden-

tity (A.2) from appendix A and the Woodbury matrix identity, the required

conditional distribution of f∗ij can be found as

p(f∗ij | f∗−ij, X, S) = N
(
f∗ij;μ, Σ

)
, (6.21)

with

μ = K∗(Q+ K∗)−1M ′

Σ = K∗ − K∗(Q+ K∗)−1K∗,

where K∗ = K+σ2
ijI. Though perhaps not immediately obvious, this can be

recognized as the joint posterior density of a function at the set of observa-

tion locations, using a Gaussian process prior (with covariance K∗), given

observations at those locations distorted with additive Gaussian noise of

covariance structure Q. Thus, this result can be arrived at by treating the

μit∗ as pseudo-observations of f∗ij at Dijt, distorted by additive Gaussian

226 CHAPTER 6. GROUP STRUCTURE INFERENCE

noise of variance σ2
it∗, with a Gaussian process prior for f∗ij given by equa-

tion (6.11).

In fact, the block sampling can be extended further to the simultan-

eous joint sampling of all f∗ijt in a similar way. Beyond a certain problem

size, however, sampling from such large multivariate normal distributions

could become computationally costly as it requires the Cholesky decom-

position of a N2T × N2T covariance matrix.

6.3.3 Sampling Process Noise

In some cases the process noise will be unknown and must therefore be

sampled. For a full, dense covariance structure Σ this can be achieved by

introducing a conjugate Wishart prior distribution on the precision matrix

(i.e. Σ−1), although this is not tackled here.

Interesting simpler cases include the case when all objects have inde-

pendent process noise of the same magnitude in each dimension so that

Σ = diag(σ2
p1

Id, ..., σ2
pN

Id), and the case when all objects suffer from the

same level of process noise, independent in each dimension, so that Σ =

σ2
pI. In these cases, parameter estimation can be tackled by a standard

sampling approach. In the latter case of shared noise variance, for example,

p(σ2
p | X, Y, f∗, θ) ∝ p(X | σ2

p, f∗, θ)p(σ2
p | θ),

where θ is a collection of parameters, p(σ2
p | θ) is a prior for σ2

p and p(X |

σ2
p, f∗, θ) is the state transition density for the full state sequence given the

value of σ2
p, given by

p(X | σ2
p, f∗, θ) = p(X1 | f∗, θ)

T−1∏

t=1

p(Xt+1 | Xt, σ
2
p, f∗, θ).

The one-period state transition densities are given by equation (D.14)

using the F in equation (6.1) in the numerical integration. These are non-

linear, giving a complicated distribution for σ2
p. In the absence of alternat-

6.3. INFERENCE 227

ive options, this must be sampled using a Metropolis-within-Gibbs scheme

with, for example, a random walk proposal. The prior must ensure that σ2
p

does not go negative, but otherwise can be chosen freely. In this work, an

exponential prior has been used that (fairly weakly) favours small σ2
p, as σ2

p

is generally not expected to be extremely large.

6.3.4 Structural Sparsity

In the method presented thus far, linkage is estimated between all pairs of

objects. In reality, it is likely that there will be no linkage between some

pairs of objects. In order to encapsulate this idea an indicator variable Zij ∈

{0, 1} can be introduced for each inter-object relationship. These indicators

are assumed to switch the linkage between objects on or off, so that the

inter-object force model from equation (6.8) becomes

Fi(xt) ≈
∑

j

Zijf
∗
ijtΔijt. (6.22)

The distribution of the Zij variables is given by

p(Zij | Z−ij, Y, f
∗, X) ∝ p(Y | Z, f∗, X)p(Zij | Z−ij, f

∗, X)

∝
∏

t

p(Yit | Z, f∗, X)p(Zij | Z−ij, f
∗, X). (6.23)

The distributions on the right hand side can be evaluated for both Zij = 0

and Zij = 1, allowing the ratio r =
p(Zij=1|Z−ij,Y,f∗,X)

p(Zij=0|Z−ij,Y,f∗,X)
to be calculated. In

this case, p(Zij = 1 | Z−ij, Y, f
∗, X) = r

1+r
and so Zij can be drawn from

a Bernoulli distribution with this probability of being 1. In the symmetric

case, p(Yjt | Z, f∗, X)must also be included in equation (6.23), as before.

The prior for Zij, p(Zij | Z−ij, f
∗, X) can, in the simplest case, simply

be a fixed prior probability of a non-zero linkage function; this is the prior

that has been used in this work where applicable, but other priors impos-

ing structured sparsity are also possible (see, for example, chapter 7). The

228 CHAPTER 6. GROUP STRUCTURE INFERENCE

distribution p(Yit | Z, f∗, X) is given for each value of Zij by

p(Yit | Z, f∗, X) = N



Yit;Zijf
∗
ijtΔijt +

∑

k 6=j

Zikf∗iktΔikt, Σit



 ,

and must be evaluated for each t with both Zij = 0 and Zij = 1 giving

sparsity estimation an O(N2|T |) time complexity.

6.3.5 Algorithmic complexity

The sampling process outlined is computationally expensive. Most of the

complexity stems from the use of the Gaussian process prior for the fij. The

covariance matrix for the process has |T | − 1 rows and making predictions

or evaluating likelihoods requires this matrix to be inverted, an O(|T |3) op-

eration (technically an O(|T |2.373) operation using the most efficient method

yet proposed [256], although O(|T |3) in standard implementations). For N

objects there are O(N2|T |) variables in the set of f∗ijt, so this leads to a na-

ive O(N2|T |4) algorithm for site-by-site sampling of f∗ijt and an O(N2|T |3)

algorithm for block sampling f∗ij.

Pre-calculation of some quantities can make sampling tractable for some-

what larger problems. For block sampling, precalculation of K∗(Q + K∗)−1

used in equation (6.21) can speed up the algorithm, but does not reduce the

algorithmic complexity of each sampling step because Cholesky decom-

position of a |T | × |T | covariance matrix is still required for sampling.

For site-by-site sampling, precalculation of the K ′
∗(K + σ2

ijI)
−1 terms in

equations (6.26) and (6.26) for each i, j and t (since the K matrix is different

for each combination of these) leaves the calculation of μ̄ and σ̄2 in equa-

tions (6.26) and (6.26) as a vector inner product, taking O(|T |) time. The

precalculation itself takes O(N2|T |4) time but does not need to be repeated

for every sample. Since a vector of length |T | − 2 is stored for each i,j and

t the storage requirements are O(N2|T |2) and the sampling time for the full

set of f∗ijt is O(N2|T |2) (in order to achieve this the sums used in the evalu-

ation of σ2
∗ and μ∗ must also be precalculated and stored, but these are only

6.4. RESULTS I 229

O(dN|T |)where d is the dimensionality of the space). Though the time and

particularly the space requirements here are onerous, on modern machines

they might be plausible up to e.g. N = 50, |T | = 150, which would require

in the region of several gigabytes of memory.

When sampling the σ2
ij a |T | × |T | covariance matrix must be inverted,

taking O(|T |3) time, leading the full sampling of the σ2
ij to take O(N2|T |3)

time. Since changing σ2
ij changes the K ′

∗(K + σ2
ijI)
−1 terms, for site-by-

site sampling with pre-calculation, these must be recalculated before again

sampling the f∗ijt, increasing the overall sampling complexity to O(N2|T |4).

An alternative scheme for site-by-site sampling is possible, in which, in-

stead of pre-calculating K ′
∗(K+σ2

ijI)
−1, the QR decomposition of the matrix

(K+σ2
ijI) is calculated for each i and j. This requires O(N2|T |2) storage. Dur-

ing the f∗ijt sampling the quantities needed for the Gaussian process prior

can be calculated by removing the row and column corresponding to the

relevant time t from this QR decomposition. This update can be computed

in O(|T |2) time (by calculating a series of Givens rotations [295]) and the

calculation of the relevant quantities can therefore be completed in O(|T |2)

time (since to sample each f∗ijt a system of the form Ry = b must be solved

for triangular R, and several further matrix-vector multiplications must be

completed; these are all O(|T |2)) operations). The overall sampling time for

the f∗ijt is therefore O(N2|T |3). The σ2
ij sampling then involves recalculat-

ing the QR decomposition for each i and j, which has overall complexity

O(N2|T |3). Thus using this algorithm site-by-site and block sampling have

the same complexity. Though the asymptotic complexity of this algorithm

is lower than the alternative, it has been found to be slower in the problems

tested in section 6.4; see figure 6.9.

6.4 Results I

The algorithm described was tested on synthetic models, generated by known

systems simulated using a fourth-order Runge-Kutta integrator with a 0.1s

230 CHAPTER 6. GROUP STRUCTURE INFERENCE

Figure 6.5: System set-up for the results shown in figure 6.6. Zig-zag lines
represent linear springs, the dashed line represents a minimum/maximum
distance constraint (with force proportional to distance squared beyond
these limits) and the double arrow represents an inverse-square attraction
between objects

timestep, down-sampled to a 0.2s timestep. Full state information (position

and velocity) for all objects was supplied as input from this simulation for

200 samples, corresponding to 40s of data. Length scales for the Gaussian

process priors were chosen so that 5 length scales covered the entire dis-

tance range for each object pair; this pre-supposes relatively smooth link-

age functions in the regions in which they operate, which seems like a sens-

ible prior. Process noise was assumed to be independent for each object in

each dimension, corresponding to a diagonal noise matrix Σ, with diagonal

elements si for object i. The value s2
i = 0.01 was chosen for all objects as no

process noise was introduced in the simulation; ‘observation’ noise there-

fore likely derives from the integration error which, being O(h) in equation

(6.4), requires s2
i to be around 3

4
h3. For h = 0.2 this gives s2

i ≈ 0.006.

Figure 6.6 shows the results for a five object system set up as shown

in figure 6.5. These results (and those in figure 6.7) were obtained using

site-by-site sampling of f∗, and sampling of σ2
ij; the comparable results

for blockwise sampling were indistinguishable. They show four different

types of relationship being successfully inferred: linear springs between

objects 1 and 2, and 2 and 3; a distance constraint specifying a minimum

and maximum separation between objects 1 and 3; an inverse-squared at-

6.4. RESULTS I 231

Figure 6.6: Inferred relationships and σij’s for a simulation of the symmet-
ric system shown in figure 6.5 with no noise in observations. The graphs
in the upper right show the value of σij (not σ2

ij) with MCMC sample num-
ber (log scale). The lower left graphs show the inferred relationship for
each object pair (x-axis is inter-object distance, y-axis is attractive force). In
these graphs the red line shows the true relationship, the central blue line
shows the mean of the f∗ijt samples for the distance Dijt, with dots showing
sample positions (largely indistinguishable here due to the large number of
samples); the shading shows the 1, 2 and 3 standard deviation bands. The
results are from 700 MCMC samples, after a 300 sample burn-in period.
The relationship between objects i and j (for i < j) is in row j, column i; the
value of σij with sample number (for i < j) is in row i column j

232 CHAPTER 6. GROUP STRUCTURE INFERENCE

tractive force between objects 4 and 5; and a zero-force relationship between

all other pairs. For the non-zero relationships, the algorithm matches the

true relationship very closely. For the zero functions, the algorithm estim-

ates noisy near-zero functions such that zero is within their confidence in-

terval. The bias at extreme points of functions found in [4] was discovered

to be due to a coding error, corrected in these results.

The convergence of the MCMC algorithm is indicated by the conver-

gence of the σij variables. In figure 6.6 the algorithm converges rapidly

(within less than 100 samples). This convergence rate is fairly typical for

input with little noise; excessively noisy data can result in very slow con-

vergence, as can misspecification of the noise parameters s2
i .

Noisy Inputs

Though not specifically designed to cope with noisy inputs, the algorithm

can cope with a small amount of noise in its inputs. Figure 6.8 shows the

result of applying the algorithm to the noisy position and velocity traject-

ories shown in figure 6.7. In this test the process noise parameter was in-

creased to s2
i = 0.04 to attempt to account for the observation noise (this

value was chosen by considering the magnitude of the added observation

noise and its distortion to the observations given in equation (6.5)). The ini-

tial value of the σ2
ij’s was also increased to 0.4. The inference of the connect-

ing functions is considerably worse and convergence for the σ2
ij appears

slower, but it is still possible to discern something of the non-zero relation-

ships in the results. As suggested by the choice of noise levels in these

examples, the algorithm is much more sensitive to position noise than to

velocity noise.

Running Times

Figure 6.9 shows timing results for four versions of the algorithm: site-by-

site sampling with both the basic and the QR scheme, blockwise sampling,

and a sparse scheme introduced below. All algorithms sampled both f∗ and

6.4. RESULTS I 233

Figure 6.7: Example noisy paths for position (left) and velocity (right) of
object 1 in the setup in figure 6.5, shown for 75 timesteps of 0.2s each. The
blue dots show observations (linked by pale blue lines) with the red line
showing the true trajectory

σ2
ij. They were implemented in a comparable way in Matlab, using pre-

calculation to improve speed where possible, and run on a 2009 desktop

PC.

The QR version of the algorithm is the slowest to execute but seems to

scale with |T |2; scaling with |T |3 is eventually expected, so it is possible that

at this scale the algorithm is dominated by an expensive |T |2 process dur-

ing the update of the QR matrices. The basic site-by-site algorithm works

well at medium scales where the O(|T |2) estimation of f∗ took a substantial

proportion of time, but O(|T |4) scaling starts to dominate at longer series

lengths as the estimation of σ2
ij and the attendant precalculation begins

to take almost all the running time (94% for |T | = 300). The blockwise

algorithm runs the quickest of the dense algorithms and, at these scales,

shows O(|T |2) scaling (though it is expected that O(|T |3) effects will even-

tually dominate and this increase can perhaps start to be detected at longer

series lengths). Blockwise sampling can therefore be seen as a significant

improvement on the basic site-by-site and QR sampling used in [4], making

inference plausible for longer time series. The bin-based sparse algorithm

(introduced below) showed by far the best scaling, giving linear scaling

with |T |. All versions of the algorithm scale with the square of the number

of objects.

234 CHAPTER 6. GROUP STRUCTURE INFERENCE

Figure 6.8: Inference and convergence results (similar to those in figure 6.6)
for the setup given in figure 6.5 when distorted by additive Gaussian noise
such as that shown in figure 6.7. The graphs in the upper right show the
value of σij (not σ2

ij) with MCMC sample number (log scale). The lower
left graphs show the inferred relationship for each object pair (x-axis is
inter-object distance, y-axis is attractive force). In these graphs the red
line shows the true relationship, the central blue line shows the mean of
the f∗ijt samples for the distance Dijt, with dots showing sample positions
(largely indistinguishable here due to the large number of samples); the
shading shows the 1, 2 and 3 standard deviation bands. The results are
from 700 MCMC samples, after a 300 sample burn-in period. The relation-
ship between objects i and j (for i < j) is in row j, column i; the value of σij

with sample number (for i < j) is in row i column j

6.5. SPARSE APPROXIMATION 235

Figure 6.9: Running time for the original and QR variants of the site-by-site
sampling algorithm, the blockwise sampling algorithm and the bin-based
sparse algorithm (log-log scale) with increasing series length |T |

6.5 Sparse Approximation

The method presented so far suffers from high asymptotic complexity; it

is simply too slow to be useful for problems of significant size and the fact

that it scales with |T |3 means that it is nearly useless for long data series. A

major source of this complexity is the Gaussian process prior used for the

linkage functions, since with |T | observations the calculation of the prior is

O(|T |3). Conventional sparse Gaussian process approaches such as those

discussed in section 5.5.1 are not as helpful in this problem as they are else-

where. This is because the ‘observations’ that can be made of the connect-

ing processes fij are aggregate observations, being the sum over j of all

fij functions at a particular time. This leads to correlation between all ob-

servations, resulting in a problem almost as complex as the original. As a

computationally tractable alternative, a bin-based approach is introduced

in section 6.5.2, where observations are approximated as lying at the centre

of one of a finite number of bins. This approach results in a much more effi-

cient algorithm and avoids numerical problems sometimes encountered in

the dense version due to the presence of too many observations with little

separation, especially with low σ2
ij.

236 CHAPTER 6. GROUP STRUCTURE INFERENCE

6.5.1 Classical Sparsity

Sparse Gaussian process approximations allow the value of the function in

question to be approximated at a given point, often based on a smaller sub-

set of points than the full set of observations. Using these approximations

as a replacement for a number of the sampled function values in equation

(6.8) leads to a new expression for the total interaction force on object i,

Fi(xt) =
∑

j:f∗
ijt

∈G

f∗ijtΔijt +
∑

j:f∗
ijt

/∈G

f̃ij(Dijt)Δijt,

where G is the set of M f∗ijt variables that are still to be sampled, with other

variables being approximated by the sparse Gaussian process approxima-

tion f̃ij. Since the f̃ij approximations come from different objects j, they can

be assumed to be uncorrelated in this sum, so the distribution of the ob-

servation yit = Fi(xt) + vt where vt is noise as in equation (6.5) can be cal-

culated straightforwardly as a sum of uncorrelated Gaussian random vari-

ables. However, with a sparse Gaussian process approximation of fij the

approximation method for f̃ij(Dijt)will depend on the remaining sampled

points in G, and, crucially, this will be the case for all t. This means that all

observations that depend on the fij functions (i.e. yit and, in the symmetric

case yjt for all t) will contain terms that depend on each of the remaining

samples f∗ijt in G, and will thus have a dense conditional covariance struc-

ture, rather than the block-diagonal structure when all points are sampled.

The joint distribution of these |T | −M observations can be calculated and

is multivariate Gaussian. Obtaining the pseudo-observation density with

respect to each of the remaining sample f∗ijt requires identity (A.5) in ap-

pendix A, and this involves calculating the inverse of the corresponding

(|T | −M) × (|T | −M) covariance matrix. Since this is an O(|T |3) process,

there is no overall complexity gain for the blockwise sampler, and only an

improvement from O(|T |4) to O(M|T |3) for the site-by-site sampler, since

there are M rather than T sampled f∗ijt variables. Thus, standard sparse

approaches do not provide a useful way of reducing the algorithmic com-

6.5. SPARSE APPROXIMATION 237

plexity in this case.

6.5.2 Bin-based Sparsity

An alternative approach to reducing the complexity of this system is to

approximate each observation of fij(Dijt) as being located at the nearest of

M bin centres chosen for the function, i.e. fij(Dijt) ≈ fij(D̃ijt), where D̃ijt

is the closest bin centre to Dijt. Fi(xt) is then approximated as

Fi(xt) ≈
∑

j

f∗ijb(t)Δijt, (6.24)

where b(t) is a function (specific for the (i, j) pair) that maps the observa-

tion at time t to the nearest bin, and f∗
ijb(t) is the ‘relaxed’ value of fij at the

bin centre nearest to Dijt, i.e. f∗
ijb(t) = f(D̃ijt) + εijb(t), where εijb(t) takes

the same ‘relaxation’ role as εijt in equation (6.7), but for the function value

at a bin centre. In this setup there are M f∗ijp variables for each (i, j), one

for each bin p. For notational convenience f∗
ijb(t) will be written as f̃∗ijt, and

in general the tilde (˜) decorator will be used to indicate the corresponding

value at the nearest bin centre. This approximation corresponds to using a

piecewise constant approximation of the function for regression, that is for

the approximate estimation of the function value at the bin centres from the

pseudo-observations. This is equivalent to moving all noisy observations

to the nearest bin centre, as illustrated in figure 6.10 and can, in turn, be

represented (exactly, in this case) as a single ‘observation’ at the bin centre

with a lower (or equal) noise level. [296] calls this the compressed bin ap-

proximation.

The idea of binning data to improve computational efficiency is not new

and has been examined in detail in the context of local kernel smoothing

methods in e.g. [297]. There, several alternative binning schemes are pro-

posed, including the weighted distribution of observations into the nearest

two bins, with the relative weight depending on proximity to each. Here,

the simple nearest-bin scheme has been used, but other schemes could eas-

238 CHAPTER 6. GROUP STRUCTURE INFERENCE

Figure 6.10: Illustration of binning to reduce computation. The original
high-noise observations (left) can be approximated by placing them at their
nearest bin centre (middle). These collections of observations can be repres-
ented as set of lower noise observations, exactly in some cases (including
the Gaussian case here)

ily be incorporated, leading to modified calculation of the compressed bin

observations.

The number of bins and their location can be varied according to the

data. Possible strategies for choosing the bin locations include choosing bin

centres so that each bin contains an equal number of observations; choos-

ing centres so that they are uniformly distributed between the limits seen in

the data; choosing centres at the location of certain observations based on a

greedy novelty criterion; choosing centres randomly, for example through

stratified sampling of the interval of observations. Some of these schemes,

such as greedy schemes based on observation novelty, could be used in a

sequential setting where the observations are not all immediately available.

On the other hand, as described in [297], uniformly distributed bins lead

to some computational savings because kernel functions (covariance func-

tions in the Gaussian process case) are the same at the same spacing, and

there are only a limited number of relative spacings possible on a uniform

grid.

In order to calculate distributions for the reduced set of f∗ijb variables

(corresponding to noisy function observations at the bin centres), the ob-

servation likelihood in equation (6.15) must be recalculated. For the obser-

vation yit where bij(t) = b, equation (6.17) can be replaced with

p(yit | f∗, X) ∝ N
(
f∗ijb;μit∗, σ

2
it∗

)

6.5. SPARSE APPROXIMATION 239

with

σ2
it∗ =

(
Δ ′

ijtΣ
−1
it Δijt

)−1

μit∗ = σ2
it∗Δ

′
ijtΣ

−1
it

∑

k 6=j

f̃∗iktΔikt.

For a particular variable f∗ijb, all the observations in which that variable

appears must be considered, i.e. all observations yis such that bij(s) = b.

For symmetrical processes where fij = fji, the observations yjr such that

bji(r) = bij(r) = b must also be included; this is not considered further

here, but the modifications to what follows are straightforward. In the non-

symmetric case, the overall likelihood expression p(Y | f∗, X) is given by the

product over all relevant observations so that

p(Y | f∗, X) ∝
∏

Sb

p(yis | f∗, X)

∝ N
(
f∗ijb;μ∗, σ

2
∗

)
,

where Sb = {s | bij(s) = b} is the set of observation times corresponding

to bin b. Using identity A.4 from appendix A, the mean and variance are

given by

σ2
∗ =




∑

Sb

1

σ2
is∗





−1

μ∗ = σ2
∗

∑

Sb

μis∗

σ2
is∗

.

The Gaussain process prior for f∗ij is as in equation (6.11), though in

the bin-based method the set of all f∗ijx variables f∗ij is only comprised of f∗

values at the bin centres. The covariance matrix K has its (m,n)th element

giving the covariance between fij(cijm) and fij(cijn) according to equation

(6.6) for all bins m,n ∈ Bij\b, where cijm is the centre of bin m for function

fij. Similarly, the Gaussian process prior for f∗ijb (for site-by-site sampling)

is similar to that that in equation (6.12), with the per-observations quantit-

240 CHAPTER 6. GROUP STRUCTURE INFERENCE

ies there replaced with per-bin quantities, i.e.

p(f∗ijb | f∗ij−b, X, σ2
ij) = N

(
f∗ij−b; μ̄, σ̄2

)
, (6.25)

with

μ̄ = K ′
∗(K+ σ2

ijI)
−1f∗ij−b,

σ̄2 = K ′
∗(K+ σ2

ijI)
−1K∗.

Thus f∗ij−t in equation (6.12) is replaced with f∗ij−b, a vector of the f∗ijp values

for all bins p ∈ Bij\b, where Bij is the full set of bins used for process fij.

The K∗ column vector has its mth element giving the covariance between

fij(cijm) and fij(cijb) for m ∈ Bij\b. As in section 6.3.2, site-by-site and

blockwise Gibbs samplers can be found for the posterior of the function

value at the bin centres. The noise level of the f∗ij process given by σ2
ij can be

sampled exactly as in section 6.3.1, using the covariance matrix K described.

6.5.3 Consistency and Errors

The bin-based approach generally gives a very good approximation of the

full Gaussian process regression with even moderately spaced bins. Figure

6.11 (second panel) shows an example of a bin-based approximation using

evenly spaced bins of width equal to the process scale. Here there are 500

observations drawn with Gaussian random noise (top panel), approxim-

ated by 40 bins, with only a small difference between the mean of the true

Gaussian process and that of the approximation.

There is a limited amount of literature about the quality and consist-

ency of bin-based approximations, but this subject has been examined in

the context of kernel density estimates and kernel smoothing, particularly

local linear regression, in [298], [299], [296] and [300]. These results can be

applied to Gaussian process posterior mean estimation, since that can be

cast as a kernel smoother using an equivalent kernel k centred on the estima-

tion point x∗, with ki = k(|xi−x∗|/h) such that the estimate of f̄(x∗) is given

6.5. SPARSE APPROXIMATION 241

Figure 6.11: Comparison of standard Gaussian process approximation (top)
and bin based sparse approximation (middle), with 28 evenly spaced bins
of width l (GP length scale). Bottom chart shows absolute error between
true GP and bin-based approximate GP, for both mean and standard devi-
ation (log scale)

242 CHAPTER 6. GROUP STRUCTURE INFERENCE

Figure 6.12: Mean absolute error between true Gaussian process and bin-
based approximation, against ratio of bin width to l for evenly spaced bins
over data range, using function shown in figure 6.11 with various length
scales l from 0.5 to 1.5 and between 10 and 500 observations per test

by

f̂(x∗) =
∑

i

wiyi

where wi = ki/
∑

i ki, W = [w1 w2 ... wN] = K(K + σ2
obsI)

−1, and h is

a smoothness parameter (or bandwidth), which is proportional to l in the

Gaussian process case with squared exponential covariance (see [229], sec-

tion 7.1). For Gaussian processes with the squared exponential covariance

structure, the equivalent kernel cannot be given in closed form, but an ap-

proximation is given in sections 2.6 and 7.1 of [229]; the specific form of this

equivalent kernel is not important in what follows, merely its existence.

The Gaussian process mean estimate is therefore a Nadaraya-Watson

estimator (i.e. a kernel estimator approximating the function as a constant

at each point) and [299] gives an approximate asymptotic result for binned

versions of such estimators uniformly spaced bins. This results shows that

the approximate asymptotic mean squared error (AMSE) of the binned es-

6.5. SPARSE APPROXIMATION 243

timator decreases to zero as h → 0 and is thus (at least approximately) a

consistent estimator of the regression model (i.e. of the function f of in-

terest). [300] shows that binned versions of local linear regression estim-

ators with non-negative kernels are exactly consistent (under similar con-

ditions to [299]) as Δ → 0 and furthermore suggests that the approximate

results in [299], “should hold exactly under tighter conditions”. It is there-

fore seems possible that such results could be adapted to show consistency

for binned Nadaraya-Watson estimators.

The studies in [300] and guidance in [299] suggest that, in practice,

binned estimators are not terribly sensitive to the bin width and that Δ/h ≈

0.3−0.5 should work well. This is borne out by the limited study shown in

figure 6.12 for the problem in figure 6.11, which shows how the error scales

with bin spacing relative to the length scale of the Gaussian process being

approximated. In this case, bin widths below l seem to result in low-error

approximations.

6.5.4 Prediction

As will be seen below when dealing with noisy observations, the value of

inter-object linkage functions (and their gradients) at distances other than

those sampled is sometimes necessary, for example when simulating for-

ward or evaluating transition densities. Given the series of samples at the

specified distances, several options are available for obtaining the function

value at intermediate points.

If the required distances are known when sampling the f∗ij, they can be

included in the set of points to be sampled and their value can be found us-

ing the Gaussian process approximation. If gradients of f∗ij are required

they can also be incorporated using the relations given in section 5.2.2.

This method is only appropriate for a small number of additional points; if

many points are required the complexity of the Gaussian process approx-

imation will rapidly become excessive due to its cubic scaling.

If the distances are unknown when sampling f∗, or if there are many of

244 CHAPTER 6. GROUP STRUCTURE INFERENCE

them, interpolation methods are required. The simplest option is piecewise

constant interpolation, in which the function value at the nearest bin centre

is used. Linear interpolation is perhaps a better alternative, and other in-

terpolation methods such as splines, or further Gaussian processes can also

be used. Throughout this work, linear interpolation is used.

If function gradients are required, both the function values and the

gradients at the bin centres (i.e. f ′∗) should be sampled during the sampling

of f∗, using the covariance relationship between a Gaussian process and its

gradient given in section 5.2.2 to incorporate them in the set of sampled

variables. Interpolation can be used with these to obtain the gradient at

the required points. These estimates are much better than those obtained

through finite difference approximations derived from the sampled f∗ val-

ues, especially in the presence of noise. Figure 6.15 shows the results of

sampling some function gradients in this way. It can be seen that these es-

timates have much higher variance than the function estimates, even with

noise-free observations. They also suffer more strongly from edge effects,

a common problem with many kernel estimators [299]. The quality of the

estimates is also more sensitive to noise in the input sequence.

6.5.5 Bin-based Sparsity Results

Figures 6.13 and 6.14 show comparable results to those in figures 6.6 and

6.8 using bin-based sparse estimates in place of dense Gaussian process es-

timates. The results correspond closely to the dense estimates, suggesting

that the bin-based approximation is a good one. The results in figures 6.13

and 6.14 were produced using site-by-site sampling, with ten bins per ob-

ject pair relationship, since as with the dense process, length scales for the

Gaussian process priors were chosen so that 5 length scales covered the

entire distance range for each object pair, giving bin spacing of 0.5l.

Combining the bin-based sampler with blockwise sampling has a major

advantage over the dense sampler, however, because the greater spacing

of the sample points reduces their covariance, allowing bigger sampling

6.5. SPARSE APPROXIMATION 245

Figure 6.13: Inference and convergence results (comparable to those in fig-
ure 6.6) for the setup given in figure 6.5, using the bin-based sparse Gaus-
sian process approximation with 10 bins per object pair. The graphs in the
upper right show the value of σij (not σ2

ij) with MCMC sample number
(log scale). The lower left graphs show the inferred relationship for each
object pair (x-axis is inter-object distance, y-axis is attractive force). In these
graphs the red line shows the true relationship, the central blue line shows
the mean of the f∗ijb samples at the centre of each bin b, with dots show-
ing bin centres; the shading shows the 1, 2 and 3 standard deviation bands.
The results are from 700 MCMC samples, after a 300 sample burn-in period.
The relationship between objects i and j (for i < j) is in row j, column i; the
value of σij with sample number (for i < j) is in row i column j

246 CHAPTER 6. GROUP STRUCTURE INFERENCE

Figure 6.14: Inference and convergence results (comparable to those in fig-
ure 6.8) for the setup given in figure 6.5 distorted by additive Gaussian
noise (with trajectories as in figure 6.7), using the bin-based sparse Gaus-
sian process approximation with 10 bins per object pair. The graphs in the
upper right show the value of σij (not σ2

ij) with MCMC sample number
(log scale). The lower left graphs show the inferred relationship for each
object pair (x-axis is inter-object distance, y-axis is attractive force). In these
graphs the red line shows the true relationship, the central blue line shows
the mean of the f∗ijb samples at the centre of each bin b, with dots show-
ing bin centres; the shading shows the 1, 2 and 3 standard deviation bands.
The results are from 700 MCMC samples, after a 300 sample burn-in period.
The relationship between objects i and j (for i < j) is in row j, column i; the
value of σij with sample number (for i < j) is in row i column j

6.6. NOISY OBSERVATIONS 247

moves. Combined with the block sampler which also allows bigger sampling

moves, this allows the algorithm to converge to the correct solution without

the use of the relaxation provided by σ2
ij in many cases, even from the start-

ing position f = 0. Since sampling σ2
ij is a time consuming component of

the previous algorithm, this greatly speeds up computation and removes

the need to consider either f∗ samples as approximations of the true link-

age functions f, or only consider f∗ij samples corresponding to small values

of σ2
ij. Running times for the bin-based sampler are shown in figure 6.9, and

show that, as expected, the running time of the algorithm does indeed scale

with |T |, making it plausible for very long data series (for example, it takes

about 1s per sample for a series of 1200 observations with five objects). Res-

ults of such sampling are shown in figure 6.15 and show good convergence

with results comparable to those in figures 6.13 and 6.14, without the need

for sampling of σ2
ij.

6.6 Noisy Observations

A weakness of the algorithm thus far is its limited ability to cope with

noisy observations of the object positions and velocities. In most scen-

arios, only noisy observations will initially be available; with the algorithm

presented thus far these require pre-processing via another state inference

algorithm, which would be unable to take account of any inferred struc-

ture. It is therefore desirable to simultaneously infer object states and inter-

object structure. This may lead to improved state estimates if interaction

is a significant factor in object motion. This section shows how the al-

gorithms described so far can be extended to require only noisy observa-

tions as their inputs. There are several possible approaches for this, in-

cluding standard Metropolis-within-Gibbs for sampling individual states

(section 6.6.1), blockwise sampling using bridging distributions (section

6.6.2) and the Particle Gibbs algorithm of [33] (described in section 4.3 and

covered for this application in section 6.6.3).

248 CHAPTER 6. GROUP STRUCTURE INFERENCE

Figure 6.15: Inference results using block sampling of fij (blue) and f ′ij
(green, transposed positions) with σ2

ij = 0 for all (i, j) with clean signal
(upper panel) and noisy signal as in figure 6.8 (lower panel). In all graphs
x-axis is inter-object distance and y-axis is function value (fij or f ′ij); red
lines indicate true values. Results based on 700 samples, after a 300 sample
burn-in

6.6. NOISY OBSERVATIONS 249

Figure 6.16: State transition structure (discrete or single step integrated),
showing Markov blanket for Xi,t (orange outline) and conditioning in-
formation (solid blue circles) when calculating forward transition density
p(Xi,t | X−i,1:T , Xi,t−1) . Exclamation marks show some links making this
conditional density intractable

6.6.1 State Inference via Gibbs Sampling

The simplest approach to sampling the joint object state is with a Metropolis-

within-Gibbs algorithm in which the state for each object at each time Xi,t =

(xi,t, ẋi,t) is sampled in turn from the conditional distribution

p(Xi,t | Xi,−t, X−i,1:T , y1:T) = p(Xi,t | Xi,t−1, Xi,t+1, X−i,t−1:t+1, yt)

∝ p(yt | Xt)p(Xt+1 | Xi,t, X−i,t)p(Xi,t | Xi,t−1, X−i,t−1), (6.26)

where conditioning on the sampled interaction function f∗ and other para-

meters is not shown for notational brevity. This can be seen from the prob-

lem structure shown in figure 6.16. If the observations are conditionally in-

dependent given the individual object states, i.e. if p(yt | Xt) =
∏

j p(yj,t |

Xj,t), as when the objects are independently observed, then the observation

density in equation (6.26) is given by p(yt | Xt) ∝ p(yi,t | Xi,t).

The state transition densities appearing in equation (6.26) are determ-

ined by the system model, for example that given in equations (6.2)-(6.3).

In general, this is nonlinear and its transition density over a finite period

is intractable, requiring a numerical approximation to evaluate. Some such

approximations are discussed in appendix D, but use of any of the available

numerical schemes requires evaluation of F(xt), the function describing the

250 CHAPTER 6. GROUP STRUCTURE INFERENCE

interaction force on each object due to all other objects; some, such as the

higher-order single step scheme of section D.2.1, also require its Jacobian

J. These quantities can be evaluated from the estimated fij functions; the

component of F(xt) relating to the ith object is given by equation (6.1). The

value of fij(Dijt) can be approximately found from the samples of f∗ using

one of the interpolation methods in section 6.5.4. The Jacobian of F is given

by

Jkj|t =






∑
i

1
Dkit
(ΔkitΔ

′
kit − I) fkit − ΔkitΔ

′
kitf

′
kit if k = j

1
Dkjt

(
I− ΔkjtΔ

′
kjt − I

)
fkjt − ΔkjtΔ

′
kjtf

′
kjt if k 6= j

(6.27)

where Jkj|t is the d × d sub-matrix of Jt corresponding to ∂Fk

∂xj

∣
∣
∣
xt

, where d

is the dimensionality of the space in which the objects exist. In this expres-

sion, fijt = fij(Dijt) and f ′ijt is the gradient of fijt at Dijt. This latter can

be found using an interpolation method from section 6.5.4 applied to the

function gradient samples f
′∗, which should be sampled simultaneously

with f∗. The calculation of J takes O(N2) time, but J is straightforward to

update in place when the state of any object is altered. Changing the state

of object i at time t changes fijt, f ′ijt, Dijt and Δijt and their opposites fjit

etc., meaning that all terms involving these, i.e. Jik|t (and Jki|t in the sym-

metric case) for all k, must be recalculated. This can be done in O(N) time,

meaning that Jacobian updates corresponding to the updating of all object

positions can be completed in O(N2) time.

To update the state of object i at time t, a proposal is drawn from a

proposal distribution qit(X
∗
i,t | Xcur, y) and accepted with probability

paccept = min

(

1,
p(X∗

i,t | Xcur
i,−t, X

cur
−i,1:T , y)qit(X

cur
i,t | X∗

i,−t, X
cur
−i,1:T , y)

p(Xcur
i,t | X∗

i,−t, X
cur
−i,1:T , y)qit(X

∗
i,t | Xcur, y)

)

, (6.28)

where Xcur is the current sample of the state of all objects. Three differ-

ent proposal mechanisms are examined here: random walk, predictive and

6.6. NOISY OBSERVATIONS 251

adapted. The random walk proposal is the simplest, with

qrw
it (X

∗
i,t | Xcur, y) = Xcur

i,t + η,

and η ∼ N
(
0, Σprop

)
. The covariance of the proposal can be chosen to match

roughly the scale of the expected motion over one time period according to

the constant velocity model [204]. So, the variance of η is set to 1
3
kh3 in

components corresponding to object positions and to kh in components

corresponding to object velocities, with k a constant chosen to give good

results. This proposal is symmetric and so cancels in the ratio in equation

(6.28).

If interaction effects are strong, it might be more successful to make

proposals that take these into account by proposing from the numerical

approximation of the model prediction using

q
pred
it (X

∗
i,t | Xcur, y) ∼ N

(
μpred, Σpred

)
,

with μpred and Σpred given by the state transition function or an approxim-

ation, e.g. those of the numerically approximated state transition density

from equation (D.14) for a single object. Since this proposal does not de-

pend on the current sample, it leads to an independence sampler.

If the observations are highly informative and the state transition model

is subject to a lot of noise, predictive proposals are likely to perform poorly.

In this case, an ‘adapted’ proposal can be used to take account of the ob-

servation. This can be done using the ‘correct’ step from the Kalman filter

update, so that

q
adapt
it (X∗

i,t | Xcur, y) ∼ N
(
μadapt, Σadapt

)
,

252 CHAPTER 6. GROUP STRUCTURE INFERENCE

with

μadapt = μpred + K(yi,t+h −Hμpred),

Σadapt = (I− KH)Σpred,

K = ΣpredH ′(HΣpredH ′ + Σobs),

assuming that the observation function is linear with additive Gaussian

noise so that yi,t = HXi,t + ν with ν ∼ N (0, Σobs). For non-linear obser-

vations functions, the corresponding step from the extended Kalman filter

(EKF) could be used.

A mixture of these proposals can be used to attempt to improve mixing

and their ratio, along with the variance of the random walk proposal, can

be adaptively updated during the (fixed-length) burn-in phase of the chain

in order to achieve good acceptance rates; see section 2.2. (Finite adaptation

leaves the stationary distribution unchanged).

In cases where the model noise is low, such site-by-site sampling can

run into difficulties because object states are strongly correlated with the

preceding and subsequent object states. This results in poor mixing be-

cause the sampler can only move one site (i.e. the state of one object at

one time) at a time and thus only small moves are likely be accepted, lead-

ing to slow mixing. One possible solution to this problem is to use more

sophisticated sampling methods such as simulated tempering or multiple

coupled chain methods (see section 2.2.3) making use of a series of less

sharply peaked intermediate distributions, throughout which it is easier to

move. Initial experiments with the simulated tempering method in [98]

gave poor results, with the method requiring substantial tuning to produce

any useful samples. The related equi-energy sampler of [301; 267] might

offer an alternative, but has not been not investigated further.

6.6. NOISY OBSERVATIONS 253

6.6.2 Bridge Proposals

To attempt to overcome the slow mixing that can be encountered with site-

by-site sampling, larger blocks of states can be sampled. Tractable blocking

structures (to numerical approximation) include those in which the state

of all objects between two times t1 and t2 form a block, although such

blocks can be of high dimensionality at each time, potentially leading to

low acceptance probabilities and high rejection rates. The problem struc-

ture shown in figure 6.16 means that sampling only the states of a single

object i (or subset of objects) is only possible by evaluating the full trans-

ition density across all objects, since the conditional p(Xi,1:T | X−i,1:T) is

generally intractable when the transition density is non-linear.

Good block proposals can be made from distributions that approximate

the conditional target distribution in a block p(Xt1:t2
| Xt1−1, Xt2+1, yt1:t2

).

Such proposals will naturally form a ‘bridge’ between the states Xt1−1 and

Xt+1, which remain fixed. In this section, a linear approximation to the

dynamical model similar to that proposed in [302] is considered, allowing

efficient proposals. If no linear approximation is available, what follows

could be adapted to work with the extended or unscented Kalman filters.

Alternatively, the Particle Gibbs method of the next section can be used.

Such ‘bridging’ proposal distributions can be sampled in a manner sim-

ilar to backward sampling from a smoothing distribution since, using the

conditional independence structure of the model,

p(Xt1:t2
|Xt1−1, Xt2+1, yt1:t2

) =

t2∏

t=t1

p(Xt|Xt+1, Xt1−1, yt1:t),

and

p(Xt|Xt+1, Xt1−1, yt1:t) =
p(Xt+1 | Xt)p(Xt | Xt1−1, yt1:t)

p(Xt+1 | Xt1−1, yt1:t)
.

The distribution p(Xt | Xt1−1, yt1:t) is the filter distribution for Xt with ini-

tial state Xt1−1.

254 CHAPTER 6. GROUP STRUCTURE INFERENCE

The approximation is formed by using a linear Gaussian approximation

of the transition density q(Xt+1 | Xt) ∼ N (AtXt+1, Qt), where At is the ap-

proximating state transition matrix at time t and Qt is the approximating

covariance of the state transition at t. For example, to approximate the mo-

tion of a single object using the near constant velocity model these should

be set as

At =



1 h

0 1



 , Qt =




h3/3 h2/2

h2/2 h



 ,

for each object (giving a block-diagonal structure for multiple objects), where

h is the inter-observation time-step.

For such linear Gaussian models the forward-filter distribution of the

state Xt (with initial state Xt1−1) is given by the Kalman filter and is denoted

q(Xt | Xt1−1, yt1:t) ∼ N
(
μt|t, Σt|t

)
. Identities (A.1) and (A.2) from appendix

A can be used to obtain a distribution for Xt conditional on the subsequent

state Xt+1 as

q(Xt|Xt+1, Xt1−1, yt1:t) ∼ N
(
μt|t2+1, Σt|t2+1

)
(6.29)

with

Σt|t2+1 =
(
A ′

tQtAt + Σ−1
t|t

)−1

μt|t2+1 = Σt|t2+1

(
A ′

tQ
−1
t Xt+1 + Σ−1

t|t
μt|t

)
.

This can be used to propose a state sequence by successive sampling from

equation (6.29), starting with Xt2
and working back to Xt1

.

Such proposals do not depend on the current samples for Xt1:t2
, giving

an independence sampler with acceptance probability

paccept = min

(

1,
p(X∗

t1:t2
|Xt1−1, Xt2+1, yt1:t2

)q(Xcur
t1:t2

|Xt1−1, Xt2+1, yt1:t2
)

p(Xcur
t1:t2

|Xt1−1, Xt2+1, yt1:t2
)q(X∗

t1:t2
|Xt1−1, Xt2+1, yt1:t2

)

)

. (6.30)

6.6. NOISY OBSERVATIONS 255

Since

p(Xt1:t2
|Xt1−1, Xt2+1, yt1:t2

) ∝
t2+1∏

t=t1

p(yt | Xt)p(Xt | Xt−1),

and similarly for q, the acceptance ratio can be evaluated straightforwardly.

When the observation model is linear and so can be shared between the

proposal and target, i.e. when q(yt | Xt) = p(yt | Xt), these cancel in the

acceptance ratio, giving the simpler form

paccept = min

(

1,

∏t2+1
t=t1

p(X∗
t | X∗

t−1)q(X
cur
t | Xcur

t−1)
∏t2+1

t=t1
p(Xcur

t | Xcur
t−1)q(X

∗
t | X∗

t−1)

)

,

where X∗
t1−1 = Xcur

t1−1 and X∗
t2+1 = Xcur

t2+1.

Sampling all object paths simultaneously might lead to low acceptance

rates if there are many objects. A subset of object paths can be sampled at

a time by making proposals in which new states are proposed only for a

subset of objects, with that of the other objects being left unchanged. This

allows pathwise (i.e. one object at a time) sampling, albeit requiring eval-

uation of the full transition density. This proposal strategy is useful for

weakly coupled or independent objects.

6.6.3 State Inference via Particle Gibbs

The Particle Gibbs method of [33], described in section 4.3.4, is an altern-

ative method for state inference that allows new sample paths to be gen-

erated from an approximate particle filter algorithm targeting the required

posterior. These paths are (up to the approximation introduced by numer-

ical integration) exact samples from the posterior. This allows the use of

fully non-linear and non-Gaussian models in sample path generation, and

therefore offers a method more likely to succeed in cases where model non-

linearities make proposing from bridging distributions too challenging.

For full-state filtering and backward sampling (i.e. sampling the state of

all objects simultaneously), the filter and smoother algorithms in sections

256 CHAPTER 6. GROUP STRUCTURE INFERENCE

4.3.4 and 4.3.5 can be directly applied, using the full state transition and

observation densities discussed in section 6.6.1. However, as in the previ-

ous section, it is possible to use Particle Gibbs to make pathwise per-object

(or per-object subset) samples from the posterior, which is especially useful

with large numbers of relatively weakly coupled objects, where the stand-

ard algorithm will almost certainly fall foul of the curse of dimensionality.

This is discussed in the following section.

Particle Gibbs sampling also permits construction of a forward simulation-

only algorithm avoiding the evaluation of transition densities, although

this does not permit sampling of subsets of objects or the use of backward

sampling, since both of these require the evaluation of transition densit-

ies. Such simulation-only algorithms are therefore likely to suffer from

poor mixing under all but the mildest circumstances with few objects and

amenable models. On the other hand, they offer a potentially powerful

way to deal with intractable transition models, and, in some circumstances

when combined with exact diffusion sampling techniques [59; 60] (them-

selves only applicable to a limited subset of diffusions), offer a theoretical

way of building MCMC schemes targeting the exact posteriors of models

with intractable densities. Slow mixing in such methods could perhaps be

improved in some cases by simulating from bridging distributions (of the

transition model only) if these can be calculated, as suggested in [33], al-

though that has not been explored further here.

Pathwise Sampling with Particle Gibbs

Pathwise Particle Gibbs sampling can be achieved, at the expense of eval-

uating the full state transition density, by applying the Particle Gibbs al-

gorithm of section 4.3.4 to a sub-block of the state trajectory, in which the

sub-block is the trajectory of a single target (or group of targets). This al-

ternative blocking scheme is suggested in the authors’ reply to the com-

ments in [33] (the main text in [33] suggests blocking schemes in time, with

blocks containing the trajectory of all targets). This ‘pathwise’ scheme ne-

6.6. NOISY OBSERVATIONS 257

cessitates the use of a conditional particle filter that is conditioned on the

full trajectories of all objects other than the one being sampled, and this is

described below (in this section) for the problem being considered here.

The PGibbs algorithm in section 4.3.4 is modified as follows, with bold

text highlighting changes from the PGibbs algorithm in section 4.3.4.

• Sample θ ∼ p(θ | X0:T , y1:T).

• Sample X
sample
0:T ∼ p(X0:T | θ, y1:T) via the steps:

For each object i:

Sample X−k
i,0:T , a−k

1:T ∼ π̃(X−k
i,0:T , a−k

1:T | k, X−k
−i,0:T, xk

0:T , ak
1:T , θ),

Sample k ∼ π̃(k | X0:T , a1:T , θ),

X
sample
0:T = Xk

0:T is a sample from p(X0:T | θ, y1:T).

The key change here is that instead of sampling the whole of X−k
0:T from

the extended target conditional π̃(X−k
0:T , a−k

1:T | k, Xk
0:T , ak

1:T , θ), only the X−k
i,0:T

pertaining to object i are sampled from their extended target conditional

π̃(X−k
i,0:T , a−k

1:T | k, X−k
−i,0:T , Xk

0:T , ak
1:T , θ). This is simply a blocking scheme for

the Gibbs sampler (see section 2.2), with the state variables for an object

i forming the block of variables to be sampled (other than those from the

path selected by k, i.e. the ancestry of particle k at time T , henceforth re-

ferred to as the kth path; see section 4.3.4).

From the definition of the conditional target π̃(X−k
0:T , a−k

1:T | k, Xk
0:T , ak

1:T , θ)

in equation (4.18),

π̃(X−k
0:T , a−k

1:T | k, Xk
0:T , ak

1:T , θ) = ψ(X−b0:T

0:T , a
−b1:T

1:T | X
b0:T

0:T , b0:T)

where bt is the index of the particle on the kth path at time t (with X−k
0:T ≡

X
−b0:T

0:T and a−k
1:T ≡ a

−b1:T

1:T). The required conditional of the target distribu-

tion for pathwise Gibbs sampling is given by

π̃(X−k
i,0:T , a−k

1:T | k, X−k
−i,0:T , Xk

0:T , ak
1:T , θ) = π̃(X−k

i,0:T , a−k
1:T | k, X−k

−i,0:T , Xk
0:T , ak

1:T , θ)

= ψ(X−b0:T

i,0:T , a
−b1:T

1:T | X
b0:T

0:T , X−k
−i,0:T , b0:T)

258 CHAPTER 6. GROUP STRUCTURE INFERENCE

where ψ is the distribution of the variables generated in the particle filter,

defined in equation (4.9), X−k
i,0:T denotes the sampled state of the ith object

at all times across all particles other than those selected by k (i.e. bt at time

t). The distribution ψ(X−b0:T

i,0:T , a
−b1:T

1:T | X
b0:T

0:T , X−k
−i,0:T , a

b1:T

1:T) is the conditional

distribution of the variables generated in the particle filter, conditioned on

both the selected kth path variables (Xb0:T

0:T and b0:T), and the non-object i

state variables X−k
−i,0:T .

Sampling from this distribution can be achieved by running a condi-

tional particle filter in which only new values of X
j
i,0:T and a

j
1:T are sampled

(conditioned on the other variables, which remain unchanged) for all particles

other than that on the kth path (i.e. j = bt at time t). Initial particles

should be drawn from the conditional prior, i.e. for initial particles j =

1, ..., b0 − 1, b0 + 1, ...,N0, draw

X
j
i,0 ∼ p(X

j
i,0 | X

j
−i,0),

v
j
0 = 1/N0.

(An importance distribution q0 could also be sampled and the weights

adjusted appropriately). At subsequent time steps, the variable X
j
i,t+1 is

sampled from q(X
j
i,t+1 | X

j
−i,t+1, X

a
j
t+1

t , y1:t+1), and the variable a
j
t+1 is

sampled from R(a
j
t+1 | vt) for particles j = 1, ..., bt − 1, bt + 1, ...,N0; Xbt

i,t

and a
bt+1

t+1 = bt remain unchanged)

The particle weights vt are calculated as a function of the sampled vari-

ables (including those not pertaining to object i and thus not being res-

ampled on this pass), as in the particle filter algorithm in section 4.3.1. This

entails calculating the un-normalized weight w
j
t, followed by normaliza-

tion to ensure the v
j
t sum to 1. Given the sampled variables, w

j
t+1 is calcu-

lated as follows (as in equation (4.7))

wi
t+1 =

p(yt+1 | X
j
t+1)p(X

j
t+1 | X

a
j
t+1

t)v
j
t

q(X
j
t+1 | X

a
j
t+1

t , y1:t+1)R(a
j
t+1 | vt)

,

6.6. NOISY OBSERVATIONS 259

Figure 6.17: One step ahead transition structure for discrete or single step
integrated systems. Future states (pale blue) depend on the full system
state at t, but at t the state of objects i and that of the other objects is condi-
tional independent given the previous state

where here X
j
t+1 = X

j
i,t+1 ∪ X

j
−i,t+1, with v

j
t+1 being found as

vi
t+1 =

wi
t+1

∑Nt+1

i=1 wi
t+1

.

Unfortunately in the general case re-calculation of wi
t+1 requires the evalu-

ation of the state transition and proposal densities across all objects, not just

object i, which can be computationally costly. In some special cases known

conditional independence relationships between objects could be exploited

to speed up computation.

In cases when no intermediate state variables are introduced between

observation times (e.g. for discrete models or continuous models when

single step integration is used, but unlike multi-step integration using Bayesian

imputations), a minor simplification is possible. In that case

p(X
j
t+1 | X

a
j
t+1

t) = p(X
j
i,t+1, X

j
−i,t+1 | X

a
j
t+1

t , X
j
−i,t)

= p(X
j
i,t+1 | X

a
j
t+1

i,t , X
j
−i,t)p(X

j
−i,t+1 | x

a
j
t+1

i,t , X
j
−i,t),

where the second line is possible because the state of object i at time t is

conditionally independent of the state of the other objects at time t, given

the previous state, providing no future states are conditioned on (see figure

6.17). Under these conditions, a convenient form of the filter (somewhat

260 CHAPTER 6. GROUP STRUCTURE INFERENCE

akin to the standard bootstrap particle filter) is given by choosing

q(Xj
i,t+1 | X

j
−i,t+1, X

a
j
t+1

t , y1:t+1) = p(Xj
i,t+1 | X

a
j
t+1

i,t , X−i,t),

i.e. sampling new states X
j
i,t+1 from the transition density for object i,

which if used alongside the multinomial resampling scheme R(aj
t+1 | vt) =

v
j
t, gives the un-normalized weights as

w
j
t+1 = p(yt+1 | X

j
i,t+1, X

j
−i,t+1)p(X

j
−i,t+1 | X

a
j
t+1

i,t , X−i,t).

Here the expensive calculation of p(X−i,t+1 | x
a

j
t+1

i,t , X−i,t) need only be cal-

culated for each ancestor that is chosen, so a degenerate filter with only a

few ancestors has the consolation of quicker weight calculation. This form

of pathwise Particle Gibbs sampling is used in section 6.7. In general, the

calculation of the full transition density (or almost full transition density in

the above special case) for the entire state will be the most computationally

expensive part of the sampling process.

The subsequent step to sample k can be completed as in the standard

Particle Gibbs sampler (see section 4.3.4) by, in the simplest case, selecting

a particle k with probability v
j
T to give a new kth path. Thus it is possible to

perform conditional sampling of individual object paths within the Particle

Gibbs framework, and the conditional samples drawn will be exact (aside

from integration error in cases where exact integration of the underlying

dynamics is not possible).

As noted in section 4.3.5, mixing in Particle Gibbs methods can be im-

proved using backward sampling. For pathwise sampling as described

here, the method set out in that section can be followed. The state transition

densities that must be calculated are the full state transition densities, so

that the density p(x
bt+1

t+1 | x
j
t) appearing in equation (4.20) when calculating

the backward-sampling distribution of the sample trajectory indices b0:T is

given by the full state transition density for all objects from t to t + 1. This

is necessary because the state of Xi,t could affect all other objects at t + 1.

6.7. RESULTS WITH NOISY OBSERVATIONS 261

Figure 6.18: Three object setup (left) and resulting paths (red, right), with
observations shown as blue crosses. Shading represents object positions
inferred in simultaneous linkage and position inference, with strength of
shading indicating frequency of object paths passing through each pixel

The only exception to this would be if objects could be divided into inde-

pendent groups, in which case each group could be treated separately, both

in backward sampling and in forward filtering, saving substantial time.

6.7 Results with Noisy Observations

This section shows the results of simultaneous object path and linkage es-

timation. The first section briefly examines the different proposed path

inference approaches, though this is by no means an exhaustive test, more

an assessment of which method is most appropriate to the example prob-

lems being tackled. The second section shows some examples of linkage

learning applied to noisy data and shows successful structure inference for

an 8 object system.

6.7.1 Path Estimation Methods

In order to compare the various path estimation methods they were tested

on the noisy paths of three objects, connected in a rope configuration with

linear springs. The central object was given an initial velocity. Figure

6.18 shows the object configuration and the resulting object tracks (the in-

262 CHAPTER 6. GROUP STRUCTURE INFERENCE

ferred path density shown is taken from an algorithm in which linkage

was learned). The system was simulated with no state transition noise

and observations are given by the object positions distorted with additive

Gaussian noise. To remove one variable between tests, all methods were

supplied with the correct linkage functions and their gradients at the bin

centres, and these were not estimated during the run. The tests were run

on a series of 200 observations, with observation noise variance σ2
obs = 0.01.

This corresponds roughly to the noise level shown in figure 6.20. All runs

were initialized to the observation positions perturbed by additive Gaus-

sian noise with the same variance as the observation noise.

Figure 6.19 shows the error and mixing results for seven path inference

methods: site-by-site Gibbs sampling, block and pathwise Gibbs sampling

with bridge proposals, and block and pathwise Particle Gibbs sampling

with and without back sampling. Tests results are shown with respect to

computation time, since the methods take significantly different amounts

of time to sample each site. For example, in the test in figure 6.19, the

Gibbs sampler sampled each site about 9,000 times per hour, whereas the

pathwise Particle Gibbs sampler with block sampling sampled each site

about 12 times per hour). The methods were all implemented in Matlab

and shared code (for example transition density evaluation) where pos-

sible. The error results show the mean absolute error per object state per

time period. Mixing results show the sum of absolute differences between

the current path sample and that 1000s previously, giving some indication

of the amount of variation in the samples over time. Combined with low er-

ror, high mixing levels are desirable because they indicate that the method

is better able to explore the space of possible solutions, rather than become

trapped at locally good solutions. The “RTS baseline” in figure 6.19 refers

to a baseline estimation produced by taking independent samples from

the linear smoothing distribution using an independent constant velocity

model for all objects.

Both site-by-site and bridge-proposal based Gibbs sampling arrived at

6.7. RESULTS WITH NOISY OBSERVATIONS 263

Figure 6.19: Mean absolute error and mixing for a range of state inference
techniques using fixed state transition noise σ2

p=0.5. Mixing is taken to be
the sum of absolute differences between samples at 1000s lag

264 CHAPTER 6. GROUP STRUCTURE INFERENCE

low error solutions quickly and mixed well. The initial convergence of the

bridge-based samplers was substantially better than that of the site-by-site

sampler, due to the local strong correlation of the object states. For the

site-by-site Gibbs sampler, acceptance rates for each type of proposal were

in the following ranges: random walk 0-6%, predictive 4-12%, adapted 4-

12%. In the test, a mixture of all three proposal types was used. Bridge-

based proposals achieved acceptance rates of 5%-30% for block proposals

and 10%-50% for pathwise proposals. The proposed bridges were uni-

formly random lengths at uniformly random locations up to one-eighth

of the length of the time series.

The performance of Particle Gibbs without backward sampling, both

with block and pathwise proposals, was poor, barely reducing error from

the initial estimate. This is due to the low levels of mixing, particularly

in early parts of the time series, that plague this method; almost no new

particles (proposals) are accepted. These results support the idea that spend-

ing additional time on backward sampling is worthwhile. In this case, with

80 particles, backward sampling takes roughly ten times as long per sample

as forward filtering alone. With backward sampling (PGibbs-BS in figure

6.19), Particle Gibbs methods are, perhaps surprisingly, almost competit-

ive with respect to computational effort with the standard Gibbs sampling

methods. In particular, the pathwise method, though slow, achieves reas-

onable initial convergence, and error and mixing levels in similar ranges to

those for the Gibbs samplers. On the other hand, when also estimating the

process noise variance σ2
p (not shown here), these methods do not perform

so well simply because of their very low rates of sampling, which do not

allow other system variables such as σ2
p the opportunity to converge.

For Particle Gibbs methods in particular, pathwise sampling proved to

be more effective in both reducing error and improving mixing than block

sampling, even considering its higher computational cost. Since this test

was conducted with only three objects, this is a strong result, as increas-

ing the number of objects will almost certainly increase the advantage of

6.7. RESULTS WITH NOISY OBSERVATIONS 265

Figure 6.20: Example noisy observations (position only) with σ2
obs = 0.005

of object 1 in the example setup in figure 6.5 for the first 75 timesteps of
0.2s, comparable to those in figure 6.7 . The blue dots show observations
(linked by pale blue lines); red line shows the true object state

pathwise sampling, except when the objects are tightly coupled.

With these results as a guide, a mixture of site-by-site Gibbs sampling

and pathwise bridge based Gibbs sampling was used in the tests that fol-

low. This mixture allowed rapid initial convergence and showed good mix-

ing properties whilst being quick to run and thus allowing more samples

to be drawn of other variables including linkage estimates. The problems

tackled thus far do not deviate sufficiently from the linear case to warrant

the additional complexity of Particle Gibbs methods, but this test should

not be taken as a dismissal of those methods; they are likely to perform

better in severely nonlinear situations.

6.7.2 Linkage Inference with Noisy Observations

In order to test the inference of object linkage with noisy observations, a

test similar to those that produced figures 6.14 and 6.15 (second panel) was

run using data from the setup shown in figure 6.5. In this case only obser-

vations of object positions were supplied to the algorithm and these were

distorted with additive Gaussian noise with variance σ2
obs = 0.005, as il-

lustrated in figure 6.20. A mixture of site-by-site and bridge-based Gibbs

sampling was used for position inference. The linkage inference results are

shown in figure 6.21. The results show an underestimation of the strength

266 CHAPTER 6. GROUP STRUCTURE INFERENCE

of the linkage functions and greater uncertainty in their values, compared

to those in figure 6.14 and the lower panel of figure 6.15, although the rough

shape of the linkage functions was correctly inferred. A similar effect was

seen when noisy data was pre-smoothed using a linear smoother before

processing in the non-noisy algorithm, so the effect could be related to ex-

cessive path smoothing. However, a longer series of observations allows

accurate, low variance inference to be made of the linkage, as shown in

figure 6.22. It is unsurprising that the data requirements are higher with

noisy observations, since the noise causes the loss of information in those

observations. The runtime for these two examples was about 100 minutes

for that with 200 observations and about 6.5 hours for that with 800 obser-

vations (about 1.2s and 4.8s per sample, respectively), showing linear time

scaling with |T |.

Figure 6.24 shows the linkage inferred through application of the al-

gorithm to a dataset of 600 observations derived from eight moving objects

linked as shown in figure 6.23. Observations were subject to additive Gaus-

sian noise of variance σ2
obs = 0.005. These results show clear inference of the

system structure, albeit with slight underestimation of the spring strengths,

particularly towards the edge of the function domains. This could indic-

ate an insufficient number of observations as in the five object case and is

probably exacerbated by the edge effects suffered by Gaussian processes,

as mentioned in section 6.5.3. The runtime for this test was about 14 hours,

corresponding to about 10s per sample.

As with non-path inference, the estimates of the functions themselves

are much better than those of the gradients. This is to be expected, but

in particular the variance of the estimates might give cause for concern

with respect to the numerical integration scheme in appendix D, which was

used here. Since this relies on the Jacobian, high variance in the gradient

samples could lead to poor integration performance. As the gradients are

sampled and path inference is conditioned on these samples, very high

variance estimates could even be detrimental to performance, especially

6.7. RESULTS WITH NOISY OBSERVATIONS 267

Figure 6.21: Linkage (lower left) and linkage gradient (upper right) in-
ference with noisy observations; setup is as in figure 6.5, using 200 ob-
ject position observations with 0.2s timestep and observation noise vari-
ance σ2

obs = 0.005. In all graphs x-axis is inter-object distance and y-
axis is linkage strength fij (blue, lower-left graphs) or linkage gradient f ′ij
(green, upper-right graphs); red lines indicate true values. Results from
3000 samples, after a 2000 sample burn-in

268 CHAPTER 6. GROUP STRUCTURE INFERENCE

Figure 6.22: Linkage and linkage gradient inference with noisy observa-
tions; setup is as in figure 6.5, using 800 object position observations with
0.2s timestep and observation noise variance σ2

obs = 0.005. In all graphs
x-axis is inter-object distance and y-axis is linkage strength fij (blue, lower-
left graphs) or linkage gradient f ′ij (green, upper-right graphs); red lines
indicate true values. Results from 3000 samples following a 2000 sample
burn-in

6.8. CONCLUSION 269

Figure 6.23: Object connections in eight object test data. Lines indicate lin-
ear springs of natural length 1, other than those between objects 3 and 5,
and 4 and 6, which have natural length

√
2

in algorithms such as the Particle Gibbs with bootstrap proposals, where

large magnitude Jacobians could result in very high variance proposals and

possibly numerical instability.

In the examples shown, the effect of linkage inference on state inference

performance is mixed. In all the tests run, the state inference error of the

two methods was found to be within about 10% of each other, with the best

performing algorithm different on different runs. This variation is lower

than that arising from using different sets of observations with the same

noise characteristics. However, knowledge of linkage greatly improves

one-step prediction accuracy. Correct knowledge of linkage reduced the

RMS prediction error to about 1/2, 1/3 and 1/6 of that without linkage in-

formation for the three, five and eight datasets, respectively. Since predic-

tion is an important component of tracking, it could be expected that the

inference of linkage would improve tracking performance, though this is

yet to be confirmed via experiment.

6.8 Conclusion

The algorithm presented in this chapter offers a new way of determining

the nature of a useful class of relationships between interacting objects.

Specifically, the algorithm can be applied in cases where inter-object rela-

270 CHAPTER 6. GROUP STRUCTURE INFERENCE

Figure 6.24: Linkage and linkage gradient inference with noisy observa-
tions; setup is as in figure 6.23, using 600 object position observations with
0.2s timestep and observation noise variance σ2

obs = 0.005. In all graphs
x-axis is inter-object distance and y-axis is linkage strength fij (blue, lower-
left graphs) or linkage gradient f ′ij (green, upper-right graphs); red lines
indicate true values. Results from 3000 samples following a 2000 sample
burn-in

6.8. CONCLUSION 271

tionships are functions of some one-dimensional quantity of the joint object

state, in a ‘direction’ (in state space) that can be derived from the joint ob-

ject states. This class contains a large number of useful interactions, such as

many distance or velocity based interactions in systems of physical objects.

It could also be applied to other time series models such as those arising in

econometrics or biology, but the exposition in this chapter has focussed on

physical object interaction, due to its possible applicability to tracking ap-

plications and its intuitive interpretation. The algorithm described makes

only non-parametric assumptions about the shape of the inter-object rela-

tionships and, as has been demonstrated, due to this is able to identify a

range of relationship types without prior assumptions and without user

intervention other than easily interpretable length scale parameters for the

processes, which could themselves be estimated.

The original version of this method, presented in [4], was limited by

computational complexity that scaled with the cube of the number of ob-

servations, making it intractable for large problems. That problem has been

overcome in this work through the use of a binning strategy to sparsify

the Gaussian process inference. Approximate error results are available

for this approach that suggest it is a consistent estimator. The bin-based

approach is highly effective in practice, producing results comparable to

those from the dense method, and with computational complexity scaling

linearly with the number of observations. This makes the method plausible

for long time series, greatly increasing its usefulness. Access to long time

series is also crucial for estimation with many objects, since in this case a

very large number of relationships must be estimated, requiring a great

deal of information to be available in the form of observations. Problems

probably arising from insufficient data were seen in section 6.7.

A further problem with the method in [4] was a limited ability to cope

with noisy observations. This work has attempted to overcome this by

the addition of a state inference layer to the original system that is able

to incorporate inferred linkage information. This has been fairly successful

272 CHAPTER 6. GROUP STRUCTURE INFERENCE

and has allowed noisy and incomplete (e.g. position only) observations to

be used for state inference. However, no particular improvement in posi-

tion inference over methods not considering object linkage was found, and

this might suggest that, in the cases examined, much simpler independ-

ent smoothing for each object would have produced equally good results.

This seems somewhat surprising given that linkage is clearly detectable in

the series examined. On the other hand, knowledge of linkage greatly im-

proved state prediction performance, and so correct linkage inference can

be expected to improve tracking performance.

Several methods were developed for state inference, including a ver-

sion of the Particle Gibbs algorithm using pathwise inference. Whilst this

did not offer a particular advantage over Gibbs sampling methods for the

problems tackled, it did show a significant advantage in terms of mixing

over Particle Gibbs sampling all targets simultaneously, which can suffer

from the curse of dimensionality. The method is computationally expens-

ive, however, requiring a very similar amount of computation to the stand-

ard method (which jointly samples all objects) for every object. Under cer-

tain circumstances (highly nonlinear model, not too strong linkage between

objects) this method is likely to be the most suitable of all proposed meth-

ods; developing an example of such a situation remains a subject for future

work.

The method presented has several limitations compared to existing meth-

ods for structure inference. It is slow compared to (approximate) linear

methods such as [47] and, unlike the linear models used in tracking in [293],

[270] and [294] is not yet in a sequential form, although this appears to be

technical feasible and is a key objective of future research.

Non-parametric, non-linear continuous DBN approaches for gene reg-

ulatory networks, such as those of [286], [285] and [289] are the existing

approaches most closely related to the work presented here. This work

can be seen as an extension of these methods in several ways, as well

as their application to a different domain. Firstly, the objects considered

6.8. CONCLUSION 273

here cannot be represented with a single variable but rather each have

multi-dimensional state as shown in figure 6.3, with the internal dynam-

ical model of each object (i.e. that between the variables of which the ob-

ject is composed) assumed known, but interaction between object having

to be learnt. Secondly, the models used here deal with a continuous time

problem, rather than the discrete time one usually considered in gene reg-

ulatory network inference. This continuous-time approach is more appro-

priate to physical problems and allows the incorporation of asynchronous

observations if necessary. Thirdly, a different regression model for the link-

age functions based on Gaussian process regression is developed, which

allows a computationally efficient and fully Bayesian inference algorithm

to be developed. Finally, noisy observations, potentially from a non-linear,

non-Gaussian observation model, can be used to infer network structure.

A possible limitation of the specific continuous time scheme used here

is the use of an integration scheme requiring the evaluation of Jacobian

matrices. As seen in the results, gradient inference is considerably less ac-

curate and estimates suffer much higher variance than those of the link-

age functions themselves. The effect of these poor estimates on integra-

tion performance has not been systematically examined, but it is possible

that multi-step Euler-Maruyama schemes (see appendix D) could be prefer-

able in some cases, in spite of their substantially higher computational

cost. Such schemes would affect the derivation of inter-object force and

this would have to be reformulated accordingly.

The methods presented here provide a useful tool for the analysis of

an important class of networks of interacting objects and could find ap-

plications in several domains including tracking, computer vision, biology,

finance and econometrics. They extend existing non-linear non-parametric

DBN methods in useful ways. Though not currently in a sequential form,

this work points the way to the development of non-linear group interac-

tion models for tracking applications.

274 CHAPTER 6. GROUP STRUCTURE INFERENCE

6.8.1 Further Work

There are a number of extensions and developments that could further en-

hance the algorithms presented here. Perhaps the most interesting exten-

sion would be to devise a sequential version of the algorithm. This would

allow the inference of non-linear linkage in tracking applications for the

first time. It might even be possible to Rao-Blackwellize part of the linkage

inference to create an efficient scheme, as in the model in chapter 5.

An obvious extension to the model presented is to allow interaction

between objects based on relative velocity. This would require a differ-

ent numerical integration scheme than that in appendix D, although that

scheme could easily be adapted to account for this. The inclusion of ve-

locity relationships would allows motion such as flocking behaviour to be

investigated with these techniques.

As discussed in section 6.5, Gaussian process regression is equivalent

to a certain type of kernel regression. If the Gaussian process schemes pro-

posed are deemed too slow, other types of kernel regression schemes such

as local linear regression could be used directly as is done in e.g. [286],

[285] and [289]. This might make the formulation of a Bayesian solution

more challenging (although [289] does something similar for spline mod-

els). Local linear regression in particular is known to exhibit much reduced

edge effects in comparison to Watson-Nadaraya estimators [299] and so

might have an advantage in this respect over the Gaussian process regres-

sion used here, where these effects are clearly visible, especially in gradient

estimation.

The force inference scheme described in section 6.2 (and also used in

chapter 5) actually wastes information, since the force term also appears in

the expression for the change in velocity, albeit with higher noise, which

could relatively easily be incorporated into this method as an additional

pseudo-observation. It would be interesting to see if this makes a signific-

ant contribution to the accuracy of inference and to its data requirements.

The results in this chapter do not test two aspects already incorpor-

6.8. CONCLUSION 275

ated into the model. Firstly, network sparsity estimation, using indicator

functions, has had some success in preliminary trials and could lead to

large efficiency improvements if disjoint groups of objects can be automat-

ically identified. These could then be treated separately in, for example,

transition density calculation, potentially reducing the O(N2) complexity

of the method to O(kn2) where n < N. Secondly, only symmetric rela-

tionships between objects have been examined, though this is not a limit-

ation of the method as presented. The removal of this assumption would

allow the method to make one-directional causal inference about the rela-

tionships between objects if such relationships are present. Combined with

sparsity estimation, this would allow a succinct estimate of causal structure

between the objects to be produced.

Finally, a good test of the method would be to compare predictions

of the model to those of algorithms making linear assumptions, with and

without the presence of non-linear effects.

276 CHAPTER 6. GROUP STRUCTURE INFERENCE

Chapter 7

Sparse Audio Restoration

This chapter presents a method for audio noise reduction in the case when

the original signal is corrupted by both homogenous background noise and

impulse noise. It extends the background noise removal algorithm of [303]

to the case where impulse noise is also present by introducing a sparse im-

pulse process with variable scale. This is similar to the earlier work in [1],

although there it was necessary to sample an intermediate z process rep-

resenting the true signal distorted with homogenous Gaussian in order to

apply the background noise removal method of [303]; here it is shown how

to marginalize out that intermediate process from the conditional distribu-

tions necessary for sampling. Inference is carried out by means of a Gibbs

sampling scheme for all variables.

Background noise is a common feature of many audio tracks and arises

from a number of sources such as thermal noise arising in recording or

processing equipment. As such, it is present, usually at the same scale,

throughout the track. Impulse noise, on the other hand, takes the form of

large but brief deviations between the observed value and the true signal.

Impulses can be caused by, amongst other things, wear, dirt and scratches

on vinyl records, and are perceived as audible pops and clicks in a record-

ing. Because it can derive from multiple sources and, in the case of vinyl

recordings, involves uncontrolled deviation of the playback needle, im-

277

278 CHAPTER 7. SPARSE AUDIO RESTORATION

pulse noise can vary across a very wide range of scales. Much previous

impulse removal work has been carried out using autoregressive methods,

described in [283], for example, though these have a smoothing effect on

the signal, acting as a form of low-pass filter and causing the loss of some

high-frequency detail.

Early work in noise reduction can be found in [304], but the area contin-

ues to be active, e.g. [305; 306]. An overview of a range of methods can be

found in [283] and the references therein, but alternative psychoacoustically-

based approaches such as [232] have also been popular. A technique com-

mon to several methods, and used here for background noise removal,

is the representation of the signal as a weighted sum of basis functions,

with the aim being to reconstruct the true signal without reconstructing the

noise. Since the composition of audio signals varies with time, decompos-

ition is performed in blocks on short sub-sections of the whole signal and,

in order to reduce blocking effects, these sub-sections generally overlap;

see figure 7.1. The localized functions of varying frequencies used in such

reconstructions are often called wavelets and a collection of such wavelets

covering the full time span of the signal forms a dictionary of basis func-

tions into which the original signal can be decomposed. There are many

possible choices of wavelet dictionaries with various properties; common

choices include modified discrete cosines functions [307], which provide an

orthogonal basis, and Gabor functions, used in this work, [303; 308], which

do not.

The presence of overlapping non-orthogonal wavelets in the dictionary

leads to multiple possible decompositions of the signal into the (local) basis

functions, known as over-completeness. Of these, sparse representations are

frequently preferred as they give a parsimonious representation of the ori-

ginal signal. Numerous methods of finding good sparse signal represent-

ation exist [309; 310; 303], with the choice of which of these is ‘best’ de-

pendent on the application. For example, a representation that minimizes

the number of non-zero coefficients might be best for compression, whilst

279

one that has stronger temporal structure between components is likely to

be better for missing data reconstruction [308]. The approach taken in [303]

and followed here focuses on explicitly modelling sparsity through the use

of indicator variables (∈ {0, 1}) that determine whether or not a particular

basis function is included in the signal representation. This formulation

allows the straightforward incorporation of prior models of signal struc-

ture, meaning that expectations about likely sparsity structure such as cer-

tain types of temporal coherence can be embedded within the prior. This

model-based approach is conceptually distinct from approaches that de-

termine coefficients in such a way as to target sparsity directly, almost all of

which attempt to limit or penalize the L1 norm of the regression coefficients

(i.e. the sum of the coefficient magnitudes) such as those of [310; 309; 311].

In a Bayesian setting a similar result can be achieved through the use of a

Laplacian prior on the basis coefficients, producing a ‘penalty’ term on the

L1 norm in the posterior.

In this work, structural priors are also applied to the modelling of im-

pulse noise. Impulses are assumed to either be present or absent in each di-

gital audio sample, as defined by an indicator it. Priors on these indicators

can then be used to incorporate expectations about the impulse’s temporal

structure. Section 7.3 shows how a two state Markov chain, for which the

parameters can be estimated, can be used to express an expectation that

impulses will be rare, but are likely to last for several samples when they

do occur. Given this prior structure, the indicators can be sampled using a

Gibbs sampler as shown in section 7.4.

The rest of this chapter is structured as follows. Section 7.1 introduces

the Gabor wavelet decomposition used as the basis of background noise

reduction. Section 7.2 explains the models of background and impulse

noise used for noise reduction. Section 7.3 gives details of the structured

sparsity priors used for impulse removal. Section 7.4 outlines the Gibbs

samplers used for inference, with the necessary conditional distributions

derived there. Section 7.5 shows how the intermediate z process used in

280 CHAPTER 7. SPARSE AUDIO RESTORATION

[1] can be marginalized out of the inference process and thus need not be

sampled. Section 7.6 presents results of noise removal, showing that the ap-

proach outlined here works with both artificial and real noise, and finally

section 7.7 draws conclusions and suggests further work.

7.1 Gabor Signal Decomposition

In [303] the authors use Gabor signal decomposition as the basis for back-

ground noise reduction. This decomposition is the process of taking a sig-

nal and representing it as a weighted sum of Gabor synthesis atoms localized

in time and frequency. A signal of length L can be decomposed into M×N

Gabor synthesis atoms, representing M discrete frequency levels and N dis-

crete time points, arranged as a grid. Such a transform maps a continuous

signal x(t) onto an M × N time-frequency plane as shown in figure 7.1.

The Gabor synthesis atoms are defined in general by

g̃m,n(t) = g
(
t−

n

N
L
)

exp
(
2πi

m

M
t
)

, (7.1)

where m ∈ {0, 1, ...,M − 1}, n ∈ {0, 1, ...,N − 1} and, for discrete samples

as in digital audio, t ∈ {0, 1, ..., L − 1}. Figure 7.2 shows some examples of

Gabor synthesis atoms. The function g in equation 7.1 is the Gabor window

function, typically a smooth bell-shaped window function with compact

support that defines the temporal envelope of the corresponding Gabor

atoms. The method here uses a Hann window, defined as

g(t) =






0.5 + 0.5 cos (2πt/λ) |t| ≤ λ/2

0 |t| > λ/2

, (7.2)

where λ defines the window width, but many other choices are possible,

including the Bartlett, Blackman, (truncated) Gaussian, Hamming, Kaiser,

and Tukey windows, each centred at the parameter value and having slightly

different shapes and characteristics; the choice of window functions is dis-

7.1. GABOR SIGNAL DECOMPOSITION 281

Figure 7.1: A lapped transform, formed of overlapping atoms gm,n ar-
ranged in a regular grid in time-frequency space. These atoms form the
basis for the representation of the signal in time-frequency space

cussed further in [312]. The width of the chosen window function must be

such that it provides sufficient overlap between synthesis atoms (i.e. some-

what larger than L/N).

Given a set of synthesis atoms g̃m,n(t), a (complex) input signal x(t) can

be written as their weighted sum:

x(t) =

M−1∑

m=0

N−1∑

n=0

γm,ncm,ng̃m,n(t), (7.3)

where cm,n ∈ C is the weighting coefficient for each atom and γm,n ∈ {0, 1}

are indicator variables that determine whether a particular atom is present

in the decomposition. These are key to imposing sparse structure within

the model, discussed further in section 7.3. The Gabor representation can

be written in matrix-vector form as x = G̃c̃, where the input signal is rep-

resented as a column vector x = [x(0) x(1) ... x(L− 1)]T , G̃ is the L × MN

Gabor synthesis matrix, consisting of the (m,n)th Gabor synthesis atom at

each signal observation time as its (m + nM)th column, and the coefficient

vector c̃ is formed by stacking the individual coefficients (multiplied by the

282 CHAPTER 7. SPARSE AUDIO RESTORATION

Figure 7.2: A selection of Gabor synthesis atoms (real and complex parts)
generated using a Hann window of width 256 (modified to generate basis
functions forming a tight frame) with frequencies ω

corresponding indicator) γm,ncm,n in the appropriate order (see figure 7.3).

For decompositions in which the number of Gabor synthesis atoms is

greater than the number of observations (MN > L), the system x = G̃c̃

is under-determined with respect to the coefficients c. This is the case

in almost all real applications since redundancy in the Gabor dictionary

is necessary in order to achieve good time-frequency localization. This

is a consequence of the Balian-Low theorem [313; 314], which states that

there is no well-concentrated Gabor basis in the critically sampled case

where MN = L, discussed in more detail in [303] and [312]. The under-

determined system x = G̃c̃ can be solved via the Gabor transform, in which

the coefficient of each atom is found by taking the inner product of that

atom with the signal. Because atoms have compact support this can be per-

formed efficiently using only the part of the signal that corresponds to the

atom’s region of support; [315] gives an algorithm for the discrete Gabor

transform. Though this has the property that it recovers the coefficients

that are minimal in an L2 sense (i.e. they have minimal sum-of-squares),

there is no guarantee of sparsity of coefficients. Indeed, this is unlikely in

7.1. GABOR SIGNAL DECOMPOSITION 283

Figure 7.3: Signal decomposition using a set of synthesis atoms can be
thought of as regression aiming to reconstruct the signal x from the syn-
thesis atoms. In matrix-vector form, each synthesis atom forms one column
of the G̃ matrix. In the Gabor case, each atom has compact support and is a
shifted version of the corresponding atom at the previous time location

general as the L2 norm will penalize the use of a few large coefficients as

opposed to a larger number of smaller ones.

If the input signal is entirely real, as is the case with the audio sig-

nals considered here, the expansion on the right hand side of equation

(7.3) must also be real. Assuming that M is even, this can be arranged

by setting cm,n = c∗M−m,n for all m ∈ {1, 2, ..., M/2}, relying on the fact that

g̃m,n = g̃∗
M−m,n, which can readily be shown from the definition of the

Gabor synthesis atoms in equation (7.1). In this case the decomposition in

equation (7.3) can be written as

x(t) =

M/2∑

m=0

N−1∑

n=0

γm,nαm(cm,ng̃m,n(t) + c∗m,ng̃∗
m,n(t))

=

M/2∑

m=0

N−1∑

n=0

γm,n (<(αmcm,n)<(g̃m,n(t)) − =(αmcm,n)=(g̃m,n(t))) , (7.4)

where αm is 1 for all m except for m = 0 and m = M/2, when it is 1/2. This

allows the decomposition to be reformulated in matrix-vector form using

284 CHAPTER 7. SPARSE AUDIO RESTORATION

only real numbers by redefining G̃ and c to be entirely real, containing in-

terleaved real and (negated) imaginary components as shown in appendix

A.1 of [303]. Given these definitions, G̃c̃ will be the signal reconstruction in

equation (7.4). For practical purposes in what follows, the c ′
m,n coefficients

will be treated as a two element vector of real numbers, representing the

real and imaginary components of c ′
m,n. This will be denoted ck ∈ R2, with

k ∈ {0, 1, ..., (M/2+ 1)N− 1} so that ck = c ′
m+nM corresponds to c ′

m,n.

7.2 Signal Model

The audio signal model in [303] assumes that the received audio samples

are composed of the true signal at the sample time, corrupted by homo-

genous additive Gaussian noise. At each sample time t = 0, ..., L − 1 the

received signal yt is composed of the true signal x(t) distorted by additive

Gaussian noise vt so that

yt = x(t) + vt,

with vt ∼ N (0, σ2
vt
). Homogenous background noise as in [303] is mod-

elled by having a constant noise scale across all samples, so that σvt = σ

throughout, where σ is a parameter of the model that can be estimated.

This can be extended to model for the possible presence of impulse noise

in the received signal by allowing the scale of the noise process to increase

when such impulse noise is present. The noise scale is then given by

σ2
vt
= (1+ itλt)σ

2. (7.5)

where it ∈ {0, 1} is an indicator variable determining whether impulse

noise is present at a particular sample time t, and λt gives a scale for the im-

pulse at that time if it exists. Thus the noise variance is σ2 when no impulse

is present and (1+ λt)σ
2 when it is.

A simple choice for λt is to set it to be constant, say λfixed. However,

7.2. SIGNAL MODEL 285

since impulsive noise can originate from a number of different physical

sources, a single scale factor λfixed might not lead to a noise distribution

sufficiently heavy-tailed to capture all impulses. Therefore the scale factor

λt can be allowed to vary with time, giving an impulse scale at each sample

time which can be estimated.

Although in principle many prior structures p(λt) are possible for λt, a

convenient one, as used in [306] in a different context, is a shifted inverse

gamma model, the shape of which is shown in figure 7.4. This is a truncated

and shifted version of the inverse gamma distribution (note the offset of +1

in the λt arguments) and takes the form

p(λt) =
β

αλ

λ (1+ λt)
−(αλ+1) exp(−βλ/(1+ λt))

γ(αλ, βλ)
, λ ≥ 0,

∝ IG (1+ λt;αλ, βλ) (7.6)

where IG (1+ λt;αλ, βλ) is the inverse gamma pdf with parameters αλ and

βλ, evaluated at 1+ λt and γ(αλ, βλ) is the lower incomplete gamma func-

tion defined as

γ(αλ, βλ) =

∫β

0

tα−1e−tdt. (7.7)

Since the Gabor-based noise reduction mechanism described in [303] is

based on the assumption of homogenous background noise it cannot be

applied directly to input signals containing impulse noise of the type de-

scribed. This can be overcome by introducing an artificial latent process z

with the required homogenous noise distribution such that

zt = x(t) +wt. (7.8)

with wt ∼ N (0, σ2), which allows the original Gabor decomposition al-

gorithm to be applied to this process. The z process can be inferred by

286 CHAPTER 7. SPARSE AUDIO RESTORATION

Figure 7.4: Probability density functions for a number of priors used in the
model with a selection of parameter values

applying the impulse removal mechanism to the observations yt since

yt = zt + itut, (7.9)

with ut ∼ N (0, λtσ
2). This structure is shown in figure 7.5 and has the

property that the true signal x (i.e. the values of x(t) at the sample times,

denoted xt for discrete sample times) is conditionally independent of the

observations y and impulse indicators i, given the z process, so that

p(x | y, z, i, λ) ∝ p(x | z),

where here un-subscripted variables have been used to indicate the full

set of such variables (e.g. i = {it | t ∈ 0, ..., L − 1}). This means that

samples from the posterior distribution p(x | z) can be drawn as in [303], by

applying the algorithm there to a sample of the latent process z rather than

directly to the input samples y. In this scheme, a sampling iteration consists

of sampling both the z and x process along with the other model variables

and parameters, although section 7.5 shows how explicit sampling of the z

7.3. STRUCTURED SPARSITY 287

Figure 7.5: Logical structure of model variables showing the artificial latent
z process along with impulse indicators i and scale factors λ. The z process
is the true signal distorted by homogenous Gaussian noise whereas obser-
vations y may be subject to noise at multiple scales

process can be avoided.

7.3 Structured Sparsity

Prior distributions for the indicator variables (for both impulses and Gabor

coefficients) are important components of the model. It is through these pri-

ors that a preference for sparsity can be incorporated, since they can encode

a belief that sparse solutions are more likely than dense ones. Unlike meth-

ods that specifically seek a minimal solution in some norm, Bayesian infer-

ence does not inherently favour any particular solution unless that solution

is more probable according to the modelling and prior assumptions. The

over-completeness of the Gabor dictionary and the flexibility that this in-

troduces means that without some sort of regularization there is a strong

risk of over-fitting the Gabor coefficients to the noisy signal; the modelling

and prior assumptions are what prevent this.

The priors on the sets of indicator variables γ = {γm,n | ∀m,n} and

i = {it | t = 0, ..., L − 1} can be used to encode a prior belief that solutions

288 CHAPTER 7. SPARSE AUDIO RESTORATION

will be sparse in terms of Gabor coefficients and impulses. In many cases,

however, further prior information about the structure of the non-zero in-

dicators is available and it is desirable to incorporate this in the model via

the indicator priors, leading to the idea of structured sparsity.

Consider the impulse process represented by the i variables, indicat-

ing the presence or absence of an impulse at a particular sample time. It

is likely that impulses will be present in relatively few samples (i will be

sparse) and this simple expectation can be incorporated into the prior in

a straightforward way, through a prior belief that an indicator value of 0

(no impulse) is more likely than 1 (impulse present). A more sophisticated

prior model can incorporate the belief that impulses will be relatively rare

but, when they do occur, are likely to last for a number of samples, since

the time taken to traverse a damaged section of record surface is likely to

be longer than a single sample. In this case, the prior encodes a belief about

the likely structure of the i process.

The simplest prior for i is to treat each it as a Bernoulli random variable

with some prior probability p of a sample being subject to an impulse. This

alone is sufficient to favour sparse solutions, since if p is small, a sparse

solution is, all other things being equal, more likely than a dense one. Un-

der these assumptions, the prior probability p indicates the proportion of

samples that might be expected to be affected by impulse noise. The prior

on the full set of indicators i in this case is given by

p(i | φi) =

L−1∏

t=0

p(it | φi),

where φi is the set of parameters for the prior on i. In the Bernoulli case

this is just the prior probability p ∈ φi of an indicator being 1, so that

p(it = 1) = p,

p(it = 0) = 1− p.

7.3. STRUCTURED SPARSITY 289

Here a link can be made to penalized likelihood estimation, a com-

mon alternative method for finding sparse solutions. In such methods the

sparse estimator is one that maximizes a version of the log-likelihood func-

tion penalized according to the number of non-zero coefficients, with the

strength of the penalty being determined a penalty coefficient η, chosen by

the user. For the impulse indicator variable this can be expressed as

îPLE = arg max
i

log p(y | i) − η‖i‖0. (7.10)

where ‖i‖0 is the number of non-zero elements of i.

The Bayesian posterior distribution of the indicator variables i given the

observations is

log p(i | y) = log p(y|i) + log p(i) + C,

where C is constant with respect to i. For the Bernoulli prior above, this

becomes

log p(i | y) = log p(y|i) + log

(
p

1− p

)

‖i‖0 + C ′,

and thus the penalized likelihood estimate in equation (7.10) is equivalent

to a maximum a posteriori (MAP) estimate from the Bayesian model (that is,

the estimate that maximizes the posterior density) with the Bernoulli prior,

where η = log (p/1−p). When p < 0.5 this is negative, resulting in a penalty

term for additional non-zero coefficients. It is perhaps more intuitive to

choose a prior probability p in the Bayesian formulation than it is to choose

a value for the penalty coefficient η in the penalized likelihood approach.

The Bayesian formulation allows further complexity to be built into the

prior assumption in a simple and explicit way. In order to incorporate a be-

lief that impulses, when they do occur, are likely to last for several samples,

the prior for the impulse indicator can be modelled as a two-state Markov

chain. The idea behind this is that in the ‘no impulse’ state, the next state

290 CHAPTER 7. SPARSE AUDIO RESTORATION

Figure 7.6: Sample draws of length 500 from the Markov chain prior with
p00 = 0.95, p11 = 0.5 for the left group of five draws and p00 = 0.9, p11 =

0.9 for the right group (black indicates a value of 1)

of the indicator process is very likely to also be ‘no impulse’, with only a

small probability of a transition to the ‘impulse’ state. However, once in

the ‘impulse’ state, the next state is quite likely also to be an ‘impulse’, with

some probability of a transition back to ‘no impulse’. Figure 7.6 shows

some draws from such a Markov chain prior with different transition prob-

abilities. In this case

p(i | φi) = p(i0 | φi)

L−1∏

t=1

p(it|it−1, φi),

and the conditional distribution of a particular indicator it given the rest of

the indicator process is given by

p(it | i−t, φi) ∝ p(it+1 | it, φi)p(it | it−1, φi),

where p(it+1 | it, φi) is determined by the transition probabilities of the

Markov chain (the notation i−t refers to the set of all i indicators, excluding

that at sample time t, i.e. i−t = i\it). The transition probabilities can be

taken to be parameters of the model or can themselves be inferred from the

data, as detailed in section 7.4. Two parameters define the Markov chain

transition matrix: p00, the probability of remaining in state 0, and p11, the

probability of remaining in state 1 (the other entries in the transition matrix

can be calculated from these).

7.4. INFERENCE 291

In general the inference methods in section 7.4 can use any conditional

prior p(it | i−t, φ) for the indicator variables. This is a very flexible class

of possible prior functions and means that many different forms of prior

knowledge can be incorporated in this framework. Incorporating more

structure in the prior can lead to less sparse results, since structural priors

impose additional restrictions on the solution compared to simple Bernoulli

priors. On the other hand, structured priors can give lead to better results

if the structure in the prior is a good model of the true process.

Similar prior structures can also be used for the Gabor coefficient indic-

ators γ, as described in [303]. Simple Bernoulli priors giving a prior prob-

ability for each atom being zero lead to sparse solutions in time-frequency

space, though possibly with little structure between atoms, especially if

the prior probability of a non-zero coefficient is small. This might be most

suitable for compression, where minimizing the number of non-zero coef-

ficients is paramount. As with the impulse process i, Markov chain priors

can be imposed in time, implying that frequency components have some

tendency to remain consistent from one sample block to the next. Such

a prior structure might be appropriate for signals expected to consist of

slowly time-varying oscillations and, as with the impulse indicator prior,

the transition probabilities can be estimated from the data as shown in sec-

tion 7.4. Similarly, a Markov chain structure can be imposed in the fre-

quency direction, implying a prior expectation of local frequency cluster-

ing in each of the N sample blocks. Another possible prior for the Gabor

coefficients is a Markov random field (MRF) prior, which can be used to

impose two dimensional structure on the coefficients. Such priors favour

signals in which activity occurs in patches on the time-frequency plane.

7.4 Inference

The joint posterior distribution of the Gabor reconstruction variables (c,

γ and others used in the model in [303]), latent process variables (z), im-

292 CHAPTER 7. SPARSE AUDIO RESTORATION

pulse process variables (i, φi and λ) and noise scale parameter (σ) can be

sampled using a Gibbs sampler. The variables involved in estimating the

Gabor reconstruction of the signal, c, γ, σ2 and several others (σ2
c, ν and φγ,

corresponding to prior parameters for the Gabor coefficients c and their in-

dicators γ), can each be sampled using the conditional distributions given

in [303], replacing the observations on which those distributions are con-

ditioned with the intermediate z process defined in equation 7.8, since this

process has the same noise characteristics as the observations used in [303].

The variables corresponding to the impulse process at a given sample

time, it, zt and λt, can be sampled as a block from their joint conditional

distribution

p(it, zt, λt | x, y, i−t, z−t, λ−t, σ
2, φi) =

p(zt | it, λt, xt, yt, σ
2)p(λt | it, xt, yt, σ

2)p(it | i−t, xt, yt, σ
2, φi),

(7.11)

where x denotes the signal reconstruction from the Gabor synthesis atoms

as in equation (7.3), with xt denoting its value at the time of input sample

t. A joint sample can be drawn by by sampling it, λt and zt sequentially

(in that order) from the distributions on the right of equation (7.11).

The distribution from which to sample it is given by

p(it | i−t, xt, yt, σ
2, φi) ∝ p(it | i−t, φi)p(yt | xt, it, σ

2). (7.12)

The impulse indicator it is a Bernoulli random variable and can be sampled

by evaluating the ratio rt of the expression in equation (7.12) for both pos-

sible values of it, so that

rt =
p(it = 1 | i−t, φi)p(yt | xt, it = 1, σ2)

p(it = 0 | i−t, φi)p(yt | xt, it = 0, σ2)
. (7.13)

7.4. INFERENCE 293

The posterior probability of it = 1 is then given by

p(it = 1 | i−t, xt, yt, σ
2, φi) =

rt

1+ rt

,

so that it ∼ Bernoulli(rt

1+rt
), which can easily be sampled.

In the simple case where λt = λfixed for all t, the observation likelihood

is given by

p(yt | xt, it, σ
2) = N

(
yt | xt, (1+ itλfixed)σ

2
)
,

and for non-constant impulse noise scale, the likelihood is given by

p(yt | xt, it, σ
2) =






N
(
yt | xt, σ

2
)
, it = 0

p(yt | xt, it = 1, σ2), it = 1

. (7.14)

If the prior p(λt) is an inverse gamma distribution of the form in equation

(7.6), p(yt | xt, it = 1, σ2) can be found in closed form, as described in [306]:

p(yt | xt, it = 1, σ2) =

∫∞

0

p(yt | λt, xt, it = 1, σ2)p(λt)dλt

=
1

√
2πσ2

γ(αp, βp)

γ(αλ, βλ)

β
αλ

λ

β
αp
p

, (7.15)

where

αp = αλ + 1/2

βp = βλ +
(yt − xt)

2

2σ2
,

and where γ(αp, βp) is defined as in equation (7.7). Thus all quantities

necessary for calculation of the ratio rt in equation (7.13) can be evaluated

by evaluating the prior p(it | i−t, φi) and likelihood p(yt | xt, it, σ
2) for the

cases it = 1 and it = 0.

With a sample drawn for it, λt can be drawn from the conditional dis-

294 CHAPTER 7. SPARSE AUDIO RESTORATION

tribution

p(λt | it, xt, yt, σ
2) ∝ p(yt | xt, λt, it, σ

2)p(λt)

= N
(
yt | xt, (1+ itλt)σ

2
)

p(λt)

∝






p(λt), it = 0

IG (1+ λt;αp, βp), it = 1.

(7.16)

Assuming an inverse gamma prior p(λt) for λt as in equation (7.6), both

distributions in the last line of equation (7.16) are shifted inverse gamma

distributions and can be sampled using a rejection sampling trick. First,

a variable lt = 1 + λt is defined. This is then sampled from the inverse

gamma distribution with the appropriate parameters. If the sampled value

is less than 1, it is rejected and the variable resampled, otherwise it is ac-

cepted and 1 is subtracted from it to give a sample for λt. This can be

shown to result in a sample from the required distribution. Since 1 + λt is

distributed according to an inverse gamma distribution, the noise variance

σ2
vt
= σ2(1 + itλt) is scaled by an inverse gamma random variable when

an impulse is present (it = 1). In this case, the noise is drawn from a scale

mixture of Gaussians, which can be shown to have a Student t-distribution

using the result [316; 317] that

t2α(x | μ, σ2) =

∫∞

0

N
(
x;μ, σ2s

)
IG (s;α,α)ds,

i.e. that if X ∼ N
(
μ, σ2S

)
with S ∼ IG(α,α), then X ∼ t2α(μ, σ2). By noting

that β
α
S ∼ IG (α,β), then scaling X by

√
β
α

, it can be seen that for X ∼

N
(
μ, σ2R

)
, R ∼ IG(α,β), then X ∼ t2α

(
μ, β

α
σ2
)

. Thus, when an impulse is

present, the noise is distributed vt ∼ t2αp

(
0,

βp

αp
σ2
)

.

Finally, once it and λt have been sampled, zt can be sampled from the

7.4. INFERENCE 295

conditional distribution

p(zt | it, λt, x, y) ∝ p(yt | zt, it)p(zt | xt)

= N (yt | zt, itλtσ
2)N (zt | xt, σ

2)

∝ N

(

zt |
yt + itλtxt

1+ itλt

,
itλtσ

2

1+ itλt

)

. (7.17)

Note that if it = 0 then zt = yt.

The parameters of the indicator prior φi depend on the prior structure

chosen for the impulse indicators i. In general, the distribution of the para-

meter(s) is given by

p(φi | i) ∝ p(i | φi)p(φi) (7.18)

= p(φi)
∏

t

p(it | iN (t), φi), (7.19)

where N (t) is the neighbourhood of indicators that influence the prior of

the indicator it. For the Bernoulli and Markov chain prior structures out-

lined in section 7.3 the prior parameters are given as follows.

• Bernoulli: In the Bernoulli case, the neighbourhood of each it is empty

(N (t) = ∅) for all t and the ‘likelihood’ term (the product in equation

(7.19)) is given simply by p|i|(1−p)L−|i|, where |i| is the number of non-

zero elements of i. The conjugate prior for this Bernoulli likelihood

is the beta distribution B(αi, βi), which, for αi = βi = 1, gives a uni-

form prior (see figure 7.4). Using this prior it is possible to marginal-

ize out the Bernoulli parameter p when calculating the ratio p(it=1|i−t)
p(it=0|i−t)

in the expression for rt in equation (7.13) (see [303], appendix A.3). In

this case, that ratio is given by

p(it = 1 | i−t)

p(it = 0 | i−t)
=

|i−t|+ αi

L− |i−t|− 1+ βi

,

where |i−t| is the number of non-zero indicators excluding it.

• Markov chain: The transition matrix for the Markov chain prior is fully

296 CHAPTER 7. SPARSE AUDIO RESTORATION

determined by the probability of remaining in state 0, p00, and the

probability of remaining in state 1, p11 (since p01 = 1 − p00 and sim-

ilarly for p10). These can be estimated in the same way as the para-

meters of Markov chain priors for Gabor coefficient indicators γ in

[303] (appendix A.4) in which the transition probabilities are treated

as independent Bernoulli variables with beta prior distributions. The

initial distribution of the chain p(i0 | p00) is taken to be the chain’s

stationary distribution. Then, for example for p00,

p(p00 | i) ∝ p(i | p00)p(p00) (7.20)

∝ p(p00)p(i0 | p00)
∏

t∈{t|it−1=0}

p(it | it−1, p00). (7.21)

Since the transition probabilities from state 0 are considered as inde-

pendent of those from state 1, only indicators whose predecessor is 0

need be considered. A similar expression can be derived for p11.

Sampling can be performed using a Metropolis-within-Gibbs step.

This is particularly convenient if a beta prior B(αp00
, βp00

) is applied

to p00 and proposals p∗
00 are drawn from the full conditional distri-

bution in equation (7.21) where the initial state instead has a fixed,

uniform distribution (i.e. p(i0 | p00) = p), leading to a tractable pro-

posal distribution defined as

q(p∗
00 | p

(i)
00) = p(p∗

00)
∏

t∈{t|it−1=0}

p(it | it−1, p
∗
00) (7.22)

= B (|A00|+ αp00
, |A01|+ βp00

) , (7.23)

where p
(i)
00 is the current sample of p00, and A00 is the set of times of

transitions from 0 to 0, i.e.

A00 = {t | it−1 = 0, it = 0},

A01 = {t | it−1 = 0, it = 1}.

7.5. MARGINALIZED INFERENCE 297

Thus |A00| is the number of transitions from 0 to 0 and similarly |A01|

is the number of transitions from 0 to 1. The acceptance ratio for the

Metropolis-Hastings step is given by

paccept = min

(
p(p∗

00 | i)q(p
(i)
00 | p∗

00)

p(p
(i)
00 | i)q(p∗

00 | p
(i)
00)

, 1

)

= min

(
p(i0 | p∗

00)

p(i0 | p
(i)
00)

, 1

)

where the simplification here is due to the specific form of the pro-

posal in equation (7.23). Finally, the initial state is assumed to be dis-

tributed according to the stationary distribution of the chain, which

is given using the standard result from the theory of Markov chains,

p(i0 | p00) =
1− i0p00 − (1− i0)p11

2− p00 − p11

,

thus allowing the parameters of the Markov chain prior to be sampled

efficiently.

7.5 Marginalized Inference

In [1] impulse and background noise were removed from corrupted audio

using the inference method described in section 7.4. However, it is possible

to avoid explicit sampling of the z process through marginalization of some

of the conditional distributions used in the Gibbs sampler. In this case,

the sampling of the Gabor coefficients c, their corresponding indicators γ

and the overall noise level σ found in [303] must be modified as shown

here. The impulse indicators i and noise scales λ can be sampled from the

conditional distributions given in equations (7.12) and (7.16), respectively,

as the z process is not required in the conditional distributions given there.

298 CHAPTER 7. SPARSE AUDIO RESTORATION

7.5.1 Sampling Gabor Coefficients

The conditional distribution of the Gabor coefficients c is a multivariate

Gaussian due to the assumption of Gaussian noise with variance (1+itλt)σ
2

in the observation y process. For a single ck coefficient a sample can be

drawn jointly with the corresponding indicator variable γk from the joint

conditional, which can be decomposed as

p(ck, γk | c−k, γ−k, y) = p(ck | γ, c−k, y)p(γk | γ−k, c−k, y), (7.24)

where here and throughout what follows dependence of all terms on σ, λ,

i and σc has been dropped from the notation for brevity.

The Gabor synthesis coefficients ck ∈ R2 are here treated as a vector

of two real numbers (corresponding to the coefficient’s real and imaginary

part), rather than as a single complex one, as described in section 7.1. They

can be expected to take a wide range of values, with very large values being

comparatively common. The prior chosen for these variables is, therefore, a

heavy-tailed Student t distribution, which, as noted above, can be realized

as a scale mixture of normals with an inverse gamma mixing distribution,

so that

p(ck | σck
, γk) = (1− γk)δ0(ck) + γkN

(
ck; 0, σ

2
ck

I2

)
, (7.25)

where I2 is the 2 × 2 identity matrix (for the case when ck ∈ R2) and σ2
ck

is

distributed according to the inverse gamma mixing distribution

p(σ2
ck

| γk = 1) = IG(σ2
ck
; κ, νk). (7.26)

Here κ is a shape parameter that determines the heaviness of the tails of the

prior distribution. νk is a scale parameter that is itself assigned a gamma

prior so that

νk = f(k)ν, (7.27)

7.5. MARGINALIZED INFERENCE 299

with ν ∼ G(αν, βν) and where f(k) is a fixed weighting function that can

be used to express a prior belief about the expected degree of smoothness

in the reconstructed signal. The choice of f(k) is discussed in more detail

in [303], where the authors suggest using the reciprocal of the frequency

modulation number m corresponding to the coefficient k.

In the case when γk = 0, the first term on the right hand side of equation

(7.24) does not depend on the observations and so is simply a delta function

at the current value of ck, owing to the prior on ck in equation (7.25). This

means that for coefficients excluded from the reconstruction, ck need not be

updated and that, in this case, the joint distribution to be sampled is given

by

p(ck, γk = 0 | c−k, γ−k, y) = p(γk = 0 | γ−k, c−k, y). (7.28)

On the other hand, when γk = 1,

p(ck | γk = 1, γ−k, c−k, y) ∝ p(y | c, γk = 1, γ−k)p(ck | γk = 1)(7.29)

∝ N (y; x,D)N
(
ck; 0, σ

2
ck

I2

)
, (7.30)

with D being a diagonal matrix of noise variances, with the tth diagonal

element given by Dtt = (1+itλt)σ
2, and where x is the true signal, a sample

of which is given by the reconstruction in equation (7.3). The reconstruction

can be written as the sum of the components that depend on ck, and those

that do not, i.e. x = G̃kγkck + G̃−kc̃−k, allowing the first component on the

right of equation (7.30) to be written as

N (y; x,D) = N
(
y; G̃kck + G̃−kc̃−k, D

)

= αN

(

ck;
G̃ ′

kD−1(y− G̃−kc̃−k)

G̃ ′
kD−1G̃k

, (G̃ ′
kD−1G̃k)

−1

)

,

using the identity (A.5) in appendix A and where α is a constant of pro-

portionality. Using the identity (A.2) allows equation (7.30) be rewritten in

300 CHAPTER 7. SPARSE AUDIO RESTORATION

terms of ck as

p(ck | γk = 1, γ−k, c−k, y) = N (ck;μk, Σk) (7.31)

where

Σk =
(
G̃ ′

kD−1G̃k + σ−2
ck

I2

)−1

μk = ΣkG̃ ′
kD−1

(
y− G̃−kc̃−k

)
.

This allows ck to be sampled given the corresponding indicator γk.

In order to sample from the joint distribution in equation (7.24) the in-

dicator γk must be sampled from p(γk | γ−k, c−k, y). This cannot be directly

evaluated, since the dependency between y and γk depends on the value

of ck, and so it is necessary to consider the joint distribution of γk and ck,

integrated over all ck, i.e.

p(γk | γ−k, c−k, z) =

∫
p(γk, ck | γ−k, c−k, y)dck

∝ p(γk | γ−k)

∫
p(y | c, γ)p(ck | γk)dck.

The constant of proportionality here is p(y | γ−k, c−k) and, as this does

not depend on γk is the same for both it possible value of γk. Therefore,

it suffices to determine the ratio τk between these terms when γk = 0 and

γk = 1, i.e.

τk =
p(γk = 1 | γ−k, c−k, y)

p(γk = 0 | γ−k, c−k, y)
, (7.32)

and use the fact that the numerator and denominator in equation (7.35)

sum to 1 to give

p(γk = 0 | γ−k, c−k, z) = 1
1+τk

, (7.33)

p(γk = 1 | γ−k, c−k, z) = τk

1+τk
. (7.34)

7.5. MARGINALIZED INFERENCE 301

The ratio τk is given, through an application of Bayes’ theorem to both

numerator and denominator, by

τk =
p(γk = 1 | γ−k)

∫
p(y | c, γk = 1, γ−k)p(ck | γk = 1)dck

p(γk = 0 | γ−k)
∫

p(y | c, γk = 0, γ−k)p(ck | γk = 0)dck

.

The expression inside the integral in the numerator is that on the right hand

side of equation (7.30), so the same logic can be followed to derive it, al-

though in this case attention must be paid to the normalizing constants

(found in identities (A.2) and (A.5) in appendix A) since the expression is

not a probability distributions for ck and so does not normalize to 1 with

respect to ck as was the case in equation (7.31). In the denominator, p(y |

c, γk = 0, γ−k) = N (y; x−k, D), where x−k = G̃−kc̃−k, the reconstruction of

the signal without the kth Gabor atom, and p(ck | γk = 0) = δ
{ck=c

(i)
k

}
, i.e. a

delta function at the current sample of ck. This leads to the expression for

τk

τk =
p(γk = 1 | γ−k)

p(γk = 0 | γ−k)

|Σk|
1
2

σ2
ck

exp

(
1

2
μT

kΣ−1
k μk

)

, (7.35)

which allows the γk and ck to be sampled by first sampling γk as a Bernoulli

sample with probabilities given by equations (7.33) and (7.34) and then, if

this sample for γk is 1, sampling ck from the Gaussian distribution in equa-

tion (7.31), but otherwise leaving it unchanged. Note that these distribu-

tions apply to the case where the signal is constrained to be real valued and

hence Σk ∈ R2×2, μk, ck ∈ R2, and G̃k ∈ RL×2 (given by the corresponding

columns of the G̃ matrix).

7.5.2 Sampling Noise Variance

The conditional distribution of the noise variance σ2 can be found by not-

ing, from the noise model in equation (7.5), that

yt − xt√
1+ itλt

∼ N
(
0, σ2

)
. (7.36)

302 CHAPTER 7. SPARSE AUDIO RESTORATION

Therefore, given the sample x of the signal reconstruction given by the

Gabor coefficients, the scaled and shifted observations on the left of equa-

tion (7.36) can be treated as a series of observations of a Gaussian distrib-

uted random variable with unknown variance σ2. The prior on σ2 can be

chosen to be the inverse gamma conjugate prior with distribution IG(α,β).

Considering the L scaled and shifted observations, the conditional distribu-

tion for σ2 is

p(σ2|y, c, γ) = IG

(

σ2;α+
L

2
, β+

1

2

L∑

t=1

(yt − xt)
2

1+ itλt

)

.

Unless something is known about the scale of the noise in advance, the

parameters α and β should be chosen to give a vague prior on σ2 (see figure

7.4).

7.6 Results

In order to evaluate the methods their ability to restore audio tracks dis-

torted with both artificial noise generated from the noise model and with

real noise taken from the run-in track of an old vinyl recording was com-

pared. To generate the artificially noisy track, a clean track was corrupted

by adding noise from the model in equation 7.5. The presence of impulses

was modelled as following a Markov chain process as described in section

7.3, with p00 = 0.995 and p11 = 0.9. Impulse scale λt was modelled as either

being fixed to λt = 100 for all t (‘Fixed λ’), or being drawn from the prior

in equation (7.6), with αλ = 1 and βλ = 20 (‘Variable λ’), giving roughly

the same SNR as in the fixed case . For the ‘real’ noise, a multiple of the

run-in track of an old vinyl recording was added to the clean track. This

run-in track was high-pass filtered to remove low-frequency distortion not

removed by these algorithms, and which otherwise has a dominant effect

on the SNR (since it effectively moves the signal’s zero level), making com-

parison difficult. The signal to noise ratio of a reconstruction (or distorted

7.6. RESULTS 303

signal) x̂ is calculated in dB as

SNRdB = 10 log10

(∑
t x2

t∑
t(xt − x̂t)2

)

. (7.37)

Table 7.1, taken from [1], shows the effect of these various impulse mod-

els. For the results in this table, 200 MCMC samples were generated, with

the first 100 samples being considered burn in; from the convergence res-

ults shown below this appears adequate. All results in this table were pro-

duced using an explicit z process initialized to the observed signal y. In the

case of variable scale impulses in the data used with a fixed variance im-

pulse model for their removal, the impulse variance parameter λfixed was

set to the mean impulse variance. From these results it is clear that if im-

pulses are present then having a model that takes account of them makes

a substantial impact on restoration performance. The restoration of audio

corrupted with real vinyl noise was also substantially improved, suggest-

ing that impulses are present in this noise, or at least that the impulse noise

model is a better fit for this data than the homogenous noise model (the

‘None’ impulse model in table 7.1). As might be expected, the variable

impulse method performs slightly worse for fixed impulses with known

variance, as the fixed impulse algorithm in that case is correctly tuned to

the impulse size. For variable scale artificial impulses and real impulses

the variable impulse model gives the greatest improvement in SNR with

no need for tuning of the impulse size. On the other hand, though the

fixed impulse model produced good results when impulse scale was well

tuned, the value of the scale parameter λ chosen had a sizeable impact on

performance.

In order to compare the algorithm with marginalized z process to that

with an explicitly sampled z process, a similar test (with different data)

was run with each algorithm and the original (‘no impulses’) algorithm ap-

plied to tracks with both artificial (variable λt) and real noise. The results

were generated using a simple Bernoulli prior for the presence of Gabor

304 CHAPTER 7. SPARSE AUDIO RESTORATION

Impulse Model Impulses in Data Noisy SNR (dB) Final SNR (dB)
None Fixed λ 6.97 12.32
None Variable λ 6.96 9.65
None Real 6.61 8.83

Fixed λ Fixed λ 6.97 13.83
Fixed λ Variable λ 6.96 13.36

Fixed λ = 15 Real 6.61 11.54
Fixed λ = 100 Real 6.61 12.79

Variable λ Fixed λ 6.97 13.36
Variable λ Variable λ 6.96 13.47
Variable λ Real 6.61 12.81

Table 7.1: SNRs (dB) before and after noise removal assuming a range of
models of the impulses present in the signal, and with impulses in the data
deriving from a range of different sources

Artificial Noise (dB) Real Noise (dB)
Distorted signal 6.10 7.10

No impulses 10.34 8.98
Marginalized 17.55 12.40

Sampled z process 17.48 12.25

Table 7.2: SNRs (dB) before and after noise removal with sampled z pro-
cess, marginalized z process and assuming no impulses (as a baseline), for
artificial and real impulses. The top line (‘Distorted signal’) shows the SNR
of the signal before restoration

7.6. RESULTS 305

components, with p = 0.5. Table 7.2 shows the results of this in terms

of reconstruction SNR. Figures 7.7-7.9 show the reconstruction of distorted

audio signals using the marginalized and z sampling algorithms. The res-

ulting reconstructions are very similar; the reconstruction using sampled

z is almost completely obscured by that using marginalized z in figures

7.7 and 7.8, and the SNRs achieved in table 7.2 are almost identical for

the two algorithms. For the artificial data (where impulse positions are

known), impulse detection is good, with both algorithms picking 89-90%

of impulses; those missed are of often of low intensity. Figure 7.9 shows

a detail from figure 7.7, allowing some properties of the reconstruction to

be better observed. In this period all true impulses are detected, but there

are also some false detections in positions where the true audio track con-

tained sharp changes. This illustrates an inherent problem with noise re-

duction: in places where the true signal appears similar to the noise being

removed (such as the large peak between samples 7.115 and 7.2×104 in fig-

ure 7.9), noise reduction introduces distortion by removing those features.

Of course, if the noise level is substantial and the noise can be usefully char-

acterized as happens here, noise reduction still offers a significant benefit.

An interesting difference between the results with artificial and real

noise is that in the latter case much more background ‘hiss’ is left in the

reconstruction. This can be seen in a comparison of figures 7.7 and 7.8

(which aim to reconstruct the same underlying signal), where, for example

around sample 1 × 104, the noise in the latter reconstruction is higher than

that in the former. It is also visible in the top left plot in figure 7.11 where

the noise level σ2 converges to a significantly higher value for the artificial

noise than for the real noise. This is likely to be because the noise model is

not a perfect fit for the real noise. To see this, figure 7.10 compares the dis-

tribution of the real and artificial noise used in these two examples. In the

distribution of the artificial noise there is a distinct ‘kink’ at an absolute size

of about 0.1 not present in the distribution of the real noise, the frequency

of which decreases more smoothly as impulse size increases. This reflects

306 CHAPTER 7. SPARSE AUDIO RESTORATION

Figure 7.7: Top: Reconstruction of an audio track distorted with artificial
noise generated from the noise model using algorithms with marginalized
and sampled z processes. Bottom: Impulse detection showing true impulse
positions (red) along with proportion of samples containing an impulse at
each time period (grey)

the distinction between impulse and background noise in the model; the

distribution of the artificial noise is effectively a mixture of a Gaussian and

t-distribution as discussed in section 7.4. The real noise is also somewhat

more heavy-tailed. Analysis of the distribution of real impulses might offer

a way of choosing the αλ and βλ prior parameters governing the impulse

process, attempting to better match the model noise distribution with that

of the real impulses. This has not been investigated further here. If there is

no strong distinction between impulses and background noise in real data,

this could lead to a model in which the variable scale ‘impulse’ noise model

was used for most samples, leading to a system for effectively removing t-

distributed background noise.

Figures 7.11-7.14 illustrate the convergence rates of the marginalized

and sampled z algorithms. These appear to show that for both real and

7.6. RESULTS 307

Figure 7.8: Reconstruction of audio signal corrupted by real impulse noise
using both marginalized and sampled z processes. Line colours as in figure
7.7

Figure 7.9: Detail of figure 7.7 over 400 audio samples (about 0.01s of audio)

308 CHAPTER 7. SPARSE AUDIO RESTORATION

Figure 7.10: Histogram of absolute noise size (|yt − xt|) for track distorted
with real noise (left) and artificial noise (right)

artificial noise, the algorithm converges rapidly, with a 100 sample burn-

in period being acceptable for the results here. Perhaps surprisingly, the

marginalized algorithm does not seem to offer any noticeable improvement

in convergence speed over explicitly sampling the z process. When real

noise is present, convergence was slightly slower than that with artificial

noise; this is probably due to the noise model not being a perfect fit for the

observed noise.

Figures 7.13 and 7.14 show the estimates of the prior parameters p00

and p11 governing the prior on impulse presence. Figure 7.13 shows rapid

convergence close to the correct values for artificial data. The slight under-

estimation of p00 seen here could be due to false detection impulses due to

the shape of the original signal as discussed above. For real impulses, val-

ues of p00 ≈ 0.985 and p11 ≈ 0.835 were obtained, both slightly lower than

those used for the artificial noise, suggesting the presence of more frequent

but shorter impulses in the real noise.

It is difficult to make a full assessment of the results based only on

the SNR and a more complete evaluation would include a psychoacous-

tical metric. Some distortion (ringing) due to the filtering can be evident

in badly corrupted examples with artificial noise; from a perceptual point

of view this can be improved by actually slightly increasing the amount of

7.6. RESULTS 309

Figure 7.11: Comparison of convergence of noise level σ2 (top left), num-
ber of non-zero Gabor coefficients |γ|0 (top right), and number of detected
impulses |i|0 (bottom left) for marginalized (solid) and sampled z (dotted),
with artificial (blue) and real (purple) noise

310 CHAPTER 7. SPARSE AUDIO RESTORATION

Figure 7.12: Signal to noise ratio with sample number for original (no im-
pulses), sampled z and marginalized z algorithms with artificial (blue) and
real (red) noise

Figure 7.13: Estimated parameters p00 and p11 of impulse presence Markov
chain for artificial noise; true values shown as dotted red line

7.7. CONCLUSIONS 311

Figure 7.14: Estimated parameters p00 and p11 of impulse presence Markov
chain for real noise

noise in the final reconstruction. On the other hand, with real noise, the al-

gorithm does not always remove enough background noise (although per-

ceptually, impulses are successfully removed) and this might be due to an

incorrect or badly configured noise model.

7.7 Conclusions

This chapter has outlined a way to simultaneously remove impulse and

background noise from corrupted audio signals. The methods presented

extend the work of [303] by adding the capacity to remove impulse noise,

and [1] by showing how the artificial z process introduced there does not

need to be sampled. This latter extension does not appear to have a signific-

ant impact on performance and, in particular, does not appear to improve

convergence of the MCMC sampler.

Impulses with a wide range of sizes can be removed and the algorithm

was shown to significantly improve the signal-to-noise ratio for signals dis-

torted with both artificially generated noise, and with real noise taken from

an old vinyl recording. For these latter impulses the algorithm tended

to leave some background noise in the signal. This could be perhaps be

improved by further work to tune the model to the characteristics of real

312 CHAPTER 7. SPARSE AUDIO RESTORATION

noise.

The algorithm could be extended to a sequential setting, using particle

filtering, which, if sufficiently efficient, would allow real-time noise reduc-

tion. Applied only to estimation of the Gabor and impulse coefficients (and

indicators), such an algorithm could be combined with the Gibbs sampling

of parameters shown here to offer an alternative method of batch noise re-

duction and parameter estimation, via a Particle Gibbs scheme, although it

is not clear that this would offer a substantial advantage over the MCMC

scheme used here.

Chapter 8

Conclusion

The aim of this work was to develop methods for Bayesian inference for a

range of systems, motivated by examples in finance, physical object track-

ing and audio restoration. In each of these areas, a method has been presen-

ted that extends the state of the art in some way. Of the methods developed,

the most important contributions are perhaps in the area of model estim-

ation, with new models allowing efficient, Bayesian solutions introduced

for the learning of environment structure in a SLAM-like problem and for

the learning of inter-object group structure from object tracking data. The

method of inferring system structure from successive state estimates using

an inverted numerical integrator and approximating intractable terms with

a noise term is widely applicable.

In chapter 3, an efficient method for state estimation was given for

jump-diffusion systems with linear Gaussian diffusions. In chapter 4 it

was shown how this technique could be used directly for Bayesian para-

meter inference amounting to system identification in such systems. An al-

ternative Bayesian parameter estimation method based on reversible-jump

MCMC was also introduced.

For tracking problems in unknown environments a method was intro-

duced in chapter 5 that allowed the unknown environment structure to

be mapped in a way similar to mapping in SLAM problems. It made the

313

314 CHAPTER 8. CONCLUSION

mapping of quite general environment structures due to the use of non-

parametric priors on a potential field model of environment structure. The

method works sequentially and allows efficient solution using particle fil-

tering, although in the form presented in chapter 5 suffers from computa-

tional costs that increase rapidly with the number of observations, making

it unsuitable for long time series. This latter problem can be solved through

the use of sparse Gaussian process approximations and a map divided into

a grid, as described there.

Though not yet sequential, the method introduced for group structure

inference in chapter 6 offers a new way for learning about the structure

of networks of interacting entities. The method is applicable both in the

physical object tracking context in which it is introduced here, and more

widely such as for the inference of gene regulatory networks and for learn-

ing about relationships between indicators in econometrics. In these ap-

plications, the ability of the method to make causal inference is likely to be

of interest, as is the ability to infer sparse network structures.

Chapter 7 illustrated how sparse model structures could be used in au-

dio signal processing, in particular in the removal of impulse noise such as

the pops and clicks found on old vinyl recordings. The method is effective

for impulse removal, although it is computationally demanding and only

able to run in batch form. A more efficient marginalized version of the

algorithm that originally appeared in [1] was presented.

8.1 Recommendations for Future Work

There are many ways in which the work in this thesis could be extended

and each chapter makes some recommendations for further investigation

that could be undertaken. This section briefly lists some of the most prom-

ising areas of further investigation, many of which will it is hoped will be

able to be undertaken in the near future.

Jump-diffusion models are common models of electricity spot prices,

8.1. RECOMMENDATIONS FOR FUTURE WORK 315

and so it would be interesting to compare the parameter estimates obtained

using the methods in chapters 3 and 4 to those derived elsewhere, espe-

cially since most existing estimation techniques used on this data only give

point parameter estimates. Generalizing the models in chapters 3 and 4

to linear diffusion systems with non-linear observation functions may also

be of interest, though this will eliminate some of the efficiency benefits of

Rao-Blackwellization.

The combination of the variable rate particle filter and Particle MCMC

methods produces an alternative to reversible jump MCMC for certain types

of variable dimension time series systems that might be of interest for batch

estimation in a number of areas, including physical object tracking, econo-

metrics and finance. Whether this method can be generalized to other more

general variable-dimension estimation problems is not yet clear and merits

further investigation.

The algorithm introduced for the mapping of unknown structured en-

vironments in chapter 5 can be extended to work for much longer time

series over larger areas through the use of sparse Gaussian process meth-

ods and a grid structure for the map, as suggested in that chapter. This is

essential to make the system applicable in real tracking applications and is

an urgent priority in the further development of this method. For long data

series, it is likely that the particle history degeneracy problem will have an

impact on the performance of the mapping algorithm, and ways of mitig-

ating this effect should be investigated further.

There are many ways in which the work in chapter 6 on the learning

of group structure could be extended and applied. The development of a

sequential scheme now seems possible and this would allow the method

to be directly applied in on-line tracking applications. The mechanism for

the inference of sparse structure mentioned in chapter 6 still needs more re-

finement and testing; fast, accurate methods for this would allow efficiency

improvements in the case of disjoint groups and useful approximations in

the case of nearly disjoint groups.

316 CHAPTER 8. CONCLUSION

A number of applications for the group inference system are also of

interest. By adding velocity based relationships, the model presented in

chapter 6 can be extended to encompass standard flocking rules. It would

be interesting to see whether such rules could be recovered from real an-

imal behaviour. Related models have already been applied to gene regulat-

ory networks and comparison with those results should indicate whether

the model here could produce useful results in that domain. It would also

be particularly interesting to apply the system to collections of economic

indicators to see if non-linear causal relationships could be inferred.

A number of the methods presented in this thesis make use of the nu-

merical integration of non-linear Langevin equations (or could be adapted

to do so), using the integration method in appendix D. This is only one

of a number of methods available for such equations, and a more thor-

ough investigation of the various methods available and their suitability

for various tasks would be a useful future piece of work. Since most of

these methods come from the physics literature, a review of these meth-

ods with respect to their use in Bayesian tracking and smoothing problems

might also be of wider interest.

Appendix A

Useful Gaussian Identities

This appendix contains a number of useful identities involving manipula-

tions of the Gaussian distribution and multivariate Gaussian distribution

that are used throughout this thesis.

A.1 Affine Argument Transform

N (Ax+ b;μ, Σ) =
1

|A|
N
(
x;A−1(μ− b), A−1Σ(A−1) ′

)
(A.1)

where x, b, μ are k × 1; A,Σ are k × k; A is invertible, Σ symmetric positive

definite.

A.2 Product of Two Multivariate Gaussian PDFs

N (x;μ1, Σ1)N (x;μ2, Σ2) = αN (x;μ, Σ) (A.2)

317

318 APPENDIX A. USEFUL GAUSSIAN IDENTITIES

with

α =
|Σ|

1
2

(2π)
k
2 |Σ1|

1
2 |Σ2|

1
2

exp

[

−
1

2

(
μ ′

1Σ
−1
1 μ1 + μ2Σ

−1
2 μ2 − μ ′Σ−1μ

)]

Σ−1 = Σ−1
1 + Σ−1

2

μ = Σ
(
Σ−1

1 μ1 + Σ−1
2 μ2

)

where x, μ, μ1, μ2 are k × 1; Σ, Σ1, Σ2 are k × k symmetric positive definite.

A.3 Quotient of Two Multivariate Gaussian PDFs

N (x;μ1, Σ1)

N (x;μ2, Σ2)
= αN (x;μ, Σ) (A.3)

with

α =
(2π)

k
2 |Σ|

1
2 |Σ2|

1
2

|Σ1|
1
2

exp

[

−
1

2

(
μ ′

1Σ
−1
1 μ1 − μ2Σ

−1
2 μ2 − μ ′Σ−1μ

)]

Σ−1 = Σ−1
1 − Σ−1

2

μ = Σ
(
Σ−1

1 μ1 − Σ−1
2 μ2

)

where x, μ, μ1, μ2 are k × 1; Σ, Σ1, Σ2 are k × k symmetric positive definite.

A.4 Product of Univariate Gaussian PDFs

k∏

i=1

N
(
x;μi, σ

2
i

)
= αN

(
x;μ, σ2

)
(A.4)

A.5. LINEARLY DEPENDENT ELEMENTS 319

with

α =
σ

(2π)
k−1

2

∏
i σi

exp



−
1

2




∑

i

μ2
i

σ2
i

− σ2

(
∑

i

μi

σ2
i

)2








σ2 =

(
∑

i

1

σ2
i

)−1

μ = σ2
∑

i

μi

σ2
i

where all quantities are scalar.

A.5 Linearly Dependent Elements

N (ax; c, B) = αN
(
x;μ, σ2

)
(A.5)

with

α =
σ

(2π)
k−1

2 |B|
1
2

exp

[

−
1

2

(

c ′B−1c−
(a ′B−1c)2

a ′B−1a

)]

σ2 = (a ′B−1a)−1

μ =
a ′B−1c

a ′B−1a
= σ2a ′B−1c

where x is 1 × 1; a, c are k × 1; B is k × k symmetric positive definite.

320 APPENDIX A. USEFUL GAUSSIAN IDENTITIES

Appendix B

Matrix Fraction Decomposition

This appendix shows how to calculate the covariance of the LTI system

dX = AXdt + BdWt

appearing in chapter 3, using Matrix Fraction Decomposition [177].

The required covariance is given by equation (3.7) as

cov(XT) = eA(T−S)

[

Q(S, T) + cov(XS)

]

(eA(T−S)) ′,

with

Q(r, s) =

∫ s

r

e−AtBB ′(e−At) ′dt

Here, it will be shown how to calculate the eA(T−S)Q(S, T)(eA(T−S)) ′ com-

ponent, taking, without loss of generality S = 0. Let

P(T) = eATQ(0, T)(eAT) ′ =

∫T

0

eA(T−t)BB ′(eA(T−t)) ′dt.

Differentiating P(T) with respect to T gives

dP

dT
= AP + PA ′ + BB ′. (B.1)

321

322 APPENDIX B. MATRIX FRACTION DECOMPOSITION

This matrix differential equation can be solved by taking P = CD−1 where




dC/dT

dD/dT



 =



A BB ′

0 −A ′







C

D



 , (B.2)

and thus

dC/dT = AC+ BB ′D

dD/dT = −A ′D.

This can be seen by substituting these relations into equation (B.1) so that

dP

dT
=

d(CD−1)

dT

= C
dD−1

dT
+

dC

dT
D−1

= −CD−1 dD

dT
D−1 +

dC

dT
D−1

= −CD−1(−A ′D)D−1 +D−1AC+ BB ′DD−1

= PA ′ +AP + BB ′,

as required. In the third line the following identity has been used,

dD−1

dT
= −D−1 dD

dT
D−1,

which can be seen from the matrix chain rule d(XY) = XdY + dXY.

In the case considered here, P(0) = 0. The matrix differential equation

in equation (B.2) has the form dX/dT = AX, so has the general solution

X = eATX0. Since P(0) = C(0)D(0)−1, initial conditions C(0) = P(0) and

D(0) = I can be chosen, allowing equation (B.2) to be solved as



C(T)

D(T)



 = exp







A BB ′

0 −A ′



 T







C(0)

D(0)



 ,

which is a standard calculation and which yields P(T) = C(T)(D(T))−1.

Appendix C

PMCMC Derivations

Let

D = p(xb0

0)v
k
T

T∏

t=0

Nt

T−1∏

t=0

R(bt | vt)q(x
bt+1

t+1 | xbt
t)

then,

D = p(xb0

0)v
k
T

T∏

t=0

Nt

T−1∏

t=0

R(bt | vt)q(x
bt+1

t+1 | xbt
t)

p(x
bt+1

t+1 | xbt
t)

p(x
bt+1

t+1 | xbt
t)

vbt
t

vbt
t

,

= p(xk
0:T)v

k
T

T∏

t=0

Nt

T−1∏

t=0

vbt
t

(
R(bt | vt)q(x

bt+1

t+1 | xbt
t)

p(x
bt+1

t+1 | xbt
t)v

bt
t

)

.

Noting that vbt
t is the normalized weight (except when t = 0, when it is

1/N0), this is

D = p(xk
0:T)

T∏

t=1

Ntw
bt
t∑

i wi
t

T−1∏

t=0

(
R(bt | vt)q(x

bt+1

t+1 | xbt
t)

p(x
bt+1

t+1 | xbt
t)v

bt
t

)

,

= p(xk
0:T)

1
∏T

t=1
1

Nt

∑
i wi

t

T−1∏

t=0

(

w
bt+1

t+1

R(bt | vt)q(x
bt+1

t+1 | xbt
t)

p(x
bt+1

t+1 | xbt
t)v

bt
t

)

.

The denominator of the first fraction is the approximate (estimated) likeli-

hood from equation (4.8), and using the definition of the weights in equa-

323

324 APPENDIX C. PMCMC DERIVATIONS

tion (4.7), this expression simplifies to

D =
p(xk

0:T)

p̂ (y1:T)

T−1∏

t=0

p(yt+1 | xk
1:T)

=
p(xk

0:T)p(y1:T | xk
0:T)

p̂ (y1:T)
,

as given in equation (4.13).

Appendix D

Numerical Solution of

Langevin SDEs

Chapters 5 and 6 deal with systems whose dynamics can be modelled by

non-linear Langevin stochastic differential equations. These models do not

have analytical solutions for their density evolution and so numerical in-

tegration is necessary in order to derive the corresponding state transition

densities required for inference. This appendix outlines the numerical in-

tegration scheme used in those chapters. The SDEs of interest are Langevin

equations of the form

d2x = f(x)dt+ g(x)dWt, (D.1)

where dWt is the infinitesimal change of a standard Brownian motion at

time t. This can be rewritten as a system of two first order SDEs, introdu-

cing a velocity variable ẋ:

ẋdt = dx (D.2)

dẋ = f(x)dt+ g(x)dWt. (D.3)

325

326 APPENDIX D. NUMERICAL SOLUTION OF LANGEVIN SDES

These SDEs are really just shorthand for integral equations, i.e.

∫
ẋdt =

∫
dx

∫
dẋ =

∫
f(x)dt+

∫
g(x)dWt,

and it is these integrals that are approximated numerically.

Langevin equations occur in statistical physics and chemistry and their

numerical integration has been studied in that context, especially with re-

spect to the simulation of Langevin systems in molecular dynamics. Early

approaches to the simulation of these equations used forward Euler-Maruyama

schemes [318] (essentially just Euler schemes applied to stochastic equa-

tions, see e.g. [319]), but since then a number of improved schemes have

been proposed. These include that of [320], a third order velocity-free

scheme related to Verlet integrators for non-stochastic systems, and a series

of methods based on Runge-Kutta integrators adapted for the stochastic

case, for example the second order scheme in [321]. Such schemes suffer

from the need for multiple evaluations of the force term f(xt), which tends

to be the main computational cost of these methods, especially in the con-

stant noise case g(xt) = σ.

Higher order schemes based on the ‘stochastic expansion’ [322] of the

SDEs are also available. These have the disadvantage of requiring the

evaluation of derivatives of the force terms unlike stochastic Runge-Kutta

schemes. However, the Gaussian process approximations used in chapters

5 and 6 make this quite straightforward, although the question of its nu-

merical stability remains. A number of fourth-order schemes of this type

are available, including [323], upon which the scheme in this appendix is

based; see e.g. [322], [324] and [325] and the references therein.

In [322], Euler-Maruyama, stochastic Runge-Kutta and stochastic ex-

pansion methods are compared. There it is concluded that stochastic ex-

pansion methods offer an advantage over Runge-Kutta and Euler methods

in terms of accuracy, but that Runge-Kutta methods may offer better com-

327

putational efficiency due to their simpler form and avoidance of derivat-

ive evaluation for systems of many objects. Another comparison is found

in [325] with a particular emphasis on the accuracy of the approximation

of the stationary density, with methods compared using their approxima-

tion of the exactly solvable linear stochastic oscillator (see section D.6). It

is found that both leapfrog and the fully implicit midpoint Euler method

(a Runge-Kutta scheme) correctly find the state distribution in the linear

case, although these latter methods are expensive in the non-linear case

due to their implicit form, which requires the solution of a non-linear sys-

tem. Leapfrog methods require velocity and position estimates at offset

times, so require a slight modification of the inference scheme in order to

accommodate them.

The scheme presented in this appendix is based on that in [323], al-

though here only the lower-order parts of that scheme are used. This leaves

it somewhat similar to the scheme in [320], at least in the position compon-

ent. The scheme in [323] was chosen partly because of its intuitive deriva-

tion and the ease with which it could be truncated to give a scheme with a

simple functional dependence on the value of f(xt), especially in the posi-

tion component. This is used for (partial) system identification in chapters 5

and 6. However, it is clear that such approximations can be found for other

schemes; indeed some schemes not involving derivatives might be better

suited to this. The basic idea of these approximations is to rearrange the

scheme to give an expression for f(xt) in terms of the system state, with sys-

tem noise and intractable terms in the expansion approximated as a single

noise term. This gives a noisy ‘pseudo-observation’ of the function at a par-

ticular position f(xt), which can be used to build an estimate of its form.

In chapters 5 and 6, the same truncated numerical scheme has been

used for both system identification and in forward simulation. However,

use of the same integrator in both applications is not necessary and thus

the more accurate schemes available might, in fact, be better choices for

forward simulation. The use of more accurate integration schemes might

328 APPENDIX D. NUMERICAL SOLUTION OF LANGEVIN SDES

improve the performance of the methods in those chapters and thus these

schemes warrant further investigation, although this has not been pursued

further here.

The focus in this appendix is on the development of a single-step scheme,

but an alternative is to use multi-step schemes, in which the state values at

a series of (unobserved) intermediate points are calculated. These methods

are briefly discussed in section D.5. A book-length review of the numer-

ical integration of general SDEs is given in [176], and [319] gives a good

introduction to the area.

This appendix is structured as follows. Section D.1 gives some simple

Euler-Maruyama schemes for Langevin SDEs. Section D.2 derives the uni-

variate and multivariate higher order schemes used in chapters 5 and 6.

Section D.3 gives transition densities for the schemes in section D.2 in the

case of random and non-random force terms. Section D.4 discusses the

trade-off that exists in particle filtering algorithms between more accur-

ate numerical integration schemes for which these densities are intractable

and less accurate schemes with tractable densities. Section D.5 briefly in-

troduces multi-step schemes, in particular the Bayesian imputations ap-

proach. Finally, section D.6 compares three versions of the higher order

scheme developed with the Euler schemes in section D.1.

D.1 Euler-Maruyama Schemes

The simplest approach to numerical integration is the forward Euler-Maruyama

scheme, which gives the approximation

ẋt+h = ẋt + f(xt)h+ g(xt)Zt (D.4)

xt+h = xt + ẋth, (D.5)

where Zt ∼ N (0, hI). This is simply the standard Euler scheme applied to a

stochastic system. It is a fully explicit method, with all necessary quantities

for its calculation available at time t. Unfortunately using this scheme for

D.1. EULER-MARUYAMA SCHEMES 329

single-step integration from a known starting value leads to a point estim-

ate of the particle’s position at t + h, which makes it unsuitable for use in

approximating a transition density, or at least likely to lead to difficulties

with many Bayesian inference methods.

A simple modification that gives a non-degenerate state distribution at

t+h is to use a two-step scheme, where a step of the forward Euler scheme

to t+ h/2 is calculated first, followed by a second step from t+ h/2 to t+ h,

giving

ẋt+h/2 = ẋt + h/2f(xt) + g(xt)Zt

xt+h/2 = xt + h/2ẋt

ẋt+h = ẋt+h/2 + h/2f(xt+h/2) + g(xt+h/2)Zt+h/2

xt+h = xt+h/2 + h/2ẋt+h/2,

with Zt and Zt+h/2 both being distributed as N (0, h/2I). This integration

scheme gives the predictive distribution of xt+h as

p(xt+h|xt, ẋt, U) ∼ N

(

xt + ẋth+
h2

4
f(xt),

h3g2(xt)

8

)

,

but the predictive distribution of ẋt+h is non-Gaussian (except in the linear

case), due to its dependence on f(xt+h/2), with xt+h/2 itself being a (Gaus-

sian) random variable. In the tests in section D.6 this scheme tends to un-

derestimate the variance of the particle’s position xt+h.

A second simple modification is to use a semi-implicit Euler scheme,

where the t+ h velocity is used in the standard Euler update:

ẋt+h = ẋt + f(xt)h+ g(xt)Zt

xt+h = xt + ẋt+hh (D.6)

where Zt ∼ N (0, hI). The scheme is called semi-implicit because it makes

use of ẋt+h to estimate xt+h, but uses xt rather than xt+h to estimate ẋt+h,

which would make the scheme fully implicit. The semi-implicit scheme,

330 APPENDIX D. NUMERICAL SOLUTION OF LANGEVIN SDES

unlike the fully implicit scheme is straightforward to calculate for Langevin

equations due to the simple form of equation (D.2). It gives the predictive

distribution of xt+h as

p(xt+h|xt, ẋt, U) ∼ N
(

xt + ẋth+ h2f(xt), h
3g2(xt)

)
,

and that of ẋt+h as

p(ẋt+h|xt, ẋt, U) ∼ N
(

ẋt + hf(xt), hg2(xt)
)

.

In the tests in section D.6 this scheme tends to overestimate the variance of

the particle’s position xt+h. A simple modification of the scheme that can

still be easily evaluated for Langevin systems is the semi-implicit midpoint

Euler scheme that modifies the position update step in equation (D.6) to be

xt+h = xt + 1/2(ẋt + ẋt+h)h.

In the tests in section D.6, this scheme gave good estimates of the state

variance over a single step. All these Euler schemes are consistent first

order schemes [176].

D.2 Higher Order Scheme

Following the method of [323], a higher-order integration scheme for Langevin

equations can be developed, although here the scheme is truncated at a

lower level of accuracy than in [323] due to its application in system iden-

tification. The scheme requires higher order derivatives of the the f and g

functions to be available. For clarity, the scheme is first developed in the

single object case, and extended to the multi-object case in section D.2.1.

The system in (D.2)-(D.3) can be written in matrix-vector form as

dX = F(X)dt+G(X)dWt (D.7)

D.2. HIGHER ORDER SCHEME 331

where

X(t) =



x(t)

ẋ(t)



 , F(X) =



 ẋ

f(x)



 , G(X) =



 0

g(x)



 . (D.8)

The update from time t to t+ h is given by

δX =

∫ t+h

t

dX =

∫ t+h

t

F(X)ds+

∫ t+h

t

G(X)dWs. (D.9)

To make further progress F(X) is expanded in space (the X dimension) using

a Taylor expansion. This is possible because F(X) is assumed to be a smooth

function in space. Expansion in the time dimension is not possible with

a simple Taylor expansion because of the stochastic nature of F(X) with

respect to time. For simplicity of exposition x and ẋ will be considered as

one-dimensional quantities x and ẋ here; the following section details how

to extend this to the multi-dimensional case. The standard Taylor series

expansion is

F(X(t+ r)) = F(X(t)) +

(
∂F

∂x

)

t

δx+

(
∂F

∂ẋ

)

t

δẋ

+
1

2

(
∂2F

∂x2

)

t

δx2 +

(
∂2F

∂x∂ẋ

)

t

δxδẋ+
1

2

(
∂2F

∂ẋ2

)

t

δẋ2 + ...

From (D.8) it can be seen that

∂F

∂x
=



 0

∂f
∂x



 ,
∂F

∂ẋ
=



1

0



 ,

∂2F

∂x2
=



 0

∂2f
∂x2



 ,
∂2F

∂x∂ẋ
= 0,

∂2F

∂ẋ2
= 0,

and so

F(X(t+ r)) = F(X(t)) +




δẋ

(
∂f
∂x

)
t
δx+ 1

2

(
∂2f
∂x2

)

t
δx2 + ...



 . (D.10)

332 APPENDIX D. NUMERICAL SOLUTION OF LANGEVIN SDES

To incorporate terms in f that depended on ẋ (for example a resistance

term) the second element of ∂F
∂ẋ

would become ∂f
∂ẋ

and so the expansion

in the second component of (D.10) would be the full Taylor expansion of f

with respect to both x and ẋ (rather than just x). This is not considered here.

In order to carry out numerical integration it is necessary to express δX

in terms of the timestep h. This can be done by substituting the expansion

of F and a similar expansion of G into (D.9). In this work systems with

constant noise are primarily of interest (at least in the first instance) and so

henceforth it will be assumed that g(x) = σ; this assumption is not neces-

sary, but relaxing it gives rise to a more complicated integrator. This gives

an expression for δX

δX =

∫ t+h

t

F(Xt) +




δẋ

(
∂f
∂x

)
t
δx+ 1

2

(
∂2f
∂x2

)

t
δx2 + ...



ds+

∫ t+h

t



0

σ



dWs(D.11)

This can be found in terms of h by noting that δX =
[
δx δẋ

] ′
and using

progressive approximations of δx and δẋ derived from equation (D.11) sub-

stituted back into (D.11) in order to derive increasingly high-order terms,

as shown in [323] . In order to do this it is necessary to note that
∫t+r

t
dWs

is O(r
1/2) (since it is a Gaussian with mean 0 and variance r). Writing δX

(k)
r

to denote the terms of δX at time t+ r of order rk, so that δXr =
∑

k δX
(k)
r ,

δX
(1/2)
r =

∫ t+r

t



0

σ



dWs =



 0

σZ1(r)





where Z1(r) =
∫t+r

t
dWs ∼ N (0, r). The first order terms are given by the

first term in the ds integral

δX
(1)
r =

∫ t+r

t

F(Xt)ds =



 ẋt

f(xt)



 r.

The O(h
3/2) terms are the first to require substitution of the δX term back

D.2. HIGHER ORDER SCHEME 333

into equation (D.11), since it is known that δẋ has a component of O(r
1/2)

and thus the time integral of δẋ will lead to an O(r
3/2) term, so

δX
(3/2)
r =

∫ t+r

t



δẋ
(1/2)
s

0



ds

=

∫ t+r

t



σZ1(s)

0



ds

=



σZ2(r)

0



 ,

where Z2(r) =
∫t+r

t
Z1(s)ds ∼ N (0, 1

3
r3), and cov (Z1(r), Z2(r)) =

1
2
r2. In

order to get the next term δX(2), the the time integrals of the O(r) compon-

ents of δX need to be considered so that

δX
(2)
r =

∫ t+r

t



 δẋ
(1)
s

(
∂f
∂x

)
t
δx
(1)
s



ds

=

∫ t+r

t



 f(xt)s
(

∂f
∂x

)
t
ẋts



ds

=




1
2
r2f(xt)

1
2
r2
(

∂f
∂x

)
t
ẋt



 .

The next term in the expansion δX(
5/2) is found by considering the time

integral of any O(r
3/2) terms.

δX
(5/2)
r =

∫ t+r

t



 δẋ
(3/2)
s

(
∂f
∂x

)
t
δx
(3/2)
s



ds

=

∫ t+r

t



 0
(

∂f
∂x

)
t
σZ2(s)



ds

=



 0
(

∂f
∂x

)
t
σZ3(r)





334 APPENDIX D. NUMERICAL SOLUTION OF LANGEVIN SDES

where Z3(r) =
∫t+r

t
Z2(s)ds ∼ N

(
0, r5

20

)
, with cov(Z1(r), Z3(r)) =

1
6
r3 and

cov(Z2(r), Z3(r)) =
1
8
r4.

The δX(3) term is found by considering the time integral of any O(r2)

terms, but these include δẋ terms up to O(r2) and δx terms up to O(r) be-

cause δx2 appears in the original expansion.

δX
(3)
r =

∫ t+r

t




δẋ
(2)
s

(
∂f
∂x

)
t
δx
(2)
s +

1
2

(
∂2f
∂x2

)

t

(
δx
(1)
s

)2



ds

=

∫ t+r

t




1
2
s2
(

∂f
∂x

)
t
ẋt

1
2
s2f(xt)

(
∂f
∂x

)
t
+ 1

2

(
∂2f
∂x2

)

t
(ẋts)

2



ds

=




1
6
r3
(

∂f
∂x

)
t
ẋt

1
6
r3f(xt)

(
∂f
∂x

)
t
+ 1

6
r3
(

∂2f
∂x2

)

t
(ẋt)

2





Here, δẋ
(3)
r includes the first occurrence of the second partial derivative

of f. For Gaussian process approximations of f this is likely to be quite

unstable, with substantial variance in its estimates. Furthermore, the δx
(3)
r

term contains the partial derivative of f, complicating the functional form

of the relationship between xt, ẋt and f(xt). Therefore, this δX(3) term is

the last that is considered here. More accurate integrators are possible by

continuing this line of reasoning, although the expansion here also makes it

clear that the δX(4) term will contain a non-Gaussian term, as it will involve

the time integral of
(
δx(

3/2)
)2

, which will be the time integral of the square

of a Gaussian.

The following numerical integrator, therefore, is suited to the inference

task:

δX =



 ẋth+ σZ2 +
1
2
f(xt)h

2

σZ1 + f(xt)h+
1
2

(
∂f
∂x

)
t
ẋth

2 + σ
(

∂f
∂x

)
t
Z3



+O(h3).

D.2. HIGHER ORDER SCHEME 335

with







Z1

Z2

Z3





 ∼ N





0,







h h2/2 h3/6

h2/2 h3/3 h4/8

h3/6 h4/8 h5/20













D.2.1 Multivariate Scheme

The integrator above can be generalized fairly easily to multivariate x and

ẋ (at least for low-order terms). For the n dimensional case (with constant

noise)

δX =
∫ t+h

t

F(X)ds+

∫ t+h

t



0

B



dWs

where

δX =
















δx1

...

δxn

δẋ1

...

δẋn
















, F(X) =
















ẋ1

...

ẋn

f1(x)

...

fn(x)
















,

and B an n × n matrix giving the Cholesky decomposition of the noise

covariance in the evolution of ẋ. In this case F(X) can be expanded using

the multivariable Taylor expansion

F(X(t+ r)) = F(X(t)) +
n∑

i=1

∂F

∂xi

δxi +

n∑

i=1

∂F

∂ẋi

δẋi

+
1

2

n∑

i=1

n∑

j=1

∂2F

∂xixj

δxiδxj +H.O.T.

336 APPENDIX D. NUMERICAL SOLUTION OF LANGEVIN SDES

Note that here none of the O(δx2) terms involving derivatives of ẋi are

present because

∂F

∂xi

=
















0

...

0

∂f1

∂xi

...

∂fn

∂xi
















,
∂F

∂ẋi

=
















δi=1

...

δi=n

0

...

0
















,

where fi is the ith dimension of f function and δi=j is 1 when i = j and

0 otherwise. Therefore, the second partial derivatives involving ẋi are all

zero. This means that

F(X(t+ r)) = F(X(t)) + r



 Iδẋ

Jtδx+O(δx2)





where Jt is the Jacobian of f at time t. Therefore the same logic as in the

univariate case can be followed in order to arrive at the numerical integ-

rator

δX =



 hẋt + BZ2 +
1
2
h2f(xt)

BZ1 + hf(xt) +
1
2
h2Jtẋt + JtBZ3



+O(h3) (D.12)

where Z1, Z2 and Z3 are multivariate (dimension n) Gaussian distributed

random variables with zero mean and covariance given by

cov













Z1

Z2

Z3











 =







hIn
h2/2In

h3/6In

h2/2In
h3/3In

h4/8In

h3/6In
h4/8In

h5/20In





 , (D.13)

since the components of, say, Z1 are independent of each other but correl-

ated with the same component of Z2 and Z3.

In general the integrator in equation (D.12) cannot be inverted to find

D.3. TRANSITION DENSITIES 337

both f(xt) and Jt, since it provides 2n equations, but f(xt) and Jt contain

n(n+1) unknown quantities, so this system is only fully determined when

n = 1. However, the first (position) part of the integrator can be inverted

to obtain a noisy observation of f(xt), since it only contains the n unknown

components of f(xt).

D.3 Transition Densities

Since these numerical integration schemes are to be used in filtering, it is

necessary to evaluate their one-period transition densities, i.e. the (approx-

imate) conditional distribution of Xt+h given Xt given by these integrators.

Conditioning additionally on the function f (and its Jacobian) equation

(D.12) along with the distribution of the Z random variables in equation

(D.13) can be used to get the transition density

p







xt+h

ẋt+h



 | Xt, f(xt), Jt



 ∼ N
(
μt+h|t, Σt+h|t

)
(D.14)

with

μt+h|t =



 xt + hẋt +
h2

2
f(xt)

ẋt + hf(xt) +
h2

2
Jtẋt





Σt+h|t =




h3

3
Σ h2

2
Σ+ h4

8
ΣJT

t

h2

2
Σ+ h4

8
ΣJT

t hΣ+ h3

3
ΣJT

t +
h5

20
JtΣJT

t





where Σ = BBT , the covariance of the noise in the original SDE.

This distribution is useful if a direct representation of the function f is

known, for example in a particle filter in which each particle contains a

sample of f.

In the work in chapter 5, however, the function f is treated as unknown

and is modelled via a Gaussian process assumption. This leads to prob-

abilistic estimates of f(xt) and Jt, with these having a joint Gaussian dis-

338 APPENDIX D. NUMERICAL SOLUTION OF LANGEVIN SDES

tribution as described in section 5.2.2. Treating the f function as a random

variable does not affect the validity of the numerical scheme in the cases of

interest here. It is assumed that f exists and is smooth, so that the use of

its space derivatives in deriving the numerical scheme remains valid. Hav-

ing components of its realization at various points as (Gaussian) random

variables simply models the fact that its value is not precisely known there.

If the estimate of f is derived from previous observations then the uncer-

tainty in that estimate is due to the state process noise up to the time of

those observation, and the observation noise when making them. For the

filtering models that are considered here, this noise is independent from

future process and observation noise (and thus the Z variables). None of

the expansions or integrals in section D.2 and D.2.1 are affected by f or its

derivatives being random variables.

Treating f(xt) and Jt in the integration scheme in equation (D.12) as

random is troublesome since the term JtBZ3 occurs in the update for the

ẋ component of the state. This term involves the sum of products of in-

dependent (non-zero mean) Gaussians (from Jt) and zero-mean Gaussians

(from BZ3) and will have a distribution something like a sum of product

normal distributions, which will likely be distinctly non-Gaussian and its

density will be difficult to calculate. Even if this could be found, the density

of the sum of this with another Gaussain term (from the preceding terms)

would be required. Perhaps progress could be made by making a Gaussian

approximation to this distribution through, for example, moment match-

ing, although it is not clear how good this would be and it is not pursued

further here.

A simple solution is to disregard this term from the numerical integra-

tion, which leaves the scheme as O(h2) overall (although it remains O(h
5/2)

for the position elements of the process) but has the significant advantage

that all remaining terms are Gaussian. Doing this, we get the state update

D.3. TRANSITION DENSITIES 339

equation



xt+h

ẋt+h



 =



xt

ẋt



+



 hẋt + BZ2 +
1
2
h2f(xt)

BZ1 + hf(xt) +
1
2
h2Jtẋt



+



 O(h3)

O(h
5/2)



 . (D.15)

Using the fact that the noise variables Z are independent of the uncertainty

in the Gaussian process, and thus have zero covariance with the random

variables arising from that, the state transition density is given by

p







xt+h

ẋt+h



 | X1:t



 ∼ N
(
μ∗

t+h|t, Σ
∗
t+h|t

)
(D.16)

with

μ∗
t+h|t =



 xt + hẋt +
h2

2
f̄(xt)

ẋt + hf̄(xt) +
h2

2
J̄tẋt





Σ∗
t+h|t =



 cov(xt+h) cov(xt+h, ẋt+h)

cov(xt+h, ẋt+h) cov(ẋt+h)





cov(xt+h) =
h3

3
Σ+

h4

4
cov(f(xt), f(xt))

cov(xt+h, ẋt+h) =
h2

2
Σ+

h3

2
cov(f(xt)) +

h4

4
cov(f(xt), Jtẋt)

cov(ẋt+h) = hΣ+ h2cov(f(xt)) + h3cov(f(xt), Jtẋt)

+
h4

4
cov(Jtẋt).

In the above cov(y) refers to the covariance of the y vector with itself and

f̄(xt) and J̄t refer to the mean vector and matrix of the random vector f(xt)

and random matrix Jt, respectively.

In the case of a Gaussian process prior being applied to f the covariances

are given by the mean of the process and its first derivative. The elements

of cov(f(xt)) are given by the covariance of the Gaussian process given by

equation (5.7). The term cov(f(xt), Jtẋt) can be related to terms known from

340 APPENDIX D. NUMERICAL SOLUTION OF LANGEVIN SDES

the Gaussian process by

cov(f(xt), Jtxt) = cov(f(xt), ẋ1J∙1 + ẋ2J∙2 + ...)

=
∑

i

ẋicov(f(xt), J∙i)

where ẋi is the ith component of ẋt and J∙i is the ith column of matrix Jt

and the elements of cov(f(xt), J∙i) are given by the covariance between the

Gaussian process and its first derivatives from equation (5.10). Similarly,

cov(Jtẋt) can be written in terms of known covariances from the Gaussian

process since

cov(Jtẋt) = cov(ẋ1J∙1 + ẋ2J∙2 + ...) (D.17)

=
∑

i

∑

j

ẋiẋjcov(J∙i, J∙j) (D.18)

where the elements of cov(J∙i, J∙j) are given by the covariance between first

derivatives of f from equation (5.11). In the case of the SLAM problem in

chapter 5 the f function is taken to be the gradient of a Gaussian process

and so further derivatives are required; these are given in section 5.2.2.

D.4 Trade-off Between Particle Filter Types

The difficulty in evaluating the state transition density in cases such as that

above and in multi-step schemes (see section D.5, below) means that there

is a trade-off between simulation-only bootstrap particle filters (and meth-

ods based on them) and other types of particle filter that require evaluation

of the transition density.

Simulation-only filters can only propose from the transition distribu-

tion or distributions that can be related to this in a direct and simple way,

such as one with a constant multiple of its variance. However, they are

able to make use of more accurate numerical integration schemes that can

be simulated from, but for which the transition density is intractable. These

D.5. MULTI-STEP SCHEMES FOR INFERENCE 341

schemes might offer better accuracy when the dynamical model is highly

non-linear (so that simple integration schemes perform badly) with a reas-

onable level of state transition noise and not particularly informative ob-

servations. This is because, in this case, the distribution p(xt | xt−1) from

which samples are drawn might be a better approximation of the posterior

p(xt | xt−1, yt) (the ideal importance density) than a proposal that can con-

sider the observation yt but can only use an inaccurate numerical scheme

to approximate p(xt | xt−1). On the other hand, if there is little noise in

the dynamical model or if observations are very informative, the simulated

trajectories are likely to be densely concentrated in areas that do not coin-

cide well with the areas of high posterior density and the bootstap filter is

likely to give much worse estimates than an approximately adapted filter

with a less accurate integration scheme.

The appropriate choice of filter and numerical integration scheme is,

unfortunately, therefore somewhat application dependent.

D.5 Multi-Step Schemes For Inference

Multi-step schemes using n integration steps of length h
n

in place of a single

step of length h are an obvious way of reducing integration error. Such

schemes are well suited to simulation at arbitrary accuracy, and any single

step scheme can be used to make each step. However, in general the trans-

ition densities of such schemes will be intractable because the random vari-

ables generated in each step will undergo numerous non-linear mappings

in subsequent steps. This limits the usefulness of these simple multi-step

schemes for inference in all but simulation-only methods.

However, multi-step schemes can be developed for any single-step scheme

in which the transition density is tractable using a Bayesian imputation ap-

proach [91; 326; 327; 58]. The basic idea of this is to set up a grid of variables

Xt, Xt+h
n
, Xt+ 2h

n
, ..., Xt+h at times between observations (here taken to be at

t and t+h). The corresponding state space model for such a scheme is illus-

342 APPENDIX D. NUMERICAL SOLUTION OF LANGEVIN SDES

Figure D.1: State space model corresponding to the use of Bayesian im-
putation for numerical integration

trated in figure D.1. The transition density between these variables is then

given by a numerical integration scheme with tractable likelihood. For the

Gaussian diffusion systems considered here, this results in the transition

density

p
(
Xt+(k+1)Δ | Xt+kΔ

)
= N

(
Xt+(k+1)Δ;α (Xt+kΔ, Δ) , β (Xt+kΔ, Δ)

)

where Δ = h/n, with the functions α and β given by the integration scheme.

For example, for the Euler-Maruyama scheme for the system in equation

(D.7)

α (Xt+kΔ, Δ) = F (Xt+kΔ)Δ

β (Xt+kΔ, Δ) = (G(Xt+kΔ))
2
Δ.

These intermediate variables can then be inferred using standard meth-

ods such as MCMC. Within the particle filter, the entire set of variables

{Xt+h
n
, Xt+ 2h

n
, ..., Xt+h} can be defined as the filter state at time t + h, and

this can be proposed through recursive simulation and weighted in the

usual way as in [58], for example. To approximately adapt the proposal

to the next observation, Brownian bridge proposals are necessary (see e.g.

chapter 6) to sample intermediate states.

An alternative method is to simulate from an accurate multi-step nu-

merical scheme and then to use the samples generated to infer the first two

D.6. COMPARISON OF NUMERICAL SCHEMES 343

moments of the true distribution, which is known to be Gaussian in the

Gaussian diffusion case. The unscented transform of [26] offers a possible

efficient way to do this, although all such methods will require numerous

evaluation of the SDEs’ non-linear governing functions.

Such numerical schemes are computationally expensive, but offer a way

of improving integration accuracy when single step methods with tractable

likelihoods are insufficient and simulation-only methods do not work well.

It might also be possible to use adaptive schemes to estimate the number of

intermediate states necessary for the required levels of integration accuracy.

D.6 Comparison of Numerical Schemes

The Euler and higher-order methods shown in this appendix have been

compared through numerical integration of the linear SDE system



dx

dẋ



 =



 0 1

−λ 0







x

ẋ



dt+



0

σ



dWt.

This one dimensional system is a simple linear stochastic oscillator with a

mean reversion coefficient of −λ and can be analytically solved as shown in

chapter 3. This can be viewed as the one dimensional motion of a particle

inside a parabolic potential field U = 1
2
λ2, subject to noise.

In order to test the methods a set of experiments were conducted using

the parameters λ = 10 and σ = 1, and simulating the true system from

t = 0 to t = 2 with the initial values x = 0 and ẋ = 1. Following this, nu-

merical integration from t = 2 to t = 3 was performed using each method

with a time step h of 0.1. A set of 20 experiments were conducted for each

integration method, each with a different simulated path from t = 0 to

t = 2. The integration methods were tested by generating 10,000 forward

simulation paths and comparing the mean and standard deviation of these

to the true values calculated from the analytic solution. Figures D.2 and

D.3 show the results of one of these tests for multiple and single periods,

344 APPENDIX D. NUMERICAL SOLUTION OF LANGEVIN SDES

Method error in mean error in std. dev.

Position (x)
Forward Euler 1.16 (0.618) 0.306 (0.00778)
Semi implicit Euler 0.271 (0.201) 0.124 (0.00932)
Semi implicit midpoint Euler 0.539 (0.331) 0.147 (0.0125)
Higher order (no Jacobian terms) 0.535 (0.338) 0.153 (0.0112)
Higher order (no Z3 term) 0.107 (0.0572) 0.0331 (0.0101)
Higher order 0.107 (0.0572) 0.0136 (0.00555)

Velocity (ẋ)
Forward Euler 3.71 (2.04) 0.757 (0.0272)
Semi implicit Euler 1.47 (0.881) 0.0732 (0.0237)
Semi implicit midpoint Euler 1.98 (1.01) 0.388 (0.0232)
Higher order (no Jacobian terms) 1.96 (1.02) 0.404 (0.0287)
Higher order (no Z3 term) 0.341 (0.178) 0.1 (0.0254)
Higher order 0.34 (0.178) 0.041 (0.0148)

Table D.1: Sum (standard deviation) of absolute error over ten integration
steps (from t = 2.1 to t = 3) in the estimate of the mean and of the standard
deviation of position x and velocity ẋ for a range of integration methods

respectively. The coloured lines shown are those from different integration

methods, showing the mean and three standard deviations envelope for

each method, generated by simulating 10,000 paths using each integrator.

The Euler methods tested were the forward, semi-implicit and semi-

implicit midpoint Euler methods described in section D.1. The higher or-

der methods tested were the one given in equation (D.11), and two vari-

ants, one without any terms involving the Jacobian and the other without

the term involving Z3, in order to see how well these simplified methods

work. This led to the results in table D.1 giving the sum of absolute errors

(not mean squared errors to avoid later errors completely dominating the

calculations) between true and simulated means and standard deviations

for both x and ẋ over the ten integration steps from t = 2.1 to t = 3. Since

one step ahead integration is of particular interest the same results were

collected for the 1-step ahead point t = 2.1 and are given in table D.2.

From these results it can be seen that higher order methods work much

D.6. COMPARISON OF NUMERICAL SCHEMES 345

Method error in mean error in std. dev.

Position (x)
Forward Euler 0.0126 (0.0105) 0.0181 (6.62e-014)
Semi implicit Euler 0.0129 (0.00948) 0.0136 (0.000197)
Midpoint implicit Euler 0.00259 (0.00153) 0.00227 (0.000108)
Higher order (no Jacobian terms) 0.00258 (0.00151) 0.000205 (0.000125)
Higher order (no Z3 term) 0.00258 (0.00151) 0.000205 (0.000125)
Higher order 0.00258 (0.00151) 0.000205 (0.000125)

Velocity (ẋ)
Forward Euler 0.0757 (0.0444) 0.0053 (0.00235)
Semi implicit Euler 0.0741 (0.0454) 0.00552 (0.00197)
Midpoint implicit Euler 0.0765 (0.0454) 0.00523 (0.00203)
Higher order (no Jacobian terms) 0.0756 (0.0453) 0.00503 (0.00258)
Higher order (no Z3 term) 0.00527 (0.00426) 0.00503 (0.00258)
Higher order 0.00523 (0.00424) 0.00209 (0.00136)

Table D.2: Sum (standard deviation) of absolute error over a single integ-
ration step in the estimate of the mean and of the standard deviation of
position x and velocity ẋ for a range of integration methods

better than the Euler methods over one or several periods. Even the simplest

higher order method involving no Jacobians is as good as the best Euler

scheme, the semi-implicit midpoint Euler. Removal of the term including

Z3 degrades the estimation of the standard deviation for the velocity com-

pared to the full scheme, but otherwise does not significantly affect per-

formance over one period.

346 APPENDIX D. NUMERICAL SOLUTION OF LANGEVIN SDES

Figure D.2: Comparison of multi-period integration by three methods, for-
ward Euler (blue), semi implicit Euler (red) and the higher order method
described in the text (green). Solid lines show mean of 10,000 simulated
paths and dotted lines show three standard deviations from the mean. The
true mean and three standard deviations are shown by the black circles and
grey shading, respectively. The upper graph shows the position x results
and the lower graph shows the velocity ẋ results. The preceding simulation
is shown by a solid black line

D.6. COMPARISON OF NUMERICAL SCHEMES 347

Figure D.3: Detail from figure D.2 above, showing single period integration
by each of the three methods for the first period

348 APPENDIX D. NUMERICAL SOLUTION OF LANGEVIN SDES

Bibliography

[1] J. Murphy and S. Godsill, “Joint Bayesian removal of impulse

and background noise,” in Acoustics, Speech and Signal Processing

(ICASSP), IEEE International Conference on, pp. 261–264, IEEE, 2011.

[2] H. Christensen, J. Murphy, and S. Godsill, “Forecasting high-

frequency futures returns using online Langevin dynamics,” IEEE

Journal of Selected Topics in Signal Processing, vol. 6, no. 4, pp. 366–380,

2012.

[3] J. Murphy and S. Godsill, “Simultaneous localization and mapping

for non-parametric potential field environments,” in Workshop on

Sensor Data Fusion: Trends, Solutions, Applications (SDF2012), pp. 1–

6, IEEE, 2012.

[4] J. Murphy and S. Godsill, “Structure inference for networks with gen-

eral non-parametric inter-object relationships,” in Proceedings of 15th

International Conference on Information Fusion, IEEE, July 2012.

[5] J. Berger, “The case for objective Bayesian analysis,” Bayesian Ana-

lysis, vol. 1, no. 3, pp. 385–402, 2006.

[6] B. De Finetti, Theory of Probability: A critical introductory treatment. Vol.

1. Wiley, 1974.

[7] M. Goldstein, “Subjective Bayesian analysis: principles and prac-

tice,” Bayesian Analysis, vol. 1, no. 3, pp. 403–420, 2006.

349

350 BIBLIOGRAPHY

[8] R. T. Cox, “Probability, frequency and reasonable expectation,” Amer-

ican Journal of Physics, vol. 14, p. 1, 1946.

[9] K. S. Van Horn, “Constructing a logic of plausible inference: a guide

to Cox’s theorem,” International Journal of Approximate Reasoning,

vol. 34, no. 1, pp. 3–24, 2003.

[10] I. Hacking, “Slightly more realistic personal probability,” Philosophy

of Science, vol. 34, pp. 311–325, December 1967.

[11] M. Colyvan, “Is probability the only coherent approach to uncer-

tainty?,” Risk Analysis, vol. 28, no. 3, pp. 645–652, 2008.

[12] T. Bayes and R. Price, “An essay towards solving a problem in the

doctrine of chances. By the late Rev. Mr. Bayes, FRS communicated

by Mr. Price, in a letter to John Canton, AMFRS,” Philosophical Trans-

actions (1683-1775), pp. 370–418, 1763.

[13] P.-S. Laplace and S. M. Stigler (trans.), “Mémoire sur la probabilité

des cause par les événments (1774) (English translation),” Statistical

Sciences, vol. 1, no. 3, pp. 359–378, 1986.

[14] G. Kitagawa, “The two-filter formula for smoothing and an imple-

mentation of the Gaussian-sum smoother,” Annals of the Institute of

Statistical Mathematics, vol. 46, no. 4, pp. 605–623, 1994.

[15] M. Briers, A. Doucet, and S. Maskell, “Smoothing algorithms for

state-space models,” Annals of the Institute of Statistical Mathematics,

vol. 62, no. 1, pp. 61–89, 2010.

[16] A. Viterbi, “Error bounds for convolutional codes and an asymptotic-

ally optimum decoding algorithm,” IEEE Transactions on Information

Theory, vol. 13, no. 2, pp. 260–269, 1967.

[17] R. Kalman, “A new approach to linear filtering and prediction prob-

lems,” Journal of Basic Engineering, vol. 82, pp. 35–45, 1960.

BIBLIOGRAPHY 351

[18] Y. Ho and R. Lee, “A Bayesian approach to problems in stochastic es-

timation and control,” IEEE Transactions on Automatic Control, vol. 9,

pp. 333–339, 1964.

[19] A. Harvey, Forecasting, structual timeseries models and the Kalman filter.

Cambridge University Press, 1990.

[20] H. E. Rauch, C. Striebel, and F. Tung, “Maximum likelihood estimates

of linear dynamic systems,” AIAA Journal, vol. 3, no. 8, pp. 1445–1450,

1965.

[21] M. Briers, A. Doucet, and S. Maskell, “Smoothing algorithms for

state-space models,” Tech. Rep. F-INFENG.TR. 498, Cambridge Uni-

versity CUED, 2004.

[22] G. J. Bierman, “Fixed interval smoothing with discrete measure-

ments,” International Journal of Control, vol. 18, no. 1, pp. 65–75, 1973.

[23] M. S. Grewal and A. P. Andrews, “Applications of Kalman filtering in

aerospace 1960 to the present [historical perspectives],” Control Sys-

tems, IEEE, vol. 30, no. 3, pp. 69–78, 2010.

[24] S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear es-

timation,” Proceedings of the IEEE, vol. 92, no. 3, pp. 401–422, 2004.

[25] M. Athans, R. Wishner, and A. Bertolini, “Suboptimal state estima-

tion for continuous-time nonlinear systems from discrete noisy meas-

urements,” IEEE Transactions on Automatic Control, vol. 13, no. 5,

pp. 504–514, 1968.

[26] S. J. Julier and J. K. Uhlmann, “New extension of the Kalman filter

to nonlinear systems,” in Proceedings of AeroSense ’97, pp. 182–193,

International Society for Optics and Photonics, 1997.

[27] E. Wan and R. Van Der Merwe, “The unscented Kalman filter for non-

linear estimation,” in Adaptive Systems for Signal Processing, Commu-

nications, and Control Symposium, pp. 153–158, IEEE, 2000.

352 BIBLIOGRAPHY

[28] K. Ito and K. Xiong, “Gaussian filters for nonlinear filtering prob-

lems,” IEEE Transactions on Automatic Control, vol. 45, no. 5, pp. 910–

927, 2000.

[29] E. A. Wan and R. Van Der Merwe, The unscented Kalman filter (in Kal-

man filtering and neural networks), ch. 7, pp. 221–280. Wiley, 2001.

[30] S. J. Julier, “The scaled unscented transformation,” in Proceedings of

the American Control Conference, vol. 6, pp. 4555–4559, IEEE, 2002.

[31] R. Van Der Merwe and E. A. Wan, “The square-root unscented Kal-

man filter for state and parameter-estimation,” in Proceedings of IEEE

International Conference on Acoustics, Speech, and Signal Processing, 2001

(ICASSP’01), vol. 6, pp. 3461–3464, IEEE, 2001.

[32] S. Sarkka, “Unscented Rauch–Tung–Striebel smoother,” Automatic

Control, IEEE Transactions on, vol. 53, no. 3, pp. 845–849, 2008.

[33] C. Andrieu, A. Doucet, and R. Holenstein, “Particle Markov chain

Monte Carlo methods,” Journal of the Royal Statistical Society: Series B

(Statistical Methodology), vol. 72, no. 3, pp. 269–342, 2010.

[34] P. Green, “Reversible jump Markov chain Monte Carlo computation

and Bayesian model determination,” Biometrika, vol. 82, no. 4, p. 711,

1995.

[35] S. Godsill and J. Vermaak, “Variable rate particle filters for tracking

applications,” Proceedings of 13th IEEE/SP Workshop on Statistical Sig-

nal Processing, pp. 1280–1285, 2005.

[36] D. MacKay, Information theory, inference, and learning algorithms. Cam-

bridge University Press, 2003.

[37] S. Kirkpatrick, C. Gelatt Jr, and M. Vecchi, “Optimization by simu-

lated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

BIBLIOGRAPHY 353

[38] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood

from incomplete data via the EM algorithm,” Journal of the Royal Stat-

istical Society. Series B (Methodological), vol. 39, pp. 1–38, 1977.

[39] C. Bishop, Pattern recognition and machine learning. Springer, 2006.

[40] S. Kullback and R. A. Leibler, “On information and sufficiency,” The

Annals of Mathematical Statistics, vol. 22, no. 1, pp. 79–86, 1951.

[41] C. Wu, “On the convergence properties of the EM algorithm,” The

Annals of Statistics, vol. 11, no. 1, pp. 95–103, 1983.

[42] R. Shumway and D. Stoffer, “An approach to time series smoothing

and forecasting using the EM algorithm,” Journal of Time Series Ana-

lysis, vol. 3, no. 4, pp. 253–264, 1982.

[43] L. E. Baum, T. Petrie, G. Soules, and N. Weiss, “A maximization tech-

nique occurring in the statistical analysis of probabilistic functions of

Markov chains,” The Annals of Mathematical Statistics, vol. 41, no. 1,

pp. 164–171, 1970.

[44] Z. Ghahramani and S. T. Roweis, “Learning nonlinear dynamical sys-

tems using an EM algorithm,” Advances in Neural Information Pro-

cessing Systems, pp. 431–437, 1999.

[45] A. Logothetis and V. Krishnamurthy, “Expectation maximization al-

gorithms for MAP estimation of jump Markov linear systems,” IEEE

Transactions on Signal Processing, vol. 47, no. 8, pp. 2139–2156, 1999.

[46] M. J. Beal, Variational algorithms for approximate Bayesian inference. PhD

thesis, University of London, 2003.

[47] M. Beal, F. Falciani, Z. Ghahramani, C. Rangel, and D. Wild, “A

Bayesian approach to reconstructing genetic regulatory networks

with hidden factors,” Bioinformatics, vol. 21, no. 3, pp. 349–356, 2005.

354 BIBLIOGRAPHY

[48] R. Mehra, “Approaches to adaptive filtering,” IEEE Transactions on

Automatic Control, vol. 17, no. 5, pp. 693–698, 1972.

[49] D. Magill, “Optimal adaptive estimation of sampled stochastic pro-

cesses,” IEEE Transactions on Automatic Control, vol. 10, no. 4, pp. 434–

439, 1965.

[50] R. Mehra, “On the identification of variances and adaptive Kal-

man filtering,” IEEE Transactions on Automatic Control, vol. 15, no. 2,

pp. 175–184, 1970.

[51] X. R. Li and V. P. Jilkov, “A survey of maneuvering target tracking,

part V: Multiple-model methods,” in Conference on Signal and Data

Processing of Small Targets, vol. 4473, pp. 559–581, 2003.

[52] H. A. Blom and Y. Bar-Shalom, “The interacting multiple model al-

gorithm for systems with Markovian switching coefficients,” IEEE

Transactions on Automatic Control, vol. 33, no. 8, pp. 780–783, 1988.

[53] X. R. Li and Y. Bar-Shalom, “A recursive multiple model approach

to noise identification,” IEEE Transactions on Aerospace and Electronic

Systems, vol. 30, no. 3, pp. 671–684, 1994.

[54] S. Sarkka and A. Nummenmaa, “Recursive noise adaptive Kalman

filtering by variational Bayesian approximations,” IEEE Transactions

on Automatic Control, vol. 54, no. 3, pp. 596–600, 2009.

[55] J. N. Yang, S. Lin, H. Huang, and L. Zhou, “An adaptive extended

Kalman filter for structural damage identification,” Structural Control

and Health Monitoring, vol. 13, no. 4, pp. 849–867, 2006.

[56] Q. Song and J.-D. Han, “An adaptive UKF algorithm for the state

and parameter estimations of a mobile robot,” Acta Automatica Sinica,

vol. 34, no. 1, pp. 72–79, 2008.

BIBLIOGRAPHY 355

[57] J. Liu and M. West, Combined parameter and state estimation in

simulation-based filtering (in Sequential Monte Carlo methods in practice),

ch. 10, pp. 197–224. Springer, 2001.

[58] A. Golightly and D. J. Wilkinson, “Bayesian parameter inference for

stochastic biochemical network models using particle Markov chain

Monte Carlo,” Interface Focus, vol. 1, no. 6, pp. 807–820, 2011.

[59] A. Beskos, O. Papaspiliopoulos, G. O. Roberts, and P. Fearnhead,

“Exact and computationally efficient likelihood-based estimation for

discretely observed diffusion processes (with discussion),” Journal of

the Royal Statistical Society: Series B (Statistical Methodology), vol. 68,

no. 3, pp. 333–382, 2006.

[60] A. Beskos, O. Papaspiliopoulos, and G. O. Roberts, “Retrospect-

ive exact simulation of diffusion sample paths with applications,”

Bernoulli, vol. 12, no. 6, pp. 1077–1098, 2006.

[61] N. Gordon, D. Salmond, and A. Smith, “Novel approach to

nonlinear/non-Gaussian Bayesian state estimation,” in IEE Proceed-

ings F (Radar and Signal Processing), vol. 140, pp. 107–113, IET, 1993.

[62] M. A. Beaumont, W. Zhang, and D. J. Balding, “Approximate

Bayesian computation in population genetics,” Genetics, vol. 162,

no. 4, pp. 2025–2035, 2002.

[63] P. Fearnhead and D. Prangle, “Constructing summary statistics for

approximate Bayesian computation: semi-automatic approximate

Bayesian computation,” Journal of the Royal Statistical Society: Series

B (Statistical Methodology), vol. 74, no. 3, pp. 419–474, 2012.

[64] P. Marjoram, J. Molitor, V. Plagnol, and S. Tavaré, “Markov chain

Monte Carlo without likelihoods,” Proceedings of the National Academy

of Sciences, vol. 100, no. 26, pp. 15324–15328, 2003.

356 BIBLIOGRAPHY

[65] K. Csilléry, M. G. Blum, O. E. Gaggiotti, and O. François, “Approx-

imate Bayesian computation (ABC) in practice,” Trends in Ecology &

Evolution, vol. 25, no. 7, pp. 410–418, 2010.

[66] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller,

“Equation of state calculations by fast computing machines,” The

Journal of Chemical Physics, vol. 21, no. 6, p. 1087, 1953.

[67] W. Hastings, “Monte Carlo sampling methods using Markov chains

and their applications,” Biometrika, vol. 57, no. 1, pp. 97–109, 1970.

[68] A. Gelfand and A. Smith, “Sampling-based approaches to calculat-

ing marginal densities,” Journal of the American Statistical Association,

vol. 85, no. 410, pp. 398–409, 1990.

[69] W. Gilks, S. Richardson, and D. Spiegelhalter, eds., Markov chain

Monte Carlo in practice. Chapman & Hall, 1996.

[70] L. Tierney, “Markov chains for exploring posterior distributions,” The

Annals of Statistics, vol. 22, no. 4, pp. 1701–1728, 1994.

[71] K. B. Athreya, H. Doss, and J. Sethuraman, “On the convergence of

the markov chain simulation method,” The Annals of Statistics, vol. 24,

no. 1, pp. 69–100, 1996.

[72] G. Roberts and A. Smith, “Simple conditions for the convergence of

the Gibbs sampler and Metropolis-Hastings algorithms,” Stochastic

Processes and their Applications, vol. 49, no. 2, pp. 207–216, 1994.

[73] G. Roberts, Strategies for improving MCMC (in Markov chain Monte

Carlo in practice), ch. 3, pp. 45–58. Chapman & Hall, 1996.

[74] S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions

and the Bayesian restoration of images,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 6, pp. 721–741, 1984.

BIBLIOGRAPHY 357

[75] D. Spiegelhalter, A. Thomas, N. Best, and W. Gilks, “BUGS: Bayesian

inference using Gibbs sampling, Version 0.30,” MRC Biostatistics

Unit, Cambridge, 1994.

[76] J. Liu, “Metropolized independent sampling with comparisons to re-

jection sampling and importance sampling,” Statistics and Computing,

vol. 6, no. 2, pp. 113–119, 1996.

[77] S. Brooks, “Markov chain Monte Carlo method and its application,”

Journal of the Royal Statistical Society: Series D (The Statistician), vol. 47,

no. 1, pp. 69–100, 1998.

[78] A. Gelfand and S. Sahu, “On Markov chain Monte Carlo accelera-

tion,” Journal of Computational and Graphical Statistics, vol. 3, no. 3,

pp. 261–276, 1994.

[79] C. Andrieu and É. Moulines, “On the ergodicity properties of

some adaptive MCMC algorithms,” The Annals of Applied Probability,

vol. 16, no. 3, pp. 1462–1505, 2006.

[80] G. O. Roberts and J. S. Rosenthal, “Coupling and ergodicity of adapt-

ive Markov chain Monte Carlo algorithms,” Journal of Applied Probab-

ility, pp. 458–475, 2007.

[81] Y. Atchadé and J. Rosenthal, “On adaptive Markov chain Monte

Carlo algorithms,” Bernoulli, vol. 11, no. 5, pp. 815–828, 2005.

[82] W. Gilks and G. Roberts, Strategies for improving MCMC (in Markov

Chain Monte Carlo in Practice), ch. 6, pp. 89–114. Chapman & Hall,

1996.

[83] G. Roberts and J. Rosenthal, “Examples of adaptive MCMC,” Journal

of Computational and Graphical Statistics, vol. 18, no. 2, pp. 349–367,

2009.

358 BIBLIOGRAPHY

[84] J. S. Rosenthal, Optimal proposal distributions and adaptive MCMC (in

Handbook of Markov Chain Monte Carlo), ch. 4, pp. 93–112. Chapman

& Hall, 2011.

[85] H. Haario, E. Saksman, and J. Tamminen, “An adaptive Metropolis

algorithm,” Bernoulli, vol. 7(2), no. 2, pp. 223–242, 2001.

[86] H. Haario, M. Laine, A. Mira, and E. Saksman, “DRAM: efficient ad-

aptive MCMC,” Statistics and Computing, vol. 16, no. 4, pp. 339–354,

2006.

[87] W. Gilks, G. Roberts, and S. Sahu, “Adaptive Markov chain Monte

Carlo through regeneration,” Journal of the American Statistical Associ-

ation, vol. 93, no. 443, pp. 1045–1054, 1998.

[88] Y. Atchadé, G. Fort, E. Moulines, and P. Priouret, Inference and Learn-

ing in Dynamic Models (in Adaptive Markov chain Monte Carlo: theory

and methods). Cambridge University Press, To Appear.

[89] H. Tian, T. Shen, B. Hao, Y. Hu, and N. Yang, “Image restoration

based on adaptive MCMC particle filter,” in Proceedings of 2nd In-

ternational Congress on Image and Signal Processing (CISP’09), pp. 1–5,

IEEE, 2009.

[90] G. Roberts, A. Gelman, and W. Gilks, “Weak convergence and op-

timal scaling of random walk Metropolis algorithms,” Annals of Ap-

plied Probability, vol. 7, no. 1, pp. 110–120, 1997.

[91] G. Roberts and J. Rosenthal, “Optimal scaling for various Metropolis-

Hastings algorithms,” Statistical Science, vol. 16, no. 4, pp. 351–367,

2001.

[92] S. L. Alder, “Over-relaxation method for the Monte Carlo evaluation

of the partition function for multiquadratic actions,” Physical Review

D (Particles and Fields), vol. 23, no. 12, pp. 2901–2904, 1981.

BIBLIOGRAPHY 359

[93] R. Neal, Suppressing random walks in Markov chain Monte Carlo using

ordered overrelaxation (in Learning in Graphical Models), pp. 205–225.

Kluwer Academic Publishers, 1998.

[94] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth, “Hybrid

Monte Carlo,” Physics letters B, vol. 195, no. 2, pp. 216–222, 1987.

[95] R. Neal, “Markov chain Monte Carlo methods based on slicing the

density function,” Technical Report 9722 Department of Statistics Uni-

versity of Toronto, 1997.

[96] R. Neal, “Slice sampling,” Annals of Statistics, vol. 31, no. 3, pp. 705–

741, 2003.

[97] E. Marinari and G. Parisi, “Simulated tempering: a new Monte Carlo

scheme,” EPL (Europhysics Letters), vol. 19, pp. 451–458, 1992.

[98] C. J. Geyer and E. A. Thompson, “Annealing Markov chain Monte

Carlo with applications to ancestral inference,” Journal of the American

Statistical Association, vol. 90, no. 431, pp. 909–920, 1995.

[99] R. H. Swendsen and J.-S. Wang, “Replica Monte Carlo simulation of

spin-glasses,” Physical Review Letters, vol. 57, no. 21, pp. 2607–2609,

1986.

[100] C. J. Geyer, “Markov chain Monte Carlo maximum likelihood,” in

Computing Science and statistics: proceedings of the 23rd symposium on

the interface, pp. 156–163, Interface Foundation, 1991.

[101] Y. Iba, “Extended ensemble Monte Carlo,” International Journal of

Modern Physics C, vol. 12, no. 5, pp. 623–656, 2001.

[102] Y. F. Atchadé, G. O. Roberts, and J. S. Rosenthal, “Towards optimal

scaling of Metropolis-coupled Markov chain Monte Carlo,” Statistics

and Computing, vol. 21, no. 4, pp. 555–568, 2011.

360 BIBLIOGRAPHY

[103] J. Propp and D. Wilson, “Exact sampling with coupled Markov

chains and applications to statistical mechanics,” Random Structures

and Algorithms, vol. 9, no. 1-2, pp. 223–252, 1996.

[104] S. Brooks, Y. Fan, and J. Rosenthal, “Perfect forward simulation

via simulated tempering,” Communications in Statistics-Simulation and

Computation, vol. 35, no. 3, pp. 683–713, 2006.

[105] P. J. Green and D. I. Hastie, “Reversible jump MCMC,” Genetics,

vol. 155, no. 3, pp. 1391–1403, 2009.

[106] M. A. Beaumont, “Estimation of population growth or decline in ge-

netically monitored populations,” Genetics, vol. 164, no. 3, pp. 1139–

1160, 2003.

[107] C. Andrieu and G. O. Roberts, “The pseudo-marginal approach for

efficient Monte Carlo computations,” The Annals of Statistics, vol. 37,

no. 2, pp. 697–725, 2009.

[108] D. J. Wilkinson, “The pseudo-marginal approach to “exact approxim-

ate” MCMC algorithms.” Web (url: http://darrenjw.wordpress.com

/2010/09/20/the-pseudo-marginal-approach-to-exact-

approximate-mcmc-algorithms/), September 2010.

[109] M. Cowles and B. Carlin, “Markov chain Monte Carlo convergence

diagnostics: a comparative review,” Journal of the American Statistical

Association, vol. 91, no. 434, pp. 883–904, 1996.

[110] S. Brooks and A. Gelman, “General methods for monitoring conver-

gence of iterative simulations,” Journal of Computational and Graphical

Statistics, vol. 7, no. 4, pp. 434–455, 1998.

[111] K. L. Mengersen, C. P. Robert, and C. Guihenneuc-Jouyaux, “Mcmc

convergence diagnostics: a “reviewww”,” Bayesian Statistics, vol. 6,

pp. 415–440, 1999.

BIBLIOGRAPHY 361

[112] J. Nylander, J. Wilgenbusch, D. Warren, and D. Swofford, “AWTY(are

we there yet?): a system for graphical exploration of MCMC conver-

gence in Bayesian phylogenetics,” Bioinformatics, vol. 24, no. 4, p. 581,

2008.

[113] J. Peltonen, J. Venna, and S. Kaski, “Visualizations for assessing con-

vergence and mixing of Markov chain Monte Carlo simulations,”

Computational Statistics & Data Analysis, vol. 53, no. 12, pp. 4453–4470,

2009.

[114] M. Cowles, G. Roberts, and J. Rosenthal, “Possible biases induced

by MCMC convergence diagnostics,” Journal of Statistical Computation

and Simulation, vol. 64, no. 1, pp. 87–104, 1999.

[115] J. Flegal and G. Jones, Implementing MCMC: estimating with confidence

(in Handbook of Markov chain Monte Carlo), ch. 7, pp. 175–198. Chap-

man & Hall, 2011.

[116] P. Del Moral, A. Doucet, and A. Jasra, “Sequential Monte Carlo

samplers,” Journal of the Royal Statistical Society: Series B (Statistical

Methodology), vol. 68, no. 3, pp. 411–436, 2006.

[117] R. Bucy and K. Senne, “Digital synthesis of non-linear filters,” Auto-

matica, vol. 7, no. 3, pp. 287–298, 1971.

[118] A. Wang and R. Klein, “Implementation of non-linear estimators us-

ing monospline,” in 1976 IEEE Conference on Decision and Control in-

cluding the 15th Symposium on Adaptive Processes, vol. 15, 1976.

[119] S. Kramer and H. Sorenson, “Recursive Bayesian estimation us-

ing piece-wise constant approximations,” Automatica, vol. 24, no. 6,

pp. 789–801, 1988.

[120] G. Kitagawa, “Non-Gaussian state-space modeling of nonstationary

time series,” Journal of the American Statistical Association, vol. 82,

no. 400, pp. 1032–1041, 1987.

362 BIBLIOGRAPHY

[121] J. Carpenter, P. Clifford, and P. Fearnhead, “Improved particle filter

for nonlinear problems,” IEE Proceedings-Radar, Sonar and Navigation,

vol. 146, no. 1, pp. 2–7, 1999.

[122] G. Kitagawa, “Monte Carlo filter and smoother for non-Gaussian

nonlinear state space models,” Journal of Computational and Graphical

Statistics, vol. 5, no. 1, pp. 1–25, 1996.

[123] A. Doucet and A. M. Johansen, “A tutorial on particle filtering

and smoothing: fifteen years later,” Handbook of Nonlinear Filtering,

vol. 12, pp. 656–704, 2009.

[124] P. Del Moral, Feynman-Kac formulae: genealogical and interacting particle

systems with applications. Springer, 2004.

[125] M. K. Pitt, R. d. S. Silva, P. Giordani, and R. Kohn, “On some prop-

erties of Markov chain Monte Carlo simulation methods based on

the particle filter,” Journal of Econometrics, vol. 171, no. 2, pp. 134–151,

2012.

[126] A. Blake and M. Isard, “The condensation algorithm-conditional

density propagation and applications to visual tracking,” Advances

in Neural Information Processing Systems, pp. 361–367, 1997.

[127] J. Liu and R. Chen, “Blind deconvolution via sequential imputa-

tions,” Journal of the American Statistical Association, vol. 90, no. 430,

1995.

[128] A. Kong, J. Liu, and W. Wong, “Sequential imputations and Bayesian

missing data problems,” Journal of the American Statistical Association,

vol. 89, no. 425, pp. 278–288, 1994.

[129] A. Doucet, N. De Freitas, K. Murphy, and S. Russell, “Rao-

Blackwellised particle filtering for dynamic Bayesian networks,” in

Proceedings of the 16th conference on Uncertainty in Artificial Intelligence,

pp. 176–183, 2000.

BIBLIOGRAPHY 363

[130] O. Cappé, S. Godsill, and E. Moulines, “An overview of existing

methods and recent advances in sequential Monte Carlo,” Proceed-

ings of the IEEE, vol. 95, no. 5, pp. 899–924, 2007.

[131] R. Douc and O. Cappé, “Comparison of resampling schemes for

particle filtering,” in Proceedings of the 4th International Symposium on

Image and Signal Processing and Analysis (ISPA), pp. 64–69, IEEE, 2005.

[132] D. Crisan and A. Doucet, “A survey of convergence results on

particle filtering methods for practitioners,” IEEE Transactions on Sig-

nal Processing, vol. 50, no. 3, pp. 736–746, 2002.

[133] P. Del Moral, “Non-linear filtering: interacting particle resolution,”

Markov Processes and Related Fields, vol. 2, no. 4, pp. 555–581, 1996.

[134] P. Del Moral and A. Guionnet, “Central limit theorem for nonlinear

filtering and interacting particle systems,” Annals of Applied Probabil-

ity, vol. 9, no. 2, pp. 275–297, 1999.

[135] N. Chopin, “Central limit theorem for sequential Monte Carlo meth-

ods and its application to Bayesian inference,” Annals of Statistics,

vol. 32, no. 6, pp. 2385–2411, 2004.

[136] S. K. Pang, J. Li, and S. J. Godsill, “Models and algorithms for de-

tection and tracking of coordinated groups,” in Proceedings of IEEE

Aerospace Conference, pp. 1–17, IEEE, 2008.

[137] S. Godsill and T. Clapp, Improvement strategies for Monte Carlo particle

filters (in Sequential Monte Carlo Methods in Practice), ch. 7, pp. 139–158.

Springer, 2001.

[138] R. Van Der Merwe, A. Doucet, N. De Freitas, and E. Wan, “The un-

scented particle filter,” Advances in Neural Information Processing Sys-

tems, pp. 584–590, 2001.

364 BIBLIOGRAPHY

[139] M. Pitt and N. Shephard, “Filtering via simulation: Auxiliary particle

filters,” Journal of the American Statistical Association, pp. 590–599,

1999.

[140] W. Gilks and C. Berzuini, “Following a moving target–Monte Carlo

inference for dynamic Bayesian models,” Journal of the Royal Statistical

Society: Series B (Statistical Methodology), vol. 63, no. 1, pp. 127–146,

2001.

[141] N. Polson, J. Stroud, and P. Müller, “Practical filtering with sequential

parameter learning,” Journal of the Royal Statistical Society: Series B

(Statistical Methodology), vol. 70, no. 2, pp. 413–428, 2008.

[142] Z. Khan, T. Balch, and F. Dellaert, “MCMC-based particle filtering for

tracking a variable number of interacting targets,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 27, no. 11, pp. 1805–

1819, 2005.

[143] S. N. MacEachern, M. Clyde, and J. S. Liu, “Sequential importance

sampling for nonparametric Bayes models: The next generation,” Ca-

nadian Journal of Statistics, vol. 27, no. 2, pp. 251–267, 1999.

[144] T. Schon, F. Gustafsson, and P.-J. Nordlund, “Marginalized particle

filters for mixed linear/nonlinear state-space models,” IEEE Transac-

tions on Signal Processing, vol. 53, no. 7, pp. 2279–2289, 2005.

[145] P. Fearnhead, D. Wyncoll, and J. Tawn, “A sequential smoothing al-

gorithm with linear computational cost,” Biometrika, vol. 97, no. 2,

pp. 447–464, 2010.

[146] S. J. Godsill, A. Doucet, and M. West, “Monte Carlo smoothing for

nonlinear time series,” Journal of the American Statistical Association,

vol. 99, no. 465, pp. 156–168, 2004.

[147] S. Godsill, A. Doucet, and M. West, “Maximum a posteriori sequence

BIBLIOGRAPHY 365

estimation using Monte Carlo particle filters,” Annals of the Institute

of Statistical Mathematics, vol. 53, no. 1, pp. 82–96, 2001.

[148] M. Klaas, M. Briers, N. De Freitas, A. Doucet, S. Maskell, and D. Lang,

“Fast particle smoothing: if I had a million particles,” in Proceedings

of the 23rd International Conference on Machine Learning, pp. 481–488,

ACM, 2006.

[149] N. Kantas, A. Doucet, S. S. Singh, and J. M. Maciejowski, “An over-

view of sequential Monte Carlo methods for parameter estimation in

general state-space models,” in Proceedings of 15th IFAC Symposium on

System Identification, vol. 15, 2009.

[150] G. Celeux and J. Diebolt, “The SEM algorithm: a probabilistic teacher

algorithm derived from the EM algorithm for the mixture problem,”

Computational Statistics Quarterly, vol. 2, no. 1, pp. 73–82, 1985.

[151] P. Fearnhead, “Markov chain Monte Carlo, sufficient statistics, and

particle filters,” Journal of Computational and Graphical Statistics,

vol. 11, no. 4, pp. 848–862, 2002.

[152] G. Storvik, “Particle filters for state-space models with the pres-

ence of unknown static parameters,” IEEE Transactions on Signal Pro-

cessing, vol. 50, no. 2, pp. 281–289, 2002.

[153] A. Wills, T. B. Schön, and B. Ninness, “Parameter estimation for

discrete-time nonlinear systems using EM,” in Proceedings of the 17th

IFAC World Congress, Seoul, South Korea, vol. 2, p. 93, 2008.

[154] C. Andrieu, A. Doucet, and V. B. Tadic, “On-line parameter estima-

tion in general state-space models,” in Proceedings of 44th IEEE Con-

ference on Decision and Control and European Control Conference (CDC-

ECC’05), pp. 332–337, IEEE, 2005.

[155] R. A. Fisher, “Theory of statistical estimation,” in Mathematical Pro-

366 BIBLIOGRAPHY

ceedings of the Cambridge Philosophical Society, vol. 22, pp. 700–725,

Cambridge University Press, 1925.

[156] G. Poyiadjis, A. Doucet, and S. Singh, “Maximum likelihood para-

meter estimation in general state-space models using particle meth-

ods,” Proc of the American Stat. Assoc, 2005.

[157] A. Doucet and V. Tadić, “Parameter estimation in general state-space

models using particle methods,” Annals of the institute of Statistical

Mathematics, vol. 55, no. 2, pp. 409–422, 2003.

[158] C. Andrieu, A. Doucet, S. S. Singh, and V. B. Tadic, “Particle methods

for change detection, system identification, and control,” Proceedings

of the IEEE, vol. 92, no. 3, pp. 423–438, 2004.

[159] M. West, “Approximating posterior distributions by mixtures,”

Journal of the Royal Statistical Society. Series B (Methodological), vol. 55,

no. 2, pp. 409–422, 1993.

[160] H. Robbins and S. Monro, “A stochastic approximation method,” The

Annals of Mathematical Statistics, vol. 22, no. 3, pp. 400–407, 1951.

[161] C. Andrieu and A. Doucet, “Online expectation-maximization type

algorithms for parameter estimation in general state space models,”

in Proceedings of the IEEE International Conference on Acoustics, Speech,

and Signal Processing (ICASSP’03), vol. 6, pp. 69–72, IEEE, 2003.

[162] G. Poyiadjis, A. Doucet, and S. S. Singh, “Particle approximations

of the score and observed information matrix in state space models

with application to parameter estimation,” Biometrika, vol. 98, no. 1,

pp. 65–80, 2011.

[163] P. Del Moral, A. Doucet, and S. Singh, “Forward smoothing using

sequential Monte Carlo,” arXiv preprint arXiv:1012.5390, 2010.

BIBLIOGRAPHY 367

[164] J. Murphy, “Bayesian methods for high frequency financial time

series analysis,” PhD First Year Report, Cambridge University Depart-

ment of Engineering, 2010.

[165] R. Merton, “Option pricing when underlying stock returns are dis-

continuous,” Journal of Financial Economics, vol. 3, no. 1-2, pp. 125–

144, 1976.

[166] H. Yang and L. Zhang, “Optimal investment for insurer with jump-

diffusion risk process,” Insurance: Mathematics and Economics, vol. 37,

no. 3, pp. 615–634, 2005.

[167] C. Zhou, “A jump-diffusion approach to modeling credit risk and

valuing defaultable securities,” Working Paper, Federal Reserve Board

(available at SSRN 39800), vol. 97, no. 15, 1997.

[168] R. Weron, M. Bierbrauer, and S. Trück, “Modeling electricity prices:

jump diffusion and regime switching,” Physica A: Statistical Mechanics

and its Applications, vol. 336, no. 1, pp. 39–48, 2004.

[169] T. Meyer-Brandis and P. Tankov, “Multi-factor jump-diffusion mod-

els of electricity prices,” International Journal of Theoretical and Applied

Finance, vol. 11, no. 5, pp. 503–528, 2008.

[170] A. Cartea and M. G. Figueroa, “Pricing in electricity markets: a mean

reverting jump diffusion model with seasonality,” Applied Mathemat-

ical Finance, vol. 12, no. 4, pp. 313–335, 2005.

[171] C. Chudley and R. Elliott, “Neutron scattering from a liquid on a

jump diffusion model,” Proceedings of the Physical Society, vol. 77,

no. 2, p. 353, 1961.

[172] S. Godsill, “Particle filters for continuous-time jump models in track-

ing applications,” ESAIM: Proceedings, vol. 19, pp. 39–52, 2007.

368 BIBLIOGRAPHY

[173] S. Godsill, J. Vermaak, W. Ng, and J. Li, “Models and algorithms for

tracking of maneuvering objects using variable rate particle filters,”

Proceedings of the IEEE, vol. 95, no. 5, pp. 925–952, 2007.

[174] M. S. Johannes, N. G. Polson, and J. R. Stroud, “Optimal filtering of

jump diffusions: Extracting latent states from asset prices,” Review of

Financial Studies, vol. 22, no. 7, pp. 2759–2799, 2009.

[175] S. Godsill and J. Vermaak, “Models and algorithms for tracking us-

ing trans-dimensional sequential monte carlo,” in Proceedings of the

IEEE International Conference on Acoustics, Speech, and Signal Processing

(ICASSP’04), vol. 3, pp. iii–976, IEEE, 2004.

[176] P. E. Kloeden and E. Platen, Numerical solution of stochastic differential

equations. Springer Verlag, 1992.

[177] S. Särkkä, “Recursive Bayesian inference on stochastic differential

equations,” Doctoral Dissertation, Helsinki University of Technology,

2006.

[178] C. K. Carter and R. Kohn, “On Gibbs sampling for state space mod-

els,” Biometrika, vol. 81, no. 3, pp. 541–553, 1994.

[179] S. Frühwirth-Schnatter, “Data augmentation and dynamic linear

models,” Journal of Time Series Analysis, vol. 15, no. 2, pp. 183–202,

1994.

[180] P. DE JONG and N. SHEPHARD, “The simulation smoother for time

series models,” Biometrika, vol. 82, no. 2, pp. 339–350, 1995.

[181] W. Fong, S. Godsill, A. Doucet, and M. West, “Monte carlo smoothing

with application to audio signal enhancement,” IEEE Transactions on

Signal Processing, vol. 50, no. 2, pp. 438–449, 2002.

[182] F. Lindsten and T. Schön, “Rao-Blackwellized particle smoothers for

mixed linear/nonlinear state-space models,” Technical Report LiTH-

ISY-R-2018, Linköpings Universitet, 2011.

BIBLIOGRAPHY 369

[183] S. Särkkä, P. Bunch, and S. Godsill, “A backward-simulation based

Rao-Blackwellized particle smoother for conditionally linear Gaus-

sian models,” in Proceedings of the 16th IFAC Symposium on System

Identification, Brussels, Belgium, 2012.

[184] P. Bunch and S. Godsill, “Particle smoothing algorithms for variable

rate models,” IEEE Transactions on Signal Processing, vol. 61, no. 7,

pp. 1663–1675, 2013.

[185] B. Malkiel, “The efficient market hypothesis and its critics,” The

Journal of Economic Perspectives, vol. 17, no. 1, pp. 59–82, 2003.

[186] E. Fama, “Efficient capital markets: II,” Journal of Finance, vol. 46,

no. 5, pp. 1575–1617, 1991.

[187] N. Jegadeesh and S. Titman, “Returns to buying winners and selling

losers: Implications for stock market efficiency,” Journal of Finance,

vol. 48, no. 1, pp. 65–91, 1993.

[188] D. Vayanos and P. Woolley, “An institutional theory of momentum

and reversal,” Working Paper, National Bureau of Economic Research,

2008.

[189] D. Lesmond, M. Schill, and C. Zhou, “The illusory nature of mo-

mentum profits,” Journal of Financial Economics, vol. 71, no. 2, pp. 349–

380, 2004.

[190] E. Fama, “Efficient capital markets: A review of theory and empirical

work,” The Journal of Finance, vol. 25, no. 2, pp. 383–417, 1970.

[191] L. Menkhoff and M. P. Taylor, “The obstinate passion of foreign ex-

change professionals: Technical analysis,” Journal of Economic Literat-

ure, vol. 45, no. 4, pp. pp. 936–972, 2007.

[192] A. Lo and A. MacKinlay, A Non-Random Walk Down Wall Street. Prin-

ceton University Press, 2001.

370 BIBLIOGRAPHY

[193] A. Lo, H. Mamaysky, and J. Wang, “Foundations of technical ana-

lysis: Computational algorithms, statistical inference, and empirical

implementation,” Journal of Finance, vol. 55, no. 4, pp. 1705–1765,

2000.

[194] R. Levich and L. Thomas, “The significance of technical trading-

rule profits in the foreign exchange market: a bootstrap approach,”

Journal of International Money and Finance, vol. 12, no. 5, pp. 451–474,

1993.

[195] H. Hong, T. Lim, and J. Stein, “Bad news travels slowly: Size, analyst

coverage, and the profitability of momentum strategies,” Journal of

Finance, vol. 55, no. 1, pp. 265–295, 2000.

[196] N. Jegadeesh and S. Titman, “Profitability of momentum strategies:

An evaluation of alternative explanations,” The Journal of Finance,

vol. 56, no. 2, pp. 699–720, 2001.

[197] K. Chan, A. Hameed, and W. Tong, “Profitability of momentum

strategies in the international equity markets,” Journal of Financial and

Quantitative Analysis, vol. 35, no. 2, pp. 153–172, 2000.

[198] J. Okunev and D. White, “Do momentum-based strategies still work

in foreign currency markets?,” Journal of Financial and Quantitative

Analysis, vol. 38, no. 2, pp. 425–447, 2003.

[199] W. Fung and D. Hsieh, “The risk in hedge fund strategies: The-

ory and evidence from trend followers,” Review of Financial Studies,

vol. 14, pp. 313–341, 2001.

[200] J. Miffre and G. Rallis, “Momentum strategies in commodity futures

markets,” Journal of Banking & Finance, vol. 31, pp. 1863–1886, 2007.

[201] R. Shiller, Irrational exuberance. Princeton University Press, 2005.

[202] T. Johnson, “Rational momentum effects,” Journal of Finance, vol. 57,

no. 2, pp. 585–608, 2002.

BIBLIOGRAPHY 371

[203] S. Schulmeister, “Profitability of technical stock trading: Has it

moved from daily to intraday data?,” Review of Financial Economics,

vol. 18, no. 4, pp. 190–201, 2009.

[204] X. Rong Li and V. Jilkov, “Survey of maneuvering target tracking,

part I: Dynamic models,” IEEE Transactions on Aerospace and Electronic

Systems, vol. 39, no. 4, pp. 1333 – 1364, 2003.

[205] E. Fama, “The behavior of stock-market prices,” Journal of Business,

vol. 38, no. 1, 1965.

[206] D. M. Guillaume, M. M. Dacorogna, R. R. Dave, U. A. Muller, R. B.

Olsen, and O. V. Pictet, “From the bird’s eye to the microscope: A

survey of new stylized facts of the intra-daily foreign exchange mar-

kets,” Finance and Stochastics, vol. 1, pp. 95–129, 1997.

[207] R. Cont, “Empirical properties of asset returns: stylized facts and

statistical issues,” Quantitative Finance, vol. 1, no. 2, pp. 223–236, 2001.

[208] R. F. Engle, “The econometrics of ultra-high-frequency data,” Econo-

metrica, vol. 68(1), pp. 1–22, 2000.

[209] P. A. Mykland and L. Zhang, The Econometrics of High Frequency Data

(in Statistical methods for stochastic differential equations), ch. 2, pp. 109–

190. Chapman & Hall, 2009.

[210] T. Bollerslev, “Generalized autoregressive conditional heteroske-

dasticity,” Journal of Econometrics, vol. 31, no. 3, pp. 307–327, 1986.

[211] F. Black and M. Scholes, “The pricing of options and corporate liabil-

ities,” Journal of Political Economy, vol. 81, no. 3, pp. 637–654, 1973.

[212] S. Heston, “A closed-form solution for options with stochastic volat-

ility with applications to bond and currency options,” Review of Fin-

ancial Studies, vol. 6, no. 2, pp. 327–343, 1993.

372 BIBLIOGRAPHY

[213] S. Kou, “A jump-diffusion model for option pricing,” Management

Science, vol. 48, pp. 1086–1101, 2002.

[214] O. E. Barndorff-Nielsen and N. Shephard, Modelling by Levy processes

for financial econometrics (in Levy processes: Theory and applications),

ch. 5.1, pp. 283–318. Springer/Birkhauser, 2001.

[215] L. Sun and C. Stivers, “Cross-sectional return dispersion and time

variation in value and momentum premium,” Journal of Financial and

Quantitative Analysis, vol. 45, pp. 987–1014, 2010.

[216] M. Sorenson, Statistical Inference in Stochastic Processes, ch. 3, pp. 67–

105. Marcel Dekker, 1991.

[217] C. Ramezani and Y. Zeng, “Maximum likelihood estimation of asym-

metric jump-diffusion processes: Application to security prices,”

Working paper, Department of Statistics, University of Wisconsin, Mad-

dison (available at SSRN 606361), 1998.

[218] C. A. Ramezani and Y. Zeng, “Maximum likelihood estimation of the

double exponential jump-diffusion process,” Annals of Finance, vol. 3,

no. 4, pp. 487–507, 2007.

[219] S. Beckers, “A note on estimating the parameters of the diffusion-

jump model of stock returns,” Journal of Financial and Quantitative

Analysis, vol. 16, no. 1, pp. 127–140, 1981.

[220] F. B. Hanson and J. Westman, “Jump-diffusion stock return models in

finance: Stochastic process density with uniform-jump amplitude,”

in Proceedings of 15th International Symposium on Mathematical Theory

of Networks and Systems, vol. 7, 2002.

[221] J. S. Liu, “The collapsed Gibbs sampler in Bayesian computations

with applications to a gene regulation problem,” Journal of the Amer-

ican Statistical Association, vol. 89, no. 427, pp. 958–966, 1994.

BIBLIOGRAPHY 373

[222] R. Waagepetersen and D. Sorensen, “A tutorial on reversible jump

mcmc with a view toward applications in qtl-mapping,” International

Statistical Review, vol. 69, no. 1, pp. 49–61, 2001.

[223] S. Godsill and T. Clapp, Improvement strategies for Monte Carlo particle

filters, pp. 139–158. Springer, 2001.

[224] N. Whiteley, “Response to “Particle Markov chain Monte Carlo meth-

ods” by C. Andrieu, A. Doucet and R. Holenstein,” Journal of the

Royal Statistical Society: Series B (Statistical Methodology), vol. 72, no. 3,

pp. 269–342, 2010.

[225] S. Godsill, “Response to “Particle Markov chain Monte Carlo meth-

ods” by C. Andrieu, A. Doucet and R. Holenstein,” Journal of the

Royal Statistical Society: Series B (Statistical Methodology), vol. 72, no. 3,

pp. 269–342, 2010.

[226] N. Whiteley, A. M. Johansen, and S. Godsill, “Efficient Monte Carlo

filtering for discretely observed jumping processes,” in IEEE/SP 14th

Workshop on Statistical Signal Processing, 2007. SSP’07, pp. 89–93, IEEE,

2007.

[227] N. Whiteley, A. M. Johansen, and S. Godsill, “Monte Carlo filtering

of piecewise deterministic processes,” Journal of Computational and

Graphical Statistics, vol. 20, no. 1, 2011.

[228] N. Chopin and S. S. Singh, “On the particle Gibbs sampler,” arXiv

preprint arXiv:1304.1887, 2013.

[229] C. Rasmussen and C. Williams, Gaussian Processes for Machine Learn-

ing. MIT Press, 2006.

[230] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM

2.0: An improved particle filtering algorithm for simultaneous local-

ization and mapping that provably converges,” in International Joint

Conference on Artificial Intelligence, vol. 18, pp. 1151–1156, 2003.

374 BIBLIOGRAPHY

[231] T. Kirubarajan, Y. Bar-Shalom, K. Pattipati, and I. Kadar, “Ground

target tracking with variable structure IMM estimator,” IEEE Trans-

actions on Aerospace and Electronic Systems, vol. 36, no. 1, pp. 26–46,

2000.

[232] F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson,

R. Karlsson, and P. Nordlund, “Particle filters for positioning, nav-

igation, and tracking,” IEEE Transactions on Signal Processing, vol. 50,

no. 2, pp. 425–437, 2002.

[233] C. S. Agate and K. J. Sullivan, “Road-constrained target tracking and

identification using a particle filter,” in Proceedings of SPIE, vol. 5204,

p. 532, 2003.

[234] D. Salmond, M. Clark, R. Vinter, and S. Godsill, “Ground target mod-

elling, tracking and prediction with road networks,” in Proceedings of

10th International Conference on Information Fusion, 2007, pp. 1–8, IEEE,

2007.

[235] F. Gustafsson, U. Orguner, T. B. Schön, P. Skoglar, and R. Karlsson,

Navigation and tracking of road-bound vehicles using map support (in

Handbook of intelligent vehicles), ch. 16, pp. 397–434. Springer, 2012.

[236] S. S. Ge and Y. Cui, “Dynamic motion planning for mobile robots

using potential field method,” Autonomous Robots, vol. 13, no. 3,

pp. 207–222, 2002.

[237] O. Khatib, “Real-time obstacle avoidance for manipulators and mo-

bile robots,” The International Journal of Robotics Research, vol. 5, no. 1,

pp. 90–98, 1986.

[238] P. Khosla and R. Volpe, “Superquadric artificial potentials for

obstacle avoidance and approach,” in Proceedings of the IEEE Inter-

national Conference on Robotics and Automation, pp. 1778–1784, IEEE,

1988.

BIBLIOGRAPHY 375

[239] S. S. Ge and Y. J. Cui, “New potential functions for mobile robot path

planning,” IEEE Transactions on Robotics and Automation, vol. 16, no. 5,

pp. 615–620, 2000.

[240] P. Vadakkepat, K. C. Tan, and W. Ming-Liang, “Evolutionary artifi-

cial potential fields and their application in real time robot path plan-

ning,” in Proceedings of the 2000 Congress on Evolutionary Computation,

vol. 1, pp. 256–263, IEEE, 2000.

[241] E. Masehian and D. Sedighizadeh, “Classic and heuristic approaches

in robot motion planning-a chronological review,” World Academy of

Science, Engineering and Technology, vol. 23, pp. 101–106, 2007.

[242] H. Durrant-Whyte and T. Bailey, “Simultaneous localisation and

mapping (SLAM): Part I the essential algorithms,” Robotics and Auto-

mation Magazine, vol. 13, no. 99, p. 80, 2006.

[243] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and

mapping (SLAM): Part II,” Robotics & Automation Magazine, IEEE,

vol. 13, no. 3, pp. 108–117, 2006.

[244] R. Smith and P. Cheeseman, “On the representation and estimation

of spatial uncertainty,” The International Journal of Robotics Research,

vol. 5, no. 4, pp. 56–68, 1986.

[245] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM:

A factored solution to the simultaneous localization and mapping

problem,” in Proceedings of the AAAI National Conference on Artificial

Intelligence, pp. 593–598, AAAI, 2002.

[246] K. Murphy, “Bayesian map learning in dynamic environments,”

Advances in Neural Information Processing Systems (NIPS), vol. 12,

pp. 1015–1021, 1999.

[247] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for

376 BIBLIOGRAPHY

grid mapping with Rao-Blackwellized particle filters,” IEEE Transac-

tions on Robotics, vol. 23, no. 1, pp. 34–46, 2007.

[248] A. Eliazar and R. Parr, “DP-SLAM: Fast, robust simultaneous local-

ization and mapping without predetermined landmarks,” in Interna-

tional Joint Conference on Artificial Intelligence, vol. 18, pp. 1135–1142,

2003.

[249] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “RGB-D map-

ping: Using Kinect-style depth cameras for dense 3d modeling of in-

door environments,” International Journal of Robotics Research, vol. 31,

no. 5, pp. 647–663, 2012.

[250] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “MonoSLAM:

Real-time single camera SLAM,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 29, no. 6, pp. 1052–1067, 2007.

[251] A. Ranganathan, E. Menegatti, and F. Dellaert, “Bayesian inference in

the space of topological maps,” IEEE Transactions on Robotics, vol. 22,

no. 1, pp. 92–107, 2006.

[252] L. Liao, D. J. Patterson, D. Fox, and H. Kautz, “Learning and inferring

transportation routines,” Artificial Intelligence, vol. 171, no. 5, pp. 311–

331, 2007.

[253] X. Liu, J. Biagioni, J. Eriksson, Y. Wang, G. Forman, and Y. Zhu, “Min-

ing large-scale, sparse gps traces for map inference: comparison of

approaches,” in Proceedings of the 18th ACM SIGKDD international

conference on Knowledge discovery and data mining, pp. 669–677, ACM,

2012.

[254] E. Solak, R. Murray-Smith, W. Leithead, D. Leith, and C. Rasmussen,

“Derivative observations in Gaussian process models of dynamic

systems,” in Advances in Neural Information Processing Systems, MIT

Press, 2003.

BIBLIOGRAPHY 377

[255] A. Doucet, N. De Freitas, and N. Gordon, eds., Sequential Monte Carlo

methods in practice. Springer, 2001.

[256] V. V. Williams, “Multiplying matrices faster than Coppersmith-

Winograd,” in Proceedings of the 44th symposium on Theory of Comput-

ing, pp. 887–898, ACM, 2012.

[257] L. Csató, M. Opper, and O. Winther, “TAP Gibbs free energy, belief

propagation and sparsity,” Advances in Neural Information Processing

Systems, vol. 14, pp. 657–663, 2001.

[258] L. Csató and M. Opper, “Sparse on-line Gaussian processes,” Neural

Computation, vol. 14, no. 3, pp. 641–668, 2002.

[259] N. D. Lawrence, M. Seeger, and R. Herbrich, “Fast sparse Gaus-

sian process methods: The informative vector machine,” Advances

in Neural Information Processing Systems, vol. 15, no. 15, pp. 609–616,

2002.

[260] M. Seeger, C. K. Williams, and N. D. Lawrence, “Fast forward selec-

tion to speed up sparse Gaussian process regression,” in Proceedings

of Workshop on AI and Statistics, vol. 9, 2003.

[261] E. Snelson and Z. Ghahramani, “Sparse Gaussian processes using

pseudo-inputs,” in Advances in Neural Information Processing Systems,

2006.

[262] J. Moreno and H. Jennings, “Statistics of social configurations,” Soci-

ometry, vol. 1, pp. 342–374, 1938.

[263] G. Iori, G. De Masi, O. Precup, G. Gabbi, and G. Caldarelli, “A net-

work analysis of the Italian overnight money market,” Journal of Eco-

nomic Dynamics and Control, vol. 32, no. 1, pp. 259–278, 2008.

[264] R. Poppe, “Vision-based human motion analysis: An overview,”

Computer Vision and Image Understanding, vol. 108, no. 1-2, pp. 4–18,

2007.

378 BIBLIOGRAPHY

[265] N. Friedman, M. Linial, I. Nachman, and D. Pe’er, “Using Bayesian

networks to analyze expression data,” Journal of Computational Bio-

logy, vol. 7, no. 3-4, pp. 601–620, 2000.

[266] M. Bansal, V. Belcastro, A. Ambesi-Impiombato, and D. Di Bernardo,

“How to infer gene networks from expression profiles,” Molecular

Systems Biology, vol. 3, no. 1, p. 78, 2007.

[267] B. Ellis and W. Wong, “Learning causal Bayesian network structures

from experimental data,” Journal of the American Statistical Association,

vol. 103, no. 482, pp. 778–789, 2008.

[268] P. Nillius, J. Sullivan, and S. Carlsson, “Multi-target tracking-linking

identities using Bayesian network inference,” in IEEE Computer So-

ciety Conference on Computer Vision and Pattern Recognition, pp. 2187–

2194, IEEE Computer Society, 2006.

[269] A. Gning, L. Mihaylova, S. Maskell, S. Pang, and S. Godsill, “Group

object structure and state estimation with evolving networks and

Monte Carlo methods,” IEEE Transactions on Signal Processing, vol. 59,

no. 4, pp. 1383–1396, 2011.

[270] S. Pang, J. Li, and S. Godsill, “Detection and tracking of coordinated

groups,” IEEE Transactions on Aerospace and Electronic Systems, vol. 47,

no. 1, pp. 472–502, 2011.

[271] I. Shmulevich, E. R. Dougherty, S. Kim, and W. Zhang, “Probabilistic

Boolean networks: a rule-based uncertainty model for gene regulat-

ory networks,” Bioinformatics, vol. 18, no. 2, pp. 261–274, 2002.

[272] T. Chen, H. L. He, and G. M. Church, “Modeling gene expression

with differential equations,” in Pacific Symposium on Biocomputing,

vol. 4, p. 4, 1999.

[273] H. De Jong, “Modeling and simulation of genetic regulatory systems:

BIBLIOGRAPHY 379

a literature review,” Journal of Computational Biology, vol. 9, no. 1,

pp. 67–103, 2002.

[274] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plaus-

ible Inference. Morgan Kaufmann, 1988.

[275] N. Friedman, “The Bayesian structural EM algorithm,” in Proceedings

of the 14th conference on Uncertainty in Artificial Intelligence, pp. 129–

138, 1998.

[276] D. Heckerman, D. Geiger, and D. Chickering, “Learning Bayesian

networks: The combination of knowledge and statistical data,” Ma-

chine Learning, vol. 20, no. 3, pp. 197–243, 1995.

[277] G. Schwarz, “Estimating the dimension of a model,” The Annals of

Statistics, vol. 6, no. 2, pp. 461–464, 1978.

[278] P. Giudici and R. Castelo, “Improving Markov chain Monte Carlo

model search for data mining,” Machine Learning, vol. 50, no. 1-2,

pp. 127–158, 2003.

[279] D. Madigan, J. York, and D. Allard, “Bayesian graphical models for

discrete data,” International Statistical Review/Revue Internationale de

Statistique, vol. 63, no. 2, pp. 215–232, 1995.

[280] N. Friedman and D. Koller, “Being Bayesian about network structure.

a Bayesian approach to structure discovery in Bayesian networks,”

Machine Learning, vol. 50, no. 1-2, pp. 95–125, 2003.

[281] K. P. Murphy, Dynamic Bayesian Networks: Representation, Inference and

Learning. PhD thesis, University of California, 2002.

[282] A. C. Harvey, Forecasting, structural time series models and the Kalman

filter. Cambridge University Press, 1991.

[283] S. J. Godsill and P. J. W. Rayner, Digital Audio Restoration: A Statistical

Model-Based Approach. Berlin: Springer, ISBN 3 540 76222 1, Sept.

1998.

380 BIBLIOGRAPHY

[284] N. Friedman, K. Murphy, and S. Russell, “Learning the structure of

dynamic probabilistic networks,” in Proceedings of the 14th Conference

on Uncertainty in Artificial Intelligence, pp. 139–147, 1998.

[285] S. Y. Kim, S. Imoto, and S. Miyano, “Inferring gene networks from

time series microarray data using dynamic Bayesian networks,”

Briefings in Bioinformatics, vol. 4, no. 3, pp. 228–235, 2003.

[286] S. Kim, S. Imoto, and S. Miyano, “Dynamic Bayesian network and

nonparametric regression for nonlinear modeling of gene networks

from time series gene expression data,” Biosystems, vol. 75, no. 1-3,

pp. 57–65, 2004.

[287] S. Imoto, S. Kim, T. Goto, S. Aburatani, K. Tashiro, S. Kuhara, and

S. Miyano, “Bayesian network and nonparametric heteroscedastic re-

gression for nonlinear modeling of genetic network,” Journal of Bioin-

formatics and Computational Biology, vol. 1, no. 2, pp. 231–252, 2003.

[288] N. Sugimoto and H. Iba, “Inference of gene regulatory networks by

means of dynamic differential Bayesian networks and nonparametric

regression,” Genome Informatics Series, vol. 15, no. 2, p. 121, 2004.

[289] E. R. Morrissey, M. A. Juárez, K. J. Denby, and N. J. Burroughs, “Infer-

ring the time-invariant topology of a nonlinear sparse gene regulat-

ory network using fully Bayesian spline autoregression,” Biostatistics,

vol. 12, no. 4, pp. 682–694, 2011.

[290] D. Clark and S. Godsill, “Group target tracking with the Gaussian

mixture probability hypothesis density filter,” in Proceedings of 3rd

International Conference on Intelligent Sensors, Sensor Networks and In-

formation (ISSNIP), pp. 149 –154, 2007.

[291] J. Koch, “Bayesian approach to extended object and cluster tracking

using random matrices,” IEEE Transactions on Aerospace and Electronic

Systems, vol. 44, no. 3, pp. 1042–1059, 2008.

BIBLIOGRAPHY 381

[292] F. Septier, S. K. Pang, S. Godsill, and A. Carmi, “Tracking of coordin-

ated groups using marginalised MCMC-based particle algorithm,” in

Proceedings of IEEE Aerospace Conference, pp. 1–11, IEEE, 2009.

[293] S. Pang, S. Godsill, J. Li, and F. Septier, Sequential inference for dynam-

ically evolving groups of objects (in Inference and learning in dynamic mod-

els). Cambridge University Press, 2011.

[294] A. Y. Carmi, L. Mihaylova, A. Gning, P. Gurfil, and S. J. Godsill,

“Monte Carlo-based Bayesian group object tracking and causal reas-

oning,” in Advances in Intelligent Signal Processing and Data Mining,

pp. 7–53, Springer, 2013.

[295] G. Golub and C. Van Loan, Matrix computations. Johns Hopkins Uni-

versity Press, 1996.

[296] F. Hoti, “Kernel regression via binned data,” Tech. Rep. Research

Reports C38, Rolf Nevanlinna Institute, Helsinki, Finland, February

2001.

[297] J. Fan and J. S. Marron, “Fast implementations of nonparametric

curve estimators,” Journal of Computational and Graphical Statistics,

vol. 3, no. 1, pp. 35–56, 1994.

[298] P. Hall and M. Ward, “On the accuracy of binned kernel density es-

timators,” Journal of Multivariate Analysis, vol. 56, pp. 165–184, 1996.

[299] M. Jones, “A variation on local linear regression,” Statistica Sinica,

vol. 7, pp. 1171–1180, 1997.

[300] F. Hoti and L. Holmström, “On the estimation error in binned local

linear regression,” Journal of Nonparametric Statistics, vol. 15, no. 4-5,

pp. 625–642, 2003.

[301] S. Kou, Q. Zhou, and W. H. Wong, “Equi-energy sampler with applic-

ations in statistical inference and statistical mechanics,” The Annals of

Statistics, vol. 34, no. 4, pp. 1581–1619, 2006.

382 BIBLIOGRAPHY

[302] N. SHEPHARD and M. K. PITT, “Likelihood analysis of non-

Gaussian measurement time series,” Biometrika, vol. 84, no. 3,

pp. 653–667, 1997.

[303] P. J. Wolfe, S. J. Godsill, and W. Ng, “Bayesian variable selection and

regularisation for time-frequency surface estimation,” Journal of the

Royal Statistical Society, Series B, vol. 66, no. 3, pp. 575–589, 2004. Read

paper (with discussion).

[304] S. Boll, “Suppression of acoustic noise in speech using spectral sub-

traction,” IEEE Transactions on Acoustics, Speech and Signal Processing,

vol. 27, no. 2, pp. 113–120, 1979.

[305] J. Erkelens and R. Heusdens, “Tracking of nonstationary noise based

on data-driven recursive noise power estimation,” IEEE Transactions

on Audio, Speech, and Language Processing, vol. 16, no. 6, pp. 1112–1123,

2008.

[306] S. Godsill, “The shifted inverse-gamma model for noise floor estim-

ation in archived audio recordings,” Applied Signal Processing, 2010.

Special Issue on Preservation of Ethological Recordings.

[307] I. Soon, S. Koh, and C. Yeo, “Noisy speech enhancement using dis-

crete cosine transform,” Speech Communication, vol. 24, no. 3, pp. 249–

257, 1998.

[308] P. Wolfe and S. J. Godsill, “Interpolation of missing data values

for audio signal restoration using a Gabor regression model,” in

IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), 2005.

[309] S. Mallat and Z. Zhang, “Matching pursuits with time-frequency

dictionaries,” IEEE Transactions on Signal Processing, vol. 41, no. 12,

pp. 3397–3415, 1993.

BIBLIOGRAPHY 383

[310] S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition by

basis pursuit,” SIAM Review, vol. 43, no. 1, pp. 129–159, 2001.

[311] R. Tibshirani, “Regression shrinkage and selection via the lasso,”

Journal of the Royal Statistical Society. Series B (Methodological), vol. 58,

no. 1, pp. 267–288, 1996.

[312] H. Feichtinger and T. Strohmer, Gabor analysis and algorithms: Theory

and applications. Birkhauser, 1998.

[313] R. Balian, “Un principe d’incertitude fort en théorie du signal ou

en mécanique quantique,” Comptes Rendus de l’Académie des Sciences,

Paris, vol. 292, no. 2, pp. 1357–1361, 1981.

[314] F. Low, “Complete sets of wave packets,” in A Passion for Physics–

Essays in Honor of Geoofrey Chew, pp. 17–22, World Scientific, 1985.

[315] S. Qian and D. Chen, “Discrete Gabor transform,” IEEE Transactions

on Signal Processing, vol. 41, no. 7, pp. 2429–2438, 1993.

[316] D. F. Andrews and C. L. Mallows, “Scale mixtures of normal distribu-

tions,” Journal of the Royal Statistical Society. Series B (Methodological),

vol. 36, no. 1, pp. 99–102, 1974.

[317] S. Choy and A. Smith, “Hierarchical models with scale mixtures of

normal distributions,” Test, vol. 6, no. 1, pp. 205–221, 1997.

[318] D. L. Ermak and J. A. McCammon, “Brownian dynamics with hydro-

dynamic interactions,” The Journal of Chemical Physics, vol. 69, p. 1352,

1978.

[319] D. J. Higham, “An algorithmic introduction to numerical simula-

tion of stochastic differential equations,” SIAM Review, vol. 43, no. 3,

pp. 525–546, 2001.

[320] W. Van Gunsteren and H. Berendsen, “Algorithms for Brownian dy-

namics,” Molecular Physics, vol. 45, no. 3, pp. 637–647, 1982.

384 BIBLIOGRAPHY

[321] A. Iniesta and J. G. de la Torre, “A second-order algorithm for the

simulation of the Brownian dynamics of macromolecular models,”

The Journal of Chemical Physics, vol. 92, p. 2015, 1990.

[322] A. Brańka and D. Heyes, “Algorithms for Brownian dynamics simu-

lation,” Physical Review E, vol. 58, no. 2, p. 2611, 1998.

[323] E. Hershkovitz, “A fourth-order numerical integrator for stochastic

Langevin equations,” The Journal of Chemical Physics, vol. 108, p. 9253,

1998.

[324] H. A. Forbert and S. A. Chin, “Fourth-order algorithms for solv-

ing the multivariable Langevin equation and the Kramers equation,”

Physical Review E, vol. 63, no. 1, p. 016703, 2000.

[325] K. Burrage, I. Lenane, and G. Lythe, “Numerical methods for second-

order stochastic differential equations,” SIAM Journal on Scientific

Computing, vol. 29, no. 1, pp. 245–264, 2007.

[326] O. Elerian, S. Chib, and N. Shephard, “Likelihood inference for dis-

cretely observed nonlinear diffusions,” Econometrica, vol. 69, no. 4,

pp. 959–993, 2001.

[327] B. Eraker, “MCMC analysis of diffusion models with application to

finance,” Journal of Business and Economic Statistics, vol. 19, no. 2,

pp. 177–191, 2001.

Lauda finem.

