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Abstract

The ΛCDM model of cosmology together with Inflation has had tremendous success over
the past 30 years in explaining the increasingly rich data sets of the cosmic microwave
background and large-scale structure. The next generation of large-scale structure surveys is
expected to answer many open questions about the microscopic description of the Universe.
In order to fully leverage those data sets, one needs exquisite theoretical predictions. Here,
the main difficulty is the non-linear nature of the large-scale structure observables which,
together with the exquisitely small statistical errors, cause real concern of false discoveries.
In this thesis, we study two estimators that allow us to extract non-linear information from
the large-scale structure while being robust against one of the leading sources of systematic
uncertainties: Redshift-space distortions.

By means of a bias relation, we extend the matter counts-in-cells statistic for the first
time to neutral hydrogen. Neutral hydrogen is particularly interesting for counts-in-cells
statistics because of the vast regions that can be covered by intensity mapping. We find
percent-level accuracy when comparing the prediction for the density in spheres probability
density function to the IllustrisTNG simulation. The measured density dependent clustering
signal, which could be used to break the bias-amplitude degeneracies, matches theoretical
expectations. Our bias model is able to capture the effect of redshift-space distortions making
the estimator robust.

Based on a separation idea, we present an efficient code to compute projected bispectra.
The separation approach is orders of magnitude more efficient than the direct integration. This
allows us to investigate the relation between biases in the estimated parameters and inaccurate
modelling of non-linear redshift-space distortions for the power spectrum and bispectrum
of projected galaxy density fields and lensing convergence. For a toy galaxy survey that
resembles the CMASS sample of the baryon oscillation spectroscopic survey, we find that
modelling non-linear redshift-space distortion only becomes necessary for galaxy bins thinner
than 150 h−1Mpc . In case a better radial resolution is available, errors on cosmological
parameters can be improved by 20% when including an accurate non-linear RSD model that
allows us to use bins of depth ∼ 60 h−1Mpc . The separation of projection integrals proves
also useful for theoretical uncertainties. We use the separability of Gaussian correlation



viii

functions to develop a consistent model for theoretical uncertainties of the projected power
spectrum.
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Chapter 1

Introduction

1.1 Historical overview

Physical cosmology in the modern sense started in 1917 when Einstein proposed a cosmo-
logical solution to the field equations of General Relativity (GR). In particular, he introduced
a cosmological constant to achieve a static solution. It was later shown that this solution
was unstable. Instead, Friedmann found that cosmological solutions of GR are initially
expanding [9]. Lemaître confirmed these theoretical findings and provided the first em-
pirical evidence for the expansion in 1927 [10]. Two years later, Hubble measured the
distance-redshift relation that confirmed the expanding Universe [11].

In the subsequent forty years, additional evidence further substantiated the observation
that the Universe was not only expanding but was initially very ‘small’. This Big Bang picture
was in opposition to the paradigm of a static universe, the so-called steady-state Universe.
The discovery of the cosmic microwave background (CMB) in 1965 by Bell lab researchers
Penzias and Wilson [12] led to a universal acceptance of the Big Bang picture. While being
superior to the steady-state picture, Big Bang cosmology had its own shortcomings: Namely,
the necessity of very specific initial conditions in order to solve the horizon- and flatness
problem. In 1981, Alan Guth proposed a dynamical mechanism, called Inflation, that would
solve both problems and as it later turned out, could provide the seeds for the rich non-linear
structure we observe today too [13]. Until today, Inflation is the leading paradigm for the
first fraction of a second of the Universe.

Studying the Coma cluster led Swiss astronomer Zwicky to postulate the existence of
dark matter [14] for which Vera Rubin found convincing evidence in the 1980s [15, 16].
The current data suggests that dark matter is only interacting gravitationally and moves at
non-relativistic velocities. This is why it is referred to as cold dark matter. The current
evidence suggests that there is four times as much dark as baryonic matter in the Universe.
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By the end of the last millennium, it was discovered that the Universe’s expansion has be-
gun to accelerate recently [17, 18]. The cosmological constant, driving the recent accelerated
expansion, accounts today for two thirds of the energy density in the Universe. This gave rise
to the current standard model of cosmology, the Lambda cold dark matter (ΛCDM) model.
ΛCDM has been remarkably successful in explaining a variety of observations ranging from
the temperature anisotropies in the CMB [19, 20] to Large Scale Structure of the Universe
(LSS) observables like the local expansion history [21] and the Baryon Accoustic Oscillations
(BAO) in galaxy surveys [22].

1.2 Open questions, surveys and methods

Despite the success of ΛCDM cosmology, there are many fundamental questions remaining:
Is General Relativity the correct framework? What are the microscopic origins of the
cosmological constant and dark matter? Did Inflation happen and what dynamics were
driving it? What are the masses of neutrinos?

In the case of the neutrino masses and inflation there are clear targets for the size
of uncertainties when conclusions can be made. For neutrinos, it is known from flavor
oscillations of solar and atmospheric neutrinos that they have a non-zero mass. However,
the underlying mechanism that generates the neutrino masses is unclear. Cosmological
observables can constrain the sum of the neutrino masses. This measurement will, for
instance, help deciding whether the masses follow a ‘normal’ or ‘inverted’ hierarchy [23].
Here, the required sensitivity for the total neutrino masses is σ(∑mν)∼ 14meV [24]. The
dynamics of inflation are imprinted in the initial conditions of the classical evolution of the
Universe. In particular, primordial non-Gaussianities (PNGs) (or their absence) will shed a
light on the dynamics of inflation. Here, the target is whether or not the amplitude of PNGs
of the local, equilateral or orthogonal shape is larger or smaller than 1 [25]. We discuss the
implications of a (non-)discovery of the different shapes in section 2.2.4.

Future LSS surveys are expected to help answer all the mentioned questions for two
reasons: First, they allow cosmologists to test the expansion history and growth of structure
during matter and Λ domination directly. Second, due to the three-dimensional nature of the
LSS, these surveys will eventually contain more information than the surveys of the two-
dimensional CMB that are currently providing the best constraints. There are several ways to
observe the LSS. Upcoming galaxy surveys, like the Vera C. Rubin Observatory (formerly
known as LSST) [26], SPHEREx [27], Euclid [28] and DESI [29], are going to map the
positions of billions of galaxies that trace the LSS. Intensity mapping (of neutral hydrogen)
surveys like Tianlai [30], BINGO [31], CHIME [32], FAST [33], HIRAX [34], MeerKAT
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[35], SKA [36] and SPHEREx [27] are sampling vast regions of the post-reionisation
Universe. In addition, CMB experiments such as the Simons Observatory [37] and the next
generation CMB-S4 [38] enable measurement of the integrated effect of the LSS on CMB
photons via (weak-) gravitational lensing. Cross-correlations between those probes offers
synergies, for instance by breaking degeneracies between amplitude and bias parameters,
and enabling use of cosmic variance cancellation techniques.

The LSS is a highly non-linear structure and contains a wealth of information beyond the
traditional two-point or power spectrum analyses. There are two approaches to extract this
additional information: In the forward modelling, or reconstruction, approach, one is trying
to approximate the initial conditions that gave rise to the observations. This offers a route
to modelling all non-Gaussian effects directly but in practice one has to rely on powerful
numerical tools whose overall behavior is hard to fully understand. This could cause subtle
biases in the final estimates. The late time approach, in contrast, develops estimators for
certain non-Gaussian aspects of the LSS directly. While they are easier to understand, they
do not necessarily capture all available information. We follow the latter approach.

1.3 Outline

In this thesis, we present work on two estimators that allow us to extract non-Gaussian
information from the LSS while being robust against redshift-space distortions, a leading
source of systematic uncertainty. The thesis is structured as follows:

• In chapter 2, we provide a background to the formalism used in the subsequent chapters.
We start by briefly reviewing General Relativity. Then we discuss in more detail a toy
model of Inflation and phenomenological templates for primordidal non-Gaussianities.
Next, we introduce Newtonian Perturbation Theory, the halo model, and counts-in-cells
statistics which all capture different (non-linear) aspects of the LSS.

• In chapter 3, we extend the counts-in-cells matter predictions to neutral hydrogen (HI)
by means of a bias relation. We compare two ideas for bias functions and propose
the use of a second order approximation to a non-parametric bias function based on
the cumulative distribution functions. The bias relation enables prediction of the HI
probability density function as well as the so called sphere bias. We validate our
predictions against the IllustrisTNG simulation. Without further modelling, we are
able to show that the bias relation can capture the effect of redshift-space distortions
(RSDs) too. This chapter is based on [1]
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• In chapter 4, we discuss the efficient implementation of two projection integrals that
occur when projecting bispectra and theoretical uncertainties for the projected power
spectrum. Using the theoretical uncertainties we quantify the (Fisher) information loss
when comparing a 2D power spectrum analysis with a 3D power spectrum analysis
as a function of the number of tomographic bins used. The code for the projected
bispectrum is flexible and can be used to answer a range of scientific questions. This
chapter is based on [2]

• In chapter 5, we investigate the relation between biases in the estimated cosmological
parameters and inaccurate modelling of non-linear RSDs for the power spectrum and
bispectrum of projected galaxy density fields and lensing convergence for a moderate-
sized galaxy survey like CMASS. The numerical work was performed with the code
introduced in chapter 4. This chapter is based on [2]

• In chapter 6, we conclude the thesis, reflect on what we have learned and comment on
open research questions.



Chapter 2

Background

2.1 The homogeneous Universe

It is widely believed that General Relativity (GR) describes the evolution of the Universe
on its largest scales. We thus briefly review GR and its cosmological solutions. Next, we
discuss the composition and dynamics of the energy content of the Universe.

2.1.1 General Relativity and cosmological solutions

GR is based on Einstein’s Equivalence Principle [39]:

• The trajectory of a freely falling test body depends only on its initial position and
velocity, and is independent of its composition.

• In a local inertial frame, the results of all non-gravitational experiments will be indis-
tinguishable from the results of the same experiments performed in an inertial frame in
Minkowski spacetime.

The first part is also known as the Weak Equivalence Principle. Einstein’s Equivalence
Principle can be satisfied by describing gravity as the curvature of a four-dimensional
Lorentzian manifold where the dynamic field is the metric tensor gab. Then the notion of local
inertial frames corresponds to normal coordinates. In order to have consistent equations across
different coordinate choices, the objects in those equations have to transform like tensors. In
particular, this requires partial derivatives to be replaced by covariant derivatives, also called
connections. The Levi-Civita connection is used in GR since it is the unique torsion-free,
metric-compatible connection on a Lorentzian manifold. Its connection components or
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Christoffel symbols are given in abstract tensor notation by

Γ
a
bc =

1
2

gad(∂bgcd +∂cgdb −∂dgbc). (2.1)

The Riemann curvature tensor

Ra
bcd = ∂cΓ

a
db −∂dΓ

a
cb +Γ

a
ceΓ

e
db −Γ

a
deΓ

e
cb, (2.2)

expresses the curvature in terms of the second derivatives of the metric. Its contractions, the
Ricci tensor and Ricci scalar,

Rab = Rc
acb, R = Rabgab, (2.3)

are the building blocks for the Einstein Tensor

Gab = Rab −
1
2

gabR. (2.4)

The Einstein Tensor forms the left hand side of the field equations. Einstein related it to the
matter content of the Universe via the Einstein equations [40, 41]

Gab = 8πGTab +Λgab (2.5)

with G being Newton’s gravitational constant and Λ the cosmological constant and we used
the convention c = 1, i.e. time and space have the same dimension.

Cosmological solutions to the field equations need to satisfy the cosmological principle
which says that the spatial distribution of the Universe is homogeneous and isotropic on
sufficiently large scales. While one can test isotropy very well, in particular with the cosmic
microwave background (CMB), similar tests for homogeneity are much harder. Using the
quasar distribution one can infer that the homogeneity scale is of order 100 h−1Mpc [42].
Imposing spatial homogeneity and isotropy on the metric tensor reduces it to the Friedmann-
Lemaître-Robertson-Walker (FLRW) family of metrics [9, 43–47],

ds2 = gabdxadxb =−dt2 +a(t)2
(

dr2

1− kr2 + r2(dθ
2 +dφ

2 sin2
θ)

)
. (2.6)

Hence, a cosmological (background) solution is fully specified by one function, the scale
factor a, and a number, k, specifying the spatial geometry of the Universe that can be open
(k < 0), flat (k = 0) or closed (k > 0).
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Imposing the symmetries on the energy-momentum tensor, Tab, forces it to take the form
of a perfect fluid

Tab = (ρ +P)UaUb +Pgab (2.7)

with pressure P, energy density ρ and four-velocity U .

2.1.2 Cosmic ingredients and timeline

Having reduced the number of independent functions in the metric tensor from ten to one,
one can derive the resulting evolution equations for a homogeneous and isotropic Universe:
The Friedmann equation, (

ȧ
a

)2

=
8πG

3
ρ − k

a2 +Λ, (2.8)

and the acceleration equation,

ä
a
=−4πG

3
(ρ +3P)+

Λ

3
. (2.9)

Since ρ +3P ≥ 0 for ordinary matter, the acceleration equation shows that ä would always
be negative without the cosmological constant. This is why Einstein introduced Λ as a way to
obtain a static, ȧ = 0, cosmological solution. He later called it his ‘biggest blunder’ because
this static solution is unstable.

Typically, one rewrites the equations above in terms of Hubble function

H =
d lna

dt
=

ȧ
a

(2.10)

and the critical density

ρcrit =
3H2

8πG
. (2.11)

The critical density derives its name from the fact that the Universe is flat if the density
matches the critical density, open if it is smaller, and closed if it is larger.1 This can be seen
by rewriting the Friedmann equation

ρ

ρcrit
−1 =

k
(aH)2 . (2.12)

1In order for this statement to hold in the presence of a cosmological constant, one needs to include the
cosmological constant to the energy density ρ in (2.8).
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The Universe can be filled with different perfect fluids and assuming each component of the
stress-energy tensor is separately conserved, i.e. ∇aT a

0 = 02, one finds an evolution equation
for each component

ρ̇i =−3
ȧ
a
(ρi +Pi). (2.13)

For fluids with constant equation of state, wi = Pi/ρi, we can integrate this equation and
obtain

ρi = ρi,0

(
a
a0

)−3(1+w)

. (2.14)

Here, we chose the integration constants to match the observed values today, hence the
subscript 0. Rewriting the density in terms of the critical density yields the so called density
parameters

Ωi =
ρi

ρcrit
. (2.15)

The standard model of cosmology assumes the following three components: dust (w = 0),
radiation (w = 1/3) and cosmological constant (w = −1). Their energy densities scale as
follows

ρ ∼


a−4 radiation (w=1/3)

a−3 dust (w=0)

const. cosmological constant (w=-1).

(2.16)

Due to the different scalings, the early Universe was dominated by radiation. Shortly before
the CMB was formed, matter-radiation equality happened and the Universe became matter
dominated. During this period, the rich large-scale structure of the Universe (LSS) grew.
Fairly recently, the energy density of matter sunk to the level of the cosmological constant
and the Universe has entered a period of cosmological constant domination.

The radiation component of the Universe consists of all relativistic particles (including
massless photons). The dust, or matter, component is (approximately) made up of all non-
relativistic particles, since they have negligible pressure (proportional to the kinetic energy)
compared to their energy densities (proportional to the rest mass). Only ∼ 20% of the matter
content is made up by known, baryonic matter, and the other matter is considered to be
cold dark matter. The microscopic origin of the cosmological constant is unknown. A flat,
dust-only Universe is commonly referred to as the Einstein-deSitter (EdS) Universe and is a
useful toy model to study structure formation given the LSS formed during matter domination
and the cosmological constant became only recently relevant.

2The stress-energy tensor of the entire matter content must be conserved due to the second Bianchi identity.
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2.1.3 Redshift and distances

Objects in the sky are detected via their emitted radiation. This is typically electromagnetic
radiation but gravitational waves have, for instance, been used to observe some of the most
violent events in the Universe such as black hole mergers [48, 49]. The following discussion
is provided for photons but also equally applies to gravitons. Photons travel along null
geodesics,

d2xa

d2λ
+Γ

a
bc

dxb

dλ

dxc

dλ
= 0, (2.17)

where λ is an affine parameter and dxa

dλ
is the photon’s 4-momentum. Using the Christoffel

symbols for the FLRW metric yields for the evolution of the restframe energy, E,

Ė
E

=− ȧ
a

=⇒ E ∼ 1/a. (2.18)

The fractional energy loss of photons emitted with wavelength λemit when the scale factor
was aemit and observed with wavelength λobs is called redshift, z, and written in terms of
wavelength one finds

z =
λobs −λemit

λemit
=

aobs

aemit
−1. (2.19)

Normalizing the scale factor today, a0 = 1, then yields the well known result

1+ z =
1

aemit
. (2.20)

Assuming an expansion history, H(z), we can relate redshift to radial co-moving distances of
the object via

χ(z) =
1

H0

∫ z

0

dz′

H(z′)
. (2.21)

For objects of known intensity (Supernovae of Type Ia, Cepheids) or size (Baryonic Acoustic
Oscillations), one can infer their distances directly by the size on which they appear on
the sky or the flux one measures. This, together with their redshift, allows us to measure
the expansion history of the Universe directly. In Fig. 2.1 we show an application of this
idea where the expansion history of the late time Universe was used to infer cosmological
parameters [3].
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Fig. 2.1 Hubble diagram from [3]. The logarithm of the (luminosity) distance is shown as a
function of the redshift. The black line represents the best-fit ΛCDM cosmology with fixed
Hubble parameter today, H(z = 0) = 70km s−1Mpc−1. The residuals in the bottom panel
indicate that the fit, and thus the theory, is fully consistent with the observations.
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2.2 Initial conditions from Inflation

Inflation is a postulated phase of accelerated expansion in the very early Universe that would
solve some shortcomings of the standard Big Bang picture. Due to the exponential expansion
during Inflation, quantum fluctuations in the inflaton field are stretched to cosmological
scales where they become classical once they reach the size of the horizon. We will review
the calculations that show how the simplest model of Inflation produces Gaussian initial
conditions. Next, we introduce phenomenological models for primordial non-Gaussianities.
This section was heavily influenced by [50] and we refer the reader to this reference for more
details.

2.2.1 Inflation

Despite being very successful, the Big Bang paradigm has at least two shortcomings that
require special assumptions about the initial conditions: The CMB consists of approximately
30,000 regions that have not been in causal contact with each other until today, but have all
the same mean temperature, and the statistical fluctuations around this mean seem to come
from the same distribution too. This is known as the horizon problem. Moreover, the spatial
curvature increases during periods of the Universe where w >−1/3, i.e. during radiation
and matter domination. Given the Universe today is indistinguishable from a flat Universe, it
must have been exceptionally flat initially. This is known as the flatness problem. The two
problems can be solved by a phase of accelerated expansion during the very early universe
(first ∼ 10−43s), called Inflation [13, 51, 52].

The idea is that the Universe was expanding so rapidly that the co-moving Hubble horizon,
H = aH, shrunk

d
dτ

H < 0. (2.22)

Here, we take the derivative with respect to conformal time τ =
∫ t

0 dt ′/a(t ′). Provided enough
expansion took place, the scales we observe today were in causal contact before the onset of
the standard evolution, hence solving the horizon problem. Similarly, the rapid expansion
would dilute all initial curvature, such that it would be unobservable today for a large range
of initial curvatures. The amount of expansion that happened during Inflation is commonly
measured in e-folds, N,

N =
∫

dN =
∫

d lna = ln
astart

aend
. (2.23)

The horizon and flatness problem are both solved if there were at least 60 e-folds of Inflation.
From the continuity equation (2.13), one sees that the strong energy condition (w >

−1/3) needs to be violated in order to achieve a shrinking co-moving Hubble horizon. For
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the remainder of this subsection, we study a toy model which allows us to gain a better
understanding of how to achieve this scenario by means of a simple scalar field φ described
by the action

S =
∫

d4x
√−g(X −V (φ)) (2.24)

where X =−gab∂aφ∂bφ is the kinetic term and g the determinant of the metric. The expansion
during Inflation can then be studied in terms of the potential V . In order to have a shrinking
horizon and a sufficient number of e-folds, one commonly requires that the two slow-roll
parameters

ε =−d lnH
d lna

=− Ḣ
H2 < 1, η =

d ln(ε)
d lna

=− ε̇

Hε
< 1 (2.25)

are small. In particular, ε < 1 ensures that the co-moving Hubble is shrinking and η < 1
ensures that Inflation lasts sufficiently long to solve the mentioned shortcomings. Varying
the action (2.24) with respect to the metric tensor yields the stress energy tensor

T ab =
2√−g

δL
δgab

(2.26)

from which we obtain the energy density

ρφ =
1
4

[√
TabT ab −3T 2 −T

]
=

1
2

φ̇
2 +V (2.27)

and pressure

Pφ =
1

12

[√
TabT ab −3T 2 +3T

]
=

1
2

φ̇
2 −V (2.28)

of the scalar field. Inserting those into the Friedmann equation (2.8) yields

H2 =
8πG

3

(
1
2

φ̇ +V
)
. (2.29)

This allows us to write the slow-roll parameters as

ε = 4πG
(

φ̇

H

)2

, η = 2
(

ε +
φ̈

Hφ̇

)
. (2.30)

In the slow approximation (ε ≪ 1), the Friedmann equation simplifies to

H2 ≃ 8πG
3

V. (2.31)
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The scalar field’s evolution is governed by the Klein-Gordon equation that can be simplified
in the slow-roll approximation (η ≪ 1) to

φ̈ +3Hφ +V,φ = 0 =⇒ 3Hφ̇ =−V,φ . (2.32)

The Friedmann equation and Klein-Gordon equation in the slow-roll limit then allow us to
rewrite the slow-roll conditions in terms of the inflaton’s potential V

εV =
8πG

2

(
V,φ

V

)2

, ηV = 4ε −η = 28φG
V,φφ

V
. (2.33)

Those equations allow us to quickly check whether slow-roll Inflation takes place given a
specific potential and the initial conditions of the scalar field.

2.2.2 Gauge problem in GR

In order to study fluctuations around this spatially homogeneous and isotropic solution, we
first need to understand the Gauge problem in GR. A change of coordinates moves some
perturbations across different metric components and between the metric and stress-energy
tensor as we will see below. Let us derive the transformations of the perturbations in the
Einstein equations under a change of coordinates to understand the gauge degrees of freedom.
We start by writing the perturbed line element (around a flat cosmological solution) as

ds2 = a(τ)2(−(1+2A)dτ
2 +2Bidxidτ +

(
δ

K
i j +hi j)

)
dxidx j. (2.34)

We use the convention that indices from the beginning of the alphabet such as a,b, etc. are
running from 0 to 3 whereas i, j,k, etc. are spatial indices and range only from 1 to 3. Using
the Hemholtz theorem, one can decompose the perturbations into scalar, vector and tensor
components (under spatial rotations)

Bi = ∂iB+BV
i , (2.35)

hi j = 2Cδ
K
i j +2

(
∂i j −

1
3

∇
2
)

E +∂iEV
j +2ET

i j , (2.36)

where the vector and tensor components are divergence-free and the tensor components are
symmetric and trace-free:

∂
iBV

i = ∂
iEV

i = 0 = ∂
iET

i j , δ
K,i jET

i j = 0, ET
i j = ET

ji. (2.37)
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The decomposition greatly simplifies the analysis, since at linear order those components
do not mix on an isotropic background. From now on, we restrict ourselves to scalar
perturbations. Let us consider the (scalar) change of coordinates

x → x̃ = x+ξ (2.38)

where
ξ = (T,∂iL). (2.39)

The co- and contravariant components of a tensor, S, in the two different coordinate system
transform like

S̃ ν
µ (x̃) =

∂xλ

∂ x̃µ

∂ x̃ν

∂xρ
S ρ

λ
(x̃−ξ ). (2.40)

Expanding the right-hand side to linear order in ξ yields the transformation of the scalar
perturbations in the metric:

Ã = A−T ′−H T, (2.41a)

B̃ = B+T −L′, (2.41b)

C̃ =C−H T − 1
3

∇L, (2.41c)

Ẽ = E −L. (2.41d)

Assuming the perturbed energy-momentum tensor is a perfect fluid, we find at linear order

δTab = (δρ +δP)UaUb +δPgab +(ρ +P)(UaδUb +UbδUa)+Pδgab. (2.42)

After ensuring the four-velocity is normalised, we can parametrise the remaining scalar
degree of freedom of the four-velocity by the velocity potential v

δUa =
1
a
(1−A,∂ iv). (2.43)

The scalar perturbations in the energy momentum tensor transform like

δ ρ̃ = δρ −ρ
′T, (2.44a)

δ P̃ = δP−P′T, (2.44b)

v = v+L′. (2.44c)
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While the Gauge freedom can be used to simplify some calculations considerably, it is
useful to predict gauge-invariant variables. There are two gauge-invariant variables that are
particularly relevant. Firstly, the co-moving curvature perturbation

ζ =C− 1
3

∇
2E +H

δρ

ρ ′ . (2.45)

Using the Einstein equations, one can show that ζ is constant on super Horizon scales. This
allows us to map perturbations from the time when they leave the Horizon (during Inflation)
to the time when they reenter the Horizon (during radiation or matter domination) despite
the fact that some of the physics in between, in particular reheating, are not well known.
Secondly, the Bardeen Potential

Φ =−C+H (B−E ′)+
1
3

∇
2E (2.46)

is a popular gauge-invariant variable since it corresponds to the Newtonian gravitational
potential on sub-horizon scales.

2.2.3 Initial conditions from Inflation

We will now study quantum fluctuations of the scalar field toy model and aim to express
those in terms of the co-moving curvature perturbations. Throughout this section, we will
ignore background fluctuations and work in deSitter space.3 This is for the sake of clarity
and one can show that the results extend to the slow-roll case. Moreover, we work in spatially
flat gauge (C = E = 0). In deSitter space we have

H = const., a ∼−1/τ. (2.47)

Decomposing the field of the toy model (2.24) via

φ(x,τ) = φ̄(τ)+δφ(x,τ) = φ̄(τ)+ f (x,τ)/a(τ) (2.48)

yields the Mukhanov-Sasaki as equation of motion for the fluctuations

f ′′(k,τ)+ f (k,τ)
(

k2 − 2
τ2

)
= 0. (2.49)

3This is the case with η = 0, where Inflation would never end.
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The classical solutions to this equation are given by

f (k,τ) = c1
e−ikτ

√
2k

(
1− i

kτ

)
+ c2

eikτ

√
2k

(
1+

i
kτ

)
. (2.50)

To quantize the field, we observe that deep inside the horizon, k ≫ aH, the equation of
motion (2.49) reduces to the harmonic oscillator, which we know how to (canonically)
quantize by introducing the following commutation relation for the raising- and lowering-
operators a and a† [

â(k), â†(k′)
]
= (2π)3

δ
D(k+k′). (2.51)

The general solution of the quantized Mukhanov-Sasaki equation is a linear combination of
those raising- and lowering-operators times a solution of the classical equation of motion

f̂ (x,τ) =
∫ d3k

(2π)3

[
f (k,τ)â(k)e−ikx + f ∗(k,τ)â†(k)eikx

]
. (2.52)

In the initial conditions, τ →−∞, we are only interested in the modes deep inside the horizon
where the equation of motions approximates the harmonic oscillator. Hence we require the
solution to converge to the positive energy solution, the so-called Bunch-Davies vacuum, i.e.
c1=1 and c2=0. From this we can compute the power spectrum:

⟨φ(k,τ)φ(k′,τ)⟩=(2π)3
δ

D(k+k′)Pφ (k,τ), (2.53)

with Pφ (k,τ) = 1
2ka2

(
1+ 1

(kτ)2

)
. The dimensionless power spectrum of the scalar field, ∆φ ,

is defined as

∆
2
φ ≡ k3

2π2 Pφ (k) =
k3

2π2
1

2ka2

(
1+

1
(kτ)2

)
=

(
H
2π

)2(
1+

k2

a2H2

)
. (2.54)

On superhorizon scales (k ≪ aH), the second term in the brackets vanishes and we can
translate the perturbation into a co-moving curvature perturbation

∆
2
ζ
(k) =

(
aH
φ̇

)2

∆
2
φ (k)

∣∣∣∣
k≤aH

=
8πG

ε
∆

2
φ (k)

∣∣∣∣
k≤aH

. (2.55)

In slow-roll Inflation, we expect a roughly scale-invariant power spectrum since both the
Hubble and epsilon are varying slowly. One typically parametrises the dimensionless power
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spectrum in terms of an amplitude, A, and spectral index, ns, as

∆
2
ζ
(k) = A

(
k
k∗

)ns−1

. (2.56)

The deviation from scale invariance is given by

ns −1 =
d ln∆2

ζ

d lnk
=−2ε −η < 0. (2.57)

The power spectrum (2.53) is one of the most important statistics in cosmology. Since
we work with fluctuations around the mean, it is the first non-vanishing moment of the
distribution. Moreover, for mean-zero Gaussian random fields all the information is contained
in the power spectrum.

2.2.4 Primoridal non-Gaussianities

Intuitively, fields that are described by a harmonic oscillator, give rise to Gaussian fluctuations.
Thus, to obtain significant deviations from Gaussianity in the initial conditions, one needs to
break some of the assumptions made in the previous calculations. In particular, one could
introduce more dynamical fields, couple the kinetic term non-minimally to gravity, violate
the slow-roll conditions or start from a non-Bunch-Davies vacuum [53]. In any case, we
know that deviations from Gaussianitiy must be small [54].

In case those deviations still lead to Inflation, one can test their impact on the shape of
the power spectrum or by measuring higher order moments. The bispectrum

⟨Φ(k1)Φ(k2)Φ(k3)⟩= (2π)3
δ

D(k1 +k2 +k3)BΦ(k1,k2,k3) (2.58)

is a particularly popular tool to test primoridal non-Gaussianities because it is the leading
non-Gaussian term in a so-called Edgeworth expansion. Spatial homogeneity makes the
bispectrum only non-zero when the three wave vectors form a valid triangle. Note that Φ is
referring to the Bardeen potential and not the scalar field φ . One typically constrains three
general shapes that are meant to test broad classes of models. Upon discovery of a shape,
one could then refine the search. Another approach is to use a basis expansion in the space of
possible bispectrum shapes and constrain those templates [55]. We will follow the former
approach and use the following three templates:
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Local shape

The simplest model for a non-Gaussian potential, ΦNG, is built from a local interaction of an
underlying Gaussian field ΦG [56–58]

ΦNG(x) = ΦG(x)+ fNL(Φ
2
G(x)−⟨Φ2

G⟩) (2.59)

where fNL determines the strength of the non-Gaussianities. This models yields a non-zero
bispectrum

Blocal
Φ (k1,k2,k3) = 2A2 f local

NL

[
1

(k1k2)4−ns
+2 perm.

]
(2.60)

where we used PΦ = Ak4−ns . The shape has a characteristic peak in squeezed (also called
local) configurations where one side of the triangle is much shorter than the other two.
Maldacena showed that for slow-roll Inflation, this signal is order ε , thus unobservable [59].
In general, the squeezed limit of the bispectrum for single field models is order fNL(ns−1)∼
O(ε) making it unobservable too [60]. This means, a non-zero local type non-Gaussianity
would be a strong indicator for multifield Inflation - the opposite is not necessarily true. The
best 1σ constraints are currently [54]

f local
NL =−0.9±5.1. (2.61)

Equilateral shape

The equilateral shape arises in a wide range of non-vanilla inflationary dynamics, for instance
with non-standard kinetic terms, (see [61] and references therein). A separable approximation
to the equilateral shape was introduced in [62] and is given by

Bequil
Φ

(k1,k2,k3) = 6A2 f equil
NL

{[
− 1
(k1k2)4−ns

+2 perm.
]
+

1
(k1k2k3)2(4−ns)/3

+

[
1

k(4−ns)/3
1 k2(4−ns)/3

2 k4−ns
3

+5 perm

]}
.

(2.62)

The best 1σ constraints are currently [54]

f equil
NL =−26±47. (2.63)
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Orthogonal shape

The orthogonal shape,

Bortho
Φ (k1,k2,k3) = 6A2 f ortho

NL

{[
− 3
(k1k2)4−ns

+2 perm.
]
+

8
(k1k2k3)2(4−ns)/3

+

[
3

k(4−ns)/3
1 k2(4−ns)/3

2 k4−ns
3

+5 perm

]}
,

(2.64)

was introduced as a tool to probe derivative interaction in multifield Inflation effectively [63].
The best 1σ constraints are currently [54]

f ortho
NL =−38±24. (2.65)

2.2.5 Connecting early and late times

When studying the LSS (at late times), we are interested in the matter density contrast δ . It
is related to the Bardeen potential, Φ, and the co-moving curvature perturbations, ζ , via the
Einstein equations. During matter and Λ domination, this relation is

δ (k,z) = M (k,z)Φ(k,ze) = M (k,z)
3+3w(ze)

5+3w(ze)
ζ (k,ze). (2.66)

where the Poisson factor M is given by

M (k,z) =
2k2c2

3Ωm,0H2
0

T (k,z). (2.67)

The first term in the Poisson factor stems from the Poisson equation that is valid on sub-
horizon scales. In addition, the transfer function T (k,z) realises the time evolution from
the time of horizon crossing at ze. The time evolution is given by the Einstein-Boltzmann
system of equations for all the relevant components of the Universe. There are efficient
solvers for those equations such as CAMB [64, 65] and CLASS [66] that can be used. It is
worthwhile discussing the time evolution in the special cases of radiation domination and
matter domination briefly. Those two regimes can be roughly separated by the wave vector
keq that corresponds to the size of the modes that entered at matter-radiation equality. Smaller
modes entered the horizon during radiation domination and larger modes did so during
matter domination. As noted before, the co-moving curvature perturbations are constant on
super-horizon scales. During radiation domination, sub-horizon matter perturbations only
grow with the logarithm of the scale factor, the so-called Meszaros effect. During matter
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Fig. 2.2 Left: The Poisson factor at redshift zero is shown. The scale dependence is dominated
by the k2 term from the Poisson equation. In addition, the slope changes around the scale of
matter-radiation equality keq ≃ 0.015 hMpc−1, since small scales are suppressed due to the
Meszaros effect. Right: Linear power spectrum at redshift zero (blue line) compared to the
HALOFIT [4, 5] prediction for the non-linear power spectrum (orange). The non-linearities
are strongest on small scales and stem from an enhanced clustering compared to the linear
predictions.

domination, in contrast, sub-horizon modes grow proportional to the scale factor. This means
that small modes, those that entered the horizon during radiation domination, are suppressed
relative to those that entered later. This is why transfer function becomes constant for k < keq

and is decreasing for k > keq. Finally, the Bardeen potential decays by 10% due to the
transition from radiation to matter domination because of the changing equations of state w
of the cosmic fluid. Fig. 2.2 shows the Poisson factor at redshift zero on the left side. Around
the scale of radiation-matter equality, keq ≃ 0.015 hMpc−1, we see a change of slope that is
due to the changing behavior of the transfer function T (k,z). Using the Poisson factor, one
can relate the (linear) matter- to the Bardeen potential power spectrum by

PL(k,z) = M 2(k,z)PΦ(k,ze). (2.68)

The primordial bispectrum (at late times) is given by

Bprim(k1,k2,k3,z) = M (k1,z)M (k2,z)M (k3,z)BΦ(k1,k2,k3,ze,1,ze,2,ze,3). (2.69)

Gravitational collapse introduces non-linearities at late times that lead to a gravitational
bispectrum and modify the power spectrum. On the right side of Fig. 2.2, we compare the
linear power spectrum (2.68) to a fully non-linear power spectrum model. The non-linear
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evolution is generating an increased clustering on small scales which is not captured by the
linear prediction.

In the next section, we are going to discuss how one can use the linear solutions to find a
perturbative expansion of the full non-linear evolution during matter and Λ domination.

2.3 Newtonian Perturbation Theory

Matter density perturbations grow on sub-horizon scales due to gravitational instability. In
this section, we are going to solve the evolution equations perturbatively during matter and Λ

domination to capture some of the non-linear effects. On the statistical level, non-linearities
change the distribution of the fluctuations by sourcing higher order correlation functions, in
particular a gravitational bispectrum. There are two additional non-linear effects that have to
be understood in order to accurately describe observations: redshift-space distortions (RSDs)
and biasing. Lastly, we will relax the assumptions of Gaussian initial conditions and extend
the predictions accordingly.

We are working in an intermediate regime where we are deep inside the horizon but still
on much larger scales than the regions with strong gravitational fields or high velocities, so a
Newtonian treatment is sufficient. The assumption of a perfect, pressureless fluid coupled to
gravity leads us to the Euler-Poisson system that we need to solve (perturbatively). We will
review the Standard (or Eulerian) and Langrangian framework of perturbation theory. Both
are reviewed in [67]. Biasing has been reviewed in [68].

2.3.1 Evolution equations in co-moving coordinates

To simplify calculations, we begin by separating the effect of the expanding background
from the evolution equations by expressing equations in terms of co-moving coordinates x.
They are related to the physical coordinates r by the scale factor a

r = ax. (2.70)

Velocities can be split into the Hubble flow [11] and peculiar velocities, u,

∂r
∂τ

= r′ = v(x,τ) = H x+u(x,τ). (2.71)

Primes denote derivatives with respect to conformal time τ . Similarly, we are interested in
deviations from the average density ρ̄ , since the average density drives the cosmic expansion
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and is captured by the scale factor a. The matter density contrast, δ , is given by

ρ(x,τ) = ρ̄(τ)(1+δ (x,τ)) . (2.72)

The Poisson equation in co-moving coordinates then reads

∇
2
xΦ/a2 = 4πGρ̄(1+δ ). (2.73)

One can separate the potential Φ in a component that sources the background expansion and
an auxiliary potential φ that sources the density contrast via

Φ = φ + x22a2
πGρ̄. (2.74)

Recalling the definition of the matter density parameter Ωm, the Poisson equation becomes

∇
2
φ =

3
2

Ωm(τ)H
2
δ (x,τ). (2.75)

Here we assume that the cosmological constant does not cluster. In co-moving coordinates,
the continuity equations is

∂δ (x,τ)
∂τ

+∇ · [(1+δ (x,τ))u(x,τ)] = 0, (2.76)

and the Euler equations becomes

∂u(x,τ)
∂τ

+H u(x,τ)+u(x,τ) ·∇u(x,τ) =−∇φ . (2.77)

The non-linear term in the Euler equation can be absorbed in a total time derivative of the
peculiar velocity: du/dτ = u′+u∇u .

2.3.2 Eulerian perturbation theory

In Eulerian (or Standard) perturbation theory (SPT), we are solving the evolution equations
at late times perturbatively. To simplify the equations, we decompose the peculiar velocity
into its divergence θ and curl w

θ(x,τ) = ∇ ·u(x,τ), (2.78)

w(x,τ) = ∇×u(x,τ). (2.79)
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The Euler equation of the curl

w′+H w−∇× (u×w) = 0 (2.80)

has no source term. Accordingly, if the curl was zero at some time, it would remain zero. In
addition, linearizing (2.80) shows w ∼ 1/a. Thus, even if there was vorticity initially, when
the linear theory was valid, it would decay. For our analysis, it is sufficient to ignore vorticity
even though there is evidence that vorticity occurs at late times and small scales, indicating
that the fluid is neither perfect nor pressureless. The effective field theory (EFT) of LSS takes
this into account. Without curl, the velocity is fully specified by the velocity potential

θ(x,τ) = ∇u(x,τ)→ u(k,τ) = i
k
k2 θ(k,τ). (2.81)

Next, we study the time evolution of the velocity potential at linear order by taking the
divergence and a time derivative of the linear Euler equation. Using the Poisson equation for
the gravitational potential, we obtain

θ
′′+H θ

′ =
3
2

Ωm(τ)H
2(τ)θ . (2.82)

One can solve this equation with a separable Ansatz, θ(x,τ) = D(τ)θ(x), and denote the
growing (shrinking) solution by D+ (D−) respectively. Since only the growing mode is
relevant for structure formation, we use D ≡ D+. In an Einstein-deSitter Universe (a =

τ2,H = 2/τ , Ωm(τ) = 1), we find the solutions

D ≡ D+ ∼ τ
2 ∼ a, D− ∼ τ

−3 ∼ a−3/2. (2.83)

Lastly, the linear continuity equation relates the first order density contrast and velocity
potential via

θ(x,τ) =−∂D
∂τ

δ (x) =−∂ lnD
∂ lna

d lna
d lnτ

δ (x,τ) =− f H δ (x,τ). (2.84)

Here f is the logarithmic growth rate, f = d lnD/ lna. In Fig. 2.3 we show the growth
factor (left side) and the logarithmic growth rate (right side) both for the EdS and ΛCDM
cosmology. Up to a normalization constant, the values are identical during matter domination
and only when the cosmological constant became relevant do the curves start differing.
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Fig. 2.3 Left: Growth factor normalised to one today, in a ΛCDM (blue) and Einstein-
deSitter (2.83), (orange) Universe. During matter-domination, they are parallel and only
started deviating when the cosmological constant became relevant and the growth of structure
started to stall which is not accounted for in Einstein-deSitter. Right: The logarithmic growth
rate in a ΛCDM cosmology (blue) is decreasing at late times, while it remains constant in an
Einstein-deSitter Universe (orange).

Higher orders

The perturbative expansion is most easily done in Fourier space. There, the Euler and
continuity equation are

∂δ (k,τ)
∂τ

+θ(k,τ) =−
∫ d3p1

(2π)3
d3p2

(2π)3 (2π)3
δ

D(k−p1:2)α(p1,p2)θ(p1,τ)δ (p2,τ),

(2.85)
and

∂θ(k,τ)
∂τ

+H θ(k,τ)+
3
2

ΩmH 2
δ (k,τ) =

−
∫ d3p1

(2π)3
d3p2

(2π)3 (2π)3
δ

D(k−p1:2)β (p1,p2)θ(p1,τ)θ(p2,τ)

(2.86)

where p1:n = p1 + · · ·+pn and we defined the kernels

α(k1,k2) =
k1:2 ·k1

k2
1

and β (k1,k2) =
1
2

k2
1:2

k1 ·k2

k2
1k2

2
. (2.87)

To simplify calculations, we assume an EdS Universe where D(n) = (D(1))n [67]. Then the
perturbative expansions of the density potential and velocity divergence are

δ (k,τ) =
∞

∑
n=1

D(n)(τ)δ (n)(k) =
∞

∑
n=1

an(τ)δ (n)(k), (2.88)
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θ(k,τ) =−H
∞

∑
n=1

D(n)(τ)θ (n)(k) =−H
∞

∑
n=1

an(τ)θ (n)(k). (2.89)

Inserting those expansions (2.88) and (2.89) into the Euler- and continuity equation allows
us to express the n-th order perturbations in terms of lower orders via

An(k) = nδ
(n)(k)−θ

(n)(k) (2.90)

and
Bn(k) = 3δ

(n)(k)− (2n+1)θ (n)(k) (2.91)

where

An(k) =
∫ d3p1

(2π)3
d3p2

(2π)3 (2π)3
δ

D(k−p1:2)α(k,p1)
n−1

∑
m=1

θ
(m)(p1)δ

(n−m)(p2), (2.92)

Bn(k) =−2
∫ d3p1

(2π)3
d3p2

(2π)3 (2π)3
δ

D(k−p1:2)β (k,p1)
n−1

∑
m=1

θ
(m)(p1)θ

(n−m)(p2). (2.93)

Solving for the n-th order density contrast and velocity potential, we find

δ
(n)(k) =

1
(2n+3)(n−1)

[(2n+1)An(k)−Bn(k)] , (2.94)

θ
(n)(k) =

1
(2n+3)(n−1)

[3An(k)−nBn(k)] . (2.95)

Applying the identities iteratively, allows us to express each term in the expansions in terms
of the linear perturbation δ (1) as

δ
(n)(k) =

n

∏
i=1

(∫ d3pi

(2π)3 δ
(1)(pi)

)
(2π)3

δ
D(k−p1:n)Fn(p1, · · · ,pn) (2.96)

θ
(n)(k) =

n

∏
i=1

(∫ d3pi

(2π)3 δ
(1)(pi)

)
(2π)3

δ
D(k−p1:n)Gn(p1, · · · ,pn). (2.97)

The gravitational kernels, Fn, are given by

Fn(p1, · · · ,pn) =
n−1

∑
m=1

Gm(p1, · · · ,pm)

(2n+3)(n−1)
[(2n+1)α(p1:m,pm+1:n)Fn−m(pm+1, · · · ,pn)

+ 2β (p1:m,pm+1:n)Gn−m(pm+1, · · · ,pn)]

(2.98)
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while the kernels for the velocity potential, Gn, are

Gn(p1, · · · ,pn) =

n−1

∑
m=1

Gm(p1, · · · ,pm)

(2n+3)(n−1)
[3α(k1,k2)Fn−m(pm+1, · · · ,pn)+2nβ (k1,k2)Gn−m(pm+1, · · · ,pn)] .

(2.99)

The recursion starts with F1 = G1 = 1 and the first non-trivial kernels are

F2(k1,k2) =
5
7
+

1
2

µ(k1,k2)

(
k1

k2
+

k2

k1

)
+

2
7

µ(k1,k2)
2 (2.100)

and

G2(k1,k2) =
3
7
+

1
2

µ(k1,k2)

(
k1

k2
+

k2

k1

)
+

4
7

µ(k1,k2)
2 (2.101)

with µ(k1,k2) = k1 ·k2/(k1k2) being the cosine of the angle between the two vectors.

Statistics

Since velocities in the Universe are not directly observable, correlators of the matter density
contrast are the main tool to study the LSS. The goal is to express all correlators in terms of
the linear power spectrum, PL, that defines the initial conditions and can be computed via
Einstein-Boltzmann codes (see: section 2.2.5). The leading order power spectrum is simply
given by the linearly evolved initial power spectrum

⟨δ (1)(k1)δ
(1)(k2)⟩= (2π)3

δ
D(k1 +k2)PL(k1). (2.102)

At leading order, the gravitational bispectrum is zero and the first non-zero order is given by

⟨δ (k1)δ (k2)δ (k3⟩=⟨δ (1)(k1)δ
(1)(k2)δ

(2)(k3)⟩+2 cyclic

=(2π)3
δ

D(k1 +k2 +k3)2F2(k1,k2)PL(k1)PL(k2)+ cyclic
(2.103)

where we used

δ
(2)(k) =

∫ d3 p
(2π)3 F2(k−p,p)δ (1)(k−p)δ (1)(p). (2.104)

Thus, the tree-level matter bispectrum is given by

Bmmm(k1,k2,k3) = 2F2(k1,k2)PL(k1)PL(k2)+ cyclic (2.105)
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Fig. 2.4 Two-point correlation function measured in the 2dF galaxy redshift survey [6]. The
colour is related to the clustering strength and increases from black to yellow. π measures
radial and σ transverse distances. The black lines show equi-correlation lines and even in the
absence of RSDs they would not be circular due to the Alcock-Pacynski effect. One would
need perfect knowledge of the underlying cosmology to have consistent transverse and radial
distance scales. On large scales, the Kaiser effect leads to a squashing because correlations
parallel to the LOS are enhanced. On small scales, the FoG effect suppresses correlations
parallel to the LOS and thus the equi-correlation lines appear stretched in the radial direction.

2.3.3 Redshift-space distortions

Galaxies’4 radial distances are measured via their (cosmological) redshifts. However, peculiar
velocities parallel to the line-of-sight (LOS) give rise to a Doppler redshift that is degenerate
with the cosmological redshift and biases distance measurements. On large scales, RSDs
are caused by the coherent infall of galaxies into gravitational potentials and leads to an
enhancement of modes parallel to the LOS [69], first described perturbatively in [70]. Fig. 2.4
shows the resulting squashing of the two-point correlation function on large scales.

The observed redshift-space positions, s, are related to Eulerian space via [71]

s = x+
u∥
H

e∥ = x+
e∥ · (∇θ(x))

H
e∥. (2.106)

4For concreteness, we will use the term galaxies for tracers, but the discussion translates directly to other
tracers such as neutral hydrogen.
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The parallel and perpendicular indices are always referring to directions with respect to the
LOS. The mapping from Eulerian to redshift-space preserves the mass locally

(1+δ
(s))d3s = (1+δ )d3x. (2.107)

This allows us to express the density contrast in redshift-space

δ
(s)(s) =

δ (x)+1− J
J

(2.108)

in terms of the Jacobian, J, of the mapping x → s

J = det
∂ s
∂x

. (2.109)

In Fourier space, we find

δ
(s)(k) =

∫
d3seiks =

∫
d3xJeikxeik∥u∥ δ (x)+1− J

J

=
∫

d3xeikxei f k∥u∥
(
δ (x)+ f ∇∥u∥(x)

)
=

∞

∑
n=1

n

∏
i=1

(∫ d3 pi

(2π)3

)
(2π)3

δ
D(k−p1:n)×

×
(
δ (p1)+ f µ

2
1 θ(p1)

) ( f µk)n−1

(n−1)!
µ2

p2
θ(p2) · · ·

µn

pn
θ(pn)

(2.110)

where µi = µ(ki,e∥) = ki,∥/ki is the cosine of the angle between the wave vector and the LOS.
The multitude of additional terms from the expansion of the exponential function sheds a
light on the intrinsic non-linearities of RSDs. In practice, those non-linearities lead to a lower
accuracy of the perturbative expansion for a given k than the pure matter predictions [71].
Expanding all fields in terms of their series expansions (2.88 and 2.89) allows us to introduce
the redshift kernels Zi

δ
(s)(k,τ) =

∞

∑
n=1

an(τ)
n

∏
i=1

(∫ d3 pi

(2π)3 δ
(1)(pi)

)
(2π)3

δ
D(k−p1:n)Zn(p1, . . . , pn). (2.111)

The first two redshift kernels are given by [71]

Z1(k) = 1+ f µ(k,e∥)2 (2.112)
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Fig. 2.5 The full RSD power spectrum is shown as a function of the wave vector k, and the
cosine of the angle with the LOS, µ . On large scales, the Kaiser effects enhance modes
parallel to the LOS while on small scales, those modes are damped by the FoG effect.

and

Z2(k1,k2) = F2(k1,k2)+ f µ
2
12G2(k1,k2)+

f µ12k12

2

(
µ1

k1
Z1(k1)+

µ2

k2
Z1(k2)

)
(2.113)

where, again, µi = ki,∥/ki and k2
i j = (ki +k j)

2 and µi jki j = µiki +µ jk j.

Statistics

Correlating the density contrast in redshift-space, we find the aforementioned enhancement
of large modes parallel to the LOS in the power spectrum, first described by Kaiser [70]

PKaiser(k,µ) = Z1(k)2PL(k) = (1+ f µ
2)2PL(k). (2.114)

Here, µ = k∥/k is the cosine of the angle between wave vector and the LOS. Similarly, the
tree-level redshift-space bispectrum is given by

BKaiser(k1,k2,k3) =2Z1(k1)PL(k1)Z1(k2)PL(k2)Z2(k1,k2). (2.115)



30 Background

non-linear RSDs

On small scales, the large and incoherent velocities of galaxies within potential wells give
rise to the Finger of God (FoG) effect, i.e. structures appear elongated along the LOS [72].
In Fig. 2.4, one can see the corresponding suppression of small scale clustering parallel to
the LOS in the two-point correlation function. This corresponds to a damping of small-scale
modes parallel to the LOS. The theoretical predictions can be extended to smaller scales by
modelling the non-linear aspects of RSDs directly.

Typically, the modelling is done by multiplying the perturbative spectra with a damping
factor, DFoG, coming from the pairwise-velocity dispersion [73]

PNL-RSD(k,µ) = DFoG(kµ)PKaiser(k,µ). (2.116)

Depending on the distributional assumption of the pairwise-velocity dispersion, one can
derive a Lorentzian [74, 75]

DFoG(kµ) = (1+(kµσP)
2/2)−2 (2.117)

or Gaussian [76, 77]
DFoG(kµ) = exp

[
−(kµσP)

2] (2.118)

damping factor for the power spectrum. In perturbation theory, the pairwise velocity disper-
sion is given by

σ
2
v =

( f H )2

6π2

∫
dkP(k). (2.119)

However, since the model is meant to capture a non-linear effect, one typically treats the
velocity dispersion as a free parameter that can be fitted against simulations. In Fig. 2.5, we
illustrate the non-linear RSD power spectrum (2.116). On large scales, one sees the Kaiser
enhancement while on small scales, modes parallel to the LOS are damped due to the FoG
effect. A similar Ansatz was proposed for the redshift-space bispectrum [71]

BNL-RSD(k1,k2,k3,µ1,µ2,µ3) = DFoG(k1µ1,k2µ2,k3µ3)BKaiser(k1, . . . ,µ3) (2.120)

where the damping was achieved by a generalised Lorentzian term

DFoG(k1µ1,k2µ2,k3µ3) = (1+((k1µ1)
2 +(k2µ2)

2 +(k3µ3)
2)2

σ
4
B/2)−2. (2.121)

The deviation from the pure Lorentzian form was chosen to achieve a better fit in equilateral
configurations. A further (phenomenological) improvement of this model was performed
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in [78]. The Gaussian damping generalises to

DFoG(k1µ1,k2µ2,k3µ3) = exp
[
−
(
(k1µ1)

2 +(k2µ2)
2 +(k3µ3)

2)
σ

2
B/2
]
. (2.122)

As we see later, separable bispectra are beneficial for numerical reasons. The modified
Lorentzian damping (2.121) is non-separable but using the pure Lorentzian form, the bispec-
trum becomes separable using

1
t2 =

∫
∞

0
dλ λ exp(−tλ ). (2.123)

The Gaussian template is directly separable and, in addition, allows us to absorb uncertainties
in the redshift measurements in the velocity dispersion [79].

2.3.4 Lagrangian perturbation theory

In Lagrangian perturbation theory (LPT), we study the displacement field Ψ that realises the
mapping of mass elements from the initial positions q to the late-time positions x(q,τ),

x(q,τ) = q+Ψ(q,τ). (2.124)

As with the mapping from Eulerian to redshift-space, mass conservation implies

ρ(x,τ)d3x = ρ̄(τ)d3q, (2.125)

which in turn allows us to express the density contrast at late times in terms of the Jacobian,
J(q,τ) = det(δ K

i j +Ψi, j), of the transformation x → q via

δ (x,τ) =
ρ

ρ̄
−1 =

1
J(q,τ)

−1. (2.126)

In order to derive an evolution equation for the displacement field, we start with the Euler
equation (2.86)

d2x
dτ2 +H

dx
dτ

=−∇xφ

and rewrite it in terms of the Lagrangian coordinates q

J
[

d2Ψi, j

dτ2 +H
dΨi, j

dτ

]
=
(
δi j +Ψi, j

) 3
2

Ωm(τ)H
2(J−1). (2.127)
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This equation can be solved by means of a series expansion in the displacement field

Ψ(k,τ) =
∞

∑
n=1

D(i)(τ)Ψ(i)(k). (2.128)

Using the expansion for the determinant

det(I +A) =exp(tr(log(I +A))) = exp

[
tr

(
∞

∑
i=1

(−A)i

n

)]
=1+ trA+

1
2
[
tr2(A)− trA2]+O(A3)

(2.129)

one finds a closed-form solution for the n-th order displacement field in Fourier space

Ψ
(n)(k) =−i

Dn(τ)

n!

n

∏
i=1

(∫ d3 pi

(2π)3 δ
(1)(pi)

)
(2π)3

δ
D(k−p1:n)L(n)(p1, . . . ,pn) (2.130)

where we introduce the kernels L(n). The first two kernels are given as

L(1)(p1) =
p1

p2
1

Zel’dovich approximation

L(2)(p1,p2) =
3
7

p1:2

p2
1:2

(1−µ
2(p1,p2)).

(2.131)

Using (2.126) allows us to express the density contrast at late times in terms of the displace-
ment field

δ (k) =
∫

d3xeikx
δ (x) =

∫
d3qeikq

(
eikΨ −1

)
. (2.132)

Expanding the exponential in Ψ demonstrates the equivalence between SPT and LPT. At
linear order, one finds

δ
(1,LPT)(k) =

∫
d3qeikqikΨ

(1)(q)δ (1)(q) = δ
(1,SPT)(k). (2.133)
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At second order, the computation is slightly more involved

δ
(2,LPT)(k) =

∫ d3q
(2π)3 eikq

(
ikΨ

(2)(q)+
1
2
(kΨ

(1)(q))2
)

=
1
2

∫ d3 p1

(2π)3
d3 p2

(2π)3 δ
D(k−p1 +p2)δ

(1)(p1)δ
(1)(p2)×

×
[

3
7

(
1− (p1 ·p2)

2

(p1 p2)2

)
+

kp1

p2
1

kp2

p2
2

]
=
∫ d3 p

(2π)3 F2(k−p,p)δ (1)(k−p)δ (1)(p) = δ
(2,SPT)(k).

(2.134)

but one nevertheless recovers the SPT result.

2.3.5 Redshift-space distortions in LPT

LPT offers a natural way to include RSDs into the formalism. The displacement field then
describes the mapping from Lagrangian to redshift, instead of Eulerian, space

s = x+
u∥
H

e∥ = q+Ψ
s. (2.135)

The displacement field to redshift-space, Ψs, is related to the displacement field to Eulerian
space, Ψ, via

Ψ
s = Ψ+

e∥ · (dΨ/dτ)

H
e∥ (2.136)

where we used u = dx/dτ = dΨ/dτ . Using the expansion of the displacement field (2.130)
reveals

dΨ
(n)/dτ = nH f Ψ

(n). (2.137)

So, the n-th order displacement field to redshift-space is given by

Ψ
s(n) = Ψ

(n)+n f
(

e∥ ·Ψ(n)
)

e∥. (2.138)

At leading order, we find

Ψ
s(1)(k) =−iDδ

(1)(k)
(

k
k2 + f

k∥e∥
k2

)
(2.139)

which implies

δ
(1,s)(k) =

∫ d3q
(2π)3 eikqkΨ

(1,s)(q) = δ
(1)(k)(1+ f µ

2). (2.140)
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This, again, matches the result from SPT with the redshift kernel Z1. At second order, one
recovers the SPT result too

δ
(2,s)(k,τ) =

∫ d3q
(2π)3 eikq

(
ikΨ

(2,s)(q)+
1
2
(kΨ

(1,s)(q))2
)

=
1
2

∫ d3 p1

(2π)3
d3 p2

(2π)3 δ
D(p1 +p2 − k)δ (1)(p1)δ

(1)(p2)×

×
[

3
7
(
1+2 f µ

2)(1− (p1p2)
2

(p1 p2)2

)
+k ·

(
p1

p2
1
+ f

p1,ze∥
p2

1

)
k ·
(

p2

p2
2
+ f

p2,ze∥
p2

2

)]
=

1
2

∫ d3 p1

(2π)3
d3 p2

(2π)3 δ
D(p1 +p2 −k)δ (1)(p1)δ

(1)(p2)

[
2F2(p1,p2)

+ f
(

6
7

µ
2
(

1− (p1p2)
2

(p1 p2)2

)
+(p1,z + p2,z)

[(
1+

p1p2

p2
2

)
p1,z

p2
1
+

(
1+

p1p2

p2
1

)
p2,z

p2
2

])
+ f 2(p1,z + p2,z)

2
(

p1,z p2,z

p2
1 p2

2

)
=
∫ d3 p1

(2π)3
d3 p2

(2π)3 δ
D(p1 +p2 −k)δ (1)(p1)δ

(1)(p2)

×
[

F2(p1,p2)+ f
µ12k12

2

(
µ1

p1
+

µ2

p2

)
+ f µ

2
12G2(p1,p2)+ f 2 µ12k12

2
µ1µ2

(
µ1

p2
+

µ2

p1

)]
.

(2.141)

One advantage of the Lagrangian approach is that it allows us to perform a resummation
before expanding the exponential. This can be used to refine the modelling on non-linear
RSDs, e.g. [80–82].

2.3.6 Tracer bias

In most observations, one cannot observe the smooth dark matter field directly and must
work with tracers that are observable. Those tracers do not follow the underlying dark matter
directly, a property called bias. Expanding the tracer density contrast, δg, in terms of all
functions of the gravitational potential allowed by symmetry yields in Fourier space to second
order [83–85]

δg(k) = b1δ (k)+
b2

2
δ

2(k)+
bs2

2
s2(k) (2.142)

where δ is the matter density contrast and s2 is the non-local tidal term

s2(k) =
∫ d3 p

(2π)3 S2(k−p,p)δ (k−p)δ (p). (2.143)
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The tidal tensor is
S2(p1,p2) =

p1 ·p2

p1 p2
− 1

3
. (2.144)

A priori, one cannot predict these bias parameters and so they have to be estimated together
with the cosmological parameters.

Lagrangian Biasing

Starting with a local bias expansion in Lagrangian space sheds a light on the necessity of
the tidal term for a consistent bias expansion. Translating the bias expansion (2.142) into
Lagrangian space yields

δ
(L)
g (q) = b(L)1 δ (q)+

b(L)2
2
(
δ

2(q)−⟨δ 2⟩
)
+

b(L)s2

2
s̃2(q). (2.145)

The mapping from Lagrangian to Eulerian space can then be derived from the continuity
equations of the matter and galaxy fields

[1+δ (x)]d3x = d3q and
[
1+δ

(E)
g (x)

]
d3x =

[
1+δ

(L)
g (q)

]
d3q. (2.146)

Combining those equations yields

δ
(E)
g (x) = δ

(L)
g (q)+δ (x)δ (L)

g (q)+δ (x). (2.147)

Expanding to first order, we find

δ
(E,1)
g (x) = δ

(L,1)
g (x)+δ

(1)(x) = (b(L)1 +1)δ (1)(x). (2.148)

At second order, we find for the galaxy density contrast in Eulerian space

δ
(E,2)
g (x) =δ

(L,2)
g (x)−Ψ

(1)(x)∇xδ
(L,1)
g (x)+δ

(L,1)
g (x)δ (1)(x)+δ

(2)(x)

=δ
(L,2)
g −b(L)1

[
17
21

δ
2 +

2
7

s2 −δ
(2)
]
+δ

(L,1)
g δ

(1)+δ
(2)

=
(

b(L)1 +1
)

δ
(2)+

1
2

(
bL

2 +
8

21
b(L)1

)
δ

2 +
1
2

(
b(L)s2 − 4

7
b(L)1

)
s̃2,

(2.149)

where we used
δ
(2)(x) =

17
21

δ
2(x)−Ψ(x)∇xδ (x)+

2
7

s2(x). (2.150)
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This allows us to summarise the relation between bias parameters at early and late times

b(E)1 = b(L)1 +1, b(E)2 = b(L)2 +
8

21
b(L)1 , b(E)s2 = b(L)s2 − 4

7
b(L)1 . (2.151)

In particular, we see that a local bias model in Lagrangian space introduces a tidal component
at late times. In addition to this contribution from the evolution, there is now evidence for an
initial non-local bias [86, 87].

Stochastic bias

In most observations the tracers are discrete objects. This introduces further biases often
referred to as shot-noise. Whether or not a discrete tracer forms at some position is modelled
by a random process since it is unfeasible to try to measure and understand the small scale
physics that would explain whether or not a tracer forms. The probability to have n tracers
within some volume is normally modelled by an (inhomogeneous) Poisson process [88, 89,
68].

To gain an intuitive understanding of stochastic biases, we present here a calculation
from [90]. We start by writing the overdensity of discrete tracers, δ (d), in a given realization

δ
(d)(x) =

n(x)
n̄

−1 =
1
n̄ ∑

i
δ

D(x−xi)−1 (2.152)

where n̄ is the average number density of tracers and the xi are the positions of the tracers.
Using the Poissonian assumption, one can compute correlation functions. For the two-point
correlation function of the discrete tracers, one finds

〈
δ
(d)(x)δ (d)(x′)

〉
=

1
n̄2

〈
∑
i, j

δ
D(x−xi)δ

D(x′−x j)

〉
− 2

n̄

〈
∑

i
δ

D(x−xi)

〉
+1

=
1
n̄2 δ

D(x−x′)

〈
∑

i
δ

D(x′−xi)

〉
+

1
n̄2

〈
∑
i̸= j

δ
D(x−xi)δ

D(x′−x j)

〉
−1

=
1
n̄

δ
D(x−x′)+

1
n̄2

〈
∑
i̸= j

δ
D(x−xi)δ

D(x′−x j)

〉
−1

=
1
n̄

δ
D(x−x′)+ξ (|x−x′|).

(2.153)

Beside the two-point correlation function of the smooth matter field, ξ , one finds a shot-noise
contribution. This contribution leads in Fourier space to a constant off-set of the discrete
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power spectrum, P(d), compared to the power spectrum of the smooth field P

P(d)(k) =
1
n̄
+
∫

d3xξ (|x|)exp[ik ·x] = 1
n̄
+P(k). (2.154)

A similar calculation shows, for the three-point correlation function of discrete tracers,

⟨δ (d)(x)δ (d)(x′)δ (d)(x′′)⟩=ζ
(3)(x,x′,x′′))

+
1
n̄

(
δ

D(x−x′)ξ (x′−x′′)+2 cyclic
)

+
1
n̄2 δ

D(x−x′)δ
D(x′−x′′).

. (2.155)

Here, we find two additional terms beside the three-point correlation function ζ (3) of the
continuous field. Taking the Fourier transform yields

B(d)(k1,k2,k3) = B(k1,k2,k3)+
1
n̄

(
P(d)(k1)+P(d)(k2)+P(d)(k3)−

3
n̄

)
+

1
n̄2 (2.156)

with the last term being the shot-noise of the discrete bispectrum.
To capture those effects, one includes stochastic terms to the bias expansion (2.142).

Accounting for stochastic bias, the complete bias expansion to second order reads [83]

δg(k) = b1δ (k)+
b2

2
δ
(2)(k)+

bs2

2
s2(k)+ ε(k)+(εδ ∗δ )(k). (2.157)

By construction, the mean of the bias terms, ε and εδ , and cross-correlation of the bias terms
with the (long wavelength) matter fields are zero. The only non-vanishing correlators up to
second order are then [88, 89, 68]

Pεε =
1
n̄
, Pεεδ

=
b1

2n̄
, Bεεε =

1
n̄2 . (2.158)

2.3.7 Primoridal non-Gaussianities

The assumption of Gaussian initial conditions can be tested by allowing deviations from
them and constraining their amplitude fNL. This is typically done by adding primordial
non-Gaussianities (PNGs) of known shape. Those give rise to two types of new terms: Firstly,
the added PNGs lead to a non-zero matter bispectrum at all times. This primordial bispectrum
grows with D3 whereas the gravitational bispectrum grows with D4. In practice this means
that at late times even for fNL = 1, the primordial bispectrum of the local, equilateral and
orthogonal shape are in most configurations significantly smaller than the gravitational
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Fig. 2.6 Left: The primordial bispectrum of the three commonly used templates is orders
of magnitudes smaller than the gravitational bispectrum at z = 0 for fNL = 1. We show the
ratio of the local (green curve), equilateral (blue) and orthogonal (orange) templates and the
tree-level gravitational bispectrum in the squeezed configurations (k,k,0.1k). Similarly in
equilateral configurations, where the three templates are identical, the ratio is still very small
(red curve). Right: The scale-dependent bias generates a characteristic feature at large scales.
The equilateral template does not give rise to this effect.

bispectrum, see Fig. 2.6. Secondly, the bias expansion (2.157) has to be carried out both in
the density and gravitational potential adding new bias terms [91–95]. Those scale-dependent
bias terms offer for some shapes, particularly the local shape, the opportunity to constrain
PNGs on large scales. See Fig. 2.6.

For generic, quadratic PNGs, one can perform a complete bias expansion in terms of the
non-local transformation

Ψ(k) =
∫ d3 p

(2π)3

(
k
p

)α

Φ(p) (2.159)

of the gravitational potential, Φ, rather than the potential directly [96]. The parameter α is
0,2,1 for the local, equilateral and orthogonal shape respectively [97]. Adding the following
terms to the bias expansion in Lagrangian space makes it complete (up to second order in the
density contrast and first order in fNL) [96]

δ
(NG)
g (q) = fNL

(
b(L)

Ψ
Ψ(q)+b(L)

Ψδ
Ψ(q)δ (q)+ εΨ(q)Ψ(q)

)
. (2.160)

εΨ captures the additional stochasticity due to the PNGs and its only non-zero correlator with
the other fields at second order is[68]

PεεΨ
(k) =

bΨ

2n̄
. (2.161)
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Translating the expansion into Eulerian space (up to second order), the convective term gives
rise to a second non-local term, ñ2 , [91–95, 98]

δ
(NG)
g (x) = fNL

(
b(L)

Ψ
Ψ−b(L)

Ψ
Ψ

(LPT )(x)∇Ψ(x)+b(L)
Ψδ

Ψ(x)δ (x)+ εΨ(x)Ψ(x)
)

= fNL

(
b(E)

Ψ
Ψ(x)+b(E)n2 ñ2(x)+b(E)

Ψδ
Ψ(x)δ (x)+ εΨ(x)Ψ(x)

) (2.162)

Using the Zel’dovich approximation (2.131), the new term is in Fourier space given by [98]

n2(k) =
∫ d3 p

(2π)3 N2(p,k−p)
|k−p|α

M (|k−p|)δ (p)δ (k−p) (2.163)

with
N2(p1,p2) =

p1p2

p2
1
. (2.164)

Comparing bias parameters in (2.162), we find

b(E)
Ψ

= b(L)
Ψ

, b(E)
Ψδ

= b(L)
Ψδ

+b(L)
Ψ

, b(E)n2 = b(L)
Ψ

. (2.165)

In section 2.4.5, we are going to derive the scale dependence of the bias parameters bΨ and
bΨδ in the different PNG models. There, we also discuss in more detail the origin of the
exponent α used in the non-local transformation of the gravitational potential (2.159).

The additional bias terms can be included into the redshift kernels, Z. The first two
become [98, 99]

Z1(k) = b1 + f µ
2 +

bΨ(k)
M(k)

, (2.166a)

Z2(ki,k j) =b1F2 +
b2

2
+

bs2

2
S2 + f µi jG2 + f

µi jki j

2

[
µi

ki
Z1(k j)+

µ j

k j
Z1(ki)

]
+

1
2

(
(bΨδ (ki)−bΨ(ki)N2(k j,ki))

M(ki)
+

(bΨδ (k j)−bΨ(k j)N2(ki,k j))

M(k j)

)
.

(2.166b)

2.4 Halo model

A second approach to solve the non-linear evolution equations of the matter fields is the use
of symmetries. Here, the idea is to identify the regions in the initial conditions/Lagrangian
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space that will collapse into high-density objects, so called halos. Using spherical symmetry,
we are then able to solve for the dynamics of those regions exactly.

2.4.1 Spherical collapse

Newton’s spherical mass theorem and Birkhoff’s theorem in GR guarantee that a homo-
geneous sphere evolves independently from its surroundings. This is why the evolution
equations of a spherically symmetric, overdense region of radius R, within the initial condi-
tions of a flat universe, are tractable. In fact, such a region evolves like a closed Universe
(because it is overdense). We are now going to solve the evolution equation of such a region
in an Einstein-deSitter Universe. The Friedman equation,

H2 = H2
0

Ωm,0

a3 − k
a2 , (2.167)

can be integrated analytically. First, we change the time coordinate to conformal time
dτ = dt/a and substitute a = k

H2
0 Ωm,0

y2

(
dy
dτ

)2

=
1
4

k(1− y2). (2.168)

This equation is integrated by ∫ dy√
1− y2

= arcsinx+C. (2.169)

Thus, the scale factor of the overdense region evolves like

a(τ) =
Ωm,0

2(Ωm,0 −1)

(
1− cos(

√
kτ)
)
= A(1− cosθ) (2.170)

where θ =
√

kτ and A is implicitly defined in the last equality. The integration constant was
chosen so that the ‘Big Bang’ is at θ = 0. The solution indicates that a overdense region
first expands, then reaches a maximum at θ = π and finally collapses in a ‘Big Crunch’ at
θ = 2π . Since this ‘Big Crunch’ is unphysical, one instead assumes in the halo model that
the overdense region forms a virialised object.
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The cosmic time is recovered from the conformal time by

t =
∫ t

0
dt =

∫
τ

0
adτ =

Ωm,0

H02(Ωm,0 −1)3/2

(√
kτ − sin(

√
kτ)
)

=B(θ − sinθ).

(2.171)

It is instructive to expand the parametric solutions of the overdense region to better understand
the behavior at early times

aSC(θ)≃ A
(

θ
2/2
[

1− θ 2

12

])
, tSC ≃ Bθ

3/6
[

1− θ 2

20

]
. (2.172)

Inverting the second expression and inserting into the first, we find that the scale factor of the
overdense region evolves (up to next-to-leading order) like

aSC(t) =
A
2

(
6t
B

)2/3
[

1− 1
20

(
6t
B

)2/3
]
= aEdS(t)(1+δR). (2.173)

The leading order matches the background evolution of the Einstein-deSitter universe where
aEdS(t)=

(3
2H0t

)2/3
. δR is the radial perturbation, the relative amount by which the overdense

sphere’s radius deviates from the radius of a sphere in the background. We can compare the
(linear) growth of structure too. Using the conservation of mass,

ρiR3
i = ρR3 = ρi(1+δ

(1))R3
i (1+δR)

3, (2.174)

we find that the linear overdensity evolves as

δ
(1) =−3δR =

3
20

[6(θ − sinθ)]2/3 . (2.175)

At the time of collapse, it approaches the so-called critical density, δc,

δ
(1)
collapse =−3δR(t = 2πB) =

3
20

(12π)2/3 ≃ 1.69 ≡ δc. (2.176)

The fully non-linear density in the spherical collapse model, in contrast, is given by

ρSC =

(
aEdS

aSC

)3

=
9
2
(θ − sinθ)2

(1− cosθ)3 , (2.177)

where the normalization is chosen such that for θ → 0 the non-linear density approaches the
background density. Fig. 2.7 illustrates the scale factor and density evolution in the linear
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Fig. 2.7 Left: Evolution of the radius of a sphere following the background evolution (blue
curve), the linear perturbative solution (green) and the fully non-linear spherical collapse
(orange). Middle: Time evolution of the density in a sphere assuming linear evolution (blue
curve) and spherical collapse (orange). The linear density approaches the critical density δc,
when the spherical collapse solution becomes singular. Right: Illustration of the mapping
between the density in a sphere from spherical collapse and the linear overdensity. We show
the exact mapping in blue and the orange points show the approximation (2.178).

and non-linear scenario as a function of time. Solving (2.175) for θ allows us to express
the density in the spherical collapse picture (2.177) in terms of the linear overdensity. This
mapping can be approximated by [100]

ρSC(δ
(1))≃ (1−δ

(1)/ν)−ν =⇒ δ
(1)(ρSC)≃ ν(1−ρ

−1/ν

SC ). (2.178)

Choosing ν = 21/13 matches the high-redshift skewness obtained from perturbation theory.
The mapping works for underdense regions too. The choice is correct to 0.5% from δ (1) =

0.3−2.5 [101, 7] and we show the mapping in the right subplot of Fig. 2.7.

2.4.2 Filtering of fields

There are situations, like the one just discussed, in which one is only interested in a coarse-
grained version of a (stochastic) field. Mathematically, the coarse-grained field corresponds
in real space to a convolution of the field with some window function. The convolution
becomes a product in Fourier space and the power spectrum of the filtered field is thus given
by

δR(k) = δ (k)W (kR) =⇒ PR(k) = |W (kR)|2P(k). (2.179)

In many situations, a Top-Hat in real space window function,

W̃TH(x/R) =
3

4π
θ

H(1− x/R), (2.180)
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is physically most meaningful. θ H refers here to the Heavyside step function. Its Fourier
transform in 3D is given by

WTH(kR) = 3
sin(kR)− kRcos(kR)

(kR)3 . (2.181)

Filtering can also be used to separate a field, like the density constrast δ , into small and large
scales

δL(k) = δ (k)WL(k/kmax), δS(k) = δ (k)(1−WL(k/kmax)). (2.182)

In this situation a Top-Hat in Fourier space window function

WL(k/kmax) = θ
H(1−|k|/kmax), (2.183)

simplifies many calculations, even though it does not have a clear interpretation in real space.
The separation of perturbations into small and large scales is called peak-background split.

2.4.3 Mass functions

Spherical collapse provides a non-linear mapping of overdense regions in the initial conditions
to virialised objects at late times. This allows us to compute the co-moving number density
of virialised objects of mass M, called mass function n(M), which is an important ingredient
for many cosmological models. Assuming spherical symmetry and mass conservation, a
virialised object of mass M corresponds to an initial overdensity of size R in Lagrangian
space such that

M = ρ̄
4π

3
R3 = ρ̄VM. (2.184)

Since the density fluctuations in the initial conditions are tiny, one can safely ignore them
when converting masses and length scales. We will use the mass M and associated length
scale R(M) synonymously from now on. In Lagrangian space, the density in spheres of size
R(M) is well described by a Gaussian distribution with variance

σ
2
R(τ) = ⟨δ 2

R⟩=
1

2π2

∫
P(k,τ)W 2(kR)k2dk. (2.185)

Press & Schechter’s seminal idea was to linearly evolve the initial conditions and replace
regions whose evolved linear density contrast exceeds the critical density δc by virialised
objects. The probability that a given sphere in the initial conditions will be collapsed at time
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τ is thus

P(δR > δc) =
1√

2πσR

∫
∞

δc

exp
(
− x2

2σR(τ)2 dx
)

=
1
2

erfc
(

δc√
2σR

)
=

1
2

erfc
(√

ν

2

)
.

(2.186)

with the peak-height ν . The model neatly separates the spherical collapse dynamics of the
mapping that defined δc, from the statistical distribution of the initial conditions given by
σR. Since the variance of the distribution increases with smaller scales, small objects form
first and they subsequently merge into larger halos. However, we see that even in the limit of
σR → ∞ only half of the spheres of a given size will collapse. To match the expectation that
all mass sits in virialised objects, the original paper introduced a fudge factor of 2.

The mass function, n(M), is given by the proportion of Lagrangian space that collapses
into objects of mass M. Identifying the proportion of Lagrangian space with δR > δc with
the probability that a given sphere exceeds the thresholds, allows us to write

n(M) =− 1
VM

dP(δM > δc)

dM
=− ρ̄

M
dP
dν

dν

dM
. (2.187)

In the Press-Schechter model, we obtain

n(M) =

√
ν

2π

ρ̄

M2 exp
(
−ν

2

) d lnν

d lnM
. (2.188)

This model works surprisingly well, but in the 1990s it was discovered that it failed to
accurately predict the number of small halos in N-body simulations [102, 103]. One of
the reasons was that collapse is intrinsically triaxial [104, 105]. Based on triaxial collapse
dynamics, Sheth & Tormen devised an improved mass function [103, 106]

n(M) = A

√
qν

2π

(
1+

1
(qν)p

)
ρ̄

M2 exp
(
−qν

2

) d lnν

d lnM
(2.189)

where the parameters q = 0.707, p = 0.3 are obtained from simulations and the normalisation
A ensures that all mass in the Universe is contained in halos.

The two mentioned mass functions belong to a broader class of universal mass functions
parametrised by

n(M) = f (ν)
ρ̄

M2
d lnν

d lnM
. (2.190)
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They are universal in the sense that they only depend on the peak height and have no direct
cosmology or redshift dependence. They are accurate to ∼ 10−20% and for better accuracy
one needs to introduce an explicit redshift and/or cosmology dependence [107].

2.4.4 Biasing in the halo model

The mass-function offers a way to compute local bias parameters in Lagrangian space. They
are the response coefficients of the mass function to long-wavelength perturbations, δL,

n(q,M) = n̄(M)+∑
i

∂ in̄
∂δ i

L

(
δ

i
L(q)−⟨δ i

L⟩
)
. (2.191)

The second term in the brackets ensures that we maintain the correct average density. A
long-wavelength perturbation increases the local mean density and thus lowers the critical
density like

δ̃c ≃ δc −δL. (2.192)

The tracer overdensity is given by

δ (q) =
n(q,M)

n̄(M)
−1, (2.193)

which allows us to compute the local bias parameters in Lagrangian space as

b(L)i (M) =
1
n̄

∂ in̄
∂δ i

L
=−1

n̄
∂ in̄
∂δ i

c
. (2.194)

For the Sheth-Tormen mass function (2.189), the first two Lagrangian bias parameters are
given by

b(L)1 (M) =
2p

δc [(νq)p +1]
+

νq−1
δc

, (2.195)

b(L)2 (M) =
2(2p2 +2ν pq− p)

δ 2
c [(νq)p +1]

+
νq(νq−3)

δ 2
c

. (2.196)

We show their mass dependence in Fig. 2.8. The bias parameters for the Press-Schechter
mass function correspond to q = 1, p = 0.

2.4.5 Scale-dependent bias from PNGs

The presence of primordial non-Gaussianities violates the distributional assumption of the
initial conditions used in the previous sections. In this thesis, we only work with weak,
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Fig. 2.8 Lagrangian bias parameters from the Sheth-Tormen mass function. In order to have
dimensionless quantities, we scale where necessary with kl = 0.01 hMpc−1. All parameters
are roughly constant and O(1) for tracers of masses ≤ 1014M⊙ and grow rapidly afterwards.

quadratic PNGs that can be incorporated into the formalism by a scale-dependent rescaling of
the variance. This gives rise to new bias terms and, since we assume weak non-Gaussianities,
we limit ourselves to the leading order terms in fNL. In the case of more general PNGs, the
deviations from Gaussianity can be captured by means of an Edgeworth expansion and a
rescaling of higher moments. We refer the interested reader to [108].

We now derive the leading order additional, scale-dependent bias terms caused by weak,
quadratic PNGs. Scale-dependent bias terms were first observed for the local model in [91].
Our discussion here largely follows [109, 110]. We start by writing the gravitational potential,
Φ, in terms of an auxiliary Gaussian potential, φ ,

Φ(k) = φ(k)+ fNL

∫ d3 p1

(2π)3
d3 p2

(2π)3 KNL(p1,p2)φ(p1)φ(p2)δD(k−p1:2). (2.197)

The kernel KNL incorporates the specifics of the considered (quadratic) PNG model and
the amplitude fNL ensures the PNGs are indeed weak. We then use the peak-background
split (2.182) and separate the Gaussian potential into short and long wavelength components,
φL and φS. The associated (Gaussian) density contrasts are δL and δS. Applying the Poisson
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equation to the short scales of the non-Gaussian potential yields

δ
(NG)
S (k) = δS(k)+2 fNL

∫ d3 p
(2π)3 KNL(p,k−p) [δL(p)φS(k−p)+δS(p)φL(k−p)] .

(2.198)
Due to the non-Gaussianities, long and short modes are coupled. This translates to a
modulation of the non-Gaussian variance on small scales by the long (Gaussian) mode

σ
2
S,NG(k) = ⟨δ (NG)

S δ
(NG)
S ⟩= σ

2
R,0 +4 fNL

[
φL(k)σ2

R,NL(k)+δL(k)σ2
R,NL−φ (k)

]
. (2.199)

Here σ2
R,0 is the variance of the (short scale) Gaussian field and we use the definitions:

σ
2
R,NL(k) =

∫ d3ks

(2π)3 KNL(k,ks)PL(ks)W 2(ksR), (2.200)

σ
2
R,NL−φ (k) =

∫ d3ks

(2π)3 KNL(k,ks)M
−1(ks)PL(ks)W 2(ksR). (2.201)

The window functions come from the peak-background split (2.179). The 4 fNLσ2
R,NL−φ

δL

term can be ignored since it only introduces a very small (≤ 10−4 fNL) scale-independent
correction to the bias terms [110].

To be able to obtain analytical results and since the scale-dependent bias is most relevant
on large scales,5 we approximate KNL as

KNL(k,p)≃ A
(

k
p

)α

(2.202)

with (A,α) obtained in the squeezed limit as (1,0), (3,1), (-3,2) for local, equilateral and
orthogonal PNGs respectively and we approximated ns = 1 [97]. This leads to the following
expression for the non-linear variance (2.200)

σ
2
R,α(k) =

1
2π2

∫
d pp2

(
k
p

)α

P(p)W 2(pR). (2.203)

Due to the scale-dependent rescaling of the variance, the bias expansion of the mass func-
tion (2.191), has to be generalised. For universal mass functions, the variance enters via the

5This is known from the local model, where no approximation is needed.
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peak-height, ν = δc/σR, which transforms like

ν(φL) = ν(φL = 0)
/(

(1+4 fNLφL
σ2

R,α

σ2
R,0

)
. (2.204)

From this, we derive the logarithmic derivative with respect to the mass scale,

d lnν(φL)

d lnM
=

d lnν(φL = 0)
d lnM

[
1+4 fNLφl

σ2
R,α

σ2
R,0

(
d lnσ2

R,α

d lnσ2
R,0

−1

)]
. (2.205)

To second order in the potentials and first order in fNL, we find two new bias parameters. For
universal mass functions the first order term is given by [97, 110–112]

b(L)
Ψ

=
∂ lnn(M)

∂φL

∣∣∣∣
φL=0

= 2A fNL
σ2

R,α

σ2
R,0

[
b1δc +2

(
∂ lnσ2

R,α

∂ lnσ2
R,0

−1

)]
. (2.206)

Similarly, one finds at second order [94, 112]

b(L)
Ψδ

=
1

n(M)

∂ 2n̄h

∂δL∂φL

∣∣∣∣
φL,δL=0

= A fNL

[
2δcb(L)2 +b(L)1

(
4

d lnσ2
R,α

d lnσ2
R,0

−6

)]
σ2

R,α

σ2
R,0

. (2.207)

In practice, we implement the derivatives using the chain rule and the monotonic relation
between the variance and the smoothing scale R. The scale dependence enters the bias
parameters through KNL and the Poisson factor when converting the potential Ψ to the
(observed) density contrast δ . On large scales, the overall scale dependence behaves like
kα−2. In Fig. 2.8 we show the mass dependence of those bias terms.

2.5 Counts-in-cells

In this section, we introduce the counts-in-cells formalism that predicts the matter distribution
in spheres at late times. Since some of the derivations are rather technical, we summarise the
main results here:

• Combining spherical collapse and large deviation theory, one can derive a very accurate
probability density function (PDF) for the matter density in concentric spheres at late
times. It is given in (2.223) together with (2.225).
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• This result can be generalised to the case of distant spheres (2.255). The joint PDF
is expressed in terms of the PDF for concentric spheres, the two-point correlation
function and the density dependent bias (2.254).

Throughout this section, we assume ⟨ρ⟩= 1 and work with filtered fields using a Top-Hat
filter (2.181). We introduced filtering in section 2.4.2.

2.5.1 Counts-in-cells statistics for concentric spheres

In the initial conditions, the PDF of densities, ρi, in concentric spheres of radii Ri is a
mulitvariate Gaussian distribution with mean one and covariance

Σ(Ri,R j) = Σi j =
∫ dkk2

2π2 PL(k,zini)W (kRi)W (−kR j). (2.208)

The linearly evolved density field, δ (1), also follows a mean zero multivariate Gaussian
distribution with the covariance evolved accordingly. It is easier to work with the linearly
evolved density fields since the linear power spectrum at late times is provided by Boltzmann
codes (see section 2.2.5) and one does not explicitly need to define the redshift of the initial
conditions.

Beside the PDF, there are (at least) two more ways to characterise probability distributions:
the moment-generating function, M, and the cumulant-generating function, φ . They are
related to the PDF via a Laplace transformation

M(λ1, . . . ,λn) = eφ(λ1,...,λn) =
∫ n

∏
i=1

dρiP(ρ1, · · · ,ρn)eρiλi. (2.209)

Here we used (λ1, . . . ,λn) = {λi} to shorten the notation. Hence, one can recover the PDF
from both the moment-generating function, M, and the cumulant-generating function, φ via
an inverse Laplace transform of ( 2.209), e.g.

P({ρi}) = ∏
i

(∫ i∞

−i∞

dλi

2πi

)
exp [−ρiλi +φ({λi})] . (2.210)

For a mulitvariate Gaussian, we find for the moment-generating function and cumulant-
generating function

M({λi}) = exp
[
⟨ρi⟩λi +

1
2

λiΣi jλ j

]
, φ({λi}) = ⟨ρi⟩λi +

1
2

λiΣi jλ j. (2.211)
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The non-linear evolution of the Universe changes the functional form of the PDF. Tradi-
tionally, the late-time PDF was approximated by log-normal models [113] whose PDF for
the density in a single sphere is

P(ρ) =
1

ρσµ

√
2π

exp

(
(log(ρ)− µ̄)2

2σ2
µ

)
. (2.212)

Requiring a unit mean fixes µ̄ =−σ2
µ/2 and the non-linear variance σ2

µ remains as a free
parameter that can be fitted against the observations. The idea behind the log-normal model
is that a log-transformation reduces the skewness (which is zero in the Gaussian case) of a
random variable and extends its range from positive values to positive and negative values.

It is possible to obtain significantly better predictions using the spherical collapse model
and large deviation theory. The following discussion is based on [114, 7]. Large deviation
theory describes the decay of a PDF in its tails by studying its behavior as some natural
parameter goes to zero. In our setting, this natural parameter is the variance at some length
scale, R and redshift, z. Importantly, if the variance on one length scale and redshift goes to
zero, it implies that the variance at all length scales and redshifts goes to zero. In this limit,
the rate function I, gives the leading order behavior of the PDF in its tails

I({δ
(1)
i }) =− lim

σ2(R)→0
σ

2(R) logP({δ
(1)
i }|Σi j) =⇒ P({δ

(1)
i })∼ e−I({δ

(1)
i })/σ2(R). (2.213)

Here we defined Σ(R,R) = σ2(R). Following the argument from above, we are free to choose
the reference scale (and redshift) which use the reference variance. For concreteness, let us
choose R = maxi{Ri}. One can compute the rate function of a set of concentric spheres of
(linear) density contrasts, δ

(1)
i , to

I({δ
(1)
i }) = σ2(R)

2
δ
(1)
i Σ

−1({Rk},{Rk})i jδ
(1)
j , (2.214)

where the covariance is given by (2.208). The rate function of linear densities is a simple
quadratic function. This changes as we move to non-linear densities. The contraction
principle allows us to calculate the rate function, ψ , of another random variable, ρ , that is
related via a continuous transformation,

f : δ
(1)
i (q)→ ρRi(x), (2.215)

via
ψ({ρi}) = inf{δ

(1)
i }: f (δ (1)

i )=ρi
I({δ

(1)
i }). (2.216)
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In case the transformation f is not injective, only the least unlikely path is relevant. All other
contributions are exponentially suppressed by the (infinitesimally) small variance in (2.213).
This is particularly relevant for cosmological mappings where one could imagine many
initial conditions resulting in the same final configuration. Beside physical mappings, the
contraction principle can also be applied to variable transformations. We will make use of
this too during the derivation of the late-time density in spheres PDF.

Let us start with the mapping from early to late times, or maybe more accurately, from
linear to non-linear densities. One can argue that the most likely mapping from the initial
conditions to a late-time spherical overdensity should respect the high degree of symmetry in
the final configuration and is hence given by the spherical collapse [115]. This makes the
problem tractable because we can identify, via mass conservation, the spheres in the initial
conditions that are mapped on a given set of concentric spheres at late times. The most likely
origin of each sphere at late times with radius Ri and mass (4

3πR3
i ρi) is a sphere around the

same co-moving coordinate with the same mass and hence radius Rini,i = ρ
1/3
i Ri. Using then

the spherical collapse solution (2.178) as continuous mapping (2.215) allows us to use the
contraction principle (2.216). We find for the decay rate function at late times, ψ

ψ({ρk}) =
σ2(R)

2
δ
(1)
i ({ρk})Σ−1({Rkρ

(1/3)
k },{Rkρ

(1/3)
k })i jδ

(1)
j ({ρk}). (2.217)

Using a path integral approach, the result was first obtained in [101]. Under some technical
conditions, one can recover the scaled cumulant-generating function, ϕ , via Varadhan’s
lemma from the rate function [116, 117, 114]

ϕ({λi}) = lim
σ2→0

σ
2
φ({λk/σ

2}) = sup
{δi}

(λiρSC(δi)− I({δi})) . (2.218)

Inverting the relation (2.178) allows us to take the supremum over the non-linear density ρ

instead. Moreover, if the rate function is convex, the last expression simplifies to a Legendre
transform with stationarity conditions,

ρi =
∂

∂λi
ϕ({λk}). (2.219)

The idea is now to extend the scaled cumulant-generating function, which describes the
zero-variance limit, to finite variances via

φR({λk}) =
1

σ2
NL(R)

ϕ({λkσ
2
NL(R)}). (2.220)
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It is expected that this approach is valid as long as the variance remains small, i.e. for
large enough spheres. Using the inverse Laplace transform of the cumulant-generating
function (2.210) one can then obtain an (approximate) matter-density-in-spheres PDF at
late times. However, the inverse Laplace transform is numerically challenging. One way
to solve the integral (2.210) analytically is the saddle-point approximation. It was shown
in [7] that one can approximate very accurately the inverse Laplace transform with the
saddle-point approximation in the log-densities.6 Applying the contraction principle (2.216)
to the log-transform simply amounts to substituting ρ = exp(µ) in (2.222). In addition, one
then extends the scaled cumulant-generating function to finite values of the variance of the
log-density (2.220). It is worth pointing out that the log-transformation merely improves the
saddle-point approximation but does not change the integral per se. Applying the saddle-point
approximation, one finds for the PDF of log-densities in n concentric spheres,

Pµ({µi})≃
1

(2π)n/2

√
det
[

∂ 2ΨR

∂ µi∂ µ j

]
exp [−ΨR({µi})] . (2.221)

Here, we used that the maximum of the exponent in the saddle-point approximation corre-
sponds to the Legendre transform of the cumulant-generating function7 and introduced the
decay rate funciton, ΨR

ΨR({ρk})≡
ψ({ρk})
σ2

NL(R)
=

σ2(R)
2σ2

NL(R)
δ
(1)
i ({ρk})Σ−1({Rkρ

(1/3)
k },{Rkρ

(1/3)
k })i jδ

(1)
j ({ρk}).

(2.222)
The resulting PDF for the density is obtained via conservation of probability, P(ρ)dρ =

Pµ(logρ)d logρ . Thus, the density in a single sphere is given by

P(ρ) =

√
Ψ′′

R(ρ)+Ψ′
R(ρ)/ρ

2π
exp [−ΨR(ρ)] (2.223)

where primes denote derivatives with respect to the density and we used

∂ 2ΨR(ρ)

∂ (logρ)2 = ρ
2
Ψ

′′
R(ρ)+ρΨ

′
R(ρ). (2.224)

6We are log-transforming the filtered densities. Applying the log-transform before filtering would mean we
are modelling the geometric mean density in spheres.

7This is the inverse transform of (2.218).
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Fig. 2.9 Probability density function for the density in spheres of radius 10 h−1Mpc at red-
shifts z= 1.36, 0.97, 0.65 and 0 (from light to dark blue). The points are measurements in an
N-Body simulation and one sees that the skewness increases as the redshift decreases. The
saddle-point approximation with the density breaks down for ρ ≥ 2, because the rate function
ceases to be convex. In contrast, the saddle-point approximation of the log-densities approxi-
mates the exact numerical inverse Laplace transform well and matches the measurements.
Figure from [7].
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Lastly, one has to rescale the PDF

P(ρ) = P
(

ρ
⟨ρ⟩SPA

⟨1⟩SPA

) ⟨ρ⟩SPA

⟨1⟩2
SPA

(2.225)

since the saddle-point approximation neither ensures that the approximated PDF is (per-
fectly) normalised nor that it has unit mean. The average with respect to the saddle-point
approximation ‘PDF’ is defined as

⟨ f (ρ)⟩SPA =
∫

∞

0
P(ρ) f (ρ)dρ. (2.226)

Like the log-normal model, the counts-in-cells PDF has a non-linear variance at some length
scale as a free parameter. [7] showed that the model for the PDF of the real-space matter
density field P(ρ) for a single sphere of radius R with the (non-linear) variance of the log-
density σ2

µ(R) as a driving parameter is accurate at the percent level for standard deviations
σµ ≲ 0.5, greatly improving over the accuracy that can be obtained from log-normal models
[113]. We illustrate the accuracy of the saddle-point approximation in Fig. 2.9 by comparing
the saddle-point predictions with both measurements and the predictions from the numerical
integration for a wide range of densities and redshifts. In addition, the Figure shows the
necessity to perform the saddle-point approximation in the log-densities rather than the
densities.

2.5.2 Counts-in-Cells statistics in the large separation limit

This section was heavily influenced by [8, 118] and we refer the reader to those references
for more details.

Summary

The joint distribution of the densities in two spheres of radii R,R′ at distance r can be written
as the product of their marginal distributions and a correlation function, ξ◦, that is implicitly
defined through

P(ρ,ρ ′;r) = P(ρ)P(ρ ′)(1+ξ◦(r,ρ,ρ ′)). (2.227)

In the large separation limit (r ≫ R,R′), the correlation function separates [8],

ξ◦(r,ρ,ρ ′)∼ ξ◦(r)b◦(ρ)b◦(ρ ′), (2.228)
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into a distance-dependent correlation function,

ξ◦(r) = ⟨ρρ
′;r⟩c, (2.229)

and a modulation of the average correlation, called density-dependent bias or called sphere
bias, b◦(ρ), that satisfies (see: 2.252 and 2.253)

⟨b◦⟩= 0, ⟨ρb◦⟩= 1. (2.230)

Using these properties, the density-dependent bias can be measured and computed as condi-
tional expectation since the conditional distribution is

P(ρ|ρ ′;r) =
P(ρ,ρ ′;r)

P(ρ ′)
≃ P(ρ)(1+ξ◦(r)b◦(ρ)b◦(ρ ′)). (2.231)

Computing the conditional expectation then yields

⟨ρ|ρ ′;r⟩= 1+b◦(ρ ′)ξ◦(r) =⇒ b◦(ρ ′) =
⟨ρ|ρ ′;r⟩−1

ξ◦(r)
. (2.232)

Physically speaking, the density-dependent bias quantifies how much the density of a sphere
influences the expected density of a distant sphere.

Gaussian bias

For linear overdensities, we are able to evaluate (2.232). The conditional distribution of a
multivariate Gaussian (X ,Y ) is given by

X |Y = y ∼ N (µX +ΣXY Σ
−1
YY (y−µY ),ΣXX −ΣXY Σ

−1
YY ΣY X). (2.233)

Assuming two spheres of radii (Ri,R j) sitting at (ri,r j) yields the covariance,

Σi j =
∫ d3k

(2π)3 PL(k)W (Rik)W (−R jk)exp
[
ik · (ri − r j)

]
. (2.234)

The phase factor arises from translating the window function in real space since

Wr(k) =
∫

d3xeikxW (x− r) = eikr
∫

d3xeikxW (x) = eikrW0(k). (2.235)
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Given µX = µY = ⟨ρ⟩= 1 we find

b◦(ρ) =
⟨ρ ′|ρ;r⟩−1

Σ12
=

ρ −1
Σ22

= 1i
∂ I/σ2(R)

∂δi
(2.236)

for the so-called Kaiser bias [119]. This agrees with the intuition that an overdense sphere
makes it more likely that nearby spheres are overdense too. Moreover, the strength of the
effect depends on the significance of the deviation from the mean. In fact, the sphere bias
can be expressed in terms of the first derivative of the decay-rate function I/σ2 (2.213).
This offers another intuition: the sphere bias quantifies how sensitive the probability of a
configuration is to a small change in the density (caused by a second sphere, for instance).

non-Gaussian PDF and late-time bias

Now, we are going to derive the joint PDF of two sets of concentric spheres via the cumulant-
generating function. For two sets of distant (r ≫ max({Ri},{R j})) concentric spheres
({(ρi,Ri)}),({ρ ′

j,R
′
j}) it is given by

φ({λi},{λ j};r) = ∑
{pi},{q j}

⟨ρ p1
1 · · ·ρ pn

n ρ
′q1
n+1 · · ·ρ

′qm
n+m⟩c ∏

i, j

λ
pi
i λ

q j
j

pi!q j!

≃ ∑
{pi}

⟨ρ p1
1 · · ·ρ pn

n ⟩c ∏
i

λ
pi
i

pi!
+ ∑

{q j}
⟨ρq1

n+1 · · ·ρ
qm
n+m⟩c ∏

j

λ
q j
j

q j!

+
1

ξ◦(r)
∑

{pi},{q j}s.t.
pb>0&qa>0

⟨ρ ′
n+aρ

p1
1 · · ·ρ pb−1

b · · ·ρ pn
n ⟩c⟨ρbρ

′q1
n+1 · · ·ρ

′qa−1
n+a · · ·ρ ′qm

n+m⟩c ∏
i, j

λ
pi
i λ

q j
j

pi!q j!
.

(2.237)

The reason for using the cumulant-generating function is that, in the large separation limit, it
has a perturbative expansion that contains, up to first non-trivial order, all cumulants with
densities from one set of the concentric spheres and interaction cumulants that have exactly
one ‘external’ density [120]. From now on, we use the convention that δ (1) refers to (linear)
over densities, while ρ refers to the non-linear density in spheres. Fig. 2.10 gives an overview
of the strategy to compute the cumulant-generating function: We have already computed
the cumulants for the PDF of n concentric spheres (setting a)). This allows us to extract the
cumulant-generating function for n concentric spheres and one distant sphere (setting b)).
Using the above expression, we are then able to compute the cumulant-generating function
for two distant sets of concentric spheres (setting c)).
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Fig. 2.10 The conceptional steps towards a joint PDF for distant concentric spheres. Start-
ing from the cumulant-generating function for n+ 1 spheres, a), we derive the cumulant-
generating function for n concentric spheres and one distant sphere, b). Using perturbation
theory, one can then extend this to the general case with two distant sets of concentric spheres.
Figure from [8].

In order to compute the cumulant-generating function with one external density, we start
by considering n+1 concentric spheres where the n+1th sphere has radius r ≫ maxi≤n Ri.
This cumulant generating function is given by

φb({λi};< r) =
∞

∑
pi=0

⟨ρn+1Π
n
i=1ρ

pi(Ri)⟩c

n

∏
i=1

λ
pi
i

pi!
. (2.238)

The one external density can also be captured by a derivative of the general n+1 density
cumulant-generating function,

φb({λi};< r) =
∂

∂λn+1
φ(λ1, . . . ,λn,λn+1)

∣∣∣∣
λn+1=0

= ρn+1(λ1, . . . ,λn,0) = ρSC(δ
(1)
n+1),

(2.239)
where we used the stationary condition (2.219) for the second equality and in the last step
the spherical collapse mapping. The expected value of the (n+1)th density conditional on
knowing the first n can be computed by choosing δ

(1)
n+1 such that

φn(λ1, . . . ,λn) = φn+1(λ1, . . . ,λn+1 = 0). (2.240)
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The idea is that the conditional expectation of the n+1th density, given we know the first
n, is such that if the n+1th density had indeed this value, knowing it would not change the
joint distribution as it contains no new information.

After a lengthy but straightforward calculation (see Appendix A of [8]), one obtains a
similar result for the conditional mean as in the Gaussian case (2.233):

δ
(1)
n+1 = Σn+1,1:n(rρ

1/3,{Riρ
1/3
i })(Σ1:n,1:n)

−1
δ
(1)
1:n . (2.241)

The notations i: j means we select the indices from i through j (both included) and interpret
the resulting object as vector or matrix. In contrast to the Gaussian case, the covariance
matrices now depend on the densities ρ1:n. In the large-separation limit, the influence of
the inner n concentric spheres on the density within a much larger radius will be small, so
δ
(1)
n+1 ≈ ⟨δ (1)

n+1⟩= 0. We can thus Taylor expand (2.239)

φb({λi},< r) =ρSC(δ
(1)
n+1)≃ 1+δ

(1)
n+1

=1+Σn+1,1:n(rρ
1/3,{Riρ

1/3
i })Σ−1

1:n,1:nδ
(1)
1:n

=1+σ
2(< r)11:n(Σ1:n,1:n)

−1
δ
(1)
1:n .

(2.242)

where 11:n is the vector of ones in every entry and we used that for r ≫ Ri, the window
function describing the smaller sphere appears constant in (2.234), so

Σ(rρ(r)1/3,Riρ
1/3
i )≃ Σ(r,0)≡ σ

2(< r) for 1 ≤ i ≤ n. (2.243)

Identifying the cumulant-generating function with the spherical collapse solution, we see

φb({λi};r) =
1
r2

d
dr

(
r3

3
φb({λi},< r)

)
. (2.244)

This allows us to write
φb({λi};r) = 1+ξ◦(r)bφ ({λi}), (2.245)

where we used

ξ◦(r) =
1
r2

d
dr

(
r3

3
σ

2(< r)
)

(2.246)

and defined the bias generating function, bφ ,

bφ ({λi}) = 11:n(Σ1:n,1:n)
−1

δ
(1)
1:n . (2.247)



2.5 Counts-in-cells 59

Inserting this into the general cumulant-generating function (2.237) yields

φ({λi},{λ j};r) =φ({λi})+φ({λ j})+
1

ξ◦(r)
(φb({λi};r)−1)(φb({λ j};r)−1)

=φ({λi})+φ({λ j})+ξ◦(r)bφ ({λi})bφ ({λ j}).
(2.248)

This equation reveals that the joint PDF takes indeed the form assumed above

P({ρ},{ρ
′};r) = P({ρ})P({ρ

′})
(
1+ξ◦(r)b◦({ρ})b◦({ρ

′}
)

(2.249)

where the terms are given by

P({ρ}) =
∫

∏
j

dλ j

2πi
exp[λ jρ j +φ({λ j})] (2.250)

and

P({ρ})b◦({ρ}) =
∫

∏
j

dλ j

2πi
bφ ({λk})exp[λ jρ j +φ({λ j})]. (2.251)

From (2.247) it follows that bφ (0) = 0 and b′
φ
(0) = 1 which allows us to compute the

following two correlators

⟨b◦({ρ})⟩=
∫

∞

0

n

∏
i=1

dρP({ρi})b◦({ρi}) = bφ ({λi})eφ({λi}
∣∣∣∣
{λi}=0

= 0 (2.252)

and for all i we find

⟨b◦({ρk})ρi⟩=
∫

∞

0

n

∏
j=1

dρP({ρ j})b◦({ρ j})ρi =
∂

∂λi
bφ ({λ j})eφ({λ j}

∣∣∣∣
{λ j}=0

= 1. (2.253)

Performing a log-transformation of the density field, allows us to accurately compute the
bias parameters b◦(ρ) using the saddle-point approximation. It results in mapping the result
in the initial condition (2.236) to late times via the spherical collapse dynamics [118]

b◦({ρk})≈ bφ ({λk = ∂kΨR({ρi})}) = 11:nΣ
−1({ρ

3
k Rk},{ρ

3
k Rk})1:n,1:nδ

(1)
1:n ({ρk}).

(2.254a)
As with the marginal PDF (2.225), we need to rescale the bias parameter obtained from the
saddle-point approximation to match the above relations. For the n-sphere bias we do so via

b̂◦({ρ}) = b◦({ρ})−⟨b◦({ρ})⟩
1
n ∑

n
i=1(⟨ρib◦({ρ})⟩−⟨b◦({ρ})⟩)

. (2.254b)
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Fig. 3.3 shows the predictive power of the density-dependent bias obtained with the saddle-
point approximation for a wide range of redshifts. In contrast to the Kaiser bias (2.236)
which predicts straight line, the non-Gaussian bias is curved.

The result (2.249) is in fact more general, as one can extend the cumulant expan-
sion (2.237) to n sets of concentric spheres. Then the joint PDF in the large separation
limit is given by

P({ρ1}· · ·{ρn};Rmax ≪ rIJ) =
n

∏
I=1

P({ρI})
(

1+ ∑
I<J

ξ◦(rIJ)b◦({ρI})b◦({ρJ})
)
.

(2.255)
where Rmax = maxI({RI}) and the pairwise separations are rIJ .



Chapter 3

Extreme Spheres: Counts-in-cells for
21cm intensity mapping1

Summary

Intensity mapping surveys will provide access to a coarse view of the cosmic large-scale
structure at high redshifts. Given the large fraction of the sky that can be efficiently scanned
using emission from cosmic neutral hydrogen (HI), intensity mapping is ideally suited
to probe a wide range of density environments and hence to constrain cosmology and
fundamental physics. To efficiently extract information from 21cm intensities beyond
average, one needs non-Gaussian statistics that capture large deviations from mean HI
density. Counts-in-cells are ideally suited for this purpose, as their statistics can be predicted
accurately. We use a large state-of-the-art magneto-hydrodynamic simulation from the
IllustrisTNG project to determine the relation between neutral hydrogen and matter densities
in cells. We demonstrate how our theoretical knowledge about the matter probability density
function (PDF) for a given cosmology can be used to extract a parametrisation-independent
HI bias function from a measured HI PDF. Inspired by the shape of this bias function, we
employ a simple quadratic approximation that reproduces the measured bias function at a
few percent level. Combining this quadratic bias function with the predicted matter PDF
yields a fully-predictive model for the HI PDF that matches the measured HI PDF at a few
percent accuracy at scale R = 5 h−1Mpc from redshift z = 5 to z = 1. Furthermore, we find a
density-dependent HI clustering signal that is consistent with theoretical expectations and
could allow for joint constraints of HI bias and the amplitude of matter fluctuations or the
growth of structure.

1This chapter is based on [1].
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Outline

This chapter is organised as follows: We motivate the application of the counts-in-cells
(CIC) framework to intensity mapping in section 3.1. Section 3.2 describes the IllustrisTNG
simulation and how we extract the CIC statistics. In section 3.3 we briefly recap the
theoretical formalism, introduced in section 2.5, that allows us to obtain the PDF and the
density-dependent correlation of matter densities in spheres. Section 3.4 discusses how one
can relate these results to the tracer PDF and density-dependent clustering using a bias model.
We present the results for the bias relation between matter and neutral hydrogen along with
the combined predictions for the neutral hydrogen PDF and density-dependence of clustering
in section 3.5. Section 3.6 presents our conclusions and provides an outlook on the potential
applications of our findings.

3.1 Introduction

Upcoming large-scale, post-reionisation intensity mapping surveys like Tianlai [30], BINGO
[31], CHIME [32], FAST [33], HIRAX [34], MeerKAT [35], SKA [36] and SPHEREx [121]
will sample the spatial distribution of cosmic matter through tracers of it, such as neutral
hydrogen, at redshifts 0 < z < 6. The advantages of those surveys with respect to traditional
optical methods to map galaxies is that they can sample very large cosmological volumes
in a very efficient manner. Following early ideas of intensity mapping [122–125], the first
detection of the 21cm cosmological signal was achieved by cross-correlating 21cm intensity
maps from the Green Back Telescope with the DEEP2 optical galaxy survey [126–128].
While we have not yet detected the 21cm cosmological signal in auto-correlation in the post-
reionisation era2 [130], upcoming surveys will have enough sensitivity to allow us to study
cosmology at an unprecedented precision with both auto- and cross-correlations [131–139].
Furthermore, we can probe dark energy through baryonic acoustic oscillations [140, 141] or
approach weak lensing of intensity mapping [142–145] by using the background as a source
image.

It is well known that the non-linear evolution of matter in the Universe introduces a
leakage of information from the matter two-point correlation function (or the power spectrum)
into higher-order terms [146]. Thus, in order to extract the maximum information from
large-scale structure surveys at low redshifts, we need to consider quantities beyond the
two-point correlation or to attempt to reconstruct the linear fields [147]. In this chapter, we

2see [129] for a detection claim at high-redshift.
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focus on the former approach and consider one-point statistics as complementary source of
cosmological information compared to traditional two-point statistics.

For the epoch of reionisation, one-point statistics and higher-order moments have been
proposed as sources of information about the physics of reionisation and the nature of
ionising sources [148–152]. At later times, counts-in-cells statistics can capture essential
non-Gaussian information from the 21cm intensity (and hence HI density) field that is lost in
common two-point statistics and add information about the density-dependence of clustering.
Furthermore, the underlying matter statistics in real-space can be analytically predicted
[101] from first principles for scales at which the variance of the smoothed matter density is
below unity. While, the PDF is obtained from an inverse Laplace transform that requires an
integration in the complex plane in general, [7] has shown that one can perform an analytical
saddle-point approximation in the log-density to obtain a closed-form expression that is valid
for a wide range of densities. This approximation relies on an expansion in the non-linear
variance and is hence valid at scales with variance below unity. Those scales are typically
above 10 h−1Mpc at redshift z = 0 which means that the typical low-angular resolution
inherent to intensity mapping is not a major limiting factor.

The formalism, based on large-deviation statistics, allows us to access the rare event
tails probing large density fluctuations that contain valuable information about fundamental
physics (such as neutrino masses, primordial non-Gaussianity and modified gravity) that are
inaccessible to common perturbative methods. The advantage of the predictive model for
dark matter counts-in-cells statistics lies in its explicit dependence on cosmology through a)
the statistics of the initial conditions, which enter through the linear matter power spectrum,
b) the non-linear amplitude of fluctuations, which probes the expansion history including the
dark energy equation of state [153], and c) the spherical collapse dynamics, which would
be sensitive to departures from general relativity. To tap the potential of this probe for
cosmology, a counts-in-cell specific bias function has to be established in order to translate
predictions (PDF and density-dependent clustering) from dark matter to the various tracers.

Until recently, the matter-tracer relationship for counts-in-cells has been mainly investi-
gated for dark matter halos and galaxies [154, 155, 68, 156–158]. Building upon a previous
study of dark matter halos [159], we quantify the bias function that relates matter and neutral
hydrogen counts-in-cells on scales where the bias function is non-linear and distinct from the
bias measured in two-point clustering [160, 161].

While we focus on cosmology here, counts-in-cells statistics are also used to constrain
important astrophysical ingredients such as luminosity functions [162]. Those could poten-
tially be improved by predictions from large-deviation statistics, which are more accurate
than phenomenological log-normal models that are currently used.
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Fig. 3.1 Sketch of simulation measurements. Spatial distribution of neutral hydrogen in
a 5 h−1Mpc slice of the TNG100 simulation at redshift z = 3. The color is showing the
numerical value of the HI column density in co-moving units. We also show a small subset
of the spheres with radius R = 5 h−1Mpc used for counts-in-cells statistics.

We use the magneto-hydrodynamic simulation IllustrisTNG to compare counts-in-cells
of neutral hydrogen, halos (as galaxy proxies) and matter. Extending recent results for the
clustering statistics of neutral hydrogen [161], we quantify the counts-in-cells bias between
the different tracers in IllustrisTNG and determine the effect of redshift-space distortions,
which are caused by peculiar velocities that affect the observed redshift. Based on this,
we assess the promise of mock catalogs that rely on simplified semi-analytical recipes to
generate matter and tracer fields to efficiently access exquisitely sampled counts-in-cells
while mitigating inaccuracies from neglecting fully non-linear effects that appeared as deal
breakers for the matter power spectrum.

3.2 Numerical simulation

The simulation used in this work is part of the IllustrisTNG project [see 163–167, where
stellar mass and assembly, clustering, colours, magnetic fields and chemical enrichment are
discussed]. We employ here the TNG100 cosmological box (containing the same volume
as the original Illustris simulation; 168–170) that has been evolved down to z = 0, with a
co-moving box side length of 75 h−1Mpc .
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The simulation was run with the AREPO code [171], which evolves the initial conditions
accounting for gravity (using a TreePM method), magneto-hydrodynamics [172, through
a Godunov approach on a moving Voronoi mesh] and a range of astrophysical processes
described by subgrid models. These processes include primordial and metal-line cooling,
assuming a time-dependent uniform UV background radiation, star and supermassive black
hole formation, stellar population evolution that enriches surrounding gas with heavy ele-
ments or metals, galactic winds, and several modes of black hole feedback. The numerical
methods and subgrid physics models are an update of the Illustris galaxy formation model
[173, 174] and specified in detail in [175] and [176]. Importantly, where uncertainty and
freedom exist for the implementation of these subgrid models, they are parametrised and
tuned to obtain a reasonable match to a small set of observational properties [163]. These
include the galaxy stellar mass function, the stellar-to-halo mass relation, and the stellar
size-mass relation, all at z = 0. Additional aspects including feedback effects of black holes,
the evolution of galaxy and halo sizes and metallicities are discussed in [177–179] and [180].

HI modelling. The spatial distribution of neutral hydrogen accounting for ionisation equi-
librium with the UV background, HI self-shielding and the presence of molecular hydrogen
is modelled following the method depicted in [161], to which we refer the reader for further
details. For a study on the impact of the molecular hydrogen (H2) model on HI properties,
see [181].

The dependency between neutral hydrogen and the surrounding matter is highly non-
linear as can be seen in Figures 14 and 15 in [161]. The corresponding halo-HI mass function
shows a cut-off for small halo masses that is explained in detail in Appendix B of [161].
The mass fraction of hydrogen in the neutral phase was studied as a function of the mass
and force resolution in [181]. To analyze the convergence of the neutral hydrogen fraction
in the IllustrisTNG100 simulation, the authors use predictions from the lower resolution
IllustrisTNG100-1 and IllustrisTNG100-2 simulations for comparison. They find that the
convergence of the neutral hydrogen fraction is strongly mass dependent: At low stellar
masses (109 −1010M⊙), the comparison of IllustrisTNG100-1 and IllustrisTNG100 reveals
an almost perfect convergence whereas mass fractions can differ by up to a factor of 4
at higher stellar masses. [181] does not study the impact of the box size on simulation
outcomes since the larger IllustrisTNG300 simulation has an insufficient resolution (similar
to IllustrisTNG100-2) and the smaller IllustrisTNG50 simulation was not available at the
time. Moreover, we will argue in the following paragraph about counts-in-cells that the 8x
smaller volume of the IllustrisTNG50 simulation would drastically reduce the statistical
power of our counts-in-cells estimator to the point where one probably would not be able to
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disentangle inaccuracies in the simulation and statistical uncertainties. The existence of the
cut-off and the convergence of the neutral hydrogen fraction for low massesc, indicates that
our HI modelling is robust and does not strongly dependent on the chosen simulation.

Halo identification. In this chapter, we work with halos identified by the Friends-of-
Friends (FoF) algorithm with a linking length of b = 0.2 [182]. The halo centre is identified
as the position of the most bound particle in the halo. The minimum halo mass we consider
is around 2×108M⊙/h.

Counts-in-cells. We extract counts-in-cells (i.e. mean densities in spheres) of the matter,
neutral hydrogen, and mass-weighted halo field in overlapping spheres of co-moving radius
R= 5 h−1Mpc on a regular grid of size 1283 yielding approximately 2 million density samples.
Fig. 3.1 shows a snapshot of the neutral hydrogen distribution in the TNG100 simulation at
redshift z = 3 along with a subsample of the spheres used for our counts-in-cells analysis. In
the redshift range of interest, z = 1−5, the size of the spheres corresponds to angular scales
between θ = 14 and 4 arcmin.

When we write ρHI, ρm and ρHM, we refer to the density in spheres (hence smoothed
at radius R) of neutral hydrogen, matter and mass-weighted halos, respectively. Each gas
Voronoi cell carries information on the state of the gas, such as density, pressure, mass and
metallicity. The HI mass associated to each gas cell is computed as described in section 2.2
of [161]. We distribute the HI mass of each gas cell in a regular grid of 20483 grid cells using
the nearest grid point (NGP) interpolation mass scheme. A similar procedure is used for the
total matter field, where we use the gas, dark matter, stars and black hole particles. Finally,
the same procedure is used to estimate the halo density field. All densities are measured
in units of mean density and are hence dimensionless and related to the density contrast
δ as ρ = 1+ δ . Note that when measuring this for discrete tracers such as galaxies that
are a coarse and biased sampling of the underlying field, one needs to include shot-noise
contributions, for example through Poisson sampling, see e.g. [154, 157]. The objects
considered in this work are expected to have very low shot-noise amplitudes3, so we neglect,
for simplicity, their contribution to counts-in-cells.

The PDFs, encoding the probability density of finding a certain density in a randomly
drawn sphere of fixed radius, were estimated using kernel density estimation. In cases where
discretisation is needed, we use histograms with a logarithmic binning in densities such that
each bin contains approximately 1/75 of the probability mass. Error bars at those sampling

3The very high-resolution of the IllustrisTNG simulation guaranties a very low shot-noise amplitude for the
matter field. [160, 161] have shown that the amplitude of the shot-noise is negligible for neutral hydrogen in
the post-reionisation era. Mass-weighted halos are also expected to have a very low shot-noise amplitude [183].
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points are determined by means of a jackknife estimator4 with 30 random subsamples. The
random selection ensures more independent spheres within each subsample in comparison to
splitting the volume into 30 regular subboxes. It mitigates effects from long range modes too,
even though there will still be super-sample variance effects5 due to the small box volume.
The random selection might underestimate the error bars, as the different subsamples are
correlated. Due to the small cosmological box with a side length of only 75 h−1Mpc , we
chose spheres of radius R = 5 h−1Mpc . This scale is a compromise between two contrasting
requirements: a) due to the expected reach of the theory, we need a small variance and
hence sufficiently large spheres, b) in order to have good statistics, we require a large enough
number of independent spheres and hence sufficiently small spheres. Since our spheres of
radius R = 5 h−1Mpc are about a factor of 2 smaller than the scales one would want to probe
at the lowest redshift z = 0 to ensure a variance below unity, we will focus on results for z > 0.
Since the shape of the counts-in-cells PDF is driven by the non-linear matter variance σ2(R,z)
at radius R and redshift z, which is related to the non-linear power spectrum according to
Eq. (3.2), our formalism can be used to relate different radii and redshifts; for example, the
PDF for R = 10 h−1Mpc at z = 0 closely corresponds to that for R = 5 h−1Mpc at z = 1, as
the amplitude of fluctuations is almost the same in those two cases.

Redshift-space mapping. To assess the impact of redshift-space distortions, a mapping
from real-space to redshift-space is done by converting the co-moving positions (of matter,
halos and neutral hydrogen) x to the redshift-space ones, s, by shifting them along the
fictitious line-of-sight (chosen in x-direction here) according to their peculiar velocity along
that direction via (2.106).

3.3 Statistics of matter densities in spheres

Before moving on to tracers in the next section, let us start with the statistics of the matter
density field that is the first building block in our modelling of the statistics of neutral
hydrogen densities. We have introduced the CIC formalism in section 2.5 and refer readers
there for more details.

4A subsampling technique estimating the variance of an estimator based on its variation over the subsamples.
5Effects from modes larger than the survey.
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3.3.1 One-point PDF of matter density

In section 2.5 we have derived the PDF for the matter density in a sphere of radius R, for
small values of the variance (2.223)

PR(ρm)=

√
Ψ′′

R(ρm)+Ψ′
R(ρm)/ρm

2π
exp(−ΨR(ρm)) ,

where the prime denotes a derivative with respect to ρm and the exponential decay of the
PDF is given by the rate function (2.222)

ΨR(ρm) =
σ2

L(R)
(

δ (1)(ρm)
)2

σ2
µ2σ2

L(Rρ
1/3
m )

.

Here δ (1)(ρm) is the linear density contrast, averaged within the initial Lagrangian radius
Rini = Rρ

1/3
m , which can be be mapped to the non-linearly evolved density ρm within radius

R using the spherical collapse model (2.178), σ2
L is the linear variance from equation (2.208).

Thus, the functional form of the PDF is fully specified by the scale-dependence of the
linear variance computed via the linear power spectrum according to equation (2.208) and
the spherical collapse model (2.178). The only free parameter enters through σ2

µ ≡ σ2
µ(R,z),

which is the non-linear variance of the log-density (because the formula has been derived
from an analytic approximation based on the log-density µm = logρm).

To ensure a unit mean density and the correct normalization of the PDF, one has to
evaluate the PDF obtained from equation (2.223) according to (2.225)

PR(ρm) = PR

(
ρm

⟨ρm⟩SPA

⟨1⟩SPA

)
· ⟨ρm⟩SPA

⟨1⟩2
SPA

,

with the shorthand notation ⟨ f (ρm)⟩SPA =
∫

∞

0 dρm f (ρm)PR(ρm). This step is necessary as
equation (2.223) ensures the correct tree-level cumulants of order 3 and above, the right
non-linear variance of µm and zero mean for µm. Since we, instead, want the density ρm to
have unit mean, it is necessary to correct for the non-zero value of the mean of µm using
equation (2.225).

[7] showed that the above model for the PDF of the real-space matter density field
PR(ρm|σµ) with the variance of the log-density σ2

µ(R) as a driving parameter was accurate
at the percent level for standard deviations σµ ≲ 0.5, greatly improving over the accuracy
that can be obtained from log-normal models [113]. To give an impression of the exquisite
accuracy, we show a comparison between the measurement from the IllustrisTNG simulation
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Table 3.1 The measured non-linear variances σ of the log-density µ = logρ of matter (m)
in spheres of R = 5 h−1Mpc at redshifts z = 0 to 5. They give an indication of how well the
fully-predictive matter theory works, as it requires σµ,m < 1 to converge.

z 0 1 2 3 4 5
σµ,m 0.851 0.602 0.438 0.338 0.275 0.231

and the theoretical prediction from equations (2.223) for the matter PDF in Fig. 3.2. More
precisely, the prediction used the linear variance from equation (2.208) computed with the
input power spectrum, and the measured non-linear variances σ2

µ from the simulation (listed
in Table 3.1) as input parameter to the PDF in equation (2.223). As expected, the PDF is
close to Gaussian at high redshift and becomes more and more skewed at lower redshifts, as
voids are occupying most of the volume and density peaks are exceedingly accreting matter.

When aiming at a fully-predictive model for the matter PDF, one can use the non-
linear variance from a non-linear power spectrum PNL, as predicted, for instance, by the
phenomenologically motivated HALOFIT emulator [4, 5], in analogy to the linear variance
from equation (2.208),

σ
2(r) =

∫ d3k
(2π)3 PNL(k)W 2(kr) . (3.2)

The non-linear variance of the log-density σ2
µ that enters the PDF is then chosen such that

the variance of the PDF in equation (2.223) matches the non-linear density variance σ2 from
HALOFIT. The HALOFIT non-linear variance agrees with the measured value to typically
better than 1% which propagates to an additional 1-2% error on the PDF. At z= 0, our method
of estimating the logarithmic variance from HALOFIT no longer works and causes significant
discrepancies. This is not unexpected, given that we are probing smaller scales than would
be desirable at this redshift, and on smaller scales baryonic effects become important, which
are not captured in the fit to N-body simulations. Note that in general one can treat σµ as a
free parameter of the theory, and we only rely on an approximate predicted value of σµ to
infer the functional form of the bias relation between matter and neutral hydrogen.

3.3.2 Density-dependent clustering of matter

Apart from the one-point statistics of density in spheres, one can also extract a density-
dependent clustering signal that quantifies the difference in clustering of regions with
high/low densities compared to regions with average densities. This is encoded in the
density-dependent correlation function, which is the ratio of the joint two-point PDF of
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Fig. 3.2 Dark matter PDF showing percent-level agreement between simulation and prediction.
Upper panel: Measured PDF of matter densities in spheres of radius R = 5 h−1Mpc at
redshifts z = 0,1,2,3,4,5 (red to blue data points) with measured non-linear variance as
input (solid lines), compared to the prediction from large-deviation statistics. For clarity,
error bars are omitted and only shown in the lower panel. Lower panel: Residuals between
the theoretical predictions with measured variance and the measured PDFs.
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Fig. 3.3 Measured density-dependent matter clustering agrees with theoretical expectations.
Upper panel: Density-dependent clustering encoded in the sphere bias function from equa-
tion (2.232) for matter at redshifts z = 0 to 5 (red to blue) as measured in the IllustrisTNG
simulation (data points) and predicted by large-deviation statistics using equation (3.3) (lines).
Lower panel: Residuals between the theoretical prediction with measured variance and the
measured density-dependent clustering. For better visibility, the abscissas for different
redshifts are slightly shifted.



72 Extreme Spheres: Counts-in-cells for 21cm intensity mapping

matter densities at separation r and the marginal one-point PDFs (2.227)

ξ◦,m(ρm,ρ
′
m,r) =

PR(ρm,ρ
′
m;r)

PR(ρm)PR(ρ ′
m)

−1.

At large separation r ≫ 2R, this correlation function factorises into an average separation-
dependent correlation ξ◦,m(r), and a density-dependent modulation called sphere bias
b◦,m(ρm) (2.228) [8]

ξ◦,m(ρm,ρ
′
m,r)≃ ξ◦,m(r)b◦,m(ρm)b◦,m(ρ ′

m).

The mean sphere two-point correlation, ξ◦,m(r), is the standard matter correlation function of
densities smoothed at the sphere radius R. The sphere bias measures the excess correlation
induced by a matter density ρm at separation r and therefore can be defined as a ratio of the
conditional mean of the sphere density ρ ′

m given a density ρm at separation r (2.232) and
(2.229)

b◦,m(ρm) =
⟨ρ ′

m|ρm;r⟩−1
ξ◦,m(r)

,

ξ◦,m(r) = ⟨ρm(x)ρm(x+ r)⟩−1 .

At large separation, the sphere bias becomes independent of the separation r and in general can
be predicted more accurately than the approximation for the full two-point clustering (2.227).
It can be computed using large-deviation statistics with spherical collapse and a rescaling
to the non-linear variance [184, 185, 8, 118]. Using the saddle-point approximation for two
distant spheres of equal radius, the general expression (2.254a) simplifies to

b◦,m(ρm) =
δ (ρm)σ

2
L(R)

σ2
L(Rρ

1/3
m )σ2

µ

, (3.3a)

and the normalisation (2.254b) becomes

b̂◦,m(ρm) =
b◦,m(ρm)−⟨b◦,m(ρm)⟩
⟨(ρm −1)b◦,m(ρm)⟩

. (3.3b)

The validity of equation (3.3) has been established before for dark matter in large cosmologi-
cal simulations [118, 159] and found to be surprisingly accurate even for separations r ≳ 2R,
that are only slightly larger than twice the sphere radius.

As before, a theoretical prediction can be obtained using the linear variance computed
from the input power spectrum of the simulation and the measured non-linear matter variance,
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Table 3.2 Statistical properties of neutral hydrogen distribution in spheres of R = 5 h−1Mpc at
redshifts z = 1,3,5. The measured non-linear variances σ of the log-density µ = logρ

of neutral hydrogen (HI) in real and redshift-space, shown in the left two columns, can
be compared to the matter variances in Table 3.1 to estimate the linear bias. The linear
cross-correlation coefficients (3.12) between matter (m), neutral hydrogen in real-space (HI)
and redshift-space (HIz) and mass-weighted halos (HM), shown in the right four columns,
indicate a tight relation between the different fields.

z σµ,HI σ
z
µ,HI rm,HI rm,HIz rm,HM rHM,HI

1 1.228 1.311 0.969 0.918 0.982 0.945
3 0.986 1.081 0.963 0.944 0.987 0.989
5 0.798 0.878 0.958 0.943 0.983 0.990

stated in Table 3.1, as input. The sphere bias is measured from the simulation using a dis-
cretisation of equation (2.227). The average sphere correlation is determined by considering
all pairs of spheres which are at separation r along one of the axis in the regular density
grid extracted from the simulation box. The conditional mean is computed by selecting
all pairs where one density is in a given bin of size ∆ρ = 0.05 around the desired value ρ

and computing the mean of the paired density ρ ′. Error bars are determined by means of a
jackknife estimator with 30 random subsamples. Due to the small box size of TNG100, it
is difficult to get reliable measurements of the correlations in the large separation regime,
such that we have to rely on a separation that just ensures non-overlapping spheres. Fig. 3.3
displays such a measurement of the density-dependent clustering signal for matter densities in
real-space, which should be interpreted with caution (given that even the minimal separation
of non-touching spheres is more than one tenth of the box size), but is completely consistent
with the theoretical expectation and previous measurements in large N-body simulations. As
expected, spheres of particularly large or small densities are more strongly clustered than
average densities. When plotted as a function of the density, the clustering appears stronger at
high redshifts, because the matter variance is smaller and hence the relative density contrast
is larger than at low redshifts.

3.4 Statistics of tracer densities in spheres

Let us now turn to biased tracers of matter and describe how the previous results for matter
densities in spheres can be mapped to tracer densities in spheres.
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3.4.1 One-point PDF of tracer density

In general, one can express the respective one-point PDFs of matter and the tracer as marginals
of their joint one-point PDF P(ρm,ρt)

Pt(ρt) =
∫

dρm P(ρm,ρt) , Pm(ρm) =
∫

dρt P(ρm,ρt) . (3.4)

For simplicity, our bias model is formulated between matter and tracer densities (such as
neutral hydrogen, halos or galaxies) for spheres of identical radii. While this is a simplistic
approximation, as in general the relationship is non-local in both space and time [for a review
see 68], we will show that it is sufficient for our purpose.

The tracer density PDF, Pt, can be written as a convolution of the matter PDF, Pm, and
the conditional PDF of finding a certain tracer density given a matter density

Pt (ρt) =
∫

dρm Pbias(ρt|ρm)Pm(ρm), (3.5)

where Pbias(ρt|ρm) is the conditional PDF (i.e. the probability of having a tracer density ρt

given a matter density ρm). This conditional depends on the details of tracer formation and
its associated parameters such as halo mass, smoothing scales, redshift and environment, but
also includes scatter around any deterministic relation (stochasticity) which results from an
incomplete understanding of the formation process. While in principle one could think that
the full joint PDF is needed, one can separate this information into the marginals, the one-
point PDFs which are of interest here, and correlations between matter and tracer densities
that are independent of the marginal PDFs [186].

In the following, we will focus on the marginals and determine an accurate mean bias
relation that allows for a one-to-one relation between the matter and tracer PDF. This is in the
spirit of large-deviation statistics, which argues that the mean local gravitational evolution
given by spherical collapse is adequate to predict the PDF of matter densities in spheres6.
Equipped with a bias model for the mean relation ρm(ρt), the tracer PDF Pt is now obtained
from the matter PDF Pm by conservation of probability

Pt (ρt) = Pm(ρm(ρt)) |dρm/dρt| , (3.6)

where it is required that ρm(ρt) is a strictly monotonic function.

6The large-deviation principle states that the statistics is dominated by the path that minimises the “action” –
or in our case the exponential decay of the PDF – in order to maximise the probability. This most likely path or
dynamics can be decomposed into a gravitational part, given by the spherical collapse, and an astrophysical
part, given by the mean bias relation.
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3.4.2 Density-dependent clustering of tracers

Using a mean bias model, one can also relate the density-dependent clustering of matter in
equation (3.3) to a tracer

b◦,t(ρt) = b◦,m (ρm(ρt))
√

ξ◦,m/ξ◦,t , (3.7)

where the ratio of correlation functions can be computed as a sphere-bias weighted mean of
the bias relation √

ξ◦,m/ξ◦,t = ⟨ρt(ρm)b◦,m(ρm)⟩ . (3.8)

3.4.3 Parametrisation-independent bias functions

Previously, we have seen that the question of how to obtain an accurate model for the statistics
of tracer densities in spheres boils down to successfully describing the effective mean bias
relation between matter and the corresponding tracer densities in spheres.

The advantage of obtaining bias functions in a parametrisation-independent way is that
they can be used as a guiding principle for finding suitable parametrisations with a small
number of parameters that capture their functional form. This is particularly important if one
is interested in the tails of the distribution where common polynomial bias models do not
lead to satisfactory results. Since we want to map the matter PDF to the tracer PDF, let us
rely on an ‘inverse’ bias model ρm(ρt) writing the matter density as a function of the tracer
density rather than the other way around.

Bias function from abundance matching

Following the ideas of [187, 154], a direct way to obtain a mean bias relation is to use the
cumulative distribution functions (CDFs), defined as C (ρ) =

∫ ρ

0 dρ ′P(ρ ′), and match their
abundances

Cm(ρm) = Ct(ρt) , (3.9)

such that

ρm(ρt) = C−1
m (Ct(ρt)) , ρt(ρm) = C−1

t (Cm(ρm)) . (3.10)

Note that this bias function is built to relate the PDFs of tracer and matter densities by a
one-to-one monotonic mapping, which does not assume a local relationship between matter
and tracer densities. If there is a large correlation between the matter and its tracer field (for
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a quantification see the cross-correlation coefficient defined below), this bias function also
provides a good fit to a local scatter plot between matter and tracer densities.

Bias function from conditional mean

When assuming a local relation between tracer and matter densities, one can also infer mean
bias relations from the conditional mean from the scatter plot (SP)

ρ
SP
m (ρt) := ⟨ρm|ρt⟩ , ρ

SP
t (ρm) := ⟨ρt|ρm⟩ . (3.11)

Note that, in contrast to the bias function from abundance matching, the composition of the
inverse and forward conditional mean bias is not guaranteed to give the identity mapping
ρSP

m (ρSP
t (ρm)) ̸= ρm. In particular, this can be a signal for non-linear bias and a difference

in the scatter when fixing matter or tracer density, respectively. We checked that those
conditional mean inverse bias functions will be close to the inverse bias function inferred
from the CDF method within 3%. We prefer the CDF method as it is guaranteed to provide a
good description for mapping marginal PDFs with conservation of probability.

The (linear) cross-correlation coefficient r between matter and tracer densities in spheres
is defined as

r =
⟨ρmρt⟩−1√
⟨ρ2

m⟩c⟨ρ2
t ⟩c

. (3.12)

We show some of the correlation coefficients between matter, halo mass and neutral hydrogen
in Table 3.2. For all redshifts, correlations between matter, neutral hydrogen and mass-
weighted halos are all very high and above 95%, and neutral hydrogen is almost perfectly
correlated with mass-weighted halos for the higher redshifts. Even when comparing matter
in real-space to neutral hydrogen in redshift-space, thus absorbing redshift-space distortions
in the bias, correlations are still well above 90%. This ensures that the bias function from
abundance matching, determined purely from the marginal PDFs, will also be a good fit to
the scatter plots.

3.4.4 Polynomial bias model in log-densities

Following [188, 159], we use a quadratic model for the (inverse) bias of log-densities
µ = logρ in spheres (rather than for the density contrast) which reads

µm =
nmax

∑
n=0

bnµ
n
t , nmax = 2 . (3.13)
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A heuristic explanation for why a logarithmic transform helps is that it makes the underlying
one-point PDFs of matter and biased tracers significantly more Gaussian [189, 190]. Hence,
it provides a local remapping of non-linear densities that approximates initial (Lagrangian)
densities for which local polynomial bias models are more adequate than for evolved (Eu-
lerian) densities. As already emphasised in [188], the reason why equation (3.13) can be
approximated by a linear bias model for the density fluctuations δt = b̂1δm on large scales is
that the ranges of log-densities µt and µm become small and not because the bias relation it-
self becomes linear. This is particularly relevant when focusing on the tails of the distribution
of densities and hence the regime where linear bias is insufficient.

Another approach for the bias function involves choosing a polynomial bias model for
density contrast and matching the first few moments between matter and tracer distributions
[158]. Since both the bias model and the matching technique are emphasising the PDF region
around its peak, the approach is not suited in our situation, since we want to preserve the
information in the tails.

3.5 Results

We extend recent results for the relation between neutral hydrogen and matter densities in
spheres from [161], by determining simple, yet accurate, bias parametrisations for counts-in-
cells statistics. We demonstrate their ability to predict neutral hydrogen counts-in-cells at a
few percent accuracy using a small number of bias parameters. When combined with the
cosmology-dependence of the underlying dark matter counts-in-cells, our findings lay the
foundation for a joint fit of cosmological and bias parameters, allowing to infer cosmological
information by marginalising over astrophysical uncertainties.

3.5.1 Joint density distributions and mean bias model

Joint dark matter and neutral hydrogen distribution

Fig. 3.4 presents scatter plots comparing densities in spheres for neutral hydrogen ρHI versus
matter densities in real-space ρm for redshifts z = 1,3,5 and radius R = 5 h−1Mpc .

We observe that the neutral hydrogen and matter distributions are closely related, as
expected from Table 3.2. Moreover, the scatter around the mean bias (solid line) increases
with cosmic time due to gravitational collapse and astrophysical effects. To make contact
with observables, it is required to consider the effect of redshift-space distortions. The
joint measurements of neutral hydrogen in redshift- and matter in real-space are shown
with the shaded points. We show these because our theoretical prediction (2.223) is for
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Fig. 3.4 HI vs. matter scatter plots in real- and redshift-space. Density scatter plots of the
neutral hydrogen density ρHI in real-space (blue-green) and redshift-space (grey) versus the
matter density in real-space ρm for radius R = 5 h−1Mpc at redshifts z = 1,3,5 (left to right).
The colour (from light to dark) indicates the magnitude of the joint PDF in logarithmic scale
and shows a concentration of probability around the mean bias. The figure also shows the
parametrisation-independent bias obtained from the CDF in real-space (solid red line) and
redshift-space (dashed red line). The main impact of redshift-space distortions is to increase
the scatter while the mean bias relation is almost unchanged for average densities and mostly
affected in the positive density tails.

matter in real-space and thus we incorporate the redshift-space mapping into the bias relation.
Redshift-space distortions manifest themselves in an increased variance and are particularly
strong at low redshifts where velocity dispersions within halos are typically larger. Moreover,
as velocity dispersions become larger in overdense regions, the additional scatter increases
with density, and coherent infall into overdensities increases the neutral hydrogen density
in redshift-space (dashed lines) compared to real-space (solid lines). While most of the
additional scatter when comparing neutral hydrogen densities in redshift-space to real-space
matter densities comes from the non-linear mapping from real- to redshift-space, the scatter
between redshift-space densities of neutral hydrogen and matter is larger than the scatter
between the corresponding real-space densities, in particular at higher redshifts.

Joint neutral hydrogen and halo mass distribution

Furthermore, we present scatter plots between the mass-weighted halo density and neutral
hydrogen in Fig. 3.5, which show a much more linear relation (in log-densities) than pre-
viously seen for the matter field. This reflects the fact that most of the neutral hydrogen
mass is embedded into halos; nearly all mass at z = 0 and still 90% at z = 5 [161]. Since
the amount of neutral hydrogen is sensitive to halo mass, the neutral hydrogen density in
spheres is closely related to the mass-weighted halo density in spheres. Our scatter plots
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Fig. 3.5 HI vs. halo mass scatter plots in real-space. Density scatter plots of the real-
space neutral hydrogen density ρHI versus the mass-weighted halo density ρHM for radius
R = 5 h−1Mpc at redshifts z = 1,3,5 (left to right). The colour (from light to dark) indicates
the magnitude of the joint PDF in logarithmic scale and shows a concentration of probability
around the mean bias. The figure also shows the parametrisation-independent bias obtained
from the CDF (solid orange line) and a linear fit in log-densities (dotted orange line). This
plot shows that the neutral hydrogen closely traces the mass in halos with an almost linear
relationship.

of average halo mass and neutral hydrogen in cells complement the halo HI mass functions
from Fig. 4 of [161] showing the HI-halo relation on an object-by-object level. The relation
of neutral hydrogen to mass-weighted halo densities is interesting for two reasons. First,
mass-weighted halos are in turn closely related to luminosity-weighted galaxies. Hence,
joint studies of intensity mapping and galaxy surveys [131, 132] could provide valuable
information. In Fig. 3.6, we demonstrate the similarity of mass-weighted halo and neutral
hydrogen PDFs by plotting them as a function of the log-density rescaled by the variance.
We observe that both neutral hydrogen and halos are non-linearly biased with respect to the
matter, but neutral hydrogen is close to a linearly biased version of halo mass. This motivates
our quadratic bias parametrisation in log-densities from equation (3.13), which has been used
before to model mass-weighted halos in [159]. Second, the close relation between halo mass
and neutral hydrogen density in cells suggests that mocks obtained from populating bound
dark matter structures with neutral hydrogen in a halo model approach [191, 192, 161, 193]
are expected to give accurate results for counts-in-cells on those scales. This could make
it possible to study counts-in-cells statistics of neutral hydrogen in larger volumes, taking
advantage of cosmological simulations for dark matter.
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Fig. 3.6 Necessity of non-linear bias and beyond log-normal prediction. Comparison of
measured density PDFs of matter (black), mass-weighted halos (blue) and neutral hydro-
gen (red) in spheres of radius R = 5 h−1Mpc at redshift z = 3 in real-space. The abscissa
shows scaled log-densities such that for tracers that are linearly biased in log-densities
curves would overlap. The lack of overlap between tracers and matter motivates the chosen
quadratic bias model (3.13). Also shown are log-normal fits to the PDFs (dashed lines) which
show significant deviations from the measurements for underdensities of matter and neutral
hydrogen.
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Mean bias parametrisations

Let us now focus on the mean CDF bias functions (3.10) which are depicted in the scatter
plots in Figures 3.4 and 3.5. Moreover, we show in Fig. 3.7 a comparison of the CDF bias
obtained from combining the measured neutral hydrogen PDF with either the measured
matter PDF, or the fully-predictive matter PDF model with the HALOFIT variance both in
real- and redshift-space. We find good agreement at sub-percent level close to the peak and
deviations below 2% for a wide range of densities. This is encouraging, because it means
that the fully-predictive matter PDF, combining (2.225) with the HALOFIT variance, can be
used to extract a parametrisation-independent mean bias function from a measured neutral
hydrogen PDF.

Next, we validate our bias parametrisation by comparing the quadratic fit in the log-
density according to equation (3.13) and the parametrisation-independent CDF-bias (3.10)
with measured HI PDF and predicted matter PDF and in Fig. 3.8. We fit the parametric
bias model (3.13) to the parameter-independent bias function (3.10) using the chosen log-
arithmically spaced sampling points. We estimate the measurement errors at the sampling
points using a jackknife estimator (i.e. we derive a CDF bias function for each subset
and compute their scatter at the sampling points). Assuming the measurement errors to be
normally distributed and performing an ordinary least squares regression, yields the bias
parameters displayed in Table 3.3. As can be seen in Fig. 3.8, the quadratic bias model for
the logarithmic densities agrees well with the measured function, both in real- and redshift-
space. The residual plots show an accuracy of approximately 4% at z = 1 and 1% at z = 3
and 5 over a wide range of densities both in real (middle panel) and redshift-space (lower
panel). When fitting the parametric model to the measured bias function (matter and HI
from simulation), we reproduce the bias parameters from Table 3.3 at a few, sub-, and 10
percent level for b0,b1,b2 respectively. We decided to employ the measurement errors from
the purely measured scenario, as due to the high correlation between matter and neutral
hydrogen, there are cancellations in the uncertainties which are not captured when using the
theoretical matter CDF. When including the next higher order bias parameter b3, one finds
that it is typically of order b2/10, but can nevertheless slightly improve the approximation.
However, we decided in favour of simplicity and truncated the expansion at second order.

Note that our bias parameters characterise the inverse relation (matter density as function
of tracer density) and in particular our linear (inverse) bias b1 will typically have values
around 1/3− 1/2 signalling positive linear forward bias b̃ around 2− 3 which is in line
with previous studies of the bias from the two-point correlation at intermediate redshifts
[161, 160].
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Fig. 3.7 Comparison of bias functions for fully-predictive and measured matter PDF. Upper
panel: Bias functions for spheres of radius R = 5 h−1Mpc are displayed at redshifts z = 1,3,5
(orange to blue). The parametrisation-independent bias functions from the cumulative PDFs
according to equation (3.10) using the measured HI PDF in real- and redshift-space with the
measured real-space matter PDF are displayed in solid and dashed lines, respectively. Dotted
and dot-dashed lines plot the bias function when using the fully-predictive matter PDF and
the measured HI PDF in real- and redshift-space respectively. Note the axes are swapped
compared to the scatter plots (Fig. 3.4). Middle and lower panel: Residuals between
the parametrisation-independent bias functions for measured dark matter and measured HI
(mm) and fully-predictive matter distribution together with measured HI (pm) in real-space
(middle) and redshift-space (lower panel).
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Fig. 3.8 Accuracy of quadratic parametrisation for the bias function. Upper panel: All bias
functions plot matter densities as a function of the neutral hydrogen densities in spheres of
radius R = 5 h−1Mpc at redshifts z = 1,3,5 (orange to blue). The quadratic bias model (3.13)
with the fitted bias parameters from Table 3.3 in real-space (dotted lines) and redshift-space
(dot-dashed lines) is compared to the measured bias function from Fig. 3.7 in real-space
(solid lines) and redshift-space (dashed lines). Note that the axes are swapped compared to
the scatter plots (Fig. 3.4). Middle and lower panel: Residuals between quadratic model
(mbn) and the measured bias function (mm) from the upper panel in real-space (middle) and
redshift-space (lower panel).
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Table 3.3 Collection of the bias parameters obtained from fitting the quadratic bias model
from equation (3.13) to the predicted bias function (measured HI and predicted matter)
obtained from the CDF according to equation (3.10) both in real (three left columns) and
redshift-space (three right columns). The ratio between matter and HI log-variances in
Tables 3.1 and 3.2 allows us to cross-check the linear bias parameter b1.

z b0 b1 b2 bz
0 bz

1 bz
2

1 0.0451 0.5685 0.0514 0.0607 0.5387 0.0447
3 0.0693 0.3786 0.0309 0.0808 0.3486 0.0267
5 0.0463 0.3094 0.0255 0.0549 0.2846 0.0225
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Fig. 3.9 Real-space HI PDF showing a few-percent level agreement between simulation
and prediction. Upper panel: Measured PDF of HI densities in spheres of radius R =
5 h−1Mpc for redshifts z = 1,3,5 compared to the prediction from large-deviation statistics
for matter combined with the quadratic log-bias model (dashed lines) for neutral hydrogen
densities in real-space. Lower panel: Residuals between the theoretical predictions and the
measured PDFs of HI densities in spheres in real-space.
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Fig. 3.10 Redshift-space HI PDF showing a few-percent level agreement between simulation
and prediction. Upper panel: Measured PDF of HI densities in spheres of radius R =
5 h−1Mpc for redshifts z = 1,3,5 compared to the prediction from large-deviation statistics
for matter combined with the quadratic log-bias model (dashed lines) for neutral hydrogen
densities in redshift-space. Lower panel: Residuals between the theoretical predictions and
the measured PDFs of HI densities in spheres in redshift-space.
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3.5.2 One-point PDF of neutral hydrogen

Having established the accuracy of the bias model, let us now combine it with the one-point
matter PDF to obtain a fully-predictive model for the one-point neutral hydrogen PDF. In
this work, we fit the bias parameters at fixed cosmology to assess the accuracy at which this
simple bias parametrisation combined with the predictive dark matter model can describe
the neutral hydrogen PDF. In general, the framework allows for a joint fit of cosmology and
bias, which could be used in a realistic application. In order to obtain an estimate for the
cosmological parameters, one would then choose to marginalise over the bias parameters,
given certain theoretical priors.

The results in real- and redshift-space are shown in comparison to the measurement from
the IllustrisTNG simulation in Figures 3.9 and 3.10, respectively. In Fig. 3.9 we compare
our fully-predictive theory for matter and the fitted bias model with the measured real-space
neutral hydrogen PDF (upper panel). As the variance of the neutral hydrogen density field
grows, the amplitude of the PDF tail increases, so the peak of the distribution moves towards
lower densities, as they occupy more volume. The residuals (lower panel) show that the
theory is able to describe the measurements over a large range in densities at a few percent
level. In Fig. 3.10, we see that the redshift-space distortions can indeed be incorporated
into the bias model, as the measured and predicted PDFs in redshift-space are still in good
agreement (upper panel). As expected from the only slightly smaller correlation (cf. Table
3.2), we still see an agreement between theory and measurement at the few percent level,
even though the residuals are slightly larger than for the real-space PDF (lower panel).

In Fig. 3.6, we also included a comparison of the PDFs of neutral hydrogen, mass-
weighted halos and matter to the log-normal model [113] (dashed lines). Our results at z = 3
are representative, as the behaviour at other redshifts is very similar. Furthermore, the plot
shows how the log-normal model fails in underdense regions, where the large-deviation
statistics for matter is much more accurate. Additionally, when considering the central region
of the PDF, the log-normal model typically leads to residuals of order 10% for dark matter
[118, see Figure D1] and about 20% for mass-weighted halos [159, see Figure B1], both at
low redshifts. At higher redshifts, we find residuals of 15-20% both for matter and tracers.

3.5.3 Density-dependent clustering of neutral hydrogen

The density-dependent clustering signal for biased tracers is interesting, because it offers
to break the degeneracy between the non-linear matter variance and linear bias in the one-
point tracer PDF, as demonstrated in [159] for the case of halos. Despite the aforementioned
limitations of our small-box clustering measurements in IllustrisTNG, the density-dependence
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Fig. 3.11 Measured density-dependent HI clustering agrees with theoretical expectations.
Upper panel: Density-dependent clustering encoded in the sphere bias at redshifts z = 1,3,5
(orange to blue) for neutral hydrogen in real-space as predicted from equation (3.7) (dashed
lines) and measured (data points). Lower panel: Residuals between the theoretical prediction
and simulation measurements. For better visibility, the abscissas for different redshifts are
slightly shifted.

of neutral hydrogen clustering in real-space displayed in Fig. 3.11 is clearly a biased version
of the density-dependent matter clustering shown in Fig. 3.3. The result is in line with the
theoretical prediction (3.7) using the bias parameters found for the PDF and an approximation
for the ratio of correlation functions

√
ξ◦,m/ξ◦,t ≃ exp(b0)b1 based on a first order expansion

of the log-bias model (3.13). The density-dependence of neutral hydrogen clustering is
shallower than for dark matter, mainly due to linear bias, but also changes shape due to the
non-linear bias term.

3.6 Conclusions and Outlook

Summary. Building on recent ideas from large-deviation statistics, an accurate theoretical
model for counts-in-cells statistics of neutral hydrogen is described. The idea is to rely
on analytical predictions for matter and relate them to tracers using a mean bias relation.
When combining the analytical results for matter with a non-linear variance from HALOFIT,
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one obtains a fully-predictive matter PDF that makes it possible to extract a non-parametric
bias function from the neutral hydrogen PDF. Based on measurements in the hydrodynamic
simulation IllustrisTNG, we determine the relation between matter and neutral hydrogen
densities in spheres of R = 5 h−1Mpc from redshift z = 5 down to z = 1. The resulting
non-parametric bias relation is well-described by a bias expansion up to second order in
log-densities, which is in agreement with previous results for halos that host most of the
neutral hydrogen.

The main results for the neutral hydrogen PDF are displayed in Figures 3.9 and 3.10 and
demonstrate the few percent-level accuracy of the combined analytical model for matter and
a mean bias fit both in real- and redshift-space. In addition, we detect a density-dependent
clustering signal for neutral hydrogen (Fig. 3.11) that can, in principle, be used to break the
degeneracy between the linear tracer bias and the non-linear variance and jointly constrain b1

and σ8.
Fundamental physics. Future intensity mapping surveys will map gigantic volumes that

are ideally suited for counts-in-cells statistics that probe the rare event tails and the growth of
structure sensitive to dark energy [153]. Our formalism for HI counts-in-cells can be used
to probe regions of particularly low and high matter density, which contain considerable
information about fundamental physics such as primordial non-Gaussianity [156] and massive
neutrinos [194]. 21cm offers a unique technique to observe the three-dimensional matter
density field that allows to go beyond current galaxy surveys, where clustering properties
of SDSS galaxy clusters are already used to approach constraints on neutrino mass [195].
We established a very close correlation between neutral hydrogen and mass-weighted halo
counts-in-cells, which in turn is expected to translate to luminosity-weighted galaxies. Hence,
our results could allow us to combine neutral hydrogen and galaxy counts-in-cells in order to
harness synergies between intensity mapping and redshift galaxy surveys [131, 132].

Astrophysics. Another interesting direction could be to employ the accurate analytical,
beyond log-normal model for one-point statistics of dark matter [7] to probe high-redshift
astrophysics. Intensity mapping can be done with lines different from the 21cm spin-flip line
of neutral hydrogen, which are sensitive to different astrophysical processes [196, 197] and
can probe various environments such as hotter hydrogen gas (Lyα), ionised regions (C II)
or cool dense molecular gas (CO). The idea is to use the one-point statistics of intensity
fluctuations which depend on both the spatial distribution of matter or halos, and also the
corresponding luminosity functions. The luminosity functions contain interesting information
about the detailed astrophysical conditions within the line emitters, such as star formation
rates and metallicities, that can be constrained through the measured PDF of voxel intensity
which complements information from the power spectrum [198]. In this context, [162]
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introduced the probability distribution of voxel intensities and demonstrated its application
to CO emission finding constraints on the luminosity function of the order of 10 percent.
In this study, a log-normal matter distribution has been used in combination with a linear
relation between halo mass and CO luminosity. Potentially, our more accurate first-principle
matter PDF could tighten this constraint and enable a joint analysis of astrophysics and
cosmology. Additionally, our non-linear bias model could be used to assess the robustness of
the constraints regarding the assumed linear relation between halo mass and CO luminosity.

Observational limitations. We emphasise that we are considering single-dish like ob-
servations in this chapter, where neutral hydrogen fluctuations can be directly measured in
configuration space. For interferometry observations, the directly observable quantity is
the Fourier transform of the intensity flux. Thus, in that case, an approach bearing closer
resemblance to observations will be to consider the PDF of mode amplitudes in Fourier-space.
One of the main obstacles for intensity mapping observations is the fact that the amplitude of
the galactic and extragalactic foregrounds can be several orders of magnitude higher than the
one of the cosmological signal. Foreground cleaning is thus of pivotal importance and usually
takes advantage of the rather smooth frequency spectra of foregrounds that disentangle them
from the cosmic signal which maps the distribution of structures along the line-of-sight and
hence has a significant amount of structure in frequency space. Foregrounds that are constant
across the sky are not expected to constitute a serious problem for counts-in-cells statistics,
as they just offset the overall mean density. As the non-parametric bias relation is insensitive
to a multiplication by a constant factor and the bias parameter b0 in the parametric bias
relation is designed to capture this effect, the functional form of the bias relation is robust
against such an offset. Foregrounds that are spatially varying on scales comparable to the
size of the cells would add an extra foreground density fluctuation in every cell, roughly
corresponding to extra scatter of the observed intensity around the true density. Importantly,
the high correlation between the matter and HI fields is unaffected by foregrounds which
simply add an additional, uncorrelated source of scatter. Our results demonstrate that neutral
hydrogen counts-in-cells are rather robust against scatter in the underlying bias relation.
Hence, one would expect that it is most important to model the effect of foregrounds on the
mean relation, for which our formalism provides the basis. While it is beyond the scope of
the present work, one could quantitatively assess the impact of foregrounds, as well as the
window function and calibration on counts-in-cells statistics through mocks built for 21 cm
intensity mapping experiments [199, 161].





Chapter 4

Computations for projected two- and
three-point statistics1

Summary

CMB-lensing, photometric galaxy surveys and, in general, cross-correlations between CMB-
lensing and galaxy clustering are described by projected spectra. This motivates the study of
projected power- and bispectra. However, projected spectra bring some technical difficulties
with it: First, the number of projected bispectrum configurations grows cubic in the number
of projection functions used. This means that for a galaxy survey with more than a few
tomographic bins, it is intractable to directly compute the full (cross-) bispectrum signal
vector. Second, the amount of resolved radial information is determined (roughly) by the
inverse depth of the projection kernels and not the cut-off scale of perpendicular modes k2D

max.
This causes problems when comparing 2D analyses with different projection depths. We
illustrate the latter effect with a signal-to-noise analysis of the projected power spectrum. We
explore theoretical uncertainties as a solution to this problem but find this route is only feasible
for the power spectrum. For the power spectrum we show empirically that one can recover
the full 3D Fisher information in tomographic surveys with sufficiently small projection
depths (but fixed volume). For instance, using a projection depth of l = 10 h−1Mpc allows
us to recover 99% of the 3D information. We introduce a solution to the first challenge by
implementing a code that allows us to project the large number of projected bispectrum
configuration efficiently. The main idea is to separate the projection integrals and use caching
for reoccurring sub-results. We end this chapter by some remarks on the intrinsic challenges
related to the large number of projected bispectra configurations.

1This chapter based on [2].
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Outline

This chapter is structured as follows: In section 4.1, we derive expressions for the projected
power spectrum and bispectrum. These projection integrals are the 1D analogue to the 3D
filtering discussed in section 2.4.2. In section 4.2, we study the statistical properties of the
estimators for the projected spectra and illustrate the issue of finding a consistent perpendic-
ular cut-off scale when comparing different projected spectra. Next, we review theoretical
uncertainties and propose an efficient way to project them consistently in section 4.3. We
turn our attention to the projected bispectrum and implement an efficient way to separate the
required integrals in section 4.4. We briefly comment how one could further improve the
algorithm in section 4.5.

4.1 Projected power- and bispectra

In this section, we derive in the flat sky approximation the effect of projections on 3D density
fields. This allows us to express the 2D power spectrum and bispectrum in terms of the 3D
theory predictions.

4.1.1 Projections

The density contrast can be projected along the LOS by means of a window function2, WX ,
where X characterizes the window. In real space, this reads

δX(x⊥) =
∫

dx∥WX(x∥)δ (x∥,x⊥) =
∫ d3p

(2π)3 dx∥e−ip·xWX(x∥)δ (p). (4.1)

Hence we obtain for the Fourier transform

δX(k⊥) =
∫ d p∥d2p⊥

(2π)3 dx∥d2x⊥WX(x∥)δ (p)e−ip·xeik⊥x⊥

=
∫

dx∥
d p∥
2π

d2p⊥δ
D(p⊥−k⊥)e

−ip∥x∥WX(x∥)δ (p)

=
∫ d p∥

2π
WX(−p∥)δ (k⊥, p∥).

(4.2)

Throughout this dissertation, we separate the time dependency from the density contrast
and include it into the window function; this is motivated by the perturbative expansion

2Throughout this thesis we use the terms window function, projection kernel and selection function
interchangeably.
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Fig. 4.1 The projected density field at each wave vector k⊥ is a superposition of all wave
vectors with perpendicular component k⊥ and the weights set by a window function that
depends on the LOS component k∥ of the wave vector.

of the density contrast (2.88). Fig. 4.1 illustrates the projection integral (4.2). For each
perpendicular wave vector, k⊥, the projected field is a linear combination of all 3D modes
with perpendicular component k⊥ weighted by WX(−k∥). Importantly, each 3D mode
contributes to exactly one mode in the projected field. Thus, at linear order, the projected
field is an isotropic and homogeneous Gaussian random field too. Those properties can be
formally derived by swapping the order of the projections and averages when relating 2D to
3D correlators.

In this work, we model galaxy bins via 1D Top-Hat and Gaussian projection functions
which read in Fourier space

WTH(k∥) = sinc(k∥l/2) (4.3a)

WG(k∥) = exp
[
−(k∥l/2)2/2

]
. (4.3b)

Here, l refers to the projection depth and we assume that the bins are thin enough so the time
evolution can be assumed as constant. The CMB-lensing kernel, in contrast, is so broad that
one needs to take the time evolution into account. This leads to a separate window function
for each perturbative order. The n-th order CMB-lensing kernel is given by

Wκ,n(k∥) =
3
2

(
H0

c

)2

Ωm,0

∫
χs

0
dx∥ eik∥x∥

x∥(χs − x∥)
χs

Dn(x∥)
a(x∥)

(4.4)
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where D is the linear growth factor and χs the co-moving distance of the surface of last
scattering. Assuming an EdS universe (D = a), allows us to analytically express the linear
CMB-lensing window functions as

W EdS
κ,1 (k∥) =

3
2

(
H0

c

)2

Ωm,0
χs

k∥
j1(k∥χs/2)exp

[
ik∥χs/2

]
. (4.5)

Here j1 is a spherical Bessel function of the first kind. We used the fact that centring the
window around χ and not the origin adds an additional phase factor

Wχ(k∥)=
∫

dx∥ exp[ik∥x∥]W (x∥−χ)= exp[iχk∥]
∫

dx∥ exp[ik∥x∥]W (x∥)= exp[ik∥χ]W0(k∥).
(4.6)

4.1.2 Projected power spectrum

The 3D power spectrum is defined as (2.53)

⟨δ (k)δ (k′)⟩= δ
D(k+k′)(2π)3P(k).

Changing the order of projection and average, then allows us to express the 2D power
spectrum in terms of the 3D

⟨δX(k1,⊥)δY (k2,⊥)⟩=
〈∫ dk1,∥

2π
WX(−k1,∥)δ (k1,⊥,k1,∥)

∫ dk2,∥
2π

WY (−k2,∥)δ (k2,⊥,k2,∥)
〉

=
∫ dk1,∥

2π

dk2,∥
2π

(2π)3P
(√

k2
1,⊥+ k2

1,∥

)
δ

D(k1 +k2)WX(−k1,∥)WY (−k2,∥)

= (2π)2
δ

D(k1,⊥+k2,⊥)P2D
XY (k1,⊥),

(4.7)

where we identified the 2D power spectrum as

P2D
XY (k⊥) =

∫
∞

−∞

dk∥
2π

P
(√

k2
⊥+ k2

∥

)
WX(−k∥)WY (k∥). (4.8)

We see that the projections source small scale information to larger scales. In case both
window functions, centred around χX and χY , are symmetric (4.7) can be simplified to

P2D
XY (k⊥) = 2

∫
∞

0

dk∥
2π

P
(√

k2
⊥+ k2

∥

)
cos
[
(χX −χY )k∥

]
WX(−k∥)WY (k∥). (4.9)
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Fig. 4.2 Linear power spectrum (blue curve) and its 2D projections with a Gaussian kernel
of varying depth (orange to brown). The projections change both the overall amplitude and
the power spectrum’s shape at low k. Instead of the kns scaling at low k, the projected power
spectra become constant.

The impact of the projection depth on the linear galaxy auto-power spectrum (i.e. χ1 = χ2)
is illustrated in Fig. 4.2. When comparing projected power spectra (with Gaussian profile)
to the linear power spectrum in 3D, projected power spectra differ by an overall factor that
comes from the varying volume of the window functions in Fourier space. Since projections
only source power from smaller to larger scales, the projections lead to an enhancement on
large scales where the 3D power spectrum is increasing, i.e. for wave number below the wave
number corresponding to matter-radiation equality and the peak of the 3D power spectrum.
Moreover, the strength of the effect is increasing with decreasing projection depth i.e. wider
projection kernels. In the large wave number limit, the integrand of the projection integral
(4.8) becomes independent of the power spectrum and P2D(k⊥) ∝ P(k).

4.1.3 Projected bispectrum

Expressing the projected bispectrum

⟨δX1(k1,⊥)δX2(k2,⊥)δX3(k3,⊥)⟩= (2π)2
δ

D(k1,⊥+k2,⊥+k3,⊥)B2D
X1X2X3

(k1,⊥,k2,⊥,k3,⊥)
(4.10)
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Fig. 4.3 The four columns show the four different (cross-)bispectra in the squeezed configu-
ration (first two rows) and the equilateral configuration (bottom row). Where possible, we
show the 3D bispectrum (blue) and projections with a Gaussian kernel of different depths
(orange to brown). The lensing-lensing-clustering bispectra all lie onto each other.

in terms of the 3D fields by changing the order of the average and projection, yields

B2D
X1X2X3

(
k1,⊥,k2,⊥,k3,⊥

)
=
∫ dk1,∥

2π

dk2,∥
2π

dk3,∥δ
D

(
∑

i
ki,∥

)
WX1

(
k1,∥
)

WX2

(
k2,∥
)

WX3

(
k3,∥
)
B
(√

k2
1,⊥+ k2

1,∥,
√

k2
2,⊥+ k2

2,∥,
√

k2
3,⊥+ k2

3,∥

)
.

(4.11)

Fig. 4.3 compares different projected bispectra for equilateral and squeezed configurations
and a range of projection functions. κ refers to the CMB-lensing convergence and δg to Gaus-
sian galaxy bins centred around z= 0.57 with projection depths ranging from 1000 h−1Mpc to
50 h−1Mpc . We also show the 3D galaxy bispectrum and one sees that the projections have
the strongest effect on largest scales.

When enumerating all possible projected bispectra, we stick to the convention that

• k1 ≥ k2 ≥ k3

• (n1, n2, n3) need to satisfy ni < n j when ki == k j

where the ni label the window functions involved.
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4.2 Statistics

Having established theory predictions for the projected spectra, we turn to the task of
estimating them. To this end, we turn the definitions of the power spectrum and bispectrum
into estimators, Ê , by interpreting the averages as angular averages. This is possible thanks
to the isotropy of the random field. We then characterize these estimators by calculating their
mean and (co-)variance

Ci j = ⟨ÊiÊ j⟩−⟨Êi⟩⟨Ê j⟩. (4.12)

The following derivations of the covariance are carried out at leading order and assume that
the underlying field is Gaussian. The 3D calculations in this subsection are closely oriented
to section III of [200]. The 2D power spectrum, together with the signal-to-noise analysis, is
our own work and the 2D bispectrum calculations can be found in [201].

4.2.1 Power spectrum

3D Power spectrum

Rearranging the power spectrum definition (2.53)

P(k) =
1

(2π)3δ D(k+k′)
⟨δ (k)δ (k′)⟩ (4.13)

motivates the following estimator

P̂(k) =
k3

f

(2π)3V 3D
P (k)

∫
k
d3p1

∫
k
d3p2δ

D(p1:2)δ (p1)δ (p2). (4.14)

Here we used the convention that pi: j = pi+ · · · p j and the volume, V 3D
P , of the k-bin, denoted

by k, is

V 3D
P (k) =

∫
k
d3p =

∫ k+∆k/2

k−∆k/2
p2d p

∫
dΩ = 4π∆k

(
k2 +

∆k2

12

)
≃ 4πk2

∆k. (4.15)

The size of the survey sets a lower limit, called fundamental frequency k f , on the radial width
∆k of the k-bin. The fundamental frequency is determined via the size of the survey and for a
cubic survey of volume V given by k f = 2π/V 1/3. The Dirac delta in the power spectrum
definition can be identified as a volume factor since

δ
D(k) =

∫
V

d3x
(2π)3 exp [ik ·x] =⇒ δ

D(0) =
V

(2π)3 = 1/k3
f . (4.16)
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By construction, the estimator is unbiased:

⟨P̂(k)⟩=
k3

f

(2π)3V 3D
P (k)

∫
k
d3p1

∫
k
d3p2δ

D(p12)⟨δ (p1)δ (p2)⟩

=
k3

f

V 3D
P (k)

∫
k
d3p1

∫
k
d3p2δ

D(p12)
2P(p1)

=
k3

f

V 3D
P (k)

∫
k
d3pP(p)δ D(0) = P(k).

(4.17)

In this calculation, we assumed that the power spectrum is approximately constant over the
k-bin. For large k-bins, one needs to improve the approximation of the integral. Doing so,
leaves the estimator unbiased since one observes in a finite survey the same averaged signal.

In order to obtain the covariance (4.12) of this estimator, one needs to compute the
interaction term

⟨P̂(ki)P̂(k j)⟩=
k6

f

(2π)6V 3D
P (ki)V 3D

P (k j)

∫
ki

d3p1

∫
ki

d3p2

∫
k j

d3p3

∫
k j

d3p4 δ
D(p12)δ

D(p34)

×⟨δ (p1)δ (p2)δ (p3)δ (p4)⟩

=
k6

f

(2π)6V 3D
P (ki)V 3D

P (k j)

∫
ki

d3p1

∫
ki

d3p2

∫
k j

d3p3

∫
k j

d3p4 δ
D(p12)δ

D(p34)×

×(⟨δ (p1)δ (p2)⟩ ⟨δ (p3)δ (p4)⟩+ ⟨δ (p1)δ (p3)⟩⟨δ (p2)δ (p4)⟩+ ⟨δ (p1)δ (p4)⟩⟨δ (p2)δ (p3)⟩)
=I1 +2δ

K
i j I2.

(4.18)

Using Wick’s theorem, we split the four-point correlator into three terms. I1 refers to the
integral of the first contraction and I2 refers to those of the second and third. By means of
relabelling, it can be seen that the third contraction is indeed the same as the second. The
Dirac delta from the power spectrum definition ensures that the second and third contractions
only contribute when i = j. The first integral is evaluated as

I1 =

(
k3

f

V 3D
P (ki)

∫
ki

d3p1

∫
ki

d3p2δ
D(p12)

2P(p1)

)
×

×
(

k3
f

V 3D
P (k j)

∫
k j

d3p3

∫
k j

d3p4δ
D(p34)

2P(p3)

)
=⟨P̂(ki)⟩⟨P̂(k j)⟩.

(4.19)



4.2 Statistics 99

This term cancels exactly the second term in the covariance expression (4.12). The second
integral is given by

I2 =

(
k3

f

(2π)3V 3D
P (ki)

)2 4

∏
j=1

(∫
ki

d3p j

)
δ

D(p12)δ
D(p34)⟨δ (p1)δ (p3)⟩⟨δ (p2)δ (p4)⟩

=

(
k3

f

V 3D
P (ki)

)2 4

∏
j=1

(∫
ki

d3p j

)
δ

D(p12)δ
D(p34)δ

D(p13)δ
D(p24)P(p1)P(p2)

=

(
k3

f

V 3D
P (ki)

)2 ∫
ki

d3p1

∫
ki

d3p3 δ
D(p13)δ

D(p13)P2(p1)

=
k3

f

V 3D
P (ki)

1
V 3D

P (ki)

∫
ki

d3 pP2(p)≃
k3

f

V 3D
P (ki)

P2(ki).

(4.20)

In total, the Gaussian power spectrum covariance is given by

Cov3D
G
[
P(ki),P(k j)

]
=⟨P̂(ki)P̂(k j)⟩−⟨P̂(ki)⟩⟨P̂(k j)⟩= (I1 +2δ

K
i j I2)− I1

=δ
K
i j

2k3
f

V 3D
P (ki)

⟨P̂2(ki)⟩ ≃ δ
K
i j

2k3
f

V 3D
P (ki)

P2(ki).
(4.21)

2D power spectrum

Analogously to the 3D power spectrum, the estimator for the 2D power spectrum is given by

P̂2D
XY (k⊥) =

k2
f

(2π)2V 2D
P (k⊥)

∫
k⊥

d2p1,⊥
∫

k⊥
d2p2,⊥δ

D(p1:2)δX1(p1,⊥)δX2(p2,⊥). (4.22)

The k-bin is defined as

V 2D
P (k⊥) =

∫
k⊥

d2p⊥ =
∫ k⊥+∆k/2

k⊥−∆k/2
p⊥d p⊥

∫ 2π

0
dφ = 2πk⊥∆k, (4.23)

and for a quadratic survey of area A, the fundamental frequency is k f = (2π)/A1/2. Using a
very similar calculation as in the 3D case, one finds that the estimator is unbiased and the
covariance is given by

Cov2D
G [P2D

X1X2
(ki,⊥),P2D

X3X4
(k j,⊥)] =

=δ
K
i j

k2
f

V 2D
P

[
P2D

X1X3
(ki,⊥)P2D

X2X4
(ki,⊥)+P2D

X2X3
(ki,⊥)P2D

X1X4
(ki,⊥)

]
.

(4.24)
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Due to the window functions, the projection of the second and third contraction in (4.18) can
be different which results in the two different cross-power spectra terms.

4.2.2 Power spectrum signal-to-noise analysis

Having derived the Gaussian covariance for the (projected) power spectrum, let us ignore
shot-noise and compute the signal-to-noise (SN) ratios for the cases where analytical results
exist.

3D power spectrum

Due to spatial homogeneity, different wave vectors are uncorrelated, so the SN of the linear
power spectrum amounts to mode counting. Let us start the binning in k-space at the
fundamental frequency k f . Then there are n =

⌊
kmax−k f

∆k

⌋
k-bins of size ∆k up to the upper

cut-off kmax. For the SN ratio we find

SN3D = ∑
i j

P(ki)C−1(ki,k j)P(k j)

= ∑
i

P(ki)
2

k3
f

4π(k2
i ∆k+∆k3/12)

2P(ki)2
= ∑

i

2π∆k
k3

f

(
k2

i +
∆k2

12

)

=
2π∆k

k3
f

[
n−1

∑
i=0

((i+0.5) ·∆k+ k f )
2 +

∆k2

12

]

=
2π

3

[(
kmax

k f

)3

−1

]
.

(4.25)

Note that this is half the number of modes that fit into a spherical shell ranging from the
lower to the upper cut-off scales of the analysis. The factor half comes from the fact that
modes are only unique up to their sign.

Single projected power spectrum

In 2D, we can compute the (kmax/k f ) scaling of the SN of a single auto-spectrum with a very
similar calculation as for the 3D case. One finds

SN2D(1bin) =
π

2

[(
kmax

k f

)2

−1

]
. (4.26)
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As in 3D, this is the number of modes that fit into a hollow circle with limits given by the
lower and upper analysis cut-offs. Cross-power spectra PXY have a different covariance
structure

CXY,XY (ki,k j) ∝ δ
K
i j
(
P2

XY (ki)+PXX(ki)PYY (ki)
)

(4.27)

that does not allow for analytic results.

Multiple projected power spectra

As different projected power spectra are correlated, their individual SNs do not simply add
up. Here, we will see that including the appropriate cross-power spectra PXY into the analysis
of the corresponding auto-power spectra effectively removes the correlation between the
auto-spectra. We demonstrate this explicitly for the case of two auto-spectra and the general
case follows by induction.

Let us start with two projection windows X and Y . Due to spatial homogeneity, we know
that different scales are uncorrelated, so the result from the previous subsection applies, and
we only have to investigate the effect of the two bins for one particular k. The signal vector
is then given by SP =

[
PXX PYY PXY

]
and the covariance is

CP =

 2P2
XX 2P2

XY 2PXX PXY

2P2
XY 2P2

YY 2PYY PXY

2PXX PXY 2PYY PXY PXX PYY +P2
XY

 . (4.28)

Here we dropped the mode counting prefactor
k2

f
2πki∆k . One sees that the off-diagonal terms

prohibits a simple adding of the SN’s from the different power spectra. However, the
cross-power spectrum, PXY , effectively decorrelates the two auto-spectra and one finds

SN2D(2bin) = SPC−1
P SP = 1 ≡ 2 SN2D(1bin). (4.29)

Combining this with result from the previous section we find by induction

SN2D(full analysis) = # auto-spectra · π

2

[(
kmax

k f

)2

−1

]
. (4.30)

This result illustrates an important problem when working with projected (power) spectra:
There is an implicit second cut-off scale for radial modes (roughly) given by the inverse
projection depth. This is why even for a fixed survey volume and perpendicular k2D

max, the
total SN increases linearly with the number of bins. In terms of the projected (power) spectra
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(4.7), the additional radial modes enter through the broader projection kernels (in Fourier
space) that correspond to thinner bins.

One can show that adding the cross-correlations, P2D
XY to an auto-power spectrum SN

analysis (e.g. P2D
XX ), does not improve the SN compared to the auto-power spectrum SN alone.

Thus, assuming a Gaussian covariance, cross-correlations only contribute to the SN when
both auto-power spectra are included.

Adding shot-noise would increase the relevance of cross-correlations since they do
not suffer from shot-noise. In particular, cross-correlations would contribute to the SN
for all spectra combinations and not only by effectively de-correlating auto-power spectra.
Depending on the shot-noise amplitude, cross-correlations can be even more important for
the overall SN than the auto-spectra.

4.2.3 Bispectrum

3D Bispectrum covariance

From the bispectrum’s defintion (2.58), we derive

B̂(k1,k2,k3) =
k3

f

(2π)3VB

∫
k1

d3p1

∫
k2

d3p2

∫
k3

d3p3δ
D(p123)δ (p1)δ (p2)δ (p3) (4.31)

as our bispectrum estimator. The volume of the k-bin, VB, is given by

V 3D
B =

∫
k1

d3p1

∫
k2

d3p2

∫
k3

d3p3δ
D(p123)

=
∫ d3x

(2π)3

3

∏
i=1

(∫ ki+∆k/2

ki−∆k/2
p2

i d pi

∫ 2π

0
dφi

∫
π

0
sinθidθi exp[i(xpi cosθi)]

)
=
∫ 4πx2dx

(2π)3

3

∏
i=1

(
−2π ·2

∫ ki+∆k/2

ki−∆k/2
p2

i d pi
sin(xpi)

xpi

)
=−32π

∫
∞

0
x2dx

3

∏
i=1

(∫ ki+∆k/2

ki−∆k/2
p2

i d pi

√
π

2xpi
J1/2(xpi)

)
=8π

2
3

∏
i=1

(∫ ki+∆k/2

ki−∆k/2
pid pi

)
=8π

2k1k2k3(∆k)3.

(4.32)

In the derivation, we first wrote the Dirac delta in its Fourier representation and then identified
j0 = sinx/x. The spherical Bessel functions in turn can be represented in terms of Bessel
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functions which allows us to analytically solve the integral over x [202, Eq. (1) on page 411].
The integral over the Bessel functions is only non-zero if the vectors form a valid triangle.

By construction, the bispectrum estimator is unbiased

⟨B̂(k1,k2,k3)⟩=
k3

f

(2π)3VB

∫
k1

d3p1

∫
k2

d3p2

∫
k3

d3p3δ
D(p123)⟨δ (p1)δ (p2)δ (p3)⟩

=
k3

f

VB

∫
k1

d3p1

∫
k2

d3p2

∫
k3

d3p3δ
D(p123)

2B(p1, p2, p3)

≃B(k1,k2,k3).

(4.33)

Here, we used, as in the previous subsection, the fact that one of the Dirac deltas corresponds
to a volume factor and thus cancels the k3

f term.
The calculation of the interaction term in the covariance is more involved than for the

power spectrum since it involves a six-point function that has, according to Wick’s theorem,
fifteen possible contractions. However, assuming that the two triangles are not degenerate, we
only have to contract each density with a density of the other bispectrum/triangle because of
the delta functions that come with the resulting power spectra. This means the two triangles
have to be congruent. The covariance is proportional to some integral, that we are about
to compute, times all possible non-zero contractions. We will denote the triplet of integers
labeling a wave vector configuration by a capital character I = (i1, i2, i3). We can then extend
the Kronecker delta to triangles via

δ
K
IJ = δ

K
i1 j1δ

K
i2 j2δ

K
i3 j3. (4.34)

From the argument above, we can write

CB
IJ = IB ∑

L∈σ(J)
δ

K
IL = δ

K
IJsBIB (4.35)

where we sum over the 6 permutations of J. One can then summarize the number of non-
zero contractions with the symmetry factor sB that is 1,2 and 6 for scalene, isosceles and
equilateral triangles, respectively. We now calculate IB assuming without loss of generality
that the contraction

contraction : ⟨δ (p1)δ (p4)⟩⟨δ (p2)δ (p5)⟩⟨δ (p3)δ (p6)⟩ (4.36)
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is non-zero. This yields

IB =

(
k3

f

(2π)3VBi

)2 ∫
k1

d3p1

∫
k2

d3p2

∫
k3

d3p3

∫
k1

d3p4

∫
k2

d3p5

∫
k3

d3p6 δ
D(p123)δ

D(p456)×

×⟨δ (p1)δ (p4)⟩⟨δ (p2)δ (p5)⟩⟨δ (p3)δ (p6)⟩

=

(
k3

f

(2π)3VBi

)2 ∫
k1

d3p1

∫
k2

d3p2

∫
k3

d3p3

∫
k1

d3p4

∫
k2

d3p5

∫
k3

d3p6 δ
D(p123)δ

D(p456)×

×(2π)9P(p1)P(p2)P(p3)δ
D(p1:4)δ

D(p2:5)δ
D(p3:6)

=(2π)3

(
k3

f

VBi

)2 ∫
k1

d3p1

∫
k2

d3p2

∫
k3

d3p3 δ
D(p123)

2P(p1)P(p2)P(p3)

≃(2π)3 k3
f

VBi

P(k1)P(k2)P(k3).

(4.37)

Hence, the Gaussian bispectrum covariance is given by

Cov3D
G [B3D(ki1,ki2,ki3),B

3D(k j1,k j2,k j3)] =δ
K
IJsB(2π)3 k3

f

V 3D
Bi

P(k1)P(k2)P(k3)

=δ
K
IJ

sBπk3
f

k1k2k3(∆k)3 P(k1)P(k2)P(k3).

(4.38)

As for the power spectrum, the calculations and expressions assume thin k-bins but can easily
be generalized to broader k-bins. In fact, it is standard practice to reduce the number of
bispectrum configurations via a coarse binning.

2D Bispectrum

In this section, we work with 2D vectors and discard the perpendicular subscript for clarity.
Following the previous sections, an estimator for the 2D bispectrum is given by

B̂X1X2X3(k1,k2,k3) =
k2

f

(2π)2
1

VB

∫
k1

d2p1

∫
k2

d2p2

∫
k3

d2p3 δ (p123)δX1(p1)δX2(p2)δX3(p3)

(4.39)
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where the fundamental frequency is given by k2
f = (2π)2/A = k f . The volume of the

(k1,k2,k3)-bin is given by

V 2D
B =

∫
k1

d2p1

∫
k2

d2p2

∫
k3

d3p3δ
D(p123) =

3

∏
i=1

(∫ ki+∆k/2

ki−∆k/2
pid pi

∫ 2π

0
dφp1

)
δ

D(p123)

=
3

∏
i=1

(∫ ki+∆k/2

ki−∆k/2
pid pi

∫ 2π

0
dφp1

)∫ d2θ

(2π)2 ei(p1+p2+p3)θ

=
3

∏
i=1

(∫ ki+∆k/2

ki−∆k/2
pid pi

)∫ d2θ

(2π)2 (2π)3J0(p1θ)J0(p2θ)J0(p3θ)

=
3

∏
i=1

(∫ ki+∆k/2

ki−∆k/2
pid pi

)
2πΛ(p1, p2, p3)≃ 2πk1k2k3(∆k)3

Λ(k1,k2,k3)

(4.40)

where we used the integral representation of the Bessel function

J0(x) =
∫ 2π

0

dφ

2π
eixcosφ (4.41)

and utilized [203, formula no. 6.578.9] for the angular integration which yields

Λ(k1,k2,k3)=


[

1
4

√
2k2

1k2
2 +2k2

1k2
3 +2k2

2k2
3 − k4

1 − k4
2 − k4

3

]−1
if |k1 − k2|< k3 < k1 + k2

0 otherwise .
(4.42)

By construction, the estimator is unbiased. Moreover, a similar calculation as in 3D shows

Cov2D
G [B2D

X (ki1,ki2,ki3),B
2D
Y (k j1,k j2,k j3)] =

(2π)k2
f

ki1ki2ki3(∆k)3
1

Λ(ki1,ki2 ,ki3)
PPP (4.43)

where
PPP = ∑

L∈σ(J)
δ

K
ILP2D

Xi1Yl1
(ki1)P

2D
Xi2Yl2

(ki2)P
2D
Xi3Yl3

(ki3). (4.44)

Note that the Kronecker delta in (4.44) enforces statistical homogeneity by requiring that the
two triangles are congruent. This makes the covariance diagonal. As in the 3D case, k-bins
are often chosen so wide that the thin-bin approximation used here does not apply.

Power-bispectrum covariance

The Gaussian covariance of power- and bispectrum is zero since it corresponds to a connected
five-point function. For completeness, we give here the leading order of the power-bispectrum
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covariance. Using the definitions from above yields at leading order for the covariance in 3D

Cov3D [P(ki),B(k j1 ,k j2,k j3)
]
= 2(δ K

i j1 +δ
K
i j2 +δ

K
i j3)

k3
f

V 3D
P (ki)

P(ki)B(k j1 ,k j2,k j3). (4.45)

The Kronecker delta ensures that the magnitude of the power spectrum vector corresponds to
at least one leg of the bispectrum. For the covariance of the projected spectra one finds

Cov2D [P2D
X1X2

(ki),B2D
Y1Y2Y3

(k j1,k j2,k j3)
]

=
k2

f

V 2D
P (ki)

∑
L∈σ(J)

δ
K
il1

(
PX1Yl1

(ki)BX2,Yl2 ,Yl3
(ki,kl2,kl3)+PX2Yl1

(ki)BX1,Yl2 ,Yl3
(ki,kl2 ,kl3)

)
.

(4.46)

4.3 Theoretical uncertainties

The (perturbative) theory predictions of the power spectrum and bispectrum gradually lose
their accuracy with increasing wave vectors. Typically, one deals with that by means of a
hard cut-off, kmax, in the analysis (see eg. section 4.2.2). The implicit assumption behind this
is that the predictions are perfectly accurate up to the cut-off and (completely) inaccurate
for smaller scales. A further problem arises when working with projected spectra. In
section 4.2.2, we showed that perpendicular cut-offs do not directly control the amount of
small scale radial information that is included in the analysis. Theoretical uncertainties offer
a solution to both problems. The idea is to formally include all modes into the analysis and
to weight modes according to the accuracy of their predictions.

4.3.1 Theoretical uncertainties in three dimensions

A first model for theoretical uncertainties was developed in [204]. The core idea is to add
theoretical uncertainties, Cth, to the statistical uncertainties, C, that were discussed in the
previous section

C →C+Cth. (4.47)

The theoretical uncertainties grow with increasing wave vectors and thus gradually decrease
the weight of small scale modes until the error bars saturate. The hard cut-off in contrast
assigns the most weight (due to cosmic variance) to the modes closest to the cut-off which
are also the most uncertain modes of the analysis. Fig. 4.4 illustrates the effect of theoretical
uncertainties on the forecasted errors (see section 5.3.1) in 3D. We compare the kmax depen-
dence of the marginalized error bars without theoretical uncertainties and with theoretical
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Fig. 4.4 Unmarginalized 1σ error bars without theoretical uncertainties (green line) and
with theoretical uncertainties (orange and blue) as a function of the upper cut-off kmax.
The error bars of the cosmological parameters are decreasing with kmax without theoretical
uncertainties. Using theoretical uncertainties, the error bars saturate. For a smaller correlation
length in the correlation function, the saturation happens at a larger scale (blue curve) than
with the larger correlation length (orange). The results come from a power spectrum analysis
of a cubic survey of side length 1000 h−1Mpc at redshift z=0.57.

uncertainties of two different correlation lengths. For a smaller correlation length, the error
bars saturate earlier.

Theoretical uncertainties, e, have mean zero and their covariance can be decomposed into
two components: An amplitude, E, and a correlation function, ρ ,

C3D
th (k1,k2) = ⟨e3D(k1)e3D(k2)⟩c = E(k1)ρ(k1,k2)E(k2). (4.48)

The scale of the fluctuations, E, is set by the next-order solution of the perturbative expansion.
Since we are working at linear order, we adopt the following 1-loop matter power spectrum
envelope introduced by [204]

E(k) = P(k,z)
(

D(z)
D(0)

)2( k
0.31hMpc−1

)1.8

, (4.49)
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together with a Gaussian correlation function

ρ
3D
P (k1,k2) = exp

[
−(k1 − k2)

2

2k2
c

]
. (4.50)

The (inverse) correlation length kc is a free parameter that should reflect the scale on which
variations in the spectra occur. In our setting, the relevant variations are the Baryonic Acoustic
Oscillations that correspond in Fourier space to oscillations of length kBAO ≃ 0.05 h−1Mpc .
We follow the choice of [204] and use an (inverse) correlation length of kc = kBAO/2 as this
is the characteristic scale on which the power spectrum varies. For the 1-loop bispectrum
envelope [204] chose

E(k1,k2,k3) = Bmmm(k1,k2,k3,z)
(

D(z)
D(0)

)2( k̄
0.31hMpc−1

)1.8

, k̄ =
1
3
(k1 + k2 + k3)

(4.51)
and assumed a Gaussian correlation function

ρ
3D
B (kI,kJ) =

3

∏
α=1

exp
[
−(kiα − k jα )

2/2k2
c
]
, where ki1 ≥ ki2 ≥ ki3. (4.52)

We, again, adopt these choices and use kc = kBAO/2 for the correlation length.

Formal derivation

The addition of the theoretical uncertainties to the cosmic variance in (4.47) was motivated as
follows [204]: At leading order, the likelihood of the power spectrum is Gaussian. Modelling
the theoretical uncertainties as a mean-zero Gaussian process then yields the following joint
likelihood function3

L (t,e|d) = 1
(2π)n

√
detC detCth

exp
[
−1

2
(d− t− e)T C−1 (d− t− e)

]
exp
[
−1

2
eT C−1

th e
]

=
1

(2π)n
√

detC detCth
exp
[
−1

2
(d− t)T C−1 (d− t)

]
exp
[
−1

2
eT C−1

th e+ eT C−1 (d− t)
]

(4.53)

where the data vector is d, the theory predictions are t and the theoretical uncertainties e.
The idea is to marginalize over the theoretical uncertainties to incorporate them into the error

3Strictly speaking, only the first term is the likelihood function and the second provides a prior for the
theoretical uncertainties. The product is proportional to the posterior p(d,e|t), so one can marginalize over the
theoretical uncertainties e.
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budget. The marginalization is done using the Gaussian integral for symmetric matrix A

∫
deexp

[
−1

2
eT Ae+ eT B

]
=

√
(2π)n

detA
exp
[

1
2

BA−1B
]
. (4.54)

Using
A =C−1

th , B =C−1
th (d− t), (4.55)

yields

L (t|d) =
∫

deL (t,e|d) = 1√
(2π)n det [C+Cth]

exp
[
−1

2
(d− t)T (C+Cth)

−1 (d− t)
]
.

(4.56)

Here, we used [
C−1 −C−1(C−1 +C−1

th )−1C−1](C+Cth)

=1+C−1Cth −C−1(C−1 +C−1
th )−1 −C−1(C−1 +C−1

th )−1C−1Cth

=1+C−1Cth −C−1Cth = 1

=⇒
[
C−1 −C−1(C−1 +C−1

th )−1C−1]= (C+Cth)
−1.

(4.57)

The marginal likelihood (4.56) provides the formal justification for the modification of the
covariance in (4.47).

4.3.2 Projected theoretical uncertainties

In analogy to the projected power spectrum (4.8) and bispectrum (4.11), we project the
theoretical uncertainties of the power spectrum via

e2D
XY (k⊥) =

∫ dk∥
2π

WX(−k∥)WY (k∥)e
(√

k2
∥+k2

⊥
)

(4.58)

and of the bispectrum via

e2D
X1X2X3

(
k1,⊥,k2,⊥,k3,⊥

)
=
∫ dk1,∥

2π

dk2,∥
2π

dk3,∥δ
D

(
∑

i
ki,∥

)
WX1

(
k1,∥
)

WX2

(
k2,∥
)

WX3

(
k3,∥
)

e(k1,k2,k3) .
(4.59)

A consistent model for the projected systematic uncertainties in 2D, C2D
th , is achieved by

swapping the average with the projection integrals in the covariance definition. For the power
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Fig. 4.5 Relative importance of the one-loop envelope to the linear power spectrum in 3D
(blue curve) and for various projected power spectra (orange to brown). The ratio in 3D
follows a power law, whereas the ratios of the projected power spectra become constant at
low k. At large k, the ratios of the projected power spectra approach the 3D value from above.

spectrum, we obtain

C2D
th (k1,⊥,k2,⊥) = ⟨e2D

X1X2
(k1,⊥)e2D

Y1Y2
(k2,⊥)⟩

=
∫ dk1,∥

2π

dk2,∥
2π

WX1

(
k1,∥
)

WX2

(
−k1,∥

)
WY1

(
k2,∥
)

WY2

(
−k2,∥

)
C3D

th (k1,k2).
(4.60)

For generic (power spectrum) correlation functions, the resulting 2D integral does not have
a closed form solution. Even worse, theoretical uncertainties yield non-sparse covariances
where each independent entry corresponds to a 2D integral. This is numerically not feasible.
However, in case of a Gaussian correlation functions, the integral can be separated using

exp
[
−(k1 − k2)

2

2r2

]
=

√
2√

πr

∫
∞

−∞

dcexp
[
−(k1 − c)2

r2

]
exp
[
−(k2 − c)2

r2

]
≃

√
2√

πr
∆c

N

∑
i=1

exp
[
(k1 − (cmin + i∆c))2

r2

]
exp
[
(k2 − (cmin + i∆c))2

r2

]
,

(4.61)

which makes the problem tractable since it enables caching. The idea is to store the result of
each 1D integral labelled by (k⊥,X , i) - where X characterizes the window and i characterizes
the term in the above expansion - in a hash table. The computation of the covariance
matrix then simply amounts to combining those cached results. In our settings, we achieve
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subpercent accuracy for all configurations using

cmin =−3.2, cmax = 3.2, ∆c =
cmax − cmin

N
, N = 1500 (4.62)

for the discretization.
The above approach to the bispectrum’s theoretical uncertainties becomes computation-

ally intractable when projecting. Due to the implicit wave vector ordering in the correlation
function (4.52), the direct projection is a four-dimensional integral that cannot be separated.
As we were not able to sufficiently speed up the computations, we do not use theoretical
uncertainties for the projected bispectrum.

4.3.3 Empirical validation

We test the equivalence between three- and two-dimensional matter power spectrum analysis
(without RSDs) empirically by performing both analyses and comparing the forecasted error
bars. We control the sourcing of small-scale information to large scales with theoretical
uncertainties. To this end, we use a cubic survey of side length 1000 h−1Mpc . The corre-
sponding fundamental frequency is roughly four times smaller than the correlation length of
the theoretical uncertainties which ensures that the theoretical uncertainties are approximately
constant over k-bins with width of the fundamental frequency. The projections are done
with Top-Hat window functions of depths 1000 h−1Mpc /n, where n is the number of bins.
Our findings are summarized in Fig. 4.6. We show the ratio between the error bars in the
two-dimensional setting and the values the three-dimensional analysis as a function of the
2D cut-off scale, k2D

max. For a given number of bins, the 2D error bars saturate, due to the
projected theoretical uncertainties. In addition, those values converge to the 3D values as the
number of bins increases.

4.4 Efficient bispectrum projection integrals

The number of (cross-)bispectrum configurations scales cubic both in the cut-off4 and the
number of projection functions. Since each configuration corresponds to a 2D integral, it
is not feasible to obtain the projected theory predictions for moderately large cut-offs and
moderately many projection kernels. In this section, we are introducing strategies that allow
us to compute those projections efficiently.

4The exact number of triangles as a function of the cut-off is described the OEIS sequence A002623 [205].

https://oeis.org/A002623
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Fig. 4.6 The ratio of (unmarginalized) error bars in 3D and 2D, σ3D
x /σ2D

x , is shown as a
function of k2D

max. We use the saturated value for the 3D uncertainty and refer to Fig. 4.4 where
we studied the saturation in detail. For each parameter (row) and projection depth (column),
the 2D error bar saturates due to theoretical uncertainties. As the number of tomographic
bins increases (from left to right), this saturated value approaches the 3D value.
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4.4.1 Separating the bispectrum

The core idea to speed up the computation of the projected bispectrum is separating the
bispectrum projection integral (4.11) by using the Fourier representation of the Dirac delta

B2D
X1X2X3

(
k1,⊥,k2,⊥,k3,⊥

)
=
∫ dk1,∥

2π

dk2,∥
2π
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D

(
∑

i
ki,∥

)
WX1

(
k1,∥
)

WX2

(
k2,∥
)

WX3

(
k3,∥
)

B(k1,k2,k3)

=
∫

∞

−∞

dx∥
∫ 3

∏
i=1

[
dki,∥
2π

WXi

(
ki,∥
)

exp
(
−iki,∥x∥

)]
B(k1,k2,k3) .

(4.63)

In this work, we only work with separable bispectra,5 so it suffices to discuss how the
resulting four one-dimensional integrals can be solved. Let us start with the three inner
integrals that are Fourier transformations of the window function times some contribution
from the bispectrum. These terms can be parametrized as

IW (x∥,k⊥;α,β ,γ,δ ,ε) =
∫

∞

−∞

dk∥
2π

e−ik∥x∥W (k∥)k
αP(k)β

(
k∥
k

)γ

exp
[
−δk2

∥σ
2
v /2
]
M ε(k)

(4.64)
where k =

√
k2
∥+k2

⊥. Let us trace back the origin and possible values of the five parameters
from the theory predictions we derived in chapter 2:

• The matter bispectrum (2.105) generates terms with α ∈ {−2,0,2,4}, β ∈ {0,1} and

γ = δ = ε = 0. The α’s come from the cosine, µ(k1,k2) =
k2

3−k2
1−k2

2
2k1k2

in the gravitational
kernel F2. The term α =−2 only occurs together with β = 1. The terms with β = 0
and α > 0 are numerically challenging for slowly decaying window function since the
integrand formally diverges. This is in particular an issue for the lensing kernel. In the
next section, we present analytic results for those integrals.

• Linear RSDs generate terms with γ = 2 that come from the cosine of the wave vector
with the LOS in the redshift-space kernels, Z. The multiplicative prefactor that captures
non-linear redshift-space distortions correspond to δ = 1.

• The PNG templates (see section 2.2.4) introduce terms with Poisson factor (2.67), M ,
where ε = 1−2β . In those integrals, β ∈ {0,1/3,2/3,1}. The scale-dependent bias
terms (see section 2.4.5) corresponds to terms with α ∈ {0,1,2} and β = 1 ⇒ ε =−1.

5While the perturbative solutions are separable, the requirement restricts the possible non-linear RSD
models (see section 2.3.3)



114 Computations for projected two- and three-point statistics

For each k⊥ in the analysis, we need to compute (4.64) as a function of x∥. In most cases,
this can be achieved by means of a Fast Fourier Transform (FFT). The result can then be
cached since FFTs are expensive compared to looking up values in a hash table. In the next
section, we will derive analytic formulae for the cases in which the FFT method cannot be
used. The outer integration is then done by combining the pre-computed results.

4.4.2 Analytic results for the CMB-lensing function

In this subsection, we derive analytic results for integrals of the form

Iκ,n(x∥,k⊥;α) =
∫ dk∥

2π
e−ik∥x∥kαWκ,n(k∥) (4.65)

where Wκ,n is the lensing window function (4.4). Please note, that the case α = 0 corresponds
to the inverse Fourier transformation, so one recovers the lensing kernel in real space. The
other terms that occur have α = 2,4. Thus, we can use k2 = k2

∥+ k2
⊥, k4 = k4

∥+2k2
∥k2

⊥+ k4
⊥,

to restrict ourselves to integrals of the form

Ĩκ,n(x∥,k⊥;α) =
∫ dk∥

2π
e−ik∥x∥kα

∥ Wκ,n(k∥). (4.66)

As a first step to analytically solve (4.66), we approximate the time evolution in the lensing
kernels (4.4) with polynomials. For the application in this thesis, we do this by fitting a
sixth-order polynomial centred around χs/2 to the n-th order growth factor, Dn using the least
square method and weights 1/Dn. The sixth order approximation leads to a relative error
of less than 10−4 for the first and second order. We refer to Fig. 5.2 to see the behavior of
linear and quadratic lensing functions we are interested in. The approach is fully general and
higher orders of the lensing kernel will simply have different coefficient in the polynomial
approximation - and possibly require higher order polynomials too.

Before starting with the derivations, we quickly review spherical Bessel functions whose
properties are a useful tool in the computations.

Spherical Bessel functions

The spherical Bessel functions can be defined as

jn(z) = (−1)nzn
(

1
z

d
dz

)n sin(z)
z

(4.67)
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and evaluating this expression gives the first five as
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(4.68)

Spherical Bessel function scale as 1/z in the high z limit, so they all suffer from slow decay.
For numerical accuracy, it is useful to utilize the low z approximation

jl(z)≃
zl

(2l +1)!!

(
1− z2

6+4l

)
(4.69)

for z ≪ 1.

CMB-lensing window in Fourier space

The approximated CMB-lensing function (4.4) consists of a polynomial that approximates
the growth factor and the lensing kernel. For each monomial in this approximation, we find
the following analytical expressions in Fourier space
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(4.70)
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where we substituted q = χsk∥/2 and y = 2x∥/χs. The CMB-lensing window function in
Fourier space (4.4) is then the weighted sum of those terms.

Integral identities for spherical Bessel functions

Having obtained an analytical expression for the lensing window function in Fourier space,
we now discuss the projection integral of the bispectrum (4.66). Using the the Bessel
function’s integral representation in terms of a Legendre polynomial Pl

jl(k∥r) =
(−i)l

2

∫ 1

−1
dµ Pl(µ)e

ik∥rµ (4.71)

allows us to compute the Fourier transforms of spherical Bessel functions with polynomial
coefficients for n ≥ 0 as follows
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(4.72)

This approach sheds a light on another approach we could have taken instead of using FFTs
to solve (4.64): Approximate the integrants with some base functions that can be integrated
analytically. However, since the integration routine spends most of the time in the outer x
integration of (4.63) and the FFTs are sufficiently accurate, this approach would only increase
the complexity.
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4.4.3 Analytic results for Gaussian selection functions

Using Gaussian selection functions leads to analytical solutions too. Integrals of the form

IG(x,k⊥;α ∈ {0,2,4},β = 0,γ = 0,δ = 0,ε = 0) =
∫

∞

−∞

dk∥
e−ik∥x∥

2π
WG(k∥)kα , (4.73)

can be integrated to
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(4.74)

where x̃ = x∥−χ and we used the Gaussian profile

WG(k∥) = exp[−(k∥l)2/2]exp[ik∥χ] (4.75)

which corresponds in real space to a bin with depth l. Those analytical solutions provide
a way to check the accuracy of the FFTs. Moreover, one could also include the Gaussian
FoG damping by substituting l̃2 = l2 +σ2

v . This illustrates an interesting point: Projections
with deep kernels (l ≫ σv) are robust against inaccurate non-linear RSD models and photo-z
errors as described in section 4.5 of [79]. We will explore this idea in chapter 5.

4.4.4 Symmetries of a survey with identical and thin bins

For moderately many bins, the bulk of the computations in a projected power spectrum
and bispectrum forecasting scenario is spent in the outer integral of (4.63). In the outer
integral, we combine the cached results of the one-dimensional integrals to the desired
bispectrum signal. In a setting with identical and thin bins that are merely centred around
different positions, many bispectra are in fact identical up to a constant (coming from the time
evolution). We have introduced the same idea for the power spectrum in (4.9) which reduced
the scaling for the number of different projected (cross-)power spectra from quadratic to
linear in the number of bins, n. For the galaxy bispectrum, we can reduce the scaling from n3

to 3 ·n · (n−1)/2+1.
To see this, let us label the n (identical) galaxy bins from 0 to n− 1 with increasing

co-moving distance and enumerate all combinations with different separations between the
bins. For the first bin, there are no restrictions and so each of the n possible positions needs to
be taken into account. Using symmetry, we only need to consider cases where the second bin
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it further away than the first; let us call its index i. The last bin has to have a relative position
to the first that is between −(n−1)+i and n−1 to make sure all bins are within the survey.
Lastly, in the case where i = 0 (first bin identical with the second), we can use symmetry and
only compute cases where the third bin is further away than the first two. Overall

n+
n−1

∑
i=1

(n+n−1− i) =
3
2

n(n−1)+1. (4.76)

4.5 Outlook: Signal compression

In this chapter, we have discussed among other things strategies to speed up projection
integrals. The separation of the projection integrals for the theoretical uncertainties of the
projected power spectrum and of the projection integrals for the projected bispectrum made
both problems tractable. However, even with the achieved improvements, the large number
of cross-bispectra configurations still brings several challenges with it:

• Each configuration requires a one-dimensional integral which makes it currently impos-
sible to compute the theory predictions more than a few times for different cosmological
parameters. This in turn prohibits error forecasts beyond Fisher forecasting and makes
it impossible to fit the theory to data without further approximations. Amplitude
parameters such as the bias parameters, fNL and σ8, are an exception since caching of
the full predictions could allow us to perform the mentioned tasks.

• The large theory vectors are not only challenging to compute, but also make solving
the linear systems - which are necessary for SN analyses, Fisher forecasts and fits -
very expensive for non-Gaussian covariances. In general, solving a linear system is
of complexity O(m3) = O(n9T 3) where m is the length of the theory vector that itself
scales cubic with the number of tomographic bins, n, and triangle configurations, T .
Note that in the case of Gaussian covariances, one can use spatial homogeneity and
group configurations with congruent triangles together in order to achieve a block-
diagonal covariance matrix that reduces the computational complexity to O(n9T ).

• It is not feasible to obtain non-Gaussian, empirical covariances for the projected
bispectrum because of the vast amount of N-body simulations required to constrain all
the independent parameters in the matrix.

One way to tackle these issues together is the use of signal compression techniques that reduce
the numerical complexity of the problem while still preserving most of the cosmological
information. The complexities arising from the large number of 3D bispectrum configurations
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are well known and work has been done to find good statistics that capture non-Gaussian
information while still being numerically tractable [55, 206–209].





Chapter 5

Projected two- and three-point statistics:
Forecasts and mitigation of non-linear
RSDs1

Summary

The combination of two- and three-point clustering statistics of galaxies and the underlying
matter distribution has the potential to alleviate degeneracies between cosmological parame-
ters and nuisance parameters and can lead to tighter constraints on parameters describing
the composition of the Universe and the dynamics of inflation. Here we investigate the
relation between biases in the estimated parameters and inaccurate modelling of non-linear
redshift-space distortions for the power spectrum and bispectrum of projected galaxy density
fields and lensing convergence. Non-linear redshift-space distortions are one of the leading
systematic uncertainties in galaxy clustering. Projections along the line-of-sight suppress
radial modes and thus allow a trade-off between biases due to non-linear redshift-space
distortions and statistical uncertainties. We investigate this bias-error trade-off for a CMASS-
like survey with a varying number of redshift bins. Improved modelling of the non-linear
redshift-space distortions allows the recovery of more radial information when controlling
for biases. Not modelling non-linear redshift-space distortions inflates error bars for almost
all parameters by 20%. The information loss for the amplitude of local non-Gaussianities is
smaller, since it is best constrained from large scales.

1This chapter is based on [2].
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Outline

This chapter is structured as follows: In section 5.1, we motivate the chapter. In section 5.2.1,
we summarise the relevant theory predictions from chapter 2. We then specify the imple-
mentation details of the ideas from chapter 4 in section 5.2.2. In section 5.3, we discuss the
inference techniques used in our analysis. The results are then presented in section 5.4 and
we conclude in section 5.5.

5.1 Introduction

Our understanding of the Universe has been shaped by observations of the CMB and LSS
over the last thirty years [20–22]. Future CMB-lensing experiments are expected to refine this
picture [37, 38]. Upcoming galaxy surveys that trace the matter distribution of the LSS such
as LSST [26], SPHEREx [27], Euclid [28] and DESI [29] will contribute complementary
information about the late time evolution of the Universe. Moreover, those surveys will
achieve exquisitely small statistical errors due to the vast volumes they cover and high number
density of tracers they resolve. Given their three-dimensional origin, upcoming LSS datasets
are predicted to eventually contain more information about cosmological parameters than the
CMB.

The early Universe’s density distribution was very close to a Gaussian random field [54]
which is fully described by the two-point correlation function or its Fourier transform, the
power spectrum. The subsequent non-linear evolution changed the matter distribution which
manifests itself in a modification of the power spectrum on small scales and non-vanishing
higher order correlation functions. The bispectrum, which is the Fourier transform of the
three-point-correlation function, is known to contain most of the non-linear information on
mildly non-linear scales. In addition, it allows us to break degeneracies between bias and
amplitude parameters [210, 200].

CMB-lensing captures the integrated effect of matter onto CMB photons along their path
from the surface of last scattering through the LSS to us. Accordingly, lensing spectra are
described by projected spectra of the LSS. But there are also very valid reasons to study
galaxy clustering statistics in projection. Firstly, tomographic surveys infer the redshift
bins of objects and not their precise positions. Moreover, CMB-lensing - galaxy-clustering
cross-correlations require a two-dimensional clustering analysis. Lastly, projections offer a
way to suppress non-linear RSDs.

RSDs are generated by galaxies’ peculiar velocities parallel to the LOS. The resulting
Doppler redshift is degenerate with the redshift from the Hubble flow which is used to
determine the radial positions. On large scales, the effect is well described perturbatively,
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but on smaller scales one has to resort to empirical models. Work has been done in this
direction [71, 82, 78, 211] but the fundamental issue of potentially biased estimates caused
by inaccurate modelling remains.

In this chapter, we are quantifying the parameter shifts due to inaccurate RSD modelling.
In particular, we study how those biases depend on the chosen projection depth and RSD
model used. Given the exquisitely small statistical errors of upcoming surveys, it is worth-
while to make estimators more robust in order to confidently leverage the small statistical
uncertainties. [212] recently investigated the parameter shifts arising from an incomplete or
incorrect account of bias parameters and selection effects.

In addition, we forecast error bars to investigate the relation between statistical and
systematic uncertainties. The constraining power of the galaxy bispectrum for future galaxy
surveys has been studied in [213, 112, 212] and power spectrum forecasts for CMB-lensing -
galaxy-clustering cross-correlations were performed in [214].

While we employ the flat sky approximation here, there is a growing literature that
studies angular (cross-)correlation functions [215–225]. The step from flat to curved sky is
conceptually straightforward in our framework using the FFTlog-algorithm [226], but we
leave this for future work.

5.2 Theory predictions

5.2.1 Statistics in 3D

Putting all the results from chapter 2 together, we can write down all matter-galaxy cross-
power spectra and cross-bispectra. We are interested in those cross-correlations, since the
projection of the matter fields (with the appropriate kernel) yields the theory prediction for
the lensing convergence and projections of the galaxy field yield the predictions for the
projected galaxy spectra. Since the matter fields (and the lensing convergence) do not suffer
from RSDs, we use the F2 kernels (2.98) for their perturbation expansion. The galaxy fields
in contrast, are affected by biasing, RSDs and scale-dependent bias from PNGs and thus the
Zi kernels (2.166) are needed in the expansion. The local, equilateral and orthogonal PNG
templates are discussed in section 2.2.4 and the Finger-of-God damping model is introduced
in section 2.3.3. The leading order power spectra are given by

Pgg(k,µ) = DP
FoG(k∥)

[
Z1(k)2P(k)+

1
n̄

]
, (5.1)

Pgm(k,µ) =
√

DP
FoG(k∥)Z1(k)P(k) , (5.2)
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Pmm(k) = P(k) , (5.3)

where µ is the cosine of the angle of the wave vector with the LOS. The bispectra are given
by

Bggg =DB
FoG(k1,∥,k2,∥,k3,∥)×

[
2Z1(k1)Z1(k1)Z2(k1,k2)P(k1)P(k2)+2perm.

+Z1(k1)Z1(k2)Z1(k3)Bprim(k1,k2,k3)+
b1

n̄
(Z1(k1)P(k1)+2perm.)+

1
n̄2

]
,

(5.4)

Bggm =DB
FoG(k1,∥,k2,∥)

[
2Z1(k1)Z2(k1,k3)P(k1)P(k3)

+2Z1(k2)Z2(k2,k3)P(k2)P(k3)+2Z1(k1)Z1(k2)F2(k1,k2)P(k1)P(k2)

+Z1(k1)Z1(k2)Bprim(k1,k2,k3)+
1
n̄

(
b1 +

bΨ(k3)

M(k3)

)
P(k3)

]
,

(5.5)

Bgmm = DB
FoG(k1,∥)

[
2F2(k1,k2)Z1(k1)P(k1)P(k2)+2F2Z1(k1)P(k1)P(k3)

+2Z2P(k2)P(k3)+Z1(k1)Bprim(k1,k2,k3)

]
,

(5.6)

Bmmm =

[
2F2P(k1)P(k2)+2perm.

]
+Bprim(k1,k2,k3). (5.7)

For the sake of compactness, we omitted the arguments of the bispectra. The matter bispec-
trum depends only on the magnitude of the three wave vectors. RSDs break the statistical
isotropy and introduce an explicit dependence on the projection of the wave vector of the
galaxy fields on the LOS.

5.2.2 Projected statistics and survey specifications

In chapter 4, we derived the expressions for the projected power spectrum (4.8) and projected
bispectrum (4.63) in the flat sky approximation. Both integrals allow us to compute the
projected spectra from the 3D theory predictions. The projection kernel for the lensing
convergence is determined from GR (4.4) and it remains to specify the tomographic galaxy
bins that constitute the galaxy survey.

In this work, we consider a setting with n identical tomographic galaxy bins with projec-
tion depths, l, that are centred around

χi = χc +
[
i− (n+1)/2

]
l 1 ≤ i ≤ n (5.8)
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Fig. 5.1 We use a galaxy survey of fixed length d consisting of n identical tomographic bins
along the LOS. The centre of each bin is given by (5.8). Beside the Gaussian windows that
are displayed here, we also use Top-Hat windows since they cover the survey volume evenly.
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Fig. 5.2 Overview of the windows used in this chapter. The CMB-lensing kernel (blue) peaks
halfway between the observer and the surface of last scattering at χs. The orange curve
shows the lensing kernel multiplied with the growth factor. We show in green the sum of
three galaxy bins with width and distance between the their centres of 200 h−1Mpc centred
around z=0.57. The combined galaxy window shown here is constructed to resemble the
CMASS galaxy sample.
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where χc is the co-moving distance to the centre of the survey. Since we have a CMASS-like
survey in mind, we choose χc = χ(z = 0.57). The full survey specifications are summarised
in Table 5.1b. For simplicity, we ignore the time evolution within the tomographic (galaxy)
bins. Fig. 5.1 gives an overview of the galaxy survey in mind. In addition to galaxy clustering,
we consider CMB-lensing and illustrate the overall setting along the LOS in Fig. 5.2.

While we do not work with photometric redshift errors in this work, they can be directly
included in our formalism as discussed in section 4.5 of [79]. For instance, assuming a
Gaussian error distribution of the photometric redshift errors, one can capture these errors
by changing the velocity dispersion as σ2 = σ2

v +σ2
z . Here σ2

z is the uncertainty in the
co-moving position of the tracers. Other functional forms for the photo-z errors could also
be included but this would introduce similar complications as discussed for non-Gaussian
selection functions in chapter 4.

For our forecasts and bias estimations, we vary the number of tomographic bins such that
the depth of each bin scales as l = d/n, where d is the survey depth along the LOS. We use a
k-space binning of k f (PS), 4k f (BS) and take three base points per fundamental frequency to
obtain the averaged signal over k-bins. The power spectrum and bispectrum covariances are
given in section 4.2. We use the Planck best-fit cosmology [20] as our fiducial cosmology:
ΩB = 0.0494,ΩM = 0.3144,h = 0.6732,σ8(z = 0.57) = 0.6029,ns = 0.966.

5.3 Inference methods

In this section, we first review Fisher forecasting and then outline our approach for computing
parameter shifts due to inaccurate theoretical predictions.

5.3.1 Fisher forecasting

The Cramer-Rao bound provides a lower bound on the statistical error for any unbiased
estimator in terms of the inverse of the Fisher information (matrix)

Fi j = ⟨(logL ),i j⟩, (5.9)

where i, j label the parameters of interest, L is the likelihood function and all quantities are
evaluated at the maximum-likelihood point. Assuming a Gaussian likelihood for the power
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spectrum and bispectrum, the Fisher information can be calculated as [227]

Fi j =
1
2

Tr
[
C−1C, jC−1C,i +C−1(µ,iµ

T
, j +µ, jµ

T
,i )
]

≃ µ
T
,i C−1

µ, j.
(5.10)

The theory vector µ contains the spectra of interest and C is the covariance. The derivatives
in 3D can be computed via finite differences [228]. Using the product rule and (4.8, 4.63)
allows us to compute the derivatives in 2D. The (un)marginalised error forecasts are then
given by

σ
2
i =

1/Fii unmarginalised(
F−1)

ii marginalised.
(5.11)

5.3.2 Parameter estimation

In a scenario where we are interested in the parameter shifts due to inaccurate (theoretical)
modelling, we fit some theoretical model µθ to the underlying ground truth µtrue. Assuming a
Gaussian distribution, this is done by choosing the parameters θ that maximise the following
log-likelihood,

−χ
2 =−1

2
(µtrue −µθ )

TC−1(µtrue −µθ )+ const.. (5.12)

Since we investigate small biases, we can linearise the theoretical model around the best fit
parameters θ∗ as

−χ
2 =−1

2
vTC−1v, (5.13)

where

v = µtrue −µθ∗ − (θ∗−θ) · ∂ µθ

∂θ

∣∣∣∣
θ∗
. (5.14)

Since we have access to the ground truth parameters, we use those as best fit parameters. The
likelihood of the linearised model has an explicit minimum

θ = θ∗+F−1b, (5.15)

where F is the Fisher information and b is given by

b = (µtrue −µθ∗)C−1 ∂ µθ

∂θ

∣∣∣∣
θ∗
, (5.16)

where for each component of b, one partial derivative is taken. (5.15) allows us to compute
the biases from using an inaccurate model.
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Fig. 5.3 Relation between kmax and maximal relative bias for a varying number of redshift
bins for a CMASS-like survey (see Table 5.1a). The points with the black border are closest
to 0.2 for each configuration and thus used as cut-offs in this chapter. Their numerical values
can be found in Table 5.1b. The 3D curve was determined from a cubic survey of side length
l = (A ·d)1/3 with the same redshift and shot-noise as the 2D setting.

5.4 Results

In this section, we first establish a consistent analysis cut-off, k2D
max, as a function of the

number of redshift bins that allows us to compare 2D surveys with different projection depths
without the need of theoretical uncertainties. We then use this cut-off to analyse the error-bias
trade off as a function of the FoG model (2.118, 2.122). We end the section with more
optimistic forecasts.

Throughout this section, we use the finding that the cross-covariances between power
spectra and bispectra are negligible at large scales [229, 230, 213]. When not stated otherwise,
we work with a CMASS-like survey as described in Fig. 5.2 and Table 5.1a.

5.4.1 Choosing the cut-off scale for projected spectra

As explained in section 4.3.2, it is unfeasible to directly implement theoretical uncertainties
for the projected bispectrum. Thus, we need another approach to control for theoretical
uncertainties in the matter predictions. In this work, we control these systematics by choosing
a cut-off scale, kmax, that ensures that all parameter shifts due to inaccurate matter modelling
are below 20% of the corresponding error bars. We estimate the parameter shifts by fitting a
linear matter power spectrum to the HALOFIT [4] predictions as described in section 5.3.2;
both models are without RSDs. Fig. 5.3 illustrates the monotonic relation between cut-off
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Table 5.1 (a): Characterisation of the CMASS-like survey we use in this chapter. The velocity
dispersion parameters were obtained from fits against N-body simulations. (b): Cut-offs for
different projection depths that ensure all relative biases in the matter predictions are below
20% for a CMASS-like survey described on the right side. The 3D cut-off comes from a
cubic survey with the same volume. The values correspond to the black points in Fig. 5.3.

(a)

parameter value
depth 590 h−1Mpc
Area 2345 Mpc2 h−2

zeff 0.57
n̄ 2 ·10−4 Mpc3 h−3

b1 2.31
bs2 −4

7(b1 −1)
b2 0.77
σP 4 h−1Mpc
σB 5.5 h−1Mpc

(b)

Type kmax [ h−1Mpc ]
3D∗ 0.093
1 bin 0.10
2 bins 0.099
4 bins 0.094
6 bins 0.091
8 bins 0.088
10 bins 0.083
12 bins 0.075
16 bins 0.054
lensing 0.14

scale and maximal relative biases for different projection depths. The cut-off is chosen to
be the value where the maximal relative bias in the cosmological parameters is closest to
20%. Those values are marked in black in the figure and the numerical values are reported in
Table 5.1b. We want to point out that the precise values of those cut-offs are specific for the
survey specified in Table 5.1a.

Since the amount of imprecise, small-scale information that gets sourced to larger scales
increases with decreasing projection depth, we see that the cut-off decreases as the number of
tomographic bins increases. The effective cut-off in 3D, where no sourcing happens, lies in
between those extremes because of the different k dependence of the 2D and 3D covariance
functions. The lensing cut-off is significantly larger for two reasons. Firstly, the kernel is
very narrow in Fourier space and secondly, it peaks at early times, where non-linearities are
small.

In Fig. 5.4 we compare the forecasted error bars from the galaxy power spectrum and
bispectrum using the chosen cut-offs in two and three dimensions. As the number of
tomographic bins increases, one gains information by resolving more of the modes parallel to
the LOS from cross-correlations between the tomographic bins but loses information at the
same time from the overall decreasing cut-off scale. For both the power spectrum (dashed
line) and the bispectrum (dotted), we see an increase in information until ∼ 10 bins when
the latter effects overtake and the information decreases again. This approach allows us to
recover more than 80% of bias/amplitude parameters and more than 90% of cosmological
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Fig. 5.4 The ratio of unmarginalised error bars in two and three dimensions is shown for
the galaxy power spectrum (dashed), galaxy bispectrum (dotted) and combined (solid lines).
With an increasing number of tomographic bins, the 2D error bars first decrease due to the
increase in resolved radial information. Around 10 bins, the decrease in the cut-off k2D

max
takes over and the error increases again.

parameters in a power spectrum analysis. In a pure bispectrum analysis, two thirds of the
Fisher information can be recovered compared to a 3D analysis.

5.4.2 Signal-to-noise analysis

There are three effects that determine the signal-to-noise (SN) scaling with respect to the
number of tomographic bins: 1) As one increases the number of redshift bins, the projection
depth decreases and more radial signal is resolved. 2) If at least one galaxy field is involved,
k2D

max decreases with smaller projection depth, which in turn decreases the SN too. 3) The
galaxy selection function changes when we vary the number of Gaussian profiles. Whereas
the first two effects are relevant on all scales, the latter effect’s size decreases with the
number redshift bins, and is negligible from 4 bins onward. This justifies the use of Gaussian
bins. Fig. 5.5 displays the SN for all individual power spectra and bispectra in our fiducial
cosmology including RSDs. Due to our conservative cut-offs, the galaxy clustering and
lensing auto-power spectra have the most SN. The galaxy bispectrum’s SN is strongly
increasing with the number of bins and nearly reaches the lensing power spectrum SN at its
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Fig. 5.5 Signal-to-noise scaling for different power spectra and bispectra as a function of
the number of tomographic bins. The dependence has three components: 1) With more
tomographic bins, more radial information is resolved. 2) The cut-off, k2D

max, decreases with
the number of tomographic bins which in turn decreases the SN. 3) The galaxy selection
function is changing when varying the number of Gaussian profiles. This effect is negligible
from four bins onward.
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Fig. 5.6 Marginalised 1σ error bars on cosmological parameters as a function of the projection
depth for a selection of cross-spectra are displayed in solid lines. The Fisher forecasts assume
FoG Model 2, but are actually independent of the chosen FoG model. The corresponding
dashed lines represent five times the bias due to inaccurate theoretical modelling for the FoG
model that misspecifies the velocity dispersion by 50%. All forecasted errors are minimal at
∼ 60 h−1Mpc .

maximum at 10 bins. The cross-spectra tend to be much smaller than those auto-correlations
since the overlap between the galaxy survey and the lensing kernel is small (see Fig. 5.2).
The lensing bispectrum SN shows small fluctuations since the binning of its (constant) cut-off
is changing to ensure it is consistent with the changing galaxy clustering binning.

In section 4.2.2, we derived analytical results for the SN scaling of most projected (cross-)
power spectra using their Gaussian covariance. The scaling (4.30) is independent of the
chosen RSD model. For the bispectrum, no analytical results exist but their SN scalings are
still approximately independent of the RSD model.

5.4.3 Error - bias tradeoff

In this subsection, we investigate the error-bias trade-off in two scenarios. First, we assume
a ΛCDM cosmology and forecast the parameter uncertainties and shifts due to inaccurate
FoG modelling. Next, we perform a similar analysis for the bias and PNG parameters for
a fixed cosmology. In both cases, we assume a ground-truth Gaussian FoG model with
velocity dispersions specified in Table 5.1a. We then study inaccurate models by changing
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the velocity dispersion parameters by −100% (i.e. no FoG modelling), −50%,−10%,10%
and 50%. Since we find that the biases are approximately independent of the sign of the shift
in the velocity dispersions, we restrict ourselves to the first three cases and refer to them as
model 1-3. The statistical uncertainties that we report together with biases are always the
ones obtained from the inaccurate FoG model. In practice however, the uncertainties are
nearly independent of the chosen FoG model.

Moreover, we only show the results of the following five spectra combinations that we
consider most interesting: Galaxy power spectrum (δgδg), all power spectra combined (PS),
galaxy bispectrum (δgδgδg), galaxy power spectrum and bispectrum combined (gal) and all
power spectra plus bispectra combined (total).

Cosmological forecasts

We fit the three above-mentioned FoG models to the fiducial model and report the error
bars and relative biases for all parameters. Fig. 5.6 shows the scaling of the relative biases
and error bars for the model where the velocity dispersion is 50% smaller than its fiducial
value (Model 2). The five combinations can roughly be grouped into three sets. The galaxy
bispectrum has the least constraining power of the considered spectra and the derived error
bars decrease very strongly with the number of tomographic bins until they reach a minimum
around 10 bins (projection depth l ≃ 60 h−1Mpc ). For smaller projection depths, the
error bars increase again due to the decreasing k2D

max. The galaxy power spectrum and the
combination of galaxy power spectrum and bispectrum scales more weakly with the number
of resolved bins and have their minimum around 10 bins too. Finally, adding information
from galaxy lensing to either the galaxy power spectrum alone or both power spectrum and
bispectrum allows us to lower error bars once more. This is partly because CMB-lensing
allows us to break the b1-σ8 degeneracy. It does not help to constrain bs2 better, as the
trace-free part of the tidal tensor is rather uncorrelated to the trace of the tidal tensor that
corresponds to the amplitude/bias parameters, which CMB-lensing can constrain well. The
relative biases remain close to zero for all parameters, with the exception of σ8 and b1, until
a projection depth of l ∼ 100 h−1Mpc , when they start growing quickly. Changing the FoG
model, has a marginal impact on the error bars but shifts the curves of the relative biases left
(right) if the FoG model becomes more (less) accurate.

In Table 5.2, we summarise our findings for the optimal error bars (left side) together
with the relative biases (right side) conditioned on being smaller than 20%. We observe that
the error bar difference across the spectra is significantly larger than the difference within the
spectra across FoG models.
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Table 5.2 Optimal forecasted relative errors for three FoG models considered. For each
spectra, we give the number of tomographic bins such that the maximal relative bias is below
20% and the statistical uncertainties are minimal. On the left side, we report the marginalised
relative 1σ uncertainties. On the right side, we show the corresponding relative biases.

relative 1σ uncertainties [%] relative biases [%]
δgδg PS δgδgδg gal total δgδg PS δgδgδg gal total

Model 1: σv = 0 ·σv, ground truth

bins 4 4 6 4 4
ΩM 25 16 60 23 15 1.9 2.2 -5.4 2.3 2.6
ΩB 120 70 360 110 68 1.4 1.8 -5 1.5 2.0
h 100 64 330 99 62 1.7 1.7 -5.2 1.9 2.0
ns 65 40 200 61 39 -1.5 -1.9 6.2 -1.7 -2.2
σ8 30 2.1 65 27 2.0 10 -1.4 18 10 -1.6
b1 29 1.2 74 26 1.2 -10 10 -18 -10 10
b2 210 110 24 -1.9 -9.1 6.7
bs2 320 180 170 8.1 -2.9 -0.8

Model 2: σv = 0.5 ·σv, ground truth

bins 4 6 6 4 6
ΩM 25 14 61 23 13 1.5 10 -3.8 1.7 11
ΩB 120 66 360 110 63 1.0 7.4 -3.6 1.1 8.0
h 100 60 340 99 57 1.3 7.5 -3.7 1.4 8.2
ns 65 37 210 61 35 -1.1 -8.5 4.5 -1.3 -9.2
σ8 30 1.9 70 27 1.8 7.5 -6.2 13 7.7 -6.5
b1 29 1.2 80 26 1.2 -7.5 16 -13 -7.7 16
b2 210 110 18 -1.3 -6.8 15
bs2 330 180 130 5.9 -2.2 -2.4

Model 3: σv = 0.9 ·σv, ground truth

bins 8 10 10∗ 8 10
ΩM 22 12 50 19 11 -2.6 13 -5.1 -2.5 13
ΩB 110 60 330 97 58 -3 8.7 -4.6 -2.9 9.0
h 93 54 310 85 52 -3 8.5 -4.9 -2.9 8.6
ns 58 33 180 52 31 3.5 -9.8 5.7 3.4 -9.9
σ8 15 1.8 41 14 1.7 13 -5.4 14 15 -4.9
b1 12 1.2 44 11 1.2 -14 9.3 -13 -15 9.6
b2 200 48 14 -2.1 -12 12
bs2 240 120 120 5.0 -1.4 0.5
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Fig. 5.7 The 1σ contour plots for four different spectra using FoG Model 2 (velocity disper-
sion underestimated by 50%). The bins are chosen to minimise the errors controlling for
systematic uncertainties. The optimal number of bins are reported in Table 5.2.

The decrease in Fisher information for projection depths ≤ 60 h−1Mpc implies that even
with a velocity dispersion that is off by 10%, one is able to fully recover the available
information in two dimensions. In contrast, a misspecification of 50% leads to a ∼ 10%
increase in the error for cosmological parameters and more for bias parameters. The worst
case scenario of not modelling the FoG effect at all, inflates the error bars by ∼ 20%.

The relative biases tend to be strongest in parameters that affect the amplitude strongly
and tend to be positive, since the models considered underestimate the FoG damping. The
2D contour plots of the best case Fisher information matrix of Model 2 (see Table 5.2) is
displayed in Fig. 5.7. One sees that all spectra have approximately the same covariance
structure and that CMB-lensing helps to break the σ8-b1 degeneracy. The positive correlation
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Fig. 5.8 The marginalised 1σ error bars on PNGs as a function of the projection depth for
a selection of cross-spectra are displayed in solid lines. The Fisher forecasts assume FoG
Model 2, but are almost independent of the chosen FoG model. The corresponding dashed
lines represent five times the bias due to inaccurate theoretical modelling for the FoG model
that misspecifies the velocity dispersion by 50%. Each subplot corresponds to a different
forecasts and we marginalised over the bias parameters.

between b1 and b2 is explained as follows: The three bias/amplitude parameters σ8, b1 and
b2 are all pairwise anticorrelated. However, the positive definiteness of the covariance matrix
pushes the weakest among them, b2-b1, to a positive value in the joint analysis.

PNG forecasts

Assuming a known cosmology, we now forecast bias and fNL parameters for the local,
equilateral and orthogonal shape. We perform a separate forecast for each template and FoG
model and illustrate the dependence on the number of tomographic bins in Fig. 5.8.

The scale-dependent bias in the galaxy power spectrum yields the best constraints for
the local shape. Since the survey is roughly four times as wide as deep, the constraints
from the power spectrum have no dependency on the projection depth. The error from the
bispectrum analysis, in contrast, shows a strong dependence on the projection depths. For
few bins, the error is very large but decreases quickly with decreasing projection depths. As
with the cosmological parameters, the error bars become worse for more than 10 bins due to
the decreasing cut-off. Since the equilateral shape does not lead to scale-dependent bias, it
can only be constrained from the bispectrum and the power spectra only contribute towards
reducing the uncertainty in the bias parameters. The constraints for the orthogonal shape
from the power spectrum and bispectrum are of similar order, since the scale-dependent bias
only scales as 1/k.

The relative biases are close to zero for large projection depths and only start playing a
role around 100 h−1Mpc . We report the optimal forecasts with relative biases below 20% in
Table 5.3. We observe that the error bar differences across spectra are larger than across FoG
models given a spectra. For the local shape, the latter differences are basically zero, since
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only the largest scales are relevant. The constraints of the equilateral and orthogonal shape in
contrast improve by ∼ 10% when modelling the FoG effect precisely.

Table 5.3 Optimal forecasted errors for a bias- fNL analysis with fixed cosmological parame-
ters. We present separate forecasts for the three FoG models considered. For each spectra,
we give the number of tomographic bins such that the maximal relative bias is below 20%
and the statistical uncertainties are minimal. On the left side, we report the marginalised 1σ

uncertainties. On the right side, we show the corresponding relative biases.

1σ uncertainties relative biases [%]

δgδg PS δgδgδg gal total δgδg PS δgδgδg gal total

Model 1: σv = 0 ·σv, ground truth

bins 2 2 6 2 2
f local
NL 60 60 120 56 56 -1.4 -1.4 -1.1 -1.7 -1.7

b1 0.020 0.020 0.29 0.020 0.020 16 16 - 0.47 17 17
b2 1.1 0.18 0.18 11 7.2 7.2
bs2 1.3 1.3 1.3 0.81 -0.79 -0.79
bins 6 2 2
f equi
NL 2900 2300 2200 -18 -0.51 -0.47

b1 0.51 0.016 0.016 -15 20 20
b2 2.2 0.36 0.35 20 3.9 4.0
bs2 1.6 1.4 1.4 9.1 -0.92 -0.90
bins 6 6 10 4 4
f ortho
NL 2200 2200 920 900 880 11 11 12 4.5 4.4

b1 0.16 0.16 0.42 0.068 0.067 19 19 17 15 15
b2 1.4 0.21 0.21 -4.4 8.9 9.0
bs2 1.4 1.1 1.1 3.7 -0.88 -0.95
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1σ uncertainties relative biases [%]

δgδg PS δgδgδg gal total δgδg PS δgδgδg gal total

Model 2: σv = 0.5 ·σv, ground truth

bins 2 2 8 2 2
f local
NL 60 60 110 56 56 -1.1 -1.1 -1.6 -1.3 -1.3

b1 0.020 0.020 0.30 0.020 0.020 12 12 0.064 12 12
b2 1.1 0.18 0.18 11 5.4 5.4
bs2 1.3 1.3 1.3 4.1 -0.60 -0.59
bins 6 2 2
f equi
NL 2900 2300 2200 -13 -0.38 -0.35

b1 0.51 0.016 0.016 -11 15 15
b2 2.2 0.36 0.35 15 2.9 3.0
bs2 1.6 1.4 1.4 6.8 -0.69 -0.67
bins 6 6 10 4 4
f ortho
NL 2200 2200 930 900 890 8.3 8.3 8.6 3.3 3.3

b1 0.16 0.16 0.42 0.068 0.067 15 15 13 11 11
b2 1.4 0.21 0.21 -3.1 6.6 6.7
bs2 1.4 1.1 1.1 2.8 -0.66 -0.71

Model 3: σv = 0.9 ·σv, ground truth

bins 6 6 10 6 6
f local
NL 61 61 120 54 54 -3.2 -3.2 -4.1 -3.8 -3.8

b1 0.017 0.017 0.31 0.016 0.016 17 17 -0.035 18 18
b2 1.1 0.12 0.12 2.9 8.0 8.0
bs2 1.3 0.88 0.87 1.1 -1.1 -1.1
bins 10 4 4
f equi
NL 2700 1800 1800 -7.3 -0.38 -0.36

b1 0.50 0.013 0.013 -5.9 10 10
b2 2.1 0.28 0.28 7.5 2.1 2.1
bs2 1.5 1.0 1.0 3.9 -0.76 -0.75
bins 10 10 10 10 10
f ortho
NL 2200 2200 910 790 780 7.4 7.4 1.1 4.2 4.2

b1 0.16 0.16 0.37 0.059 0.058 11 11 0.52 14 14
b2 1.3 0.19 0.18 1.4 4.3 4.4
bs2 1.3 1.2 1.2 0.69 3.5 3.5
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Fig. 5.9 1σ contour plots for an fNL-bias forecast combining all power spectra and bispectra
and using FoG Model 2. The bins are chosen to minimise the errors controlling for systematic
uncertainties. Each colour corresponds to an independent forecast.

We show the correlation between bias and fNL parameters in Fig. 5.9. One sees that the
weaker scale dependence of the scale-dependent bias of the orthogonal PNGs, compared
to local PNGs, leads to a considerable correlation between b1 and fNL. For the equilateral
PNGs, the bias is not scale dependent on large scales and cannot be disentangled from the
ordinary linear bias. Thus, we do not use it to constrain equilateral PNGs which is why the
correlation between fNL and b1 is low.

5.4.4 Optimistic forecasts

We believe an optimistic but still realistic scenario is given by an upper cut-off of k2D
max =

0.15 hMpc−1and 6 redshift bins. This is in line with the choice of [112, 213]. [212] were
able to work with larger cut-offs for the power spectrum by using separate values for the
power spectrum and bispectrum and computing parameter shifts (5.15) relative to the next
perturbative order instead of the fully non-linear HALOFIT prediction. In Table 5.4, we
summarise the error bars for the optimistic scenario in our fiducial cosmology with RSDs.
Since the cut-off for CMB-lensing has previously been close to 0.15 hMpc−1, there are no
significant improvements there. In contrast, the error bars from the galaxy power spectrum
shrink by a factor of 2 and for the bispectrum by a factor of 3 compared to the best case
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Table 5.4 Forecasts for the relative 1σ uncertainties of cosmological parameters in a CMASS-
like survey with kmax = 0.15 h−1Mpc and 6 tomographic bins without (left side) and with
(right) CMB prior.

relative 1σ uncertainties relative 1σ uncertainties
without CMB prior [%] with CMB prior [%]

δgδg PS δgδgδg gal total δgδg PS δgδgδg gal total
ΩM 13 11 22 10 9.1 2.1 1.9 2.5 1.9 1.8
ΩB 50 43 91 41 37 1.1 1.0 1.3 1.0 0.95
h 47 40 85 38 34 0.76 0.70 0.90 0.70 0.66
ns 31 26 57 24 22 0.42 0.40 0.46 0.41 0.39
σ8 15 1.3 31 11 1.2 0.88 0.57 0.88 0.88 0.57
b1 15 0.8 36 11 0.8 0.96 0.68 4.7 0.96 0.67
b2 80 51 10 63 10 9.9
bs2 110 56 51 75 50 50

forecasts with the conservative cut-off from Table 5.1b. The combined error bars from an
analysis with all spectra shrink by 30%. Adding a CMB prior leads to dramatic improvement
for all parameters that can be constrained from CMB observations. This is expected because
only the next generation galaxy surveys will contain a comparable information content to
current CMB surveys. The CMB prior is based on Appendix A of [228]. Let us stress that
CMASS is a galaxy sample from a moderate-sized survey volume and thus constraints from
this sample should not be expected to be competitive with Planck constraints. Upcoming
surveys will map regions that are 50-100 times larger than CMASS. This is expected to
translate into seven- to ten-times tighter parameter constraints.

Table 5.5 contains our PNG forecasts in the optimistic scenario. Since PNGs are best
determined on large scales, adding small scale information decreases the constraints only by
∼ 20%. Since the large volume of future surveys translates into a smaller k f , constraints on
local and orthogonal type non-Gaussianity are expected to improve by more than the volume
related factor of seven to ten mentioned above. This is due to the scale-dependent bias, which
dominates on large scales and leads to additional survey volume dependence.

5.4.5 A simple signal compression approach

Following the ideas of section 4.5, we implement a simple signal compression method. Since
most bispectrum configurations correlate fields across different galaxy-bins, we reduce the
number of galaxy cross-spectra by introducing a maximal correlation length for all spectra
that contain two or more galaxy fields (⟨δgδg⟩, ⟨δgδgκ⟩ and ⟨δgδgδg⟩). I.e. we only include
configurations in the analysis where the maximal distance between bins is below some
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Table 5.5 Forecasts for the 1σ uncertainties of fNL and bias parameters in a CMASS-like
survey with kmax = 0.15 h−1Mpc and 6 tomographic bins.

δgδg PS δgδgδg gal total
f local
NL 57 57 76 45 44

b1 0.012 0.012 0.11 0.011 0.011
b2 0.50 0.075 0.075
bs2 0.56 0.38 0.38
f equi
NL 2300 1200 1200

b1 0.20 0.0088 0.0088
b2 1.1 0.13 0.13
bs2 0.68 0.40 0.40
f ortho
NL 1750 1750 680 630 620

b1 0.13 0.13 0.12 0.049 0.048
b2 0.52 0.15 0.15
bs2 0.56 0.39 0.39

maximal correlation length. Restricting the maximal correlation length reduces the power
spectrum scaling (in the number of bins, n) from n2 to n ·mcl and for the bispectrum n3 to
n ·mcl2 where, mcl is the maximum correlation length in units of the projection depth.

Physically speaking, this approach is sensible, since the correlation between bins is
decreasing with increasing distance while the noise terms become constant. This is because
the covariance of two cross-spectra contains components proportional to auto-spectra (cf.
4.24, 4.43). Hence, those configurations carry little SN and Fisher information.

The maximal correlation length needed to recover at least 99% of the Fisher information
of the full analysis is summarised in Table 5.6. We find that the maximum correlation
length is independent of the FoG model used. The bias-error scaling as a function of the
maximal correlation length for the PS and total spectra combinations is shown in Fig. 5.10.
The same scalings of the δgδg and gal spectra combinations are reported in Fig. 5.11. In
both figures, we show the forecasted errors in bold lines and five times the relative biases
in dashed lines. The rightmost values in each subplot correspond to the full analysis and
as one lowers the maximal correlation length, one observes that the errors and biases first
remain constant indicating the intuition that distant cross-bin spectra do not carry much
Fisher information. At around a maximal correlation length of ∼200 h−1Mpc , the errors
start increasing. The relative biases decrease too, which is partly driven by the increasing
statistical uncertainties. We find that generally, this signal compression approach does not
allow us to improve the bias-error trade-offs previously discussed in section 5.4.3. Restricting
the maximal correlation length by means of this 99% threshold speeds up the computations
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Table 5.6 The maximal correlation lengths needed to recover 99% of the Fisher information
for all cosmological parameters compared to the full analysis. The results are independent of
the FoG model. All entries are in h−1Mpc .

δgδg PS δgδgδg gal total
n=2 590 590 590 590 590
n=4 295 295 295 295 295
n=6 295 295 295 295 295
n=8 221 221 221 221 221
n=10 177 177 177 177 177
n=12 147 147 196 196 196
n=16 110 110 184 184 184

for 16 bins by a factor of more than 10. For a smaller total number of bins, the speed-ups are
smaller.

5.5 Conclusion

In this chapter, we quantified the statistical power of two- and three-point correlators of pro-
jected density fields in constraining cosmological parameters and primordial non-Gaussianity.
We investigated the trade-off between statistical errors and biases induced by imperfect
modelling of non-linear redshift-space distortions, in particular the Finger-of-God effect. We
developed an efficient implementation of the projection integrals required to predict projected
power spectra and bispectra.

We controlled theoretical uncertainties by computing cut-offs that depend on the projec-
tion depth. Those cut-offs are chosen such that the maximal relative biases due to inaccuracies
in the matter predictions are less than 20%. This approach allows us to recover more than
80% of the information in bias/amplitude parameters and more than 90% of the information
in cosmological parameters in a power spectrum analysis. In a bispectrum analysis, this
approach allows us to recover 70% of the 3D Fisher information.

Next, we studied the relation between FoG modelling and relative biases in the forecasted
parameters for a CMASS-like survey. We found that the resulting biases are independent of
whether one over- or underestimates the FoG damping. We found that not modelling the FoG
effect inflates error bars by 20% when controlling for biases. A model that underestimates
the velocity dispersion by 50% leads to an increase of 10% of the errors and a model whose
velocity dispersion differs by 10% is able to recover the full information while maintaining
all relative biases smaller than 20%.
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Fig. 5.10 Error bars (solid lines) and fives times the biases (dashed lines) for joint clustering-
lensing spectra as a function of the maximal correlation length using FoG Model 2. The
rightmost values in each subplot correspond to the full analysis and the leftmost values to
an analysis with only the auto-spectra. The intersection of dashed and solid lines marks
the point where the relative bias becomes 20%. The top two rows correspond to a power
spectrum analysis and the bottom two rows show an analysis with all power spectra and
bispectra. Each subplot shows the scaling for a different parameter.
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Fig. 5.11 Similar as Fig. 5.10 but for the δgδg (top two rows) and gal combination (bottom
two rows) of spectra.
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We performed a similar analysis for PNGs of the local, equilateral and orthogonal shape.
Here, the necessity to model the FoG effect depends crucially on whether or not one best
constrains the PNGs from the scale-dependent bias or from the template. Whereas in the
former case, one can recover most of the information without modelling non-linear RSDs,
one can improve the error bars by 10% and 20% for the template dominated orthogonal and
equilateral shape respectively with an accurate FoG model.

In agreement with [213] we find that the power spectrum in redshift-space does not suffer
as severely from the bias-amplitude degeneracies as in real-space. Accordingly, the potential
of the bispectrum to further reduce those degeneracies is diminished.

In a more optimistic scenario where one can control systematic uncertainties up to kmax =

0.15 h−1Mpc , one can expect further improvements of more than 100% for spectra that
contain galaxy clustering information. This translates into 30% improvements of combined
(PS, total) error bars. Let us stress that future surveys would further improve constraints
by 700-1000% due to the much larger volumes enabling LSS constraints as tight as those
provided by Planck. With these surveys, the projected power spectrum and bispectrum
provide a conservative yet powerful analysis toolkit.

Lastly, we studied the impact of dropping cross-bin galaxy correlations. We find that this
is not a tool to improve the bias-error trade-off. However, it is possible to reduce the number
of clustering bispectrum configurations considerably without losing much Fisher information.
In practice, we were able to speed up the most numerically-demanding configurations by
a factor of more than 10 while losing less than 1% of Fisher information in all parameters.
This indicates that this simple idea could be used as a preprocessing step of a more extensive
signal compression approach.

Throughout this chapter, we made several simplifying assumptions that could be lifted in
future work. For instance, one could use the FFTLog algorithm to go beyond the flat sky
approximation used here [226]. One could also improve the theoretical modelling by taking
more orders of the perturbative expansion into account in order to push kmax higher and
closer to the more optimistic value mentioned above (see section 5.4.4 and Tables 5.4, 5.5).





Chapter 6

Conclusion

The tightest constraints on cosmological parameters come largely from the two-point analysis
of CMB temperature anisotropies and galaxy clustering. While this was sufficient to extract
most information from the past CMB and LSS data sets, future LSS surveys will measure a
vast amount of non-Gaussian information too. To fully utilise this information, it is necessary
to go confidently beyond two-point statistics. In this thesis, we have studied two such
statistics that capture non-Gaussian information while being robust against RSDs, one of the
leading sources of systematic uncertainties.

Summary

In chapter 3, we presented a first application of the counts-in-cells (CIC) statistics to neutral
hydrogen (HI). The CIC statistics combine spherical collapse with large deviation theory to
predict the (joint) PDF of densities in spheres on non-linear scales that cannot be accessed
perturbatively. Our results are particularly exciting because future intensity-mapping surveys
will map vast volumes which will give access to accurate measurements of the PDF, in
particular of the tails that are sensitive to dark energy and the total neutrino masses, for
instance. We compared two different bias functions for the relation between neutral hydrogen
and dark matter and proposed to use a second-order approximation to a non-parametric
bias function based on cumulative distribution functions. Using this bias relation, we were
able to establish a fully predictive model for the HI density in spheres PDF that matches
the measured HI PDF in the IllustrisTNG simulation at a few percent accuracy at scale
R = 5 h−1Mpc from redshift z=5 to z=1. Furthermore, the bias relation allowed us to predict
a density-dependent HI-clustering signal that is consistent with simulations. Without further
modelling, we find that the bias relation is also able to capture RSDs and predictions only
slightly worsen.
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Working with projected power spectra and bispectra poses several challenges. Firstly,
for a tomographic galaxy clustering analysis, the amount of resolved radial information
is (roughly) given by the inverse projection depth and not the cut-off of the perpendicular
modes. This leads to inconsistencies when comparing 2D analyses with varying number of
tomographic bins. Theoretical uncertainties would offer a solution to the problem which is
why we discussed in chapter 4 a consistent way to project theoretical uncertainties from 3D
to 2D. For the theoretical uncertainties of the projected power spectrum, one can separate
the required projection integrals which allows us to cache subresults and makes the problem
tractable. We use this model to consistently compare 3D and 2D power spectrum Fisher
forecasts by formally including all modes into both analysis. This enabled us to empirically
validate the model and we found, for instance, that for projection depths of ∼ 10 h−1Mpc ,
one can recover 99% of the 3D power spectrum Fisher information. For the theoretical
uncertainties of the projected bispectrum, no such approximation exists and they remain
intractable.

In chapter 4, we presented also a fast method to compute projected bispectra in the flat
sky approximation. The core idea of the implementation is to separate the multi-dimensional
projection integrals and cache reoccurring subresults. Caching essentially simplifies the
required projection integrals from 2D to 1D which makes the problem tractable. For the
projected galaxy bispectrum, one can further reduce the number of required computations
from cubic to quadratic in the number of tomographic bins in case the window functions have
the same shape and are equidistantly spaced. For cases where integrals cannot be solved by
the FFT method, we introduce analytical results that can be used to approximate the integrals.

In chapter 5, we investigated the relation between biases in the estimated parameters
and inaccurate modelling of non-linear redshift-space distortions for the power spectrum
and bispectrum of projected galaxy density fields and lensing convergence using the code
introduced in chapter 4. We control the amount of small-scale information that enters the
analysis by means of a projection depth dependent cut-off k2D

max. We define it by requiring
that the relative biases arising from the perturbative matter predictions compared to a fully
non-linear model are below 20%. Those cut-offs allow us to recover up to 90% and 66%
of the 3D information of the power spectrum and bispectrum respectively in a CMASS-
like survey. Using these cut-offs, we find that non-linear redshift-space distortion become
only relevant for bins thinner than 150 h−1Mpc . Access to higher radial resolution and a
sufficiently accurate non-linear RSD model improves constraints by up to 20% when using
bins of size 60 h−1Mpc . The improvement for local non-Gaussianities is smaller, since it is
best constrained from large scales. Even thinner redshift bins lead to worse constraints since
the cut-off scale decreases dramatically. As a first step to shrink the bispectrum signal vector,
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we introduced a simple compression technique - discarding cross-correlations of distant bins
- that allows us to speed up the most demanding computations by up to a factor 10 while still
recovering 99% of the available Fisher information.

Outlook

Confronting real data with the CIC formalism would be very interesting. It has been shown
that the matter CIC statistic at different scales and redshifts is highly complementary to the
matter power spectrum and could thus tighten constraints on cosmological parameters and
the total neutrino mass considerably [231]. Moreover, a novel way to constrain PNGs from
the bulk of the joint matter CIC PDF at two scales was introduced in [232]. In both cases, the
next step towards confronting data would be the inclusion of a bias model for the observed
tracers. In the analysis, one could then use the scale-dependent clustering signal to break the
new amplitude-bias degeneracies. Another way to break the amplitude-bias degeneracies
would be a joint analysis of the CMB-lensing convergence in cylinders and tracer densities in
spheres that can be predicted via the CIC formalism. In addition, considerations are needed
to take observational effects (e.g. foreground cleaning) into account.

Using the projected bispectra code presented in chapter 4 to analyze real data would
provide conservative yet powerful constraints for cosmological parameters and PNGs. In
particular, a joint galaxy-clustering CMB-lensing analysis of two- and three-point correlators
would break all parameter degeneracies between cosmological and nuisance parameters and
thus provide tight constraints. As shown in chapter 5, tuning the projection depth would allow
us to control biases from non-linear redshift-space distortions from the galaxy-clustering.
However, to perform this analysis, several challenges have to be overcome: The analytic
results need to be extended to be able to work with realistic galaxy selection functions, the
flat sky approximation has to be relaxed in order to support actual survey geometries and,
importantly, the data compression method needs considerable improvements. As a first
step towards data compression, our simple but physically motivated method described in
chapter 5 worked very well but other simple ideas such as increasing the k-space binning
or ignoring certain configurations of the auto-bispectra are likely to become very lossy. A
more promising route is the extension of the MODAL framework [233, 234]. There, one
would need to find a set of 3D eigen-bispectra that can be easily projected while capturing
most of the bispectrum signal in 3D and 2D independently of the projection depth and
kernel. This set of eigen-bispectra would simplify projections greatly since one only needs
to extract the coefficients of the eigen-bispectra in 2D and can directly translate those to
the corresponding 3D eigen-bispectra. Alternatively, one could think about reconstructing a
3D bispectrum from the observed projected spectra in order to perform the analysis there.
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As an intermediate step towards a full cosmological analysis, one could perform a MCMC
analysis for amplitude-like parameters such as the bias parameters, σ8 and fNL assuming a
Gaussian covariance. However, to go beyond the Gaussian covariance would also require a
drastic reduction of the size of the bispectrum signal vector due to the needed simulations to
estimate empirical covariances.
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