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The map between genotype and phenotype is fundamental to biology. Biological information is
stored and passed on in the form of genotypes, and expressed in the form of phenotypes. A growing
body of literature has examined a wide range of genotype-phenotype (GP) maps and has established
a number of properties that appear to be shared by many GP maps. These properties are 'structural’
in the sense that they are properties of the distribution of phenotypes across the point-mutation
network of genotypes. They include: a redundancy of genotypes, meaning that many genotypes map
to the same phenotypes, a highly non-uniform distribution of the number of genotypes per pheno-
type, a high robustness of phenotypes, and the ability to reach a large number of new phenotypes
within a small number of mutational steps. A further important property is that the robustness and
evolvability of phenotypes is positively correlated. In this review I give an overview of the study
of genotype-phenotype maps with particular emphasis on these structural properties, and discuss a
model that attempts to explain why these properties arise, as well as some of the fundamental ways

in which the structure of genotype-phenotype maps can affect evolutionary outcomes.

I. INTRODUCTION

Reproduction, as a fundamental property of biological
systems, depends on the storage, processing, and transfer
of biological information. That information is typically
stored in the form of sequences, such as DNA, RNA, or
amino acid sequences, and is more generally referred to
as the genotype. In abstract models of biological evolu-
tion the genotype can be defined more generally, such as
for genetic algorithms [1], where the genotypes are often
binary strings. Some have chosen network topologies [2]
or Boolean update rules [3] as genotypes. But genotypes
are almost always linear and discrete representations of
biological information. By contrast, the definition of a
phenotype is almost impossibly broad. At every level of
resolution of biological structure or function any higher-
level outcome resulting from a sequence could be viewed
as a phenotype. For example, the amino acid to which
a given triplet codon maps can already be considered a
phenotype. The structure, interactions, and functions of
RNA and proteins are phenotypes, as is the function of
a metabolic circuit or the state of a biological cell. On a
longer time scale the development of a type of tissue or
of a whole organism can also be viewed as a phenotype,
as even more generally, the behaviour of an organism and
its interaction with its ecosystem can be too. This com-
plexity explains the wide range of genotype-phenotype
(GP) maps found in the literature. It also explains why
many GP maps that are studied are abstract theoretical
or computational models, as the space of biological pos-
sibilities is often intractably vast, and the hierarchical
levels of biological complexity are numerous. An illustra-
tion of the difficulties associated with the study of real
biological GP maps can be found in the form of the pro-
tein folding problem [4], which has occupied biologists for
decades, and which represents one of the most immedi-
ate connections between genotype and phenotype - the
spatial rearrangement of an amino acid sequence into a

protein structure.

Tt has been known since Mendel [5] that genetic muta-
tions can cause phenotypic changes. Building on Mendel’s
and Darwin’s [6] work, Fisher, Haldane, and Wright pro-
duced the modern evolutionary synthesis [7-9] in the
early twentieth century, which also introduced the idea
of the fitness landscape [9]. A fitness landscape relates
the space of genotypic variation to survival. It therefore
contains a genotype-phenotype map implicitly. But the
fitness landscape really consists of two distinct mappings:
One is the genotype-phenotype map, and the other is the
mapping from phenotypes to fitness values. A seminal
contribution to the unravelling of these two mappings
was made by Kimura [10], almost fifty years ago, who
postulated that many mutations that are important for
evolution must be neutral, meaning that they do not af-
fect the fitness of the phenotype. While neutrality refers
to selection rather than phenotypic change, and while
it is possible for different phenotypes to be equally fit,
the ubiquity of neutrality proposed by Kimura made it
reasonable to suppose that many mutations are not only
neutral in terms of selection, but in fact leave the pheno-
type entirely unchanged.

This idea was substantially extended by Maynard
Smith in 1970 [11], who addressed the apparent contra-
diction [12] between the vast number of possible amino
acid sequences and the tiny fraction these sequences that
give rise to the proteins observed in nature. If the evo-
lution of these proteins was driven by natural selection,
how would this evolutionary process have found these
solutions through random mutations? Maynard Smith’s
answer was to postulate that “functional proteins must
form a continuous network which can be traversed by
unit mutational steps without passing through nonfunc-
tional intermediates” [11], which is similar to the defi-
nition of what is now commonly referred to as a neutral
network. Such networks mean that functional proteins oc-
cupy connected subsets of genotype space, which makes



their discovery through an evolutionary process, driven
by random mutations, feasible. Maynard Smith arguably
laid the foundations for the modern study of genotype-
phenotype maps in this paper by proposing the concept of
a “protein space” of all possible amino acid sequences, in
which neighbours are defined by single amino acid substi-
tutions. This construct is almost exactly the same frame-
work that has been used to study genotype-phenotype
maps and their properties in RNA, proteins, and many
other systems, mainly from the late 1980s onwards. An
explicit discussion of genotype-phenotype mappings can
be found in R. C. Lewontin’s 1974 work “The Genetic Ba-
sis of Evolutionary Change” [13], but Maynard Smith’s
earlier work already marks the separation of the fitness
landscape from the genotype-phenotype map, as it con-
siders the set of genotypes that map to functional pro-
teins in general. While fitness is very hard to quantify
in a biological system, properties of genotype-phenotype
maps are much more easily quantifiable. The barrier that
remains is the vast size of the space, but the exponen-
tial increase in both computational power [14] and the
availability of biological data [15] mean that ever more
complex genotype-phenotype maps can now be studied
quantitatively.

II. THE RNA SECONDARY STRUCTURE GP
MAP

While the earliest theoretical work on genotype-
phenotype maps [10, 11], and the earliest abstract mod-
els of such maps [16] considered protein tertiary struc-
ture, one of the most widely studied genotype-phenotype
maps is that of RNA secondary structure, which is the
specific configuration of base-pair interactions between
different parts of a given RNA strand. This is because
the folded structure for a given RNA sequence can be
predicted computationally to a sufficiently high degree
of accuracy [17], which makes large-scale surveys of this
genotype-phenotype map possible. Furthermore the phe-
notype can be characterised precisely in terms of the base
pairs that are formed in the folded structure, and can be
denoted succinctly by using the ‘dot-bracket’ notation.
In this notation a pair of parentheses represents a base
pair, while a period represents an unbound base. The
genotype-phenotype map therefore can be viewed as the
map from an RNA sequence, composed of the four bases
A,C,G, and U, such as:

ACGCCUCGGGGA
to a dot-bracket sequence, such as:
(e () o)

The structure that corresponds to this sequence is shown
in Figure 1. Schuster et al. [18] in 1994 were the first to
study global properties of the RNA secondary structure
genotype-phenotype map using computational methods.

They established that the number of RNA sequences, or
genotypes, vastly outnumbers the number of RNA sec-
ondary structures, or phenotypes. In addition they found
that the number of sequences per structures followed
a generalized form of Zipf’s law, meaning that many
structures mapped to only a few sequences each, while
a few structures occupied very large proportions of se-
quence space. Furthermore it was found that these com-
mon phenotypes could be reached in only a small num-
ber of mutational steps, starting from any random geno-
type. Lastly this investigation also showed the existence
of long neutral paths in genotype space by demonstrating
that 21.7% of neutral paths ended on genotypes that had
no base in common with the reference sequence used as
the starting point. This result implies the presence of ex-
tensive neutral networks. It has been proposed [19] that
these neutral networks arise as a percolation effect, mean-
ing that a connected network emerges spontaneously for
sufficiently high link densities, purely based on the prob-
abilities of individual links. As some phenotypes have a
large number of genotypes, such an explanation of neu-
tral networks in terms of percolation would imply that
neutral networks result from the Zipfian distribution of
the number of genotypes per phenotype. Random graph
theory calculations based on this argument yield a the-
oretical percolation threshold of 0.37 [19] for four letter
alphabets (such as in RNA), meaning that a phenotype
occupying 37% of genotypes will percolate across the en-
tire genotype space. Very recent work by Greenbury et al.
[20] however has established that the genotypes belong-
ing to a given phenotype are in fact much more corre-
lated than random graph theory would suggest, and that
neutral networks are therefore even more ubiquitous and
pervasive. These results will be discussed in more detail
in later sections of this paper.

III. THE HP MODEL GP MAP

The most obvious map between sequence and structure
in modern biology, and the one that Maynard Smith ad-
dressed in his seminal work [11], is that from an amino
acid sequence to a protein structure. The alphabet of
amino acid sequences is much larger than that of RNA
sequences, as there are twenty amino-acids that appear in
protein sequences, compared to only four bases in RNA.
The length of amino acid sequences tends to also be con-
siderably larger than the length of RNA sequences that
form functional secondary structures in the cell. The for-
mer typically consist of several hundred residues, while
many examples of the latter are less than 50 bases in
length [24]. In addition the folding process in protein ter-
tiary structure relies on a complex network of residue-
residue interactions, whereas the folding of RNA sec-
ondary structure is primarily governed by hybridization,
which is a much simpler mechanism. For these reasons
the prediction of protein structures from amino acid se-
quences is a much greater challenge than the prediction of
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FIG. 1: An illustration of three genotype-phenotype maps.
Top: RNA secondary structure [18, 19], which folds from a
sequence of the four bases A, C, G, and U. Base pairs are
shown as double bonds. The folding process can be predicted
computationally with a high level of accuracy. Middle: The
HP model [21] of protein folding. The example shown here is a
sequence of hydrophobic (H) and polar (P) residues that folds
onto a 5x5 two-dimensional lattice. Bottom: The Polyomino
model [22, 23] is a self-assembly model in which sequences
encode the interfaces of square 2D tiles. These self-assemble
on a lattice in a stochastic process. The interfaces (sometimes
termed ’colours’) are written in clockwise order and concate-
nated for the tiles. In this case interface 1 binds to interface 2,
and 0 denotes a neutral interface that does not interact. The
two tiles self-assemble into the five-tile cross shape shown on
the right.

RNA secondary structure. In 1985 Dill [16] considered an
abstract model of protein sequences that focused on a dis-
tinction between hydrophilic and hydrophobic residues.
The latter would form the core of globular proteins in this
model, which led Dill to the conclusion that “the number
of accessible conformations in the globular state” was an
“exceedingly small fraction of the number accessible to
the random coil”. In other words, the phenotypes that
correspond to globular proteins occupy a small fraction
of the total space of possible phenotypes. Building on
this work, Dill and Lau introduced the HP model of pro-
tein folding [21], which distinguished hydrophobic (H)
and polar (P) residues that fold on a two-dimensional
lattice (see Figure 1). This level of abstraction made it
possible to study the space of conformations exhaustively

for short chain lengths, and resulted in the work of Lip-
man and Wilbur [25], published shortly afterwards, who
studied the genotype-phenotype map of the HP model
extensively. Their findings included the discovery of the
large neutral networks, similar to the connected “protein
space” Maynard Smith originally envisaged, which led
them to conclude that “perhaps the most striking obser-
vation is the critical role of neutral mutations in travers-
ing this evolutionary space”, and to raise the question
“whether this particular phenomenon is a general prop-
erty of evolutionary spaces” [25]. A more general version
of this question, namely to what extent the structural
properties of genotype-phenotype maps are universal in
biology, has received increasing attention in the recent
literature on genotype-phenotype maps [20, 23, 26, 27],
and perhaps the most central question of this review. As
will be discussed below, the likely answer to Lipman and
Wilbur’s question is positive - that properties such as
extensive neutral networks are indeed universal proper-
ties of evolving systems. The reason for this may lie in
the fundamental way in which biological information is
organised [27].

The tractability of the HP model enabled further stud-
ies of its genotype-phenotype map, such as the work by
Li et al (1996) [28] who found that the number of geno-
types per phenotypes in the HP model displayed a highly
skewed distribution, similar to the Zipfian distribution
found for RNA [18]. This observation was described us-
ing the notion of designability, meaning that HP model
proteins with a large number of genotypes are highly ’des-
ignable’, which makes them more easily accessible in an
evolutionary process.

It has been proposed [29] that the neutral networks
of different protein phenotypes are largely disconnected
from each other, resembling a ‘plum pudding’ [29] in
contrast to the RNA genotype-phenotype map, whose
interconnected phenotypes could be described with a
‘spaghetti’ metaphor [29]. Recent work [20], discussed in
more detail below, has shown however that this strongly
depends on the type of HP model used. The compact HP
model, which only considers folded structures, exhibits
interconnected phenotypes much like RNA.

IV. THE POLYOMINO GP MAP

In RNA secondary structure and protein tertiary struc-
ture, the most studied genotype-phenotype maps, the
transformation from genotype to phenotype is achieved
through a folding process that immediately links the
genotype sequence to the final phenotype. Above in-
dividual proteins the next level in the hierarchical or-
ganisation of biological structures is protein quaternary
structure, which describes the binding of multiple pro-
teins to each other, for example in the form of protein
complexes [30, 31]. Such structures differ from RNA sec-
ondary structure and single proteins because they require
several independent subunits to come together and self-



assemble into a larger structure. Recent work by Ahn-
ert et al. introduced a 2D lattice model of self-assembly
[22] that can also be used as a genotype-phenotype map
to model protein quaternary structure [23, 32]. In this
model two-dimensional square tiles can bind to each
other, forming larger connected structures called ’Poly-
ominos’. In order to use this model as an abstract GP
map for protein complexes we can encode the configura-
tion of binding interactions on a set of tiles as a string,
or genotype, and define the final assembled ‘Polyomino’
shape on the 2D lattice as the corresponding phenotype
(see Figure 1). The Polyomino GP map model has been
found to exhibit a rich and complex structure while still
being tractable enough to explore genotype-phenotype
maps and fitness landscapes exhaustively [23, 32]. Fur-
thermore it exhibits many of the same properties as the
RNA and HP model GP maps, such as a large number of
genotypes relative to the number of phenotypes, a highly
skewed distribution of the number of genotypes per phe-
notype, and extensive neutral networks [23], among sev-
eral other properties that will be discussed in more detail
below.

V. DELETERIOUS PHENOTYPES IN RNA,
THE HP MODEL, AND POLYOMINOES

In all three GP maps discussed so far - RNA secondary
structure, the HP model of protein structure, and the
Polyomino model - a large proportion of genotype space
maps to phenotypes that are in some sense not viable,
and therefore deleterious. In RNA this corresponds to
the case when the secondary structure without any paired
bases has the lowest free energy, meaning that the RNA
molecule remains unfolded. This is the case for 85% of
RNA sequences of length L = 12 [20]. This proportion
drops with increasing sequence length, but even for se-
quences of length L = 20, a third of RNA sequences still
remain completely unfolded [20].

For the non-compact HP model, which considers all HP
sequences of a given length, 98% of sequences of length
L = 24 do not have a unique ground state structure.
The absence of a unique ground state is conventionally
regarded as a deleterious phenotype. For the compact HP
model, specifically for the sequences on a 5x5 lattice, the
fraction of such phenotypes is 82% [20]. Despite this high
proportion of deleterious phenotypes the neutral spaces
of the 5x5 compact HP model are highly connected to
each other, thereby conforming more to the ’spaghetti’
than the ’plum pudding’ metaphor [20] discussed earlier.
Unlike RNA secondary structure, the HP model retains
a high, and possibly constant [33] fraction of unfolded
phenotypes with increasing sequence length.

In the Polyomino phenotype certain configurations of
interfaces on the square lattice tiles can lead to un-
bound growth. Furthermore, some configurations are
non-deterministic, meaning that different structures are
built in a stochastic assembly process, because the same

pair of building blocks can interact in multiple distinct
ways. Unbound and non-deterministic (UND) building
block sets are categorised as a single deleterious pheno-
type, similar to the RNA strands that remain unfolded
and the HP sequences without a unique ground state. In
the Polyomino models most commonly studied the pro-
portion of the UND phenotype is 54% (two tiles, eight
interaction types) and 80% (three tiles, eight interaction
types).

In all of these three GP maps - RNA, HP 5x5, and
Polyominoes - the deleterious phenotype is underrepre-
sented in the neighbourhood of non-deleterious pheno-
types, which illustrates that the neutral networks of dif-
ferent phenotypes are connected to each other even when
a large proportion of genotype is occupied by the delete-
rious phenotype [20].

VI. NETWORK GP MAPS

The previous sections have given an overview of
genotype-phenotype maps between sequences and biolog-
ical structures. The definition of a phenotype is of course
much broader than this. Biological interactions, such as
gene regulatory interactions, metabolic interactions, and
signalling networks, offer an alternative way to charac-
terise phenotypes, and are discussed in this section.

A. Gene regulatory network GP maps

The study of genotype-phenotype maps has been ex-
tended in recent years to encompass the study of gene
regulatory networks. In the model proposed by Ciliberti
et al. (2007) [2, 34] an abstract regulatory network con-
sists of genes that are connected by weighted edges, which
correspond to activatory or inhibitory transcription fac-
tor interactions. Each gene also has an expression level as
a function of time, which is updated at discrete timesteps
according to a function that depends on the expression
levels of the genes that regulate it. In this model the
matrix of edge weights is taken to be the genotype, and
the long-term equilibrium state of all expression levels
is chosen to represent the phenotype. If no such stable
state exists the phenotype is regarded as not viable, and
discounted. Mutations of the genotype correspond to mu-
tations of the weighted adjacency matrix of the regula-
tory network, and therefore to the removal or addition
of an edge. In this model the neutral networks of the
steady-state expression phenotypes are found to extend
across genotype space much in the same way they do in
RNA, proteins, and the Polyomino model [2]. Further-
more a tradeoff is revealed between the potential of a
given regulatory network (i.e. a genotype) to innovate,
and its robustness to mutations. This is intuitive, as the
neighbours of a given genotype can either predominantly
map to the same phenotype as that genotype (making
that genotype robust), or to a variety of different phe-



notypes (giving that genotype the ability to innovate),
but not both. We will return to this tradeoff and to the
concepts of robustness and evolvability (as the ability to
innovate is often referred to) in later parts of this review.

Building on this work a more abstract model of the
genotype-phenotype maps of genetic regulatory networks
was proposed by Payne and Wagner [3, 35, 36]. This
model examines three-node Boolean networks, of which
there are 104 topologically distinct varieties [37], which
can be studied exhaustively. In a Boolean network each
node is associated with a Boolean function, which is a bit
string of length 2¥ where k is the in-degree of that node.
The Boolean function specifies the state of the node in
response to all possible 2¥ binary states of the k nodes
connected to it by incoming edges. In order to consider
all function sets and topologies one can simply consider
all possible Boolean function sets on the fully connected
three-node network. Some of these function sets will be
independent of the presence of some of the edges, corre-
sponding to less-than-fully connected topologies. For the
three-node network the Boolean function set can be writ-
ten as a binary vector of length L = 3 x 23 = 24, which
means that there are 224 = 16, 777, 216 possible function
sets. These function sets are chosen as the genotypes, and
the attractors of the network, which represent the long-
term gene expression pattern of the regulatory system,
can be chosen as the phenotype [35]. Similar to earlier
investigations it is found that many genotypes map to
few phenotypes, and that the distribution of genotypes
per phenotype is skewed. Furthermore the tradeoff be-
tween robustness and evolvability at the level of individ-
ual genotypes is illustrated.

An alternative perspective on the measurement of
network-based genotype-phenotype maps has been intro-
duced by Ibdfiez et al. (2014) [38] using the language
of network analysis [39-41]. This map is also based on
regulatory network model, similar to the work discussed
above [2, 3, 34-36]. The genotype is defined as the com-
bination of the network topology and the initial (binary)
state of the gene expression. Phenotypes are defined in
terms of steady-state dynamics. A difference to previous
work is the topology of the gene regulatory networks,
which are chosen to be either Watts-Strogatz small-world
networks [39] or scale-free networks [40]. As a result the
mutations only change the sign of existing network edges
(in other words, turning an activatory into an inhibitory
interaction, or vice versa) rather than changing the topol-
ogy of the network. The choice of topologies is informed
by the field of network analysis [41], which also provides
the authors with the measurements they use to study ro-
bustness and evolvability. They apply these network mea-
surements to a ‘pseudo-bipartite graph’ of genotypes and
phenotypes, in which genotypes are connected to each
other by point-mutation edges (much like in the genotype
networks discussed previously), and in which genotypes
are also connected to the phenotypes they map to. In this
graph, robustness can be characterised in terms of the
clustering coefficient of a phenotype node, since this co-

efficient measures the density of triangles formed by that
phenotype and two genotypes. Evolvability can be mea-
sured by considering the so-called ‘one-mode projection’
of the genotype-phenotype edges onto the phenotypes,
which produces a network of phenotypes connected by
weighted edges. Conventionally the one-mode projection
of a bipartite network produces a network of one node
type with weighted edges that represent shared associa-
tions. For example, the bipartite network of authors and
co-authored journal articles, projected onto authors, re-
sults in a weighted network of authors in which the edge
weight is the number of articles these two authors have
written together. Since two different phenotypes do not
share genotypes, the projection here is more involved:
Two phenotypes are connected if a path of length three
exists from one to the other, and leading through two
genotypes that are one mutation step apart. The edge
weight is the number of such paths. Evolvability can then
be established in terms of the emergence of a giant com-
ponent in this phenotype network, which suggests that
many phenotypes can be accessed through one-mutation
steps [38].

B. Metabolic and signalling network GP maps

Metabolic networks aim to describe the entire inter-
action network of metabolites, chemical reactions, and
related regulatory interactions that take place in a cell,
and are another system for which genotype-phenotype
map models have been developed. In [42] the authors ex-
amine 1,000 mutated versions of the metabolic network
of E.coli, regarding each such network as a genotype, and
use flux-balance analysis to determine the metabolic via-
bility of this network. Flux-balance analysis is an efficient
mathematical modeling technique for metabolic networks
[43]. This notion of viability encompasses a number of
possible phenotype definitions, such as the ability of the
network to produce all biochemical precursors from glu-
cose in an aerobic minimal medium, or the ability to
sustain the metabolism given a range of external car-
bon sources. The outcomes of this model suggest that
the neutral networks of the same metabolic phenotypes
extend across genotype space, but also that from any
given phenotype many other phenotypes can be accessed
in just a few mutational steps [42]. These results charac-
terise the robustness and evolvability of metabolic net-
works. A similar analysis has been undertaken for the
TOR signalling circuit in S. cerevisiae [44], which exam-
ines 69,120 alternative topologies of the signalling circuit.
For each topology an optimisation procedure is used to
find the set of kinetic parameters that best reproduce
reference signalling behaviour. The phenotypes are de-
fined in terms of clustered trajectories in the space of
the concentrations. This analysis too finds neutral net-
works that extend across genotype space, as well as the
heavily skewed distribution of genotypes per phenotype
found in RNA, the HP model, and Polyominoes. It also



shows that it is the phenotypes with the largest neutral
networks that are both the most robust and the most
evolvable [44].

C. Multi-level GP maps

As is evident from the wide range of examples discussed
so far, genotype-phenotype maps can be defined at many
levels. An approach that has sought to capture the hier-
archy of phenotypes and thus multiple levels of the rela-
tionship between genotype and phenotype is the toyLIFE
model [45]. This model encompasses gene expression, pro-
tein folding, gene regulation, and metabolic reactions.
Like in other systems, this model too displays many more
genotypes than phenotypes and a highly skewed distri-
bution of genotypes per phenotype. Many aspects of the
toyLIFE model remain to be explored, due to its high
complexity. Its potential may lie particularly in address-
ing research questions that connect different levels of the
genotype-phenotype map.

VII. DIRECT MEASUREMENTS OF
BIOLOGICAL GP MAPS

All genotype-phenotype maps discussed so far are to
a greater or lesser extent abstractions of real biological
systems. The RNA secondary structure GP map is the
closest to a real biological genotype-phenotype map, as
small RNAs fulfill a wide range of functions in the cell,
and the map has been studied in the context of this nat-
urally occuring variety [24]. Nevertheless the phenotype
representation in terms of the base pairs only captures
part of the complex three-dimensional structure of folded
RNAs. A level of abstraction is inevitable if the goal is
to study general properties of genotype-phenotype maps,
which at the level of protein tertiary structure remain in-
tractable due to the enormous complexity of the folded
amino acid chain, and at the level of interaction networks
remains challenging due to the difficulty of reliably mea-
suring and verifying the large number of interactions be-
tween proteins, genes, DNA, and RNA in the cell. There
have however been attempts to measure 'real’ GP maps
of protein domains [46] and of transcription factor bind-
ing sequences [47] to see whether they, at least within
the limited view that existing sequence data affords us,
share the same properties as the more abstract, compre-
hensive GP map models. The genotype-phenotype map of
single-domain protein sequences uses the enzymatic func-
tion classification as the phenotype [46]. Because this is
a functional classification (in terms of the enzyme com-
mission (EC) classification [48]), and not the domain
structure itself, there is an additional mapping between
structure and function that complicates the genotype-
phenotype map. Several different structures can fulfill the
same function - a phenomenon that the authors of [46]
refer to as structural promiscuity. While 86% of functions

are only carried out by one structure, some functions
(such as DNA-directed DNA polymerase) can be carried
out by up to 14 different structures. In this GP map the
sets of enzymatic functions in the neighbourhoods of two
genotypes diverge rapidly with increasing distance be-
tween the genotypes. This is even true when considering
genotypes that map to the same protein structure. The
multitude of functions exhibited by some protein families
(which group together proteins of the same structure)
is the reason for this rapid growth in functional diver-
sity with increasing genotype distance, or in other words
“Functional neighbourhood diversity emerges from the
multifunctionality of structures.” [46]. Another promi-
nent example of an attempt to directly measure the prop-
erties of a real biological genotype-phenotype map is the
work by Payne and Wagner [47] on the transcription fac-
tor binding sites for 104 transcription factors in mouse,
and 89 in yeast. By examining the space of all bind-
ing sites of eight nucleotides in terms of an enrichment
score [49] that represents the binding affinity, one can
construct the genotype network and observe where the
sequences that bind to a given TF fall on this network.
In almost all cases the majority of bound sites for a par-
ticular TF form a single connected component, and for
a majority of TFs all bound sites are part of a single
connected genotype network. The binding site sequences
are significantly more robust than expected by chance,
and also significantly more evolvable (measured by con-
sidering how many mutations were required to reach a
binding sequence for a different TF). Both robustness
and evolvability increase with the size of the binding site
repertoire. These findings mirror the results regarding ro-
bustness and evolvability found in more abstract model
GP maps of RNA secondary structure, the HP model,
Polyominoes, and network phenotypes.

The observation that many biological phenotypes are
highly robust has been also made on a more general level,
supporting the more detailed investigations of genotype-
phenotype maps discussed so far. For example, robust-
ness may explain why similar gene expression patterns
are observed across a wide range of species, even when the
cis-regulatory regions are highly divergent [50]. A simi-
lar result was found across a range of Drosophila species
[51].

VIII. STRUCTURAL PROPERTIES OF
GENOTYPE-PHENOTYPE MAPS

The previous sections provide an overview of research
into the properties of genotype-phenotype maps, and
show that certain characteristics of the distribution of
phenotypes over the space of genotypes have been ob-
served across many different phenotypes and modelling
approaches. In this section I explore these ‘structural’
properties in more detail, particularly in the context of
relatively tractable genotype-phenotype map models that
can be studied on a global level, such as the RNA sec-
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FIG. 2: The three basic structural properties of genotype-
phenotype maps, illustrated on a simple network of genotypes
(nodes) that map to particular phenotypes (colours), and are
connected by single-point mutations (edges). The redundancy
(left) of genotype-phenotype maps means that there is a much
larger number of genotypes than phenotypes. The bias (mid-
dle) of a genotype-phenotype map is the extent to which the
distribution of the number of genotypes per phenotypes is
non-uniform. In many real genotype-phenotype maps this dis-
tribution is approximately Zipfian. The presence of robustness
(right) is one way of describing the fact that the different
genotypes of a given phenotype are often close to each other
in genotype space. As we discuss in the main text, the pres-
ence of large and robust neutral networks does not simply
follow from bias.

ondary structure, HP model and Polyomino GP maps.
The first three of these - redundancy, bias, and robust-
ness - are illustrated in Figure 2.

A. Redundancy

All observed genotype-phenotype maps exhibit one
fundamental property that is a prerequisite for all the
other structural properties discussed below. This prop-
erty is redundancy, in the sense that there are many more
genotypes than phenotypes. Redundancy is a necessary
(but not sufficient) condition for neutral networks to ex-
ist. Without redundancy, evolutionary processes would
never find viable phenotypes in the vast space of possible
sequences. The work of Kimura [10] and Maynard Smith
[11] already implied redundancy by postulating the ubiq-
uity and necessity of neutral (or near-neutral) mutations,
and early studies of the HP model GP map [25] and RNA
secondary structure map [18] established the presence of
neutral networks, which too implied redundancy. How-
ever the first comprehensive study of an entire genotype-
phenotype map, and thus the first explicit calculation of
redundancy is arguably the introduction of the concept
of the “designability” of protein structures by Li et al.
[28] in the context of the HP model. A recent overview of
redundancies across RNA, HP and Polyomino models is
given in [23]. It reveals that, while redundancy is present
in all maps, it scales differently with sequence length. In
RNA, we have 57 phenotypes and 1.7 x 107 genotypes
for sequences of length L = 12, while we have 431 phe-
notypes and 1.1 x 10° genotypes for L = 15, and 11218

phenotypes and 1.1 x 102 genotypes for L = 20. An es-
timate of the number N, of RNA phenotypes for a given
L is given by N, = 1.4848 x L~%(1.8488)F [18], which
grows much slower with L than the number of genotypes,
Ny = 4% In the Polyomino model, in which the sequence
alphabet is larger, the genotype space grows more rapidly
relative to the number of phenotypes (13 phenotypes and
1.7 x 107 genotypes for two tiles and eight colours, 147
phenotypes and 6.9 x 10'° genotypes for three tiles and
eight colours, and around 2237 phenotypes and 1.8 x 109
genotypes for four tiles and 16 colours). In the HP model
there is a very large difference in redundancy between
compact and non-compact structures. If only compact
structures are considered as phenotypes, such as in [28],
then the number of phenotypes is significantly smaller.
For example all HP sequences of length 25, folded onto
a 5x5 grid (sometimes described as the HP5x5 model)
yield 549 phenotypes for the 22° ~ 3.36 x 107 genotypes
[20], whereas the equivalent non-compact map (referred
to as HP25) yields 107,336 folded phenotypes - in other
words around 200 times as many - for the same number
of genotypes [23]. However, even in the HP25 GP map
genotypes still outnumber phenotypes by a factor of 300.

B. Bias

Redundancy is the foundation for the next most fun-
damental property of genotype-phenotype maps, which is
the skewed distribution of the number of genotypes per
phenotypes, also described as bias [23]. This more subtle
property does not immediately follow from the presence
of neutral networks, as in principle the neutral networks
of different phenotypes could all be similar in size. Lip-
man and Wilbur [25] observed this bias in one of the first
comprehensive studies of the HP model GP map, as did
Schuster et al. [18] in their work on RNA secondary struc-
ture, who also pointed out the Zipfian character of the
distribution that has since been confirmed in other stud-
ies [26, 28], and for other genotype-phenotype maps [23].
The Zipf-like distribution could therefore be regarded as
the distinctive hallmark of genotype-phenotype bias. An-
other way to quantify bias, in the form of a simple num-
ber, is to consider the fraction of phenotypes with the
largest number of genotypes that cover 95% of genotype
space. For example in L = 20 RNA, the top 10% of the
most frequent phenotypes cover 95% of genotypes, and
in three-tile polyominoes this fraction is 16% [23]. But
the relationship between bias and the presence of neutral
networks is more complex. As will be discussed in the
next section, bias alone cannot explain the presence and
extent of neutral networks.

C. Robustness

Robustness is typically measured in terms of the frac-
tion of possible mutations that leave a phenotype un-



changed. This measurement can be applied at the geno-
typic level or at the phenotypic level [52]. In the lat-
ter case the robustness of a given phenotype can be cal-
culated as the average of genotypic robustness over the
genotypes that map to that phenotype [52]. Robustness
as a local measurement of neutrality is a key property of
neutral networks. A comparison of the number of geno-
types that map to a phenotype - in other words the fre-
quency of a phenotype - and its robustness shows that a
phenotype’s robustness p, scales as the logarithm of its
frequency f,, in RNA secondary structure [20, 23, 53, 54],
Polyominoes [20, 23] and the HP model [20], as illustrated
schematically in Figure 3. Formally we therefore have:

pp ~ a+blog fp

where a and b are positive constants. If genotypes of
the same phenotype were uncorrelated (while still fol-
lowing the same distribution in terms of bias), the ro-
bustness of a phenotype would simply be equal to its fre-
quency [20]. The robustness of the most frequent pheno-
types in the RNA, HP, and Polyomino maps lies between
0.5 and 1, which means that the logarithmic increase in
the robustness makes the phenotypes far more robust
than they would be according to the linear increase of
the null model. Across these GP maps phenotypes are
therefore significantly more robust that one would ex-
pect based on bias alone [20]. This also becomes clear if
one considers the size of the largest neutral component
of a given phenotype, and the number of its neutral com-
ponents. In the null model one sees the emergence of a
giant component around a phenotype frequency of 0.37,
which corresponds to the percolation threshold found by
Schuster [19]). By comparison the observations for the
RNA, HP, and Polyomino GP maps show that the sizes of
the largest neutral components scale logarithmically with
phenotype frequency, making them much larger than the
null model expectation below the percolation threshold.
Furthermore, at the percolation threshold the number
of distinct neutral components in the null model, which
grows linearly with phenotype frequency up to that point,
drops rapidly, as expected. This again contrasts with the
three observed GP maps, in which most phenotypes are
divided into less than a hundred (and in many cases less
than ten) components [20], rather that the many thou-
sand components observed in the null model below the
percolation threshold. These findings again show that
genotypes are far more correlated than one would expect
based solely on GP map bias. The consistency of the log-
arithmic relationship between robustness and frequency,
across three entirely different GP maps and many orders
of magnitude of phenotype frequency, strongly suggests
that it is a fundamental property of genotype-phenotype
maps. This logarithmic scaling has been discussed in the
literature [53, 54], and an analytical derivation of this re-
lationship has been proposed, based on the scaling of the
neutral space size as a result of the number of paired and
unpaired bases in the sequence. We will return to this
later on, in section IX.
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FIG. 3: Schematic illustration of the relationship between phe-
notypic robustness and phenotypic frequency for the RNA,
HP, and Polyomino GP maps. In these maps, robustness
scales logarithmically with frequency. If the phenotypes were
randomly distributed (according to the biased distribution),
we would expect to see the null model p, = f, (red line). The
three shaded areas show the location of the vast majority of
values of p, versus f, for the three maps. For the full data
and background, see [20].

D. Evolvability

Robustness is often contrasted with another basic
property of phenotypes, evolvability, which attempts to
measure the ability of a phenotype to adapt under evo-
lutionary pressure. Formally evolvability is often quanti-
fied in terms of the variety of phenotypes that lie within
a certain mutation distance of a genotype or phenotype,
such as Wagner’s definitions of genotypic and phenotypic
evolvability [52]. The former counts the number of dif-
ferent phenotypes in the 1-mutation neighbourhood of a
genotype, while the latter does the same but for the en-
tire 1-mutation neighbourhood of a phenotype. At the
genotypic level, robustness and evolvability are opposed
to each other. A given genotype can either be surrounded
by neighbours of the same phenotype, making it robust,
or surrounded by a variety of other phenotypes, making it
evolvable. Comparisons of the genotypic robustness and
evolvability therefore consistently show a negative corre-
lation between the two, as observed in regulatory network
GP maps, [2], RNA [23, 52] and Polyominoes [23]. This
tradeoff is illustrated in Figure 4A. Phenotypic evolv-
ability however is much more complex. The variety of
phenotypic neighbours of a given phenotype depends on
the structure of the neutral networks of phenotypes in
genotype space. Wagner [52] showed that phenotypic ro-
bustness and evolvability is positively correlated in the
RNA secondary structure GP map - a finding that has
also been reproduced in Polyominoes [23]. Phenotypes
can therefore benefit from both robustness and evolvabil-
ity despite the fact that these two properties appear to,
on the surface, oppose to each other. Figure 4B illustrates
this relationship between the two quantities.
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FIG. 4: Illustration of the relationship between robustness
and evolvability, which can be defined for a genotype or a
phenotype. At the genotypic level (A) a single genotype (high-
lighted by a black ring) can either be evolvable, meaning that
it is a single mutation away from genotypes of many differ-
ent phenotypes (A, left), or it can be robust, meaning that
it is surrounded by genotypes that map to the same pheno-
type as itself (A, right). A genotype therefore faces a tradeoff
between these two quantities, and cannot be evolvable and
robust at the same time. By contrast, at the phenotypic level
(B) these quantities are positively correlated, which means
that a phenotype (shown as the set of genotypes highlighted
by black rings) can be both evolvable and robust (B, right).
For phenotypes the evolvability is defined as the total num-
ber of different phenotypes that lie within the point-mutation
neighbourhood of a phenotype, and robustness is defined as
the average fraction of genotypic neighbours that leave the
phenotype unchanged, taken across all genotypes of that phe-
notype.

E. Shape space covering

Shape space covering is a way of measuring the ac-
cessibility of phenotypes in genotype space, typically by
showing the fraction of phenotypes that can, on average,
be accessed from a genotype, as a function of the number
of mutational steps. In the RNA, HP, and Polyomino GP
maps the majority of phenotypes has been shown to lie
in close proximity of any genotype [18, 23, 26]. This is
because of the high-dimensional nature of GP maps.

IX. SEQUENCE CONSTRAINTS AND GP MAP
PROPERTIES

The structural properties discussed above are re-
markably consistent across different genotype-phenotype

maps. This suggests that they are in some way fundamen-
tal to biological systems. A possible explanation for the
universality of these properties is offered in [27], based
on the fact that biological sequences are often divided
into evolutionarily constrained and (relatively) uncon-
strained parts. In DNA this distinction comes in the form
of exons versus introns, and genes versus intergenic se-
quences. In RNA this distinction can be made in terms of
base pairs (which are more constrained) and loops (less
constrained) [54]. In Polyominoes one can distinguish in-
teractive faces and neutral (or effectively neutral) faces.
Furthermore the level of constraint of a given sequence
element can be changed by mutating the sequence. In
DNA a mutation can alter the position of the start and
stop codons that determine the boundaries between cod-
ing and non-coding DNA. In RNA (or Polyominoes) a
mutation can dissolve or establish a base pair (or an in-
teraction between tiles), reducing or increasing the level
of constraint at that sequence position. The approach
in [27] uses a very simple genotype-phenotype map, in
which the binary genotypes are subdivided into a single
‘coding’ and a single ‘non-coding’ part by a simple ‘stop
codon’ sequence. Any point mutation of the coding part
of the sequence (including the stop codon) changes the
phenotype, whereas the non-coding part is entirely free to
mutate. This GP map can be used to study the effect of
constrained and unconstrained sequences on the GP map
structure. It is named the ‘Fibonacci GP map’ because
it is closely related to the Fibonacci code in computer
science, and because many of its analytical properties
can be described in terms of Fibonacci numbers. The Fi-
bonacci GP map exhibits all of the structural genotype-
phenotype map properties discussed above - redundancy,
bias, the logarithmic scaling of phenotype robustness as
a function of phenotype frequency, the negative corre-
lation of genotypic robustness and genotypic evolvabil-
ity, the positive correlation of phenotypic robustness and
phenotypic evolvability, and shape space covering. This
implies that the structure of genotype-phenotype maps
is heavily influenced by the fact that unconstrained sub-
sequences of the genotypes result in phenotypes that oc-
cupy whole subspaces of genotype space, allowing them
to form extensive neutral networks that combine robust-
ness and evolvability. The logarithmic scaling relation-
ship between phenotypic robustness and frequency is a
particularly strong indicator that unconstrained geno-
typic sequences play an important role in determining
the structure of genotype-phenotype maps. This aspect
of the Fibonacci GP map is closely related to the ana-
lytical derivation of the same logarithmic relationship in
RNA secondary structure [54], which is specifically based
on the constraints imposed on RNA sequences by base-
pairing interactions. The Fibonacci GP map also shows
that the possibility of mutations that change the level
of sequence constraint leads to much greater evolvability,
and is likely to be one of the reasons why phenotypic ro-
bustness and evolvability are positively correlated. It is
in fact the analytical term that accounts for mutations of



the stop codon that turns the correlation between phe-
notypic robustness and evolvability from a negative one
into a positive one. This is because mutations of the stop
codon shift the boundary between the constrained and
unconstrained parts of the sequence, enabling access to
a much wider variety of different phenotypes.

X. EVOLUTIONARY IMPLICATIONS OF GP
MAP STRUCTURE

While selection remains the driver of phenotypic
change, it has become increasingly clear how much the
road map - in other words, the genotype-phenotype map
- matters. Characteristics such as the skewed distribu-
tion of neutral network sizes and their shape in genotype
space can strongly determine evolutionary outcomes.
On an abstract level this insight is already present in
Iwasa’s concept of free fitness [55]. But in terms of con-
crete genotype-phenotype maps evidence has accumu-
lated only more recently, for RNA secondary structure
[56] and regulatory network GP maps [57], that the neu-
tral network size strongly determines how likely a phe-
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notype is to arise in evolution. In the context of RNA
structures it was also shown more recently that fitter phe-
notypes remain undiscovered if their neutral network is
too small [58]. The most striking result in this respect
is that the functional RNA secondary structures that
have arisen naturally in the course of biological evolution
closely mirror the distribution one would expect based
on the neutral network size [24]. This provides strong ev-
idence that, rather than being the result of strong selec-
tive pressures and evolutionary optimisation, functional
non-coding RNAs represent the most accessible solutions
to a given evolutionary challenge. More generally speak-
ing this result implies that the accessibility of phenotypes
may be just as important a determinant of evolutionary
outcomes as the pressures of natural selection.
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