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Abstract

Many modern statistical applications ask for the estimation of a covariance (or pre-
cision) matrix in settings where the number of variables is larger than the number of
observations. There exists a broad class of ridge-type estimators that employs regular-
ization to cope with the subsequent singularity of the sample covariance matrix. These
estimators depend on a penalty parameter and choosing its value can be hard, in terms
of being computationally unfeasible or tenable only for a restricted set of ridge-type
estimators. Here we introduce a simple graphical tool, the spectral condition number
plot, for informed heuristic penalty parameter assessment. The proposed tool is com-
putationally friendly and can be employed for the full class of ridge-type covariance
(precision) estimators.

Keywords Eigenvalues - High-dimensional covariance (precision) estimation -
£>-Penalization - Matrix condition number

1 Introduction

The covariance matrix X of a p-dimensional random vector Y l.T =[Yi1,....Yipl eR?
is of central importance in many statistical analysis procedures. Estimation of X or its
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inverse £ ~! = @ (generally known as the precision matrix) are central to, for example,
multivariate regression, time-series analysis, canonical correlation analysis, discrimi-
nant analysis, and Gaussian graphical modeling. Let yl.T be arealization of Yl.T. Itis well-

known (Stein 1975) that the sample covariance matrix ¥ =n! Y (i =Yy -7
is a poor estimate of ¥ when p approaches the sample size n or when p > n. When p
approaches n, % will tend to become ill-conditioned. When p>n, T is singular leav-
ing € undefined. However, many contemporary applications in fields such as molecular
biology, neuroimaging, and finance, encounter situations of interest where p > n.

The estimation of X can be improved by shrinking the eigenvalues of ¥ towards
a central value (e.g., Stein 1975) or by convexly combining ¥ with some well-
conditioned target matrix (e.g., Schifer and Strimmer 2005). These solutions define a
class of estimators that can be caught under the umbrella term ‘ridge-type covariance
estimation’. Such estimators depend on a penalty parameter determining the rate of
shrinkage and choosing its value is of prime importance. Available procedures for
choosing the penalty have some (situation dependent) disadvantages in the sense that
(a) they can be computationally expensive, (b) they can be restricted to special cases
within the class of ridge-type estimators, or (c) they are not guaranteed to result in
a meaningful penalty-value. There is thus some demand for a generic and computa-
tionally friendly procedure on the basis of which one can (i) heuristically select an
acceptable (minimal) value for the penalty parameter and (ii) assess if more formal
procedures have indeed proposed an acceptable penalty-value. Here such a tool is
provided on the basis of the matrix condition number.

The remainder is organized as follows. Section 2 reviews the class of ridge-type esti-
mators of the covariance matrix. In addition, penalty parameter selection is reviewed
and an exposé of the matrix condition number is given. The spectral condition number
is central to the introduction of the spectral condition number plot in Sect. 3. This
graphical display is posited as an exploratory tool, that may function as a fast and sim-
ple heuristic in evaluating (a range of) penalty values or in determining a (minimum)
value of the penalty parameter when employing ridge estimators of the covariance
or precision matrix. We emphasize that it is a generic tool, of use for all ridge-type
estimators of either the covariance or precision matrix in situations in which sparsity
is not a direct asset. Section 4 illustrates usage of the spectral condition number plot
with data from the field of oncogenomics. This illustration exemplifies that this tool
may also be of use in situations in which sparsity is indeed ultimately desired, such
as in graphical modeling. The Supplementary Material contains an additional illustra-
tion regarding high-dimensional factor analysis in which sparsity is not sought after.
Section 5 discourses on the software that implements the proposed graphical display.
Sections 6 and 7 conclude with discussions.

2 Eigenstructure regularization and the condition number
2.1 Ridge-type shrinkage estimation

Regularization of the covariance matrix goes back to Stein (1975, 1986), who proposed
shrinking the sample eigenvalues towards some central value. This work spurred a
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large body of literature (see, e.g., Haff 1980, 1991; Yang and Berger 1994; Won et al.
2013; Chi and Lange 2014). Of late, two encompassing forms of what is referred to
as ‘ridge-type covariance estimation’ have emerged.

The first form considers convex combinations of % and some positive definite
(p.d.) target matrix T (Devlin et al. 1975; Ledoit and Wolf 2003, 2004a,b; Schifer
and Strimmer 2005; Fisher and Sun 2011):

$'60) = (1 = a)E + AT, 1)

with penalty parameter A; € (0, 1]. Such an estimator can be motivated from the
Steinian bias-variance tradeoff as it seeks to balance the high-variance, low-bias matrix
3 with the lower-variance, higher-bias matrix T. The second form is of more recent
vintage and considers the ad-hoc estimator (Warton 2008; Yuan and Chan 2008; Ha
and Sun 2014):

~ 11 ~
X (M) =X+ A, 2

with A;p € (0, 0o). This second form is motivated, much like how ridge regression
was introduced by Hoerl and Kennard (1970), as an ad-hoc modification of ¥ in order
to deal with singularity in the high-dimensional setting.

van Wieringen and Peeters (2016) show that both (1) and (2) can be justified as
penalized maximum likelihood estimators (cf. Warton 2008). However, neither (1)
nor (2) utilizes a proper £;-penalty in that perspective. Starting from the proper ridge-
type £2-penalty %tr [(SZ -7 - T)], van Wieringen and Peeters (2016) derive an
alternative estimator:

~ 1 . 1/zlA
ﬁ@d=b@ﬁ1@—MD1 + 5 = AT, 3)

with A, € (0, 00). van Wieringen and Peeters (2016) show that, when considering a
p.d. T, the estimator (3) is an alternative to (1) with superior behavior in terms of risk.
When considering the non-p.d. choice T = 0, they show that (3) acts as an alternative
to (2), again with superior behavior.

Clearly, one may obtain ridge estimators of the precision matrix by considering
the inverses of (1), (2), and (3). For comparisons of these estimators see Lin and
Perlman (1985), Daniels and Kass (2001) and van Wieringen and Peeters (2016).
For expositions of other penalized covariance and precision estimators we confine by
referring to Pourahmadi (2013).

2.2 Penalty parameter selection

The choice of penalty-value is crucial to the aforementioned estimators. Let A denote
a generic penalty. When choosing A too small, an ill-conditioned estimate may ensue
when p > n (see Sect. 2.3). When choosing X too large, relevant data signal may be
lost. Many options for choosing X are available. The ridge estimators, in contrast to £1-
regularized estimators of the covariance or precision matrix (e.g., Friedman et al. 2008;
Bien and Tibshirani 2011), do not generally produce sparse estimates. This implies that
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model-selection-consistent methods (such as usage of the BIC), are not appropriate.
Rather, for £;-type estimators, it is more appropriate to seek loss efficiency.

A generic strategy for determining an optimal value for A that can be used for any
ridge-type estimator of Sect. 2.1 is k-fold cross-validation (of the likelihood function).
Asymptotically, such an approach can be explained in terms of minimizing Kullback-
Leibler divergence. Unfortunately, this strategy is computationally prohibitive for large
p and/or large n. Lian (2011) and Vujaci¢ et al. (2015) propose approximate solutions
to the leave-one-out cross-validation score. While these approximations imply gains
in computational efficiency, they are not guaranteed to propose a reasonable optimal
value for A.

Ledoit and Wolf (2004b) propose a strategy to determine analytically an opti-
mal value for A under a modified Frobenius loss for the estimator (1) under certain
choices of T (cf. Fisher and Sun 2011). This optimal value requires information on the
unknown population matrix X. The optimal penalty-value thus needs to be approx-
imated with some estimate of X. Ledoit and Wolf (2004b) utilize an n-consistent
estimator while Schifer and Strimmer (2005) use the unbiased estimate nnTli In
practice, this may result in overshrinkage (Daniels and Kass 2001) or even negative
penalty-values (Schifer and Strimmer 2005).

Given the concerns stated above, there is some demand for a generic and compu-
tationally friendly tool for usage in the following situations of interest:

(i) When one wants to speedily determine a (minimal) value for A for which fl(k) is
well-conditioned;
(ii) When one wants to determine speedily whether an optimal A proposed by some
other (formal) procedure indeed leads to a well-conditioned estimate ) A);
(iii)) When one wants to determine speedily areasonable minimal value for A for usage in
a search-grid (for an optimal such value) by other, optimization-based, procedures.

In Sect. 3 we propose such a tool based on the spectral condition number.

2.3 Spectral condition number

The estimators from Sect. 2.1 are p.d. when their penalty-values are strictly positive.
However, they are not necessarily well-conditioned for any strictly positive penalty-
value when p 2 n, especially when the penalty takes a value in the lower range. We
seek to quantify the condition of the estimators w.r.t. a given penalty-value. To this
end we utilize a condition number (Von Neumann and Goldstine 1947; Turing 1948).

Consider a nonsingular matrix A € RP*? as well as the matrix norm || - ||. The
condition number w.r.t. matrix inversion can be defined as (Higham 1995)

A+ S8A)" 1 — Al
COHd(A) = lim sup ”( + )71 ” , (4)
=0T |IsA | <el|A]l A

indicating the sensitivity of inversion of A w.r.t. small perturbations §A. When the
norm in (4) is induced by a vector norm the condition number is characterized as
(Higham 1995):

cond(A) = C(A) := [|A[l|A~"]. )
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For singular matrices C(A) would equal co. Hence, a high condition number is indica-
tive of near-singularity and quantifies an ill-conditioned matrix. Indeed, the inverse of
the condition number gives the relative distance of A to the set of singular matrices S
(Demmel 1987):

IA=SI 1

dlSt(A, S) = SHGlS W = m

Another interpretation can be found in error propagation. A high condition num-
ber implies severe loss of accuracy or large propagation of error when performing
matrix inversion under finite precision arithmetic. One can expect to loose at least
[log;o C(A)] digits of accuracy in computing the inverse of A (e.g., Chapter 8 and
Section 6.4 of, respectively, Cheney and Kincaid 2008; Gentle 2007). In terms of error
propagation, C(A) is also a reasonable sensitivity measure for linear systems Ax = b
(Higham 1995).

We can specify (5) with regard to a particular norm. We have special interest in
the £,-condition number C,(A), usually called the spectral condition number for its
relation to the spectral decomposition. When A is a symmetric p.d. matrix, it is well-
known that (Von Neumann and Goldstine 1947; Gentle 2007)

d(A)

— -1y, —
C2(A) = [[All2IA™ 2 = dA),”

where d(A); > ... > d(A), are the eigenvalues of A. We can connect the machinery
of ridge-type regularlzatlon to this spectral condition number.

Let VD(E)VT be the spectral decomposmon of X with D(E) denoting a diag-
onal matrix with the eigenvalues of ¥ on the diagonal and where V denotes the
matrix that contains the corresponding eigenvectors as columns. Note that the orthog-
onality of V implies VVT = VIV =1 p- This decomposition can then be used to
show that, like the Stein estimator (Stein 1975), estimate (2) is rotation equivariant:
3" ) = VDE)VT + AgVVT = VID(E) + Anl, V7. That is, the estimator leaves
the eigenvectors of % intact and thus solely performs shrinkage on the eigenvalues.

When choosing T = ¢I, with ¢ € [0, 00), the estimator (3) also is of the rotation
equivariant form, as we may then write:

aa 1 - 12 -
X (A =V { [/\alp + Z[D(X) - )‘-a‘PIp]z:| + E[D(E) - )Lawlp]} Vi ()

An analogous decomposition can be given for the estimator (1) when choosing T =
ulp, with € (0, 00). The effect of the shrinkage estimators can then, using the
rotation equivariance property, also be explained in terms of restricting the spectral
condition number. For example, using (6), we have:

\/A +HAE)1 P/ UGN 29l i)y _
(0, ¢]

- \/)La+[d(2)p_)La(ﬂ]2/4+[d(z)p—)nu(p]/2 d(z)p
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Similar statements can be made regarding all rotation equivariant versions of the esti-
mators discussed in Sect. 2.1. Similar statements can also be made when considering
a target T for estimators (1) and (3) that is not of the form «I,, whenever this target is

well-conditioned (i.e., has a lower condition number than )A:).

Example 1 For clarification consider the following toy example. Assume we have
a sample covariance matrix 3 whose largest eigenvalue d (Z)l 3. Additionally
assume that ¥ is estimated in a situation where p > nsothatd (Z) » = 0 and, hence,
d (E)] /d (E) p» = 3/0 = oo (under the IEEE computing Standard for Floating-Point
Arithmetic; IEEE Computer Society 2008). Say we are interested in regularization
using the estimator (3) using a scalar target matrix with ¢ = 2. Even using a very small
penalty of A, = 1 x 10~ it is then quickly verified that d[ia(ka)]l/d[ia(ka)]p =
300,003 < d(2)1/d(2),. Under a large penalty such as &, = 10,000 we find that
dIE" (Aa)11 /d1E (ha)]1, = 1.00015. Indeed, van Wieringen and Peeters (2016) have
shown that, in this rotation equivariant setting, d [f)a(ka)] i — 1/ as Ay — oo for
all j. Hence, d [)A:a()»a)]l/d [ﬁa(ka)] p — 1 as the penalty value grows very large.
Section 1 of the Supplementary Material visualizes this behavior (in the given setting)
for various scenarios of interest: ¢ < l/a’(i)l, l/d()A:)l <p<l,p=11<¢p<
d(X);,and ¢ > d(2);. O

Let £()) denote a generic ridge-type estimator of the covariance matrix under
generic penalty A. We thus quantify the conditioning of X (1) for given A (and possibly
a given T) w.r.t. perturbations A + §1 with

. . . d[E(n
GEM] = 150190, = LZDI ™
dAEMm),

A useful property is that Cz[fi(k)] = Cz[fl()\)], i.e., knowing the condition of the
covariance matrix implies knowing the condition of the precision matrix (so essential
in contemporary topics such as graphical modeling). The condition number (7) can
be used to construct a simple and computationally friendly visual tool for penalty
parameter evaluation.

3 The spectral condition number plot

3.1 The basic plot

As one may appreciate from the exposition in Sect. 2.3, when 3 (1) moves away
from near-singularity, small increments in the penalty A can cause dramatic changes
in Co[£(1)]. One can expect that at some point along the domain of A, its value will
be large enough for Cz[fl()»)] to stabilize (in some relative sense). We will cast these
expectations regarding the behavior in a (loose) definition:

Heuristic Definition. Let ¥ (1) denote a generic ridge-type estimator of the covariance
matrix under generic fixed penalty A. In addition, let AA indicate a real perturbation in
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Fig.1 First example of a spectral condition number plot. The ridge estimator used is given in (2). R code to
generate the data and produce the plot can be found in Section 4 of the Supplementary Material. A reasonable
minimal value for the penalty parameter can be found at the x-axis at approximately —3. The exponent
of this number signifies a minimal value of the penalty for which the estimate 3 (%) is well-conditioned

according to the Heuristic Definition. The condition number (32[)51I (exp(—3))] ~ 184.95

A as opposed to the theoretical perturbation 4. We will term the estimate (%) well-
conditioned when small increments A2 in A translate to (relatively) small changes in
Co[Z (X + AX)] vis-a-vis Co[ X (M)].

From experience, when considering ridge-type estimation of X or its inverse in
p > n situations, the point of relative stabilization can be characterized by a leveling-
off of the acceleration along the curve when plotting the condition number GIEM)]
against the (chosen) domain of A. Consider Fig. 1, which is the first example of what
we call the spectral condition number plot.

Figure 1 indeed plots (7) against the natural logarithm of 1. As should be clear from
Sect. 2.3, the spectral condition number displays (mostly) decreasing concave upward
behavior in the feasible domain of the penalty parameter with a vertical asymptote at
In(0) and a horizontal asymptote at C(T) (which amounts to 1 in case of a strictly
positive scalar target). The logarithm is used on the x-axis as, especially for estimators
(2) and (3), it is more natural to consider orders of magnitude for 1. In addition,
usage of the logarithm ‘decompresses’ the lower domain of A, which enhances the
visualization of the point of relative stabilization, as it is in the lower domain of the
penalty parameter where ill-conditioning usually ensues when p > n. Figure 1 uses
simulated data (see Section 4 of the Supplementary Material) with p = 100 and
n = 25. The estimator used is the ad-hoc ridge-type estimator given by (2). One can
observe relative stabilization of the spectral condition number—in the sense of the
Heuristic Definition—at approximately exp(— 3) & .05. This value can be taken as a
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reasonable (minimal) value for the penalty parameter. The spectral condition number
plot can be a simple visual tool of interest in the situations sketched in Sect. 2.2, as
will be illustrated in Sect. 4.

3.2 Interpretational aids

The basic spectral condition number plot can be amended with interpretational aids.
The software (see Sect. 5) can add two such aids to form a panel of plots. These aids
support the heuristic choice for a penalty-value and provide additional information on
the basic plot.

The first aid is the visualization of [log; Cg[)AJ()»)]J against the domain of A. As
stated in Sect. 2.3, [log; Cz[f (M)]] provides an estimate of the digits of accuracy one
can expect to loose (on top of the digit loss due to inherent numerical imprecision) in
operations based on 2 (A). Note that this estimate is dependent on the norm. This aid
can, for example, support choosing a (miminal) penalty-value on the basis of the error
propagation (in terms of approximate loss in digits of accuracy) one finds acceptable.
Figure 2 gives an example.

Let Gln(k) S OEW] denote the curvature (of the basic plot) that maps the natural
logarithm of the penalty-value to the condition number of the regularized precision
matrix. We seek to approximate the second-order derivative of this curvature (the
acceleration) at given penalty-values in the domain [Amin, Amax]. The software (see
Sect. 5) requires the specification of Apin and Amax, as well as the number of steps

one wants to take along the domain [Amin, Amax]. Say we take s = 1, ..., S steps,
such that A1 = Amin, A2, ..., As—1, As = Amax. The implementation takes steps that
are log-equidistant, hence In(A;) — In(A;—1) = [In(Amax) — In(Apin)]/(S — 1) =1
foralls = 2,..., S. The central finite difference approximation to the second-order
derivative (see e.g., LeVeque 2007) of €, > CalE W] atIn(X;) then takes the following
form:
< _ O[X(s41)] = 2C[X (1)) + Co[ X (hs—1)]
InG)>CalE ()] 2 ’
whichis available fors = 2, ..., §—1. The second visual aid thus plots ¢

In()—>Co[E(1)]
against the feasible domain of A (see Fig. 2 for an example). The behavior of the

condition number along the domain of the penalty-value is to always decrease. This
decreasing behavior is not consistently concave upward for (1) (under general non-
scalar targets) and (3), as there may be parts of the domain where the behavior is
concave downward. This aid may then more clearly indicate inflection points in the
regularization path of the condition number. In addition, this aid may put perspective
on the point of relative stabilization when the y-axis of the basic plot represents a very
wide range.

3.3 Choosing Ain and A ax for plotting

As stated, the software requires the specification of Apiy, and Apax. Practical choices
for these arguments depend on the type of ridge-estimator one wants to use. Estimator
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Fig.2 The spectral condition number plot with interpretational aids. The data are the same as for Fig. 1 (see
Section 4 of the Supplementary Material). The ridge estimator used is givenin (3) with target T = ) oIp)_1 .
This estimator exhibits nonlinear shrinkage. The left-hand panels give the basic spectral condition number
plot. The middle and right-hand panels exemplify the interpretational aids to the basic plot: the approximate
loss in digits of accuracy (middle panel) and the approximation of the acceleration along the curve in the
basic plot (right-hand panel). The top panels give the basic condition number plot and its interpretational aids
for the domain A, € [1 x 10*5, 1000]. The bottom panels zoom in on the boxed areas. The interpretational
aids can support the selection of a (minimal) penalty-value and may provide additional information on
the basic plot. For example, say we are interested in choosing (approximately) the minimal value for the
penalty for which the error propagation (in terms of approximate loss in digits of accuracy) is at most 1.
From the middle panels we see that we should then choose the penalty-value to be exp(— 4.2). From the
right-hand panels we may infer that the regularization path of the condition number displays decreasing
concave downward behavior for penalty-values between approximately exp(.2) and exp(1.8)

(1) has a natural upper-bound to its domain for the penalty-value: 1. It is then natural
to set Amax = 1 for this estimator. One needs to choose Amin strictly positive, but
small such that it is indicative of ill-conditioning when present. A practical choice that
abides these wishes is 1 x 107>, Hence, when using estimator (1) in producing the
condition number plot we recommend to set A1 € [1 x 1075, 1]

Estimators (2) and (3) do not have a natural upper-bound to the domain for their
penalty-values. Hence, here one also needs to choose Amax in such a way that the
domain of well-conditionedness is represented. We can do this by realizing that esti-
mators (1) and (3) behave, when they have the same p.d. target matrix, similarly at
the boundaries of the penalty domain when mapping A and A, to the same scale (van
Wieringen and Peeters 2016). This mapping may be obtainedas Ay = 1 — 1/(A, + 1).
When A, = 1 x 107 then A1 &~ 1 x 1075, When A, = 20 then A; ~ .95, implying
almost full shrinkage towards the target in the latter. Hence, for plotting one may

@ Springer



638 C.F.W.Peeters et al.

choose A, € [1 x 1077, 20]. As (2) behaves similarly to (3) at the boundaries of the
penalty parameter domain when the latter has the null matrix as the target, it is also a
good practical choice to set A;j € [1 x 1073, 20]. Note that most illustrations abide
by these recommendations.

Software implementing the spectral condition number plot is discussed in Sect. 5.
The following section illustrates, using oncogenomics data, the various uses of the
spectral condition number plot with regard to covariance or precision matrix regu-
larization. Section 2 of the Supplementary Material contains a second data example
to further illustrate usage of the condition number plot. Section 4 of the Supplemen-
tary Material contains all R code with which these illustrations can be reproduced
(including querying the data).

4 lllustration
4.1 Context and data

Various histological variants of kidney cancer are designated with the amalgamation
‘renal cell carcinoma’ (RCC). Chromophobe RCC (ChRCC) is a rather rare and pre-
dominantly sporadic histological variant, accounting for 4-6% of RCC cases (Stec et al.
2009). ChRCC originates in the distal convoluted tubule (Shuch et al. 2015), a portion
of the nephron (the basic structural unit of the kidney) that serves to maintain elec-
trolyte balance (Subramanya and Ellison 2014). Often, histological variants of cancer
have a distinct pathogenesis contingent upon the deregulation of certain molecular
pathways. A pathway can be thought of as a collection of molecular features that work
interdependently to regulate some biochemical function. Recent evidence suggests that
(reactivation of) the Hedgehog (Hh) signaling pathway may support cancer develop-
ment and progression in clear cell RCC (CCRCC) (Dormoy et al. 2009; D’ Amato
et al. 2014), the most common subtype of RCC. The Hh-signaling pathway is crucial
in the sense that it “orchestrates tissue patterning” in embryonic development, making
it “critical to normal kidney development, as it regulates the proliferation and differen-
tiation of mesenchymal cells in the metanephric kidney” (D’ Amato et al. 2014). Later
in life Hh-signaling is largely silenced and constitutive reactivation may elicit and
support tumor growth and vascularization (Dormoy et al. 2009; D’ Amato et al. 2014).
Our goal here is to explore if Hh-signaling might also be reactivated in ChRCC. The
exploration will make use of network modeling (see Sect. 4.3) in which the network
is taken as a representation of a biochemical pathway. This exercise hinges upon a
well-conditioned precision matrix.

We attained data on RCC from the The Cancer Genome Atlas Research Network
(2013) as queried through the Cancer Genomics Data Server (Cerami et al. 2012;
Gao et al. 2013) using the cgdsr R-package (Jacobsen 2015). All ChRCC samples
were retrieved for which messenger ribonucleic acid (mRNA) data is available, giv-
ing a total of n = 15 samples. The data stem from the I[lluminaHiSeq_RNASeqV?2
RNA sequencing platform and consist of normalized relative gene expressions. That
is, individual gene expressions are given as mRNA z-scores relative to a reference
population that consists of all tumors that are diploid for the gene in question. All
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features were retained that map to the Hh-signaling pathway according to the Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and Goto 2000), giving a
total of p = 56 gene features. Regularization of the desired precision matrix is needed
as p > n. Even though features from genomic data are often measured on or mapped
to (approximately) the same scale, regularization on the standardized scale is often
appropriate as the variability of the features may differ substantially when p > n;
a point also made by Warton (2008). Note that we may use the correlation matrix

R = (ﬁ oIp)_% f)(ﬁ oIp)_% instead of £ in Egs. (1) to (3) without loss of generality.

4.2 Penalty parameter evaluation and selection

The precision estimator of choice is the inverse of (3). The target matrix is chosen
as T = ¢l,, with ¢ set to the reciprocal of the average eigenvalue of R: 1. First,
the approximate leave-one-out cross-validation (aLOOCV) procedure (Lian 2011;
Vujaci¢ et al. 2015) is used (on the negative log-likelihood) in finding an optimal
value for A, under the given target and data settings. This procedure searches for the
optimal value A% in the domain A, € [I x 1073, 20]. A relatively fine-grained grid
of 10,000 log-equidistant steps along this domain points to 1 x 107> as being the
optimal value for the penalty (in the chosen domain). This value seems low given
the p/n ratio of the data. This calls for usage-type (ii) of the condition number plot
(Sect. 2.2), where one uses it to determine if an optimal penalty as proposed by
some procedure indeed leads to a well-conditioned estimate. The condition number is
plotted over the same penalty-domain considered by the aLOOCYV procedure. The left-
hand panel of Fig. 3 depicts this condition number plot. The dashed (green) vertical
line represents the penalty-value that was chosen as optimal by the aLOOCYV proce-
dure. Clearly, the precision estimate at A, = 1 x 107> is not well-conditioned in the
sense of the Heuristic Definition. This exemplifies that the (essentially large-sample)
approximation to the LOOCV score may not be suitable for non-sparse situations
and/or for situations in which the p/n ratio grows more extreme (the negative log-
likelihood term then tends to completely dominate the bias term). At this point one
could use the condition number plot in accordance with usage-type (i), in which one
seeks a reasonable minimal penalty-value. This reasonable minimal value (in accor-
dance with the Heuristic Definition) can be found at approximately exp(— 6), at which
Co[Q (exp(— 6))] = Co[E” (exp(— 6))] ~ 247.66.

One could worry that the precision estimate retains too much noise under the heuris-
tic minimal penalty-value. To this end, a proper LOOCYV procedure is implemented
that makes use of the root-finding Brent algorithm (Brent 1971). The expectation is
that the proper data-driven LOOCYV procedure will find an optimal penalty-value in
the domain of 1, for which the estimate is well-conditioned. The penalty-space of
search is thus constrained to the region of well-conditionedness for additional speed,
exemplifying usage-type (iii) of the condition number plot. Hence, the LOOCYV pro-
cedure is told to search for the optimal value A} in the domain X, € [exp(— 6), 20].
The optimal penalty-value is indeed found to the right of the heuristic minimal
value at 5.2. At this value, indicated by the solid (red) vertical line in Fig. 3,
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Cg[ﬁa 5.2)] = Cg[fa(5.2)] ~ 8.76. The precision estimate at this penalty-value
is used in further analysis.

4.3 Further analysis

Biochemical networks are often reconstructed from data through graphical models.
Graphical modeling refers to a class of probabilistic models that uses graphs to express
conditional (in)dependence relations (i.e., Markov properties) between random vari-
ables. Let V denote a finite set of vertices that correspond to a collection of random
variables with probability distribution P, i.e., {¥1,...,Y,} ~ P. Let £ denote a set
of edges, where edges are understood to consist of pairs of distinct vertices such that
Yj is connected to Y;r,i.e., Y; — Y;» € £. We then consider graphs G = (V, £) under
the basic assumption {Y7,...,Y,} ~ Np (0, ). In this Gaussian case, conditional
independence between a pair of variables corresponds to zero entries in the precision
matrix. Indeed, the following relations can be shown to hold for all pairs {Y;, Y;/} € V
with j # j’ (see, e.g., Whittaker 1990):

(@) =0 Y LYy V\[Y;, Yj} =Y £ Yy,

where # indicates the absence of an edge. Hence, the graphical model can be selected
by determining the support of the precision matrix. For support determination we
resort to a local false discovery rate procedure proposed by Schifer and Strimmer
(2005), retaining only those edges whose empirical posterior probability of being
present equals or exceeds .80.

Note that the coupling of a ridge estimate of the precision matrix with post-hoc edge
selection differs from the dominant graphical lasso approach to graphical modeling
(Friedman et al. 2008) which induces automatic sparsity. It is well-known that £ -based
estimation (and thus support recovery) is consistent only under the assumption that
the true graphical model is (very) sparse. When the number of truly non-null elements
exceeds the sample size the £1-penalty is unable to retrieve the sparsity pattern (van
Wieringen and Peeters 2016). This is undesirable as there is accumulating evidence that
many networks, such as biochemical pathways involved in disease aetiology, are dense
(Boyle et al. 2017). In such a situation the coupling of a non-sparsity-inducing penalty
with a post-hoc selection step such as the local false discovery rate can outperform
the (graphical) lasso (van Wieringen and Peeters 2016; Bilgrau et al. 2015). These
considerations underlie our chosen approach.

The right-hand panel of Fig. 3 represents the retrieved Markov network on the basis
of Q° (5.2). The vertex-labels are curated gene names of the Hh-signaling pathway
genes. The graph seems to retrieve salient features of the Hh-signaling pathway. The
Hh-signaling pathway involves a cascade from the members of the Hh-family (IHH,
SHH, and DHH) via the SMO gene to ZIC2 and members of the Wnt-signaling path-
way. The largest connected component is indicative of this cascade, giving tentative
evidence of reactivation of the Hh-signaling pathway in (at least) rudimentary form in
ChRCC.
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Fig. 3 Left-hand panel: Condition number plot of the Hedgehog (Hh) signaling pathway variables on the
chromophobe kidney cancer data of The Cancer Genome Atlas Research Network (2013). The dashed
vertical line indicates the value of the penalty parameter that was chosen as optimal by the aLOOCV
procedure (1 x 1073). The solid vertical line indicates the value of the penalty that was chosen as optimal
by the root-finding LOOCYV procedure (5.2). The value indicated by the aLOOCYV procedure does not lie
in a region where the estimate can be deemed well-conditioned. Right-hand panel: The retrieved Markov
network using the optimal penalty-value as indicated by the root-finding LOOCYV procedure. The vertex-
labels are Human Genome Organization (HUGO) Gene Nomenclature Committee (HGNC) curated gene
names of the Hh-signaling pathway genes. Certain salient features of the Hh-signaling pathway are retrieved,
indicating that this pathway may be reactivated in ChRCC

5 Software

The R-package rags2ridges (Peeters et al. 2019) implements the ridge estimators
of Sect. 2.1 and the condition number plot through the function CNplot. This func-
tion outputs visualizations such as Figs. 1 and 2. The condition number is efficiently
determined by the calculation of (solely) the largest and smallest eigenvalues using an
implicitly restarted Lanczos method (IRLM; Colvetti et al. 1994) available through the
RSpectra package (Qiu and Mei 2019). For most practical purposes this calculation
is fast enough, especially in rotation equivariant situations for which only a single
IRLM run is required to obtain the complete solution path of the condition number.
Additional computational speed is achieved by the implementation of core operations
in C++ via Repp and ReppArmadi 11 o (Eddelbuettel and Frangois 201 1; Eddelbuet-
tel 2013). For example, producing the basic condition number plot for the estimator
(3) on the basis of data with dimensions p = 1000 and n = 200, using a scalar target
matrix and 1000 steps along the penalty-domain, will take approximately .35 s (see
Section 3 of the Supplementary Material for a benchmark exercise). The additional
computational cost of the interpretational aids is linear: producing the panel of plots
(including interpretational aids) for the situation just given takes approximately .38 s.
When A is very small and p > n the calculation of the condition number may suffer
from rounding problems (much like the imaginary linear system £x = b), but remains
adequate in its indication of ill-conditioning.
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When spectral computation is deemed too costly in terms of floating-point opera-
tions, or when one wants more speed in determining the condition number, the CNplot
function offers the option to cheaply approximate the £;-condition number, which
amounts to

CUEMWT =1 @) hil @) 1= mngD[iu)],-,-w rnjng[ﬁ(x)]j,-w
j J

J

The £;-condition number is computationally less complex than the calculation of
C2[%(1)] in non-rotation equivariant settings. The machinery of ridge-type regulariza-
tion is, however, less directly connected to this £;-condition number (in comparison
to the £>-condition number). The approximation of Cl[ﬁ(k)] uses LAPACK rou-
tines (Anderson et al. 1999) and avoids overflow. This approximation is accessed
through the rcond function from R (R Development Core Team 2011). The pack-
age rags2ridges is freely available from the Comprehensive R Archive Network
(http://cran.r-project.org/) (R Development Core Team 2011).

6 Discussion

The condition number plot is a heuristic tool and heuristics should be handled with
care. Below, some cases are presented that serve as notes of caution. They exemplify
that the proposed heuristic accompanying the condition number plot should not be
applied (as any statistical technique) without proper inspection of the data.

6.1 Artificial ill-conditioning

A first concern is that, when the variables are measured on different scales, artificial
ill-conditioning may ensue (see, e.g., Gentle 2007). In case one worries if the condition
number is an adequate indication of error propagation when using variables on their
original scale one can ensure that the columns (or rows) of the input matrix are on the
same scale. This is easily achieved by scaling the input covariance matrix to be the
correlation matrix. Another issue is that it is not guaranteed that the condition number
plot will give an unequivocal point of relative stabilization for every data problem
(which hinges in part on the chosen domain of the penalty parameter). Such situations
can be dealt with by extending the domain of the penalty parameter or by determining
the value of A that corresponds to the loss of |log;,C (X)) digits (in the imaginary
linear system Xx = b) one finds acceptable.

6.2 Naturally high condition numbers
Some covariance matrices may have high condition numbers as their ‘natural state’.

Consider the following covariance matrix: X ., = (1 — 0)I, + oJp, with —1/(p —
1) < ¢ < 1 and where J, denotes the (p x p)-dimensional all-ones matrix. The
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variates are thus equicorrelated with unit variance. The eigenvalues of this covariance
matrix are po + (1 — @) and (with multiplicity p — 1) 1 — o. Consequently, its
condition number equals 1 + po/(1 — o). The condition number of X, thus becomes
high when the number of variates grows large and/or the (marginal) correlation o
approaches one (or —1/(p — 1)). The large ratio between the largest and smallest
eigenvalues of X, in such situations mimics a high-dimensional setting in which
any non-zero eigenvalue of the sample covariance estimate is infinitely larger than
the smallest (zero) eigenvalues. However, irrespective of the number of samples, any
sample covariance estimate of an X, with large p and o close to unity (or —1/(p—1))
exhibits such a large ratio. Would one estimate the X ., in penalized fashion (even for
reasonable sample sizes) and choose the penalty parameter from the condition number
plot as recommended, then one would select a penalty parameter that yields a ‘well-
conditioned’ estimate. Effectively, this amounts to limiting the difference between the
penalized eigenvalues, which need not give a condition number representative of X ;.
Thus, the recommendation to select the penalty parameter from the well-conditioned
domain of the condition number plot may in some (perhaps exotic) cases lead to a
choice that crushes too much relevant signal (shrinking the largest eigenvalue too
much). For high-dimensional settings this may be unavoidable, but for larger sample
sizes this is undesirable.

6.3 Contamination

Real data is often contaminated with outliers. To illustrate the potential effect of
outliers on the usage of the condition number plot, consider data y; drawn from
a contaminated distribution, typically modeled by a mixture distribution: y; ~
(1 — PN, (0,%) + ¢N,(0,cl,) fori = 1,...,n, some positive constant ¢ > 0,
and mixing proportion ¢ € [0, 1]. Then, the expectation of the sample covariance
matrix E(y,-yl.T) = (1 — )X + cdl,. Its eigenvalues are: d[(1 — @)X + cpl,]; =
(I —-¢)d(X)j +ce,for j =1,..., p. In high-dimensional settings with few sam-
ples the presence of any outlier corresponds to mixing proportions clearly deviating
from zero. In combination with any substantial ¢ the contribution of the outlier(s)
to the eigenvalues may be such that the contaminated sample covariance matrix is
represented as better conditioned (vis-a-vis its uncontaminated counterpart). It is the
outlier(s) that will determine the domain of well-conditionedness in such a situation.
Then, when choosing the penalty parameter in accordance with the Heuristic Defi-
nition, undershrinkage may ensue. In situations in which the results are influenced
by outliers one has several options at disposal. One could simply trim the data as a
preprocessing step before obtaining . Another option would be to use techniques
for identifying (and subsequently removing) multivariate outliers such as those based
on the robust Mahalanobis distance (Mahalanobis 1936). One may also opt to use a
robust estimator for fl, such as the well-known Minimum Covariance Determinant
estimator (Rousseeuw 1984), in producing the condition number plot.
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7 Conclusion

We have proposed a simple visual display that may be of aid in determining the value
of the penalty parameter in ridge-type estimation of the covariance or precision matrix
when the number of variables is large relative to the sample size. The visualization we
propose plots the spectral condition number against the domain of the penalty param-
eter. As the value of the penalty parameter increases, the covariance (or precision)
matrix will move away from (near) singularity. In some lower-end of the domain this
will mean that small increments in the value of the penalty parameter will lead to
large decreases of the condition number. At some point, the condition number can be
expected to stabilize, in the sense that small increments in the value of the penalty have
(relatively) little effect on the condition number. The point of relative stabilization may
be deemed to indicate a reasonable (minimal) value for the penalty parameter. Hence,
in analogy to usage of the scree plot in factor analysis (Cattell 1966), initial interest
will lie with the assessment of the ‘elbow’ of the plot.

Usage of the condition number plot was exemplified in situations concerned with the
direct estimation of covariance or precision matrices. The plot may also be of interest
in situations in which (scaled versions of) these matrices are conducive to further
computational procedures. For example, it may support the ridge approach to the
regression problem x = Y + €. We would then assess the conditioning of YTY + AT P

for use in the ridge-solution to the regression coefficients: /§ = (Y'Y + M p)_lYTx.

We explicitly state that we view the proposed condition number plot as an heuristic
tool. We emphasize ‘tool’, as it gives easy and fast access to penalty-value assessment
and determination without proposing an optimal (in some sense) value. Also, in the
tradition of exploratory data analysis (Tukey 1977), usage of the condition number
plot requires good judgment. As any heuristic method, it is not without flaws.

Notwithstanding these concerns, the condition number plot gives access to a fast
and generic (i.e., non-target and non-ridge-type specific) procedure for regularization
parameter determination that is of use when analytic solutions are not available and
when other procedures fail. In addition, the condition number plot may aid more formal
procedures, in terms of assessing if a well-conditioned estimate is indeed obtained,
and in terms of proposing a reasonable minimal value for the regularization parameter
for usage in a search grid.
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