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Abstract

Gaze estimation systems determine where someone is looking. Gaze
is used for a wide range of applications including market research,
usability studies, and gaze-based interfaces. Traditional equipment uses
special hardware. To bring gaze estimation mainstream, researchers
are exploring approaches that use commodity hardware alone. My
work addresses two outstanding problems in this field: 1) it is hard
to collect good ground truth eye images for machine learning, and 2)
gaze estimation systems do not generalize well – once they are trained
with images from one scenario, they do not work in another scenario.

In this dissertation I address these problems in two different ways:
learning-by-synthesis and analysis-by-synthesis. Learning-by-synthesis is
the process of training a machine learning system with synthetic data,
i.e. data that has been rendered with graphics rather than collected by
hand. Analysis-by-synthesis is a computer vision strategy that couples
a generative model of image formation (synthesis) with a perceptive
model of scene comparison (analysis). The goal is to synthesize an
image that best matches an observed image.

In this dissertation I present three main contributions. First, I present
a new method for training gaze estimation systems that use machine
learning: learning-by-synthesis using 3D head scans and photorealistic
rendering. Second, I present a new morphable model of the eye region.
I show how this model can be used to generate large amounts of varied
data for learning-by-synthesis. Third, I present a new method for
gaze estimation: analysis-by-synthesis. I demonstrate how analysis-
by-synthesis can generalize to different scenarios, estimating gaze in a
device- and person- independent manner.





Acknowledgements

Many people have supported me during my PhD. I would like to
thank three in particular. I am most grateful to my supervisor Peter
Robinson who has been a constant source of inspiration, guidance, and
common-sense since I joined Gonville & Caius eight years ago. I am
also indebted to Andreas Bulling whose enthusiasm and energy drove
me towards goals I would never otherwise have thought possible. I will
miss our frequent chats over Skype. I would also like to thank Tadas
Baltrusaitis who has been more than just an excellent collaborator and
role-model scientist, but also an invaluable friend.

I could not imagine a better place to do a PhD than the Computer Lab.
For their guidance, I’d like to thank Neil, Alan, Rafal, Graham, and
Lise. Special thanks go out to Richard who helped with the maths in
Chapter 4, Brian who was always there to assist with hardware, and
Christian who first supervised me in Graphics and Computer Vision.
For their friendship, I’d like to thank Ian, Meredydd, Marwa, Jingjing,
Flora, and Sam. Many of my fondest memories in the lab came from
being a part of the Happy Hour crew. Thanks to Leszek, Vaiva, Ollie,
Advait, and Tamas for all the good times, conversations, and beers we
shared. An encyclopedic knowledge of Milton Brewery’s selection will
forever be burned into my mind.

This work would not have been possible without the generous financial
support of the EPSRC, University of Cambridge Computer Lab, and
Gonville & Caius College. To each I am grateful.

I was fortunate enough to enjoy an internship at Microsoft, so I’d like
to extend thanks to those who supported me there, including Jamie
Shotton, Andrew Fitzgibbon, Tom Cashman, and Jonathan Taylor.
Indeed, it is their work on hand tracking that inspired chapters 6 and
7. Best of all, I now find myself back in the same team, and feel lucky
to be able to call these wonderful people my colleagues.

I am deeply grateful to my family for their constant love and encour-
agement. I thank my father for passing on to me his love of maths
and computing, and I thank my mother for teaching me the value
of hard work. Lastly, I would like to thank Maeve. Thanks to your
love, kindness, patience, and good humor, the time we shared together
during our PhDs has been the happiest time of my life.





Publications

This dissertation includes work published in the following:

– Wood, E., Baltrušaitis, T., Zhang, X., Sugano, Y., Robinson, P., &
Bulling, A. (2015, December). Rendering of eyes for eye-shape regis-
tration and gaze estimation. In 2015 IEEE International Conference
on Computer Vision (ICCV) (pp. 3756-3764).

– Wood, E., Baltrušaitis, T., Morency, L. P., Robinson, P., & Bulling, A.
(2016, March). Learning an appearance-based gaze estimator from
one million synthesised images. In Proc. of the ACM Symposium
on Eye Tracking Research & Applications (pp. 131-138).

– Wood, E., Baltrušaitis, T., Morency, L. P., Robinson, P., & Bulling,
A. (2016, May). A 3D Morphable Model of the Eye Region. Euro-
graphics Conference 2016 (poster).

– Wood, E., Baltrušaitis, T., Morency, L. P., Robinson, P., & Bulling,
A. (2016, October). A 3D morphable eye region model for gaze
estimation. In European Conference on Computer Vision (pp. 297-
313). Springer.

Other publications from work not included in this dissertation:

– Wood, E., & Bulling, A. (2014, March). Eyetab: Model-based gaze
estimation on unmodified tablet computers. In Proc. of the ACM
Symposium on Eye Tracking Research and Applications (pp. 207-210).

– Wood, E., & Robinson, P. (2014, November). NetBoards: Investi-
gating a Collection of Personal Noticeboard Displays in the Work-
place. In Proc. of the Ninth ACM International Conference on
Interactive Tabletops and Surfaces (pp. 177-183).

– Taylor, J., Bordeaux, L., Cashman, T., Corish, B., Keskin, C., Sharp,
T., . . .& Shotton, J. (2016, July). Efficient and precise interactive
hand tracking through joint, continuous optimization of pose and
correspondences. ACM Transactions on Graphics (TOG), 35(4), 143.

– Wood, E., Taylor, J., Fogarty, J., Fitzgibbon, A., & Shotton, J. (2016,
November). ShadowHands: High-Fidelity Remote Hand Gesture
Visualization using a Hand Tracker. In Proc. of the 2016 ACM
conference on Interactive Surfaces and Spaces (pp. 77-84).





Contents

1 Introduction 15

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Outstanding problems . . . . . . . . . . . . . . . . . 18

1.3 My approaches . . . . . . . . . . . . . . . . . . . . . 19

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . 20

1.5 Structure . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Eye gaze estimation 23

2.1 The human eye . . . . . . . . . . . . . . . . . . . . . 24

2.1.1 Internal anatomy . . . . . . . . . . . . . . . . 25

2.1.2 External anatomy . . . . . . . . . . . . . . . . 26

2.2 Mainstream eye tracking . . . . . . . . . . . . . . . . 27

2.2.1 PC-CR eye tracking . . . . . . . . . . . . . . 27

2.2.2 Remote eye tracking . . . . . . . . . . . . . . 29

2.2.3 Wearable eye tracking . . . . . . . . . . . . . 29

2.3 Alternative approaches . . . . . . . . . . . . . . . . . 30

2.4 Visible light remote gaze estimation . . . . . . . . . . 31

2.4.1 Challenges . . . . . . . . . . . . . . . . . . . 31

2.4.2 Categorization . . . . . . . . . . . . . . . . . 32

2.4.3 Model-based gaze estimation . . . . . . . . . . 33

2.4.4 Feature-point–based gaze estimation . . . . . . 34

2.4.5 Appearance-based gaze estimation . . . . . . . 34

2.5 Taxonomy of tracking types . . . . . . . . . . . . . . 36

9



2.6 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6.1 Columbia gaze dataset . . . . . . . . . . . . . 39

2.6.2 Eyediap . . . . . . . . . . . . . . . . . . . . . 40

2.6.3 MPIIGaze . . . . . . . . . . . . . . . . . . . . 41

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Learning-by-synthesis for gaze-estimation 43

3.1 Related work . . . . . . . . . . . . . . . . . . . . . . 44

3.1.1 Learning using synthetic data . . . . . . . . . 45

3.1.2 Computational modelling of the eyes . . . . . 46

3.2 Dynamic eye region model . . . . . . . . . . . . . . . 47

3.2.1 Simplified eyeball model . . . . . . . . . . . . 48

3.2.2 3D head scan acquisition . . . . . . . . . . . . 49

3.2.3 Eye region geometry preparation . . . . . . . 49

3.2.4 Modelling eyelid motion and eyelashes . . . . 51

3.3 Synthesizing training data . . . . . . . . . . . . . . . 52

3.3.1 Posing the model . . . . . . . . . . . . . . . . 52

3.3.2 Creating realistic illumination . . . . . . . . . 53

3.3.3 Eye-region landmark annotation . . . . . . . . 54

3.3.4 Rendering Images . . . . . . . . . . . . . . . . 54

3.4 Experiments – Eye shape registration . . . . . . . . . 54

3.4.1 Eyelid registration in the wild . . . . . . . . . 55

3.4.2 Eye-shape registration for webcams . . . . . . 57

3.5 Experiments – Gaze estimation . . . . . . . . . . . . 58

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Eye region morphable model 63

4.1 3D morphable models . . . . . . . . . . . . . . . . . 64

4.1.1 Learning-by-synthesis with 3DMMs . . . . . . 64

4.1.2 Previous face models . . . . . . . . . . . . . . 66

4.1.3 Challenges of capturing the eye region in 3D . 67

4.2 My multi-part eye region model . . . . . . . . . . . . 68



4.3 Part 1: the facial eye region . . . . . . . . . . . . . . . 68

4.3.1 Data acquisition . . . . . . . . . . . . . . . . 68

4.3.2 Scan registration . . . . . . . . . . . . . . . . 69

4.3.3 Linear shape modelMgeo . . . . . . . . . . . . 70

4.3.4 Linear texture modelMtex . . . . . . . . . . . 72

4.4 Part 2: the eyeball . . . . . . . . . . . . . . . . . . . . 73

4.4.1 Eyeball shape . . . . . . . . . . . . . . . . . . 73

4.4.2 Iris texture modelMeye . . . . . . . . . . . . . 74

4.5 Posing our model . . . . . . . . . . . . . . . . . . . . 74

4.5.1 Eyeball rotation . . . . . . . . . . . . . . . . 75

4.5.2 Procedural eyelid motion . . . . . . . . . . . 75

4.5.3 Shrinkwrapping the eye region . . . . . . . . 76

4.6 Rendering the model . . . . . . . . . . . . . . . . . . 76

4.6.1 Smoother skin using subdivision surfaces . . . 77

4.6.2 Physically based iris refraction . . . . . . . . . 78

4.6.3 Eyelashes . . . . . . . . . . . . . . . . . . . . 79

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . 79

5 Learning an appearance based gaze estimator from one mil-
lion synthetic images 81

5.1 Related work . . . . . . . . . . . . . . . . . . . . . . 82

5.1.1 Rendering eyes in real time . . . . . . . . . . 82

5.1.2 Using morphable models for gaze estimation . 83

5.2 Generative eye region model . . . . . . . . . . . . . . 83

5.3 Synthesizing eye images . . . . . . . . . . . . . . . . 84

5.3.1 Rendering the models . . . . . . . . . . . . . 84

5.3.2 Illuminating the models . . . . . . . . . . . . 86

5.4 Using UnityEyes . . . . . . . . . . . . . . . . . . . . 87

5.4.1 Targetting a scenario . . . . . . . . . . . . . . 88

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . 88

5.5.1 Matching eye images in the wild . . . . . . . . 89

5.5.2 Gaze estimation . . . . . . . . . . . . . . . . 91

5.5.3 Shape variance . . . . . . . . . . . . . . . . . 92

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . 92



6 Analysis-by-synthesis for gaze estimation 95

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2 Synthesizing eye images . . . . . . . . . . . . . . . . 97

6.2.1 Morphable facial eye region model . . . . . . 98

6.2.2 Parametric eyeball model . . . . . . . . . . . . 98

6.2.3 Posing the model . . . . . . . . . . . . . . . . 99

6.2.4 Scene illumination . . . . . . . . . . . . . . . 99

6.2.5 Camera projection . . . . . . . . . . . . . . . 100

6.2.6 DirectX rendering framework . . . . . . . . . 100

6.3 Analysis-by-synthesis for gaze estimation . . . . . . . 100

6.3.1 Objective function . . . . . . . . . . . . . . . 101

6.3.2 Optimization procedure . . . . . . . . . . . . 102

6.3.3 Extracting gaze direction . . . . . . . . . . . . 103

6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . 103

6.4.1 Gaze estimation . . . . . . . . . . . . . . . . 104

6.4.2 Morphable model evaluation . . . . . . . . . . 106

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . 107

7 Analysis-by-synthesis in real time 109

7.1 Binocular eye region tracking . . . . . . . . . . . . . 109

7.1.1 Binocular eye region model . . . . . . . . . . 110

7.1.2 Energy formulation . . . . . . . . . . . . . . 112

7.1.3 Optimization procedure . . . . . . . . . . . . 114

7.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . 115

7.2.1 Gaze estimation on Columbia . . . . . . . . . 115

7.2.2 Gaze estimation on Eyediap . . . . . . . . . . 116

7.2.3 Gaze estimation on MPIIGaze . . . . . . . . . 117

7.2.4 Runtime . . . . . . . . . . . . . . . . . . . . 118

7.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . 119



8 Conclusion 121

8.1 Contributions . . . . . . . . . . . . . . . . . . . . . . 121

8.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . 122

8.3 Future work . . . . . . . . . . . . . . . . . . . . . . . 123

8.3.1 What level of realism is required? . . . . . . . 123

8.3.2 Hybrid approaches . . . . . . . . . . . . . . . 124

8.3.3 Tracking the eyes and face together . . . . . . 125

8.4 Final remarks . . . . . . . . . . . . . . . . . . . . . . 125





1

Introduction

Gaze estimation is the process of determining where someone is look-
ing, either as a gaze direction or as a point in space. As humans, we
estimate gaze all the time. Though we are not always aware of it, we
constantly monitor where other people are looking in social settings.
This is because our eyes reveal so much about us. Indeed, the eyes
are often said to be the window to the soul. Since we must turn our
eyes towards something to see it clearly, our eyes indicate who or what
we are interested in, or paying attention to. As a result, gaze and
eye contact represent a major non-verbal channel for social signals;
being used to regulate interaction, express intimacy, and exercise social
control (Kleinke, 1986).

Researchers nowadays can use special eye tracking equipment to record
where people are looking. The main users of eye tracking are re-
searchers interested in human behaviour. Psychologists use eye track-
ing to investigate how we think. They want to know how and why
eye movements are made, for example in relation to learning, memory,
or problem solving. Marketing agencies use eye tracking to measure
attention and response to marketing messages. They need to know
what visual elements are noticed and which are ignored, so they can de-
sign products or adverts that catch the consumers’s eye. User interface
designers use eye tracking to evaluate different interfaces with the goal
of improving user experience. Gaze data helps them address usability
issues by revealing which features quickly draw a user’s attention, and
which are overlooked.

Though currently available eye tracking systems work well for these
tasks, limitations have prevented widespread adoption. Commercial
eye tracking equipment uses infrared lights and cameras to control
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By “commodity device”
I mean something easy
to obtain o�-the-shelf in
a high street store.

Accuracy is commonly
reported in angular de-
grees as the average dif-
ference between true
and estimated gaze di-
rections.

“In the wild” means out-
side a controlled envi-
ronment.

how subjects are illuminated and recorded – these cannot be found on
typical everyday devices. Commercial eye trackers also do not work
reliably in real world settings, so researchers must bring participants
into a controlled environment to track their gaze. Consequently, eye
tracking is limited to researchers with a suitable equipment budget
who are willing to collect gaze data in person.

If we could instead estimate eye gaze accurately, reliably, and conve-
niently using the sensors in a single commodity device, e.g. a typical
webcam, eye tracking could be brought to the masses. But what
amount of accuracy, reliability, and convenience is required?

Accuracy With regards to accuracy, different applications of gaze
estimation have different requirements. Some applications like gaze-
based interaction with centimetre-sized icons require high accuracy
(<1◦), while others like emotion analysis or user engagement detection
have lower accuracy requirements (∼10◦). In this dissertation, I focus
on methods that aim to cross this upper threshold of 10◦.

Reliability Designing a computer vision system that works “in the
wild” is challenging. If gaze estimation is to become mainstream, it
must work under a range of different illumination conditions, both
indoors and outdoors. Furthermore, the location and calibration of
cameras vary a lot between different devices. A user viewed from
a smartphone camera can appear very different from a user viewed
from a laptop webcam. Gaze estimation algorithms should work across
different devices. My work makes addressing environmental and device
variation a top priority.

Convenience For gaze estimation to become adopted by the general
public, convenience will be key. If we examine how people use smart-
phones, we notice they are willing to perform a calibration session
every so often, e.g. for their fingerprint sensor or voice recognition
model. But if they had to complete a gaze estimation calibration pro-
cedure every time they unlocked their phone, like how an eye tracker
requires calibration when it is turned on, they would probably not use
gaze estimation at all. Therefore, my work focusses on approaches that
can be used without calibration, or calibration-free.

In the rest of this chapter, I first explain why the future of gaze estima-
tion is so important. I then present two major outstanding problems
in the field, and describe how I addressed them. I finally make the
specific contributions of my work clear, and end with an outline of
the dissertation as a whole.
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Performance capture is
the process of transfer-
ring video footage of an
actor onto a 3D model
in a realistic fashion.

1.1 Motivation

Research in visible light remote gaze estimation is driven by a range of
important applications.

Mass-scale market research The ability to measure consumers’ atten-
tion in the real world automatically would be very valuable
indeed. Many of the internet services we take for granted are
paid for by advertising. These services could make adverts more
valuable by tracking the attention of millions of everyday visitors
using their own webcams. This could translate into consumers
seeing fewer, more effective adverts.

Mass-scale usability studies A popular way to compare different in-
terface designs is A/B testing – randomly serve millions of users
one of two different versions of an interface and measure the
efficacy of each version. Gaze information could complement
traditional metrics to help designers understand why a certain
interface performed better than another.

Gaze-based interaction For some severely disabled people, eye move-
ments are the only way they can communicate (Debeljak et al.,
2012). Currently, assistive technology for these people is ex-
pensive. If individuals with special needs could control cheap
off-the-shelf devices with their eyes, they would have greater
opportunities for communication.

Facial performance capture Compelling virtual actors can make a
big difference to a player’s engagement with a video game. Small
film and video game studios cannot afford professional facial cap-
ture setups, so webcam-based solutions have been proposed (Cao
et al., 2014a). Since eye gaze is an important part of any facial
performance it should be captured along with the rest of the face.
Beyond games, facial performance capture is also important for
remote communication with lifelike 3D avatars.

Affective computing Since emotions are so important in the way
people interact with each other, it is believed that enabling com-
puters to sense our emotional states would be beneficial. Ap-
plications could range from a video game that got easier if the
user becomes frustrated, to a medical system for automatically
diagnosing complex mental illnesses like depression. Much work
has been done on tracking parts of the face to try and measure
emotion – eye gaze is a key part of this.
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Attentive user interfaces
are interfaces that man-
age the user’s attention
(Vertegaal et al., 2003).

Attentive user interfaces We are surrounded by digital devices that
constantly bombard us with notifications, vying for our atten-
tion. As displays become more ubiquitous, this will get worse,
and our attention spans might shrink even further. To com-
bat this, devices of the future should continuously measure and
manage our attention to keep us focussed on the task at hand.

Gaze-contingent displays A gaze-contingent display performs a dif-
ferent function depending on where the user is looking. One
example is foveated rendering. Computer graphics becomes
more computationally expensive as displays become higher res-
olution. So when a display is particularly high-resolution, e.g.
in VR, it is difficult to present high quality visuals to the user
over the whole display. With foveated rendering, high-quality
graphics are only rendered around the user’s gaze point, enabling
better use of computational resources.

Post-hoc gaze estimation With eye tracking equipment, it is possible
to record someone’s eye movements as long as you are with them
in the same place at the same time. What if this is not the case?
For example, one might want to analyse eye movements in videos
that have previously been collected. In this case, calibration-free
visible-light–based gaze estimation can be run offline on archive
footage to recover gaze data.

It should be noted that different applications have different require-
ments on gaze estimation accuracy and speed. Some might require
high accuracy, for example usability testing of a complex interface
with lots of small buttons. Others might require high framerate, for
example real time interaction with a gaze-based interface. In some
cases, different goals are better served with different algorithms, and
trade-offs must be made.

1.2 Outstanding problems

This work addresses two outstanding problems for gaze estimation.

The first problem is that it is difficult to collect good ground truth
eye gaze data. Machine learning methods that require large amounts
of training data perform best for many computer vision tasks (LeCun
et al., 2015). If you want to train such a system for gaze estimation, you
need a lot of labelled images of people looking in different directions.
For traditional computer vision tasks like object recognition these
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images can be collected off websites (e.g. Flickr) and labelled by
Mechanical Turks – human workers hired over the internet. However,
this post-hoc labelling is impossible for eye gaze. As a result, researchers
spend a lot of time, effort, and money building eye gaze datasets by
capturing the images themselves. Furthermore, the resulting datasets
can be of limted use if they were recorded in an unnatural environment
like a laboratory. We therefore ask ourselves: is there a better way to
collect eye gaze training data?

The second problem is that gaze estimation systems are generally
tied to a specific usage scenario. This means that they require a
specific hardware configuration, expect the subject to be lit with a
certain type of illumination, and only allow for a limited amount
of eye and head movement. These limitations arise because images
for training gaze estimators are collected with a single scenario in
mind (e.g. laptop use), and taken with a single type of camera. In
some cases it may be acceptable to have an eye tracker tailored to a
specific scenario, but this is less valuable than a system that you can
rely on in any setting. A generic gaze estimator that operated robustly
under variations in facial appearance, head pose, lighting, and camera
type would be incredibly useful. Is it possible to build a generic gaze
estimation system?

1.3 My approaches

To address these two problems, I explored two different approaches:
learning-by-synthesis and analysis-by-synthesis.

Learning-by-synthesis is the process of training a machine learning
system using synthetic data. Acquiring good training data can be time-
consuming and requires accurate ground truth labels. Furthermore,
manually labelling the data can be expensive and tedious, and there
is no guarantee that the human-provided labels will be correct. To
address these problems, researchers have used computer graphics to
synthesize training data. The first step is acquiring 3D models – these
should be realistic for the training data to be useful. The next step is
preparing a rendering framework – this should generate ground truth
information as well as images. With these, it is possible to generate
cleanly-labelled training data with a fraction of the time and effort
required otherwise.

Analysis-by-synthesis is a computer vision strategy that couples a
generative model of image formation (synthesis) with a perceptive
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Chapter 3

Chapters 4 and 5

Chapters 6 and 7

model of scene comparison (analysis). The goal is to search for the
best explaination of an observed image in terms of an underlying
scene model. The synthesis step first uses computer graphics to render
an image of a scene it suspects might explain the observed image.
The analysis step then compares the synthetic and observed images,
determining how likely it was that the underlying scene produced the
observed image, and suggesting new scenes that might explain it better.
The description of the scene includes eye gaze direction. Learning-
based methods hope to learn robustness to image variation through
variety in training data. Instead, analysis-by-synthesis methods model
these variations explicitly.

The common theme that links these two techniques is the use of
computer graphics. With learning-by-synthesis, I used graphics in
an offline manner – generating realistic eye images which were used
to train machine learning systems. With analysis-by-synthesis, I used
graphics in an online manner – rendering images of virtual eyes so they
could be compared against an observed image from the real world.

1.4 Contributions

There are three main contributions of my work.

First, I investigate learning-by-synthesis for gaze estimation as an alter-
native to manual data collection. I demonstrate that readily-available
3D models and modern computer graphics techniques can be used to
generate valuable training data for gaze estimation systems that use
machine learning.

Second, I present a new multi-part morphable model of the eye region.
This model captures the anatomical details and movement of the eye
better than previous models. I show how this model can be used to
generate more varied training data for learning-by-synthesis, partic-
ularly for gaze estimation in the wild. I have made this morphable
model freely available to the research community.

Third, I propose a new method for eye gaze estimation: analysis-
by-synthesis. By coupling an articulated 3D model of the facial eye
region with a photometric model of image formation, we can recover
eyeball orientation by fitting our generative scene model to an observed
image. Consequently, we can estimate gaze in a person- and device-
independent way.
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1.5 Structure

This dissertation is structured as follows:

Chapter 1 serves as an introduction by describing the research prob-
lems faced by the field, outlining the approaches I took to address
them, and making my specific contributions clear.

Chapter 2 provides an overview of gaze estimation. It describes his-
torical and mainstream gaze tracking techniques used today. It
then reviews the state of the art in visible light remote gaze
estimation – the scenario I focussed on in my work.

Chapter 3 introduces a new training method for appearance-based
gaze estimation: learning-by-synthesis with posable 3D models.
I present the SynthesEyes synthetic dataset which was used to
train systems for eye alignment and gaze estimation.

Chapter 4 describes a new multi-part morphable model of the eye re-
gion. I explain the shortcomings of previous morphable models
of the face, and outline the construction and operation of my
new more detailed model.

Chapter 5 presents UnityEyes, a tool for rapidly generating eye gaze
datasets. Using this tool, I demonstrate the importance of good
training data by showing how a lightweight learning system
trained with a large number of synthetic images can outperform
previous complex systems trained with real images.

Chapter 6 switches focus from learning-by-synthesis to analysis-by-
synthesis. I present a new method for gaze estimation: fitting
a morphable eye region model to an image using a render-and-
compare energy minimization approach.

Chapter 7 extends this analysis-by-synthesis method to both eyes, and
accelerates it with a GPU-based second order energy minimiza-
tion strategy, allowing it to operate in real time.

Chapter 8 concludes this dissertation by summarizing the contribu-
tions of my work, discussing its limitations, and outlining possi-
ble directions for future research.
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(a)

(b)

Figure 2.1: (a) The
mechanical apparatus
used by Huey (1898);
and (b) an example
engraved recording.

Eye-cups were a type
of contact lens made
of plaster, and required
the eye to be anaes-
thetised with cocaine.

2

Eye gaze estimation

Eye movements have been studied by scientists for centuries. At first,
these studies were made using direct observation. In 1879, Louis Émile
Javal famously discovered that eyes do not move smoothly across text
when reading, but rather make a series of short rapid movements
(saccades) between short stops (fixations) (Javal, 1879). The question
of what drives the eye to fixate on one location over another has
occupied researchers ever since.

To obtain more accurate and objective eye movement measurements,
the first instances of eye tracking technology were developed shortly
thereafter (Delabarre, 1898; Huey, 1898, 1900). Figure 2.1 shows an
example by Huey (1898). These early mechanical devices were invasive;
they used an eye-cup that was physically attached to a metal lever that
moved when the eye did. This lever moved a pen over a revolving drum,
which was then photographed and engraved. However, these lever-
based eye trackers applied tension on the eye, and their inertia caused
eye movements to overshoot. Consequently, less invasive devices were
sought. The first photographic eye tracker was developed in the early
20th Century by Dodge and Cline (1901). It didn’t attach anything to
the eye so was more comfortable for participants. Dodge’s key insight
was to photograph corneal reflections that moved when the eye did –
a common technique still used by eye trackers today. Following the
success of Dodge’s photographic eye tracker, other scientists started
to build similar devices, and the field began to evolve. Technological
improvements allowed researchers to ask new questions, and study eye
gaze during tasks other than reading. For example, Stratton (1902)
examined how people looked at geometric patterns, exploring the links
between visual phenomena, cognition, and eye movement mechanisms;
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Figure 2.2: The photo-
graphic apparatus used
by Buswell (1935) took
up a whole desk and re-
quired a head clamp.

and Buswell (1935) (see Figure 2.2) and Yarbus (1967) investigated
how people looked at pictures of complex scenes, noting that some
elements were looked at more often than others.

In the 1970s and 1980s, eye tracking flourished. Eye trackers became
more convenient, being able to separate head movement from eye
movement (Cornsweet and Crane, 1973); and computers became fast
enough to track gaze in real time, enabling gaze-based human-computer
interaction (Levine, 1981). Eye tracking also moved beyond academia
and became an important tool for industry, being used for evaluating
interface usability and testing marketing strategy.

Of course, eye tracking technology continues to evolve today. In the
past, gaze was tracked over two dimensional surfaces, be they pages,
pictures, or digital screens. One field of eye tracking research is there-
fore in three dimensional gaze estimation (Duchowski et al., 2014) –
this will allow us to better understand how we look and see in the real
world or in virtual environments. A current barrier to wide-spread
eye movement research is the fact that eye trackers are not yet every-
day devices that you can find in your average home. Consequently,
researchers are also currently investigating if eye tracking can be done
with unmodified commodity devices – this would allow researchers to
collect eye movement data from a larger population than ever before,
improving the validity of their data, and could allow them to study a
specific group of people more easily .

In this chapter, I first briefly describe the anatomy and physiology of
the human eye to help understand how eye trackers operate. Following
that, I put my own work in context by describing the mainstream and
alternative methods for gaze estimation that are currently available,
making their limitations clear. I then introduce the specific area of
research my work addresses: visible light remote gaze estimation,
i.e. estimating gaze using commodity RGB cameras alone. I outline
the state of the art and discuss the research problems that my work
addresses. Finally, I describe the gaze datasets used in my work, and
explain why they were chosen.

2.1 The human eye

Before considering how eye trackers work, it is important to know a
little about the human eye itself. In this section I will introduce the
anatomy of the eye, and describe how it works.
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Figure 2.3: The internal anatomy of the human eye.
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2.1.1 Internal anatomy

The eye is an image-forming organ. It works like a camera, taking
light in from the outside world and focussing it on a plane to form an
image. Light enters the eye through the cornea – the transparent dome
at the front of the eye. It then passes through the anterior chamber
and enters the circular apperture in the middle of the eye known as
the pupil. The size of the pupil is controlled by the iris – a thin ring of
circular and radial muscles which enlarge or contract the pupil, letting
in more or less light to compensate for differences in environmental
illumination. The iris gives the eye its colour through pigmentation
with melanin, and can range between brown, green, grey, and blue.
Light that has passed through the pupil is then focussed by the eye’s
lens. Unlike artificial lenses, the eye’s lens is flexible so its curvature
can be changed to focus at different distances.

Finally, light hits the retina, the photoreceptive layer of tissue on the
inside of the eye. In a traditional camera, this would be the film.
However, unlike film, the granularity of the retina is not uniform.
Instead, the density of light sensing cells is highest at the fovea, and
rapidly decreases away from it. As a result, to see things clearly we
must rotate our eyeballs so that light from the object of interest falls
upon the fovea. These eye movements are what we attempt to recover
with eye tracking. When light strikes a photoreceptive cell in the
retina, it induces nerve impulses that are sent to the brain via the optic
nerve. These signals are interpreted by our brain to produce vision.

Eyes are not perfect spheres. They are roughly described as a small
sphere, the anterior part, smoothly fused to a larger sphere, the poste-
rior part. The anterior part contains the cornea, iris, and pupil; and
the posterior part contains the outer white shell (the sclera), vitreous
humour, and retina. There are two axes that describe the eye. The
optical axis is the line that intersects the centre of both spherical parts
of the eye; this describes its geometry. The visual axis is the line that
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Figure 2.5: The external anatomy of the human eye.

passes through the nodal point of the lens and the fovea; this describes
the path of sharpest vision, and is what we wish to recover with eye
tracking. The difference between them can be seen in Figure 2.4. Since
the fovea’s position in the retina is slightly off-centre, the visual axis is
offset from the optical axis by about 5◦. This angular offset varies per
individual so must be determined using a user calibration procedure.

2.1.2 External anatomy

We are all familiar with the external appearance of the eye. Figure 2.5
shows a typical example. The externally visible parts of the eyeball are
the sclera, cornea, iris, and pupil. The boundary between the iris and
the sclera is called the limbus. From oblique angles, the refraction of
the cornea is quite apparent, and the iris and pupil appear distorted.

Much of the eyeball is covered by the eyelids. These are thin folds of
skin that protect the eyeball by squinting: closing the eye partially to
shield the retina from excessive amounts of light, and blinking: coating
the eyeball with tear fluid and removing irritants. The eyelids are lined
with hundreds of eyelashes. These are short, thin hairs around 10mm
long that block dust and other irritants from entering the eye, and
also provide a visual cue for eyelid motion and gaze direction. Eyelids
are also used to communicate emotions and social signals, for example
squinting with suspicion, or fluttering eyelashes with affection.

The upper and lower eyelids meet at the eye corners, also known as the
medial ( inner) and lateral (outer) canthi. The medial canthus and sclera
is joined by the lacrimal caruncle – a pink, triangular fleshy nodule.
So, unlike the outer eye corner where the sclera and both eyelids meet
in one place, the “inner eye corner” is less precisely defined. Is it the
where the sclera meets the caruncle, or the middle of the caruncle,
or where the eyelid skin meets the caruncle? To further complicate
matters, some eyes feature an epicanthic skin fold that can completely
obscure the medial canthus. Unfortunately, there is no consensus on
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(a) (b)

Figure 2.6: Two commercial gaze estimation platforms for researchers: (a)
the Tobii Pro Specturm remote screen-based eye tracker, and (b) the Tobii
Pro Glasses wearable eye tracker.

Corneal surface reflec-
tions are the first Purk-
inje images, and are
also known as glints.

what exactly is the “inner eye corner” in the research community.

Moving further away from the eyeball we find the eyebrows, nose
ridge, and upper cheek. Depending on how hooded or inset the eye is,
the eyebrows can be very close to the eyeball, or far away. For deep
inset eyes, shadows cast by the brow ridge and nose can obscure certain
eye features.

2.2 Mainstream eye tracking

Eye trackers have improved a great deal over the historical systems
I described earlier, becoming less invasive, more accurate, and more
convenient. Nowadays, most commercial eye trackers like those in
Figure 2.6 perform video-oculography (VOG): tracking gaze using
computer vision. Given input images from one or more cameras,
VOG systems perform two main tasks: 1) They first detect and localize
features of the eyes in the images. 2) They then interpret these features
to determine gaze direction. In this section I describe how currently
available eye trackers work, and explain their limitations.

2.2.1 PC-CR eye tracking

The most widely used VOG techniques track the pupil center and
corneal reflections, so are known as PC-CR techniques. The idea is to
illuminate the eye in such a way to cause small, bright reflections on
the surface of the cornea. Computer vision techniques are then used
to accurately localize these corneal reflections and the pupil centre in
an image. Having found these feature points, there are two ways to
estimate gaze: regression-based methods and geometry-based methods.
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3D gaze vectors can be
intersected with a 3D
screen plane to deter-
mine a point of gaze.

(a)

(b)

(c)

Figure 2.7: (a) a bright
pupil image; (b) a dark
pupil image; (c) the dif-
ference between them.

2D regression-based PC-CR learns a mapping from image-space offset
vectors between pupil centre and corneal reflections onto a 2D screen
coordinate. This mapping is learned via a subject-specific calibration
procedure, and many different regression tools have been proposed
in the literature. However, regression-based methods only implicitly
model the geometry of the scene, so they often fail under head move-
ment. They remain popular as they are simple to implement, and do
not require camera or geometric calibration.

3D geometry-based PC-CR uses a anatomy-based eyeball model to
estimate a gaze vector in 3D space. Using a global geometric model of
light sources, cameras, and corneal curvature, the corneal reflections
can be analysed to determine the cornea centre in 3D. The optical axis
is then given as the vector between cornea centre and pupil centre,
and the visual axis can be estimated using anatomical averages, or
determined through calibration. These methods are more robust to
head movement but require precisely calibrated hardware setups.

To make locating feature points easier, the majority of commercial
systems use infrared (IR) light to illuminate the subject, and IR cameras
to capture noise-free, high quality images. Such methods are called
active IR approaches. Active IR systems generally use IR light sources
with wavelength around 780–880nm (Hansen and Ji, 2010). Light at
these wavelengths is invisible to the human eye, so does not distract
the subject, or cause pupillary contractions.

To localize the pupil centre in an image, active IR systems can exploit
the bright pupil effect (Hansen and Ji, 2010). This phenomenon occurs
when an illuminator is positioned close to the optical axis of a camera –
the light from the illuminator bounces back off the eye’s retina and into
the camera, causing the pupil to appear bright. If the eye is illuminated
with a light source positioned away from the camera’s optical axis, this
phenomenon does not occur and the pupil appears dark, as normal.
Bright pupil tracking systems use a co-axial light source synchronized
with a camera to alternate between capturing bright and dark pupil
images. When we look at the difference between the dark and bright
pupil images, the pupil’s shape is clearly apparent.

However, the bright pupil effect’s intensity varies between subjects,
ethnicities, and age groups (Nguyen et al., 2002), so commercial sys-
tems use a combination of bright and dark pupil tracking. Dark pupil
tracking exploits the well-defined shape of the pupil – it is roughly
circular, so it appears as an ellipse in images. This pupil ellipse can
be found using voting-based methods like the elliptical Hough trans-
form (Young et al., 1995), or model-fitting methods like Starburst (Li
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Figure 2.8: The black
components are an add-
on kit for eye tracking
with VR headsets (Kass-
ner et al., 2014).

and Parkhurst, 2005) or image-aware RANSAC (Swirski et al., 2012).
Though dark pupil tracking does not require synchronized cameras
and illuminators, it is more computationally expensive than bright
pupil tracking, and less robust.

2.2.2 Remote eye tracking

The most convenient eye trackers operate remotely, at a distance. These
devices generally take the form of long black rectangles that house IR
cameras and illuminators, and track gaze over computer screens. They
must be mounted directly below the screen to work effectively and
have a limited operational distance of between 50–90cm. Futhermore,
they must be placed directly in front of the subject, and only work
on screens up to 24 inches across1. This is because PC-CR features
can disappear at extreme eyeball rotations. Despite these restrictions,
remote eye trackers are popular with researchers as they are quick to
set up, and do not interfere with the subject being tracked.

In the past, remote eye trackers were very expensive and only available
to the research community. Nowadays, recent models have finally be-
come more affordable as developers look into integrating eye tracking
into mainstream products such as video games. For example, the Tobii
EyeX2 can be bought for ∼£100.

2.2.3 Wearable eye tracking

Capturing a good image of an eye is key for estimating gaze succes-
fully. It is no wonder then that some gaze estimation systems choose
to position a camera as close as possible to the eye itself. These sys-
tems consist of IR cameras and light sources mounted on lightweight
eyeglass frames worn by a user. In contrast to remote systems these
wearable systems allow the user to walk around freely, hence they
are also known as mobile eye trackers. Being able to move freely is
critical for observing eye movements during tasks in a naturalistic
environment or outside in the real-world.

Wearable eye tracking is also used with virtual reality, a field that has
grown rapidly in recent years. Virtual reality headsets lend themselves
well to eye tracking, as the addition of small cameras and illuminators
is a minor issue considering the large amount of hardware already
worn on the face. Some vendors offer hardware kits for modifying
mainstream virtual reality devices, implanting eye tracking systems

1http://www.tobiipro.com/product-listing/tobii-pro-spectrum/
2https://tobiigaming.com/product/tobii-eyex/
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Figure 2.9: An in the
wild eye image exhibit-
ing strong reflections
that would obscure
corneal glints (Tonsen
et al., 2016).

Figure 2.10: An exam-
ple direct infrared ocu-
lography system: the
Saccadometer by Ober
Consulting.

inside them (see Figure 2.8), while others offer custom-built devices
with fully integrated eye tracking systems, e.g. FOVE3.

2.3 Alternative approaches

Though PC-CR remains the most popular VOG technique, there are
other “glint-free” VOG methods that do not use corneal reflections
(Swirski and Dodgson, 2013; Kassner et al., 2014). A key advantage
of these methods is that they can track gaze in environments with
uncontrolled illumination, e.g. outdoors in the daytime, where other
unwanted reflections may obscure small glints (see Figure 2.9). Further-
more, glint-free systems have less complex hardware requirements than
PC-CR systems – they do not require a precise geometric calibration
of their IR illuminators. Glint-free techniques are therefore popular
with researchers investigating low-cost, low-complexity eye tracking.
For example, Swirski and Dodgson (2013) use pupil ellipse geometry
alone, tracking the pupil over time and fitting its moving boundary
onto a consistent sphere-based pupil motion model.

Aside from VOG, there are other approaches for gaze estimation that
do not use video cameras (see Figure 2.10). Direct infrared oculography
determines eyeball rotation by illuminating the sides of the eyeball
with IR light at a close range, and measuring the amount of scattered
light that returns using a photodetector, e.g. a photoresistor. Since
the iris is darker than the sclera, the amount of light measured will be
lower when the iris is pointing towards the photodetector, and higher
when the iris is pointing away. This change in returning light level
can be mapped onto eyeball movement. Because these systems use
photodetectors rather than cameras, they can sample eye movement at a
higher rate (~1kHz) compared to VOG (~60Hz), and can be considered
more ergonomic since they do not place cameras or illuminators in the
subject’s field of view. However, these photodetector-based systems are
highly sensitive to environmental illumination which can vary over a
measurement session, so are therefore better suited to high-frequency
saccade detection rather than accurate gaze estimation.

Electro-oculography (EOG) is another video-free approach. EOG uses
the fact that the eyeball is an electric dipole, with a positive pole at
the cornea and negative pole at the retina (Brown et al., 2006). As the
eyeball rotates, the dipole orientation shifts, causing a change in the
surrounding electric potential field. These changes can be measured

3https://www.getfove.com/
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(a)

(b)

Figure 2.11: The same
eye under active IR (a)
and visible light (b).
Note the clear pupil/iris
boundary in (a).

using skin-contact electrodes placed around the eyes. EOG systems
have been used to record eye movements in everyday life as they are
computationally lightweight (no video processing), and relatively un-
obtrusive (no protruding cameras) (Bulling et al., 2009). Additionally,
since EOG uses sensors placed directly on the skin, the face remains
mostly unobscured; this makes EOG useful in facial performance cap-
ture (Krupinski and Mazurek, 2010). EOG’s main limitation arises
from the fact that skin-contact electrodes are not very reliable. Their
response signal varies with temperature, skin conductance and illumi-
nation – factors that can change over a recording session. As a result,
the accuracy of EOG degrades over time.

2.4 Visible light remote gaze estimation

Though the systems described in the previous two sections provide
solutions for many scenarios, eye tracking has not yet become an
every-day technology for the average consumer. This is in contrast to
other face-related computer vision tasks like facial landmark tracking
which is now used worldwide in popular smartphone apps. The
obvious problem is that eye tracking still requires special hardware not
available on commodity devices.

Gaze estimation researchers are therefore currently attempting to re-
move the need for special equipment – the IR cameras and illuminators.
If gaze estimation could work accurately and reliably using a single
commodity camera, like those found in webcams or smartphones, eye
tracking could be brought to the masses. Since these systems only use
light in the visible spectrum, and work at a distance, they are classed as
visible light remote eye trackers. The systems I developed and discuss in
the rest of this dissertation fall into this category. This section discusses
the challenges of working with visible light, reviews the state of the
art in this field, and explores their limitations.

2.4.1 Challenges

Visible light gaze estimation is more challenging than traditional active
IR gaze estimation. A key step in many eye tracking algorithms is
finding the pupil. Visible light gaze estimators use passive light only,
so cannot exploit the bright pupil effect. Unfortunately, dark pupil
tracking is out of the question too. Under controlled IR illumination,
the boundaries between sclera, iris, and pupil can be made quite clear.
However, as shown in Figure 2.11, this is not the case with visible
light images. For dark coloured irises especially, the pupil may not
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Figure 2.12: There are three main ways to do gaze estimation. Model-based
methods rely on 3D geometry, and feature-point– and appearance-based
methods rely on machine learnt regression.

be discernible at all. New algorithms that do not depend on accurate
pupil tracking are needed.

Traditional eye trackers can adjust their level of illumination to obtain
sharp images with good contrast around the eye region. However,
the cameras used in commodity devices must rely on passive light to
illuminate their subjects. In everyday life people often use their devices
in low light or back-lit conditions, and so these cameras can have
trouble picking a suitable exposure level. As a result, we can expect
under- or over-exposed images where the details of the eye region are
no longer clearly visible. Furthermore, camera sensitivity may have to
be turned up in low light conditions, so sensor noise becomes more
apparent. A good gaze estimator should therefore work for noisy,
poorly exposed eye images.

2.4.2 Categorization

There is a large body of previous work on visible light remote gaze esti-
mation, and many attempts have been made to categorize the different
approaches (Ferhat and Vilarino, 2015; Hansen and Ji, 2010). This is
challenging considering the boundaries between different methods are
not always clear – many systems use a combination of techniques. I
roughly follow Ferhat and Vilarino’s (2015) taxonomy and categorize
previous work into three different types (Figure 2.12):
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For the sake of brevity,
when I mention “gaze
estimation” from now
on, I mean visible light
remote gaze estimation
using a single camera.

1. Model-based. Similar to their active IR counterparts, visible
light model-based systems use geometric models to recover the
position and orientation of eyeballs in an image.

2. Feature-point–based. Techniques of this type localize feature
points in an image, like the glints in PC-CR, and map from these
points onto a gaze point or direction.

3. Appearance-based. These methods are the most different from
mainstream eye tracking techniques, and try to map directly
from eye image pixels onto eye gaze.

Model-based methods are generative, and require prior knowledge of
eyeball anatomy. Feature-point–based and appearance-based methods
are discriminative; they do not care how the eye image was formed,
and simply try to assign the correct gaze label.

2.4.3 Model-based gaze estimation

There are two common types of model used to estimate gaze direction:
1) elliptical iris boundary models, and 2) spherical eyeball models. Iris
boundary models use the fact that the iris is circular in real life, so its
boundary (the limbus) appears as an ellipse in an image. The idea is to
extract the 2D limbal ellipse from an image as accurately as possible,
then back-project it onto its generating 3D circle, and take the normal
vector of the plane the 3D circle lies in as the gaze direction. The
limbal ellipse can be found using Canny (1986) edge detection (Wang
et al., 2003), active contours (Hansen and Pece, 2005), a randomized
Hough transform (Huang et al., 2010), or RANSAC model fitting
(Zhang et al., 2010; Wood and Bulling, 2014). The back-projection
from 2D ellipse to 3D circle requires knowledge of the iris radius, for
which anatomical averages are often used (Wang et al., 2003).

However, the limbal ellipse can be hard to extract accurately, especially
if the subject’s eyelids are half-closed. Spherical eyeball techniques
avoid this challenge by estimating both the pupil position and eyeball
centre in 3D, and taking the line between them as the gaze direction.
Since the pupil itself may not be discernible, these methods generally
use the iris centre as a proxy. The iris centre can be estimated using
shape-based techniques (Valenti and Gevers, 2008; Timm and Barth,
2011) or machine learning methods (Baltrušaitis et al., 2016). The 3D
eyeball centre can then be inferred using facial landmarks (Ishikawa,
2004; Baltrusaitis et al., 2013), head tracking (Mora and Odobez, 2014),
or eyelid contours (Wu et al., 2007). Since iris centre localisation
and facial landmark tracking are less prone to extreme outliers than
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limbus extraction, spherical eyeball model methods can be more robust.
However, they are also less precise considering the uncertainty in 3D
eyeball centre estimation.

2.4.4 Feature-point–based gaze estimation

Feature-point–based techniques are similar to PC-CR regression meth-
ods in that they localize key points in the eye image and map from
these onto a gaze direction or gaze point. This mapping is learnt dur-
ing a calibration procedure. By focussing on extracting a handful of
facial key points, these methods can made robust to typical computer
vision challenges like changes in illumination or subject pose. The
offset vector between the pupil centre and inner eye corner (PC-EC) is
often used. For example, Hansen et al. (2002) use an active appearance
model to find the PC-EC vector which they map onto gaze using
Gaussian processes, and Valenti et al. (2009) tracked PC-EC points
using isophote curvature and determined gaze using linear regression.
However, researchers have struggled with the fact that the inner eye
corner moves as the user looks in different directions (Sesma et al.,
2012). This means the eye corners are not stable “anchor” points for
reliable regression. Furthermore, PC-EC regression suffers the same
problem as PC-CR regression: simple regression models that were
trained for frontal head poses become significantly less accurate under
head movement.

Consequently, researchers have explored using a larger set of feature
points to become more reliable under different gaze directions and
head poses. For example, Bäck (2006) combined the PC-EC features
with nostril positions and head pose to create a richer feature vector
for regression, and Skodras et al. (2015) tracked additional points on
the eyelids for improved vertical gaze tracking. There is unfortunately
no consensus on what set of facial landmark points should be tracked
for reliable feature-point–based gaze estimation. In theory, an ideal set
of landmarks might exist, but how should researchers choose them?
To address this, new techniques were developed that use the whole eye
as a feature for regression: appearance-based gaze estimation.

2.4.5 Appearance-based gaze estimation

Appearance-based techniques represent the state of the art in gaze
estimation. Both model- and feature-point–based techniques track
specific parts of the eye region. For example, many model-based
approaches must be able to clearly see the limbus, but this is not
possible if someone’s eyes are nearly closed. Feature-point–based

34



approaches must track the eye corners accurately, but the inner eye
corner is a poorly defined landmark.

Appearance-based approaches side step these problems by analysing
the entire eye image holistically. If it’s possible to regress from eye
image pixels onto a gaze direction, certain ambiguities concerning eye
image features can be ignored. They work by transforming the eye
image into some feature space, and mapping from this feature vector
onto gaze using classification or regression. There are two main ways
of mapping an eye image into a feature space: 1) using traditional
hand-crafted computer vision features, or 2) using deep learning.

Hand-crafted features The simplest way to represent an image is
to use its raw pixel values. Lu et al. (2014) downsample eye image to
3×5px and use adaptive linear regression to map this 15-long vector
onto gaze. However, they require sub-pixel eye image alignment to
achieve good results. Many traditional computer vision problems
have been made tractable through the use of more sophisticated feature
spaces. These have also been explored for gaze estimation. For example
Schneider et al. (2014) investigated a range of different feature types
(DCT, LBP, and HOG), and showed that dimensionality reduction
using manifold-alignment could improve accuracy. Huang et al. (2015)
recently performed a similar investigation but in a more challenging
scenario – natural tablet use. They found that multilevel HOG features
used with a random forest regressor yielded the best results.

Deep learning As shown by the cross-feature experiments per-
formed by Schneider et al. (2014) and Huang et al. (2015), it can
be tricky to know which type of feature will perform best. However,
we now know that better results can often be obtained by learning
the feature representation itself, rather than hand-crafting it. This
is done by training a deep neural network end-to-end (LeCun et al.,
2015). Zhang et al. (2015) was the first to demonstrate a successful
appearance-based gaze estimation system that used deep-learning. They
trained a deep convolutional neural network (CNN) using 200,000
images of 15 people collected during everyday laptop use, and showed
improvements over the previous state-of-the-art in appearance-based
gaze estimation. Recently, Krafka et al. (2016) trained a multi-input
CNN using 2.5M iPhone images of 1,450 people collected with crowd-
sourcing, also demonstrating impressive results. Furthermore, these
deep learning systems have been made real time through careful en-
gineering and exploiting dark-knowledge (Hinton et al., 2015) in the
neural network.

Many appearance-based methods assumed a fixed head pose to make
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This face normalization
process is o�en called
frontalization.

Figure 2.13: Commod-
ity devices with eye
tracking do exist, like
the Alienware 17R4
laptop. However, they
are targeted at gaming
enthusiasts, not the
mainstream.

the problem simpler (Tan et al., 2002; Sugano et al., 2013). If the
gaze estimator is combined with some sort of face tracker, head pose
information can be used to allow for free head motion. One choice is
to train an additional sub-system to compensate for changes in head
pose (Lu et al., 2011). An alternative option is to cluster eye images
based on head pose into separate bins, and pass them onto different
regressors (Sugano et al., 2014). If the 3D surface of the face is tracked
in detail, face images can be normalized into a canonical frontal view
before regression (Egger et al., 2014; Jeni and Cohn, 2016).

For machine learning methods to work well, they must be trained with
good ground truth data. As discussed in Chapter 1, manually collecting
such data for gaze estimation can be time-consuming, unreliable, and
expensive. Furthermore, these datasets are generally collected with
a specific scenario in mind, e.g. laptop use (Zhang et al., 2015) or
smartphone use (Krafka et al., 2016). The resulting appearance-based
systems are tied to those scenarios.

2.5 Taxonomy of tracking types

In Table 2.1 I outline some key properties of commercial eye tracking
systems and gaze estimation methods found in research today, the
latter including my work in this dissertation. I have chosen four broad
categories that represent the majority of eye tracking technology to
try and make the main distinctions clear: 1) Commercial remote eye
trackers, 2) commercial wearable eye trackers, 3) appearance-based
approaches for gaze estimation, and 4) model-based approaches for
gaze estimation. In the rest of the section, I discuss a number of
important differences between the approaches.

Hardware and price
Considering how cheap the actual hardware involved in a traditional
active IR eye tracker is (several LEDs and a camera), we should ask our-
selves: “If we want gaze estimation to be available to the general public,
why not put a typical eye tracker into everyday devices?”. Indeed, this
has been done (Figure 2.13) for devices aimed at enthusiasts. While it
would be possible to integrate additional IR cameras and illuminators
into a standard laptop, tablet, or phone; device manufacturers would
prefer to avoid this and use the front-facing cameras that come as stan-
dard in any smart phone. As well as increasing the total bill-of-parts for
each device, more cameras and lights means higher power consumption
– something we want to avoid with portable devices to save battery life.
Furthermore, an array of illuminators would complicate the industrial
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Commercial Research

Remote Wearable Appearance-based Model-based

Illumination Controlled;
Active IR

Controlled;
Active / Passive IR

Uncontrolled;
Visible light

Uncontrolled;
Visible light

Hardware A desk-mounted box
housing IR cameras
and lights

A pair of glasses with
IR cameras and illu-
minators

A typical webcam A typical webcam

Price ~£100–10,000 ~£1,000 ~£20 ~£20

Accuracy Very high (<1◦ ) Very high (<1◦ ) High (~3◦) if trained
on a specific user.
Else low (~10◦ ).

Low (~10◦ )

Sampling rate Very fast (>500Hz) Fast (>60Hz) Depends on machine
learning approach
(~30Hz)

Depends on model
and fitting approach
(~15Hz)

Data Eye gaze;
Pupil diameter

Eye gaze;
Pupil diameter

Eye gaze Eye gaze

Calibration Required Required Optional Optional

Environment Indoor use only Glint-free algorithms
can work outdoors

Can cope with differ-
ent illumination with
diverse training data

Illumination can be
factored into scene
model

Head pose User must face device Not an issue since at-
tached to head

Depends on training
data. Generally re-
quires frontal pose

Free head movement
handled through 3D
model

Eyewear Handled through per-
session calibration

Handled through per-
session calibration

Handled if trained on
a specific user

Refraction through
glasses not handled

My work – – Chapters 3 and 5 Chapters 6 and 7

Table 2.1: A comparison of gaze estimation approaches used in commercial eye trackers and research.
It can be seen that each type of approach has its own benefits and drawbacks. Though the methods in
research still lag behind industry with regards to accuracy and sampling rate, it is hoped that further
research can address these gaps in performance while still maintaining the key benefits of simplified
hardware requirements and robustness to viewing conditions.

design, and might be distracting to the user.

Illumination
Commercial eye trackers make excellent use of IR illuminators to
make computer vision easier. By flooding the user with IR, they en-
sure there is enough light to capture a sharp image with little motion
blur. Through the use of an array of IR illuminators, they ensure the
appearance of small and easily-located glints that serve as an efficient en-
coding of the eyeball’s position and orientation in 3D space. However,
by relying on these features, they limit themselves to environments
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without IR pollution, or must take measures to alleviate IR pollution
as much as possible. If gaze estimation could work with visible light
alone, changes in environmental illumination would be much less of
an issue. However, for gaze estimation, this means reinventing the
wheel – throwing away the nice easy-to-find features of IR glints, and
trying to estimate gaze in some other way. As a result the algorithms
used by eye tracking in industry and gaze estimation in research end
up very different.

Sampling rate, and type of data
High sample rate data (>500Hz) collected by remote eye trackers
allows for special types of analysis not available at lower sampling rates,
e.g. the analysis of microsaccades or smooth pursuit. Such a high sam-
pling rate requires active illumination to flood the user with enough
light, and significant power requirements for processing. Therefore,
this level of gaze analysis is likely to remain in the laboratory for some
time yet. But gaze information at lower sample rates could still be
useful for mainstream devices, e.g. if you just want to know if a user
has noticed a pop-up dialog on their phone. Furthermore, the high
sampling rates afforded by commercial devices represent the result of
decades of careful engineering. Many of the methods found in research
today could be accelerated with the right implementation, or spe-
cific hardware. For example, dedicated neural network co-processors
promise to drastically improve the speed and efficiency of neural net-
work inference. Although a state-of-the-art neural network approach
might require a high-performance GPU today, it might easily fit on
dedicated compute hardware in the near future.

2.6 Datasets

Eye gaze datasets are collections of images (or videos) of people look-
ing in different directions. Each image is labelled with either a gaze
direction, or a gaze point. These datasets play a key role in the devel-
opment of gaze estimation systems as they are used for both machine
learning and evaluation. There are a number of datasets available
in the research community, and their quality has increased over the
years. While older datasets include a handful of subjects looking in
a few discrete directions, newer datasets include a wider variation of
subject appearance, head pose, environmental lighting, and gaze direc-
tion. This section describes the gaze estimation datasets that I used
throughout this dissertation.
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−30◦ −15◦ 0◦ 15◦ 30◦

Figure 2.14: The Columbia gaze dataset by Smith et al. (2013) contains high quality images of 56
di�erent subjects taken under five discrete head poses ranging from−30◦ to 30◦.

−15◦ −10◦ −5◦ 0◦ 5◦ 10◦ 15◦

Figure 2.15: For each head pose, the subjects were instructed to look at a set of 21 dots marked on a
wall, resulting in three vertical and seven horizontal gaze conditions. Horizontal gaze is shown here.

2.6.1 Columbia gaze dataset

Smith et al. (2013) created the Columbia gaze dataset to train an
appearance-based eye-contact detector. They demonstrated its use in
eye-contact–aware human-computer interaction, though the dataset
has since been used by the gaze estimation community as well.

The dataset contains 5,880 high resolution images (5184 × 3456px)
of 56 subjects (32 male, 24 female). The subjects were aged between
18 and 36, and included a range of different ethnicities. For each
subject, 105 images were taken representing a combination of five
different head poses (0◦,±15◦,±30◦, see Figure 2.14), seven different
horizontal gaze directions (0◦,±5◦,±10◦,±15◦, see Figure 2.15), and
three different vertical gaze directions (0◦,±10◦). The subjects were
illuminated evenly across the face with soft overhead lighting, so no
hard cast shadows were present.

The Columbia dataset was captured with a DLSR camera so its images
are of higher quality than other webcam-based datasets. The photos
were taken in a controlled laboratory environment – subjects were
seated in front of a black screen, and their head position was stabilised
using an adjustable chin rest. A grid of dots was attached to the wall in
front of the subjects to act as gaze targets. To simulate different head
poses, the photographer moved around the subject, capturing images

39



Figure 2.16: Images from the Eyediap dataset (Funes Mora et al., 2014) taken with the HD webcam.
The LEDs in the bottom le� of the images were used to synchronize the multiple video feeds.

from five fixed positions with the camera positioned at eye level. Each
photo was checked manually to ensure the subject was looking in the
right direction.

I chose to use the Columbia dataset as it represents the best case sce-
nario for visible light remote gaze estimation: high resolution images
with sharp focus and simple illumination. Though this dataset is not
as challenging as others in terms of head pose or illumination, it is
valuable since it includes a large number of subjects and covers a wide
range of gaze directions and head poses.

2.6.2 Eyediap

Funes Mora et al. (2014) collected the Eyediap video dataset to de-
velop and evaluate RGB-D gaze estimation algorithms. Though it
was primarily used to train Mora and Odobez’s (2014) Kinect-based
Geometric Generative Gaze Estimation (G3E) system, it has also been
adopted as a benchmark by the gaze estimation community.

The dataset includes videos of 16 subjects (12 male, 4 female) over
94 sessions, taken with two different cameras simultaneously: 1) a
Microsoft Kinect, producing a VGA resolution (640 × 480px) RGB
video and a separate depth-only video. 2) a typical webcam, producing
a full-HD resolution (1920 × 1080px) RGB video (see Figure 2.16).
The visible light systems described in this dissertation do not use the
depth video from the Kinect, and use the two RGB videos only.

Videos were recorded over six sessions for each participant, represent-
ing a combination of three target types and two head pose conditions.
The three different types of gaze target were:

1. Discrete screen targets: Subjects looked at stationary targets
displayed at random locations on a computer screen directly in
front of them.

2. Continuous screen targets: To obtain examples of smoother
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.18: Example images from the MPIIGaze dataset (Zhang et al., 2015). As well as images where
the face and eyes are clear (a,b,c), this dataset includes back-lit images (d), underexposed images (d,e),
strong uneven illumination (f,g), and faces that are far away (h).

Figure 2.17: Example
images from the Eye-
diap mobile head pose
condition.

gaze movement, the virtual screen targets moved along random
trajectories for 2 seconds.

3. 3D floating targets: To obtain wider gaze angles not possible
with a screen, subjects looked at a small ball that was dangled in
front of them, hanging on a thin thread from a stick.

To help evaluate robustness against head pose variation, two types of
head pose condition were used:

1. Static head pose: Subjects kept their head still while looking at
gaze targets, though they did not use a chinrest.

2. Mobile head pose: To introduce head pose variation, partic-
ipants were told to perform random head movements while
looking at gaze targets. Examples can be seen in Figure 2.17.

I decided to use the Eyediap dataset as it contains images and videos
taken with typical webcams in a typical indoor environment. Though
the Eyediap dataset contains fewer people than the Columbia dataset, it
includes more challenging lighting conditions, a smoother distribution
of gaze directions, and a wider range head poses.

2.6.3 MPIIGaze

Zhang et al. (2015) noted that previous gaze datasets had been collected
under controlled conditions in laboratories, so did not represent the
wide range of environments encountered in the real world. They
therefore collected the MPIIGaze dataset to study appearance-based
gaze estimation in the wild.

MPIIGaze consists of 213,659 images collected from 15 participants
(11 male, 6 female) during natural everyday laptop use over three
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months. See Figure 2.18 for some examples. The number of images
collected by each participant ranged between 34,745 and 1,498. The
participants installed custom-written data collection software on their
laptops. Every ten minutes the software would request they look at a
sequence of 20 on-screen gaze markers. The participants were asked
to fixate on each gaze point, and confirm this action by pressing the
space bar. A 1280× 720px image was recorded for each gaze marker
using the laptop’s front facing camera. There were no constraints on
how, where, or when they should use their laptops. Consequently,
MPIIGaze contains significantly more head pose and illumination
variation than typical gaze datasets.

I chose to use the MPIIGaze dataset as it represents the most chal-
lenging types of image we might expect with visible light remote gaze
estimation. The subjects are often quite far from the camera, and the
images can be poorly exposed and out of focus. However, the gaze
distribution is rather narrow, ranging between (−20◦,+20◦) horizon-
tally and (0◦,−20◦) vertically. This means this data does not include
examples of someone looking far towards the left or right, and has no
images of people looking up. As a result, this dataset might not be
very useful for training gaze estimation systems that target scenarios
other than laptop use, e.g. mobile phone use, or estimating gaze in
archival footage.

2.7 Summary

In this chapter I described gaze estimation. To provide some back-
ground, I described the history of the field and how the eye itself
works. I then descibed both mainstream and alternative approaches
for eye tracking that are used today. Following that, I discussed the
specific field of eye tracking research that my work fits into: visible
light remote eye gaze estimation. I finally described three benchmark
eye gaze datasets that are used in this dissertation for evaluation.
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Mechanical Turks are
human workers that
can be hired to perform
tasks that computers
cannot do.

3

Learning-by-synthesis for
gaze-estimation

This chapter presents work that has been published at the International
Computer Vision Conference 2015 in Santiago, Chile (Wood et al., 2015).
Tadas Baltrušaitis implemented the eye-shape registration system, and Xucong
Zhang implemented the deep neural network for gaze estimation.

Machine learning methods that learn from large amounts of labelled
training data currently perform best for many problems in computer
vision, including object detection (Redmon et al., 2015), scene recogni-
tion (Zhou et al., 2016), and human pose estimation (Wei et al., 2016).
To achieve good performance, these methods require good training
data. Normally, such training data would be collected off the Internet
and labelled with ground truth by Mechanical Turks. However, this
post-hoc labelling is not possible for eye gaze. Given a picture of some-
one, how can we accurately say what direction they were looking in?
While it is possible to roughly classify someone’s eye gaze as up, down,
left, or right, many applications require more precise measurements.
As a result, gaze estimation researchers must collect the images for eye
gaze datasets themselves – a time-consuming and expensive process.
Participants must be called into a laboratory or hired over a period of
time, limiting environment and participant variability. Furthermore,
the range of gaze directions is then limited by practical matters, e.g.
the size and placement of the screen used for gaze markers.

To address these difficulties, computer vision researchers have used
learning-by-synthesis to generate large amounts training data with com-
puter graphics. The key idea is to learn from synthetic training data,
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Facial landmark track-
ing is used to align im-
ages of eyes as input to
appearance-based gaze
estimation systems.

rather than real world images. The advantages of this approach are
that data collection and annotation require less human effort, and
image synthesis can be geared to specific application scenarios. The
eye is a particularly difficult object to model accurately in 3D given
the dynamic shape changes it undergoes with facial motion, and the
complex structure of the eyeball itself. For this reason, previous work
on learning-by-synthesis for gaze estimation employed only fundamen-
tal computer graphics techniques, rendering low-resolution meshes
without considering changes in illumination or the varying material
properties of the face (Sugano et al., 2014) (see Figure 3.1). In addition,
Sugano et al.’s (2014) models are not controllable and the resulting
synthesized dataset contains only gaze labels, limiting its usefulness for
other computer vision problems, such as facial landmark registration –
a crucial step in many gaze estimation pipelines.

In this chapter I present a novel method for rendering a large number
of realistic eye region images using a collection of dynamic and con-
trollable eye region models. I provide a comprehensive and detailed
description of the model preparation process and rendering pipeline
(see Figure 3.2 for an overview of model preparation). Furthermore,
while previous work required researchers to create 3D models them-
selves with photogrammetry, I used readily available 3D models instead.
I then present and evaluate two separate systems trained on the result-
ing data (SynthesEyes): an eye region specific facial landmark tracker
and an appearance-based gaze estimator. The controllability of the dy-
namic eye region models allowed me to quickly generate high-quality
training data for these two separate tasks.

The specific contributions of this chapter are threefold. I first describe
my new technique for generating large amounts of synthetic training
data using dynamic eye region models, including a range of realistic
appearance variation using image-based-lighting. I then demonstrate
the usefulness of SynthesEyes by out-performing state-of-the-art meth-
ods for eye-shape registration as well as cross-dataset appearance-based
gaze estimation in the wild – a challenging scenario. Finally, to stimu-
late further research in this area, I have made the dynamic eye region
models available upon request.

3.1 Related work

The work in this chapter is related to previous work on learning using
synthetic data and computational modelling of the eyes.
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Shape TextureWireframe

Figure 3.1: An example 3D model from the UT Gaze dataset (Sugano et al.,
2014). Note the lack of detail in the shape, and the illumination that has been
baked into the texture (e.g. the highlight on the nose ridge).

In computer graphics, if
lighting is “baked in”, it
means it is hard-coded
into an objects texture.

3.1.1 Learning using synthetic data

The performance of learning-based approaches critically depends on
how well the test data is covered by the training set. Since it is generally
impossible to record enough training data samples to cover all possible
test data, synthetic training data has been used instead. Previous work
has demonstrated that synthetic training data can be beneficial for
a wide range of computer vision tasks including human body pose
estimation (Okada and Soatto, 2008; Shotton et al., 2013), object
detection and recognition (Fu and Kara, 2011; Yu et al., 2010; Liebelt
and Schmid, 2010), and facial landmark localization (Baltrušaitis et al.,
2012; Jeni et al., 2015). In many cases, synthetic depth images were
used rather than colour images to side step the additional degrees of
variation corresponding to changes in object albedo and environmental
illumination. Learning-by-synthesis was perhaps most famously used
for the Kinect (Shotton et al., 2013), where 3D body models were
posed and rendered to train the pose estimation system.

My work in this chapter was inspired by recent related work by Sugano
et al. (2014) on learning-by-synthesis for gaze estimation. They pre-
pared a collection of static eye region models of 50 participants looking
at 160 on-screen gaze targets using multi-view stereo (Furukawa and
Ponce, 2010). The participants were photographed by eight cameras
simultaneously at SXGA resolution (1280×1024px), and the photos
were processed to produce a static 3D mesh of the face. An example
can be seen in Figure 3.1. These 3D eye region models were then
rendered from new viewpoints to create synthetic training data with
additional head pose variation. However, this work suffers several
limitations. First, their 3D models are not controllable – we cannot
move someone’s eyes to change where they are looking. Second, since
the source images were low resolution, the resulting meshes fail to
accurately capture the details of the eyes. Third, the resulting model
textures all have environmental illumination “baked in” so they cannot
be re-lit accurately. Instead, the models I use in this chapter are fully
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controllable and have detailed geometry with realistic skin and eyeball
materials. This allowed me to generate training data with increased
gaze and illumination variation.

Kaneva et al. (2011) used controllable photorealistic models of a city
to evaluate different image features. For their comparisons to be valid,
they noted that the synthetic data must be as realistic as possible. If
the object of interest is highly complex, like the human eye, it is not
clear whether we can rely on overly-simplistic 3D models like those
by Sugano et al. (2014). In this chapter we investigate if realism is
important when generating synthetic data for learning-by-synthesis.

3.1.2 Computational modelling of the eyes

Human eyeballs are extremely complex organs. Fortunately, given
that realistic eyes are important for many fields, there is already a large
body of previous work on modelling and rendering eyes. Ruhland
et al. (2014) provides a recent survey.

As we spend so much time looking at eyes, mistakes in their appearance
can cause a computer generated face to appear uncomfortably unfa-
miliar. Modelling eyes accurately is therefore important for the enter-
tainment industry, who want to portray realistic characters accurately.
Recent work by Bérard et al. (2014) represents the state-of-the-art in
capturing high quality eye models for actor digital-doubles. They used
a hybrid reconstruction method to separately capture both the trans-
parent corneal surface and diffuse sclera in high detail, and recorded
deformations of the eyeball’s interior structures. These results are
impressive, but probably beyond the scope of webcam-based visible
light remote gaze estimation. Considering the wide field-of-view, lens
blur, and noise patterns typically found in webcams, the details of such
super-accurate eye models would not be visible, so would be wasted.
Visually-appealing eyes are also important for the video-game industry.
Jimenez et al. (2012) recently developed techniques for modelling eye
wetness, refraction, and ambient occlusion in a standard rasterization
pipeline, showing that approximations are sufficient in many cases.

Aside from visual effects, previous work has used 3D models to ex-
amine the eye from a medical perspective. Sagar et al. (1994) built a
virtual environment of the eye and surrounding face for mechanically
simulating surgery with finite element analysis. Priamikov and Tri-
esch (2014) built a 3D biomechanical model of the eye and its interior
muscles to understand the underlying problems of visual perception
and motor control. Eye models have also been used to evaluate ge-
ometric gaze estimation algorithms, allowing individual parts of an
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eye tracking system to be evaluated separately. For example, Świrski
and Dodgson (2014) used a rigged head model and reduced eyeball
model to render ground truth images for evaluating pupil detection
and tracking algorithms.

3.2 Dynamic eye region model

I developed a dynamic eye region model which can be randomly posed
and rendered to generate fully labeled training images. My goals were
realism and controllability, so I combined high quality 3D head scan
geometry with my own posable eyeball model. Figure 3.2 shows an
overview of the model preparation process.

(a) (b) (c) (d) (e)

Figure 3.2: An overview of the model preparation process: Dense 3D head scans (1.4 million polygons)
(a) are first converted into a topology more suitable for animation (retopology; 9,005 polygons) (b).
High resolution skin surface details are restored by displacement maps (c), and 3D iris and eyelid
landmarks are annotated manually (d). A sample rendering is shown (e).

For eye gaze training data to be useful, it should represent the types
of variety encountered in the real world. This includes inter-person
variety, i.e. different people have different looking eyes, and intra-
person variety, i.e. someone’s eye changes appearance when they look
around or change facial expression. To capture inter-person variety, I
use a collection of different head scans featuring different types of eyes.
To capture intra-person variety, I model the continuous changes in
shape and texture that the face and eyes undergo during eye movement
using computer animation. This is more challenging than simply
rendering a collection of static models like Sugano et al. (2014), as
dynamic geometry must be correctly topologized and rigged to be able
to deform correctly.

In this section I describe the process of preparing a dynamic eye re-
gion model for synthetic eye image generation. First, I describe the
anatomically inspired eyeball model that I place into each head scan.
Then I discuss how to acquire 3D head scans and convert each one
from a piece of static geometry into a dynamic eye region model that
can assume a range of realistic poses.
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Part 1: Sclera
609 vertices

Part 2: Cornea
546 vertices

Figure3.3: The two-part eyeball model that I used in each dynamic eye region
model. Le�: the full render. Middle, blue: the inner sclera part that uses a
purely di�use material. Right, red: the outer part that is a little bigger than
the inner part, contains the corneal bulge, and is transparent and reflective.

3.2.1 Simplified eyeball model

The eye model I created for this work consists of two parts (see Fig-
ure 3.3). The outer part (the red wireframe) approximates the eye’s
overall shape with two spheres (r1 =12mm, r2 =8mm (Ruhland et al.,
2014)), the former representing the main part of the eye, and the latter
representing the corneal bulge. To avoid a sharp seam between these
two spheres, the two sphere meshes were joined, and the vertices along
the seam were smoothed to minimize differences in face-angle. This
outer part is transparent, refractive (index of refraction n = 1.376),
and partially reflective. The sclera’s bumpy surface is modeled with
smoothed solid noise functions, and applied using a displacement map –
a 2D scalar function that shifts a surface in the direction of its normal
(Lee et al., 2000). The inner part (the blue wireframe) is a flattened
sphere – the planar end represents the iris and pupil, and the rest repre-
sents the sclera, the white of the eye. There is a 0.5mm gap between the
two parts which accounts for the thickness of the cornea. I manually
built this eye model using Blender.

The pupil is not actually modelled as a hole in the model, but is
shown with a texture map that is black for the pupil region. In this
simplified eye model, the pupil and iris are perfect circles that line up
with eachother along the eyeball’s optical axis. Both the pupil and
iris boundaries line up with vertices and edges that form circles in the
eyeball model’s topology, allowing their shape to be easily controlled
with vertex animation.

Eyeballs vary in both shape (pupillary dilation) and texture (iris colour
and scleral veins). To model shape variation I use blend shapes – an
animation technique for interpolating between several different poses
created for the same topological mesh (Orvalho et al., 2012). I created
blend shapes for dilated and constricted pupils, as well as large and
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Nowadays it is possible
to easily purchase such
scans online from∼£15
per scan.

Though human skin is
not purely Lambertian,
in practice it is close
enough for these 3D re-
construction methods
to work well.

small irises to account for a small amount (10%) of variation in iris
size. Blend shapes are can be mixed, so its possible to model an eye
with a small pupil, and a large iris.

Different eyeball textures are generated by alpha compositing eyeball
texture images using three separate layers: 1. a sclera tint layer (white,
pink, or yellow); 2. an iris layer with four different photo-textures
(amber, blue, brown, grey); and 3. a veins layer (blood-shot or clear). I
fixed the sclera tint for each head model to match their skin tone, but
varied iris texture by randomly choosing from the collection when
synthesizing training data. There are methods for procedural iris-
synthesis that would have allowed the iris texture to vary in a more
detailed, continuous fashion (Lefohn et al., 2003). However, I decided
the added complexity would not be worthwhile considering the low
resolutions considered in our scenario.

3.2.2 3D head scan acquisition

For an eye region rendering to be realistic, it must also feature realistic
nearby facial detail. While previous approaches used models created
by artists (Świrski and Dodgson, 2014), I used high-quality head scans
captured by a professional photogrammetry studio (10K diffuse colour
textures, 0.1mm resolution geometry)1. Facial appearance around
the eye varies significantly between people as a result of different eye-
shapes (e.g. round vs hooded), orbital bone structure (e.g. deep-set vs
protruding), and skin detail (wrinkled vs smooth). Therefore the head
models I chose (see Figure 3.4) cover a range of different ethnicities
and age. As can be seen in Figure 3.2, the cornea of the original
head scan has been incorrectly reconstructed by the optical scanning
process. This is because the eyeball is made of transparent and reflective
material. Since most 3D reconstruction algorithms assume that all
surfaces reflect light in a purely-Lambertian way, they do not work
well on shiny objects like an eyeball. For images to represent a wide
range of gaze directions, the eyeball needed to be posed separately from
the face geometry. I therefore removed the original scanned eyeball
from the mesh, and placed my own eyeball model in its place.

3.2.3 Eye region geometry preparation

While the original head scan geometry is suitable for being rendered as
a static model, its high resolution topology is not ideal for changes in
shape. Vertical saccades are always accompanied by eyelid motion, so

1Ten24 3D Scan Store – http://www.3dscanstore.com/
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f1 f2 f3 f4 f5

m1 m2 m3 m4 m5

Figure 3.4: The collection of head models (five female f1–5, five male m1–5)
and corresponding images of the eye region. The collection of head models
exhibits a good range of variation in eye shape, bone structure, skin smooth-
ness, and skin color.

the eyelids should be posed so they correspond to the gaze direction.
This requires computer animation. To do this, I needed a more efficient
(low-resolution) geometric representation of the eye region, where edge
loops flow around the natural contours of facial muscles. This leads to
more realistic animation as mesh deformation matches that of actual
skin tissue and muscles (Orvalho et al., 2012).

I therefore retopologized the face geometry of each scan to reduce the
resolution (number of polygons) of the mesh using a semi-automatic
system2. This left me with 10 newly topologized models, one for
each original scan. I transferred the original high resolution color
textures from the high resolution scan onto the new lower resolution
retopologized models. As can be seen in Figure 3.2 (b), the resulting
edge loops follow the exterior eye muscles, allowing for realistic eye
region deformations. This retopologized low-poly mesh (∼10K polys)
has lost the skin detail of the original scan, like wrinkles, see Figure 3.2
(c). These were restored with a displacement map computed from the
original scanned geometry (Lee et al., 2000).

Although they are two separate organs, there is normally no visible
gap between eyeball and skin. However, as a consequence of removing
the eyeball from the original scan, the retopologized meshes do not
necessarily meet the eyeball geometry. This can be seen in Figure 3.2
(b). To compensate for this, the mesh’s eyelid vertices are automatically

2ZBrush ZRemesher 2.0, Pixologic, 2015
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Figure 3.5: Eyelids are posed to look up or down by interpolating between
blend shapes based on gaze direction (model m2 as example). Note how the
eyelid crease expands when the eye looks down.

(a)

(b)

Figure 3.6: Eyelash di-
rected particle e�ects
highlighted in red (a);
the rendered result (b).

shifted along their normals at render time so they touch the eyeball.
This is called shrinkwrapping. This prevented unwanted gaps between
the models, even after changes in pose. The face geometry was then
assigned physically-based materials, including subsurface scattering
to approximate the penetrative light transfer properties of skin, and
a glossy component to simulate its oily surface. Blender’s inbuilt
material shaders were used for this.

3.2.4 Modelling eyelid motion and eyelashes

I model eyelid motion using blend shapes for upwards-looking and
downwards-looking eyelids, and interpolating between them based
on the global pitch of the eyeball model. This makes our face-model
dynamic, allowing it to continuously deform to match eyeball poses.
Rather than rendering a single or perhaps several discrete head scans
representing a particular gaze vector (Sugano et al., 2014), I instead
created training data with a dense distribution of facial deformation.
Defining blend shapes through vertex manipulation can be a difficult
and time-consuming task but fortunately, only two are required and
they have small regions of support. As the tissue around the eye
is compressed or stretched, skin details like wrinkles and folds are
either attenuated or exaggerated (see Figure 3.5). I modeled this by
interpolating between smoothed colour and displacement textures
for downwards-looking eyelids, removing any wrinkles. These blend
shape and texture modifications were carried out using photos of the
same heads looking up and down as references.

To model the eyelashes, I followed the approach of Świrski and Dodg-
son (Świrski and Dodgson, 2014), and simulated each eyelash hair
using directed particle effects. Blender’s built-in particle effect system
was used for this. Particles were emitted from two control surfaces
manually placed underneath the surface of the upper and lower eyelids.
I used 180 hairs for the upper eyelash and 100 for the lower eyelash.
To make them curl, eyelash particles experienced a slight amount of
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Figure 3.7: (a) The camera is positioned by iterating over spherical coordi-
nates θ, φ. This varies head pose. (b) At each camera position, I rendered a
large number of eye images corresponding to di�erent gaze directions.

gravity during growth (negative gravity for the upper eyelash).

3.3 Synthesizing training data

Eyes can look very different when viewed from different camera po-
sitions and under different illumination. My goal was to render the
models from lots of different viewpoints and under lots of different
illumination conditions to create a dataset representative of real world
variety. In this section I first describe how I posed the virtual cam-
era and models, and explain my simple technique for varying scene
illumination using image-based lighting. I then describe my landmark
annotation process and finally discuss the details of my rendering setup.

3.3.1 Posing the model

For a chosen eye-region model, each rendered image is determined
by parameters (c,g, L, E): 3D camera position c; 3D gaze vector g;
lighting environment L; and eye model configuration E. Camera
positions c were chosen by iterating over spherical coordinates (θ, φ),
centered around the eyeball center (see Figure 3.7). Images were
rendered with orthographic projection to simulate a small region-of-
interest around the eye being cropped from a wide-angle camera image.
At each camera position c, I rendered multiple images with different
3D gaze vectors to simulate the eye looking in different directions.
Examples with fixed L are shown in Figure 3.7 (b). Gaze vectors g

were chosen by first pointing the eye directly at the camera (simulating
eye-contact), and then modifying the eyeball’s pitch (α) and yaw (β )
angles over a chosen range.

Within E, I randomly configured iris color and pose eyelids according
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Figure 3.8: The four HDR environment maps I used alongside renders of the
face and eye region. Le�: outdoors environments representing bright direct
sunlight and so� cloudy light. Right: indoors environments representing a
typical bedroom and a strong directional light.

Figure 3.9: A range
of lighting conditions
can be generated by ro-
tating a single environ-
ment map.

to g. For a generic dataset, I rendered images with up to 45◦ horizontal
and vertical deviation from eye-contact, in increments of 10◦. As I
posed the model in this way, there was the possibility of rendering
“unhelpful” images that either simulate impossible scenarios or are not
useful for training. To avoid violating anatomical constraints, I only
rendered images for valid eyeball rotations |α| ≤ 25◦ and |β| ≤ 35◦.
Before rendering, I also verified that the 2D pupil center in the image
was within the boundary of the eyelid landmarks. This prevents the
rendering of images where too little of the iris is visible.

3.3.2 Creating realistic illumination

One of the main challenges in computer vision is illumination invari-
ance – a good system should work under a range of real-life lighting
conditions. I realistically illuminate the models using image-based light-
ing, a technique where high dynamic range (HDR) panoramic images
are used to provide light in a scene Debevec (2002). This works by
photographically capturing omni-directional light information from
the real world, storing it in a equirectangular image, and then project-
ing it onto a sphere around the object. When a ray hits that texture
during rendering, it takes that texture’s pixel value as light intensity.
At render time I randomly chose one of four freely available HDR
environment images3 to simulate a range of different lighting condi-
tions (see Figure 3.8). The environment is then randomly rotated
to simulate a continuous range of head-pose, and randomly scaled in
intensity to simulate changes in ambient light. As shown in Figure 3.9,
a combination of hard shadows and soft light can generate a range
of appearances from only a single HDR environment. This simple
and flexible approach creates variability using measured light levels in

3http://adaptivesamples.com/category/hdr-panos/
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real-world environments.

3.3.3 Eye-region landmark annotation

For eye shape registration, I needed additional ground-truth annota-
tions of eye-region landmarks in the training images. As shown in
Figure 3.2 (d), each 3D eye-region was annotated once in 3D with 28
landmarks, corresponding to the eyelids (12), iris boundary (8), and
pupil boundary (8). The iris and pupil landmarks were defined as a
subset of the eyeball geometry vertices, so deform automatically with
changes in pupil and iris size. The eyelid landmarks were manually
labelled with a separate mesh that follows the seam where eyeball
geometry meets skin geometry. This mesh is assigned shape keys and
deforms automatically during eyelid motion. Whenever an image is
rendered, the 2D image-space coordinates of these 3D landmarks are
calculated using the camera projection matrix and saved.

3.3.4 Rendering Images

I use Blender’s4 inbuilt Cycles path-tracing engine for rendering. This
renderer traces the paths of many light rays per pixel, scattering light
stochastically off physically-based materials in the scene until they
reach illuminants. A GPU implementation is available for processing
large numbers of rays simultaneously (150/px) to achieve noise-free
and photorealistic images. I rendered a generic SynthesEyes dataset of
11,382 images covering 40◦ of viewpoint (i.e. head pose) variation and
90◦ of gaze variation. I sampled eye colour and environmental lighting
randomly for each image. Each 120×80px rendering took 5.26s on
average using a commodity GPU (Nvidia GTX660). As a result it is
possible to specify and render a cleanly-labelled dataset in under a day
on a single machine – a fraction of the time taken by traditional data
collection procedures (Zhang et al., 2015).

3.4 Experiments – Eye shape registration

As the SynthesEyes pipeline can reliably generate consistent landmark
location data, it was used for training a Constrained Local Neural Field
(CLNF) (Baltrusaitis et al., 2013) model. This system tracks landmarks
(interesting points) on a subject’s face, e.g. points along the eyelid
boundaries. This is an important pre-processing stage for many eye
tracking algorithms. Experiments were conducted to evaluate the

4The Blender Project – http://www.blender.org/
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Figure 3.10: An eye region landmark detector trained with synthetic data
outperforms the state-of-the-art for eyelid-registration in the wild. The right
plot shows how performance degrades for training data without important
degrees of variation: realistic lighting and eyelid movement.

generalizability of the SynthesEyes dataset on two different use cases:
eyelid registration in the wild and iris tracking from webcams.

3.4.1 Eyelid registration in the wild

We performed an experiment to see how the system generalizes on
unseen and unconstrained images. We used the validation datasets
from the 300 Faces In the Wild (300-W) challenge (Sagonas et al., 2016)
which contain labels for eyelid boundaries. All of the approaches were
tested on 830 (out of 1026) test images. Images that did not contain
visible eyes (occluded by hair or sunglasses) or where face detection
failed were discarded.

CLNF patch experts were trained using the generic SynthesEyes
dataset, and a Point Distribution Model (PDM) was constructed by
performing Principal Component Analysis on the 3D landmark lo-
cations. As the rendered images did not contain closed eyes, extra
closed eye landmark labels were generated by moving the upper eyelid
down to lower one or meeting both eyelids halfway. The eye shape
registration system was initialized using the face-CLNF (Baltrusaitis
et al., 2013) facial landmark detector. To measure the difference be-
tween using synthetic or real training images, an eyelid-only CLNF
model was trained on 300-W images, but used the same PDM used for
synthetic data (CLNF 300-W). The proposed approach was compared
against the following state-of-the-art facial landmark detectors: CLNF
(Baltrusaitis et al., 2013), Supervised Descent Method (SDM) (Xiong
and De la Torre, 2013), Discriminative Response Map Fitting (DRMF)
(Asthana et al., 2013), and tree based face and landmark detector (Zhu
and Ramanan, 2012).
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Eye width = 29px

Figure 3.11: Example fits of the SynthesEyes eye-CLNF on in the wild images.
The top two rows illustrate successful eye-shape registrations, while the
bottom row illustrates failure cases including unmodelled occlusions (e.g.
hair) and strong makeup.

The results of this experiments can be seen in Figure 3.10, and example
model fits are shown in Figure 3.11. Errors were recorded as the RMS
point-to-boundary distance from tracked eyelid landmarks to ground
truth eyelid boundary, and were normalized by inter-ocular distance.
First, the proposed system CLNF Synth (Mdn = 0.0110px) trained
using only ten synthetic head models in four lighting conditions results
in very similar performance to a system trained on unconstrained in
the wild images, CLNF 300-W (Mdn=0.0110px). Second, the results
show the eye-specific CLNF outperformed all other systems in eye-lid
localization: SDM (Mdn=0.0134px), face-CLNF (Mdn=0.0139px),
DRMF (Mdn = 0.0238px), and Tree based (Mdn = 0.0217px). The
first result suggests the importance of high-quality consistent labels.
Even though our synthetic dataset has fewer different identities and
illumination conditions than 300-W, the synthetic error-free and noise-
free labels make the dataset just as valuable for eye region landmark
localization.

Learning-by-synthesis also allows us to investigate what parts of the
synthesis process are important for generating good training data. Two
further eye-specific CLNFs were trained on two different versions of
SynthesEyes: one without eyelid motion and one with only one fixed
lighting condition. As can be seen in Figure 3.10, not using shape
variation (Mdn=0.0129px) and using basic lighting (Mdn=0.0120px)
lead to worse performance due to missing degrees of variability in
training sets.
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Eye width = 47px

Figure 3.12: Example fits of the SynthesEyes eye-CLNF on webcam images.
The top rows show successes, and the bottom failures. Causes of failure
included glasses and eye shapes not covered in our training set.
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Figure 3.13: The eye region landmark detector was also evaluated on the
MPIIGaze dataset (Zhang et al., 2015). The le� plot shows how the eye-specific
CLNF landmark detector trained with synthetic eye images outperfoms a
CLNF model trained for the whole face with real images. The right plot shows
the CLNF model performing comparably with the state-of-the-art (Wood and
Bulling, 2014) for iris-registration (localising the iris boundary).

3.4.2 Eye-shape registration for webcams

While the 300-W images represent challenging conditions for eyelid
registration they do not feature iris labels and are not representative of
conditions encountered during everyday human-computer interaction.
I therefore annotated sub-pixel eyelid and iris boundaries for a subset
of MPIIGaze (Zhang et al., 2015) (188 images). Pupil accuracy was not
evaluated as it was impossible to discern in most images.

The eye-specific CLNF (CLNF Synth) was compared against EyeTab
(Wood and Bulling, 2014), a recent shape-based approach for webcam
gaze estimation that robustly fits ellipses to the iris boundary using
image-aware RANSAC (Swirski et al., 2012). The other systems from
the previous experiment were not considered as they do not detect
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Figure 3.14: The gaze direction (first row) and head pose (second row) dis-
tributions of di�erent datasets: SynthesEyes, MPIIGaze Zhang et al. (2015),
and UT Multiview Sugano et al. (2014). Note how the gaze and head distri-
butions of MPIIGaze are quite tight compared to the wider distributions of
SynthesEyes and UTGaze.

irises. I used a modified version of the author’s EyeTab implementation
with improved eyelid localization using face-CLNF (Baltrusaitis et al.,
2013). The mean position of all 28 eye-landmarks following model
initialization was used as a baseline. Eyelid errors were calculated as
RMS distances from predicted landmarks to the eyelid boundary. Iris
errors were calculated by least-squares fitting an ellipse to the tracked
iris landmarks, and measuring distances only to visible parts of the
iris. Errors were normalized by the eye-width, and are reported using
average eye-width (44.4px) as reference.

As shown in Figure 3.13, the proposed approach (Mdn = 1.48px)
demonstrates comparable iris-fitting accuracy with EyeTab (Mdn =

1.44px). However, CLNF Synth is more robust, with EyeTab failing to
terminate in 2% of test cases. As also shown by the 300-W experiment,
the eye-specific CLNF Synth localizes eyelids better than the face-
CLNF. See Figure 3.12 for example model fits.

3.5 Experiments – Gaze estimation

To evaluate learning-by-synthesis with SynthesEyes for appearance-
based gaze estimation, a cross-dataset experiment was performed (as
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described by Zhang et al. (2015)). The idea is to train and test a
gaze estimation system on different datasets. This is a very important
challenge, as it represents the ability of a gaze estimation system to
generalize beyond the idiosyncrasies of the particular camera and
environment used to create a gaze dataset.

I synthesized training images using the same camera settings as in the
UT dataset (Sugano et al., 2014). The head pose and gaze distributions
for the three datasets are shown in Figure 3.14. The same convolutional
neural network (CNN) model as described by (Zhang et al., 2015) was
trained on both synthetic datasets and tested on MPIIGaze. As shown
in Figure 3.15, the CNN model trained on the generic SynthesEyes
dataset achieved similar performance (µ=13.91◦) as the model trained
on the UT dataset (µ=13.55◦). This confirms that our approach
can synthesize data that leads to comparable results with previous
synthesis procedures (Sugano et al., 2014). Note from Figure 3.15
that there is still a performance gap between this cross-dataset and the
within-dataset training (red line).

While it is in general important to cover a wide range of head poses
to handle arbitrary camera settings, if the target setting is known in
advance, e.g. laptop gaze interaction as in case of MPIIGaze, it is
possible to target data synthesis to the expected head pose and gaze
ranges. To investigate the benefits of targetted learning-by-synthesis,
I rendered an additional dataset (SynthesEyes targeted) for a typical
laptop setting (10◦ pose and 20◦ gaze variation). For a comparison,
the entire UT dataset was re-sampled to create a subset (UT subset)
that has the same gaze and head pose distribution as MPIIGaze. To
make a comparison assuming the same number of participants, the
UT dataset was divided into five groups with ten participants each,
and the errors were averaged across these five groups. As shown in the
third and fourth bars of Figure 3.15, having similar head pose and gaze
ranges as the target domain improves performance compared to the
generic datasets. A Wilcoxon signed-rank test showed that the CNN
trained with the targetted SynthesEyes dataset achieves a statistically
significant performance improvement over the CNN trained with the
UT subset (W =4.01e8, p<1e−5).

These results suggest that neither SynthesEyes nor the UT dataset alone
capture all variations present in the test set, but different ones individu-
ally. For example, while SynthesEyes covers more variations in lighting
and facial appearance, the UT dataset contains real eye movements cap-
tured from more participants. Recent work by Fu and Kara (2011) and
Peng et al. (2014) demonstrated the importance of fine-tuning models

59



UT Synth. Synth.+UT UT subset Synth.
targeted

Synth.targeted
+UT subset

0

4

8

12

16

20

24

Ga
ze

 e
rro

r (
de

gr
ee

s)

13.91 13.55
11.12

9.68 8.94 7.90

Lower bound =6.33 (within-MPIIGaze trained model)

Gaze estimation on MPII Gaze

Figure 3.15: Test performance on MPIIGaze. X axis represents training
set used. Dots are mean errors, and red line represents a practical lower-
bound (within-dataset cross-validation score). Note how combining synthetic
datasets for training lead to improved performance (blue plots).

initially trained on synthetic data on real data to increase performance.
Therefore a final experiment was conducted to evaluate the perfor-
mance of training and fine-tuning using both datasets (see Figure 3.15).
The same CNN model was trained on the SynthesEyes dataset and
then fine-tuned using the UT dataset. This fine-tuned model achieved
better performance in both settings (untargeted µ= 11.12◦, targeted
µ=7.90◦). A Wilcoxon signed-rank test showed that the CNN trained
with targetted data and finetuned with UT data achieves a statistically
significant performance improvement over the previous state-of-the-art
in cross-dataset appearance based gaze estimation, UT subset (Zhang
et al., 2015) (W = 1.93e8, p < 1e−5). This indicates a promising av-
enue for future investigation into pre-training with synthetic data, and
fine-tuning with real data.

Person-specific appearance Appearance-based gaze estimation per-
forms best when trained and tested on the same person, as the training
data includes the same eye appearances that occur during testing. How-
ever, eye images from SynthesEyes and MPIIGaze can appear different
due to differences in eye-shape and skin color. To examine the effects
of this, an additional experiment was conducted where ten separate
systems were trained (one for each SynthesEyes eye model) and tested
on each participant in MPIIGaze, recording average error for each
participant. The results can be seen in Figure 3.16.

This plot illustrates which SynthesEyes models were useful for training
and which ones were not. It can be seen that training with certain eye

60



Figure 3.16: Per–eye-model gaze estimation mean errors on MPIIGaze in
degrees. Red represents worst scores. Note how some eye-models have
proved more useful than others for training. For example, a CNN trained with
images from f3, a dark-skinned female with brown eyes, perform particularly
badly on images of p04, a fair-skinned male with blue eyes.

models lead to poor generalization, for example f3, m2, and m4, perhaps
due to differences in skin-tone and eye-shape. Similarly, learning with
an Asian-shaped eye-region model (m4) leads poor performance for
non-Asian-shape eye-region test participants. Also, total errors for
some target participants are lower than for others, perhaps because
of simpler eye-region shape that is matched to the training images.
Although intuitive, these experiments further confirm the importance
of correctly covering appearance variations in the training data. They
also open up potential directions for future work, including person-
specific adaptation of the renderings and gaze estimation systems.

3.6 Summary

In this chapter I presented my first investigations into learning-by-
synthesis for appearance-based gaze estimation. Rather than present
a new algorithm for gaze estimation itself, I described in detail how
to synthesize perfectly labelled realistic images of the human eye. At
the core of my method is a computer graphics pipeline that uses a
collection of dynamic eye-region models obtained from head scans to
generate images for a wide range of head poses, gaze directions, and
illumination conditions.
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I demonstrated that systems trained with SynthesEyes data can out-
perform state of the art methods for eye-shape registration and cross-
dataset appearance-based gaze estimation in the wild. These results
are promising and underline the significant potential of such learning-
by-synthesis approaches particularly in combination with recent large-
scale supervised methods.
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4

Eye region morphable model

In the previous chapter I showed how I trained eye tracking systems
with rendered images. Though this system performed well, its training
data was still lacking in a certain respect: a poor range of inter-person
variability. It contained only ten virtual participants, far fewer than
is normally considered sufficient for a system to generalize well to
unseen people. For comparison, training databases for face analysis
tasks generally contain hundreds of different people (Sagonas et al.,
2016), e.g. 337 participants in Multi-PIE (Gross et al., 2007), and 126
participants in FFRGC-V2 (Phillips et al., 2005).

Having too few training participants can be problematic for learning
methods that are prone to over-fitting. For example, if a neural network
learns to predict which specific training participant of out ten it is
observing, it can learn participant-specific features that reduce its error
at training-time. But these participant-specific features will not help
it generalize to unseen test participants. On the other hand, having
lots of training participants that all look similar will not help either.
For example, if a training set contains only Caucasians, the resulting
system might not learn features that apply to African or Asian people.

In this chapter I explain how I built a generative eye region model,
allowing me to produce a large range of inter-person variability. I first
explain what morphable models are, and why previous models are
unsuitable for synthesising realistic eye images. I then describe a new
morphable model that correctly treats the face and eyes as separate
parts, the first of its kind. Crucially, this model allows independent
eyeball movement – the primary indicator of gaze direction. The aim
of this model was to allow me to take learning-by-synthesis a step
further, generating better training datasets with an improved range
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In past literature, the
term albedo has been
used instead of texture.
In this dissertation they
mean the same thing.

Figure 4.1: Synthetic
training data used by
Rätsch et al. (2012) (top)
and Scherbaum et al.
(2013) (bottom). Note
the neutral facial ex-
pressions and gaze.

of eye appearance variation (Chapter 5). Furthermore, by fitting
our model to images, I was also able to explore analysis-by-synthesis
methods for gaze estimation for the fist time (Chapter 6).

4.1 3D morphable models

A 3D morphable model (3DMM) is a statistically-derived generative
model of the face. It comprises linear models of shape and texture
which describe a face as the average face plus a weighted sum of basis
faces that represent modes of variation (see Figure 4.2). They are
constructed from a training set of face scans that have been brought
into correspondence – meshes share the same topology, and vertices
share the same anatomic semantics. The average face and these modes
of variation are extracted using dimensionality reduction, typically
Principal Components Analysis (PCA) (Blanz and Vetter, 1999). They
are often combined with models of scene illumination and camera
projection to analyse faces in images in an illumination-invariant and
pose-invariant manner.

Since their introduction nearly two decades ago (Blanz and Vetter,
1999), 3DMMs have become a well established tool for many face-
related tasks in computer vision. Their popularity can be attributed to
two key benefits. 1. They provide a powerful prior for recovering 3D
facial shape and texture in data-deficient scenarios, e.g. 2D images – an
ill-posed problem (Blanz and Vetter, 1999; Romdhani and Vetter, 2005;
Aldrian and Smith, 2013). Given an image of a face, these systems
use model fitting to recover the most likely 3DMM parameters that
represent that face. 2. They provide a compact representation of a
face by encoding it using the learned shape and texture bases. This
dimensionality reduction is key in making certain face-analysis tasks
like face recognition (Paysan et al., 2009) and age estimation (Booth
et al., 2016) more robust to changes in illumination and pose.

4.1.1 Learning-by-synthesis with 3DMMs

Due to their generative nature, 3DMMs are well-suited to learning-by-
synthesis. New faces can be generated by perturbing the average face
with random amounts of the basis faces. In this way, researchers have
used 3DMMs to generate training sets with a guaranteed amount of
variation – more convenient than manually collecting a large amount
of data (see Figure 4.1). For example, Huang et al. (2003) captured
faces from images, and re-rendered them under different poses and
illumination for training a component-based face recognition system.
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Figure 4.2: How a 3D morphable model works. A face is represented as the
average face, plus a weighted sum of basis faces representing modes of facial
variation. The primary mode of shape variation captures the di�erences
between big and small faces, and the primary mode of texture variation
captures the di�erences between light and dark skin.

Learning-by-synthesis has also been applied to head-pose estimation,
with both Rätsch et al. (2012) and Fanelli et al. (2013) rendering
training images of heads under various rotations in RGB and depth-
only respectively. Scherbaum et al. (2013) trained a face detector with
3DMM images, and stressed the benefits of having full control over the
variation in a training set. This allowed them to avoid potential biases
in pose or appearance that might be present for datasets collected from
the internet e.g. most face images present them facing towards the
camera. These previous systems focussed on full-face analysis tasks,
and avoided faces with non-neutral expression.

Inspired by these previous works, my plan was to use a 3DMM to
generate images of eyes looking in different directions for training
a gaze estimation system with learning-by-synthesis. So instead of
rendering a discrete collection of ten head models as before (Chapter 3),
I could instead generate a continuous stream of eye region models, and
render these to produce training data with improved facial appearance
variation. Unfortunately, previous 3DMMs have failed to accurately
model the eyes, making them unsuitable for our task.
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Figure 4.3: A comparison of previous models to my new eye region model.
Note how details like the inner eye corner and eyelid margins are not present
in the SFM and BFM. For the FW model, these small details have been copied
from a template rather than fit to scan data. In contrast, my model cleanly
captures these details with an e�icient topology well suited for animation.

4.1.2 Previous face models

Though much time has passed since they were first presented, relatively
few 3DMMs are available to the public. This is because they are
difficult to construct. Collecting the 3D face scans is time consuming
and expensive, and accurately bringing the scans into correspondence
is a challenging task. I now present the most commonly used and most
recent face models available, and explain why they are not suitable for
synthesizing eye images.

Basel Face Model (BFM) (Paysan et al., 2009)

The BFM is currently the most widely used 3DMM. It was released to
the public in 2009 to help bring 3DMM techniques mainstream, since
previous models were not freely available. Limitations of the scanning
equipment meant that the authors failed to accurately capture eye detail,
and so replaced the eye with a smooth proxy mesh (see Figure 4.3, top
row). Since this proxy covers the caruncle and eyelid margins, eye
images rendered with the BFM miss these important details and appear
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Figure 4.4: Raw scan
data used in FW. Note
how eye details have
been smoothed out.

Figure 4.5: Raw scan
data used in SFM. Note
that eye details are
barely visible.

unnatural. Additionally, the BFM’s mesh is extremely high resolution
(>50K vertices), making it unsuitable for real time manipulation.

FaceWarehouse (FW) (Cao et al., 2014b)

Cao et al. (2014b) released FaceWarehouse to provide a comprehensive
database of 3D facial expressions to the community. While not itself
a 3DMM, the database includes registered scans of 150 individuals
with various facial expressions – data that has since been used to build
linear face models (Thies et al., 2015; Cao et al., 2014a). The scans
were brought into correspondence by deforming a template mesh to
match Kinect data. However, Kinect face scans are low resolution
(see Figure 4.4), so eyes details in the FW model cannot be accurate.
Any details visible in Figure 4.3 (second row) have instead been copied
across from the source face template. Furthermore, as only a Kinect
was used, the corresponding color data is low quality, preventing us
building a good texture model.

Surrey Face Model (SFM) (Huber et al., 2016)

Huber et al. (2016) recently released the multi-resolution SFM as an
alternative to the BFM. The SFM includes lower resolution models,
better suited towards real time applications. However, all eye features
have been smoothed away, leaving flat patch where the eyeball should
be (see Figure 4.3 third row). As no detailed parts of the eye are
discernible it is inappropriate for synthesizing close-up eye images.
Furthermore, the source scans for the SFM remain of similar quality
to previous models (see Figure 4.5), so there is no hope of accurate eye
detail being captured.

4.1.3 Challenges of capturing the eye region in 3D

The issues encountered by previous models can be attributed to two
challenges of the eye region: its structure and motion.

First, I will explain why the eye’s structure makes it difficult to recon-
struct in 3D. The eyeball is a complex organ, composed of multiple
layers of transparent, refractive, and reflective material. This prevents
the use of traditional 3D reconstruction techniques like photogram-
metry that assume opaque non-transparent surfaces. As a result the
corneal bump cannot be reconstructed, and the iris appears sunken and
blurry. It therefore makes sense to remove the eyeball from each face
scan (as in FW) as it is inaccurate. Furthermore, the eye is surrounded
by eyelashes – hundreds of tiny self-similar hairs that can confound
reconstruction methods. These cannot be discriminated correctly by
photogrammetry, leading to a clumpy and noisy reconstruction of
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the eyelashes and eyelids. It is therefore important to use scans of the
highest quality to have a chance of correctly modelling eye detail.

Second, I will explain why eyeball motion has been largely ignored by
previous face models. To model facial expressions, some previous facial
models have been extended to capture expressions that form through
deforming the skin (e.g. mouth opening, eyebrow raising) (Thies et al.,
2016). Models like the BFM and SFM include the eyes as part of their
face mesh, allowing them to be fit to images of faces with neutral gaze.
This fixed facial topology does not allow eyes to move independently,
so prevents these models being used to model represent non-neutral
gaze expressions. While skin-only facial expressions can be modelled
accurately by deforming the face mesh, this is not appropriate for eye
movement. This is because eyeballs rotate freely in their sockets, so
should not be attached to the eyelids of the face mesh. Previous work
has side-stepped eye movement by removing the eyes from the mesh,
and ignoring them during model-fitting (Thies et al., 2016; Cao et al.,
2014a). Instead, eyeballs should be treated as separate objects from the
skin, allowing them to be fit separately.

4.2 My multi-part eye region model

Taking these challenges into account, I designed a new multi-part
3DMM of the eye region. It captures shape and texture variation of
both the facial eye region and eyeball, while also allowing for artic-
ulated independent eyeball motion. It consists of two main parts: a
generative model of the facial eye region, and an articulated model of
the eyeball. In the following sections I describe the parts that make up
our model, how I pose them to simulate eye gaze, and how I render
them to synthesize eye images.

4.3 Part 1: the facial eye region

Pictures of the eye also contain a portion of the face. In this section I
describe the largest part of my model – the facial eye region.

4.3.1 Data acquisition

In order to build my generative morphable model, I needed 3D data of
the eye region. I acquired high resolution head scans from the same
online store as used in Chapter 3. An example can be seen on the left of
Figure 4.6. Short scanning time is critical for capturing facial detail, as
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nose ridge

interior margin

eyebrows

anterior margin

eyelid crease

Figure 4.6: Retopologizing an original cleaned head scan (5M vertices) into
my more e�icient generic eye region mesh (229 vertices) The coloured strokes
show important edge loops that I manually positioned to ensure mesh topol-
ogy matches real life anatomic structure, allowing for realistic deformation.

Figure 4.7: The uvmap
of the facial eye region.

even tiny facial movements can lead to a blurry reconstruction. While
previous work used scanners with ∼1s acquisition time (Paysan et al.,
2009), the models I used were captured in under 1/10, 000 of a second,
resulting in high detail (0.1mm resolution geometry). I acquired c = 22

scans from an online store1 (7 female, 15 male) covering different ages,
eye shapes, facial bone structure, and skin tone.

4.3.2 Scan registration

The first step of building a 3DMM is bringing the raw scan data
into correspondence. To do this, I retopologized each original high-
resolution mesh so that semantically identical points (e.g. points
along the interior margin or nose ridge) shared the same vertex in a
lower resolution domain or topology. In Chapter 3 I retopologized
each head-scan separately, resulting in ten new topologies for ten initial
meshes. This then required each mesh to be animated separately, a time-
consuming task. To bring the new set of scans into correspondence
I instead registered all eye regions with a single generic topology, as
shown in Figure 4.6.

I carefully designed this topology so the edge loops (sets of connected
edges) would match the real life anatomic structure, e.g. the oculus
orbicularis, while also faithfully capturing the original shape of the
scanned eye region. These edge loops allow more realistic animation
as mesh deformation matches that of real flesh and muscles (Orvalho
et al., 2012). The topology does not include the eyeball, as we wish to
pose that separately. I also uv-unwrapped the topology so each vertex
is associated with a uv coordinate – this allows us to apply textures
to the eye region (Figure 4.7). Once I had manually registered each

1Ten24 3D Scan Store – http://www.3dscanstore.com/
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modes of shape variation

average
shape

β 1  

β 2  

β 3  β 4  

µs µs ± 2σs1U1 µs ± 2σs2U2 µs ± 2σs3U3 µs ± 2σs4U4

Figure 4.8: The linear shape modelMgeo. The mean eye region shape µ̂s is
shown along with the first four modes of shape variation. The first mode U1

varies how inset / protruding the eye is. The shapes for U1 correspond to
Mgeo([+2, 0, . . .]) andMgeo([−2, 0, . . .]).

scan, I brought the textures into correspondence by transferring each
original texture into into a new texture map defined in this uv space.

Following registration, we have c sets of points that represent shape,
and c sets of RGB values that represent texture. Let us write shape as
vector s (n vertices), and texture as vector t (m texels), encoded as 3n

and 3m dimensional vectors respectively:

s = [x1, y1, z1, x2, ...yn, zn]T∈ R3n (4.1)

t = [r1, g1, b1, r2, ...gm, bm]T∈ R3m (4.2)

where xi, yi, zi is the 3D position of the ith vertex, and rj, bj, gj is the
color of the jth texel.

4.3.3 Linear shape modelMgeo

We now have a training set of c = 22 shape vectors si, i ∈ [1, 22] that
form a distribution in 3n dimensional space. Our aim is to model this
distribution, so we can generate new face shapes that are similar to
those in the training set, and examine observed shapes to determine
their plausibility (Cootes et al., 2001).

Let us assume that facial shape s is distributed as a multivariate normal
random variable

s ∼ N3n (µs, Σs) (4.3)

where µs ∈ R3n is the mean 3D shape, and Σs ∈ R3n×3n is the
covariance matrix.

70



Parameter estimation We now search for µ̂s and Σ̂s: unbiased
estimators for µs and Σs respectively. Let us gather the c shape vectors
s1, s2 . . . sc into shape data matrix S,

S =


x11 y11 z11 x12 . . . x1n y1n z1n
x21 y21 z21 x22 . . . x2n y2n z2n
...

...
...

... . . . ...
...

...
xc1 yc1 zc1 xc2 . . . xcn ycn zcn

 ∈ Rc×3n (4.4)

µ̂s can then be calculated as the column-wise mean of S,

µ̂s =
1

c

c∑
i=1

Si (4.5)

and we can then derive an estimate of the covariance matrix Σ̂s

Σ̂s =
1

c− 1
(S− µ̂s) (S− µ̂s)

T (4.6)

Model definition We seek a shape modelMgeo that allows us to
generate face shapes s∗. To simplify the problem, we apply Principal
Component Analysis (PCA) to the data to reduce its dimensionality
from 3n to c− 1. First, let us define a generative, parameterized shape
model of the form s∗ =Mgeo(β) as follows:

Mgeo (β) = µ̂s + U diag(σs)β (4.7)

= µ̂s +
c−1∑
i=1

βi σsiUi (4.8)

where U ∈ R3n×3n is a matrix representing the modes of shape varia-
tion, σs ∈ R3n are the standard deviations of each of those modes, and
β ∈ R3n is a vector of shape parameters. As Σ̂s is a real symmetric
matrix, U can be determined through the eigen decomposition of the
covariance matrix Σ̂s:

Σ̂s = UΛsU
T (4.9)

where U is an orthogonal matrix whose ith column is the eigenvector
Ui of Σ̂s, and Λs is a diagonal matrix whose diagonal entries Λsii are
the eigenvalues λsi of Σ̂s (both sorted so that λsi ≥ λsi+1

).

These eigenvectors Ui represent the orthonormal basis vectors that best
describe variation in the model distribution – these are the principal
components. The variance of the ith mode of variation across the
training set is given by the corresponding eigenvalue λi. We scale each
mode by its standard deviation σsi =

√
λi so Mgeo is more evenly

parameterized across β.
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modes of texture variation

average
texture

τ 1  

τ 2  τ 3  
τ 4  

µt µt ± 2σt1V1 µt ± 2σt2V2 µt ± 2σt3V3 µt ± 2σt4V4

Figure 4.9: The linear texture modelMtex shown rendered onto the average
shape. The mean eye region texture µ̂t is shown with the first four modes of
texture variation. The first mode V1 varies between light and dark skin. The
textures for V1 correspond toMtex([+2, 0, . . .]) andMtex([−2, 0, . . .]).

It can be shown that only the first c− 1 eigenvectors Ui have non-zero
eigenvalues: λi = 0 for i ≥ c (Cootes et al., 2001). We therefore
only need to consider the first c− 1 columns of U and the first c− 1

parameters in β when generating shapes s∗.

Examples Figure 4.8 shows the mean shape µ̂ along with visualiza-
tions of the four most important degrees of shape variation.

4.3.4 Linear texture modelMtex

We derive the generative texture modelMtex in a similar way toMgeo.
We start with a training set of c texture vectors ti that form a distri-
bution in 3m dimensional space. We assume that facial texture t is
distributed as a multivariate normal random variable

t ∼ N3m (µt, Σt) (4.10)

where µt ∈ R3m is the mean facial texture, and Σt ∈ R3m×3m is the
covariance matrix.

Parameter estimation To find unbiased estimators µ̂t and Σ̂t, we
first gather the facial textures into a texture data matrix T ∈ Rc×3m

whose ith row corresponds to the texture vector ti. µ̂t and Σ̂t can then
be calculated as follows:

µ̂t =
1

c

c∑
i=1

Ti (4.11)

Σ̂t =
1

c− 1
(T− µ̂t) (T− µ̂t)

T (4.12)
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Model definition We now seek a shape modelMtex that allows us
to generate face textures as t∗ = Mtex(τ ). Again, we use PCA to
simplify the problem. Our parameterized generative texture model is
defined as follows:

Mtex (τ ) = µ̂t + V diag(σt) τ (4.13)

= µ̂t +
c−1∑
i=1

τiσtiVi (4.14)

where V ∈ R3m×3m is a matrix representing the modes of texture
variation, σt ∈ R3n are the standard deviations of each of those modes,
and τ ∈ R3m is a vector of model parameters. V is found through the
eigen decomposition of Σ̂t,

Σ̂t = VΛVT (4.15)

where V is an orthogonal matrix whose ith column is the eigenvector
Vi of Σ̂t, and Λt is a diagonal matrix whose diagonal entries Λstii are
the eigenvalues λti of Σ̂t (both sorted so that λti ≥ λti+1

). As before,
we scale each mode by its standard deviation σsi , and we only consider
the first c− 1 columns of V and the first c− 1 parameters in τ .

Examples Figure 4.9 shows the mean texture µ̂t along with visual-
izations of the four most important degrees of texture variation.

4.4 Part 2: the eyeball

Eye gaze direction is determined by the orientation of the eyeball.
My multi-part model therefore includes an eyeball model that can be
rotated independently from the rest of the face to simulate changes in
gaze direction.

4.4.1 Eyeball shape

The visible region of the eyeball is composed of three parts: the white
sclera, the transparent cornea, and the colored iris. As is standard in
computer graphics (Ruhland et al., 2014), I approximate the eye’s shape
with two spheres: a large one representing the sclera (r = 12mm), and
a small one representing the corneal bulge (r = 8mm). The boundary
between these two spheres is the limbus – the outer edge of the iris.
This boundary where the spheres meet was smoothed using vertex
averaging to provide a continuous transition between cornea and sclera.
The resulting mesh represents the exterior surface of the eyeball, and
comprises 546 vertices in total.
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modes of iris variation

average
iris texture

τe1 τe2
τe3

µe µe ± 2σe1W1 µe ± 2σt2W2 µe ± 2σt3W3

Figure 4.10: The linear iris texture modelMeye. The mean iris texture µ̂teye is
shown with the three modes of iris texture variation. The primary modeW1

varies between light and dark coloured eyes.

Figure 4.11: Manually
aligned source images
for the generative iris
texture model.

Eyeballs vary in shape, both between people and over time. Iris size
variation is modelled by simply scaling all iris vertices around their
centre using procedural animation. Pupillary dilation and contraction
is modelled by altering texture lookups, scaling them towards or away
from the pupil centre.

4.4.2 Iris texture modelMeye

Eyeballs also vary in colour between people. This variation is modelled
using a linear texture modelMeye built in the same way asMtex. I
collected and aligned a set of high resolution eye images to use as
training data (see Figure 4.11). Following PCA on this source data, we
can generate new eyeball textures t∗eye in the following way:

Meye
(
τeye
)

= µ̂e + W diag(σe) τ e (4.16)

where τ e is a vector of eye texture parameters, µ̂e is the estimated
average eyeball texture, W is a matrix representing orthonormal modes
of eye texture variation, and σte are the standard deviations of each
of those modes. Figure 4.10 shows some examples of the mean eye
texture along with the primary modes of variation.

4.5 Posing our model

The multi-part model is defined with neutral gaze, representing some-
one looking directly ahead. The world origin and eyeball origin are
aligned, and the eyeball gazes along the Z axis. The eye region model
must therefore be posed to simulate different gaze directions.
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−20o 0o +10o +20o

Figure4.12: Eyelid motion corresponding to eye gaze pitch of−20◦, 0◦, +10◦,
and +20◦. The face mesh is posed using procedural animation.

4.5.1 Eyeball rotation

The eyeball model is rotated by applying rotation transforms to its
model-to-world transform Meye. Gaze direction can be represented in
terms of eyeball pitch θpitch and yaw θyaw angles, so the model-to-world
matrix can be defined as

Meye = RY

(
θyaw
)
RX

(
θpitch

)
(4.17)

Where RY

(
θyaw
)
is a rotation about the Y axis of θyaw, and RX

(
θpitch

)
is a rotation about the X axis of θpitch.

4.5.2 Procedural eyelid motion

When the eyeball moves, the eyelids move with it. As the facial eye
region model represents neutral gaze (0◦ eyeball pitch and yaw), we
must animate the mesh to represent lid motion.

There are two main methods for animating faces: 1) skeletal animation:
a mesh’s surface is deformed by posing an underlying skeleton, and
2) blend shapes: different deformed versions of a mesh are stored as
separate keyframes, and are interpolated between. However, these
methods are generally applied to a specific instance of a face, not a
generative face model. I instead use procedural animation to position
eyelid vertices using mathematical functions rather than artist-driven
facial rigs. This way we can ensure consistent animation across different
facial shapes.

Eyelid movement can be broadly described as a rotation, with different
parts of the lid having different rotational axes (Malbouisson et al.,
2005). I therefore model eyelid rotation by applying different rotation
transforms to the different vertices around the eye. Following the
edge-loops in our topology, the rotation of the jth vertex in the ith edge
loop vij is defined follows:

v′ij = R (ai,pij, θij)vij (4.18)
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(a)

(b)

Figure 4.13: (a): Gaps
(red) can appear in the
model. (b): Shrinkwrap-
ping fixes this.

WhereR (a,p, θ) describes a rotation of θ around axis a about pivot
p. Each edge loop’s rotational axis ai is defined as the offset between
its eye corner vertices, and pivot pij interpolates between eye corners
and eyeball center to ensure vertices near the eye corners are not
displaced too far. Angles θ are defined separately for upper and lower
lids using measurements taken from an empirical study (Malbouisson
et al., 2005). Rotational amount θ decays for the outer edge loops to
simulate elastic stretching of the surrounding skin and flesh. Examples
of this animation can be seen in Figure 4.12.

4.5.3 Shrinkwrapping the eye region

Although I aligned the source face scans with the eyeball model as best
as I could, there is no guarantee that the facial mesh will neatly meet
the eyeball, and in some cases it may intersect it. This is unrealistic.
To avoid this behaviour, the inner edge loops must be shrinkwrapped
(see Figure 4.13) onto the eyeball surface, filling in any unwanted gaps
between the mesh and eyeball.

Vertices in the innermost edge loop (the interior margin) are projected
directly onto the eyeball surface. The resting place of each vertex is
computed by intersecting a ray with the eyeball; the ray starts from
the vertex’s original position, and has direction pointing towards the
eyeball centre. These intersection calculations are efficient as we can
approximate the eyeball mesh with two sphere primitives. Finally,
vertices in outer edge loops are displaced towards their inner edge loop
neighbours simulate skin elasticity. This displacement is performed as
a weighted average of the original vertex position and the position of
its neighbour in the inner edge loop.

4.6 Rendering the model

This chapter concerned how the multi-part model is specified in terms
of geometry, texture, and animation. This 3D geometry was rendered
with several different tools and methods, depending on what was
required of it. The following were used:

Cycles – A photorealistic unbiased path tracing renderer integrated
in Blender. Cycles was used to render the SynthesEyes dataset
(Chapter 3), and produce many of the figures and diagrams in
this dissertation.

Unity – A game engine that provided a simple API for controlling
the generative models, as well as a physically-based rasterizing
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Figure 4.14: Since the shape model can appear blocky, I smooth its surface
using subdivision. Here is an example of a single step of Catmull and Clark
(1978) subdivision as performed by Blender.

Figure 4.15: Top: the
facial eye region a�er
triangulation. Bottom:
the triangulated mesh
following a step of Loop
(1987) subdivision.

Converting the facial
quad-mesh to triangles
doesn’t a�ect the shape
model as it concerns
vertex position only.

renderer for increased throughput compared to Cycles. Unity
was used to generate a larger eye image dataset in (Chapter 5).

DirectX – A low-level graphics API that let me synthesise eye im-
ages with maximum efficiency. Without this speed, analysis-by-
synthesis would not have been feasible (Chapter 6).

Future chapters will present how these three renderers were used
in more detail. The rest of this section describes three additional
graphics techniques that were used to improve realism: smoother
skin using subdivision surfaces, physically based iris refraction, and
particle-driven eyelashes.

4.6.1 Smoother skin using subdivision surfaces

Skin has a smooth surface. Since the facial eye region mesh is low
resolution, it may appear unnatural blocky when rendered from close
up. This blockiness can be avoided by subdividing the facial mesh,
smoothing its surface and edges by increasing its polygon count. Apply-
ing a subdivision step to a mesh involves introducing new vertices and
repositioning old vertices. The positions of these vertices are calculated
as a weighted average of the original vertices in a local neighbourhood.

Two different subdivision schemes were used, depending on how the
model was rendered.

Catmull-Clark subdivision As shown in Figure 4.6, the facial mesh
consists of quadrilateral polygons, or “quads”. We can therefore use
the popular quad-based Catmull and Clark (1978) subdivision scheme,
which is provided by Blender (Figure 4.14). This is the subdivision
method used when rendering with Cycles.

Loop subdivision Although our topology is originally composed
of quads, it must be converted to triangles before it can be rendered
with GPU rasterization (e.g. with Unity). Once the quad mesh has
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geometry pupil

geometry iris

virtual iris plane sclera
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Figure 4.16: The layered structure of the eyeball is simulated in real time
using a special shader. The idea is to calculate a uv-space texture o�set dL
that corresponds to corneal refraction.

Blender Unity
Figure 4.17: Le�: two
part eyeball rendered
o�line with Blender Cy-
cles. Right: physically
correct refraction in real
time with Unity.

been triangulated, I apply Loop (1987) subdivision (Figure 4.15). If
we want to render multiple images of a subdivision surface, it would
be computationally wasteful to recalculate the subdivision stencils for
each vertex every frame. Instead, I precomputed the resulting mesh
topology and per-vertex stencil weights for a single step of Loop (1987)
subdivision, and apply them whenever facial shape changes.

4.6.2 Physically based iris refraction

When using Cycles, I use a two-part eyeball model similar to the one
in Chapter 3 to represent the refractive part of the eyeball accurately as
possible. However, when rendering with Unity or DirectX, ray-traced
refraction is not natively available to us. For these real time engines
I instead implemented physically accurate corneal refraction using a
custom fragment shader – a GPU program that processes each pixel in
a graphics pipeline.

I followed the approach of Jimenez et al. (2012), and altered each tex-
ture look-up with a calculated texture-space offset dL (see Figure 4.16).
For each pixel on the surface of the cornea:

refracted pixel color = EyeTexture(uv + dL) where (4.19)

dL =
(
M−1dW

)
xy

and dW =
hW

−n̂W · r̂W
(4.20)

uv is the original texture coordinate, M is the eyeball model-to-world
transform, dW is the world-space vector between the corneal surface
and virtual iris, hW is the world-space height between cornea and
iris, n̂W is the eyeball’s gaze direction in world-space, and r̂W is the
world-space refracted view direction through the iris.

An example is shown in Figure 4.17. The eyeball on the left was
rendered with Cycles, taking several seconds. The eyeball on the right
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(a) (b) (c)

Figure 4.18: (a) The eye rendered without eyelashes. (b) The interpolated
eyelash mesh in blue, and guide hairs in green-to-red. (c) The final render
with the semi-transparent eyelash mesh.

was rendered with Unity, taking only a few milliseconds. Clearly, the
iris refraction shader is a good approximation of ray-traced refraction.
We can therefore model the complex multi-layered structure of the
eyeball using a single 3D mesh, in real time.

4.6.3 Eyelashes

In images of eyes, eyelashes appear as dark edge-like structures and can
provide a visual cue when someone is looking downwards. In Unity
and DirectX, these were modelled using directed particle effects. Hair
particles start at the eyelid boundaries and grow outwards away from
the eyeball, curling up or down depending on the eyelid. Hair particles
are checked for collisions with the facial mesh during hair growth, and
are redirected to avoid clipping. Computing hundreds of hair strands
is expensive, so I instead grow ten guide hairs (five for each eyelid) and
interpolate a piece of textured transparent eyelash geometry to them
(see Figure 4.18). While not as realistic as the hair particles used by
Cycles (Chapter 3), this approach is much faster.

4.7 Summary

In this chapter I described my generative 3D morphable model of the
eye region. In subsection 4.1.2, I explained why previous 3DMMs were
unsuitable for my work, and in section 4.3 and section 4.4 I described
the two main parts of my model: the face and eyeball. This model
plays a key role in the rest of the dissertation. In Chapter 5 I use
it to generate more varied training data for learning-by-synthesis. In
Chapters 6 and 7 I fit the model to images using analysis-by-synthesis.
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5

Learning an appearance based
gaze estimator from one million
synthetic images

This chapter presents work published at the 2016 Symposium on Eye Track-
ing Research & Applications in Charleston, South Carolina, USA (Wood
et al., 2016b). Tadas Baltrušaitis implemented the k-Nearest-Neighbour gaze
estimation system.

In this chapter I present UnityEyes, a research tool for rapidly syn-
thesizing large numbers of eye region images for use as training data.
UnityEyes couples a generative model of the human eye region with
a real-time rendering engine. As described in Chapter 4, the eye re-
gion model is derived from high-resolution 3D face scans and captures
variation in eye region shape, texture, and pose. This addresses one
limitation of the work in Chapter 3 – too little (or too sparsely sam-
pled) inter-person variability. However, the work in Chapter 3 suffers
another limitation: the rate at which data can be generated.

For the SynthesEyes dataset, it took ∼5s to render each image using
Cycles, Blender’s photorealistic ray tracing rendering engine. This
means it would be possible to generate about ∼15,000 images in about
a day on a typical PC. For many problems, this amount of data is
deemed sufficient, e.g. the eye region landmark tracker trained on
SynthesEyes data (section 3.4). However, we know that other machine
learning methods work better with more data, e.g. deep learning
(LeCun et al., 2015). While it would be possible to generate massive
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Rasterization is much
faster than ray tracing
because GPUs contain
special hardware dedi-
cated to polygon raster-
ization.

(a)

(b)

Figure 5.1: Jimenez
et al.’s (2012) realistic
eyeball e�ects turned
o� (a) and on (b).

datasets using the SynthesEyes pipeline by running it for long periods
of time, or renting a server farm, these options might not be available
or convenient for a typical researcher.

UnityEyes trades a little realism for a lot of speed. By using rasteriza-
tion instead of ray tracing, we can synthesize eye images over 200×
faster than before. This allowed me to synthesize a massive dataset of
over 1,000,000 images that densely covers a wide range of different gaze
directions and eye region appearances. I demonstrate the importance
of covering this variability by showing competitive performance for de-
vice and person-independent appearance-based gaze estimation, despite
only using a light-weight k-Nearest-Neighbour classifier. Furthermore,
this massive dataset was used to estimate gaze in images from the 300-W
dataset (Sagonas et al., 2016): an extremely challenging scenario that
no previous work in gaze estimation has attempted to address.

The UnityEyes rendering tool has been made publicly available for the
benefit of the research community.1

5.1 Related work

The work in this chapter is related to two types of previous work:
rendering eyes in real time, and using morphable models for gaze
estimation.

5.1.1 Rendering eyes in real time

For the work in Chapter 3, I studied how professional computer graph-
ics artists approached the challenge of rendering a realistic eye. With
the features provided by modern ray tracing renderers like Cycles, it is
possible to model the complex structures of the eye region accurately
enough to achieve photorealistic results. However, the offline renderers
used by traditional computer artists are slow.

Therefore for this chapter, I turned to previous work on rendering
eyes in real time. Real time eyes have one major application: video
games. Jimenez et al. (2012) was the first to describe the process in
detail. Their comprehensive approach considers eyeball reflections,
eye wetness, reflection occlusion, view refraction, light refraction
(caustics), two-layer eye shading, eye redness, and ambient occlusion.
Jimenez et al.’s (2012) work has since been built upon by other game
development studios (Karis et al., 2016). These references were critical
when it came to developing the UnityEyes eye shading pipeline.

1http://www.cl.cam.ac.uk/research/rainbow/projects/unityeyes/
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5.1.2 Using morphable models for gaze estimation

My work is not the first to use morphable models for gaze estimation.
Previous work used morphable face models to frontalize faces – trans-
forming input images in a way to undo distortions from head pose. For
example, Egger et al. (2014) fit the Basel Face Model (BFM) (Paysan
et al., 2009) to input images to obtain a dense 3D reconstruction of a
face. They then obtain aligned eye images by “unwrapping” the face
into a canonical pose-invariant image. These aligned eye images are
then used in a typical appearance-based gaze estimation system (regres-
sion from HOG features using random forests). Mora and Odobez
(2014) used the BFM in a similar fashion, using it to un-rotate images
of a person’s head to align eye images. While frontalization is also
possible using sparse methods like a typical facial landmark tracker
(Baltrušaitis et al., 2016), the results may not be as accurate (though
they will be faster).

The work in this chapter is different. It is the first to use morphable
models for learning-by-synthesis for gaze estimation. The goal being, if
we can generate enough training samples, we won’t need frontalization.
Given an eye image under unconstrained head pose, the machine
learning system will hopefully have already seen a similar image at
training time.

5.2 Generative eye region model

In this chapter, I used an early version of the model described in
Chapter 4. To vary eye region shape, I used the PCA shape model
Mgeo as described in section 4.3:

Mgeo

(
βface

)
= µ̂geo + U diag(σgeo)βface (5.1)

where µ̂geo is the mean shape, U are the modes of shape variation, and
σgeo are the standard deviations of these modes.

For texture, I used a simpler exemplar-based approach. When gener-
ating an eye region, UnityEyes picks a texture uniformly at random
from the 22 textures extracted from the face scans. The full set of
textures can be seen in Figure 5.2. This approach was used because
the linear texture modelMtex had not yet been built. However, since
the source actors for the scans were diverse, the collection of textures
provided a decent range of variability.

Otherwise, the model used is as described in Chapter 4. This in-
cludes procedural animation for eyelid motion and eyelid shrinkwrap-
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Figure 5.2: The 22 eye region textures that are used in UnityEyes. When
generating an eye region, a texture from this collection is chosen at random.

ping (section 4.5), smoother skin using subdivision surfaces (subsec-
tion 4.6.1), physically correct eyeball refraction (subsection 4.6.2), and
directed particle effects for the eyelashes (subsection 4.6.3).

5.3 Synthesizing eye images

My goal was to rapidly create large, realistic, and varied datasets of eye
images. Though the generative eye region model captures 3D shape
variation, images of eyes also exhibit variation depending on pose and
environmental illumination. In this section I describe the rendering
engine used by UnityEyes, as well as how I parameterized the scene to
produce illumination and pose variation.

5.3.1 Rendering the models

I used Unity 5.22 to render the eyeball and generative eye region model.
Unity is a cross-platform game engine that provides support for var-
ious graphics APIs (Direct3D on Windows, OpenGL on Linux and
Mac, etc.). It includes a state of the art graphics pipeline that supports
physically-based shading and global illumination – important features
for rendering consistently realistic images. It also provides a conve-
nient API for modifying and manipulating 3D data. This was used to
implement the generative shape model. As Unity was built for games,

2https://unity3d.com/
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{

# Landmarks in screen-space

interior_margin_2d: [ (202.7042, 186.4788), ... ],

caruncle_2d: [ (191.9471, 175.4047), ... ],

iris_2d: [ (213.3930, 195.4109), ... ],

eye_details: {

look_vec: (-0.363, 0.093, -0.927), # in camera-space

pupil_size: 0.05249219,

iris_size: 0.9090334,

iris_texture: eyeball_amber

},

lighting_details: ... # Illumination details

eye_region_details: ... # Shape PCA details

head_pose: (351.2107, 161.3652, 0.0000)

}

Figure 5.3: Example JSON meta-data associated with a rendered eye image.
Of particular note, eye_details.look_vec encodes the optical axis gaze
direction in camera space, and head_pose encodes the rotational di�erences
between camera and head. The 2D screen-space landmarks should be used
for post-processing the images, e.g. for aligning them.

it has been thoroughly optimised and supports efficient deployment of
custom shaders. This allowed me to write eyeball and skin material
shaders that were compatible with the rest of Unity’s physically based
shading pipeline.

In its default configuration, UnityEyes is set up to render images
at 400×300px resolution, and save them to disk. This took 23ms
per image using a commodity GPU (Nvidia GTX660) and SSD: a
200× speedup over Chapter 3. The bottleneck is writing images to
storage; image rendering itself takes only 3.6ms. This speed up is
attributable to the difference in how Unity and Cycles render images.
Unity’s rasterizing renderer uses the full power of the GPU’s dedicated
rasterization hardware to draw triangular meshes. Cycles’s path tracing
renderer stochastically simulates the behaviour of millions of rays of
light per-image – a much greater workload. Though Cycles has been
carefully optimized to use GPU hardware as best as possible, a massive
gulf in speed still exists between ray tracing and rasterization.

As well as saving the rendered images, UnityEyes outputs JSON-
formatted metadata files. See Figure 5.3 for an example. These describe
the scene of each image fully, including gaze direction, eye region shape
parameters, and lighting information, as well as 2D facial landmarks in
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(a) (b)

Figure 5.4: (a) Views of the same eye with the same gaze direction from
25 di�erent camera positions. (b) Views of the same eye with varying gaze
directions from a single camera position.

Spherical harmonics
are orthogonal basis
functions for represent-
ing functions defined
over a sphere. They can
be used to e�iciently
encode ambient di�use
illumination.

screen space (e.g. eye-corners and eye-centre).

5.3.2 Illuminating the models

A major source of error for appearance-based gaze estimation is illu-
mination variation Zhang et al. (2015). The eye-region can appear
very different depending on how it is illuminated – the brow or nose
can produce cast shadows that obscure the eye, and un-even lighting
can cause large variations in image intensity across the face. One of
the main benefits of learning-by-synthesis is the fact that we can easily
simulate these effects.

In Chapter 3, I used image-based lighting (IBL) to illuminate my collec-
tion of models with different environmental conditions. IBL in Unity
can simulate ambient light via spherical harmonics (Ramamoorthi and
Hanrahan, 2001) and can be used to generate reflections, but cannot
be used to cast shadows. I therefore included a separate randomized
directional light source that was used to introduce cast shadows and
highlights around the eye region. This directional light simulates bright
light sources like the sun.

For SynthesEyes, I picked from a collection of four panoramic HDR
photographs when choosing environmental lighting. With UnityEyes
I expanded this collection to 20 for increased variation, and randomly
varied their rotation and exposure levels. Given an environment map
and directional light, Unity’s rendering engine then calculates surface
shading, shadows, reflections, and ambient occlusion for the eye region
and eyeball all in real-time.
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Camera parameters
φp, φy, δφp, δφy

Eye gaze parameters
θp, θy, δθp, δθy

Background

Facial eye region

Click this button to
start rendering

Quit to stop rendering

Eyelashes

Eyeball

Figure 5.5: UnityEyes running on Windows 10 at 640×480px.

5.3.2 Posing the models

One of the advantages of generating a dataset using computer graphics
is being able to precisely position objects in the scene without the
practical difficulties of real-life image capture. Including images of the
eye taken under different head poses is one approach for head pose
independent gaze estimation. In Chapter 3, I iterated over a range of
head poses and gaze directions in fixed discrete increments. This is not
dissimilar to how real-life datasets were captured (Smith et al., 2013;
Sugano et al., 2014). For UnityEyes, I instead specified the transforms
of camera and eyeball randomly and continuously, allowing us to
synthesize training data that densely covers the range of possible head
poses. The generative eye region was positioned at the scene origin
pointing forwards, and defines neutral head pose. For each rendered
image, I randomly positioned the camera using spherical coordinates
and pointed it towards the eyeball centre, simulating different head
poses. I also randomly varied eyeball pitch and yaw as deviation from
neutral gaze. Like Chapter 3, UnityEyes assumes an orthographic
camera to simulate cropping a region of interest from a wide-angle
image. Example renders with varying camera position and gaze are
shown in Figure 5.4.

5.4 Using UnityEyes

I have made UnityEyes freely available for the benefit of the research
community. This section briefly explains how to use the tool, though
more information is available online3. On starting UnityEyes, users
first choose a resolution for rendering images. The application then
starts in interactive mode where users can pan around using the left

3UnityEyes – a tool for rendering eye images. http://www.cl.cam.ac.uk/
research/rainbow/projects/unityeyes/tutorial.html
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mouse button, rotate the eyeball with the middle mouse button, and
adjust the zoom using the scroll wheel. As can be seen in Figure 5.5,
the 3D eye region is rendered against a 50% grey background. Once the
start button is pressed, the application will enter rendering mode where
it will continuously randomize scene parameters, and save images and
JSON metadata files. The parameters that are randomized include eye
region shape, texture, pose, and environmental illuminaiton.

5.4.1 Targetting a scenario

In Chapter 3 I showed that that targetting a specific scenario with
learning-by-synthesis can improve results. UnityEyes therefore allows
users to specify a gaze distribution through parameters {θp, θy, δθp, δθy}
where eyeball pitch and yaw (in degrees) are modelled as uniform ran-
dom variables U(θp−δθp, θp+δθp) and U(θy−δθy, θy+δθy). Changes
in head pose are simulated by rotating the camera around the eye
region. Variance in the camera position is definined in a similar way
using parameters {φp, φy, δφp, δφy}. Scene parameters (including gaze)
are varied randomly so it is not required to set a target number of
rendering frames. Whether UnityEyes is run for one hour or one day,
the resulting training data should still cover the desired distribution.

5.5 Experiments

Experiments were performed to assess both the quality of the images
rendered by UnityEyes and their suitability for appearance based gaze
estimation. In this section I first briefly describe the test datasets and
the methodology used to match synthetic images to test data. I then
present three experiments: one on matching eye images in the wild,
one on gaze estimation with the MPIIGaze dataset, and one measuring
the benefits of using a morphable shape model. Note that in these
experiments I generated data with generic scene parameters, and did
not perform any scenario-specific targeting as was done in Chapter 3.

Datasets The datasets from the 300-W challenge Sagonas et al.
(2016) were used. These included AFW (Zhu and Ramanan, 2012),
IBUG (Sagonas et al., 2013) and LFPW+Helen (Belhumeur et al.,
2013; Le et al., 2012), containing 135, 337, 600, and 554 images re-
spectively. The 300-W datasets feature uncontrolled images of faces
in the wild: in indoor and outdoor environments, under varying illu-
minations, in presence of occlusions, under different poses, and from
different quality cameras. These datasets were used to assess the re-
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alism of the generated data only as they do not have gaze direction
annotations.

To quantitatively evaluate UnityEyes for appearance based gaze esti-
mation we used a subset of MPIIGaze (Zhang et al., 2015) that had
manually annotated eye corners (1,500 eye images). The SynthesEyes
dataset (12,000 synthesized images) as generated in Chapter 3 was used
as a comparison against the new UnityEyes dataset.

Methodology In all of the experiments, eye images were cropped to
60×38px, and aligned using a similarity transform. For the 300-W and
MPIIGaze datasets, the annotated eye corner locations included in the
dataset were used for alignment. To align the UnityEyes images I used
the same landmark conventions, with landmarks sampled from the
3D mesh. The estimated gaze vectors were rotated around the z-axis
in-line with the similarity transform.

To match images, all images were first resized to a fixed ROI size
with number of pixels P . They were then converted to floating-point
grayscale, and normalised so each had zero mean and unit variance.
Finally, image matching was performed using nearest-neighbour to
choose the image i from the training set Itrain that most closely matches
the test image Itest.

i = argmin
i

(
1

P

P∑
p=0

|Itraini(p)− Itest(p)|

)

The pixel error for image matching was computed using the mean
absolute difference between the normalised images. The eye gaze error
was computed as the angle between ground truth gaze direction and
estimated gaze direction in degrees. The overall eye gaze error for an
entire dataset was reported as the median of these gaze errors.

5.5.1 Matching eye images in the wild

In the first experiment, the realism of UnityEyes was tested by match-
ing in the wild eye images to those generated by UnityEyes. Over a
million images were rendered and matched these to the four in the wild
test sets. The pixel-wise errors for UnityEyes (M=0.522, SD=0.080)
is slightly higher than when matching from LFPW and Helen trainsets
to the test sets (M=0.511, SD=0.087). A paired samples t-test reveals
this difference is statistically significant; t(1243) = 5.11, p < 0.001.
This suggests that there are still some differences between images
in the wild, and synthetic images generated by UnityEyes. Paired
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Low resolution Poor illumination

Extreme gaze angle No eyeball visible

Figure 5.6: Nearest-neighbour pairs showing in-the-wild images from 300-W (top) and our renders
(bottom) along with estimated gaze (green). Examples of successful fits on images with low resolution,
poor illumination, extreme gaze angles, and occluded eyeballs are shown. No previous appearance-
based gaze estimation system has attempted 3D gaze estimation for such extreme gaze angles before
because they lacked ground truth data for training. Synthetic training data from UnityEyes has made
this possible.

sampled t-tests showed that image matching using SynthesEyes is sig-
nificantly less accurate (M = 0.607, SD = 0.085) when compared to
UnityEyes; t(1243) = −57.64, p < 0.001; or the in the wild trainsets;
t(1243) = −46.96, p < 0.001. This shows that UnityEyes images are
closer to real-world captured images than SynthesEyes images.

Some example matches can be seen in Figure 5.6. The top rows show
successful nearest-neighbour matches – these allowed gaze to be esti-
mated for unseen people in unconstrained lighting conditions. Failure
cases in the bottom row include un-modelled occlusions (e.g. hair) and
appearance variation (make-up). These qualitative examples show the
benefit of UnityEyes over previous methods, as it is now possible to
estimate gaze for extreme gaze angles for which training data could
not previously be collected. Indeed, in some cases the eye is not visible
at all – a situation not addressed by previous work in gaze estimation.
As nearest-neighbour image matching was carried out in a normalized
grey-scale space, colours were corrected to aid visual comparison by
matching the mean and standard deviations of the RGB channels.

Similarly for MPIIGaze, the UnityEyes generated dataset achieves
better image matching performance (M = 0.467, SD = 0.080) than
SynthesEyes (M=0.510, SD=0.093) and in the wild (M=0.539, SD=

0.086) and even within dataset matching (M = 0.512, SD = 0.095).
Paired sampled t-tests showed that UnityEyes was significantly better
at matching MPIIGaze images compared to SynthesEyes; t(1405) =
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Figure 5.9: Box-and-whisker plots showing gaze errors (degrees) tested on
MPIIGaze using a k-NN estimator. Boxes show the upper and lower quartiles,
and whiskers show the full range of the gaze errors. Dots and text show
mean values. X-axis represents training set. The final two box plots show
the benefits of using the generative shape model (blue) over one with no
variation (light blue).

Model Gaze error

CNN with UT (Zhang et al., 2015) 13.91◦

CNN with SynthesEyes (Wood et al., 2015) 13.55◦

CNN with SynthesEyes+UT (Wood et al., 2015) 11.12◦

k-NN with UnityEyes 10.46◦

Table 5.1: A comparison between UnityEyes and previous work for cross-
dataset gaze estimation on MPIIGaze. Previous work used convolutional
neural networks trained with UT Gaze (Sugano et al., 2014) and SynthesEyes
datasets. Note that UnityEyes achieves better results despite using a very
simple learning approach.

0 500K 1M
Images used

0.45

0.48

0.50

0.53

0.55

Image error saturation

Figure 5.7: Image error
for nearest-neighbour
matching UnityEyes im-
ages against MPIIGaze.

−12.67, p < 0.001; in the wild trainsets; t(1405) = −45.78, p < 0.001;
and within-dataset MPIIGaze images; t(1405) = −12.91, p < 0.001.

Training data amount analysis It was possible to generate over a
million training images in less than 12 hours on commodity hardware.
The effectiveness of this amount of data is shown in Figure 5.7 and
Figure 5.8. It can be seen that both the image pixel error and gaze
estimation errors decrease with an increased number of training images.

5.5.2 Gaze estimation

In the second experiment, a k-Nearest-Neighbour gaze estimation
system trained with UnityEyes was evaluated. For each real image in
MPIIGaze, we found the top k matches from UnityEyes. The average
of the k gaze directions from UnityEyes was used as the gaze estimate.
Gaze error was calculated as the difference in degrees between this
estimate and the ground truth. To compare with other datasets, we
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Figure 5.8: Gaze error
for nearest-neighbour
matching UnityEyes im-
ages against MPIIGaze.
Lowest error achieved
at 1.4M images.

also trained similar k-NN systems on held-out within-dataset images
(MPIIGaze) and SynthesEyes images (Chapter 3). The error rates in
degrees can be seen in Figure 5.9.

The results show that the UnityEyes dataset contains images that can
be used to predict gaze with accuracy comparable to the SynthesEyes
dataset. A paried samples t-test found no significant difference in the
performance between UnityEyes and SynthesEyes data; t(1405) =

−1.51, p=0.130. However, UnityEyes images can be generated much
faster than SynthesEyes images.

Furthermore, a simple k-Nearest-Neighbour approach achieves com-
parable performance to state-of-the-art deep learning based methods
for cross-dataset appearance based eye gaze estimation without dataset
targeting (Zhang et al., 2015; Wood et al., 2015) (see Table 5.1).

5.5.3 Shape variance

In the third experiment I measured the usefulness of our morphable
eye region shape modelMgeo. Two different UnityEyes datasets were
generated: a regular dataset using the full capabilities of the generative
shape model, and a dataset with no shape variation, containing just the
mean 3D shape µgeo. Both datasets contained uniform variation in eye
region texture.

The results demonstrate that using our morphable model shape varia-
tion was beneficial for both the pixel errors on the MPIIGaze dataset
(M=0.467, SD=0.080 vs M=0.477, SD=0.083) and gaze estimation
on the same dataset (M = 10.455, SD = 5.408 vs M = 11.404, SD =

6.038). According to paired samples t-tests, both image error and gaze
error differences were statistically significant: t(1405) = −3.35, p <

0.001 for image error, and t(1405) = −7.22, p < 0.001 for gaze error.
This is shown in Figure 5.9.

5.6 Summary

In this chapter I described UnityEyes – a research tool for rapidly
synthesizing eye images for use as training data. It produces images
with greater variation than before through the use of a generative shape
model (Chapter 4), while also being much faster than previous work
through the use of a real time game engine (Unity). In section 5.5 I
described several experiments using datasets generated by UnityEyes. I
showed that a massive dataset of synthetic eye images could be used to

92



estimate gaze for extremely challenging in the wild images from the 300-
W datasets. These included images with extreme gaze directions and
eyeball occlusions – situations that no previous appearance-based gaze
estimation system has addressed. Through an evaluation on MPII, I
demonstrated the importance of a good training set by out-performing
previous cross-dataset deep learning systems using only a lightweight
k-NN gaze estimation system trained with UnityEyes.

This chapter marks the end of my investigations into learning-by-
synthesis. In Chapter 6 I will describe a new approach for person- and
device-independent gaze estimation: analysis-by-synthesis.
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6

Analysis-by-synthesis for gaze
estimation

This chapter includes work published at the European Computer Vision
Conference 2016 in Amsterdam, The Netherlands (Wood et al., 2016a).
Tadas Baltrušaitis assisted with the gradient descent implementation.

Look at the two faces in Figure 6.1. You would probably say that
the faces appear to be looking in different directions. The face on the
left appears to be gazing up, towards the right. The face on the right
appears to be looking directly at you. What might be surprising is that
the eyes in each face are exactly the same. If you don’t believe this, try
covering up the bottom halves of the faces. This suggests that we take
information about the whole face into account when estimating gaze.
If we want a computer system to estimate gaze like a human, we must
allow it to use information outside the eyes alone.

Figure 6.1: The famous Wollaston (1824) illusion. Where is each face looking?

95



Despite this, appearance-based gaze estimation systems have tradition-
ally only used the eye itself (Tan et al., 2002; Williams et al., 2006).
As these basic systems do not consider the rest of the face, they break
down under head movement. More recent work has attained better
results by using an image of the entire face as an input. These methods
become robust against variations in head pose and illumination by
learning from large amounts of data (Zhang et al., 2015; Krafka et al.,
2016). However, they still struggle to generalize beyond the scenario
they were trained in. Instead of trying to implicitly learn a resilience
against such modes of variation, can we model their effect on the facial
eye region explicitly?

In this chapter, I revisit model-based gaze estimation, presenting the
first approach that uses analysis-by-synthesis. Analysis-by-synthesis
attempts to understand the world by rendering a generative model, and
comparing the synthesized output to an observed image. The difference
between synthetic and observed images is called the reconstruction
error. If the reconstruction error is low, we can say that our internal
model has explained the observed image well. Analysis-by-synthesis
is an old technique that has made a come-back in recent years, being
successfully applied to hand-tracking (Joseph Tan et al., 2016), body-
tracking (Loper and Black, 2014), and face-tracking (Thies et al., 2015).
In this chapter I will show how I applied analysis-by-synthesis to gaze
estimation. The idea being that if we can encode all manner of eye
region variation within an internal scene model, we should be able to
build a generic gaze estimator.

I first present an overview of how analysis-by-synthesis for gaze esti-
mation works. Following that, I describe the synthesis stage of my
system, explaining how the scene is parameterized and rendered. Next
I describe the analysis stage, explaining the formulation of the recon-
struction energy and fitting strategy. Finally, I present experiments
on the Columbia (Smith et al., 2013) and EYEDIAP (Funes Mora
et al., 2014) gaze datasets, showing state-of-the-art performance in
cross-dataset appearance-based gaze estimation.

6.1 Overview

There are two steps to an analysis-by-synthesis method: analysis and
synthesis. The key idea is to “fit” a model to observed data. Given an
observed image Iobs, we wish to produce a synthesized image Isyn that
best matches it. Once Iobs and Isyn are matched, we call the final model
parameters the “fit”. The fitted eyeball parameters can then be used to
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Figure 6.2: An overview the fitting process: First, facial landmarks L are
localised and used to initialze our 3DMM (Chapter 4). Analysis-by-synthesis is
then used to render an Isyn that best matches Iobs. Eye gaze g can then be
extracted from fitted parameters Φ∗.

estimate gaze direction.

Synthesis (section 6.2) This stage generates synthetic images Isyn using
the morphable model from Chapter 4 and a custom-written,
highly optimized DirectX rendering framework. The full scene
model is described by a set of parameters Φ that cover both geo-
metric (shape, texture, and pose) and photometric (illumination
and camera projection) variation.

Analysis (section 6.3) This stage has two tasks: comparing how closely
Isyn has matched Iobs, and adjusting model parameters Φ to
achieve a better fit. Observed and synthetic images are com-
pared using an objective function E(Φ) which considers both
a dense measure of appearance similarity, as well as a holistic
measure of facial feature-point similarity (see Equation 6.7). Φ

is updated using gradient descent.

6.2 Synthesizing eye images

The goal is to use a 3D eye region model to synthesize an image which
matches an input eye image. To render synthetic views of the eye
region, I used the multi-part model described in Chapter 4. This model
was posed in a scene, illuminated, and then rendered using a model of
camera projection. Our total set of model and scene parameters Φ are:

Φ = {β, τ ,θ, ι,κ} , (6.1)

where β are the shape parameters, τ the texture parameters, θ the
pose parameters, ι the illumination parameters, and κ the camera
parameters. In this section I describe each part of our model in turn,
and the parameters that affect it.
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Figure 6.3: A screenshot of the DirectX version of the model.

6.2.1 Morphable facial eye region model

The first part of the model is a 3DMM of the eye region. This serves as
a prior for facial appearance. The facial eye region is controlled with
parameters βface ⊂ β and τ face ⊂ τ . For the work in this chapter, I
used generative models of both facial shapeMgeo and textureMtex as
they were described in Chapter 4.

Mgeo

(
βface

)
= µ̂geo + U diag(σgeo)βface (6.2)

Mtex

(
τface
)

= µ̂tex + V diag(σtex) τface (6.3)

µ̂geo and µ̂tex are the mean shape and texture. U and V are the or-
thonormal modes of shape and texture variation. σgeo and σtex are the
standard deviations of these modes of variation. Please see section 4.3
for the full derivation.

From our set of c=22 scans, 90% of shape and texture variation can
be encoded in 8 shape and 7 texture coefficients. This reduction in
dimensionality is important for fitting our model efficiently.

Additionally, as eyelashes can provide a visual cue to gaze direction,
they are modelled using a semi-transparent mesh controlled by a simple
hair simulation (see subsection 4.6.3).

6.2.2 Parametric eyeball model

The second part of the multi-part model is the eyeball which is rep-
resented with a separate mesh. The eyeball model is almost exactly
the same as the one described in Chapter 4. To vary iris texture, I use
another linear modelMiris,

Miris (τiris) = µ̂iris + W diag(σiris) τiris (6.4)
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where µ̂iris is the mean iris texture, W are the modes of iris variation,
σiris are the standard deviations of iris variation, and τiris ⊂ τ are the
iris texture parameters. Please see subsection 4.4.2 for more details.

As the “white” of the eye is not purely white, variations in sclera colour
are modelled by multiplying the non-iris parts of the eyeball texture
with a RGB tint colour parameter τ tint∈R3.

Changes in iris size are modelled by scaling vertices on the iris bound-
ary about the iris centre as specified by iris diameter βiris.

6.2.3 Posing the model

Both global and local pose information is stored in parameter vector θ.
The two parts of the model are defined in a local coordinate system
with origin at eyeball centre, so I use the model-to-world transforms
Mface and Meye to position them in a scene. The facial eye region com-
ponent has six degrees of freedom in translation θT ∈R3 and rotation
θR∈R3. These are encoded as 4×4 homogenous transformation matri-
ces T and R, so model-to-world transform Mface = TR. The eyeball’s
position is anchored to the face model, but it can rotate separately
through local pitch and yaw transforms Rx(θp) and Ry(θy), giving
Meye = TRxRy.

When the eye looks up or down, the eyelid moves to follow it. Eyelid
motion is modelled using procedural animation and shrinkwrapping
as described in subsection 4.5.2 and subsection 4.5.3.

6.2.4 Scene illumination

As we focus on a small, localized region of the face, I assume a simple
illumination model where lighting is distant and surface materials are
purely Lambertian. The illumination model therefore consists of an
ambient light with colour lamb∈R3, and a directional light with colour
ldir ∈ R3 and 3D direction vector L. Colours are encoded as RGB
triples, and the light direction is represented by pitch and yaw angles.
This scene model does not consider specular effects, global illumination,
or self-shadowing, so illumination depends only on surface normal and
albedo. Radiant illumination L at a point on the model surface with
normal N and albedo c is calculated as:

L(n, c) = c lamb + c ldir (N · L) (6.5)

While this model is simple, I found it to be sufficient. If I were to
consider a larger facial region, I would explore more advanced material
or illumination models, as seen in previous work (Thies et al., 2015).
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6.2.5 Camera projection

To analyse how images are formed, a model of camera projection is
required. For simplicity, I fix an axis-aligned camera at the world
origin, and set the world-to-view transform as the identity I4. I assume
knowledge (or an estimate) of intrinsic camera calibration parameters
κ, and use these to build a projection transform matrix P. The key
parameters here are aspect ratio and field of view. These are not
optimized over. A point in our model can then be transformed into
image space using the model-view-projection transform PM{face|eye}.

6.2.6 DirectX rendering framework

To actually synthesize the images, I developed a new DirectX rendering
engine from scratch. The goal was to be able to render and analyse
images as quickly as possible. This is the reason I switched from
Unity – though ∼300fps may be good for learning-by-synthesis, it is
not fast enough for analysis-by-synthesis. Furthermore, interfacing
between Unity and other software for optimization would be tricky
and computationally expensive. I decided that a complete solution
with DirectX and C++ was preferable.

As it typical of rendering engines, a major consideration is limiting
the amount of CPU↔GPU communication. Through careful book-
keeping, I ensure only a minimal set of GPU data is updated per-frame,
based on what parameters in Φ have changed. The most expensive
operation in our fitting framework is transmitting Isyn from the GPU
to CPU in order to analyse it. This is a bottleneck as it causes a
GPU pipeline stall. This is alleviated by only copying only the valid
foreground pixels P across during calculations. As a result, we can
render Isyn at over 5000fps.

6.3 Analysis-by-synthesis for gaze estimation

Given an observed image Iobs, the aim is to produce a synthesized
image Isyn (Φ∗) that best matches it. 3D gaze direction g can then be
extracted from eyeball pose parameters. I search for optimal model
parameters Φ∗ using analysis-by-synthesis. To do this, I iteratively render
a synthetic image Isyn (Φ), compare it to Iobs using our energy function,
and update Φ accordingly. Let us cast this as an unconstrained energy
minimization problem for unknown Φ.

Φ∗ = argmin
Φ

E(Φ) (6.6)
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Iobs iter. 2 iter. 3iter. 1 iter. 60

image error:

Figure 6.4: Eimage measures dense image-similarity as the mean absolute
error between Iobs and Isyn, over a mask of rendered foreground pixels P
(white). Errors for background pixels (black) are ignored.

6.3.1 Objective function

The reconstruction energy is formulated as a combination of a dense
image similarity metric Eimage that minimizes difference in image appear-
ance, and a sparse landmark similarity metric Eldmks that regularizes the
fit using reliable facial feature points, and weight λ controlling their
relative importance.

E(Φ) = Eimage(Φ) + λ · Eldmks(Φ, L) (6.7)

Image similarity metric The primary goal is to minimise the differ-
ence between Isyn and Iobs. This can be seen as an ideal energy function:
if Isyn = Iobs, the model must have perfectly fit the data, so virtual and
real eyeballs should be aligned. I approach this by including a dense
photo-consistency term Eimage in the energy function. However, as
the 3DMM in Isyn does not cover the entire of Iobs, we must split the
image into two regions: a set of rendered foreground pixels P that we
compute error over, and a set of background pixels that we ignore (see
Figure 6.4). Image similarity is then computed as the mean absolute
difference between Isyn and Iobs for foreground pixels p ∈ P .

Eimage(Φ) =
1

|P |
∑
p∈P

∣∣Isyn(Φ, p)− Iobs(p)∣∣ (6.8)

Landmark similarity metric The face contains important land-
mark feature points that can be localized reliably. These can be used
to efficiently consider the appearance of the whole face, as well as the
local appearance of the eye region. I use a state-of-the-art face tracker
(Baltrusaitis et al., 2013) to localize 14 landmarks L around the eye
region in image-space (see Figure 6.5). For each landmark l∈L I com-
pute a corresponding synthesized landmark l′ from our 3DMM. The
sparse landmark-similarity term is calculated as the distance between
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Figure 6.5: Iobs with landmarksL (white dots), and model fits with the land-
mark similarity term (top), and without (bottom). Note how it prevents erro-
neous dri� in global pose, eye region shape, and local eyelid pose.

both sets of landmarks, normalized by the foreground area to avoid
bias from image or eye region size. This acts as a regularizer to prevent
fitted pose θ from drifting too far from a reliable estimate.

Eldmks(Φ, P ) =
1

|P |

|L|∑
i=0

‖li − l′i‖ (6.9)

6.3.2 Optimization procedure

Fitting the model is a challenging non-convex, high-dimensional opti-
mization problem. To approach it I use gradient descent (GD) with an
annealing step size. Calculating analytic derivatives for a scene as com-
plex as the eye region is challenging due to occlusions. I therefore use
numeric central derivatives ∇E to guide our optimization procedure:

Φi+1 = Φi − t · ri∇E(Φi) (6.10)

where t = [t1...t|Φ|] are per-parameter step-sizes, and r the annealing
rate. The gradient ∇E(Φi)is given by

∇E(Φi) =

(
∂E

φ1

,
∂E

φ2

, · · · , ∂E
φ|Φ|

)
and (6.11)

∂E

φj
=
E(Φi + hj)− E(Φi − hj)

2hj
(6.12)

where h = [h1...h|Φ|] are per-parameter numerical values. t and h were
calibrated by performing a simple grid-search experiment. Alternate
optimization techniques were explored, including LBFGS (Liu and
Nocedal, 1989) and rprop (Riedmiller and Braun, 1992). These were
found to be unstable, perhaps due to the use of numerical rather than
analytical derivatives.
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I explored foward-only
di�erences as their use
would have saved much
computation. However,
gradient estimates from
forward-di�erences did
not converge as well.

Computing gradients ∇E is expensive, requiring rendering and dif-
ferencing two images per parameter. Their efficient computation is
made possible through the use of the tailored GPU DirectX rasterizer.
Transmitting Isyn from GPU to CPU is a bottleneck as it causes a
GPU pipeline stall. This was alleviated by copying only the valid
foreground pixels P across during calculations. Figure 6.4 shows con-
vergence for a typical input image, with Iobs size 800×533px, and Isyn
size 125×87px. The optimization procedure converges after 60 itera-
tions for 39 parameters, taking 3.69s on a typical PC (3.3Ghz CPU,
GTX 660 GPU).

Initialization As the proposed method performs local optimization,
an initial starting point is required. Of course, the closer the initial
model configuration is to the global optimum, the better. I use 3D
eye corner landmarks and head-pose rotation from the face tracker
(Baltrusaitis et al., 2013) to initialize T and R. I then use 2D iris
landmarks and a simple single sphere eyeball model to initialize gaze
direction (Baltrušaitis et al., 2016). β and τ are initialized to 0, and ι
colors lamb and ldir are set to [0.8, 0.8, 0.8].

6.3.3 Extracting gaze direction

Our task is estimating 3D gaze direction g in camera-space. Once our
fitting procedure has converged, g can be extracted by applying the
eyeball model transform to a vector pointing along the optical axis in
model-space: g = Meye [0, 0,−1]T .

6.4 Experiments

In order to analyze the effectiveness of my approach at estimating eye
gaze I evaluated it on two publicly available datasets: Columbia (Smith
et al., 2013) and Eyediap (Funes Mora et al., 2014). These datasets were
chosen as they show the full face, as required for our facial-landmark
based initialization.

Columbia contains of images of 56 people looking at a target grid on
the wall (see subsection 2.6.1). Example fits can be seen in Figure 6.6,
right. These experiments used a subset of 34 people (excluding those
with eyeglasses) with 20 images per person, resulting in 680 images. As
the images were taken by a high quality camera (5184×3456px), they
were downsampled to 800×533px for faster processing.

Eyediap contains 94 video sequences of 16 participants looking at two
types of targets: screen targets and floating target (see subsection 2.6.2).
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VGA

VGA

Iobs Isyn Iobs Isyn

Figure 6.6: Example model fits on the Eyediap (Funes Mora et al., 2014) (HD
and VGA) and Columbia (Smith et al., 2013) gaze datasets, showing estimated
gaze (yellow) and labelled gaze (blue).
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Figure 6.7: Fitting error (blue) and gaze estimation error (red) on the
Columbia gaze dataset. Filled region shows inter-quartile range. Note both
errors improve with the number of GD iterations.

Example fits can be seen in Figure 6.6, left. I extracted images from
the VGA and HD videos for our experiment – 622 images with screen
targets and 500 images with floating targets. In both cases, the system
used a gradient descent step size of 0.0025 with an annealing rate of
0.95 that started after 10th iteration.

6.4.1 Gaze estimation

In the first experiment I evaluated how well the model predicts 3D
gaze direction for Columbia using the proposed analysis-by-synthesis
approach. The results are shown in Figure 6.7, giving average gaze
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Figure 6.8: Fitting (blue) and gaze estimation (red) error on VGA videos from
the Eyediap dataset. Screen target videos were used. We outperform a state-
of-the-art CNN trained on UTGaze data (Zhang et al., 2015).

Model Gaze error

CNN (UT) (Zhang et al., 2015) 10.5◦

RF (UT) Sugano et al. (2014) 12.0◦

k-NN (UT) (Zhang et al., 2015) 12.2◦

ALR (UT) (Lu et al., 2014) 12.7◦

SVR (UT) (Schneider et al., 2014) 15.1◦

k-NN (UnityEyes) (Wood et al., 2016b) 19.9◦

Analysis-by-synthesis (mine) 9.44◦

Table 6.1: We outperform a range of state-of-the-art cross-dataset methods
trained on UTGaze (UT) and synthetic data (UnityEyes), including Convolu-
tional Neural Networks (CNN), Random Forests (RF), k-Nearest-Neighbour
(kNN), Adaptive Linear Regression (ALR) and Support Vector Regression (SVR).

error of Mean (M) = 8.87◦,Median (Mdn) = 7.54◦ after convergence.
As the proposed method does not impose a prior on predicted gaze
distribution, it can produce outliers with extreme error, so we believe
its performance is best represented by a median (Mdn) average. Note
how the decrease in fitting error corresponds to a monotonic decrease
in mean and median gaze errors. Furthermore, the proposed approach
outperforms the geometric approach used to initialize it (Baltrušaitis
et al., 2016), a recently proposed k-Nearest-Neighbour approach (Wood
et al., 2016b) (M=19.9◦,Mdn=19.5◦) and a naïve model that always
predicts forwards gaze (M=12.00◦,Mdn=11.17◦).

The results for gaze estimation on Eyediap VGA images can be seen
in Figure 6.8. As before the decrease in pixel error corresponds in the
decrease in gaze errors. Furthermore, the final gaze estimation error on
the Eyediap screen condition (M=9.44◦,Mdn=8.63◦) outperfoms that
reported in literature previously – 10.5◦ using a Convolutional Neural

105



10 20 30 40 50
Iterations

0.09

0.11

0.13

0.15

Fi
tti

ng
 e

rro
r

0 PCs
2 PCs
4 PCs
8 PCs

10 20 30 40 50

8

9

10

11

Ga
ze

 e
rro

r (
de

gr
ee

s)

0 PCs
2 PCs
4 PCs
8 PCs

Morphable model expressiveness

Figure 6.10: As we include more shape and texture and shape principal
components (PCs) in the facial morphable model, we see decreases in both
fitting and gaze error.
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Figure 6.11: The e�ect
of the landmark regular-
ization term λwhich de-
creases the error by not
allowing the fit to dri�.

Network (Zhang et al., 2015) (see Table 6.1 for other comparisons).
Analysis-by-synthesis also outperforms the model used to initialize the
fitting, a kNN model (M=21.49◦,Mdn=20.93◦), and a naïve model
(M=12.62◦,Mdn=12.79◦).

The results for Eyediap’s floating targets (see Figure 6.9) are less ac-
curate but still improve upon the baseline. Zhang et al. (2015) could
not evaluate their approach for floating targets due to head pose vari-
ations not present in their training set. Despite a drop in accuracy,
analysis-by-synthesis can still generalize to this difficult scenario and
outperforms a kNN model (M= 30.85◦,Mdn= 28.92◦), and a naïve
model (M=31.4◦,Mdn=31.37◦).

I performed a similar experiment for Eyediap images taken with the
HD camera. These exhibit stronger head pose than the VGA images.
The system achieved an average gaze error of M=11.0◦,Mdn=10.4◦

for screen targets and M = 22.2◦,Mdn = 19.0◦ for floating targets.
Despite extreme head pose and gaze range, analysis-by-synthesis still
performs comparably with the state-of-the-art and outperforms a kNN
model (M = 29.39◦,Mdn = 28.62◦ for screen, and M = 34.6◦,Mdn =

33.19◦ for floating target), and a naïve model (M = 22.67◦,Mdn =

22.06◦ for screen, and M=35.08◦,Mdn=34.35◦ for floating target).

6.4.2 Morphable model evaluation

In addition to evaluating the system’s gaze estimation capabilities,
experiments were performed to measure the expressive power of our
morphable model and the effect of including Eldmks in our objective
function.

First, the importance of our facial point similarity weight (λ) was
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assessed using the Columbia dataset. The same fitting strategy was
used as before, but λ was varied. Results can be seen in Figure 6.11; the
optimum choice has been highlighted. It is clear that λ has a positive
impact on gaze estimation accuracy, by not allowing fits to drift too far
from the reliable estimates and by reducing the variance of the error.

Second, I wanted to see if modelling more degrees of shape and ap-
pearance variation led to better image fitting and gaze estimation. I
therefore varied the number of shape (β ) and texture (τ ) principal
components (PCs) that our facial morphable model was allowed to
use during fitting on Columbia, and recorded results for 0, 2, 4 and
8 PCs. Both the texture and shape PCs were varied together, picking
the same number for both. As seen in Figure 6.10 (left), increasing the
number of PCs lead to better image fitting error, as Isyn matches Iobs
better when allowed more variation. A similar downward trend can be
seen for gaze error, suggesting better modelling of nearby facial shape
and texture is important for correctly aligning the eyeball model, and
thus determining gaze direction.

6.5 Summary

In this chapter I presented a new method for visible light remote gaze
estimation: analysis-by-synthesis. The idea is to fit an underlying scene
model to an image, and take the fitted 3D eyeball orientation as the
estimated gaze direction. This scene model includes the generative eye
region model from Chapter 4, and photometric models of illumination
and camera projection.

In section 6.2 I described the synthesis stage: how the scene model is
parameterized by Φ and how it’s rendered using a tailored DirectX
rasterizer. In section 6.3 I described the analysis stage: how the model
is fit to an image by minimizing a reconstruction energy E(Φ) using
numerical gradient descent.

By explicitly modelling how variations in camera type and head pose
affect an image, analysis-by-synthesis can generalize to different usage
scenarios in ways that traditional appearance-based gaze estimation
cannot. In section 6.4 I showed that analysis-by-synthesis performed
competitively with a state of the art deep learning cross-dataset ap-
proach (Zhang et al., 2015), while also being able to operate beyond
the limited gaze range afforded by the deep learning system’s training
set. In Chapter 7 I will describe how I extended the system in this
chapter to make it more performant using an improved fitting strategy,
and more robust using a binocular eye region model.
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7

Analysis-by-synthesis in real
time

In the previous chapter, I presented a new approach for gaze estimation:
analysis-by-synthesis. Though it showed promising results for person-
independent and device-independent gaze estimation, it still lagged
behind previous work with respect to processing speed. The system in
Chapter 6 took ∼4 seconds to process an image. While this might be
acceptable in some cases, many applications for gaze estimation require
real time performance.

A further limitation of the work in Chapter 6 was the fact it only
considered one eye at a time: the right eye. While the tracked facial
landmarks helped regularize the fit in terms of head pose, the right eye
might not always be visible. In these cases, the system in Chapter 6
will fail. A natural extension therefore is to track both eyes together.
Since we know faces are roughly symmetrical, we can use information
about one eye to help fit the other.

In this chapter I first describe the extensions made to the model in order
to track both eyes at once. I then detail the second-order fitting strategy
that was chosen to obtain better fits quicker: the Gauss-Newton algo-
rithm. Finally, through experiments on both Columbia and Eyediap
datasets, I demonstrate improved performance over Chapter 6 with
respect to both gaze estimation accuracy and speed.

7.1 Binocular eye region tracking
The general analysis-by-synthesis approach remains the same as in
Chapter 6: given an image frame Iobs, we wish to recover a set of

109



This model is binocular
as it considers two eyes
rather than one.

optimal parameters Φ∗ that best explains it in terms of our eye region
model. We search for Φ∗ by iteratively rendering a synthetic eye
region image Isyn, comparing it to Iobs using our reconstruction energy
E (defined in Equation 7.2), and updating Φ accordingly.

7.1.1 Binocular eye region model

In this chapter I use a binocular version of the model in Chapter 4.
This model is used to render images for tracking the eye region with
analysis-by-synthesis. It contains four main parts: the left and right
facial eye regions, and the left and right eyeballs. It is specified by
parameter vector Φ:

Φ = {β, τ ,θ, ι} , (7.1)

where β are the set of shape parameters, τ the texture parameters, θ
the pose parameters, and ι the illumination parameters. I now describe
each parameter below.

Shape β The shape of each half of the binocular eye region is
described by the same linear Principal Component Analysis (PCA)
modelMgeo∈R3n as in Chapter 6. We assume faces are symmetrical,
so the shapes of both eye regions are controlled with a single set of
coefficients βface∈R16, As before, an additional parameter βiris controls
iris size by scaling vertices on the iris boundary.

Texture τ As before, I use a linear PCA texture modelMtex∈R3m

of the facial eye region. It is controlled with texture coefficients τ face∈
R8. In this chapter, iris variation is modelled differently than before. A
white “base” iris texture is used, and tinted with an RGB colour τ iris. I
decided to use this simpler RGB model over the PCA model as I found
the detail of the PCA model wasn’t necessary. Furthermore, the PCA
model had trouble fitting to certain eye colours. Sclera color variation
is modelled with another RGB parameter τ tint

Pose θ These describe both global and local pose. Globally, the two
parts of the eye region are positioned with rotation θR and translation
θT. The interocular distance is controlled via θiod Eyeball positions
are fixed in relation to the eye regions. The local pose parameters
determine gaze. The general gaze direction is given by pitch and yaw
angles θp and θy, and vergence is controlled with θv. When the eyeball
looks up or down, the eyelids follow it. As in Chapter 6, eyelid motion
is modelled using procedural animation, parameterized by θlid.

Illumination ι I use the same illumination model as in Chapter 6:
ambient light coupled with a single directional light. The ambient light
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Parameter #
Shape β βface Eye region shape PCA coefficients 16

βiris Iris size (mm) 1
Texture τ τ face Eye region texture PCA coefficients 8

τ iris Iris colour (RGB) 3
τ tint Sclera tint colour (RGB) 3

Pose θ θR Eye region rotation (radians) 3
θT Eye region translation (mm) 3
θiod Interocular distance (mm) 1
θp, θy, θv Eye gaze pitch, yaw, vergence (radians) 3
θlid Eyelid pitch (radians) 1

Illumination ι ιamb Ambient light colour (RGB) 3
ιdir Directional light colour (RGB) 3
ιR Directional light rotation (pitch, yaw) 2

50

Table 7.1: The total set of model parameters that are optimized over to reach
a model fit.

These camera parame-
ters are the same as κ
in Chapter 6.

These e�ects are op-
tional as they slow ren-
dering (and thus fitting)
down. They can be used
if speed is not a primary
concern.

has intensity ιamb∈R3, and the directional light has intensity ιdir∈R3

and direction defined by rotation ιR∈R2 (pitch and yaw angles). We
assume all surfaces are Lambertian.

In total we therefore have 17 + 14 + 11 + 8 = 50 parameters of Φ to
optimize over. See Table 7.1 for the full list.

Rendering the model

Once our model has been configured with parameters Φ, we render
synthetic images Isyn(Φ) using a DirectX-based rasterizer. We fix our
virtual camera at the world origin, and assume knowledge (or estimate)
of camera intrinsic parameters that define the camera projection.

Realistically rendering eyes is a challenge. As before, I use physically
correct corneal refraction techniques to better model the eyeball’s lay-
ered transparent structure (see subsection 4.6.2). I implemented two
additional optional effects to improve the realism of our output. First,
for smoother skin, I implemented a single step of Loop (1987) subdi-
vision with precomputed stencils for efficiency (see subsection 4.6.1).
Second, I approximate ambient occlusion shadowing on the eyeball
using a single-pass analytic technique: I project the positions of eyelid
vertices into eyeball uv space, fit a 2D cubic polynomial to them, and
apply per-pixel ambient occlusion as a function of distance to each
eyelid polynomial. This lets us model the shadows around the interior
eye margin using a cheap and simple single-pass solution.
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Figure 7.1: The 25 facial
landmark points that
are used inEldmks.

7.1.2 Energy formulation

A good energy function is critical to the success of any analysis-by-
synthesis method. In this chapter, I modified the energy function of
Chapter 6 to include additional priors. The proposed energy E(Φ) is
a weighted sum of several terms, each encoding a different requirement
of our model fit. Each term is expressible as a sum-of-squares, allowing
me to minimize E(Φ) using the Gauss-Newton algorithm.

E(Φ) = Eimg(Φ)+Eldmks(Φ)︸ ︷︷ ︸
Data terms

+Estats(Φ)+Epose(Φ)︸ ︷︷ ︸
Prior terms

(7.2)

The data terms Eimg and Eldmks (see Figure 7.2) guide our model fit
using image pixels and facial landmarks, while the prior terms Estats and
Epose penalize unlikely facial shape and texture, and eyeball orientations.
I now describe each term in detail.

Image similarity Eimg The primary goal is to minimize the photo-
metric reconstruction error between Isyn and Iobs. The data term Eimg

expresses how well the fitted model explains Iobs by densely measuring
pixel-wise differences across the images using a robust mean squared
error. Image similarity is promoted with the term

Eimg(Φ) =
1

|P|
∑
p∈P

ρ
( ∣∣Isyn(p)− Iobs(p)∣∣ )2 (7.3)

where P⊂Isyn represents the set of rendered foreground pixels belong-
ing to our 3D model. The background pixels are ignored. The robust
function ρ(e) = min(

√
T , e), for threshold T , alleviates the effects of

outliers; this is important for recovering iris colour in the presence of
strong specular highlights on the eye.

Landmark similarity Eldmks The face contains several landmark
feature points that can be tracked reliably. I therefore regularize the
dense data term (Eimg ) using a sparse set of landmarks L provided by a
state-of-the-art face tracker (Baltrušaitis et al., 2016). This is a common
regularization technique for monocular facial capture methods (Thies
et al., 2016). L consists of 25 points that describe the eyebrows, nose
and eyelids. For each 2D tracked landmark l ∈ L, I also compute a
corresponding synthesized 2D landmark l′ as a linear combination of
projected vertices in our shape model. Facial landmark similarities are
then incorporated into our energy using

Eldmks(Φ) = λldmks ·
1

|P|

|L|∑
i=0

‖li − l′i‖2 (7.4)
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Figure 7.2: The 3D eye region model is fit to an image by minimizing a reconstruction energyE(Φ). The
two main energy terms are a dense photometric error termEimg and a sparse landmark similarity term
Eldmks. This figure shows the energies decreasing over four iterations of the Gauss Newton algorithm –
the false colour heat map shows pixel-wise di�erences decreasing, and the shrinking red circles shows
landmark location di�erences decreasing.

As landmark distances ‖li− l′i‖ are measured in image-space, the energy
is normalized by dividing through by foreground area |P| to avoid
bias from eye region size in the image. The importance of Eldmks is
controlled with weight λldmks.

Statistical prior Estats Unlikely facial shapes and texture are penal-
ized using a statistical prior Blanz and Vetter (1999). As we assume a
normally distributed population, our PCA model parameters should
be close to the mean 0. This prior is encoded in the term

Estats(Φ) = λgeo ·
|β|∑
i=0

β2
i + λtex ·

|τ |∑
i=0

τ 2i (7.5)

Recall that βi ∈ β and τi ∈ τ are scaled by their respective standard
deviations in our model. This energy helps the model fit avoid degen-
erate facial shapes and texture, and guides its recovery from poor local
minima found in previous frames. The penalties for unlikely shape
and texture are weighted separately with λgeo and λtex.

Pose prior Epose The final energy penalizes mismatched parameters
for eyeball gaze direction and eyelid position. The eyelids follow eye
gaze, so if the eyeball is looking upwards, the eyelids should be rotated
upwards, and visa versa. Pose consistency is enforced with

Epose(Φ) = λpose · ‖θlid − θp‖2 (7.6)

where θlid is the eyelid pitch angle of our model’s face parts, and θp
is the gaze pitch angle of our eyeball parts. Its relative importance is
controlled by weight λpose.
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Figure 7.3: The non-zero structure of the Jacobian Jr for a 200×100px eye
region. Eθ isEpose. Dashed regions represent sparse blocks.

7.1.3 Optimization procedure

In Chapter 6 I optimized the reconstruction energy using gradient
descent – a first order fitting method. In this chapter I use an annealed
form of the Gauss-Newton algorithm – a second order optimization
approach. The parameter update for Φ is as follows:

Φi+1 = Φi − ηi (Jr
TJr)

−1 · Jr
T r (7.7)

where r is the vector of energy function residuals, Jr the Jacobian
matrix of residuals r evaluated at Φi, Jr

TJr the approximation to
the Hessian matrix, and η the annealing rate. Figure 7.2 shows four
iterations of our model fit.

To compute the Jacobian (see Figure 7.3) I use numerical central
derivatives. This is an expensive operation, requiring two images to
be rendered for every parameter. The system is made performant by
calculating Jr and Jr

TJr entirely on the GPU, avoiding expensive
pipeline stalls from cross-system data transfer. Since image rendering is
a key operation for our system, the tailor-written DirectX rasterizer
from Chapter 6 is critical. To further lighten the computational load
of our numerical derivatives, it is possible to mask out a subset of Φ

when tracking in a video, so optimize over a smaller set of parameters
frame-to-frame.

Initialization The energy landscape of E(Φ) is riddled with local
minima, so its important to start from a good initialization. The face
tracker provides 3D estimates for the facial landmark positions. Global
translation parameters are initialized to the mean landmark position,
and global rotation parameters are initialized using the the Kabsch
(1976) algorithm, registering them to the 2D landmarks. Other param-
eters are initialized to 0 by default, except for interocular distance and
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Gaze estimation on Columbia

Figure 7.4: Fitting error and gaze error for the Columbia dataset decrease
with the number of fitting iterations. The filled regions represent interquartile
range. The second-order optimization strategy converges faster than gradient
descent (dashed black line).

Figure 7.5: Example model fits on the Columbia gaze dataset (Smith et al.,
2013) showing true gaze direction (red) and estimated gaze direction (cyan).

iris size, for which we use anthropomorphic averages, and illumination,
for which we experimentally chose a basic setup. When tracking in
video, we exploit temporal similarities by initializing Φinit with Φ∗

from the previous frame.

7.2 Experiments

In order to measure the benefits of the improved binocular eye region
model and fitting procedure, I conducted gaze estimation experiments
on images from the Columbia (Smith et al., 2013) and MPIIGaze
(Zhang et al., 2015) datasets, and videos from the Eyediap (Funes Mora
et al., 2014) dataset. To assess how suitable this system is for processing
videos, I also measured runtime on Eyediap videos.

7.2.1 Gaze estimation on Columbia

A gaze estimation experiment was performed on the Columbia dataset.
The same subset of images as used in subsection 6.4.1. Results are
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shown in Figure 7.4, and example model fits can be seen in Figure 7.5.
Photometric error and gaze estimation error decrease with the number
of model fitting iterations. When run for 12 Gauss Newton iterations,
the binocular analysis-by-synthesis system achieves a final error of
M=8.03◦,Mdn=7.51◦, an improvement over the monocular system
of Chapter 6 (M=8.87◦,Mdn=7.54◦).

If we examine the pitch and yaw components of gaze separately, the
proposed binocular system outperforms recent work (Jeni and Cohn,
2016) in terms of gaze yaw (3.13◦ vs 3.51◦), though perform worse
in terms of gaze pitch (6.92◦ vs 4.27◦). This result is promising since
the analysis-by-synthesis approach is dataset agnostic, while Jeni and
Cohn’s (2016) system was trained on the Columbia dataset specifically.
Furthermore, if we compare the dashed black line in Figure 7.4 with
the solid red line, we can see that the second-order optimization strat-
egy leads to faster convergence than the first-order method used in
Chapter 6, despite performing a similar amount of work per iteration.

7.2.2 Gaze estimation on Eyediap

In the previous chapter, I explored fitting the 3DMM to individual
image frames extracted from Eyediap videos. This was because the
fitting strategy was too slow to conveniently process videos. With
the GPU-assisted Gauss Newton approach, fitting on videos is now
possible. Gaze was estimated for the first 500 frames of each of the 50
videos. Example frames from three videos can be seen in Figure 7.6.

For each frame, a single true gaze vector was obtained by averaging
the two look vectors for each eye. A corresponding estimated gaze
vector was found by averaging the 3D look vectors of the left and right
eyeball in the eye region model. The results can be seen in Figure 7.7.
It can be seen that even after only five Gauss Newton (GN) steps with
the binocular model (M=9.03◦,Mdn=8.29◦), we reach a lower error
than with 60 Gradient Descent (GD) steps with the monocular one
(M = 9.44◦,Mdn = 8.63◦). If we allow our approach to run for ten
iterations per frame, error decreases further to M=8.13◦,Mdn=7.12◦.

When compared to recent appearance-based approaches, this result
is extremely promising. The right plot in Figure 7.7 shows three
deep learning approaches as presented by Zhang et al. (2016). These
deep learning approaches were all trained on images from Eyediap
itself – they are not dataset independent. My binocular analysis-by-
synthesis approach achieves competitive results, though it operates in
a completely dataset independent manner.

116



Figure 7.6: Improvements in speed over Chapter 6 make the method in this chapter is suitable for
gaze estimation in videos. Here are some example frames from three Eyediap videos featuring head
movement. In each row, top row is input image, middle row is overlaid model fit, and bottom row
shows model shape with gaze. Yellow lines are estimated gaze, cyan is ground truth gaze.

7.2.3 Gaze estimation on MPIIGaze

A final gaze estimation experiment was performed on the challenging
MPIIGaze dataset. From a subset of 22500 images, the face tracker
(Baltrušaitis et al., 2016) managed to find a face in 17993 images. These
images were used as input. To better compare against previous work,
all participants were used, including those who wore glasses. Example
model fits can be seen in Figure 7.8. As with Eyediap, a single true
gaze vector and a single estimated gaze vector were calculated for each
image by averaging the gazes of each eye.

When used with 5 GN iterations, an average gaze error of M =

14.18◦,Mdn=13.56◦ was achieved. If allowed 10 GN iterations, this
gaze error improves to M = 10.71◦,Mdn = 10.01◦. This is slightly
worse than the cross-dataset appearance-based system shown in Chap-
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Figure 7.7: For Eyediap, the new fitting strategy achieves better results in
just five Gauss Newton iterations (red) compared to 60 Gradient Descent
iterations (blue). Furthermore, a mean gaze error of 8.13◦ compares well to
recent Eyediap-specific deep learning approaches (green, orange, purple).

Figure 7.8: True gaze is shown in cyan, and estimated gaze in yellow. The top row of images shows
successful fits from the top 10% of results. The bottom row shows failure cases from the bottom 10%.
As can be seen, the fitting approach is prone to failure under challenging illumination conditions.

ter 5 (M = 10.46◦), and a long way from the M = 4.8◦ that can be
achieved with dataset-specific approaches (Zhang et al., 2016). How-
ever, I believe this result is promising since analysis-by-synthesis system
is generic. Furthermore, we can dissect its failure cases in ways not
possible with black-box appearance-based approaches. For example,
by examining the bottom row of Figure 7.8 we can see that shadows
from the brow ridge and unusual upwards facing lighting conditions
are present in the failure cases. This could guide possible extensions to
the model to help address these limitations.

7.2.4 Runtime

To determine if the new fitting strategy is suitable for real time use, I
measured runtime performance on Eyediap videos. A typical desktop
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Figure 7.9: FPS over three Eyediap videos. With ten Gauss Newton itera-
tions, interactive frame rates are possible. When limited to five iterations, the
systems approaches real time performance.

PC was used (3.3Ghz CPU, GTX1080 GPU). Plots of the equiva-
lent frames-per-second (fps) throughout three different VGA Eyediap
videos are shown in Figure 7.9.

If allowed ten GN iterations per frame, an average framerate of 7.40fps
was achieved. If a little gaze accuracy is sacrificed, and only five GN
iterations used, an average framerate of 12.63 fps is possible. This is a
vast improvement over the 0.2fps achieved by the previous system.

7.3 Summary

In this chapter I presented two extensions to the analysis-by-synthesis
approach from Chapter 6. First, I extended the eye region model to
track both eyes at once (subsection 7.1.1). This is important for robust
tracking during head motion where one eye may not be clearly visible.
Second, I replaced the first-order optimization method from Chapter 6
with a GPU-assisted second-order approach (subsection 7.1.3). This
was key in improving runtime performance.

Through experiments on the Columbia and Eyediap datasets, I demon-
strated improved results with respect to both runtime and accuracy
compared to the first-order monocular method of Chapter 6. I also
demonstrated results competitive with state of the art dataset-specific
deep learning systems on the Eyediap dataset (Zhang et al., 2016).
Through an experiment on the MPIIGaze dataset, I showed that
analysis-by-synthesis can achieve results comparable to those in Chap-
ter 5, but there is still a wide performance gap between my cross-dataset
system and other dataset-specific approaches.
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8

Conclusion

My main goal was to help bring eye tracking out of the lab and into
the real world. To do this, I addressed two major problems for visible
light remote gaze estimation: 1) It is hard to collect good training
data. Since it is impossible for Mechanical Turks to label eye gaze ac-
curately, researchers must collect images of people looking in specified
directions themselves – a time consuming and expensive process. I
have shown that learning-by-synthesis is a promising alternative, al-
lowing us to synthesize eye tracking training data in a fraction of the
time and at a fraction of the cost. 2) Appearance-based eye trackers
struggle to generalize beyond the scenario they were trained in:
e.g. a system trained with data collected from laptop webcams will fail
when deployed on a mobile phone. I have revisited model-based gaze
estimation, and shown that analysis-by-synthesis can estimate gaze in a
device-independent manner.

8.1 Contributions

The main contributions of my work are as follows:

Learning-by-synthesis In Chapter 3 I explored learning-by-synthesis
as an alternative to traditional manual data collection. Though I am
not the first to apply learning-by-synthesis to gaze estimation (Sugano
et al., 2014), I am the first to demonstrate that cheap 3D head scans
and modern computer graphics techniques can be used to train eye
tracking systems without any manual data collection at all.

Eye region morphable model In Chapter 4 I presented a new multi-
part 3D morphable model of the eye region. Previous 3DMMs grossly
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simplified the eyes: they either joined the eyeballs to the face, or cut
them out entirely. Instead, I correctly modeled the face and eyes as
separate parts that move independently. In Chapter 5 I used this model
to take learning-by-synthesis a step further, showing how a massive
dataset of synthetic images could be used to estimate gaze despite
extreme gaze directions and eyeball occlusions. I have made this 3D
model available online and it has since been used by researchers both in
academia (Sugano et al., 2016) and industry (Shrivastava et al., 2017).

Analysis-by-synthesis In Chapter 6 I proposed a new approach for
gaze estimation: analysis-by-synthesis. The general idea is to fit the
eye region 3DMM to an input image using energy minimization, and
take the fitted 3D eyeball orientation as gaze direction. By explicitly
modelling variation in eye region appearance, pose, and camera type in
an underlying scene model, it is possible to estimate gaze in a person-
and device- independent way. In Chapter 7 I showed how such a system
can be made practical through careful engineering (GPU compute) and
a well-chosen optimization strategy (Gauss-Newton).

8.2 Limitations

Have I addressed several important issues faced by visible light remote
gaze estimation? Yes. Are the systems described in this dissertation a
feasible replacement for traditional infrared-based eye trackers? Not
yet. Limitations remain.

If we could generate the “perfect” synthetic dataset, systems trained
using synthetic data would out-perform those trained with real data.
This is not the case for gaze estimation: a within-dataset trained CNN
performs better on the same dataset than one trained using synthetic
data. Clearly, though synthetic training data for eye tracking is useful,
it has not yet rendered traditional means of data collection unnecessary.
Problems may stem from the 3D model itself. For example, the eyelid
motion model may be unrealistic since it was built by hand using
photo-references only. There are also issues with how synthetic data is
generated. The fact that synthetic images are “perfect” is a problem –
rendered images do not exhibit sensor noise or motion blur like the
real world. These phenomenon could be modelled with more advanced
graphics, but this would come at an additional cost to render time.

Though the morphable model in Chapter 4 encodes variation in eye re-
gion shape, texture, and pose, it fails to capture other important modes
of variation. The facial texture model does not consider makeup –
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eyeliner and eye shadow can have a large effect on eyelid darkness,
and mascara can thicken eyelashes. Furthermore, occlusions from
overhanging hair or eyeglasses are not modelled. Makeup, hair, and
eyeglasses could be included as extensions to the model, though it is
hard to say if the increase in model complexity would be worthwhile.

In Chapter 7 I showed that analysis-by-synthesis for gaze estimation
could be performed efficiently using a typical desktop PC, However,
this approach is not yet suitable for lower-powered devices like mobile
phones or tablets. This is because the model fitting strategy, and the
calculation of numerical gradients in particular, depends heavily on the
GPU. Previous work with analysis-by-synthesis for face tracking (Thies
et al., 2015) and hand tracking (de La Gorce et al., 2011) has shown that
it’s possible to calculate analytic derivatives for similar reconstruction
energies. This could drastically reduce the computational workload
required to fit the eye region model to an image.

A further limitation of my analysis-by-synthesis approach is its failure
under challenging illumination conditions like those found in MPI-
IGaze. In theory, analysis-by-synthesis should be able to recover scene
illumination accurately enough to fit the eyeballs, but in practice I
found it frequently failed to do so. This may be a result of the simple il-
lumination model that does not consider cast shadows or multiple light
sources. Or it might be because the energy function favours holistic im-
age similarity over small details, so prefers to match broad illumination
effects at the expense of the eyeball. Either way, there is still a large
gap in gaze estimation accuracy between dataset-specific deep-learning
approaches and my proposed generic analysis-by-synthesis system for
challenging scenarios like MPIIGaze.

8.3 Future work

Despite the limitations described above, I believe my work has demon-
strated promising results, and opened avenues for future research.

8.3.1 What level of realism is required?

In Chapter 3, I performed an experiment to measure the benefits of
different parts of a synthetic data generation pipeline: variation in
illumination and eyelid motion. There is much more work still to be
done to determine what graphics features are important when it comes
to synthesizing training data. In terms of realism, how real do you have
to go (Figure 8.1)? When designing the graphics side of a learning-by-
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synthesis approach, it is very tempting to go “all the way”, and try to
model real life in as much detail as possible. However, different graphics
techniques have different computational costs. If we could confirm that
an expensive rendering technique (e.g. subsurface scattering for skin)
did not help improve gaze estimation error, we could remove it from
the synthesis pipeline and save a lot of computational effort. Future
work could examine the benefits of different rendering techniques to
find a sweet-spot between slow-but-realistic and fast-but-unrealistic
when it comes to learning- and analysis-by-synthesis.

For example, (Shrivastava et al., 2017), claim that images rendered
with UnityEyes lack realism in certain ways so are sub-optimal for
learning-by-synthesis. To address this, they upgrade UnityEyes images
with neural networks to improve their realism. This lets them avoid
having to discover what types of realism are missing from UnityEyes.
However, another approach would be to explicitly model the parts
of the image formation process that are missing, thus resulting in
this lack of realism. If there is a difference in image noise between
UnityEyes images and real images, this could be efficiently applied in
post-processing. If we can discover that UnityEyes models lack certain
types of eye wrinkles around the eyelids, this could be included as part
of the eye region model. Though this may not always be possible, if we
can make informed decisions about what parts of the image formation
process are really important for learning-by-synthesis, it should be
possible to build a “perfect” synthetic dataset for training.

8.3.2 Hybrid approaches

In this dissertation I presented learning-by-synthesis and analysis-by-
synthesis separately. It is actually important to combine them. Model-
fitting methods that use analysis-by-synthesis must start from some
initial configuration. Of course, the closer the initialization is to
the optimum, the better. Therefore, a common tactic is to combine
the benefits of a bottom-up generative approach with a top-down
discriminative one: use a machine-learning initializer to choose initial
parameters, and then fit your model from there (Taylor et al., 2016).
While I used facial landmarks to initialize model pose, future work
could use a more sophisticated learning-by-synthesis system to initialize
facial shape, texture, environmental illumination, and indeed eye gaze
too. Such a system could be learned from synthetic training data. This
could help us avoid poor model fits, and might save time by cutting
down on the number of required fitting iterations.
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Figure 8.2: The FLAME
face model includes my
eyeball model for im-
proved face tracking.

8.3.3 Tracking the eyes and face together

Previous work in facial capture has used specialized subsystems to
track the eyes separately from the rest of the face (Wang et al., 2016).
In my opinion, this is an admission that the face model is not good
enough. I have shown that, given a good model, it is possible to fit
both the face and the eyes to an image simultaneously. If you go down
the “track each part of the face with a different system” route, where
do you stop? You start with an eye-specific sub-system for tracking
eyes (Wang et al., 2016; Bermano et al., 2015). You then might add a
teeth-specific sub-system (Wu et al., 2016). What next? An ear tracker?
A tongue tracker? Rather than fitting a collection of models in turn,
future work should explore jointly optimizing a single comprehensive
model. Though each facial part may be parameterized separately, they
can still be fit together jointly. Though building such a model would
be challenging, I think the benefits would be worthwhile, particularly
for tracking facial details at the boundaries of different parts.

Indeed, work towards tracking the face with a unified model has already
begun. Li et al. (2017) used my eye region model to augment their
FLAME face model (Figure 8.2) so they could track the eyes and face
together. They found that tracking the eyeballs jointly with the face
improves alignment, in particular for the eye lids.

8.4 Final remarks

The field of gaze estimation has advanced rapidly over the last few
years. This is a result of recent technological breakthroughs like deep
learning that have shaken computer vision as a whole, and a wave of
recently collected gaze datasets on which we can develop and test our
algorithms. My work has been a part of this. I set out to address the
problem of training data collection for gaze estimation, and showed
that learning-by-synthesis was a viable alternative. I also set out to
build a generic gaze estimator, and showed how a person- and device-
independent analysis-by-synthesis system could estimate gaze almost
as accurately as a data-set specific deep learning system.

While we are still some way from being able to track gaze reliably and
accurately in the wild, I believe my work in this dissertation has taken
several important steps towards this goal.
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