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Topological framework for directional amplification
in driven-dissipative cavity arrays
Clara C. Wanjura 1✉, Matteo Brunelli 1 & Andreas Nunnenkamp 1

Directional amplification, in which signals are selectively amplified depending on their pro-

pagation direction, has attracted much attention as key resource for applications, including

quantum information processing. Recently, several, physically very different, directional

amplifiers have been proposed and realized in the lab. In this work, we present a unifying

framework based on topology to understand non-reciprocity and directional amplification in

driven-dissipative cavity arrays. Specifically, we unveil a one-to-one correspondence between

a non-zero topological invariant defined on the spectrum of the dynamic matrix and regimes

of directional amplification, in which the end-to-end gain grows exponentially with the

number of cavities. We compute analytically the scattering matrix, the gain and reverse gain,

showing their explicit dependence on the value of the topological invariant. Parameter

regimes achieving directional amplification can be elegantly obtained from a topological

‘phase diagram’, which provides a guiding principle for the design of both phase-preserving

and phase-sensitive multimode directional amplifiers.
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Controlling amplification and directionality of electro-
magnetic signals is one key resource for information
processing. Amplification allows to compensate for

attenuation losses and to read out signals while adding a minimal
amount of noise. Directionality, also known as non-reciprocity,
allows to select the direction of propagation while blocking sig-
nals in the reverse1,2. Non-reciprocity is of wide-ranging practical
value; for instance, it simplifies the construction of photonic
networks3–5, enhances the information capacity in communica-
tion technology6,7, and can be a resource for (quantum) sensing8.
Combining non-reciprocity and amplification, directional
amplifiers allow for the detection of weak signals while protecting
them against noise from the read-out electronics. For these rea-
sons, these devices have become important components for
promising quantum information platforms such as super-
conducting circuits9.

In response to this demand, many proposals and realizations of
non-reciprocal and amplifying devices have appeared in the
recent literature. Isolators and circulators based on magneto-
optical effects have become the conventional choice, but they are
bulky and require undesired magnetic fields to explicitly break
time-reversal symmetry. Josephson junctions10–12 have been
investigated as an alternative. Other approaches include refractive
index modulation13,14, interfering parametric processes15, and
optomechanics16–18. An elegant solution is provided by reservoir
engineering19–27, where non-reciprocity is achieved by interfering
coherent and dissipative processes20,22. Based on this approach,
several few-mode isolators and directional amplifiers have been
proposed19,20,22,26 and demonstrated21,23–25,27.

On the other hand, chiral edge states of topological photonic
systems28 give rise to the directional transport of photons and
phonons29,30, which has been used to design traveling wave
amplifiers31 and topological lasers32–36. Transport phenomena
in dissipative systems characterized by a topological winding
number have been studied in refs. 37,38. A generalized winding
number applied to a non-Hermitian system has previously
appeared in the study of the Su-Schrieffer-Heeger (SSH)
laser39,40.

In this paper, we unify the plethora of ad hoc proposals for
directional amplifiers by uncovering an organizing principle
underlying directional amplification in driven-dissipative cavity
arrays: the non-trivial topology of the matrix governing the time
evolution of the cavity modes. Based on this notion of topology,
we develop a framework to understand directional amplification
in multimode arrays and provide a recipe to design novel devices.
The systems we consider are driven-dissipative cavity chains as
the one depicted in Fig. 1a, featuring both coherent and dis-
sipative couplings between modes. Non-trivial topology coincides
with directional amplification and arises from the competition of
local and non-local dissipative terms while the Hamiltonian
describing the evolution of the closed system features a topolo-
gically trivial band structure.

We build our analysis on the scattering matrix illustrated in
Fig. 1b. The scattering matrix characterizes the isolating proper-
ties as well as the amplification of a weak probe across the chain.
Next, we introduce a topological invariant, the winding number,
see Fig. 2, which is defined on the spectrum of the dynamic
matrix governing the evolution of the cavity amplitudes and
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Fig. 1 Directional amplification in a driven-dissipative chain. a Driven-dissipative chain of N bosonic cavity modes aj evolving according to Eq. (2).
Neighboring modes are coupled both coherently with strength J, see Eq. (1), and dissipatively at rate Γ through non-local dissipators D½zj� with zj ≡ aj+
e−iθaj+1. Each mode is coupled to a wave guide, which allows probing with a coherent input signal 〈a‘; in〉 and introduces losses with rate γ. Incoherent
pumping of photons at rate κ enables an amplifying regime for which local dissipation overcomes non-local dissipation, see Eq. (3). b Topologically non-
trivial regimes of the chain correspond to non-reciprocal amplification of a coherent input signal. In the topologically non-trivial regime ν ≠ 0 (here ν=+1),
according to Eq. (11), an input at one end (right) exits amplified at the opposite end (left). This is quantified by the scattering matrix S(ω) (center) given by
Eq. (4). From the structure of S(ω), we see that amplification is directional, i.e., if input and output fields are exchanged, the transmission is strongly
suppressed. We have chosen N= 10, C ¼ 2Γ=ðγþ 2Γ� κÞ ¼ 2, Λ= 4J/(γ+ 2Γ − κ)= 2 and θ ¼ 3π

2 .
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enters directly in the scattering matrix. We then employ the
winding number to discuss the topological regimes of the driven-
dissipative chain leading to the topological ‘phase diagram’ for the
scattering matrix, Fig. 3, which at the same time defines the
directionally amplifying parameter regimes. We go on to rigor-
ously prove the one-to-one correspondence between non-trivial
topology and directional amplification leading to one of our main
results: the analytic expression for the scattering matrix in non-
trivial topological regimes, Eq. (23). This result already holds for
systems consisting of as few as two modes in the vicinity of the
exceptional point (EP), where it is exact, and converges to the
exact result exponentially fast within the whole topologically non-
trivial regime. From Eq. (23) we find the exponential scaling of
the amplifier gain with the chain length, Eq. (28), while signals in
the reverse direction are exponentially suppressed, Eq. (29).
Therefore, increasing the chain length enlarges the parameter
range for which directional amplification occurs, from a fine-
tuned point to the whole topologically non-trivial regime. The
generality of our results becomes clear in the last section of
Results, in which we examine with our topological framework
scaled-up versions of different models for phase preserving and
phase sensitive amplifiers that have appeared in the litera-
ture20,22,41. We demonstrate how we can predict the different
amplifying regimes of these devices, compute gain and reverse
gain, and obtain the scattering matrix from our topological fra-
mework by inspecting the winding number. Directional amplifi-
cation can be seen as a proxy of non-trivial topology, formally
defined only in the thermodynamic limit, even in very small
systems, which makes our work relevant for state-of-the art
devices such as ref. 27.

Our analysis serves as a general recipe for designing multimode
amplifiers that can be integrated in scalable platforms, such as

superconducting circuits10,42, optomechanical systems43, and
topolectric circuits44,45. Finally, our work also has direct
relevance for the study of the topology of non-Hermitian
Hamiltonians46,47, for which similar topological invariants
have been proposed48,49, leading to the recent classification in
terms of 38 symmetry classes50. In this context, our work pro-
vides a direct way to detect topological features, e.g., extract the
value of the topological invariant, which has previously been
challenging.

Results
Directional amplification in a driven-dissipative chain. Let us
start by introducing the system that will guide us through the
general discussion and illustrate our results. We consider a
driven-dissipative chain of N identical cavity modes aj as depicted
in Fig. 1a. Its coherent evolution in a frame rotating with respect
to the cavity frequency is governed by the Hamiltonian (ℏ= 1)

H ¼
X
j

ðJayj ajþ1 þ J�aja
y
jþ1Þ; ð1Þ

which describes photons hopping with uniform amplitude J along
the chain. The dissipation consists of both local and non-local
contributions and is described by the master equation

_ρ ¼ �i½H; ρ� þ
X
j

ΓD½zj�ρþ γD½aj�ρþ κD½ayj �ρ
� �

ð2Þ

for the system density matrix ρ. The first dissipator D½zj�ρ ¼
zjρz

y
j � 1

2 fzyj zj; ρg with zj ≡ aj+ e−iθaj+1 couples dissipatively
neighboring cavities with rate Γ20,47, the second describes photon
decay into the wave guide with rate γ, while the last is an inco-
herent pump at rate κ. This last term can be implemented with
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Fig. 2 Topological invariant for the dynamic matrix, and intuitive explanation for the gain. Under PBC, the eigenvalues of the dynamic matrix M(ω),
Eq. (7), describe a closed curve h(k) (red) in the complex plane—the generating function (10). This allows us to define the winding number ν of Eq. (11)
counting the revolutions of h(k) around the origin. a On resonance, ω= 0, the non-local dissipation has to surpass the local dissipation to yield a non-trivial
winding number, see Eq. (14). Otherwise, b ν is trivial. This competition between local and non-local contributions in the generating function is indicated by
the purple and blue arrows. For θ= 0 or π, h(k) degenerates into a line, which is shown for θ= 0 in a and b as dashed lines. When θ= π the slope changes
sign. In a θ ¼ π

2 and in b θ = 0.5. c Under PBC with ν≠ 0, excitations travel directionally around the ring and gain energy at each revolution causing
instability. d Removing one link (OBC) leads to the accumulation of excitations at one end, which determines the end-to-end gain. e For reciprocal
dynamics, removing the link only induces local changes and no gain.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16863-9 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:3149 | https://doi.org/10.1038/s41467-020-16863-9 |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


the help of a parametrically coupled auxiliary mode which is
subsequently adiabatically eliminated from the equations of
motion. The phase θ can for instance be obtained in a driven
optomechanical setup23,26,43, in which the mechanical mode is
adiabatically eliminated giving rise to the non-local dissipator.
The controllable phase of the pumps is imprinted onto the
amplitude of the coherent state inside the cavities and therefore
transferred to the optomechanical coupling constant. This gives
rise to the phase θ.

Our main interest will be in the fields entering 〈aj,in(t)〉 and
exiting 〈aj,out(t)〉 the cavities through the wave guides, which
are connected via the input-output boundary conditions
haj;outi ¼ haj;ini þ ffiffiffi

γ
p haji51,52.

Following the standard procedures, we obtain the following
equations of motion for the cavity amplitudes 〈aj〉

h _aji ¼
κ� γ� 2Γ

2
haji �

ffiffiffi
γ

p haj;ini

� iJ þ e�iθΓ

2

� �
hajþ1i � iJ þ eiθΓ

2

� �
haj�1i

�
X
j

Hj;‘ha‘i �
ffiffiffi
γ

p haj;inðtÞi:

ð3Þ

In these Eqs. (3), we have chosen J real, which is always
possible due to gauge freedom20. The input 〈aj,in(t)〉 enters as a
coherent drive in the frame rotating with the cavity frequency.
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Fig. 3 Topological ‘phase diagram’ of the scattering matrix. a Gain Gð0Þ and reverse gain �Gð0Þ, see Eqs. (5) and (6), respectively, for N= 10 (solid line),
N= 15 (dashed), N= 20 (dotted), all for θ ¼ π

2 ;
3π
2 , and b general topological ‘phase diagram’ on resonance, ω= 0, with distinct winding numbers according

to Eq. (11). We can associate a scattering matrix S(0) with each point in the diagram and we show some ∣S(0)∣2 as inset with Λ= 2 and γ= 2Γ − κ in Eq.
(9) to obtain impedance matching at the exceptional point (EP). Note in particular the color scales of the scattering matrices revealing the amplification,
and the asymmetry of the matrix signifying non-reciprocity. Condition (15) yields the orange lobes in b and corresponds to winding numbers ν= ±1,
whereas the rest is the trivial regime ν = 0. Directional amplification, i.e., G > 1, sets in as we move into a topologically non-trivial regime. For the
parameters shown in a this occurs at C ¼ 1. In this regime, the gain grows exponentially with N. At the EP the transmission in the reverse direction is
completely suppressed, i.e., �G ¼ 0, and the upper (lower) triangle of S(0) is exactly zero. The system becomes unstable (gray overlay), when
maxm Re λm > 0, in which λm is the mth eigenvalue of the dynamic matrix Mobc(0), see Eqs. (3) and (47). Re λm ¼ 0 coincides with the onset of the
parametric instability and can be seen as divergence in the gain in a. Non-reciprocity also occurs outside of non-trivial topological regimes and is governed
by the phase θ. Complete directionality is achieved at θ ¼ π

2 for ν=−1 from left to right (3π2 for ν=+1 from right to left). While the gain only depends
weakly on Λ, larger (smaller) Λ shifts the location of the EP to the right (left) and extends (shrinks) the stable regime. c The number of zeros inside the unit
circle determines the winding number. On the boundary between trivial and non-trivial regimes, one of the zeros lies on the unit circle and hence G ¼ Oð1Þ
independent of N, see (a) at C ¼ 1. d Off-resonance, ω≠ 0 shifts the two lobes corresponding to non-trivial topological regimes ν= ±1 towards each other.
Where they overlap, we obtain a trivial regime.
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Note that the non-local dissipator contributes both to the
coupling terms and to the local decay rate. The phase θ is crucial
for the non-reciprocity of the chain: since coherent and
dissipative couplings between neighboring modes form a closed
path, these processes can interfere constructively or destructively
depending on the phase θ. For example, setting iJ=−eiθΓ/2, i.e.,
θ ¼ 3π

2 , in Eq. (3), each cavity j in Fig. 1a only couples to its right-
hand side neighbor (j+ 1), but not to the cavity (j − 1) on its left.
This leads to the complete cancellation of the transmission from
left to right20,22 and corresponds to standard cascaded quantum
systems theory53,54. These are also the EPs of the system as we
show in Methods.

As we can see from the last line of Eqs. (3), the evolution
equations can be conveniently expressed as matrix-vector product
with H the dynamic matrix. H plays an important role in
characterizing the transmitting and amplifying properties of the
system. This is because it determines the scattering matrix S(ω),
which linearly links the input 〈aj,in(ω)〉 to the output fields
〈aj,out(ω)〉 in frequency space

aout ¼ ½1þ γðiω1þ HÞ�1�ain � SðωÞain; ð4Þ
where we set ain=out � ðha1;in=outi; ¼ ; haN;in=outiÞT. Figure 1b
illustrates the role of the scattering matrix for the driven-
dissipative chain. As we can see, the chain acts as a directional
amplifier in the case shown: the dominant top right corner of S(ω)
relates a weak input signal at the Nth cavity to a strongly amplified
output at the first cavity, while transmission in the opposite
direction is suppressed. Formally, non-reciprocity between modes
j and ℓ corresponds to the condition ∣Sj,ℓ∣ ≠ ∣Sℓ,j∣ and practically
useful amplification to ∣Sj,ℓ∣ ≫ 1.

Indeed, one of the key quantities used to characterize amplifiers
is the gain G52, which we define as the scattering matrix element
with the largest absolute value. For the driven-dissipative chain,
the gain relates the input at the first (last) to the output at the last
(first) cavity as follows

GðωÞ � jSN;1ðωÞj2 : θ 2 ð0; πÞ
jS1;NðωÞj2 : θ 2 ðπ; 2πÞ:

(
ð5Þ

Conversely, the reverse gain pertains to the transmission in the
opposite propagation direction

�GðωÞ � jS1;NðωÞj2 : θ 2 ð0; πÞ
jSN;1ðωÞj2 : θ 2 ðπ; 2πÞ:

(
ð6Þ

An efficient directional amplifier obeys G � 1 and �G � 1.
For convenience, we introduce

MðωÞ � iω1þ H ð7Þ
with M(0)=H and dub it dynamic matrix at frequency ω. We
also define its inverse as the susceptibility matrix

χðωÞ � ðiω1þHÞ�1; ð8Þ
which is related to the scattering matrix through

SðωÞ ¼ 1þ γχðωÞ: ð9Þ
It is clear that M(ω) determines the properties of S(ω) and we use
it to define a topological invariant.

The winding number. In this section, we introduce a topological
invariant akin to the winding number of the canonical SSH
model55, but defined on the complex spectrum of the dynamic
matrix (in reciprocal space). The same topological invariant
was recently studied by Gong et al.48 for non-Hermitian
Hamiltonians.

In general, the dynamic matrix of a translational invariant
1D system, such as our driven-dissipative chain, has the form
Mj,j+ℓ ≡ μℓ for all j. Our strategy is to employ periodic boundary
conditions (PBC) to probe the bulk properties and to define a
meaningful topological invariant—the winding number. We will
see that the system is extremely sensitive to changes of the
boundary conditions. Indeed, moving to open boundary condi-
tions (OBC) leads to the directional amplification we want to
characterize.

Under PBC, Mpbc is diagonal in the plane wave basis kj i ¼
1ffiffiffi
N

p
P

je
ikj jj i with k= 2πr/N, r= 0, 1, …, N − 1

Mpbc ¼
X
‘

μ‘
X
j

jj i ðjþ ‘Þmod Nh j

¼
X
k

X
‘

μ‘e
ik‘ kj i kh j �

X
k

hðkÞ kj i kh j;
ð10Þ

with the generating function h(k) ≡ ∑ℓμℓeikℓ. Equivalently, h(k)
generates the entries μ‘ ¼ 1

2π

R 2π
0 dk hðkÞe�ik‘ of M. We have

adopted a Dirac notation for referring to the (cavity) site basis
f jj ig and plane wave basis f kj ig, respectively.

h(k) can be regarded as an energy band in the 1D Brillouin
zone; only that now, h(k) takes complex values since M ≠M†. As
h(k) is periodic in k with period 2π, it describes a closed curve in
the complex plane, cf. Fig. 2. This enables us to define a winding
number from the argument principle48

ν � 1
2πi

Z 2π

0
dk

h0ðkÞ
hðkÞ ¼ 1

2πi

I
jzj¼1

dz
∂
∂z hðzÞ
hðzÞ ; ð11Þ

where we have introduced z= eik in the last step. The winding
number is an integer counting the number of times h wraps
around the origin as k changes from 0 to 2π. While Gong et al.48

define the winding number w.r.t. an arbitrary base point, we
choose the origin as special point for the physically relevant
scattering matrix: as we will see later from Eq. (18), it is the pole
of the scattering matrix under PBC.

In the following, we focus on nearest-neighbor interactions
between cavity modes. Mathematically, this translates into
generating functions of the form

hðkÞ ¼ μ0 þ μ1e
ik þ μ�1e

�ik ¼ μ0 þ μ1z þ μ�1
1
z

ð12Þ
permitting only ν= 0, ±1. In the Hermitian case, a Hamiltonian
without any additional symmetries would be topologically trivial.
However, in the case of non-Hermitian operators, one complex
band is enough to obtain non-trivial values of a topological
invariant48. Note that Eq. (11) connects the winding number to
the number of zeros h(z) encloses within the unit circle. For
nearest-neighbor interactions, the zeros are given by

z ± � �μ0 ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ20 � 4μ1μ�1

p
2μ1

: ð13Þ

The values of ν defining different topological regimes correspond
to having two zeros within the unit circle (ν=+1), one zero
(ν= 0), or none (ν=−1), see Fig. 3(c). Due to the form of
Eq. (13) it is clear that non-trivial topological regimes are always
linked to the competition of local, i.e. μ0, and non-local terms,
μ1μ−1.

Topological regimes of the driven-dissipative chain. We first
consider the resonant response ω= 0, i.e., when the probe fre-
quency equals the cavity frequency. It is convenient to rescale all
parameters by the on-site decay rate (γ+ 2Γ− κ)/2 and we
introduce a rescaled hopping constant Λ≡ 4J/(γ+ 2Γ− κ) and a
cooperativity C � 2Γ=ðγþ 2Γ� κÞ defined analogous to20. C is
the ratio between the non-local dissipative contributions Γ in
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Eq. (3) and the overall on-site decay rate (γ+ 2Γ− κ)/2. We refer
to these two terms as non-local and local dissipation, respectively.

With these definitions, the generating function (12) obtained
from Eqs. (3) becomes

hðkÞ / �1� C cosðkþ θÞ � iΛ cos k: ð14Þ
We have dropped the proportionality factor (γ+ 2Γ− κ)/2 since

the winding number is unchanged by the multiplication of the
generating function with a non-zero constant. Figure 2a and b
illustrates h(k) in the complex plane in topologically non-trivial
and trivial regimes, respectively. Equation (14) shows that the
imaginary part of h(k) pertains to the coherent evolution, while
the real part encodes the dissipation. Therefore, the winding
number (11) is only well-defined in the presence of dissipation.
The imaginary part of h(k) in Eq. (14) takes both positive and
negative values, so any non-vanishing Λ can lead to ν ≠ 0.
However, the real part in Eq. (14) contains a constant shift (−1),
which is due to local dissipation. This implies that the oscillating
contribution C cosðkþ θÞ from the non-local dissipative interac-
tion needs to exceed this local contribution to include the origin
within h(k), cf. Fig. 2. A non-trivial winding number therefore
always requires

C2sin2θ > 1 ð15Þ
for ν ≠ 0. This yields the ‘phase diagram’ Fig. 3b with the two
orange lobes ν= ±1. We note that ν ≠ 0 is inaccessible for
reciprocal dynamics (θ= 0, π). In this case, h(k) degenerates into a
line in the complex plane and ν= 0, unless it crosses the origin, in
which case the winding number becomes undefined.

Entering the non-trivial topological regime is only possible
with the help of the incoherent pump D½ayj � of rate κ in Eq. (2)
featuring as local anti-damping in Eqs. (3). Condition (15)
implies that we require at least 1 < C ¼ 1=ð1þ γ�κ

2Γ Þ, which is
equivalent to κ > γ. Hence, the modes aj have to be coupled to a
bath which is out of equilibrium to obtain ν ≠ 0.

The system response is captured by the scattering matrix S(0),
for which we show some representative examples under OBC
within different regimes as insets in Fig. 3b. Indeed, we can
associate a scattering matrix with each point in the ‘phase
diagram’ and obtain qualitatively the same behavior within one
topological regime.

Figure 3a shows gain and reverse gain under OBC for θ ¼ π
2 ;

3π
2 .

End-to-end amplification sets in for C > 1 as we enter
the topologically non-trivial regime, while transmission in the
reverse direction is strongly suppressed. The sign of ν sets the
propagation direction: ν=+1 (ν=−1) leads to amplification
from right (left) to left (right). In regimes with ν= 0, the gain
dominates over the reverse gain, but no amplification takes place.
This is a clear indication that non-trivial winding numbers
coincide with directional amplification. Note that within
topologically non-trivial regimes the gain grows exponentially
with N, Gν¼± 1 / jz�j�2νN (for N ≫ 1)—a result we will derive in
the next section.

At the transition from the trivial to the non-trivial regime, the
corresponding z± is located on the unit circle, see Fig. 3c.
Therefore, the gain is asymptotically independent of N and Oð1Þ,
see Fig. 3a. Within regimes ν ≠ 0, the gain increases with C while
the reverse gain decreases until we reach the EP C ¼ Λ, and θ ¼ π

2
or 3π

2 , at which
�G ¼ 0. Note that Λ sets the position of the EP on

the lines θ ¼ π
2 and θ ¼ 3π

2 . For Λ > 1 it is located within the
topologically non-trivial regime, which is advantageous for a
directional amplifier.

Our driven-dissipative chain not only cancels the signal in the
reverse direction, it also ensures that any field entering the output

cavity is not back-reflected and mixed-in with the output signal
since we can choose γ in Eq. (9) such that S1,1= SN,N= 0
(impedance matching) whenever θ ¼ π

2 or
3π
2 in the stable regime,

see insets in Fig. 3b. At the EP, the condition for impedance
matching can be found analytically as γ= 2Γ− κ. This is a
significant advantage over other proposals for directional
amplifiers which do not necessarily have this property20,22,26.
Among other things, it means that the amplifier is phase
preserving even if signals are scattered back from other devices
behind the amplifier.

The gain continues to increase with larger C beyond the EP
until we reach the parametric instability at which one eigenvalue
of Mobc is zero. We have an analytic expression for the
eigenvalues under OBC available56, which we provide in Methods
and use to plot the unstable regime in Fig. 3a, b; all other regimes
are stable.

Crucially, a longer chain also leads to the suppression of the
reverse gain. Indeed, the reverse gain scales inversely with respect
to G, i.e., Gν¼± 1 / jz ± j2νN , and G vanishes at the EP, see Eq. (29)
and Fig. 3a. This improves the isolation considerably, and in the
thermodynamic limit, N→ ∞, extends the parameter regime over
which we obtain completely directional amplification from the
fine-tuned EP to the entire non-trivial topological regime.

Directional amplification is induced by the transition from
PBC to OBC, which can intuitively be understood as follows: For
PBC and ν ≠ 0, excitations travel around the ring in a given
direction gaining energy, see Fig. 2c. In this case, the dynamics are
unstable, since the eigenvalues h(k) need to have both positive
and negative real part to encircle the origin, see Fig. 2a. Removing
one link (OBC) can lead to stable dynamics and to the
accumulation of excitations at one end of the chain, which
translates into amplified steady state cavity amplitudes ∣〈aℓ〉∣2, see
Fig. 2d. For reciprocal dynamics, OBC only lead to local changes
and no directional amplification, see Fig. 2e.

On resonance, the existence of non-trivial topological regimes
is independent of the coherent coupling Λ ≠ 0. This changes, for
the non-resonant response ω ≠ 0. Rescaling also ω accordingly,
~ω � 2ω=ðγþ 2Γ� κÞ, we obtain

hðkÞ / �1þ i~ω� C cosðkþ θÞ � iΛ cos k: ð16Þ
Local and non-local contributions in both real and imaginary

parts compete to yield a non-zero winding number. The
condition for non-trivial topology reads

1
C sin θ �

~ω

Λ tan θ

� �2

þ ~ω2

Λ2 < 1: ð17Þ

This amounts to shifting the two lobes ν= ±1 against each other
whereby the overlapping region becomes trivial, see Fig. 3d.

One-to-one correspondence of non-trivial topology and
directional amplification. We now rigorously prove the existence
of a one-to-one correspondence between non-trivial values of the
winding number and directional amplification for generic 1D
systems with nearest-neighbor interactions that give rise to a
dynamic matrix of Toeplitz form with uniform coupling con-
stants. To establish the correspondence, we study the suscept-
ibility χ(ω)=M−1(ω), first under PBC and then under OBC.
Within non-trivial topological regimes, the corrections that arise
from moving to OBC, lead to directional amplification by several
orders of magnitudes. While we focus on nearest-neighbor cou-
plings and generating functions of the form (12), our technique
can also be employed beyond nearest-neighbor interactions.

Under PBC, calculating χpbc is straightforward. For clarity, we
omit the argument ω in what follows. Since we are ultimately
interested in the scattering matrix, we express χpbc ¼ M�1

pbc in the
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site basis

χpbc ¼
X
k

1
hðkÞ kj i kh j ¼

X
j;‘

1
N

X
k

eikðj�‘Þ

hðkÞ jj i ‘h j: ð18Þ

We see now, why the origin is a special point in the complex
plane: it constitutes the pole of the scattering matrix.

Rewriting the sum over k, we make the connection to the zeros
of the generating function and hence ν. For this purpose, we
expand zj−ℓ/h(z) into a Laurent series around z= 0

zj�‘

hðzÞ ¼
1
2πi

X1
n¼�1

zn
I

j~zj¼1
d~z

~zðj�‘Þ�n�1

hð~zÞ :

Inserting this expression into Eq. (18) allows us to evaluate the
sum over k. Since z = eik and k= 2πr/N takes discrete values, we
can write

χpbc ¼
X
j;‘

X1
n¼�1

XN
r¼1

ei
2πnr
N

N
1
2πi

I
j~zj¼1

d~z
~zðj�‘Þ�n�1

hð~zÞ jj i ‘h j:

Using 1
N

PN
r¼1 e

i2πnrN ¼ δn;mN for m 2 Z gives rise to the overall
expression

χpbc ¼
X
j;‘

X1
m¼�1

1
2πi

I
j~zj¼1

d~z
~zðj�‘Þ�mN�1

hð~zÞ jj i ‘h j: ð19Þ

Here, we have used the fact that since h(z) can at most have N
zeros, the sum only starts from m=−1. It follows from Cauchy’s
principle57 that

χpbc ¼
X
j;‘

½Ij�‘ þ εj�‘ðNÞ� jj i ‘h j ð20Þ

with

In �
X0
m¼�1

1
2πi

I
j~zj¼1

d~z
~zn�mN�1

hð~zÞ ð21Þ

and εnðNÞ ¼ Oðc�NÞ an exponentially small correction with
some ∣c∣ > 1. We have obtained exact expressions for In and εn
with the residue theorem for generating functions of the form
(14), and we give the results in Methods. In is a function of the
zeros of h(z), cf. Eq. (13), and thus of the winding number (11),
since the number of zeros within the unit circle determines the
contributions to the integral (21), cf. Fig. 3(c). This directly
connects χpbc to the winding number. In is at most Oð1Þ and is
illustrated in Fig. 4, so no significant amplification takes place
under PBC.

Moving on to OBC, we express

Mobc ¼ Mpbc � ðμ1 1j i Nh j þ μ�1 Nj i 1h jÞ ð22Þ

subtracting the corners of the matrix corresponding to PBC. To
calculate the influence of this change in boundary conditions, we
import the following mathematical result58: The matrix inverse of
the sum of an invertible matrix M and a rank-one matrix Ej can
be calculated from ðM þ EjÞ�1 ¼ M�1 � 1

1þgj
ðM�1EjM

�1Þ with

gj ¼ tr ðM�1EjÞ. Applying the formula recursively in two stages,
with E1 ¼ μ1 1j i Nh j and E2 ¼ μ�1 Nj i 1h j, we obtain an analytic
expression for χobc ¼ M�1

obc. Within topologically non-trivial

regimes, it simplifies to

SðωÞ � 1 / χobc ¼
XN
j;‘¼1

Ij�‘ jj i ‘h j
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
PBC background

þ
XN
j;‘¼1

μ1Ij�NI1�‘

1þ g1
þ μ�1Ij�1IN�‘

1þ g2

� 	
jj i ‘h j

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
directional amplification

þ
X
j;‘

O zνNþ½νðj�‘ÞþN�modN
±

� �
jj i ‘h j

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
exponentially small correction

ð23Þ
with g1=−μ1(I1−N+ ε1−N(N)) and g2=−μ−1(IN−1+ εN−1(N)).
Equation (23) is one of our central results. The susceptibility χobc
has three contributions: a PBC background equal to χpbc, cf. Eq.
(20), a term giving rise to directional amplification, and an
exponentially small correction. For N≫ 1 only the second term
dominates due to the division by (1+ gj): for ν=+1 the term
(1+ g1) is exponentially small, while ð1þ g2Þ ¼ Oð1Þ, and vice
versa for ν=−1. This traces back to the values of μ1I1−N and
μ−1IN−1 in the definitions of gj, which sensitively depend on ν.
One of the gj is exactly − 1 if ν ≠ 0 only leaving ε1−N or εN−1 in
the denominator. This exponentially small denominator gives rise
to amplification. We obtain the following expressions for ν=+1
corresponding to ∣z±∣ < 1

χobc ¼
PN
j;‘¼1

Ij�‘ jj i ‘h j � 1
ε1�N

PN
j;‘¼1

Ij�NI1�‘ jj i ‘h j þP
j;‘

O zj�‘þN�1
�


 �
jj i ‘h j;

ð24Þ
and for ν=−1 corresponding to ∣z±∣ > 1

χobc ¼
PN
j;‘¼1

Ij�‘ jj i ‘h j � 1
εN�1

PN
j;‘¼1

Ij�1IN�‘ jj i ‘h j þP
j;‘

O zj�‘�Nþ1
þ

� �
jj i ‘h j

ð25Þ
with

1
ενð1�NÞ

¼ νμ1ðzþ � z�Þ
zνðNþ1Þ
þ

1� zνNþ
� zνðNþ1Þ

�
1� zνN�

" #�1

: ð26Þ

As we show in Fig. 4c, d, the above expansions for χobc converge
exponentially fast to the exact result within the whole
topologically non-trivial regime, and already yield high accuracy
for systems as small as N= 2 in the vicinity of the EP, where they
become exact. For instance, at N= 2 for θ ¼ π

2, C ¼ 2:06, and
Λ= 2 the relative error of jðχobcÞN;1j is only 3.3%. The region of
small relative error, Fig. 4d, rapidly extends as N increases,
converging faster within the dynamically stable regime and more
slowly close to the boundary.

Expanding εν(1−N) of Eq. (26) for large N and ∣z+∣ sufficiently
different from ∣z−∣, we obtain

1
ενð1�NÞ

ffi μ1ðzþ � z�Þ z�νðNþ1Þ
± ð27Þ

in which we choose z+ in the expansion for ν=+1 and z− for
ν=−1.

The susceptibility χobc determines the behavior of S(ω)
according to Eq. (9). We identify 1/εν(1−N) as the contribution
giving rise to amplification, as it is directly related to the gain (5),

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16863-9 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:3149 | https://doi.org/10.1038/s41467-020-16863-9 |www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


which asymptotically grows exponentially with the system size

Gν¼± 1 ffi γ2
jμ20 � 4μ1μ�1j

jμ± 1j4
jz ± j�2νðNþ1Þ; ð28Þ

and at the EP, Gν¼± 1 ffi γ2

jμ ± 1j2
μ ± 1
μ0

��� ���2N . In the thermodynamic limit,

N → ∞, G diverges within non-trivial regimes, but stays finite in
trivial regimes. We can also give the asymptotic expression for the
reverse gain. The leading order contribution stems from the PBC
background, Iν(N−1), and therefore G decreases exponentially with N

Gν¼± 1 ffi γ2
1

jμ20 � 4μ1μ�1j2
jz�j2νðNþ1Þ; ð29Þ

and at the EP, G ¼ 0 exactly. These expressions also converge
exponentially fast and are most practical starting from N ≈ 5.

In general, the individual elements of χobc and therefore
the scattering matrix (9) are formed by the terms Ij−NI1−ℓ, and
Ij−1IN−ℓ, according to Eqs. (24) and (25), respectively, which give
rise to directionality. Since In decreases approximately exponentially
with n and is defined modulo N, the products of the different In
only leave one matrix element that contributes significantly, see
Fig. 4. This is the one determining the gain (28).

In trivial topological regimes we obtain more cumbersome
combinations of In and 1/(1+ gj), but ð1þ gjÞ ¼ Oð1Þ, so no

amplification takes place. However, as we can see from the
scattering matrices displayed in Fig. 3b, directionality is still possible.

Applications—design of multimode directional amplifiers. So
far, we have focused on the driven-dissipative chain (3), however,
the results of Eqs. (23) to (29) apply more generally to systems with
nearest-neighbor couplings. We can map any system with a gen-
erating function of the form (12) to the parameters of the driven-
dissipative chain, i.e., C, Λ, ~ω and θ, and apply all of our previous
results. However, the physical interactions giving rise to amplifi-
cation and indeed the amplified observables may be very different
from those of the driven-dissipative chain. We illustrate this by
applying our topological framework to several models for phase
preserving and phase sensitive amplifiers. Remarkably, the expres-
sions for the scattering matrix (23), the ‘phase diagram’ Fig. 3b, the
gain (28) and the reverse gain (29) in Fig. 3a apply mutatis
mutandis. Hence, we obtain the same exponential growth and
attenuation with N for gain and reverse gain, respectively, without
any explicit calculations.

First, we focus on the phase preserving amplifier proposed by
Metelmann and Clerk20,22 and sketched in Fig. 5b. We consider
the generalization of their two-mode proposal to a chain of N
cavities. Two neighboring modes aj and aj+1 are coupled both via
the coherent parametric interaction λayj a

y
jþ1 þ λ�ajajþ1 and

through the non-local dissipator D½aj þ e�iθayjþ1�. Gauge freedom
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Fig. 4 Non-reciprocity and amplification in the susceptibility, and convergence of Eq. (23). a ν=+1 and b ν=−1. The susceptibility χobc is dominated by
the middle sum in (24) and (25): products of the functions In lead to the asymmetry of the scattering matrix with one dominant matrix element indicating
non-reciprocity, whereas the amplification is determined by the pre-factor 1/εν(1−N), Eq. (26), and grows exponentially with the number of cavities N.
a μ0= 0.3, μ1= 0.5, μ−1= 4 and b μ0= 0.3, μ1= 4, μ−1= 0.5. c Relative error of jðχobcÞN;1j, Eq. (25), for different points in the topological `phase diagram'.
All show exponential convergence with the fastest close to the EP, and a slower rate in the dynamically unstable regime (hatched region) and at the
boundary. d Relative error of jðχobcÞN;1j in the regime ν=−1. For N= 10 and N= 20 the color scale is cut at 0.1. The case ν=+1 is analogous.
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allows us to absorb the phase into λ; however, we focus on the
case of imaginary λ, i.e., λ= i∣λ∣, which ensures that the amplifier
does not couple different quadratures and therefore is phase
insensitive. The equations of motion for the field quadratures
xj � ðaj þ ayj Þ=

ffiffiffi
2

p
and pj � �iðaj � ayj Þ=

ffiffiffi
2

p
are then given by

h _x‘i ¼ � γ
2 hx‘i þ jλj � Γ

2


 �hx‘þ1i þ jλj þ Γ
2


 �hx‘�1i � ffiffiffi
γ

p hx‘;ini
ð30Þ

h _p‘i ¼ � γ
2 hp‘i � jλj � Γ

2


 �hp‘þ1i � jλj þ Γ
2


 �hp‘�1i �
ffiffiffi
γ

p hp‘;ini:
ð31Þ

From the equations above we can directly read off the generating
function for the two quadratures. Introducing C � 4jλj=γ and
Λ ≡ 2Γ/γ, we find

hxðkÞ / �1þ C cos kþ iΛ sin k ð32Þ

hpðkÞ / �1� C cos k� iΛ sin k; ð33Þ
Notice that x and p quadratures have the same generating
function up to the sign of the oscillating terms, which reflects the
phase conjugating property of the amplifier: x and p quadratures
are amplified with the same gain, but the p quadrature exits with a
π phase shift, i.e. a negative sign, at the output. Nevertheless, the
amplifier is still considered to be phase insensitive according to59.
The minus sign has no impact on the topological regimes, since
cos k in Eq. (33) takes both positive and negative values as hp
winds around the origin, and we obtain the same regimes for x
and p quadratures according to Eq. (15): ν= 0 for C < 1, ν=+1
for C > 1 and Λ > 0. We have set θ ¼ π

2 for ν=−1 and θ ¼ 3π
2 for

ν=+1 in Eq. (15), since θ is defined as the phase difference
between real and imaginary part.

Therefore, gain and reverse gain for the quadratures
of the phase insensitive amplifier, Eqs. (30) and (31), are
given by Fig. 3a with C ¼ 4jλj=γ. Furthermore, the scatter-
ing matrices Sx(ω) and Sp(ω) linking xout= Sxxin and pout=
Sxpin with xin=out � ðhx1;in=outi; ¼ ; hxN;in=outiÞT and pin=out �
ðhp1;in=outi; ¼ ; hpN;in=outiÞT are given by Eq. (23). Since the

generating functions are the same up to the sign conjugation,
∣Sx(0)∣2= ∣Sp(0)∣2; off resonance, analogous considerations lead
to ∣Sx(ω)∣2= ∣Sp(ω)∣2. Beyond that, the scattering matrices
∣Sx(0)∣2, ∣Sp(0)∣2 take the same form as the insets in Fig. 3b with
θ ¼ π

2 and θ ¼ 3π
2 . Furthermore, the asymptotic scaling of the

gain is given by Gν¼± 1 / jz�j�2νN and of the reverse gain by

Gν¼± 1 / jz ± j2νN according to Eqs. (28) and (29), respectively.
This demonstrates the power of the framework: we can
determine the properties of a physically very different amplifier
consisting now generally of N modes without numerically
calculating the scattering matrix.

Next, we examine the phase sensitive amplifier proposed
in20,22. It couples the field quadratures via the coherent
interaction λpjxj+1 and the dissipator ΓD½xjþ1 þ ipj�. We again
consider the generalization to a chain of N modes and obtain the
equations of motion

h _x‘i ¼ � γ

2
hx‘i � ðΓ� λÞhx‘þ1i �

ffiffiffi
γ

p hx‘;ini ð34Þ

h _p‘i ¼ � γ

2
hp‘i � ðΓþ λÞhp‘�1i �

ffiffiffi
γ

p hp‘;ini: ð35Þ
The equations for x and p quadratures decouple and therefore, we
consider them separately.

Defining C ± � 2ðΓ± λÞ=γ with the positive sign for p and the
negative sign for x, the generating functions take the form

hxðkÞ / �1� C� cos k� iC� sin k ð36Þ

hpðkÞ / �1� Cþ cos kþ iCþ sin k: ð37Þ
We obtain the following topological regimes from condition

(15) with θ ¼ 3π
2 : νx=+1 for jC�j > 1, νx= 0 for jC�j < 1; and

with θ ¼ π
2: νp=−1 for jCþj > 1, νp= 0 for jCþj < 1, where νx

and νp refer to the winding numbers for x and p quadratures,
respectively. As we illustrate in Fig. 6a, depending on the regime,
both quadratures, only one of them, or none, are amplified. The
amplification direction for x and p quadratures is the reverse. We
again calculate the scattering matrices Sx and Sp for x and p from
Eq. (23) and show some as insets in Fig. 6a. Analogously, the gain
and the reverse gain are obtained from Eqs. (28) and (29),
respectively. The gain follows the same behavior as Fig. 3a.

a

�   [aj ]

�

zj ≡ aj + e–i� aj + 1

�aj aj + 1 + h.c.

aj

�   [aj ] Γ   [zj ]

J
aj + 1

aj aj + 1

zj ≡ aj + e–i� aj +1

Γ   [zj ]
�   [aj ]

Γ   [zj ]

zj ≡ xj + 1 + ipj

xj  – 1
H

pj  – 1

xj (Δ + J )

(Δ – J )

�   [aj ]

aj aj + 1

�pj xj + 1

pj

xj  + 1

pj  + 1

�

�

�

b

c

d

Fig. 5 Some directional amplifiers covered by our framework. a Our driven-dissipative cavity chain Eqs. (3), b a phase insensitive amplifier with
parametric interactions, c a phase sensitive amplifier amplifying both x and p quadratures separately, and d a bosonic Kitaev chain41, which amplifies x and
p quadratures in opposite directions. b and c are based on20,22. All of these amplifiers can be analyzed with our topological framework.
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Finally, we consider the ‘bosonic Kitaev chain’ proposed
in ref. 41 and illustrated in Fig. 5d, for which x and p quadratures
are amplified in opposite directions. This also follows straight-
forwardly from our topological framework. The Hamiltonian

H ¼ 1
2

X
j

½ðΔ� JÞxjþ1pj þ ðΔþ JÞpjþ1xj� ð38Þ

together with on-site dissipator γD½aj� gives rise to the following
equations of motion for the system’s quadratures

h _x‘i ¼ � γ

2
hx‘i þ

J þ Δ

2
hx‘�1i �

J � Δ

2
hx‘þ1i �

ffiffiffi
γ

p hx‘;ini
�
X
j

H‘;jhxji �
ffiffiffi
γ

p hx‘;ini
ð39Þ

h _p‘i ¼ � γ

2
hp‘i þ

J � Δ

2
hp‘�1i �

J þ Δ

2
hp‘þ1i �

ffiffiffi
γ

p hp‘;ini
�
X
j

ð�HTÞ‘;jhpji �
ffiffiffi
γ

p hp‘;ini:
ð40Þ

We have added coherent driving to obtain the input terms in
Eqs. (39) and (40) and cast them into the same form as Eqs. (3).

As we can see from the last lines of Eqs. (39) and (40), the
dynamic matrix governing the evolution of the p quadratures is
the negative transpose of that of the x quadratures. On the level of
the generating functions, this translates into a change in the sign
of the winding number within topologically non-trivial regimes.
Defining C � 2Δ=γ and Λ ≡ 2J/γ, the generating functions are

hxðkÞ / �1þ C cos k� iΛ sin k ð41Þ

hpðkÞ / �1� C cos k� iΛ sin k: ð42Þ

Assuming Λ > 0, we obtain from condition (15): νx= 0 and νp= 0
for jCj < 1, νx=−1 and νp=+1 for C > 1, νx=+1 and νp=−1
for C <�1, cf. Fig. 6b. The non-trivial cases correspond to setting
θ ¼ π

2 for x and θ ¼ 3π
2 for p quadratures for C > 1, or vice versa

for C < �1, in the ‘phase diagram’ Fig. 3b and the gain Fig. 3a. As
for the previous examples, we obtain the scattering matrices from
Eq. (23) and illustrate them in Fig. 6b. Since the winding numbers
for x and p quadratures have opposite sign they are amplified in
reverse directions. Gain and reverse gain follow from Eqs. (28)
and (29), respectively.

Discussion
In this work we have developed a framework based on the
topology of the dynamic matrix to predict and describe direc-
tional amplification in driven-dissipative systems. In contrast to
topological states of matter for closed systems, we have intro-
duced the winding number (11) as topological invariant based on
the spectrum of the dynamic matrix—the generating function
(12). We have shown that non-trivial values of the winding
number have a directly observable consequence expressed in the
scattering matrix (4), and we have established a one-to-one cor-
respondence between non-trivial topology and directional
amplification. One of our main results is the ‘phase diagram’ for
the scattering matrix, Fig. 3b, that associates topologically non-
trivial parameter regimes with directional amplification. We have
obtained an analytic expression for the scattering matrix (9) in
Eq. (23), the gain (28) and the reverse gain (29) in the case of
nearest-neighbor couplings and have revealed an exponential
scaling of the gain with the number of sites within topologically
non-trivial phases, while the reverse gain is exponentially sup-
pressed. In the limit of an infinite chain, completely directional
amplification is obtained within the whole topological regime.
Our result for the scattering matrix (23) already yields high
accuracy for systems as small as N= 2 in the vicinity of the EP,
where it is exact, and it converges exponentially fast within the
whole topologically non-trivial regime. Therefore, directional
amplification can be seen as a proxy of non-trivial topology,
formally defined only in the limit N → ∞, even in very small
systems, which makes our work relevant for state-of-the art
devices such as ref. 27. Furthermore, we have demonstrated the
generality of our results and shown how four systems each with
different coherent and dissipative interactions can be analyzed
with our topological framework. One of our key assumption is
translational invariance. However, we still expect our results to
serve as good approximation when the terms breaking transla-
tional invariance are sufficiently small. Another way to go beyond
our assumptions is, for instance, to add parametric interactions to
Eq. (3). This yields two rather than one complex band, and we
have to modify our main result (23). Interactions beyond nearest
neighbors yield yet another form of the dynamic matrix which
leads to higher winding numbers. This necessaitates additional
terms in our decomposition of the scattering matrix, Eq. (23).
These extensions will be addressed in future work.

Suitable platforms for implementation include super-
conducting circuits10,42, optomechanics43, photonic crystals28

and nanocavity arrays60, as well as topolectric circuits44,45 and
mechanical meta-materials61–63. On a fundamental level, our
analysis sheds light on the role of topology in open quantum
systems64 and is of direct relevance for the study of non-
Hermitian topology46,48–50, where our framework predicts
immediate physical and observable consequences for a topologi-
cal invariant.
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Fig. 6 Topological ‘phase diagram’ for the phase sensitive amplifier, Eqs.
(34) and (35), and the bosonic Kitaev chain, Eq. (38). Topological
regimes for (a) the phase sensitive amplifier of Fig. 5c, and (b) the bosonic
Kitaev chain of Fig. 5 (d). We sketch the scattering matrix ∣S(0)∣2, whereby
the blue rectangles indicate the dominant matrix elements. It is block
diagonal for both systems (see inset), since their equations of motion
decouple, with blocks Sx and Sp addressing x and p quadratures,
respectively. Each block is obtained from Eq. (23). In a depending on the
parameters Γ and λ, either the x quadratures are in a non-trivial regime, the
p quadratures, both or none. The central white region is topologically trivial,
so the gain is Oð1Þ. In b, either both x and p quadratures are in a non-trivial
regime with νx=−νp, or νx= νp= 0. Since the winding numbers νx and νp
have opposite sign, the amplification direction is the reverse for the two
quadratures.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16863-9

10 NATURE COMMUNICATIONS |         (2020) 11:3149 | https://doi.org/10.1038/s41467-020-16863-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Methods
Exact expressions. We give here the exact expressions for In and ϵn arising in the
derivation of our main results Eqs. (23) to (29)—the one-to-one correspondence
between a non-trivial winding number and directional amplification. χobc is cru-
cially determined by In �P0

m¼�1
1
2πi

H
j~zj¼1d~z

~zn�mN�1

hð~zÞ , see Eq. (23). We can calculate

it exactly for generating functions (12) using the residue theorem. For that purpose,
we use the general Leibniz rule and find the residues with rðnÞ � ðνnþ NÞmod N

● ν ≠ 0, i.e., either ∣z±∣ > 1 or ∣z±∣ < 1, and z+ ≠ z−

In ¼ ν

μ1

zνjrðnÞjþ � zνjrðnÞj�
zþ � z�

ð43Þ

● ν ≠ 0 and z+= z−

In ¼
1
μ1
jrðnÞjzνjrðnÞj�1

þ : n≠ 0

0 : n ¼ 0

(
ð44Þ

● ν = 0: ∣z+∣ < 1 and ∣z−∣ > 1 or ∣z+∣ > 1 and ∣z−∣ < 1

In ¼
± 1

μ1

zjnj±
zþ�z�

: n ≥ 0

± 1
μ1

z�jnj
�

zþ�z�
: n< 0:

8><
>: ð45Þ

One important feature of this expression within topological regimes is I0= 0. This
allows us to simplify χobc to yield Eq. (23).

We also employ the residue theorem to calculate the correction εn(N) exactly
rewriting the sum as geometric series and inserting the calculated residues

εnðNÞ �
X1
m¼1

1
2πi

I
j~zj¼1

d~z
~zn�mN�1

hð~zÞ

¼ ν

μ1ðzþ � z�Þ
zνðNþrðnÞÞ
þ
1� zνNþ

� zνðNþrðnÞÞ
�
1� zνN�

 !
1

ενð1�NÞ
ffi μ1ðzþ � z�Þz�νðNþ1Þ

± ;

ð46Þ

in which ± is chosen according to the winding number: z+ for ν=+1 and z− for
ν=−1.

Determining the EP. The value of the EP can be extracted analytically for all N. At
the EP, eigenvalues and eigenvectors coalesce. The dynamic matrix, Eq. (3), is a
Toeplitz matrix, for which there exists an analytic expression for both eigenvalues
and eigenvectors56, see Eq. (47). From this expression it is clear, that the eigen-
values can only coalesce when either iJ ¼ � eiθΓ

2 or iJ ¼ � e�iθΓ
2 , in which case the

dynamic matrix becomes an upper (lower) triangular matrix with only the diagonal
and super-(sub-)diagonal non-zero. Since all the entries on the respective diagonal
and super-(sub-)diagonal are the same, the matrix has rank 1 and these are indeed
EPs. We obtain the N-fold degenerate right eigenvectors from Gaussian elimination
to be either (1, 0, …, 0, 0)T in the former case or (0, 0, …, 0, 1)T in the latter case.

Stability and bandwidth of the driven-dissipative cavity chain. Here, we discuss
the stability of the driven-dissipative chain as well as the gain GðωÞ as a function of
ω. Stability requires the real part of all eigenvalues λm of the dynamic matrix Mobc

to be negative. The analytic expression for λm is given by56

λm ¼ j2Γþγ�κj
2 �1þ i~ω:þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 � Λ2 þ 2iCΛ cos θ

p
cos mπ

Nþ1

� �ih
ð47Þ

for κ < 2Γ+ γ and m= 1, …, N. Larger values of Λ extend the stable regime to
larger C. In order to obtain a regime which is both stable and amplifying, we
require Λ > 1.
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Fig. 7 Gain and reverse gain. In (b) we show the gain GðωÞ of Eq. (48) (solid line) and reverse gain GðωÞ of Eq. (49) (dashed line) for C ¼ 1:5 for different
θ. The gain is a product of Lorentzians of width (γ + 2Γ − κ), cf. Eq. (51). The position of the divergences at larger C in a sets the position of the peak in gain
and reverse gain. For θ ¼ π

2 ;
3π
2 the peak is centered around ω = 0.
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The eigenvalues also determine the bandwidth of the gain GðωÞ. We can write
the exact expression for GðωÞ using65. Together with Eq. (9) and denoting μ0ðωÞ ¼
�1þ i~ω and μ± 1 ¼ �iΛ� Ce�iθ , we write the gain

Gν¼ ± 1ðωÞ ¼
μN�1
�1

ðμ1μ�1ÞN=2

1

UN
μ0ðωÞ

2
ffiffiffiffiffiffiffiffiffi
μ1μ�1

p
� �

������
������
2

ð48Þ

and the reverse gain

Gν¼± 1ðωÞ ¼
μN�1
± 1

ðμ1μ�1ÞN=2

1

UN
μ0ðωÞ

2
ffiffiffiffiffiffiffiffiffi
μ1μ�1

p
� �

������
������
2

; ð49Þ

in which UN denotes the Chebyshev polynomial of the second kind. This
expression diverges at the zeros of the Chebyshev polynomials, see peaks in Fig. 3b,
which satisfy66

μ0ðωÞ
2
ffiffiffiffiffiffiffiffiffiffiffiffi
μ1μ�1

p ¼ cos
mþ 1
N

π

� �
; ð50Þ

with m= 1, 2, …, N. This is equivalent to λm= 0 for at least one eigenvalue,
cf. (47). In principle, this equation has N solutions, however, since Re μ0ðωÞ ¼ �1,
the above condition cannot be fulfilled for all parameters Λ and θ, and we only
obtain ⌊(N/2)⌋ zeros, see Fig. 7. A factorization in terms of these zeros lets us write
GðωÞ as product of Lorentzians

GðωÞ /
YbðN=2Þc

j¼1

γþ2Γ�κ
2


 �2
ðω� ωjÞ2 þ γþ2Γ�κ

2


 �2 ; ð51Þ

in which the ωj can be determined from Eq. (50). All Lorentzians have the same
width set by the effective on-site dissipation (γ + 2Γ − κ). However, if the
Lorentzians are centered around distinct ωj, which is the case if θ ≠ π

2 and θ ≠ 3π
2 ,

the peak is broadened, see Fig. 7. Therefore, the amplifier has no conventional gain-
bandwidth product, which will be the subject of future research. The reverse gain
has the same line shape, but is suppressed by many orders of magnitude—it is
attenuated exponentially with N, see Eq. (29).
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