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Abstract: In humans, both language and fine motor skills are associated with left-hemisphere speciali-
zation, whereas visuospatial skills are associated with right-hemisphere specialization. Individuals
with autism spectrum conditions (ASC) show a profile of deficits and strengths that involves these lat-
eralized cognitive functions. Here we test the hypothesis that regions implicated in these functions are
atypically rightward lateralized in individuals with ASC and, that such atypicality is associated with
functional performance. Participants included 67 male, right-handed adults with ASC and 69 age- and
IQ-matched neurotypical males. We assessed group differences in structural asymmetries in cortical
regions of interest with voxel-based analysis of grey matter volumes, followed by correlational analy-
ses with measures of language, motor and visuospatial skills. We found stronger rightward lateraliza-
tion within the inferior parietal lobule and reduced leftward lateralization extending along the
auditory cortex comprising the planum temporale, Heschl’s gyrus, posterior supramarginal gyrus, and
parietal operculum, which was more pronounced in ASC individuals with delayed language onset
compared to those without. Planned correlational analyses showed that for individuals with ASC,
reduced leftward asymmetry in the auditory region was associated with more childhood social reci-
procity difficulties. We conclude that atypical cerebral structural asymmetry is a potential candidate
neurophenotype of ASC. Hum Brain M{lpp 37:230-253, 2016. © 2015 The Authors Human Brain Mapping Pub-

lished by Wiley Periodicals, Inc.
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INTRODUCTION

Cerebral lateralization and hemispheric specialization in
structure and function are fundamental features of brain
organization. At a functional level, lateralization occurs in
specialized neural circuits with left-hemisphere networks
being dominant for the processing of verbal stimuli and fine
motor coordination and right hemisphere systems exerting
dominance for the processing of attentional, visuospatial
stimuli [Gazzaniga, 1995; Gotts et al., 2013; Mesulam, 1990].
Among the most left-lateralized language functions in typi-
cally developing individuals are syntactic [Friederici et al.,
2010] and semantic processing [Binder et al., 1995; Seghier
et al., 2004], word generation [Cuenod et al., 1995; Gaillard
et al, 2003; Schlaggar et al, 2002] and speech production
[Devlin and Watkins, 2007], speech perception [Dehaene-
Lambertz et al., 2002; Frost et al., 1999], and auditory word
comprehension [Zahn et al., 2000] and phonological encod-
ing [Coney, 2002; Shaywitz et al, 1995]. In the motor
domain, the planning of complex, sequential movements
[Haaland et al.,, 2004; Schluter et al., 1998; Verstynen et al.,
2005], bimanual coordination [Jancke et al.,, 2003; Serrien
et al., 2003], praxis and tool use [Bohlhalter et al., 2009;
Kroéliczak and Frey, 2009], fine motor skills (as expressed by
handedness) and response selection [Weissman and Banich,

2000] are more strongly mediated by the left hemisphere. On
the other hand, visuospatial abilities such as spatial reason-
ing (as measured by mental rotation tasks [Corballis, 1997]
or the Raven’s progressive matrices test [RPM; Njemanze,
2005)], spatial perception (as measured by visual search
[Everts et al., 2009] or the Block Design task [Reite et al.,
1993]), spatial working memory [Thomason et al., 2009] and
spatial attention [Foxe et al., 2003] have mostly been attrib-
uted to right-hemispheric processing dominance.

Anatomical substrates of these functional networks are
especially evident in language-related cortices with larger
leftward volumes of perisylvian regions and auditory associ-
ation areas in right-handed males. In particular, the planum
temporale (PT) has been described as the most pronounced
and functionally significant asymmetry in the human brain,
being 30-35% larger on the left side [Steinmetz, 1996; Stein-
metz et al., 1989]. Correspondence between structure and
function in other domains is less pronounced or not evident
at all. Subtle leftward asymmetries have been reported in
the motor cortex characterized by a deeper and more asym-
metric left central sulcus (CS) [Amunts et al.,, 1996; Hervé
et al., 2006], increased leftward neuropil in Brodmann area 4
(BA4) [Amunts et al., 1996], increased cortical thickness in
the left precentral gyrus (PCG) [Luders et al., 2004] and an
increased left hand motor area in right-handers [Volkmann
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et al., 1998]. The inferior parietal lobule (IPL) has been sug-
gested to be a nodal point subserving right-lateralized atten-
tional and spatial networks [Hugdahl and Davidson, 2003]
confirmed by studies showing hemispatial neglect resulting
from right-sided IPL lesions [Kerkhoff, 2001; Na et al., 2000].
Anatomically, the IPL consists of seven cytoarchitectonically
different subregions of which most parts are leftward later-
alized (area “PG”), whereas a smaller posterior portion (area
“PEG”) is rightward asymmetric [Eidelberg and Galaburda,
1984], and overall this region has been shown to be leftward
asymmetric in males [Frederikse et al., 1999].

Lateralization in both structure and function has been
explained by an evolutionary advantage ensuring more
efficient transcortical integration of information and avoid-
ing cognitive processing redundancy [Hugdahl, 2011]. In
fact, leftward lateralization of functional circuits sub-
serving motor control is more beneficial for motor per-
formance in typical children [Barber et al.,, 2012] and the
degree of lateralization in visuospatial and language-
related networks predicts cognitive performance [Gotts
et al., 2013; Mellet et al., 2014]. Furthermore, atypical,
right- or bi-hemispheric lateralization is more common in
clinical populations with language deficits such as dyslexia
[Johnson et al., 2013], stuttering [Foundas et al., 2001], spe-
cific language impairments [de Guibert et al., 2011], schiz-
ophrenia [Chance et al., 2008; Oertel-Knochel and Linden,
2011], and autism [Lindell and Hudry, 2013].

In particular, individuals with Autism Spectrum Condi-
tions (ASC) show a profile of symptoms and strengths that
is related to lateralized brain functions in the language,
motor and visuospatial domain. For instance, even highly
verbal individuals exhibit impairments in syntactic, seman-
tic, phonological and pragmatic features of expressive and
receptive language [Boucher, 2012; Kjelgaard and Tager-
Flusberg, 2001; Tager-Flusberg and Caronna, 2007]. Along-
side stereotyped behaviours, deficits in nonrepetitive motor
functions arise very early on in development—including
delays in motor milestones such as sitting up and starting
to walk [Teitelbaum et al., 1998], clumsiness, impaired
gross, and fine motor coordination [Green et al., 2009; Mos-
tofsky et al., 2006] and problems with motor planning and
planned sequencing of actions [Greenspan and Wieder,
1997]. In contrast, some individuals with ASC show intact
(or even enhanced) visuospatial information processing (in
terms of both perception and reasoning) as shown by supe-
rior performance on the Block Design task [Shah and Frith,
1993], Embedded Figures Task [EFT; Jolliffe and Baron-
Cohen, 1997], mental rotation tasks [Falter et al., 2008] and
RPM [Dawson et al., 2007; Soulieres et al., 2009]. This has
been suggested by some to be underpinned by deficits in
central coherence [Happé and Frith, 2006] or by hyper-
systemizing [Baron-Cohen, 2006; Mottron et al., 2006].

This cognitive profile in individuals with ASC gave rise
to an early theory [the “left hemisphere dysfunction”
(LHD) theory of autism] that left-lateralized functions are
dysfunctional while right hemisphere functions remain rel-

atively unaffected [McCann, 1981; Ricks and Wing, 1976].
Thus, prior research into hemispheric specialization in
ASC has focused on identifying regions exhibiting loss or
reversal of typically occurring patterns of asymmetry.

For example, studies of individuals with ASC have
repeatedly reported evidence for decreased leftward, or
even increased rightward, hemispheric activation during
performance in expressive language tasks [Kleinhans et al.,
2008; Knaus et al., 2010; Miiller et al., 1999] or receptive,
auditory processing [Anderson et al., 2010; Boddaert et al.,
2003, 2004; Dawson et al., 1989; Miiller et al., 1999]. This
atypical pattern of temporal speech activation can be
observed in babies [Seery et al., 2013] and toddlers [Eyler
et al., 2012; Redcay and Courchesne, 2008], and it becomes
more pronounced across early childhood [Eyler et al.,
2012; Flagg et al., 2005]. Moreover, resting state fMRI stud-
ies confirm atypical functional rightward lateralization of
numerous brain networks including language, motor, and
visuospatial circuits, as well as the default mode network
[Cardinale et al., 2013; Nielsen et al., 2014] and disrupted
interhemispheric connectivity between language process-
ing regions [Dinstein et al., 2011]. These atypical patterns
of lateralization are functionally relevant as they are asso-
ciated with poorer language abilities [Dawson et al., 1986].

Structurally, a consistent finding in verbal individuals
with ASC is atypical asymmetry of the PT, with either a
more symmetrical organization [Rojas et al., 2002, 2005] or
rightward asymmetry [Gage et al., 2009]. In contrast, exag-
gerated leftward asymmetry of the PT and atypical right-
ward asymmetry in frontal inferior regions is especially
evident in language-impaired individuals with ASC [De
Fossé et al., 2004].

In the motor domain, the most evident atypical asymme-
try among people with ASC is the marked increase in the
incidence of left-and mixed-handedness: 18-57% for left-
handedness and 17-47% for mixed-handedness [Dane and
Balci, 2007; Fein et al., 1984; Lewin et al., 1993; McManus
et al, 1992; Soper et al., 1986]. Individuals who fail to
establish consistent hand preference score lower on cogni-
tive, motor, and language tasks [Hauck and Dewey, 2001].
Atypical functional lateralization on motor tasks in indi-
viduals with autism has only been investigated in few
studies showing greater involvement of the right hemi-
sphere in individuals with ASC during imitation [Dawson
et al., 1983], procedural learning [D’Cruz et al., 2009] and
sequence learning [Miiller et al., 2004].

Atypical activation has been reported in individuals
with ASC while performing visuospatial tasks. Functional
studies have found decreased activation in left frontal and
inferior parietal cortices alongside increased activation in
bilateral superior parietal and right occipital cortex while
performing the EFT [Damarla et al., 2010; Kana et al,
2013] and increased activation in right posterior parietal
lobule and supramarginal gyrus (SMG) while performing
mental rotation tasks [Silk et al., 2006]. However, no prior
studies have examined the link between atypical
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TABLE I. Participant demographics: Individuals with ASC and neurotypicals

Characteristics ASC (n = 67); mean (SD) [range] NT (n = 69); mean (SD) [range] Statistics
LD 41 no LD; 26 LD; —; —;
Age® 26.19 (6.79) [18-43] 27.88 (5.99) [18-43] ns
Full scale 1Q? 109.28 (14.61) [73-135] 113.93 (12.85) [77-137] ns
Verbal IQ 108.67 (14.43) [77-139] 108.77 (13.3) [71-137] ns
Performance IQP 107.6 (16.03) [73-138] 116.61 (12.32) [76-135] NT>ASC
ADI-R® 38.99 (10.0) [21-62] — —
Social 17.69 (5.4) [9-28] — —
Communication 13.78 (4.2) [8-24] — —
RSB 4.9 (2.23) [2-10] - -
ADOS? 11.43 (5.66) [0-24] — —
Communication 3.23 (1.76) [0-7] — —
Social 6.03 (3.19) [1-14] — —
RSB 1.36 (1.47) [0-6] — —

Abbreviations: ASC: autism spectrum condition; ADI-R: autism diagnostic interview-revised; ADOS: autism diagnostic observation
schedule; LD: language delay; NT: neurotypicals; RSB: repetitive and stereotyped behaviour.
“There were no significant differences between the ASC and control groups in age, full-scale IQ, or verbal IQ (P > 0.05).

PThe two groups significantly differed in performance IQ (P = 0.01).

“Information was available for all 67 individuals with ASC. The following cut-off scores were used: ADI-R Social, >10; Communication,

>8; and RSB, >3.

YInformation was available for 66 individuals with ASC, using a cut-off score of 7.

(rightward) lateralization during these tasks and enhanced
visuospatial performance.

Deficits in communication and language are among the
core symptoms in individuals with ASC and the impor-
tance of language development is highlighted by studies
showing that onset of language before the age of 2 years
[Mayo et al.,, 2013] and the level of language at the ages 5
and 6 years [Howlin, 2003] predict functional outcome later
in life in individuals with ASC. Until recently, language
onset was used as a key feature to distinguish the clinical
diagnoses of Asperger’s syndrome versus high-functioning
autism (HFA). Although it is recognized that the broader
nosological constructs autism spectrum disorders (ASD) or
ASC can describe the commonality of all individuals on the
spectrum, delineating heterogeneity remains one of the
most critical task and challenge in autism research [Lai
et al,, 2013a; Lenroot and Yeung, 2013]. Finding neurobio-
logical characteristics for subgroups in ASC is among the
major aims of current research.

We have previously reported structural volumetric dif-
ferences in part of the current sample between ASC indi-
viduals with and without LD [Lai et al., 2014]. However,
to our knowledge no previous studies have examined lat-
eralized differences in cortical language-related structures
between language-delayed and non-language-delayed
individuals with ASC. In addition, there are no previous
reports of structural differences in asymmetry in regions
outside the language domain in individuals with ASC.
Thus, here we aim to extend the current literature on struc-
tural asymmetries in ASC by including other lateralized
cognitive functions than language and differentiating
between two subgroups within ASC that are defined based
on one lateralized cognitive function (i.e., language). In the

current study we investigated whether the functional
account of the LHD theory of autism extends to structural
asymmetries across grey matter (GM) in male adult individ-
uals with ASC compared to controls using spatially
restricted voxel-based analysis. We hypothesized that atypi-
cal (i.e. rightward) patterns of asymmetry would be present
in language, motor and visuospatial structures in adults
with ASC, and that atypical asymmetries would be associ-
ated with worse language and motor, and better visuospa-
tial performance. Finally, we tested the hypothesis that
individuals with ASC who also had developmental lan-
guage delay would show more pronounced patterns of
atypical asymmetry in structures related to language
function.

MATERIALS AND METHODS
Participants

Participants included 67 right-handed male adults with
ASC and 69 right-handed, neurotypical male adults. Both
groups did not significantly differ in age (1843 years;
ASC: mean =26.19, SD=6.79; controls: mean=27.88,
SD =5.99) or full-scale IQ (FIQ) (73-137) (see Tables I and
II). Participants were part of a multicentre imaging study
within the UK Medical Research Council (MRC) Autism
Imaging Multicentre Study (AIMS) Consortium [Ecker
et al., 2012, 2013], comprising three collaborating centres:
the Institute of Psychiatry, Kings College London
(ASC =38; controls =38); the Autism Research Centre,
University of Cambridge (ASC = 29; controls = 31); and the
Autism Research Group, University of Oxford. In this
study we focus on data acquired from Cambridge and
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TABLE Il. Participant demographics: Individuals with ASC with and without language delay

Characteristics LD (n =26); mean (SD) [range] No-LD (1 =41); mean (SD) [range] Statistics
Age® 2358 (5.37) [18-41] 27.85 (7.13) [18-43] NT>LD
Full scale 1Q? 106.69 (12.32) [73-128] 110.93 (15.82) [75-135] NT>LD
Verbal IQb 105.42 (11.90) [77-126] 110.73 (15.61) [79-139] ns

Performance 1Q?

106.15 (13.78) [73-131]

o~ o~~~

108.51 (17.41) [75-138]
35.71 (8.59) [21-55]
16.17 (4.55) [9-26]

12.80 (4.0) [8-22]

NT>LD and No-LD

ADI-R® 44.15 (10.04) [25-62]
Social 20.08 (5.74) [10-28]
Communication 15.31 (4.13) [8-24]
RSB 4.85 (2.22) [2-10]
ADOS? 12.35 (6.39) [1-24]
Communication 3.38 (2.0) [0-7]
Social 6.42 (3.79) [1-14]
RSB 1.38 (1.55) [0-5]

4.93 (2.26) [2-10] —
10.85 (5.14) [0-24] —
3.13 (1.60) [0-6] —
5.78 (2.76) [1-11] —
1.35 (1.44) [0-6] —

Abbreviations: ADI-R: autism diagnostic interview—revised; ADOS: autism diagnostic observation schedule; LD: language delay; LD:
individuals with ASC with language delay; No-LD: individuals with ASC without language delay; NT: neurotypicals; RSB: repetitive

and stereotyped behaviour.

“Individuals with LD significantly differed in performance IQ, full-scale IQ and age form controls (P < 0.05).
PThere were no significant differences between the ASC and control groups in verbal IQ (P > 0.1).
“Information was available for all 26 individuals with LD and all 41 individuals without LD. The following cut-off scores were used:

ADI-R Social, >10; Communication, >8; and RSB, >3.

“Information was available for all 26 individuals with LD and for 40 individuals without LD, using a cut-off score of 7.

London only as we encountered image segmentation fail-
ures due to differing signal-to-noise characteristics for the
Oxford dataset that adversely interacted with our pre-
ferred algorithm (see below). Details of recruitment have
been described elsewhere [Ecker et al., 2012, 2013; Lai
et al., 2011, 2012b, 2013b; Wilson et al., 2014].

Participants were excluded if they had: (1) a history of
major psychiatric disorders, (2) severe head injury, (3)
genetic disorders associated with autism (e.g., fragile X
syndrome, tuberous sclerosis), (4) severe medical condi-
tions affecting brain structure and function (e.g., epilepsy),
(5) intellectual disability (IQ <70), (6) substance-use disor-
ders, and (7) use of antipsychotic medications, mood sta-
bilizers or benzodiazepines. There was no diagnosis or
family history of ASC in the neurotypical (control) group.
All participants gave informed written consent in accord-
ance with the ethics approval from the National Research
Ethics Committee, Suffolk, UK.

Cognitive Measures

All individuals with ASC were clinically diagnosed with
childhood autism or Asperger’s syndrome according to
the International Classification of Diseases-10 [ICD-10;
World Health Organisation, 1992] criteria by a psychiatrist
or clinical psychologist in the National Health Service, UK.
All participants with ASC reached the diagnostic algo-
rithm cut-offs on the Autism Diagnostic Interview-Revised
[ADI-R; Lord et al., 1994], but were allowed to score one
point below threshold in one of the three domains (ADI-A:
Abnormalities in Reciprocal Social Interaction; ADI-B:

Abnormalities in Communication; ADI-C: Restricted,
Repetitive and Stereotyped Patterns of Behaviour). Module
4 of the Autism Diagnostic Observation Schedule [ADOS;
Lord et al., 2000] was performed to assess current symp-
toms, but did not form part of the inclusion criteria due to
potentially insufficient sensitivity among high-functioning
adult individuals. Subdomains of the ADI-R and the
ADOS were used to determine clinical symptoms in terms
of deficits in social reciprocity (ADI-R subdomain-A;
ADOS subdomain-B), communication (ADI-R subdomain-
B; ADOS subdomain-A) and stereotyped, repetitive and
restricted behaviour and interests (ADI-R subdomain-C;
ADOS subdomain-D).

The ADI-R assessed history of language development. Lan-
guage delay was defined as having onset of first words later
than 24 months and/or having onset of first phrases later
than 33 months. All participants were on the high-functioning
end of the spectrum (full-scale IQ >70) as assessed by the
Wechsler Abbreviated Scale of Intelligence [WASI; Wechsler,
1999]. Handedness measures were obtained using the Edin-
burgh Handedness Inventory [EHI; Oldfield, 1971]; only
right-handed individuals were included in the study.

Two tests for language executive functioning were
administered. The FAS test [Gladsjo et al., 1999] asks indi-
viduals to generate as many words as possible starting with
the letter “F” within one minute, followed by the letters
“A” and “S.” The total number of words generated (exclud-
ing names, repetitions, tense changes, and plurals) is the
outcome measure. The non-word repetition task [NWR;
Gathercole et al., 1994] tests individuals” phonological work-
ing memory capacity by asking the participant to repeat 28
nonwords ranging from 1 to 4 syllables that have no lexical
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TABLE Ill. Overview of cognitive and behavioural measures

Symptom severity Language

Motor Visuospatial

Subdomains of ADI-R + ADOS:
e Abnormal social behaviour
(ADI-A; ADOS-B),
e Abnormal communication
(ADI-B; ADOS-A),
o Stereotyped, restricted behaviour
(ADI-C; ADOS-D)

e F-A-S test

e Non-word repetition task

e Purdue pegboard test e Embedded figures test

Functional measures of (a) symptom severity as measured by the ADI-R and ADOS, (b) language as measured by the non-word repeti-
tion task (phonological working memory), and F-A-S Test (verbal executive functioning), (c) motor skills as measured by the purdue
pegboard test (motor dexterity), and (d) visuospatial abilities as measured by the embedded figures test.

correspondence in English. Participants are presented with
standardized, prerecorded nonwords and asked to repeat
them immediately. Answers are audiotaped and rated as
correct if all repeated vowels, consonants and accents were
the same as the stimulus. Total number of correct items
constitutes the outcome measure.

Motor dexterity was assessed by the Purdue Pegboard
test [PPT; Tiffin and Asher, 1948]. Participants are asked to
insert small pins into holes on a board with either (a) the
right hand (RH), (b) the left hand (LH), (c) with both hands
alternatively (BH), or (d) to insert pins, collars, and washers
using both hands alternatively (Assembly). The number of
successfully placed pins within 30 s (and within 60 s for the
assembly condition) is scored as the outcome measure. As
focus in this study was on laterality, we additionally calcu-
lated a laterality index based on following formula: 2(RH-
LH)/(RH+LH).

Visuospatial abilities were assessed with the adult ver-
sion of the EFT. We applied “Form A” consisting of 12 fig-
ures composed of a complex design and a simple shape
which was part of the complex design. Participants were
asked to identify the simple shape within the complex
design. The time taken for the correct answer was recorded
as the outcome measure. For further details on the assess-
ment of cognitive measures see [Lai et al.,, 2012b; Wilson
et al., 2014] (see Table III).

Structural Magnetic Resonance Imaging
Acquisition

All participants underwent scanning using contempo-
rary 3T MRI scanners fitted with an eight-channel receive-
only radio frequency head coil (GE Medical Systems HDx,
Department of Radiology, University of Cambridge; GE
Medical Systems HDx, Centre for Neuroimaging Sciences,
Institute of Psychiatry, Kings College London).

To guarantee standardized acquisition of structural MRI
scans across centres, a validated [Ecker et al., 2012; Lai et al.,
2012a,2013b; Suckling et al., 2014] specialized acquisition pro-
tocol using quantitative imaging (DESPOT1: driven equilib-
rium single-pulse estimation of T1) was applied. Spoiled

gradient recalled images were acquired at two flip angles ()
from which an estimate of the absolute T; value was derived
at each voxel. These quantitative T; maps were then used to
create simulated structural T;-weighted inversion recovery
images, with 176 contiguous slices in 1 mm X 1 mm X
1 mm resolution, a field-of-view of 256 mm, a simulated rep-
etition time/inversion time (TR/TI) of 1800/850 ms, a scaling
constant p = 10,000 and a flip angle of 20°.

Image Preprocessing

Voxel-based morphometry (VBM) is the most common
method for voxel-based comparisons of GM. Here, we
decided to apply a spatially restricted voxel-wise analysis
of GM asymmetry. First, this approach has the advantage
of having greater sensitivity than region-of-interest (ROI)-
based methods in cases when not every voxel is contribut-
ing to the effect. Voxel-wise analyses are less likely con-
founded by incongruent changes within ROIs and subtle
differences within ROIs can be detected which might be
missed when averaging across large regions of interest.
Second, voxels can be regrouped flexibly and we can
explore both anatomically and functionally defined ROIs
whose boundaries might not correspond. Third, the major-
ity of work with MRI on anatomical differences associated
with ASC, and with differences in laterality has used VBM
as the basis for their measurements. Adopting a similar
methodology allows for a more natural comparison
between studies. Simulated T;-weighted images were pre-
processed using statistical parametric mapping (SPMS;
Wellcome Department of Imaging Neuroscience Group,
London, UK; http://www filion.ucl.ac.uk/spm) and the
VBMS toolbox (http://dbm.neuro.uni-jena.de/vbm.html).
In the following analyses, specific preprocessing steps
were adopted for segmentation and normalization to meet
special requirements for the analysis of asymmetry.

Creation of Symmetrical Tissue Probability Maps

To minimize systematic left-right biases introduced by
asymmetrical tissue probability maps (TPMs), we first
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generated symmetric tissue priors by averaging all six tis-
sue classes of the International Consortium for Brain Map-
ping (ICBM) template with their midline-inverted (x-
flipped) counterparts. We employed a custom-build script,
which edits the data content itself without changing the
header (which contains the transformation matrix). It
avoids further interpolation upon writing resulted images
and a consequent modification of the data.

Creation of Symmetrical DARTEL Template

Voxel-wise results are highly influenced by registration
accuracy. Although conventional discrete cosine transform
(DCT) normalization has been improved by a more flexi-
ble, high-dimensional nonlinear diffeomorphic registration
algorithm [DARTEL; Ashburner, 2007], only two previous
DARTEL-based voxel-wise asymmetry analyses have been
conducted so far [Kurth et al., 2015; Savic, 2014]. Typically,
images are registered to the stereotactic coordinate system,
for example that represented by the asymmetrical Mon-
treal Neurological Institute (MNI) template provided with
the SPM software, via a typically asymmetrical study-
specific DARTEL template. For asymmetry analyses, how-
ever, registration to a symmetrical template is required to
ensure spatial homology between the hemispheres and
prevent an artefactual increase in asymmetry due to the
use of asymmetrical standard-space templates during
image registration. Here we applied an optimized prepro-
cessing pipeline after comparing two methods (“segment
then reflect” vs. “reflect then segment”; the former was
deemed more optimized, see Figures Sla and S1b in Sup-
plementary Information) to create an optimized symmetri-
cal study-specific template to perform high-dimensional
nonlinear registration.

Image Segmentation Then Reflection

All original images (N =136) were segmented into GM,
white matter (WM), and cerebrospinal fluid (CSF) using
the VBMS8 toolbox. GM segmentations were then rigid-
body registered to the MNI template and reflected across
the cerebral midline (x=0) using the same custom-built
script as mentioned above.

DARTEL Registration

All segmented reflected and original (non-reflected)
GM maps, rigid-body registered to the MNI template,
were then used to generate a symmetrical study-specific
template via DARTEL and were finally warped to the
abovementioned symmetrical study-specific template
and then into MNI space as per standard DARTEL
procedures.

A modulation step was included to retain voxel-wise
information on local volume. The final resulting images
were modulated, warped, reflected (I,r) and non-reflected
(Inrer) GM images in the MNI space. For the assessment of

volumetric asymmetry, the laterality index (LI) was calcu-
lated at each voxel where estimates of GM volume were
>0 in all images, where:

LI:z(Inref_ ref)/(lnref+1ref)

Positive values in the right hemisphere of the LI image
indicate rightward lateralization, whereas negative values
in the right side of the asymmetry image indicate leftward
lateralization. Values of LI in the left hemisphere have
identical magnitude, but opposite sign and were therefore
excluded from further analysis. LI images were smoothed
with a 4-mm FWHM isotropic Gaussian kernel before
group-level statistical analyses.

Regions of Interest (ROIs)

We created a set of anatomically and functionally
defined ROIs using the Harvard-Oxford atlas (fMRIB,
Oxford, UK) and the online meta-analytic database neuro-
synth [http://neurosynth.org; Yarkoni et al., 2011].

For deriving anatomically defined ROIs, the Harvard-
Oxford parcellation template was first coregistered (using
the nearest-neighbour method) to the symmetrical study-
specific template (in MNI space) then constrained to vox-
els in the study-specific template with a tissue partial vol-
ume >0.25 to avoid edge effects between different tissue
types. ROIs were selected as regions potentially subserving
lateralized cognitive functions and implicated in the neu-
robiology of ASC, including the PT (“anatomical auditory
ROI”; k=1303 voxels), Broca’s area (Broca; based on a
conjunction of the pars opercularis and the pars triangula-
ris, “anatomical language ROI”; k = 3,205 voxels), the pre-
central gyrus (PCG; “anatomical motor ROI”; k=9,075
voxels), and inferior parietal lobule (IPL; based on a con-
junction of the angular gyrus (AG) and the SMG;
“anatomical visuospatial ROI”; k = 7,446 voxels).

For functionally defined ROIs, meta-analytic co-activa-
tion maps for regions functionally related to language,
motor and visuospatial functions were derived from the
neurosynth website (accessed June 2014) by obtaining
reverse inference maps for the search terms “language”
(553 studies; k=8,699 voxels), “auditory” (715 studies;
k=7716 voxels), “motor” (1,394 studies; k = 16,208 voxels),
and “visuospatial” (116 studies; k=628 voxels). Maps
were resliced to match the voxel resolution of the data,
thresholded at Z>5 and binarised.

Each anatomical and functional ROI map was reflected
along the x axis and the conjunction of right and left hemi-
spheric ROIs was used for the analyses to ensure homo-
topic/symmetrical ROIs (see Fig. 1).

Control ROIs

Six control ROIs (three anatomical and three functional)
were additionally selected based on structures and functions
that have been implicated in ASC, but not associated with
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Figure I.
Anatomical and Functional Regions of Interest. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

atypical lateralization. Anatomical ROIs comprised: the ante-
rior cingulate cortex (ACC) [Amaral et al., 2008; Dichter
et al., 2009; Oblak et al., 2010; Thakkar et al., 2008], the cau-
date [Amaral et al.,, 2008; Langen et al., 2007; Sears et al.,
1999], and the fusiform gyrus (FFG) [Amaral et al., 2008;
Kwon et al., 2004; Oblak et al., 2010; van Kooten et al., 2008].
Functional ROIs were based on the neurosynth search terms
“emotion regulation” (161 studies; k = 404 voxels) [Mazefsky
et al., 2013; Samson et al., 2012], “mentalizing” (124 studies;
k=1,866 voxels) [Baron-Cohen, 1995; Frith, 2001], and

“sensory” (949 studies; k =725 voxels) [Leekam et al., 2007;
Marco et al., 2011; Tomchek and Dunn, 2007].

Statistical Analysis
Group differences in total GM asymmetry

The Harvard-Oxford atlas was coregistered to the sym-
metrical DARTEL template (in MNI space), thresholded at
0.25, averaged with its reflected version, binarised and
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split into (symmetric) right and left hemisphere ROIs. The
whole right hemisphere Harvard-Oxford ROI was used to
extract values of total GM asymmetry from GM Lls.
Between-group differences were assessed by a univariate
analysis of covariance (ANCOVA) including scanning
centre and age as nuisance covariates.

Group differences in regional GM asymmetry

Between-group differences were tested with SPMS8 by
regression of a general linear model at each voxel within
each anatomical and each functional right hemisphere ROI
separately (resulting in a total of 8 models). Group was
included as a fixed factor and age and scanning centre as
nuisance covariates. We also tested a separate model taking
group-by-age interaction into account. The anatomical and
functional ROIs were included as explicit masks in each
model to constrain the analysis to the prespecified region.
Significance levels for clusters were set at a voxel-level
cluster-forming P < 0.025 and by their number of expected
voxels (spatial extent threshold) according to Gaussian
Random Field Theory [Chumbley and Friston, 2009]. Statis-
tical outcomes were corrected for multiple comparisons at
the cluster-level by controlling the topological false discov-
ery rate (FDR) at 4<0.05. Anatomical subregions within
significant clusters were labelled where it overlapped with
specific regions of the Harvard-Oxford atlas. Post-hoc one-
sample t tests were conducted in SPSS to explain the
within-group direction of effect in the cluster.

Subsequently, it was determined whether significant
group differences in laterality were driven by increased
rightward or decreased leftward volume. For this, the
modulated, warped, non-reflected (I,rof) GM images in
MNI space were smoothed with a 4-mm FWHM kernel.
Significant clusters were then binarised and reflected
resulting in homotopic right- and left-hemisphere ROIs.
Mean values in the GM voxels were extracted from each
ROI, multiplied with total ROI volume and compared
using an ANCOVA (with age, scanner, and total GM
volume [derived from native-space partial volume esti-
mates] as covariates) between the two groups in SPSS.
The same procedure was applied with the control ROIs.

Correlation between atypical GM asymmetry and
behaviourallcognitive measures

Examination of the relationship between atypically later-
alized regions and historical and current symptoms of ASC
was conducted for each significant cluster. One-tailed par-
tial correlations were calculated for the atypically lateralized
region with functional measures in the ASC group, control-
ling for the effects of age and centre: a) the anatomical (PT
and Broca) and functional (“language” and “auditory”) lan-
guage ROI LI and the social and communication sub-scores
of the ADI-R and ADQOS, the FAS and the NWR; b) the ana-
tomical (PCG) and functional (“motor”) motor ROI LI and
the repetitive behaviour sub-scores of the ADI-R and the

PPT; c) the anatomical (IPL) and functional (“visuospatial”)
visuospatial ROI LI and the EFT. Significance threshold was
corrected for multiple comparisons only within the three
groups (i.e., between anatomical and functional ROI pairs)
resulting in a P = 0.025, but not between them, as the corre-
lation analyses were testing different effects. Correlations
with the ADOS, FAS, NWR, PPT, and EFT were conducted
in a slightly smaller sample due to missing data (ADOS: 1
ASC; FAS: 1 control, 1 ASC; NWR: 3 controls, 3 ASC; PPT: 1
control, 1 ASC; EFT: 2 controls, 3 ASC) and the exclusion of
one outlier in the ASC group with extreme scores on the
FAS. Analyses were done with SPSS (version 21, SPSS).

Language-delayed vs. non-language-delayed individu-
als with ASC

Any significant result involving language or auditory
ROIs was followed up by testing the same model with
diagnosis/group (controls vs. language-delayed vs. non-
language-delayed) as a fixed factor.

To test the effect of language delay (LD), we conducted
MANCOVAs including cognitive language measures (as
specified above) as dependent variables. Main effects of
diagnosis (LD vs. no LD) and auditory/language LIs along
with the diagnosis-by-LI interaction were investigated
covarying for age and scanner. Any significant result was
followed up with within-group correlational analyses.

RESULTS

Participant Characteristics and Task
Performance

ASC and control groups did not significantly differ in
their age (f(134)=1.541, P=0.126), verbal IQ (VIQ)
(#(134) = —0.041, P=0.968) and handedness (U= 2,089.5,
z=—0.761, P=0.447). Difference in full-scale 1Q (FIQ)
(t(134) =1.97, P =0.051), however, trended toward signifi-
cance. There was a significant group difference in perform-
ance IQ (PIQ) (#(123.85)=23.669, P <0.001). Individuals
with ASC scored significantly lower than controls on the
NWR (F(1,127) =5.709, P =0.018) and on three subtests of
the PPT (RH: F(1,131)=9.765, P=0.002; LH:
F(1,131) = 6.315, P =0.013; BH: F(1,131) =1.026, P =0.313;
Assembly: F(1,131) =19.97, P <0.001). There were no
group differences in laterality on the PPT (F(1,131) = 0.023,
P =0.881). There were no group differences in perform-
ance on the FAS (F(1,130) = 1.886, P =10.172) and in reac-
tion time on the EFT (F(1,128) = 0.68, P = 0.411).

Group Differences in Total GM Asymmetry

Individuals with ASC and controls did not differ in
hemispheric LI, calculated from total grey matter
(F(1,131) =0.608, P =0.437). There was no significant
group-by-age interaction (F(1,131) = 0.002, P = 0.961).
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(a) Significant cluster (ASC vs. controls). Sagittal slices of the MNI
stereotactic atlas with superimposed significant between-group dif-
ferences in LI covering perisylvian regions. Red: IPL cluster; Blue:
Auditory cluster. (b) Means and standard deviations of laterality
indices extracted from the auditory cluster and the IPL cluster. Posi-
tive values indicate rightward asymmetry, and negative values indi-

Group Differences in Regional GM Asymmetry
Anatomical ROIs

Between-group voxel-wise analysis of LI in anatomical
ROIs revealed one significant cluster within the IPL ROI

cate leftward asymmetry (with arbitrary unit). Controls (NT) show
leftward asymmetry in both clusters, whereas individuals with ASC
show reduced leftward asymmetry in the auditory cluster and
reversed rightward asymmetry in the IPL cluster. [Color figure can
be viewed in the online issue, which is available at wileyonlinelibrary.
com.]

(cluster size k.=431 voxels, cluster-level FDR-corrected
q=0.01, peak-voxel MNI coordinate [45, —54, 22],
T =4.61) with individuals with ASC showing increased
rightward asymmetry compared to controls (see Fig. 2a).
The cluster made up 5.79% of the IPL ROI. Post-hoc one-
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Group differences in left and right IPL and Auditory cluster vol-
ume. Means and SD of volume (in mm?®) extracted from left and
right auditory and IPL clusters. Differences in the IPL cluster
were driven by larger rightward and smaller leftward volumes,
whereas only by larger rightward volume in the auditory cluster
in individuals with ASC. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]

sample ¢ tests revealed that individuals with ASC had
rightward asymmetry in the IPL cluster (#(66)=4.480,
P <0.001), whereas controls exhibited leftward asymmetry
(t(68) = —3.684, P <0.001) (see Fig. 2b). This result was
driven by both rightward increases and leftward reductions
in IPL volume (group difference left IPL: F(1,131) = 6.092,
P=0.015 group difference right IPL: F(1,131)= 13.866,
P <0.001) (see Fig. 3). There was no cluster showing a signif-
icant group-by-age interaction (cluster-level FDR-corrected
g =10.894). This result remained significant when including
full-scale IQ as an additional covariate (cluster size k, = 474
voxels, cluster-level FDR-corrected g=0.009, peak-voxel
MNI coordinate [51, —49, 23], T =5). There were no signifi-
cant differences for the PT (cluster size k,= 141 voxels,
cluster-level FDR-corrected g = 0.405, peak-voxel MNI coor-
dinate [45, —26, 7], T =4.19), Broca (cluster size k, =11 vox-
els, cluster-level FDR-corrected g =0.902, peak-voxel MNI
coordinate [55, 38, 5], T = 2.85) and PCG (cluster size k, = 180
voxels, cluster-level FDR-corrected g=0.572, peak-voxel
MNI coordinate [55, 3, 37], T = 3.86) ROIs (see Fig. 4).

Functional ROIs

Between-group voxel-wise analysis of LI in functional
ROIs revealed one significant cluster within the auditory
ROI (cluster size k,=446 voxels, cluster-level FDR-cor-
rected q=0.006, peak-voxel MNI coordinate [45, —26, 7],
T=4.19). Individuals with ASC showed decreased left-
ward asymmetry compared to controls in a cluster within
the functional auditory ROI (see Fig. 2a). The cluster made
up 5.78% of the auditory ROI Based on the Harvard-
Oxford atlas the cluster involved parts of the posterior

supramarginal gyrus (pSMG), parietal operculum (PO), PT
and Heschl’s gyrus (HG). Post-hoc one-sample t tests
revealed that both individuals with ASC (t(66) = —8.577,
P <0.001) and controls (#(68) = —15.608, P < 0.001) had left-
ward asymmetry in the auditory cluster (see Fig. 2b). This
result was driven by rightward increases in auditory cor-
tex volume (group difference left auditory cortex:
F(1,131) =1.317, P =0.253; group difference right auditory
cortex: F(1,131) =11.563, P =0.001) (see Fig. 3). There was
no cluster showing a significant group-by-age interaction
(cluster-level ~ FDR-corrected ¢ =0.895). This result
remained significant when including full-scale IQ as an
additional covariate (cluster size k,= 434 voxels, cluster-
level FDR-corrected g=0.01, peak-voxel MNI coordinate
[45, —26, 7], T =4.1). There were no significant differences
for the language (cluster size k, =20 voxels, cluster-level
FDR-corrected g =0.897, peak-voxel MNI coordinate [51,
—49, 22], T=4.17), motor (cluster size k.= 169 voxels,
cluster-level FDR-corrected gq=0.486, peak-voxel MNI
coordinate [55, 3, 37], T=23.86) and visuospatial (cluster
size k,=35 voxels, cluster-level FDR-corrected g=0.878,
peak-voxel MNI coordinate [25, —66, 45], T =2.86) ROIs
(see Fig. 4).

For non-thresholded, descriptive t-maps, see Figures 8a
and 8b.

Control ROIs

For anatomical control ROIs there were no significant
group differences for the ACC (cluster size k. =19 voxels,
cluster-level FDR-corrected g=0.476, peak-voxel MNI
coordinate [3, 38, —10], T = 3.09), the caudate (cluster size
ke =11 voxels, cluster-level FDR-corrected q=0.901, peak-
voxel MNI coordinate [18, 19, 13], T = 2.78) or FFG (cluster
size k.=7 voxels, cluster-level FDR-corrected g=0.902,
peak-voxel MNI coordinate [45, —57, —16], T =2.77) ROIs.
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Figure 4.

Group differences in peak voxels for non-significant ROls. Abbre-
viations: A Motor: anatomical motor ROI; A PT: anatomical audi-
tory ROI (planum temporale); A Broca: anatomical language ROI;
F Motor: functional motor ROI; F Language: functional language
ROI; F Visuospatial: functional visuospatial ROI.
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Figure 5.
Relationship between Auditory LI and symptom severity. Positive
values indicate rightward asymmetry, and negative values indicate
leftward asymmetry (arbitrary unit). There was a positive correla-
tion between abnormal social reciprocity scores on the ADI-R
and asymmetry of the auditory cluster, indicating more childhood
symptoms with reduced leftward / stronger rightward asymmetry.

For the functional control ROIs there were no significant
group differences either for the “emotion regulation” (no
supra-threshold clusters), “mentalizing” (cluster size k. =4
voxels, cluster-level FDR-corrected q=0.761, peak-voxel
MNI coordinate [43, —52, 15], T = 2.48) or “sensory” (cluster
size k. =127 voxels, cluster-level FDR-corrected q=0.119,
peak-voxel MNI coordinate [48, —23, 7], T = 3.81) ROlIs.

Correlations With Cognitive Measures in
Individuals With ASC

Given the PT’s functional significance and implication in
ASC, we calculated the overlap between the auditory cluster
and the PT by finding the conjunction between the cluster
and the PT sub-region derived from the Harvard-Oxford
parcellation template (PTauditory LI). We then correlated the

LI in the whole auditory ROI, and the PTauditory LI, With
functional measures related to social communication. The LI
in the whole auditory cluster was positively correlated with
the ADI-R subscore for abnormal social reciprocity (Pear-
son’s r=0.253, P=0.021; controlling for FIQ: r=0.251,
P =0.023), that reduced leftward asymmetry was associated
with more childhood social symptoms in individuals with
ASC (see Fig. 5). The same correlation was also significant
for the PTauditory LI (r = 0.249, P = 0.023; controlling for FIQ:
r=10.260, P =0.019). The remaining targeted comparisons
were not significant (see Table IV).

Language-delayed vs. Non-language-delayed Indi-
viduals With ASC

Participant characteristics and task performance

Groups significantly differed in age from each other
(F(2,133) =4.972, P=0.008), with individuals with ASC
with LD being younger than controls (ASC-LD: Mean-
=23.58, SD=5.37;, controls: Mean=27.88, SD =25.99;
t(93) = —3.211, P=0.002), but there was no difference
between individuals with ASC without LD and controls
(ASC-No-LD: Mean =27.85, SD=7.13; (108)= —0.024,
P =0.981). ASC individuals with and without LD and con-
trols did not significantly differ in VIQ from each other
(F(2,136) = —1.178, P =0.311). There was a trending differ-
ence in FIQ (F(2,133) = 2.704, P = 0.071), driven by a signif-
icant difference between individuals with ASC with LD
and controls (£(93) = —2.473, P =0.015), but there was no
difference between individuals with ASC without LD and
controls (#(108) = —1.085, P =0.280). There was a signifi-
cant difference in PIQ (F(2,133) = 6.969, P = 0.001) between
the three groups, which was present both between controls
and individuals with ASC without LD (£(63.99) = —2.614,
P =0.011) and controls and individuals with ASC with LD
(#(93) = —3.570, P =0.001). There was no difference in
handedness (7*(2) =2.681, P=0.262) between the three
groups. Based on these differences in demographic data,
analyses were repeated in an age- and IQ-matched sub-
sample (see Supporting Information).

Individuals with ASC with and without LD scored signif-
icantly lower than controls on the NWR (F(2,126) = 3.664,

TABLE IV. Associations between significant clusters and functional measures

Auditory LI

PT auditory LI IPL LI

ADI-A r=0.253, P =0.021*
ADI-B r=0.118, P=0.174

ADOS-A r=0.165, P =0.096

ADOS-B r=0.130, P =0.153

NWR r=—0.059, P=0.325
FAS r=—0.098, P=0.222
EFT —

r=0.249, P = 0.023* —

r=0.145, P =0.125 —

r=0.200, P =0.057 —

r=0.143, P =0.129 —

r=—0.002, P =0.494 —

r=—0.065, P =0.306 —
— r=0.038, P =0.385

Correlation between the Auditory LI and its conjunction with the PT (PTauditory LI) With measures of social communication (ADI-A,
ADI-B, ADOS-A, ADOS-B, NWR, FAS) and the IPL LI with a visuospatial task (EFT).
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P =0.028). This difference was driven by individuals with
ASC with LD (F(1,87) = 7.641, P =0.007) and there was no
difference between individuals with ASC without LD and
controls (F(1,103) =2.481, P = 0.118). There was also a sig-
nificant group differences in FAS performance between the
three groups (F(2,130) =5.389, P =0.006). This was driven
by individuals with ASC with LD (#91) = —3.154,
P =0.002), but there was no significant difference between
individuals without LD and controls (¢(106) = —0.002,
P =0.999).

Group differences in “auditory” GM asymmetry

Comparing controls with individuals with ASC with
and without early language delay using a polynomial con-
trast resulted in a significant linear trend (P < 0.001) across
the three groups, with individuals with ASC without lan-
guage delay showing an intermediate position between
neurotypicals and ASC individuals with language delay.

On the basis of this significant trend result, we tested
the model including the auditory ROI with diagnosis as a
fixed factor. Between-group voxel-wise analysis of LI in
the functional auditory ROI revealed one significant clus-
ter (cluster size k. = 444 voxels, cluster-level FDR-corrected
qg=0.015, peak-voxel MNI coordinate [37, —31, 10],
T =3.48) between individuals with ASC with LD com-
pared to controls (see Fig. 6a). The cluster made up 5.75%
of the auditory ROL This result was driven by rightward
increases in auditory cortex volume (group difference left
auditory cortex: F(1,90) =2.656, P = 0.107; group difference
right auditory cortex: F(1,90) = 6.068, P = 0.016). This result
remained significant in an age- and IQ-matched sub-sam-
ple (see Supporting Information). There was no significant
difference between individuals with ASC without LD and
controls, or between the two subgroups with ASC. A poly-
nomial contrast showed that individuals with ASC with-
out LD had a significant intermediate position (P <0.001)
(see Fig. 6b).

Associations with cognitive measures in individuals
with ASC with and without LD

There was a trending diagnosis-by-LI interaction for the
social reciprocity subdomain of the ADI (F(1,61)=1.590,
P =0.066). Follow-up within-diagnosis correlational analy-
sis showed that this association between the auditory LI
and the ADI scores was significant within individuals
with ASC with LD (r=0.373, P =0.036), but not in indi-
viduals with ASC without LD (r= —0.092, P =0.289) (see
Fig. 7). There were no significant diagnosis-by-LI interac-
tions for any other language measures.

DISCUSSION

Our objective was to identify whether male adult indi-
viduals with ASC have atypical structural lateralization,

and if there are associations between atypical asymmetry
and language, motor, and visuospatial functions. Compar-
ing individuals with ASC to a matched neurotypical con-
trol group, we found significant reductions and reversals
of typically leftward asymmetry extending along the syl-
vian fissure in the auditory cortex and inferior parietal
lobule. Also, within the auditory cluster there was further
evidence for an association with autistic characteristics,
and specifically with childhood social reciprocity.

Atypical Asymmetry in Auditory Regions

The HG, PT, and PO constitute the core of the temporal
speech regions with well-established leftward asymmetries
in typically developing individuals. Our results are in line
with findings showing reductions of structural asymmetry
[Rojas et al., 2002, 2005] and decreased leftward activation
[Anderson et al., 2010; Eyler et al., 2012; Flagg et al., 2005;
Gage et al., 2009; Kleinhans et al., 2008; Knaus et al., 2010;
Lindell and Hudry, 2013] in posterior language regions in
individuals with ASC. Among the key components of the
language system, auditory processing plays a particularly
crucial role in the acquisition of language in infant develop-
ment. The ability to detect, distinguish, and categorize
speech sounds is the prerequisite for building accurate
speech representations and eventually producing meaning-
ful speech [Dockrell and Messer, 1999]. A range of studies
shows that early auditory processing has predictive value
for later language outcomes [Lombardo et al., 2015; Molfese
and Molfese, 1997; Trehub and Henderson, 1996]. Atypical
lateralization in auditory association areas in ASC has been
attributed to dysfunction of temporal regions specialized in
word perception, long-term representations and integration
of complex sounds, which eventually results in deficits in
language comprehension and production [Boddaert et al.,
2004]. Here we show that atypical lateralization of temporal,
auditory regions are also represented on a structural level.

In contrast to our findings, two studies have reported
increased leftward asymmetry [De Fossé et al, 2004;
Herbert et al., 2002] in the PT of individuals with ASC. It
is still to be established whether this is specific to a partic-
ular subgroup of individuals with ASC, especially in the
light of the finding that in neurotypical individuals exag-
gerated leftward asymmetries of the PT have been associ-
ated with enhanced abilities in the processing of auditory
stimuli such as perfect pitch [Schlaug et al., 1995] rather
than with deficits.

Inconsistency in PT asymmetry results in ASC might
reflect differences in sample characteristics such as age,
handedness, and particularly degree of language impair-
ment, as well as methodological variation [Lenroot and
Yeung, 2013]. It is likely that different degrees of atypical
asymmetry in distinct regions explain part of the variability
in language ability in individuals with ASC and adds to
the idea that heterogeneity in the clinical characteristics of
ASC may reflect differential neurodevelopmental pathways
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(a) Significant cluster (ASC with LD vs. controls). Sagittal slices
of the MNI stereotactic atlas with superimposed significant
between-group differences in the auditory LI showing the over-
lap between significant clusters. Blue: Auditory cluster (all ASC-
controls); Green: Auditory cluster (ASC with LD-controls). (b)
Group differences in Auditory LI between individuals with ASC
with and without LD and controls. Abbreviations: NT: neurotyp-
icals (controls); NoLD: individuals with ASC without language
delay; LD: individuals with ASC with language delay means and

and brain maturational processes. Subgrouping may thus
be an essential part of any understanding of ASC [Lai
et al., 2013a].

As functional neuroimaging studies suggest an impor-
tant role of the PT in language processing [Tzourio et al.,

standard deviations of laterality indices extracted from the audi-
tory cluster (ASC with LD vs. controls). Positive values indicate
rightward asymmetry, and negative values indicate leftward
asymmetry (with arbitrary unit). Individuals without language
delay (NoLD) show an intermediate position between individuals
with language delay (LD) and controls (NT) for the values
extracted from the auditory cluster. [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com.]

1998; Wise et al., 2001], it is surprising that we did not
find an association between atypical lateralization in the
auditory cluster with any measure of language function-
ing. Instead, we found that rightward asymmetry of
regions related to the core auditory processing areas,
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Figure 7.

Differential association between the Auditory LI and social
symptoms in individuals with ASC with and without LD. Positive
values indicate rightward asymmetry, and negative values indicate
leftward asymmetry (arbitrary unit). There was a positive corre-
lation between abnormal social reciprocity scores on the ADI-R
and asymmetry of the auditory cluster, indicating greater child-
hood symptoms with reduced leftward / stronger rightward
asymmetry in ASC individuals with LD, but not in those without
LD. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

including the PT, were correlated with more childhood
social reciprocity symptoms. In line with this, Coffey-
Corina et al. [2008] reported that toddlers with ASC with
fewer social symptoms exhibited similar left-lateralized
event-related potential (ERP) responses to auditory stimuli
to typical toddlers, whereas toddlers with ASC with more
severe social symptoms showed rightward lateralization.
Also, there is a very close interrelation between social and
communicative dimensions, which has recently been
acknowledged in DSM-5 by their conflation into one
symptom domain. Social behaviour relies on communica-
tion and communication is inherently social. This close
functional relationship might also be subserved by the
same neuronal networks and explain why alterations of
asymmetry in perisylvian regions are associated with
childhood social deficits in individuals with ASC. In fact,
social and communication symptoms were highly corre-
lated with each other on both the ADOS (r=0.730,
P <0.001) and the ADI-R (r = 0.585, P <0.001). However, it
is interesting that only childhood symptoms showed an
association with atypical asymmetry raising the possibility
that symptoms were more pronounced at ages 4-5 years
and individuals might have improved in their social-
communication skills, even though the underlying neuro-
biological alterations remain present.

Current measures of language functioning did not show
any significant association with atypical asymmetry, which
may owe to a lack of specificity of our measures. NWR
and FAS measure phonological working memory and
verbal executive function which are functions subserved
by frontal and parietal networks [Andreasen et al., 1995;
Paulesu et al., 1993; Petrides et al., 1993] beyond the audi-
tory cortex, which might be more sensitive to measures of
language processing and comprehension.

We did not observe atypical rightward asymmetry in
inferior frontal and other language-specific regions in indi-
viduals with ASC. Broca’s area has repeatedly been shown
to be right-lateralized in language impaired individuals
with ASC [De Fossé et al., 2004; Herbert et al., 2002]. Our
sample did not include individuals with clinically signifi-
cant language impairments. It is likely that this alteration
in inferior frontal asymmetry is specific to the ASC sub-
group with clinically significant language impairments.

Atypical Asymmetry in the Inferior Parietal
Lobule (IPL)

We found reversed rightward asymmetry in the IPL in
individuals with ASC compared to controls, however with-
out behavioural correlation with a visuospatial task. Previ-
ous studies are in line with this result showing that
typically developing males usually exhibit stronger left-
ward asymmetry in the inferior parietal lobe [Frederikse
et al., 1999], which has been linked to visuospatial superi-
ority in males. Still, spatial processing is not based on one
focal region, but rather is the result of a complex interplay
of differentially lateralized regions making up a right-
lateralized network of which some components are poten-
tially atypically lateralized in autism. Of these, the IPL has
been considered a nodal point of an attention network
underlying spatial processing [Heilman and Van Den
Abell, 1980]. Both controls and individuals with ASC acti-
vate right superior and inferior parietal lobule and supra-
marginal gyrus during visuospatial processing [Silk et al.,
2006]. Differences have been observed in that controls
recruit interconnected frontal-parietal-occipital networks
for visuospatial processing [Gotts et al., 2013; Kana et al.,
2013], whereas individuals with ASC rely more on poste-
rior parietal structures rather than integrating perceptual
and executive processes when it comes to performing spa-
tial tasks. Atypical integration of specialized regions and
reversal of direction of specialization might underlie differ-
ences in perceptual functioning. It is still to be determined
whether this reversed pattern of asymmetry explains intact
or even enhanced visuospatial processing in individuals
with ASC, or whether it is related to deficits in other cogni-
tive domains. It will be informative to further examine lat-
eralization of structures involved in visuospatial and
attentional processes in the subgroup of individuals with
ASC who exhibit superior visuospatial abilities.
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Figure 8a.
Non-thresholded, descriptive t-maps. Unthresholded t-map of the ASC-Control contrasts.
Regions where ASC has larger LI values are shown in red, whereas regions where controls have
larger LI values than ASC are shown in blue. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

Inferring the engagement of specific cognitive processes
based on the activation in (or here structural alterations in)
specific brain regions [“reverse inference”; Poldrack, 2006]
is one caveat of defining ROIs anatomically, making it dif-
ficult to establish associated function with the observed
atypicality. Here we focussed on the IPLs role in spatial
processing, however it is important to also emphasize its
involvement in a range of other functions that are atypical
in ASC such as imagery and imitation of actions [Stephan
et al., 1995; Williams et al., 2006], gaze processing [Calder
et al., 2007; Wicker et al., 1998], semantic processing [Binder
and Desai, 2011; Démonet et al.,, 1992; Wang et al., 2010],
and mathematical functions and number processing [Critch-
ley, 1966; Dehaene et al.,, 2003; Ischebeck et al., 2009]. In
particular, the temporoparietal junction (TP]) has been
implicated in social cognition such as empathy, social atten-
tion and theory of mind [Buckner et al., 2008; Decety and
Lamm, 2007, Mar, 2011, Nummenmaa and Calder, 2009],
which constitute core symptoms of ASC. Thus, being one of
the most highly connected hubs in the brain [Tomasi and
Volkow, 2011], atypical asymmetry in the IPL is likely to
contribute to multiple domains of impairment in ASC.
Strikingly, reversal of typical leftward asymmetry of the
AG has also been reported in schizophrenia [Niznikiewicz

et al., 2000], another neurodevelopmental condition involv-
ing atypical lateralization. The common occurrence of these
atypical asymmetries in conditions with overlapping symp-
toms confirms that underlying neural aberrations are sys-
tematic and not merely random changes [Herbert et al.,
2005]. Leftward asymmetry in the AG and PT was shown
to be correlated in typically developing adults [Eidelberg
and Galaburda, 1984] lending support to the notion that
they form part of a common functional network. Future
studies with clear hypotheses about atypical asymmetry in
the IPL in ASC should include specific cognitive tasks that
are associated with activation in this region.

Lateralization of Motor Functions

We did not find atypical rightward asymmetries in
regions integral to motor functioning. Structural asymme-
tries in the motor cortex are very subtle in general and are
most marked in the hand motor region [Volkmann et al.,
1998]. Functional specialization of typical sensorimotor
networks is left lateralized and correlates with activity in
the same regions during a hand movement task [De Luca
et al., 2005]. One study has so far provided evidence for
rightward alterations of asymmetry in widespread
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Figure 8b.
Unthresholded t-maps within each anatomical and structural ROI. Unthresholded t-map of the
ASC-Control contrasts. Regions where ASC has larger LI values are shown in red, whereas
regions where controls have larger LI values than ASC are shown in blue. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]

functional circuits (also comprising the sensorimotor rest-
ing network) in individuals with ASC [Cardinale et al.,
2013]. It is still to be established whether alterations in
functional sensorimotor specialization underlie repetitive
and nonrepetitive motor deficits in ASC such as clumsi-
ness, fine-motor skills, balance, and gait [Fournier et al,,
2010; Gowen and Hamilton, 2013].

In the context of motor asymmetries, another promising
area to be investigated is whether left-handed individuals
with ASC show even more pronounced asymmetry in
these regions, in association with poorer cognitive and
behavioural performance. Previously, we found that left-
handed, but not right-handed, adolescents with ASC dif-
fered from neurotypical adolescents in asymmetry in the
central region of the corpus callosum which projects to the
sensorimotor and posterior parietal cortex, indicating that
atypical asymmetries might be even more pronounced in
left-handers [Floris et al., 2013].

Language Delay

Results showed that individuals with ASC with early
LD exhibit stronger deviations from typically leftward
asymmetry in cortical auditory regions than those without

LD. It has previously been shown that different develop-
mental language profiles are associated with brain mor-
phological alterations in ASC, such as structural
differences between male adult individuals with and with-
out LD [Lai et al., 2014] or early brain overgrowth in males
with regressive autism [Nordahl et al., 2011] [which might
affect typical patterns of lateralization; Rilling and Insel,
1999; Ringo, 1991]. Lai et al. [2014] found reduced volume
in individuals with ASC with a history of LD compared to
those without LD in regions including the superior tempo-
ral gyrus (STG), middle temporal gyrus (MTG), superior
temporal sulcus (STS), and temporal pole. These regions
overlap with present regions showing lateralized differen-
ces and it is possible that these noted volumetric differen-
ces are driven by underlying lateralized differences
between the two subgroups of ASC. Also, Lombardo et al.
[2015] showed that hypoactivation in superior temporal
cortices during passive speech perception can potentially
serve as a neurophenotype specifying individuals with
ASC with poor developmental outcome.

In another study, comparing laterality differences in
language-based subgroups within ASC, Rinehart et al.
[2002] compared the laterality of executive function task
performance in individuals with ASC and found Ileft-
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lateralized deficits in the language-delayed subgroup only;
the authors proposed that this may be associated with the
timing at which a shift in lateralization occurs in relation
to speech onset. Also, Escalante-Mead et al. [2003]
reported reduced rates of established hand preference in
individuals with autism who had early language delay.
No previous studies have however compared subgroups
within ASC in terms of structural lateralization. Here we
show that the degree of atypical lateralization constitutes a
candidate biomarker of different subgroups with different
language profiles in ASC. Future studies of lateralization
in ASC should thus differentiate between different devel-
opmental pathways, for example taking language delay or
regression into consideration.

There was also a trending interaction between diagnosis
and cortical auditory asymmetry in relation to abnormal
social functioning. Increased rightward asymmetry seems
to be associated with more atypical social behaviour in
language-delayed individuals only. This is interesting in
the light of reports that social deficits are more pro-
nounced and social motivation is decreased in individuals
with ASC with LD [Macintosh and Dissanayake, 2004;
Szatmari et al.,, 1995; Verté et al., 2006]. Also, Lai et al.
[2014] argue that LD constitutes a marker of impaired
social development. Atypical asymmetry in perisylvian
cortical areas potentially mediates the observed effects of
LD on social-communicative development.

Observed differences between individuals with ASC
with and without LD can reflect the differential impact of
genetic and environmental risk factors influencing lan-
guage lateralization and development leading to differen-
tial language profiles. However, the question arises
whether there are also experience-dependent influences on
cortical asymmetry. Individuals with ASC and LD might
show atypical development of lateralization as a conse-
quence of early underuse of specialized language regions.
Thus, longitudinal studies are needed to pinpoint the
onset and trajectory of atypical development in subgroups
on the autism spectrum.

Origins of Atypical Lateralization

The onset of asymmetric gene expression in the perisyl-
vian region begins in utero [Sun et al., 2005], confirming
the involvement of non-random biological processes in the
establishment of asymmetry. Some autism-risk genes are
associated with language impairment [FOXP2: MacDermot
et al., 2005, CNTNAP2: Vernes et al.,, 2008] and brain
asymmetry [LRRTMI1: Francks et al., 2007]. Nevertheless,
the genetic influence on the left hemisphere is limited
compared with the prenatal environment, which influences
development of the left hemisphere greater than twice that
of the right hemisphere [Geschwind et al., 2002]. This is
probably due to the left hemisphere’s extended period of
maturation [Chiron et al., 1997]) which makes it more vul-
nerable to prenatal environmental perturbations. Recent

studies from our group demonstrated that prenatal testos-
terone exposure is associated with rightward asymmetry
of the isthmus of the corpus callosum (a region projecting
to cortical language areas) [Chura et al., 2010] and the vol-
ume of the PT [Lombardo et al., 2012], which may help
explain the known sex differences in rates of language-
related difficulties. ASC in males is associated with the
exposure of elevated levels of foetal steroid hormones
[Baron-Cohen et al., 2015] lending support to the theory
that testosterone shifts left-hemisphere functions to the
right side [Geschwind and Galaburda, 1985]. However, it
remains unclear how prenatal steroid hormones are associ-
ated with the atypical pattern of rightward asymmetry in
autism. Other prenatal risk factors associated with autism
such as maternal infection or gestational diabetes [Gar-
dener et al., 2011] might interfere with left-hemisphere
maturation. These mechanisms are not mutually exclusive;
gestational diabetes for example leads to increased foetal
testosterone [Morisset et al., 2013]. The underlying mecha-
nisms through which genetic programming and environ-
mental influences interact to give rise to atypical
asymmetry in ASC is complex and yet to be established.

Future Directions

The study of cerebral asymmetry in autism could be
extended to subgroups beyond high-functioning males: it
would be important to examine whether individuals with
language impairments show more pronounced atypical
asymmetries in the same or different areas. Additionally,
since neurotypical females are usually less strongly lateral-
ized in language functions [Kansaku et al., 2000; Shaywitz
et al., 1995], and given evident differences in brain mor-
phology [Lai et al., 2013b] and cognitive profiles [Lai et al.,
2012b] between males and females with ASC, another key
direction is to investigate how females with ASC differ in
cerebral asymmetry.

CONCLUSIONS

Both atypically reduced (leftward) and reversed (right-
ward) asymmetries are present in right-handed male adults
with ASC in persylvian regions. This atypical cortical volu-
metric asymmetry is associated with early social deficits in
childhood. How different patterns of cerebral asymmetry
reflect common and subgroup-specific developmental trajec-
tories in individuals with ASC remains to be clarified. Fur-
ther research is needed into females with ASC, left-handed
individuals, and different age groups, to establish the tim-
ing and mechanisms of the divergence in the establishment
of cerebral asymmetry. Different degrees of reductions in
leftward lateralization of perisylvian regions potentially
constitute a biological underpinning of language delay in
ASC, and represent a candidate neurophenotype of ASC.
The yet unsuccessful quest for biomarkers for ASC based
on recent large-scale volumetric studies [Haar et al., 2014;
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Lefebvre et al.,, 2015] emphasizes the necessity for alterna-
tive ways of characterizing brain structure in ASC, and cer-
ebral asymmetries constitute one promising candidate.
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