
Natural Language Engineering 2019 ??–??. Printed in the United Kingdom 1

Mining, Analyzing, and Modeling Text Written
on Mobile Devices

K. V E R T A N E N , Michigan Technological University, Houghton, MI, USA

P. O. K R I S T E N S S O N , University of Cambridge, Cambridge, UK

(Received 20 April 2018; revised 4 September 2019; accepted 10 September 2019)

Abstract

We present a method for mining the web for text entered on mobile devices. Using search-
ing, crawling, and parsing techniques, we locate text that can be reliably identified as
originating from 300 mobile devices. This includes 341,000 sentences written on iPhones
alone. Our data enables a richer understanding of how users type “in the wild” on their
mobile devices. We compare text and error characteristics of different device types, such
as touchscreen phones, phones with physical keyboards, and tablet computers. Using our
mined data, we train language models and evaluate these models on mobile test data. A
mixture model trained on our mined data, Twitter, blog, and forum data predicts mo-
bile text better than baseline models. Using phone and smartwatch typing data from 135
users, we demonstrate our models improve the recognition accuracy and word predictions
of a state-of-the-art touchscreen virtual keyboard decoder. Finally, we make our language
models and mined dataset available to other researchers.

1 Introduction

As mobile devices have evolved and become more technically sophisticated, an

increasing number of users have started using them for writing emails, social media

updates, tweets, forum posts, and blog posts. However, due to devices’ small form

factor, text entry is currently not as efficient as it should be. As a consequence,

researchers have long investigated new text entry methods and ways to improve

existing methods.

A text entry method, as any other user interface technology, is designed and

evaluated under certain assumptions. For example, text entry methods are typi-

cally compared in lab studies in which participants copy memorable phrases that

only contain the letters A–Z plus space and limited punctuation (Paek & Hsu, 2011;

Vertanen & Kristensson, 2011b; Kristensson & Vertanen, 2012; Wobbrock, 2007).

While such studies are helpful for comparing text entry methods in controlled set-

tings, they tell us little about the massive amounts of text users generate on their

own mobile devices as part of their everyday lives.

In this paper, we describe a web mining approach for collecting mobile text. This

provides a window into the real-world text entry behaviors of mobile users. We

2 K. Vertanen and P.O. Kristensson

report statistics about our unique dataset such as average sentence length, use of

different types of punctuation, and the prevalence of different typing errors. Our

data provides insight, grounded in substantial real-world data, about user problems

and possible design opportunities in mobile text entry.

We use our dataset to undertake a systematic investigation into the important

role well-matched training data plays in optimizing language models for mobile text

entry. We show language models trained on our data outperform models trained on

most other text sources. Importantly, we show these improvements translate into

actual accuracy gains for a state-of-the-art touchscreen keyboard. To assist other

researchers, we have shared our mined data and trained language models1.

1.1 Related Work

A variety of past work has explored how to collect mobile text entry data. Kamvar

and Baluja (2007) analyzed logs of mobile web searches typed on users’ own mobile

devices. The data was obtained from the search company Google’s own internal

logs. Grinter and Eldridge (2003) investigated ten British teenagers’ use of SMS

by having participants complete a paper log describing their texting activities. The

NUS SMS corpus (Chen & Kan, 2013) was created by asking users to donate short

messages written on their mobile phones. Baldwin and Chai (2012) transcribed

screenshots users had uploaded depicting spectacular autocorrection failures.

In previous work (Vertanen & Kristensson, 2011b), we mined messages from

the Enron corpus (Klimt & Yang, 2004) that were written on Blackberry mobile

devices. This was possible by identifying messages with the default signature added

by the Blackberry device. Short messages have also been collected targeting specific

events or organizations, e.g. emergency SMS messages sent during the earthquake

in Haiti (Munro & Manning, 2010), the floods in Pakistan (Munro, 2011), and

communications between healthcare workers in Malawi (Munro & Manning, 2010).

Another possible source of text written on a mobile device are the reviews made

in mobile app stores. Other researchers have used app store reviews for various

purposes, e.g. explaining negative ratings (Fu et al. , 2013), mining bug reports and

feature requests (Maalej & Nabil, 2015), and analyzing text characteristics such

as length (Vasa et al. , 2012) and word usage (Vasa et al. , 2012). Past work has

also explored mining general web text for training language models to improve the

speech recognition of conversations (Bulyko et al. , 2007), meetings (Renals, 2010),

and SMS messages (Creutz et al. , 2009).

In this paper, we describe our methodology that enables the collection of mobile

text data via web mining. To our knowledge, we are the first to mine web data with

the goal of improving mobile text entry. Further, no work has compared the impact

of different training sources on recognition accuracy when used in a recognition-

based mobile text input method such as a touchscreen keyboard. Compared to

previous approaches, our approach allows collection of substantial amounts of data

1 https://digitalcommons.mtu.edu/mobiletext/

https://digitalcommons.mtu.edu/mobiletext/

Mining, Analyzing, and Modeling Mobile Text 3

from many users spanning a diverse set of topics. Our approach does not require

access to private data logs or labor intensive transcription. It also will allow us to

investigate for the first time whether the type of mobile device impacts the text

that is written. We will do this by leveraging the name of the mobile device that

is often included in a signature line added to posts by purpose-built forum apps

(e.g. “Sent from my iPhone using Tapatalk”).

Numerous work has analyzed text written using short messaging platforms such

as SMS and Twitter. The use of abbreviations and shortening of words has com-

monly been observed (Grinter & Eldridge, 2003; Ling, 2005; Tagg, 2009). This

could be in response to length limitations of the platform, or it could reflect norms

of the communication medium. Exchanges via short messages might be used in

place of traditional face-to-face or voice communication. Without visual or verbal

cues, people communicating via text have found other ways to convey emotion. For

example, a person may repeat letters in a word to emphasize it, e.g. “reallllly”.

Brody and Diakopoulos (2011) found that one in six tweets had a word that was

artificially lengthened. Emoticons constructed with symbols have also long been

used in computer mediated communication (Walther & D’Addario, 2001).

In this paper, we present an algorithm for detecting common types of typing

errors. There is a long history of work in automatically correcting text (Kukich,

1992). Correction might be required in order to fix a user’s typing mistakes, or

might be needed to post-process the output of an optical character recognition

(OCR) system (Tong & Evans, 1996). Our focus here is on precisely detecting

different classes of errors that may commonly occur during mobile text entry.

Many modern mobile text input methods rely on recognition from noisy user

input (e.g. tapping on an on-screen keyboard or speaking to a speech recognizer).

These input methods require a language model to help determine a user’s intended

text. There is a long history of work exploring using language models to aid both

desktop and mobile text input, e.g. Darragh et al. (1990) and Goodman et al. (2002).

Training the language models used in these input methods requires a corpus of

text. Common choices include text from news and Wikipedia articles. However,

a mismatch between the training and test text domains can negatively impact

a system’s performance. Even seemingly related text domains such as SMS and

Twitter have been shown to differ significantly. Munroe and Manning (2012) found

classification performance on SMS messages was much lower using a model trained

on Twitter messages compared to SMS messages and vice-versa. As we will show,

sources such as news and Wikipedia articles are substantially different to the style

of text written on mobile devices. Compared to using a diverse mixture of text

sources, we will show using only news articles results in 75% more recognition

errors on touchscreen typing data.

Filtering the text in a training set is one way to deal with the domain mismatch

problem. Common approaches use a small corpus of in-domain text to filter train-

ing data based on perplexity (Gao et al. , 2002) or cross-entropy difference (Moore

& Lewis, 2010). Such approaches has been applied to various problems including

machine translation (Chen et al. , 2016), language modeling for augmentative and

4 K. Vertanen and P.O. Kristensson

alternative communication (Vertanen & Kristensson, 2011a), and transcribing lec-

tures (Bell et al. , 2013).

Adapting a language model to a user’s previously written text is another pos-

sible way to deal with the domain mismatch problem. Fowler et al. (2015) found

that language model adaptation reduced errors by about 20% relative in simulated

touchscreen text entry. Another example is the Dasher text input method that

adapts on the fly to a user’s writing (Ward et al. , 2000). Despite Dasher being

initially trained on only 300 K characters, after writing 1,000 sentences, Dasher’s

model performed similar to one trained on 3.1 B characters (Rough et al. , 2014).

While we believe adaptation is an important and oft-ignored topic, it is comple-

mentary to initially training on well-matched data. It is how to obtain, and the

advantage of having, well-matched training data that we investigate here.

1.2 Contributions

We make six interlinked contributions to the text entry field:

1. Method for harvesting genuine mobile text. We describe a web mining

method to collect text that can be identified as having been written on a

specific mobile device.

2. Improved understanding of mobile text entry. We show that this data

enables us to gain a richer understanding of how users actually type “in the

wild” on their mobile devices.

3. Analysis of mobile spelling and typing errors. Using an error correction

algorithm, we analyze eight classes of spelling and typing errors. Our analysis

highlights the common mistakes made when entering text on a mobile device.

4. Investigating the impact of training source on modeling mobile text.

We compare different large-scale sources of training text. We show how to

train high-performance long-span statistical language models that are well-

matched to mobile text.

5. Touchscreen keyboard evaluation. We show the perplexity improvements

of our language models on mobile test sets translate into tangible recogni-

tion accuracy improvements for a state-of-the-art touchscreen keyboard de-

coder. This includes investigating how different models impact a keyboard

that makes word predictions.

6. Resources for mobile text entry research. We release our mined public

web forum data classified by mobile device type. Recognizing how difficult

it is to collect appropriate data and then to build high-performing language

models, we also share our trained language models.

The remainder of this paper is structured in two parts. The first part (Section 2

and 3) focuses on the collection of our data and the analysis of mobile text entry

“in the wild”. The second part (Section 4 and 5) investigates how to best train

language models for mobile text entry and validates our language models on large

amounts of touchscreen typing data.

Mining, Analyzing, and Modeling Mobile Text 5

2 Data Collection

The main idea of our approach is to find text on the web clearly marked as having

been written on a mobile device. This approach was made possible by the signature

often added by default to forum posts made via various forum apps, e.g. “Sent from

my iPhone using Tapatalk”. Forum apps are purpose-built phone applications that

make forum interactions easier than using a general-purpose web browser.

To bootstrap our web mining of mobile data, we conducted a wildcard web search

using Google of the form “sent from my * using”. We collected common device

names by parsing the search results between “my” and “using”. We also searched

for the pattern “sent from my * using tapatalk”. Tapatalk is one of the most popular

mobile forum apps. To increase coverage, we searched for this pattern restricting

to different time periods (e.g. the last 24 hours) and in combination with all the

numbers from 00 to 59.

In total we found 1,342 unique device strings. We reviewed a frequency sorted

list and identified the top 300 devices that were clearly a mobile phone or tablet.

For each of these devices, we found the device’s form factor (phone or tablet) and

input mechanism (touchscreen or physical keyboard).

Next we performed a large series of searches using the Bing web search API for

pages containing “sent from my”. Optionally we also included the search terms

“using” or “using tapatalk”. Since Bing only returned the top 1,000 results for a

query, we added a variety of other terms to increase the unique pages found. These

searches were designed to target strings that frequently occur on web forum pages,

such as “sent from my device” where device was one of the 300 previously identified

mobile devices and time strings from “00:00” to “23:59”.

Our queries resulted in URLs from 46 K unique hosts. To find additional pages,

we conducted a site specific search for each host name. In total we conducted

approximately 1 M web search queries resulting in 1.5 M unique page URLs. We

were able to successfully download pages from 1.496 M of the 1.517 M unique URLs.

2.1 Parsing Text and Host Filtering

Our goal was to parse out only text that was likely to be a forum post, blog entry, or

blog comment. We only attempted to parse text from pages generated from the most

popular forum or blog software platforms that we observed in our data. For forum

platforms, we targeted vBulletin, phpBB, IP.Board, Simple Machines, XenForo and

UBB.threads. For blogs, we targeted WordPress, Blogger, and TypePad. Our parser

first identified if the HTML page was generated by one of our nine supported

packages. We did this by looking for a set of unique signature string, e.g. “Powered

by vBulletin”. We dropped pages from other platforms (11% of pages).

For each of the nine supported platforms, we created rules to parse out posts.

These rules used features in the HTML parse tree including an element’s tag, class,

and ID as well as those of its parents. We only attempted to parse text from HTML

<div>, <blockquote>, and <p> tags. We needed a variety of rules for each platform

since page structure often depended on the platform version or site configuration.

6 K. Vertanen and P.O. Kristensson

From our initial set of 46 K unique hosts, we first eliminated hosts where none

of the pages were of a known platform type. This left us with 29 K unique hosts.

We eliminated hosts where no posts were successfully parsed, reducing the number

of hosts to 23 K. Since our web searches did not specify a target language, some

of our hosts were not in English. We used a language identification package on all

text parsed from a host (Lui & Baldwin, 2012). We required all text from a host be

identified as English with a confidence of 0.95. After removing non-English hosts

we had 17 K hosts.

We identified mobile posts by looking for “sent from my” followed by 40 or fewer

characters. We required that this pattern occur at the end of a post. Since we were

primarily interested in mobile text, we eliminated hosts where no post contained

this pattern. This left us with 10 K unique hosts.

2.2 Focused Web Crawler

For each page containing mobile text from our set of 10 K unique hosts, we started

a web crawler. The crawler downloaded up to 100 pages linked from the original

URL. The crawler did not recursively descend deeper into the site. We deleted

downloaded pages that did not contain an instance of the text “sent from my”. Our

final collection consisted of 5.0 M pages from 9,856 hosts and had a compressed disk

size of 74 GB.

On a per host basis, we kept only unique posts to avoid a post from appearing

multiple times. We only kept posts identified as English with a confidence of 0.95.

We removed posts if a “sent from my” signature was detected in the middle of a

post instead of at the end. Signatures could occur in the middle of a post if the

author edited their original post. This would makes it questionable whether all or

only some of the text was written on a mobile device.

We took various measures to ensure posts contained only text from a single

author (i.e. posts that did not contain quoted replies). Primarily, this was done by

looking at the HTML structure of the page. The vBulletin platform had archive

and printing oriented pages that displayed a simplified view of a forum thread that

lacked rich HTML structure. We eliminated these pages based on keywords in the

URL or in the text of the page. We dropped any post containing text common

in quoted posts (e.g. “-Original Message-”). Finally, we dropped posts that had a

prefix that matched any other post occurring on the same host.

A small number of hosts had a very large numbers of posts (66% of posts were

from the top 1% of hosts). To help ensure our data was representative of a wide-

variety of subject matter, we selected at random up to 20 K posts from any one

particular host. This reduced the top 1% of hosts to only 13% of the total posts.

Our final set had 6.8 M posts from 9,462 hosts.

2.3 Groupings of Posts

Using the mobile signature at the end of a post (if any), we grouped posts into the

following sets:

Mining, Analyzing, and Modeling Mobile Text 7

• NonMobile – Contained no mobile device signature.

• Mobile – Contained a mobile device signature from one of 300 known devices.

• Phone – From any type of mobile phone.

• Tablet – From a tablet device (e.g. iPad).

• PhoneTouch – From a phone with a touchscreen but no physical keyboard.

• PhoneKey – From a phone with a physical keyboard.

• iphone – From an Apple iPhone device.

• Android – From the ten most frequent Android devices seen in our data2.

About 10% of posts had a mobile device signature but the device was not in our

list of 300 devices. These were either rare devices or other types of comedy signatures

such as “sent from my brain”. We excluded these posts from our analysis.

While we use the presence or absence of a signature to separate mobile and non-

mobile posts, this is only an approximation. NonMobile undoubtedly contains

instances of mobile posts. This could occur if a mobile user posted to a forum via

a mobile web browser instead of a forum app. Additionally, a user may be using an

app that was not configured to add a signature. Similarly, though less likely, posts

in Mobile may have been from users pretending to own a particular device.

2.4 Independent Forum Dataset

Our mining method specifically sought out only forums where at least one post

was from a mobile device. This likely increased the probability that posts without

a signature were from a mobile device. This is because a forum with some mobile

users is likely to have on average more mobile users than a forum chosen purely

at random. Additionally, we were more likely to collect data from mobile device

related forums.

To provide an independent set of forum data, we also parsed the forum data from

the ICWSM 2011 Spinn3r corpus (Burton et al. , 2009). This dataset contains 5.7 M

HTML pages from online forums. We parsed these pages with the same procedure

we used for our web-mined data. Of the 3.8 M posts parsed, only 4,988 had a mobile

device signature. We deemed this too small to serve as a mobile forum dataset. As

such, we excluded these mobile posts and used the remainder to create a non-mobile

dataset which we will refer to as Spinn3r.

3 Analysis of Mobile Text

We now analyze the characteristics of our datasets. Throughout our analysis, we

present metrics we anticipated would expose input aspects that might inform im-

proved user interfaces or recognition technology. For example, knowing the number

of words per sentence speaks to both screen real estate concerns and to a recognizer’s

prediction of end-of-sentence punctuation. If out-of-vocabulary words, emoticons,

2 The top 10 Android devices were: PC36100, GT-i9100, GT-i9000, Galaxy Nexus, HTC
Desire, Desire HD, SGH-T959, SPH-D710, DROIDX, and SGH-T989

8 K. Vertanen and P.O. Kristensson

texting vocabulary, email addresses, or URLs are common, the language model may

want to include pseudo-word classes to help with recognition and to allow the en-

try interface to better support seamless entry of these items. If text is often in all

lowercase or uppercase, improved capitalization support might be indicated.

3.1 Per-Post Analysis

For each post, we calculated the following metrics:

• Words – The number of whitespace-separated character chunks with at least

one letter. We removed any “sent from my” signature before computing this.

We separated any character chunks concatenated by hyphens, slashes, com-

mas, or consecutive periods. We also removed any detected emoticons, email

addresses, or URLs.

• OOV rate – We calculated the out-of-vocabulary (OOV) rate from the words

found in the prior step. We stripped non-alphanumeric characters aside from

apostrophe and converted each word to lowercase. A word was considered

OOV if it was not in a list of 330 K English words obtained from human-

edited dictionaries3 or in our list of 50 texting abbreviations.

• Email addresses – The percentage of posts containing an email address.

• URLs – The percentage of posts containing one or more web site addresses.

We only counted URLs that appeared in the body text of the post. We did

not count links to images or other HTML tags that were embedded in a post.

• Emoticons – The percentage of posts containing one or more emoticons

encoded using normal keyboard symbols such as colons, parentheses, and

dashes. We included the emoticons from Read (2005) as well as “noseless”

versions without a dash, e.g. “:)” in addition to “:-)”. This resulted in a list

of 21 emoticons.

• Texting abbreviations – The percentage of posts containing one or more

words from a list of 50 popular texting and chat acronyms4.

• Emphasis – The percentage of posts containing a word flanked by asterisks,

underscores, tildes, angled brackets, or curly braces (e.g. *grin*). These char-

acters were used as emphasis cues in previous work analyzing blog, email, and

chat room communications (Riordan & Kreuz, 2010).

• Letter runs – The percentage of posts containing a word with three or

more repeated letters (e.g. yahoooo). Such vocal spellings of words was first

observed in person-to-person communications in early computer chat and

messaging systems (Carey, 1980). More recently it has been observed as a

way to convey sentiment in tweets (Brody & Diakopoulos, 2011) and email

messages (Kalman & Gergle, 2009).

• Punctuation runs – The percentage of posts containing a word ending in

three or more periods, question marks, or exclamation points (e.g. Hi!!!). Such

3 We combined Wiktionary, Project Gutenberg’s Webster’s dictionary, the CMU pro-
nouncing dictionary, and GNU aspell.

4 http://www.netlingo.com/top50/popular-text-terms.php

Mining, Analyzing, and Modeling Mobile Text 9

Table 1. The number of posts, the average words per post, and the percentage of

words that were out-of-vocabulary (OOV) in each dataset. ± values denote 95%

confidence intervals of the mean.

Set Posts Words per post OOV words (%)

NonMobile 5.92 M 47.6 ± .06 3.5 ± .00
Mobile 0.76 M 30.2 ± .10 4.0 ± .02

Phone 0.69 M 29.2 ± .09 4.0 ± .02
Tablet 0.07 M 39.8 ± .54 3.8 ± .06

PhoneTouch 0.62 M 28.9 ± .10 3.9 ± .02
PhoneKey 0.07 M 32.3 ± .30 4.2 ± .07

iphone 0.22 M 31.1 ± .20 3.5 ± .04
Android 0.14 M 28.2 ± .18 4.1 ± .05

Spinn3r 3.84 M 78.0 ± .16 4.6 ± .01

manipulation of grammatical markers has been observed as a way to convey af-

fect in early messaging systems (Carey, 1980), dialog systems (Neviarouskaya

et al. , 2007), MySpace comments (Thelwall et al. , 2010), and email messages

(Kalman & Gergle, 2009).

As shown in Table 1, the number of words per post was notably different between

sets. The Spinn3r posts were the longest at 78 words. The NonMobile posts that

lacked a mobile device signature averaged 48 words. The Mobile posts on the other

hand were much shorter at 30 words. It also appears people write shorter posts on

phones at 29 words compared to tablets at 40 words. While the difference is smaller,

people seems to write shorter posts on touchscreen phones at 29 words compared

to phones with a physical keyboard at 32 words. This propensity to write longer

when the entry method requires less effort was previously seen in a comparison

of predictive and non-predictive phone keypad input (Ling, 2007). As one might

expect, there was high variability in post length. Nonetheless, these averages could

be useful to designers of forum apps or web sites as it informs how much text mobile

users are likely to enter.

The out-of-vocabulary rate was between 3.5–4.6% for all sets. The top 20 OOV

words across all datasets were: dont, thats, ive, didnt, hp, ipad, gb, ps,

hd, nd, rd, usb, doesnt, oem, cm, evo, ie, gps, ics, htc. Many of the

top OOV words were contractions that lacked an apostrophe. We will study this phe-

nomenon in more detail in Section 3.4. Most of the other OOV words were acronyms.

This suggests input method developers may want to add common acronyms to their

system’s vocabulary.

As shown in Table 2, the use of emoticons was higher in Mobile at 1.6% versus

NonMobile at 0.9%. We also found the distribution of the most common emoticons

was different. In Mobile, we found the nosed smiley :-) occurred slightly more

frequently than the nose-less smiley :). In the NonMobile set we found the nose-

less version occurred four times as often as the nosed. Since the dash often requires

extra user actions in many mobile text entry interfaces, this could indicate users

10 K. Vertanen and P.O. Kristensson

Table 2. The percentage of posts that contained emoticons, texting slang, email

addresses, or URLs. ± values denote 95% confidence intervals of the mean.

Set Emoticons Texting Email URL

NonMobile 0.92 ± .008 4.78 ± .017 0.012 ± .001 0.113 ± .003
Mobile 1.56 ± .028 6.02 ± .053 0.007 ± .002 0.144 ± .009

Phone 1.51 ± .029 6.17 ± .057 0.007 ± .002 0.136 ± .009
Tablet 2.04 ± .104 4.56 ± .154 0.003 ± .004 0.213 ± .034

PhoneTouch 1.55 ± .031 6.18 ± .060 0.007 ± .002 0.139 ± .009
PhoneKey 1.11 ± .078 6.13 ± .179 0.006 ± .006 0.113 ± .025

iphone 1.79 ± .056 6.55 ± .104 0.007 ± .004 0.161 ± .017
Android 1.62 ± .065 5.83 ± .121 0.007 ± .004 0.134 ± .019

Spinn3r 0.74 ± .009 3.54 ± .018 0.017 ± .001 0.291 ± .005

are making use of features on their mobile device or forum app that facilitate

entry of a smiley that later gets converted into text. It could also be that the use

of noses depends on other aspects of users that are correlated with posting from a

mobile device. For example, Schnoebelen (2012) conjectured that non-nose users are

younger than nose users. We also found ASCII emoticons were much less frequent

in Spinn3r likely reflecting the less mobile nature of this set.

We found texting abbreviations were more frequent in Mobile than in Non-

Mobile (6.0% verus 4.8%) and much more frequent than in Spinn3r (3.5%). Fur-

thermore, it appears texting abbreviations were more common on phones than on

tablets (6.2% versus 4.6%). Previous work has shown the prevalence of such abbre-

viations in mediums with technology-imposed length limits such as SMS (Grinter

& Eldridge, 2003) and Twitter (Han & Baldwin, 2011). Despite forums not having

a length limit, we still see abbreviations being used especially for mobile forum

posts. This suggests users are abbreviating to accelerate the mobile input process.

It also suggests, especially on phones, developers should take into account texting

language in their auto-correction and auto-completion algorithms.

Virtually no email addresses occurred. This seems reasonable since the data was

from public forums and blogs. Users may not want to risk spam or other unwanted

contact by providing their email addresses. This is however a notable deficiency

in our data collection. In real-world mobile text entry, a common task may in-

volve writing a private email or SMS containing an email address. URLs were also

infrequent in all sets.

As shown in Table 3, the use of symbols to denote words with special emphasis

was infrequent, but occurred less often in Mobile (0.1%) compared to NonMo-

bile (0.3%) and Spinn3r (0.5%). Words with runs of letters were infrequent but

occurred with a slightly higher frequency of 1.9% in NonMobile versus 1.7% in

Mobile. This difference was more pronounced in Spinn3r where 2.5% of posts

contained letter runs. This rate of expressive lengthening was much lower than the

one in six tweets found by Brody and Diakopoulos (2011). We suspect this reflects

the different style of communication; forum posts often are seeking or providing

Mining, Analyzing, and Modeling Mobile Text 11

Table 3. The percentage of posts that contained emphasized words, runs of the same

letter, or runs of the same punctuation. ± values denote 95% confidence intervals

of the mean.

Set Emphasis (%) Letter run (%) Punctuation run (%)

NonMobile 0.27 ± .004 1.86 ± .011 13.80 ± .028
Mobile 0.12 ± .008 1.65 ± .029 10.16 ± .068

Phone 0.11 ± .008 1.66 ± .030 10.10 ± .071
Tablet 0.15 ± .029 1.58 ± .092 10.78 ± .229

PhoneTouch 0.11 ± .008 1.62 ± .032 10.11 ± .075
PhoneKey 0.18 ± .032 1.97 ± .104 9.96 ± .223

iphone 0.10 ± .013 1.78 ± .056 10.33 ± .128
Android 0.13 ± .018 1.46 ± .062 10.03 ± .155

Spinn3r 0.45 ± .007 2.47 ± .016 11.49 ± .032

Table 4. Character-level metrics on a per-post basis. This includes the average char-

acters per post and the percentage of characters that were: lowercase, uppercase,

numeric, or whitespace. ± values denote 95% confidence intervals of the mean.

Set Characters Lowercase Uppercase Numeric Whitespace
per post (%) (%) (%) (%)

NonMobile 255 ± 0.34 72.9 ± .005 3.72 ± .003 1.03 ± .002 18.16 ± .002
Mobile 159 ± 0.53 72.4 ± .018 4.64 ± .013 1.08 ± .007 17.47 ± .009

Phone 153 ± 0.50 72.4 ± .019 4.63 ± .014 1.09 ± .008 17.46 ± .010
Tablet 212 ± 3.00 72.5 ± .056 4.69 ± .042 0.97 ± .021 17.54 ± .028

PhoneTouch 151 ± 0.53 72.4 ± .020 4.66 ± .015 1.09 ± .008 17.45 ± .010
PhoneKey 169 ± 1.60 72.6 ± .058 4.39 ± .043 1.02 ± .023 17.64 ± .029

iphone 163 ± 1.07 71.9 ± .035 4.81 ± .025 1.15 ± .015 17.62 ± .017
Android 148 ± 0.97 72.9 ± .041 4.47 ± .031 1.04 ± .016 17.41 ± .021

Spinn3r 456 ± 1.04 72.3 ± .008 4.39 ± .005 1.37 ± .003 17.70 ± .002

information while tweets are often interpersonal communications that may benefit

from simulating the prosodic emphasis of spoken language. Punctuation runs at the

end of words followed a similar pattern with fewer occurrences in the mobile data.

Taken together, it appears that users while mobile seem to refrain from writing

certain forms of text. It may be that the special characters required are difficult to

enter on a mobile device. It could also result from the difficulty of engaging in a

particular activity while mobile (e.g. searching for relevant URLs to include).

3.2 Character-Level Analysis

For each post, we calculated the percentage of characters that were lowercase, up-

percase, numbers, or whitespace. As shown in Table 4, the use of different character

classes was similar across all sets. While we had anticipated mobile users might have

12 K. Vertanen and P.O. Kristensson

preferred all lowercase entry, this did not appear to be the case. We also thought

mobile users might avoid entry of numbers since they can often be more difficult to

access in mobile text entry interfaces, but this also did not appear to be the case.

3.3 Per-Sentence Analysis

We split each post into sentences using rules based on case, symbols, and whites-

pace. We converted contiguous whitespace characters into a single space character.

We dropped posts that did not conform to typical patterns of sentences. We also

dropped sentences containing numbers or symbols besides apostrophe, period, ques-

tion mark, and exclamation point.

As shown in Table 5, sentences were shorter in Mobile (11.1) than in NonMo-

bile (11.9) and Spinn3r (12.4). We also found a small difference in the number

of characters per word between mobile and non-mobile sets: Mobile 4.07 versus

NonMobile 4.11 and Spinn3r 4.24. Word length also seemed to be influenced by

device form factor: Phone 4.06 versus Tablet 4.11. This may indicate a slight

preference for shorter or abbreviated words when typing on a mobile device.

As shown in Table 6, question and exclamation sentences occurred with similar

frequency in the mobile and non-mobile data. Since end-of-sentence punctuation

is important for denoting sentence boundaries, it appears mobile users continue to

use such punctuation despite any extra effort required. The use of exclamations on

iPhones was higher at 12% versus 8% on Android. The reason for this is unclear;

both systems require going to a secondary keyboard screen to type an exclamation

point.

Mobile users did appear to be use commas less often; 19% in Mobile versus

26% in NonMobile and 29% in Spinn3r. We conjecture this may be due to the

extra effort required to type such punctuation on a mobile device. For example, the

comma key is not available on an iPhone’s primary keyboard layout. Comma use on

tablets increased to 23%, indicating that having more screen real estate facilitates

keyboard designs that better support punctuation. Since users appear to commonly

need commas, mobile text entry designers may want to explore ways to make access

to commas easier or to automatically insert commas.

Sentences written on mobile devices were much more likely to be in both upper

and lowercase (95% in Mobile versus 88% in NonMobile and 89% in Spinn3r).

This may at first seem surprising given using the shift key on a mobile device

requires an extra keypress. However, many phones (e.g. the iPhone) automatically

capitalize the first letter of every sentence. We conjecture this feature resulted in

better overall capitalization for mobile users compared to non-mobile users.

We wondered if people were using different words depending on their de-

vice. We found the most frequent 15 words in each of our sets. In the Mo-

bile set they were: the, i, to, a, and, it, you, is, of, that, in, for,

on, have, my. With the exception of Spinn3r, all other sets had the same 15

most frequent words with just minor changes to the frequency order. Spinn3r was

almost identical except my was replaced by are as the 15th most frequent word. We

also tallied the frequency of words in each set that appeared in a 64 K vocabulary.

Mining, Analyzing, and Modeling Mobile Text 13

Table 5. The average words per sentence and the average characters per word. ±
values denote 95% confidence intervals of the mean.

Set Words per sentence Characters per word

NonMobile 11.9 ± .005 4.11 ± .0004
Mobile 11.1 ± .014 4.07 ± .0011

Phone 11.0 ± .015 4.06 ± .0012
Tablet 11.4 ± .043 4.11 ± .0034

PhoneTouch 11.0 ± .016 4.06 ± .0013
PhoneKey 11.0 ± .044 4.07 ± .0036

iphone 11.0 ± .026 4.05 ± .0021
Android 11.0 ± .033 4.07 ± .0026

Spinn3r 12.4 ± .006 4.24 ± .0005

Table 6. The percentage of sentences that were questions, exclamations, contained

one or more commas, or were in mixed case. ± values denote 95% confidence inter-

vals of the mean.

Set Question (%) Exclamation (%) Comma (%) Mixed case (%)

NonMobile 9.8 ± .017 8.3 ± .016 26.1 ± .026 88.4 ± .019
Mobile 10.5 ± .055 9.3 ± .052 18.7 ± .070 95.4 ± .038

Phone 10.6 ± .059 9.3 ± .055 18.2 ± .073 95.4 ± .040
Tablet 9.7 ± .162 8.8 ± .155 23.1 ± .230 95.6 ± .112

PhoneTouch 10.6 ± .062 9.4 ± .059 18.0 ± .078 95.5 ± .042
PhoneKey 10.3 ± .175 8.8 ± .163 19.9 ± .230 94.8 ± .128

iphone 10.5 ± .103 11.9 ± .109 17.7 ± .128 97.2 ± .056
Android 10.8 ± .130 7.9 ± .113 17.6 ± .159 94.2 ± .098

Spinn3r 11.1 ± .023 7.0 ± .018 29.1 ± .033 88.7 ± .023

We created the vocabulary from the most frequent words in our forum data that

also appeared in a list of 330 K known English words. We then computed the cosine

similarity between the term frequency vector of each set. For all pairs of sets, the

cosine similarity was 0.99 or higher. Thus it appears word choice was not strongly

influenced by whether someone was using a mobile device or not.

3.4 Spelling and Typing Errors

We used eight different classes of errors to classify various typing mistakes:

1. Apostrophe deleted – Apostrophe deleted from a word: dont
2. Insertion – Extra letter inserted: whille
3. Substitution nearby – One letter substituted for an adjacent letter based

on the qwerty keyboard layout: whilr. Key adjacency is dependent on a

user’s specific keyboard. We created our adjacency map based on the key

positions on the iPhone 4S and a Macbook Pro.

14 K. Vertanen and P.O. Kristensson

4. Substitution – One letter substituted for any other letter: whibe

5. Deletion – Letter deleted from a word: whil

6. Transposition – Two contiguous letters swapped in a word: whlie

7. Space deleted – Space missing between words: whileit

8. Space inserted – Space inserted inside a word: whi le

We based these error classes on Cooper (1983) and on common mistakes we have

observed in previous mobile text entry studies. Some of these error classes could

be combined, for example an apostrophe deleted error could be considered as a

more generic deletion error. We chose our error classes and the order in which we

matched against them to help illustrate strategies we thought users might be using

while mobile (e.g. deleting apostrophes in contractions to avoid having to switch to

a secondary keyboard screen).

For a small numbers of sentences, it might be possible to manually identify errors.

But for large amounts of data, clearly an automated detection algorithm is needed.

We designed our correction algorithm to be conservative since our objective here is

to compare the relative prevalence of errors in our different datasets, not to measure

the absolute error rate. Furthermore, as we will discuss in the next section, our

mined text will serve as language model training data. We thus wanted to explore

correcting likely errors prior to language model training.

Our algorithm proceeded through each sentence checking for possible error cor-

rections. Possible error locations had to meet the following three criteria:

1. The word to be corrected could not be in our large list of 330 K English words.

2. The replacement word had to be a known English word in the 64 K most

frequent words in our forum data.

3. The replacement had to involve a single change (i.e. deleting one character,

adding one character, changing one character, or swapping two characters).

Furthermore, we only made a correction if it caused a decrease in the average

per-word perplexity of the sentence. Perplexity measures the average number of

choices the language model has when predicting the next word. For example, if a

language consists of the digits 0–9 and digits are equally probable, the perplexity

is 10. Lower perplexity is better. Perplexity is calculated as follows:

PP (W) = 2−
1
L log2 P (W),

where W is the test text, L is the number of words in W , and P (W) is the proba-

bility of W under the language model.

This perplexity-based criteria allowed both the words to the left and to the right

of the candidate location to influence the plausibility of a proposed correction.

We used a 3-gram language model with a vocabulary of 64 K words including an

unknown word. The model was trained on 1.3 B words of newswire text. The gzipped

compressed ARPA text format language model was 2.5 GB. We used newswire text

as it is a high quality text source with few spelling or typing mistakes. The language

model had a perplexity of 374 on test set of sentences from our mobile forum data

(PostDev from Section 4.2).

Mining, Analyzing, and Modeling Mobile Text 15

Table 7. The number of sentences in each set and how often any type of error

was detected in a sentence. This table also shows the percentage of sentences that

contained an insertion, substitution nearby, or substitution error.

Set Sentences Any error Insertion Subst. nearby Substitution
(%) (%) (%) (%)

NonMobile 11.31 M 2.62 ± .009 0.24 ± .003 0.08 ± .002 0.13 ± .002
Mobile 1.19 M 2.03 ± .025 0.16 ± .007 0.17 ± .008 0.10 ± .006

Phone 1.06 M 2.07 ± .027 0.15 ± .007 0.18 ± .008 0.10 ± .006
Tablet 0.13 M 1.62 ± .069 0.16 ± .022 0.14 ± .020 0.11 ± .018

PhoneTouch 0.94 M 2.02 ± .029 0.14 ± .008 0.17 ± .008 0.09 ± .006
PhoneKey 0.12 M 2.40 ± .088 0.28 ± .030 0.21 ± .026 0.18 ± .024

iphone 0.34 M 1.36 ± .039 0.09 ± .010 0.09 ± .010 0.07 ± .009
Android 0.22 M 2.42 ± .064 0.17 ± .017 0.21 ± .019 0.10 ± .013

Spinn3r 7.47 M 2.31 ± .011 0.24 ± .004 0.07 ± .002 0.12 ± .003

Table 8. The percentage of sentences in which our algorithm detected a deletion,

transposition, apostrophe deleted, or space deleted error. We omitted space inserted

errors since they occurred very infrequently.

Set Deletions Transposition Apostrophe Space
(%) (%) deleted (%) deleted (%)

NonMobile 0.31 ± .003 0.11 ± .002 1.59 ± .007 0.19 ± .003
Mobile 0.29 ± .010 0.03 ± .003 1.05 ± .018 0.22 ± .008

Phone 0.30 ± .010 0.03 ± .003 1.09 ± .020 0.21 ± .009
Tablet 0.22 ± .026 0.03 ± .010 0.74 ± .047 0.22 ± .025

PhoneTouch 0.27 ± .011 0.03 ± .003 1.10 ± .021 0.21 ± .009
PhoneKey 0.50 ± .040 0.07 ± .015 0.91 ± .055 0.27 ± .030

iphone 0.26 ± .017 0.02 ± .005 0.65 ± .027 0.18 ± .014
Android 0.25 ± .021 0.03 ± .007 1.39 ± .049 0.23 ± .020

Spinn3r 0.31 ± .004 0.13 ± .003 1.26 ± .008 0.20 ± .003

If a location in a sentence had a number of possible corrections (of the same cor-

rection type or different types), we choose the correction which caused the greatest

decrease in a sentence’s per-word perplexity. In the event of a tie, we used the first

error class in the above list of eight. This allowed us to detect the most specific

error class in preference to a more general class (e.g. “whilr” would be classified as

a substitution nearby error rather than a more general substitution error).

Tables 7 and 8 show the percentage of sentences that had one or more instances

of a particular type of error. Substitution nearby errors were more common in

the mobile data than in the non-mobile data (0.17% in Mobile versus 0.08% in

NonMobile and 0.07% in Spinn3r). Thus it does appear users of mobile devices

more frequently introduced errors as the result of accidentally hitting adjacent keys.

16 K. Vertanen and P.O. Kristensson

Transposition errors were higher in NonMobile (0.11%) and Spinn3r (0.13%)

compared to Mobile (0.03%). This is to be expected since non-mobile entry often

involves bimanual typing on a desktop keyboard and a mistiming between a user’s

two hands can result in transposing letters. PhoneKey also has an elevated trans-

position rate of 0.07%, likely as a result of two thumb typing on a mini-keyboard.

Given that the frequency of substitution nearby and transposition errors appears

to vary depending on device, developers of mobile text entry methods may want

to take this into account. For example, when a touchscreen phone is in landscape

orientation, two-thumb typing may be more likely and thus so are transposition

errors. This could be incorporated into the recognition model.

To investigate the algorithm’s accuracy, we had nine workers on Amazon Me-

chanical Turk judge 100 random sentences from each of the first seven error classes

(for a total of 700 sentences and 6,300 individual worker judgments). We excluded

the space insertion class as it occurred only twice in our data. Our Amazon Human

Intelligence Task (HIT) showed the original sentence and the algorithm’s proposed

correction. Workers judged each correction as valid or invalid. Each HIT involved

judging a total of 28 sentences, four from each of the seven different classes. We also

injected sentences with five known valid and five known invalid corrections (deter-

mined by the authors). Workers had to correctly judge at least 70% of the known

corrections to be included in the judge pool. 20% of workers were removed by this

requirement. After this removal, all sentences still had four or more judges. Krippen-

dorff’s alpha (Hayes & Krippendorff, 2007) showed an inter-judgment agreement

reliability of 0.586. This constitutes a moderate amount of agreement.

Of the 5,785 worker judgments, 89% indicated the algorithm’s correction was

valid. Some error classes were nearly always correct: apostrophe deleted 99.8%,

nearby substitution 96.6%, deletion 98.0%, transpositions 99.3%. Other classes were

judged quite often to be correct: space deleted 88.6%, substitution 84.3%, and

insertion 82.7%.

4 Language Modeling Experiments

In this section, we conduct a series of experiments exploring the importance of in-

domain data when training language models for mobile text entry. We also show

the importance of using long-span language models and investigate whether high-

performance models can be made small enough for deployment on mobile devices.

4.1 Training Sets

We wanted training data that best represented the vocabulary and style of text

entered by people while mobile. Our criteria for choosing training sets were: 1)

common text sources from prior work, 2) on the scale of many millions of words,

and 3) similar in style to mobile text. We decided on the the following eight sources:

1. NonMobile – Posts in our forum training set that did not have a mobile

device signature. 11.3 M sentences, 135 M words, 678 M characters.

Mining, Analyzing, and Modeling Mobile Text 17

Table 9. The 15 most frequent words in the different training sets. Words are

ordered in descending order of frequency.

NonMobile Mobile News Wiki Twitter Blog Usenet Spinn3r

the the the the i the the the
i i to of the to to to
to to of and to and and i
a a and to you i of a
and and a in a a a and
it it in a my of in of
of you that is and in i it
you is for was is that that is
is of said that it is is in
that that on for in it you you
in in is as that for it that
for for one it me my for for
on on was on of you are on
have have with with for on with have
my my he one on with as with

2. Mobile – Posts in our forum training set that were sent from one of 300

known mobile devices. 1.19 M sentences, 13.1 M words, 65.4 M characters.

3. News – News articles from the CSR-III and Gigaword corpora. 60.4 M sen-

tences, 1.32 B words, 7.74B characters.

4. Wikipedia – Articles and discussion threads from a snapshot of Wikipedia

(January 3, 2008). 23.9 M sentences, 452 M words, 2.61 B characters.

5. Twitter – Twitter messages we collected via the streaming API between

December 2010 and June 2012. We used the free Twitter stream which pro-

vides access to a small percentage of all tweets. Given Twitter enforces a

character limit of 140 characters and is often used by people on mobile de-

vices, we conjectured this dataset would be quite similar in style to mobile

text. We excluded repeated tweets from the same user, retweets, and tweets

not identified as English by a language identification module (Lui & Baldwin,

2012). 140 M sentences, 1.05 B words, 5.12 B characters.

6. Blog – Blog posts from the ICWSM 2009 corpus (Burton et al. , 2009).

24.5 M sentences, 387 M words, 2.05 B characters.

7. Usenet – Messages from a corpus of Usenet messages (Shaoul & Westbury,

2009). 124 M sentences, 1.85 B words, 10.2 B characters.

8. Spinn3r – Posts from the Spinn3r corpus (Burton et al. , 2009) that did

not have a mobile device signature. 12.4 M sentences, 126 M words, 670 M

characters.

To get a sense of the differences between the training sets, we first examined the

most frequent words in each training set (Table 9). Notably sets based on more

informal and interpersonal communications such as forum messages and tweets had

more frequent use of personal first and second person pronouns, e.g. “I” and “you”.

Using the word frequency in each training set with respect to our 64 K vocabulary,

18 K. Vertanen and P.O. Kristensson

Table 10. The cosine similarity between each of the training sets.

NonMob Mobile News Wiki Twitter Blog Usenet Spinn3r

NonMob 1.000 0.998 0.850 0.869 0.943 0.978 0.954 0.990
Mobile 0.998 1.000 0.822 0.842 0.951 0.968 0.935 0.984
News 0.850 0.822 1.000 0.984 0.699 0.903 0.951 0.874
Wiki 0.869 0.842 0.984 1.000 0.720 0.918 0.964 0.891
Twitter 0.943 0.951 0.699 0.720 1.000 0.912 0.846 0.924
Blog 0.978 0.968 0.903 0.918 0.912 1.000 0.969 0.984
Usenet 0.954 0.935 0.951 0.964 0.846 0.969 1.000 0.963
Spinn3r 0.990 0.984 0.874 0.891 0.924 0.984 0.963 1.000

we computed the cosine similarity between the term frequency vector for each set.

As shown in Table 10, the NonMobile, Mobile, Blog and Spinn3r sets were

very similar to each other. The Wikipedia and News sets were also similar to each

other, but these two sets had the lowest similarity to the other training sets.

4.2 Test Sets

We will measure the perplexity of test data to compare our different language

models. We wanted this test data to closely approximate what users might be

writing in a variety of mobile text entry scenarios. Unfortunately, there is little

verifiable mobile test data available. The best sources we found consisted of the

following four sources:

1. Posts - Posts in the mobile subset of our forum data. We withheld 2.5%

(250 hosts) as development data and another 2.5% (236 hosts) as test

data. The remaining 9,370 hosts served as a training set. This split into

training, development and test sets was done semi-automatically, keeping

groups of likely related domains in the same set. For example, we kept

forums.macworld.com and www.macworld.com.au together but split differ-

ent subdomains on blogspot.com.

2. Email - Email messages written by Enron employees on their Blackberry

mobile devices (Vertanen & Kristensson, 2011b).

3. Tweets - Tweets recorded via the streaming API between June and Septem-

ber 2015. We only used tweets written on a mobile device by searching for

“Twitter for iPhone” or “Twitter for Android” in the source attribute. We ex-

cluded repeated tweets from the same user, retweets, and non-English tweets

identified via a language identification module (Lui & Baldwin, 2012). We

parsed tweets into sentences based on punctuation. We required all words in

a sentence to be in our list of 330 K English words.

4. SMS - We combined the NUS SMS corpus (Chen & Kan, 2013) and the Mo-

bile Forensics Text Message corpus (O’Day & Calix, 2013). From the NUS

corpus we took messages from native speakers who were using a smartphone

and had entered text via a full keyboard or the Swype entry method. This

resulted in 18,705 messages. From the Mobile Forensics corpus we took mes-

Mining, Analyzing, and Modeling Mobile Text 19

Table 11. Development test sets and evaluation test sets used in our experiments.

Set Sentences Words Examples

PostDev 33.8 K 0.38 M they do better on pavement than on dirt
strawberry filling please

PostTest 23.7 K 0.26 M hoping to get this done sooner than later
it was rideable and a lot closer

EmailDev 673 7.3 K we will sign tomorrow and fund tuesday
hopefully it cheered you up a bit

EmailTest 673 5.3 K this will be hard
i thought i sent jim an email over the weekend

TweetDev 4.0 M 29.3 M why why stupid life of mine
if teen wolf was on tonight i’d be asleep right now

TweetTest 4.0 M 29.3 M listen to the kids bro
definitely one of the best weekends i’ve ever had

SMSDev 11.4K 66.9 K you got job eh
your macbook and netbook are both on your desk

SMSTest 11.4K 67.0 K okay i am down liao
in michigan should be back in a few hours

Table 12. The cosine similarity between the test sets and the training sets.

Training set
NonMobile Mobile News Wiki Twitter Blog Usenet Spinn3r

Post 0.998 1.000 0.826 0.846 0.949 0.968 0.939 0.984
Email 0.926 0.929 0.711 0.727 0.942 0.899 0.846 0.913
Tweet 0.932 0.941 0.683 0.707 0.996 0.902 0.836 0.915
SMS 0.806 0.824 0.524 0.546 0.899 0.760 0.683 0.780

Average 0.916 0.924 0.686 0.707 0.947 0.882 0.826 0.898

sages sent or received by the users. We excluded messages inserted by the

researchers. This resulted in 4,219 messages.

We split each type of test data into two halves, a development test set for use

in initial optimization of our language models and an evaluation test set for use

in our final evaluation. All data was converted to lowercase and punctuation was

stripped (except for apostrophe). We dropped sentences containing numbers. Table

11 provides details about each test set including several example sentences.

Combining the development and evaluation test sets, we tallied the frequency of

the words in our 64 K vocabulary. Table 12 shows the cosine similarity between our

different types of test and training data. As we will see, the training sets that had

a similar word frequency distribution to the tests sets tended to produce the best

language models for predicting those test sets.

20 K. Vertanen and P.O. Kristensson

4.3 Language Model Training

We trained our word language models using SRILM (Stolcke, 2002; Stolcke et al.

, 2011). We used SRILM as it provides a rich set of features for training models,

pruning models, and creating mixture models. We trained our models using inter-

polated modified Kneser-Ney smoothing. This smoothing method has been shown

to outperform a variety of other smoothing methods (Chen & Goodman, 1996).

Our word language models used a vocabulary of the most frequent 64 K words in

our forum data that also were in a list of 330 K known English words. All models

were trained with an unknown word that was used in place of OOV words in the

training data. In the auspices of a user interface, this allows the model to continue

to make predictions even after entry of an OOV word such as a proper name.

In this section, we focus on word language models. However in Section 5, we will

need character language models for use in our touchscreen typing experiments. We

trained our character language models with SRILM using interpolated Witten-Bell

smoothing. We used Witten-Bell smoothing as it is robust to circumstances when

all n-grams of a given order occur in the training data as is typical of the small

vocabulary of a character language model (Stolcke et al. , 2010). The vocabulary

of our character languages models consisted of the letters A–Z, apostrophe, and a

token representing the space character.

For large training sets, representing every n-gram seen in the training data can

generate models that require substantial storage and memory. In some of our ex-

periments, in order to reduce our language models to a size appropriate for mobile

devices, we employed entropy pruning (Stolcke, 1998). In entropy pruning, first a

language model is trained without dropping any n-grams. The model is then pruned

to remove n-grams that do not contribute significantly to predicting the training

text. During pruning of our word models, we used a Good-Turing estimated model

for the history marginals as the lower-order Kneser-Ney distributions are unsuitable

for this purpose (Chelba et al. , 2010).

We report the size of our language models by the number of parameters and by

their compressed disk size. We took the number of parameters to be the count of all

n-gram probabilities and backoff weights. The compressed disk size was the gzipped

size of the ARPA text format language model.

In some of our experiments, we will combine training data from multiple sources.

While we could simply concatenate the data from each source, this would make it

difficult to control how much each source contributes to the final model. This is

especially problematic when sources have wildly differing amounts of data. Instead,

we trained models on each source independently and later merged the models to

produce a mixture model via linear interpolation. In linear interpolation, models are

assigned mixture weights that sum to one. We optimized mixture model weights

using expectation maximization as implemented by SRILM’s compute-best-mix

script (Stolcke, 2002). We optimized the weights with respect to an equal amount

of data from each of our four development test sets.

Mining, Analyzing, and Modeling Mobile Text 21
20

0
30

0
40

0
50

0
60

0
70

0

Words of training data (M)

A
ve

ra
ge

 p
er

pl
ex

ity

1 2 4 8 16 32 64 128 256 512 1024

News
Wiki
Usenet
Blog
Spinn3r
Twitter
Mobile
NonMobile

Fig. 1. Average perplexity of ten 3-gram language models trained on increasing

amounts of data from different sources. Results are the average perplexity on our

four development test sets. Two standard deviation error bars were no larger than

the data point symbols and have been omitted for clarity.

4.4 Amount of Training Data

Our first experiment explored how different training sources and the amount of data

affected predictions. We trained 10 language models on randomly selected subsets

of each of our training sets. We trained 3-gram (trigram) language models.

Figure 1 shows the average perplexity on our four development test sets for

models trained on each type of data. For all training sets, using exponentially more

data resulted in sub-linear decreases in perplexity with the majority of the gains

being made by 128 M words of training data.

Word-for-word, the NonMobile and Mobile training sets produced the best

performing models. NonMobile out-performed models trained on substantially

more data (with the exception of Twitter when trained on eight times more

data). We found NonMobile did just as well as Mobile. This provides additional

evidence that our collection procedure resulted in NonMobile containing mobile-

like text despite being made up of posts without a mobile device signature.

Figure 2 shows performance on each test set for models trained on 8 M words. As

might be expected, NonMobile and Mobile did the best on the closely matched

PostDev. Twitter did substantially better than other models on the closely

matched TweetDev. Overall, models trained on our mobile forum data performed

well on all types of mobile test data. The SMSDev test set consistently had the

highest perplexity. We suspect this is due to people using abbreviations and slang

when sending SMS messages. Posting a message to a forum from a mobile device

may not have elicited similar language effects. Additionally, it seems data from

22 K. Vertanen and P.O. Kristensson
10

0
30

0
50

0
70

0

A
ve

ra
ge

 p
er

pl
ex

ity

PostDev EmailDev TweetDev SMSDev

News
Wiki
Usenet
Blog
Spinn3r
Twitter
Mobile
NonMobile

Fig. 2. Average perplexity of 10 language models trained on 8 M words of data from

different sources. Results on each development test set. Some poorly performing

models appear off the top of the graph and have been omitted.

Twitter, blogs, and other forums like Spinn3r are promising training sources for

modeling mobile text.

4.5 Mixture Model and Model Order

Our previous best models used the NonMobile and Mobile data. Since these sets

performed similarly, we combined them to form a single training set which we will

refer to as Forum. The Forum training set consisted of 141 M words.

We wanted to see if further improvements were possible by adding in other data

sources. We trained a mixture model (denoted as Mix) training each component

on 126 M words of data from each of our four best sources: Forum, Twitter,

Spinn3r, and Blog. The optimal weights for a 3-gram model were: 0.33 Forum,

0.42 Twitter, 0.12 Spinn3r, and 0.13 Blog.

To investigate how many words of prior context should be used, we trained 2-gram

through 5-gram language models. In the case of the mixture language model, we

optimized the mixture weights for each model order with respect to our development

data. The weights were similar to those reported for the 3-gram model.

The Mix, Twitter, and News models were trained on 504 M total words of

data. The other models were trained on smaller amounts of training data: Wiki

452 M, Blog 387 M, Forum 141 M, and Spinn3r 126 M. We computed the average

perplexity on our four development test sets on the 2-gram through 5-gram language

models. As shown in Figure 3, Mix outperformed the Forum and Spinn3r models.

Mix also substantially outperformed Twitter models trained on the same amount

of data. We found performance improved as model order increased, but diminished

past 3-gram models. The poor performance of 2-gram models in comparison to the

3-gram models demonstrates the importance of using long-span language models in

predictive text entry interfaces. For the rest of this paper, we use 3-gram models

as longer orders only offered modest perplexity gains.

Mining, Analyzing, and Modeling Mobile Text 23
10

0
30

0
50

0
70

0

A
ve

ra
ge

 p
er

pl
ex

ity

2−gram 3−gram 4−gram 5−gram

News
Wiki
Blog
Spinn3r
Forum
Twitter
Mix

Fig. 3. Perplexity of language models trained on different training sources and with

different model orders. Results are the average on the four development test sets.

Correction threshold

R
el

at
iv

e
pe

rp
le

xi
ty

 c
ha

ng
e

(%
)

−400 −200 0 200 400 600 800 1000

−
1.

0
0.

0
1.

0
2.

0
3.

0 SMSDev
PostDev
EmailDev
TweetDev

Fig. 4. Relative change to perplexity on the four development test sets with varying

amounts of automatic correction. Change computed with respect to a language

model with no automatic correction.

4.6 Effect of Automatic Correction of Training Data

Mined web data such as our Forum set is bound to contain spelling mistakes and

typos. We investigated whether using the previously described correction algorithm

on the language model’s training data would improve performance of the resulting

model. Previously, we only accepted a correction if it reduced a sentence’s per-

word perplexity. We modified our algorithm to accept a correction if the change in

perplexity was less than some threshold. Positive thresholds allow corrections that

may increase a sentence’s perplexity, while negative thresholds require corrections

reduce a sentence’s perplexity. These experiments used the Forum training set.

We measured the perplexity of the four development sets with respect to a model

trained without correction. As shown in Figure 4, automatic correction had a slight

negative impact for most development sets. In particular, the SMSDev, PostDev,

and EmailDev sets saw increased perplexity with more correction. The Tweet-

Dev set on the other hand saw decreased perplexity with more correction.

24 K. Vertanen and P.O. Kristensson

Correction threshold

R
el

at
iv

e
pe

rp
le

xi
ty

 c
ha

ng
e

(%
)

−400 −200 0 200 400 600 800 1000

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

EmailDev
PostDev
TweetDev
SMSDev

Fig. 5. Relative perplexity change on sentences with no OOV words with

increasing amounts of automatic correction of the training data.

Correction threshold

R
el

at
iv

e
pe

rp
le

xi
ty

 c
ha

ng
e

(%
)

−400 −200 0 200 400 600 800 1000

0.
0

2.
0

4.
0

6.
0

8.
0

SMSDev
PostDev
EmailDev
TweetDev

Fig. 6. Relative perplexity change on sentences with one or more OOV words with

increasing amounts of automatic correction of the training data.

We believe the difference on the test sets is related to an interaction between

automatic correction and OOV words. SMSDev had the highest OOV rate at

8.50% compared to PostDev 2.61%, EmailDev 1.26%, and TweetDev 0.26%.

The OOV rate of the training data without correction was 2.32%. As the correction

threshold was increased, the OOV rate decreased as typos such as “didnt” were

replaced with “didn’t”. For example, with a threshold of -250, 51 K corrections

were made in the training data resulting in a slightly lower OOV rate of 2.26%.

A more aggressive threshold of 250 resulted in 1.3 M corrections and lowered the

OOV rate more substantially to 1.36%. With fewer OOV words in the training data,

the resulting language models had lower probabilities for n-grams containing the

unknown word. Perplexity on the subset of sentences with no OOVs saw consistent

reductions in perplexity with more correction (Figure 5), while the subset with one

or more OOV words saw increased perplexity with more correction (Figure 6).

This lower predictability of unknown words after correction of the training data

is perhaps not that important in practice. In a text entry interface, these OOV

Mining, Analyzing, and Modeling Mobile Text 25
10

0
30

0
50

0
70

0

A
ve

ra
ge

 p
er

pl
ex

ity

Small Large Unpruned

News
Wiki
Blog
Spinn3r
Forum
Twitter
Mix

Fig. 7. Perplexity of 3-gram language models using different amounts of pruning

to reduce model size. Results are the average on the four evaluation test sets.

words are probably going to be hard to recognize anyway. Nonetheless, the overall

impact of automatic correction was fairly small. Even with the largest threshold of

1000 and on the test data without OOV words, automatic correction only improved

the average perplexity from 172.3 to 170.0. It is unlikely such a small perplexity

difference would result in measurable improvements in a text entry interface. As

such, we will continue to simply train on the original uncorrected training text.

4.7 Pruning to Reduce Model Size

Our 3-gram mixture model was large with 160 M parameters and a compressed

disk size of 1.2 GB. This is probably too large for deployment on most current

mobile devices. We entropy pruned our Mix model to create a small model with

approximately 5 M parameters (40 MB compressed size) and a large model with

approximately 50 M parameters (400 MB compressed size). For comparison, we cre-

ated Forum, News, Blog, Wiki, Spinn3r, and Twitter models with similar

numbers of parameters.

Figure 7 shows the average perplexity on our four evaluation test sets for small,

large, and unpruned models. Compared to unpruned models, the large models had

a small 0.5% relative increase in perplexity (averaged across all models). The more

heavily pruned small models had a more substantial increase of 9% relative. Using

out-of-domain data was quite detrimental; News and Wiki had a perplexity several

times that of Mix. Notably the small Mix model outperformed all models trained

on other data sources, even much larger unpruned models.

5 Touchscreen Keyboard Experiments

We previously found the specific data and training regimen was important for op-

timizing a language model for mobile text entry. Thus far we have used perplexity

to measure the “goodness” of our models. Perplexity is a popular metric for select-

ing language models for use in recognition-based text entry systems, in particular

26 K. Vertanen and P.O. Kristensson

speech recognition (Chen et al. , 1998). However, as demonstrated by Chen et

al. (1998), the usefulness of perplexity as a metric for language model evaluation

may sometimes be limited. In this section, we investigate the practical impact of

our perplexity improvements with respect to the current de facto mobile text input

method: tapping on a touchscreen keyboard. We explore the impact with respect to

the keyboard’s recognition accuracy as well as to the keyboard’s ability to propose

correct word predictions.

5.1 Touchscreen Typing Test Set

Previously, we investigated various aspects of touchscreen keyboard entry using a

research decoder named VelociTap (Vertanen et al. , 2015). VelociTap decodes a

sequence of noisy touch data using both a letter and a word language model. In

Vertanen et al. (2015), users entered an entire sentence prior to having their input

recognized. This is similar to how keyboards from Google and Apple allow users

to enter several words without any spaces. The multiple words are then recognized

and separated with spaces once the user hits the spacebar key.

For our experiments here, we wanted to perform recognition after each word of

input. We think this more closely matches what users are currently doing in practice

on their mobile devices. Further, it allows us to investigate the impact of different

language models on the accuracy of word predictions. Word predictions often appear

at the top of a virtual keyboard and allow users to enter a word without typing every

letter. But since only a limited number of word predictions can be displayed on a

predictive keyboard, we wondered whether our improved language models would

result in measurable improvements despite a small number of prediction slots.

We converted the sentence-at-a-time input data from Vertanen et al. (2015) to

word-at-a-time data. This was done by force-aligning the known reference text of a

sentence with the noisy tap observations. This segmented each sentence observation

sequence into separate subsequences for each word. In cases where the number of

inferred words differed from the reference, we dropped the sentence. This could

occur because participants may have entered the wrong number of words, or if

the recognizer erroneously converted a single word of input into several words. We

dropped 744 sentences due to alignment issues (9% of the data). While it is possible

some of the dropped data constituted more challenging input cases, our purpose

here is to compare different language models on real-world tap observations and

not to precisely measure the absolute recognition error rate.

The participants in Vertanen et al. (2015) entered sentences from the Enron

mobile dataset (Vertanen & Kristensson, 2011b). Participants used a single finger

to tap out sentences on a iPhone 4 or Nexus 4 device with a full-sized portrait

virtual keyboard (5,360 sentences). We also included data from two conditions of

the last experiment that involved reduced-sized keyboards (1,828 sentences). The

resulting data totaled 7,188 sentences entered by 111 participants.

To add even more challenging data, we also force-aligned the data from Vertanen

et al. (2018). In this study, participants typed sentences on a Sony SmartWatch

3. Input was performed one word, two words, or an entire sentence-at-a-time. This

Mining, Analyzing, and Modeling Mobile Text 27

data totaled 1,066 sentences entered by 24 participants. In the majority of this data,

participants entered sentences from the Enron mobile dataset (830 sentences). We

also included data from the composition condition (236 sentences). For purposes

of measuring error rate, we obtained a reference text for each composition via a

crowdsourced judging process (Vertanen & Kristensson, 2014).

Combining the data from both studies resulted in a test set of 8,254 sentences

(48 K words) entered by 135 different users. 0.20% of the words in the test set were

out-of-vocabulary with respect to our 64 K vocabulary. Under the Large word and

character mixture language models (to be described in Section 5.6), the reference

text of this set of 8,254 sentences had a per-word perplexity of 142.6 and a per-

character perplexity of 2.83.

5.2 Decoder and Experimental Procedure

We conducted offline experiments by playing back the x- and y-locations of partic-

ipants’ taps and recognizing these sequences using VelociTap configured with dif-

ferent language models. VelociTap requires both a character and a word language

language model. For the character models, we trained 12-gram language models.

To reduce memory during training, we pruned singleton 11- and 12-grams. We used

the same training sets previously described for the word languages models. We used

interpolated Witten-Bell smoothing for the character models. All word models in

this section were 3-gram language models. The number of parameters and disk size

reported in this section reflect the sum for both the letter and word models.

We ran two separate types of experiments. In the recognition only experiments,

we simulated word-at-a-time input without word predictions. In this case, we as-

sumed we knew with certainty the boundaries between the words in a sentence’s

tap sequence. We performed recognition on the taps for each word. The recognition

result was then added to a running result. This running result was used as left

context for recognition of the next word. This simulates a user that did not correct

any recognition errors.

In the word prediction experiments, we simulated adding word predictions to the

keyboard. Such a keyboard proposes words that complete the current word being

typed, hopefully saving a user some typing. The same noisy tap data was used as

for the recognition-only experiments. We adapted our decoder to search for the

most likely word predictions given the current noisy tap input thus far for a word.

After each simulated tap, we determined the most likely word predictions as

follows. First, as usual, VelociTap scored the current noisy prefix tap sequence

using a two-dimensional Gaussian keyboard model. It further allowed characters to

be inserted or deleted via configurable insertion and deletion penalties. This yielded

a set of possible recognition hypotheses for a user’s currently entered prefix. These

hypotheses were then extended, searching for sequences of characters leading to a

word in our 64 K vocabulary. The probabilities of these hypotheses were adjusted

based on each letter added using the character language model. After an ending

space character was added, the probability of the complete word under the word

language model was also incorporated.

28 K. Vertanen and P.O. Kristensson

We simulated a keyboard that offered up to three word predictions. Word pre-

dictions were made even before the first letter of a word was typed. If a correct

prediction was made, we assumed a single keystroke completed the word and added

any following space. The first prediction in a sentence used a sentence start pseudo-

word as left context for the language models.

The tap observations in our data are noisy since users may have tapped keys

inaccurately. Thus it is possible our simulation might never propose a correct word

prediction. In such cases, we added the top recognized word for purposes of the

language model’s left context. This simulates the keyboard having to make later

predictions in a sentence based on previous incorrect text.

5.3 Metrics

We measured recognition accuracy using character error rate (CER). We calculated

CER by first finding the number of character insertions, deletions, or substitutions

required to transform the recognized text into the reference text, i.e. the Levenshtein

distance (Levenshtein, 1966). The CER is then found by dividing this distance by

the number of characters in the reference. We also measured the word error rate

(WER). WER is analogous to CER but on a word basis. CER and WER are

typically expressed as percentages. Note our approach weights insertions, deletions,

and substitutions all the same. It is also possible to use different weights as is

sometimes done when evaluating speech recognizers (Hunt, 1990). Further, other

types of errors can be modeled such as transposition of adjacent characters as in

the Damerau-Levenshtein distance metric (Brill & Moore, 2000).

To provide a measure of the recognition performance differential of our different

language models, we calculated sentence-wise bootstrap 95% confidence intervals

for the mean of our reported recognition metrics (Bisani & Ney, 2004). We use

this approach as comparing different recognition setups on the same data violates

assumptions of traditional hypothesis tests. This is a long-standing problem in

speech recognition (Gillick & Cox, 1989; Strik et al. , 2001) and machine translation

(Koehn, 2004).

We evaluated the word predictions using Keystroke Savings (KS):

KS =

(
1 − kp

ka

)
× 100%,

where kp is the keystrokes required with word predictions and ka is the keystrokes

required without predictions. Higher keystroke savings is better. We calculated

keystroke savings on each sentence and report the average over all sentences.

As previously mentioned, in some cases, a correct word prediction may not be

made. Thus for the word prediction experiments, we also reported the CER of

the final result. This provides a measure of how close a user could get to their

intended text by tapping letters and making optimal use of word predictions but

without using other correction features (e.g. backspacing errors or selecting from a

recognition n-best list).

Mining, Analyzing, and Modeling Mobile Text 29

Table 13. The size and performance of models trained on 128 M words of data.

KS = Keystroke Savings, CER = Character Error Rate, WER = Word Error Rate.

± values denote sentence-wise bootstrap 95% confidence intervals.

Model set Size Params Recognition only Word prediction
(GB) (M) CER (%) WER (%) KS (%) CER (%)

News 2.1 327 4.56 ± .20 10.44 ± .40 39.26 ± .31 2.86 ± .08
Wikipedia 2.4 388 3.59 ± .17 8.29 ± .34 44.59 ± .29 1.90 ± .06
Twitter 1.6 249 3.01 ± .15 7.05 ± .32 48.51 ± .25 1.41 ± .05
Forum 2.0 319 2.98 ± .15 6.77 ± .31 49.30 ± .26 1.36 ± .05
Mix 2.2 314 2.61 ± .14 6.08 ± .30 50.19 ± .24 1.06 ± .05

5.4 Type of Training Data

We combined our NonMobile and Mobile training sets to create a single training

set denoted Forum. We trained word and character language models on 128 M

words of training data from the News, Wikipedia, Twitter, and Forum sets.

We also trained a mixture model (denoted Mix) using a total of 128 M of data

using 32 M words from each of the Forum, Twitter, Spinn3r, and Blog sets.

All models were trained without count cutoffs and were not entropy pruned.

As shown in Table 13, the domain mismatch of the News and Wikipedia training

data caused significantly higher error rates. Compared to our mixture model, a

model trained only on news articles saw a 75% relative increase in CER while a

model trained only on Wikipedia data resulted in a 38% relative increase. In the

past, such data sources were commonly used to train language model based text

input methods. Our results demonstrates how suboptimal this is when used for

recognizing mobile text.

Notably, the Twitter model was nearly as accurate as the Forum model. Fur-

ther, the Twitter model had the smallest disk footprint and a smaller number

of parameters. This is an interesting finding. People building models for mobile

text input should consider leveraging the huge amounts of Twitter data as a first

priority. We conjecture the concise nature of tweets makes them similar in style to

the text commonly written on mobile devices.

Having diversity of training data sources also appears to be important. As shown

in the final row of Table 13, the Mix model that leveraged the Forum, Twitter,

Blog, and Spinn3r data outperformed all other models by a healthy margin.

By carefully selecting and combining multiple training sources, our Mix model

reduced CER by 43% relative compared to the News model. Further, when used

in a keyboard with word predictions, the Mix model reduced the final CER of the

simulated user’s text by 63% relative compared to the News model.

5.5 Amount of Training Data

Next, we tested varying the amount of training data. We tested the Mix model as

it performed the best in the previous experiment. We trained mixture models using

30 K. Vertanen and P.O. Kristensson

Table 14. The size and performance of mixture models varying the amount of

training data.

Training words Size Params Recognition only Word prediction
(M) (GB) (M) CER (%) WER (%) KS (%) CER (%)

8 0.3 48 2.92 ± .14 6.91 ± .31 47.93 ± .25 1.31 ± .06
16 0.5 77 2.79 ± .15 6.53 ± .30 48.52 ± .25 1.22 ± .05
32 0.9 124 2.72 ± .14 6.38 ± .30 49.18 ± .25 1.17 ± .05
64 1.4 198 2.64 ± .14 6.09 ± .30 49.67 ± .24 1.10 ± .05

128 2.2 314 2.61 ± .14 6.08 ± .30 50.20 ± .25 1.06 ± .05
256 3.4 494 2.59 ± .14 6.03 ± .29 50.53 ± .24 1.06 ± .05
504 5.3 765 2.57 ± .14 5.93 ± .29 50.78 ± .24 1.03 ± .04

Table 15. The size and performance of pruned mixture models.

Model set Size Params Recognition only Word prediction
(MB) (M) CER (%) WER (%) KS (%) CER (%)

Tiny 8 1 2.94 ± .14 6.95 ± .30 44.12 ± .23 1.30 ± .05
Small 80 11 2.62 ± .14 6.06 ± .29 48.87 ± .24 1.10 ± .04
Large 800 107 2.53 ± .14 5.90 ± .29 50.50 ± .24 1.00 ± .04

2 M to 126 M words of data from each of the mixture model’s four training sources.

This resulted in models trained on a total of 8 M to 504 M words.

As shown in Table 14, the more data that was used for training, the more accurate

the model. However, gains diminished as training data reached hundreds of millions

of words. Comparing Table 13 and 14, it is apparent that the type and diversity

of training data is more critical than the total amount of training data. Even the

smallest mixture model trained on only 8 M total words had a lower CER compared

to a Twitter model trained on 128 M words.

5.6 Model Pruning

The best-performing models thus far are probably too big for use on a mobile device.

While recognition can be performed in the cloud, for privacy and latency reasons,

recognition on-device may be preferred. We entropy pruned the character and word

mixture models trained on 504 M words of data. We chose pruning thresholds to

yield three compressed disk sizes. We created Tiny models (approximately 4 MB

each), Small models (approximately 40 MB each), and Large models (approxi-

mately 400 MB each). These sizes were chosen to roughly correspond to feasible

sizes for deployment on a smartwatch, a mobile phone, and a desktop computer.

As shown in Table 15, the more heavily pruned models were less accurate. But it is

remarkable how much the models could be pruned while still retaining acceptable

accuracy. Even the Tiny models had a CER below 3% when recognizing noisy

word-at-time touchscreen input. The Tiny models had a lower CER and WER

than the unpruned Twitter models despite being 195 times smaller. However, the

keystroke savings of the Tiny models was much lower than almost all other models.

Mining, Analyzing, and Modeling Mobile Text 31

Table 16. The performance of the Large pruned model set using different number of

prediction slots. ± values denote sentence-wise bootstrap 95% confidence intervals.

Prediction slots Word prediction
KS (%) CER (%)

1 37.01 ± .27 1.75 ± .06
2 46.21 ± .25 1.19 ± .05
3 50.51 ± .24 1.00 ± .04
4 55.12 ± .23 0.80 ± .04
5 53.30 ± .23 0.88 ± .04
6 56.66 ± .22 0.74 ± .04

This suggests aggressive pruning is negatively impacting the model’s ability to fill

in relevant words in the keyboard’s three prediction slots.

The Small and Large models had a CER and WER on par with the un-

pruned mixture model trained on 504 M words of data. Only small improvements

in accuracy were seen going from the Small to the Large models. This suggests

performing recognition on a reasonably capable mobile devices can be nearly as

accurate as relaying to a cloud server.

Keystroke savings of the Small and Large models were higher than Tiny, but

still lower than the unpruned mixture model trained on 504 M words of data. While

pruning had minimal impact on recognition CER, it once again caused word pre-

dictions to be less accurate. Overall, the pruning experiments further demonstrate

the strength of training language models on a mixture of well-matched text.

5.7 Word Predictions

We did an additional experiment on the performance of the word predictions using

just the Large pruned model set. How many prediction slots to offer is an impor-

tant design decision as increasing the number of slots consumes both screen real

estate and the visual attention of users. Thus far we have simulated a keyboard with

three prediction slots. As shown Table 16, providing more prediction slots markedly

improved keystroke savings and recognition accuracy. It appears that providing at

least three prediction slots is advisable not only to save keystrokes, but also to help

users avoid decoding errors resulting from inaccurate typing.

Analyzing in more detail just the keyboard with three word predictions, the

system had a keystroke savings of 50.5%. It also reduced the CER to 1.0%, less than

half the error rate of simulating a keyboard without word predictions. In 3% of the

total words, no correct word predictions were made during the input of the entire

word. In these cases, the system had to resort to using the 1-best recognition result

instead. Of these cases, only 7% constituted entry of out-of-vocabulary words. Thus

the primary problem appears to be making accurate in-vocabulary predictions.

For the Large models, 52% of word predictions were selected from the first slot,

30% from the second slot, and 19% from the third slot. 37% of predictions were

32 K. Vertanen and P.O. Kristensson

made after the entry of zero characters, 31% after one character, 16% after two

characters, 11% after three characters, and 5% after four or more characters.

6 Discussion

We have described how we collected large amounts of mobile text from the web.

This allowed us to analyze differences between the text resulting from mobile and

non-mobile text entry methods. It also served as training data for building high-

performance language models optimized for mobile text entry. We now reflect on

the six contributions to text entry research we set out to make.

6.1 Contributions

Method for harvesting genuine mobile text. A long-standing problem in

studying mobile text entry has been sourcing authentic text written by real users

on actual mobile devices. In the past, we used an approach similar to the one in

this paper by looking for the default signature put at the end of emails written

by Enron employees on their Blackberry mobile devices (Vertanen & Kristensson,

2011b). But this past effort yielded relatively small amounts of text from one type

of mobile device over a fixed period in time.

Our web mining approach allows researchers to continually collect large quantities

of mobile text from a wide-variety of mobile devices. Compared to static sources of

mobile text, our approach provides a continuous and dynamic window into mobile

texting. For example, our approach allows a system to continually update itself

to better model users’ evolving mobile writing styles and topics. This could be

done by periodically retraining a language model using the latest version of the

mined dataset. Further, our approach allows researchers to analyze changing user

behaviors such as, for example, studying how often people use emojis or hashtags.

Improved understanding of mobile text entry. By being able to analyze

large amounts of data, we were able to reliably measure even small differences in

text entry behavior between mobile and non-mobile use. A person using a mobile

device does seem to write more concisely. We found sentences in our mobile forum

data had on average 11.0 words compared to 12.4 in the non-mobile Spinn3r forum

data. The mobile device itself also appears to influence behavior—phone users wrote

30 words per post compared to tablet users who wrote 40 words per post.

When investigating in detail the individual characters users wrote, we found

mobile users tended to more frequently use emoticons and texting language, but

used fewer commas. This demonstrates how the differing affordances offered by

mobile and desktop text entry methods influence users’ writing. While we had

expected mobile text might exhibit an increased tendency to be in lowercase, our

data did not show this. This could mean mobile text entry methods are providing

good support for manual or automatic casing. It could also mean, even while mobile,

users are willing to spend the effort necessary to properly capitalize their posts.

Analysis of mobile spelling and typing errors. Knowing what types of

errors users frequently make while entering text on a mobile device may help us

Mining, Analyzing, and Modeling Mobile Text 33

design improved mobile text entry methods. We found evidence that mobile users

are accidentally hitting adjacent keys and that these errors were not always being

corrected. Transposition errors seemed to occur less frequently in the mobile data.

This could be because mobile users are mostly entering text with a single finger, or

it could be mobile text entry methods are better at correcting such errors compared

to desktop keyboards.

We conjectured correcting likely errors in our mined data would result in better

training data for language models. We found that our automatic correction algo-

rithm did not reliably improve predictions on our different types of test data. In

particular, it appears that while correction improved predictions for sentences with-

out OOV words, it negatively impacted sentences with OOV words. Further, even

when predictions improved, the gains were small. Thus, while our algorithm helped

explore the kinds of errors in users’ final text, at present we recommend simply

training on the data without attempting to automatically correct likely errors.

Investigating the impact of training source on modeling mobile text.

Finding training data that is well-matched to the target domain is known to strongly

impact language model performance (Moore & Lewis, 2010; Vertanen & Kristens-

son, 2011a). We demonstrated that text mined with mobile signatures could be

usefully combined in a mixture model with other sources such as Twitter to pro-

vide substantial performance gains. In particular, we showed traditional training

sources, such as newswire text are suboptimal for modeling mobile text. While large

amounts of newswire data is available and the data is “clean” (i.e. containing few

spelling or typing mistakes), it is a poor substitute for having even relatively small

amounts of well-matched data from a variety of “unclean” web-based sources.

An interesting finding was that Twitter data provided performance on par with

our mined forum data. This is good news as Twitter data is relatively easy to collect

and, like web forum data, constitutes a continuous and timely data source. That

being said, we obtained our best results by creating a mixture model using our

mined data, Twitter data, blog data, and from non-mobile forum data. Thus for

robust modeling of mobile text, we recommend collecting large amounts of data

from multiple well-matched but distinct data sources.

Touchscreen keyboard evaluation. Our mixture models consistently had

lower perplexity on emails, forum posts, SMS messages, and tweets made on mobile

devices. However, this does not necessarily guarantee practical gains if deployed in

an actual mobile text entry interface. We explored whether lower perplexity trans-

lated into practical gains by using 8,254 sentences of noisy touchscreen phone and

smartwatch data collected from 135 users. Our experiments confirmed that substan-

tially more accurate recognition was possible using our mixture models. Further,

our models allowed the keyboard to make more accurate word predictions. These

improved word predictions allowed our simulated user to avoid many word recog-

nition errors in the first place.

Training on large amounts of data results in language models that consume large

amounts of storage and memory. However, we further demonstrated that the mod-

els could be successfully pruned to make deployment on mobile phones or even

smartwatches possible. A notable finding was that while pruning tended not to im-

34 K. Vertanen and P.O. Kristensson

pact the 1-best recognition result that much, pruning had a more damaging impact

on word predictions. This suggests that the information being lost during model

pruning is hindering the model’s ability to predict other likely options aside from

the best one. As a guideline, we therefore suggest performing less aggressive model

pruning when the text entry interface features word predictions or correction of

recognition errors via an n-best list.

Resources for mobile text entry research. The data collection and language

model comparisons in this work represent a substantial amount of human effort,

bandwidth, processing power, and storage. We have released the sentences from

our mined forum posts. We think this data will stimulate further research into the

differences between mobile and non-mobile text. Further, we think many researchers

can benefit from leveraging our language models when building their own novel text

entry or natural language processing systems. As such, we have made a range of pre-

trained language models available. We recommend using the pruned character and

word language models from Table 15. The language models are provided in standard

ARPA format. They can easily be incorporated into Java programs via BerkeleyLM

(Pauls & Klein, 2011) or C++ and Python programs via KenLM (Heafield, 2011).

6.2 Limitations and Future Work

Our approach relies on the continued use of these forum mobile apps by users and

that these apps continue to advertise via a default signature identifying the mobile

device. At the time of writing, a Google search of “Sent from my iPhone using

Tapatalk” returned 9.9 M results with many of the top results having been written

recently. Thus, at least at present, our approach is an effective and relatively easy

data collection methodology for genuine mobile text.

Processing large amounts of harvested data is challenging. There are numerous

choices along the way, such as how many pages to use from a site, the threshold

for identifying English, the in-vocabulary word list, etc. It would be impractical to

exhaustively test each choice in isolation, or worse, the interaction between choices

in concert. After each choice, substantial further processing is needed before a

model emerges that could be used to measure performance. Our goal was to show a

sensible set of choices yields models useful for probabilistic text entry. Honing the

procedure we leave to future work.

While our mobile text collection is unique in its size and diversity, it is not perfect.

While we are confident in the classification of data into mobile sets based on the

device signature (users have little reason to fake a signature), we cannot tell the

exact input method used. For example, users may have entered text using an on-

screen keyboard, a gesture keyboard, speech recognition, or a Bluetooth keyboard.

Further our data undoubtedly contains auto-corrected versions of users’ input.

These are all limitations of analyzing real-world data in the large rather than data

from a much smaller logging study or lab experiment. Our analysis reveals how

large numbers of users enter text in the real world, on their own mobile device,

using the software/hardware input methods available to them. At the granularity

of mobile device type, our results are still informative, for instance, a tablet user

Mining, Analyzing, and Modeling Mobile Text 35

tends to write longer posts than a phone user. Whatever the input method, our

data provides solid recognition gains on authentic mobile test data.

Related, we did not collect non-mobile data that could be conclusively verified

as such. This is because non-mobile data lacks an identifying signature (“Sent from

my desktop”). Text intended for private communication, such as text messages or

private emails, were not captured by our web mining approach. Also due to the

public nature of forums, text content such as email addresses was likely underrep-

resented. Besides email addresses, we speculate other types of content may also

be underrepresented, e.g. forum users may refer to each other by forum handle or

first name rather than by full name. Further, forums are a public discussion venue

focused on a particular topic while text messaging and email are often private ex-

changes being just two people. Thus our data likely does not well model everyday

discussions such as those that occur between family members or significant others.

Our mining approach was based on finding forums where members were using a

mobile forum app. Such users may be more technology literate than the average

user of text messaging or email. This could lead to a greater proficiency at mobile

text entry resulting in differences versus the population in general.

We focused on classic n-gram models which have long-dominated language model-

ing research (Rosenfeld, 2000). Recently, recurrent neural network language models

(RNNLMs) have been shown to provide state-of-the-art performance on a variety

of tasks (Mikolov et al. , 2010; Kombrink et al. , 2011; De Mulder et al. , 2015;

Devlin et al. , 2014; Yao et al. , 2013). Our focus here was on the advantage of

well-matched training data, something that would likely benefit RNNLMs as well.

Further, RNNLMs are often mixed with n-gram models to further improve perfor-

mance (Mikolov et al. , 2010; Mikolov et al. , 2011). Our best performing n-gram

model was a mixture model created by linearly interpolating models trained sepa-

rately on each of our diverse training sets. The interpolation weights were optimized

with respect to development data. A single RNNLM may be able to learn to bal-

ance the importance of the different text domains implicitly in its hidden layers.

This would simplify the training process, but we conjecture training on diverse text

would likely remain important. This should be validated in future work.

Our experiments show clearly the advantage of carefully curating the data used to

train a language model for use in a recognition-based text entry interface. However

our experiments assumed a static model that was independent of a particular user.

In the real world, adapting on a user’s prior entries may improve performance

(Fowler et al. , 2015). It would be interesting to see how language model adaptation

affects performance in concert with how the initial training data is sourced.

Our web mining approach should be seen as a complementary methodology to

logging. Logging users’ behavior in experiments enables researchers to collect small

sets of mobile text data with timing and other information. In contrast, the ap-

proach we have presented enables researchers to collect large sets of mobile text

data, but without such additional fine-grained information. We believe both ap-

proaches are useful for text entry research and we hope the text entry community

will benefit by analyzing the many sentences available on the web that were written

by mobile users “in the wild”. While we focused on English, it would be interesting

36 K. Vertanen and P.O. Kristensson

to explore how mobile text entry is similar or different in other languages. Our min-

ing and analysis approaches should be easily adaptable to others languages provided

the languages have sufficient online forum data with identifying signatures.

7 Conclusions

We have presented a method for mining the web for text entered on mobile devices.

Using crawling, parsing, and searching techniques, we located millions of words

that could be reliably identified as having originated from a list of 300 mobile

devices. By analyzing data on a per device basis, we compared text characteristics

of text written using different device types, such as touchscreen phones, phones

with physical keyboards, and tablet devices.

We designed an algorithm for detecting eight classes of spelling and typing errors.

This allowed us to compare the relative prevalence of different types of errors on

data typed on different kinds of mobile devices. Using our web-mined data, we

trained long-span language models and showed that a mixture model trained on

our mined data, Twitter, blog, and forum data predicted mobile text better than

commonly used baseline models created from newswire or Wikipedia text.

Our current collection of mobile forum text was among the best data we have

found for building high-quality language models for mobile text entry. What is even

better is that there is a persistently growing amount of mobile text data on the web

that could be mined and incorporated to provide further improvements. Twitter

data was competitive with mobile forum data. This is a helpful finding as Twitter

data is easy to collect, large in scale, and continually growing.

We obtained the best performance by incorporating data from four different web

sources in a mixture language model. We demonstrated that careful attention to

the training data source translated into actual performance benefits for a state-of-

the-art touchscreen keyboard. To stimulate further work, we have made our mined

data and a range of language models available to other researchers5.

8 Acknowledgements

This material is based upon work supported by the National Science Foundation

under Grant No. IIS-1750193. P.O.K. was supported in part by EPSRC grant

EP/N014278/1.

References

Baldwin, Tyler, & Chai, Joyce. 2012. Autonomous Self-Assessment of Autocorrections:
Exploring Text Message Dialogues. Pages 710–719 of: Proceedings of the 2012 Confer-
ence of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. Montréal, Canada: Association for Computational Lin-
guistics.

5 https://digitalcommons.mtu.edu/mobiletext/

https://digitalcommons.mtu.edu/mobiletext/

Mining, Analyzing, and Modeling Mobile Text 37

Bell, Peter, Yamamoto, Hitoshi, Swietojanski, Pawel, Wu, Youzheng, McInnes, Fergus,
Hori, Chiori, & Renals, Steve. 2013. A Lecture Transcription System Combining Neural
Network Acoustic and Language Models. Pages 3087–3091 of: Proceedings of INTER-
SPEECH.

Bisani, M., & Ney, H. 2004. Bootstrap Estimates for Confidence Intervals in ASR Perfor-
mance Evaluation. Pages 409–411 of: Proceedings of the IEEE Conference on Acoustics,
Speech, and Signal Processing. ICASSP ’04.

Brill, Eric, & Moore, Robert C. 2000. An Improved Error Model for Noisy Channel
Spelling Correction. Pages 286–293 of: Proceedings of the 38th Annual Meeting on As-
sociation for Computational Linguistics. ACL ’00. Stroudsburg, PA, USA: Association
for Computational Linguistics.

Brody, Samuel, & Diakopoulos, Nicholas. 2011. Cooooooooooooooollllllllllllll!!!!!!!!!!!!!! Us-
ing Word Lengthening to Detect Sentiment in Microblogs. Pages 562–570 of: Proceed-
ings of the 2011 Conference on Empirical Methods in Natural Language Processing.
Edinburgh, Scotland, UK: Association for Computational Linguistics.

Bulyko, Ivan, Ostendorf, Mari, Siu, Manhung, Ng, Tim, Stolcke, Andreas, & Çetin, Özgür.
2007. Web Resources for Language Modeling in Conversational Speech Recognition.
ACM Trans. Speech Lang. Process., 5(1), 1:1–1:25.

Burton, Kevin, Java, Akshay, & Soboroff, Ian. 2009. The ICWSM 2009 Spinn3r Dataset.
In: Proceedings of the 3rd Annual Conference on Weblogs and Social Media. ICWSM
’09. Palo Alto, California, USA: AAAI.

Carey, John. 1980. Paralanguage in Computer Mediated Communication. Pages 67–69 of:
Proceedings of the 18th Annual Meeting on Association for Computational Linguistics.
ACL ’80. Stroudsburg, PA, USA: Association for Computational Linguistics.

Chelba, Ciprian, Brants, Thorsten, Neveitt, Will, & Xu, Peng. 2010. Study on Interaction
between Entropy Pruning and Kneser-Ney Smoothing. Pages 2242–2245 of: Proceedings
of INTERSPEECH.

Chen, Boxing, Kuhn, Roland, Foster, George, Cherry, Colin, & Huang, Fei. 2016. Bilingual
Methods for Adaptive Training Data Selection for Machine Translation. Pages 93–103
of: Proceedings of the Association for Machine Translation in the Americas. AMTA ’16.

Chen, Stanley F., & Goodman, Joshua. 1996. An Empirical Study of Smoothing Tech-
niques for Language Modeling. Pages 310–318 of: Proceedings of the 34th annual meet-
ing on Association for Computational Linguistics. ACL ’96. Morristown, NJ, USA:
Association for Computational Linguistics.

Chen, Stanley F, Beeferman, Douglas, & Rosenfeld, Ronald. 1998. Evaluation Metrics
for Language Models. Pages 275–280 of: Proceedings of the DARPA Broadcast News
Transcription and Understanding Workshop.

Chen, Tao, & Kan, Min-Yen. 2013. Creating a Live, Public Short Message Service Corpus:
The NUS SMS Corpus. Language Resources and Evaluation, 47(2), 299–335.

Cooper, William E. 1983. Cognitive Aspects of Skilled Typewriting. Springer.
Creutz, Mathias, Virpioja, Sami, & Kovaleva, Anna. 2009. Web Augmentation of Lan-

guage Models for Continuous Speech Recognition of SMS Text Messages. Pages 157–165
of: Proceedings of the 12th Conference of the European Chapter of the Association for
Computational Linguistics. EACL ’09. Stroudsburg, PA, USA: Association for Compu-
tational Linguistics.

Darragh, John J., Witten, Ian H., & James, Mark L. 1990. The Reactive Keyboard: A
Predictive Typing Aid. Computer, 23(11), 41–49.

De Mulder, Wim, Bethard, Steven, & Moens, Marie-Francine. 2015. A Survey on the
Application of Recurrent Neural Networks to Statistical Language Modeling. Computer
Speech & Language, 30(1), 61–98.

Devlin, Jacob, Zbib, Rabih, Huang, Zhongqiang, Lamar, Thomas, Schwartz, Richard M, &
Makhoul, John. 2014. Fast and Robust Neural Network Joint Models for Statistical Ma-
chine Translation. Pages 1370–1380 of: Proceedings of the Conference on Computational
Linguistics. ACL ’14. Baltimore, USA: Association for Computational Linguistics.

38 K. Vertanen and P.O. Kristensson

Fowler, Andrew, Partridge, Kurt, Chelba, Ciprian, Bi, Xiaojun, Ouyang, Tom, & Zhai,
Shumin. 2015. Effects of Language Modeling and Its Personalization on Touchscreen
Typing Performance. Pages 649–658 of: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. CHI ’15. New York, NY, USA: ACM.

Fu, Bin, Lin, Jialiu, Li, Lei, Faloutsos, Christos, Hong, Jason, & Sadeh, Norman. 2013.
Why People Hate Your App: Making Sense of User Feedback in a Mobile App Store.
Pages 1276–1284 of: Proceedings of the 19th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. KDD ’13. New York, NY, USA: ACM.

Gao, Jianfeng, Goodman, Joshua, Li, Mingjing, & Lee, Kai-Fu. 2002. Toward a Unified
Approach to Statistical Language Modeling for Chinese. ACM Transactions on Asian
Language Information Processing (TALIP), 1(1), 3–33.

Gillick, Laurence, & Cox, Stephen J. 1989. Some Statistical Issues in the Comparison of
Speech Recognition Algorithms. Pages 532–535 of: Proceedings of the IEEE Conference
on Acoustics, Speech, and Signal Processing. ICASSP ’89.

Goodman, Joshua, Venolia, Gina, Steury, Keith, & Parker, Chauncey. 2002. Language
Modeling for Soft Keyboards. Pages 419–424 of: Proceedings of the Eighteenth National
Conference on Artificial Intelligence. Menlo Park, CA, USA: American Association for
Artificial Intelligence.

Grinter, Rebecca, & Eldridge, Margery. 2003. Wan2Tlk?: Everyday Text Messaging. Pages
441–448 of: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. CHI ’03. New York, NY, USA: ACM.

Han, Bo, & Baldwin, Timothy. 2011. Lexical Normalisation of Short Text Messages:
Makn Sens a #Twitter. Pages 368–378 of: Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Human Language Technologies - Volume
1. HLT ’11. Stroudsburg, PA, USA: Association for Computational Linguistics.

Hayes, Andrew F., & Krippendorff, Klaus. 2007. Answering the Call for a Standard
Reliability Measure for Coding Data. Communication Methods and Measures, 1(1),
77–89.

Heafield, Kenneth. 2011. KenLM: Faster and Smaller Language Model Queries. Pages
187–197 of: Proceedings of the EMNLP 2011 Sixth Workshop on Statistical Machine
Translation.

Hunt, Melvyn J. 1990. Figures of Merit for Assessing Connected-word Recognisers. Speech
Communication, 9(4), 329–336.

Kalman, Yoram M, & Gergle, Darren. 2009. Letter and punctuation mark repeats as
cues in computer-mediated communication. In: 95th annual meeting of the National
Communication Association in Chicago, IL.

Kamvar, Maryam, & Baluja, Shumeet. 2007. Deciphering Trends in Mobile Search. IEEE
Computer, 40(8), 58–62.

Klimt, Bryan, & Yang, Yiming. 2004. The Enron Corpus: A New Dataset for Email
Classification Research. Pages 217–226 of: Proceedings of the European Conference on
Machine Learning.

Koehn, Philipp. 2004. Statistical Significance Tests for Machine Translation Evaluation.
Pages 388–395 of: Proceedings of the 2004 Conference on Empirical Methods in Natural
Language Processing. Barcelona, Spain: Association for Computational Linguistics.

Kombrink, Stefan, Mikolov, Tomas, Karafiát, Martin, & Burget, Lukas. 2011. Recurrent
Neural Network Based Language Modeling in Meeting Recognition. Pages 2877–2880
of: Proceedings of INTERSPEECH, vol. 11.

Kristensson, Per Ola, & Vertanen, Keith. 2012. Performance Comparisons of Phrase Sets
and Presentation Styles for Text Entry Evaluations. Pages 29–32 of: Proceedings of the
2012 ACM International Conference on Intelligent User Interfaces. IUI ’12. New York,
NY, USA: ACM.

Kukich, Karen. 1992. Techniques for Automatically Correcting Words in Text. ACM
Computing Surveys, 24(4), 377–439.

Mining, Analyzing, and Modeling Mobile Text 39

Levenshtein, Vladimir I. 1966. Binary Codes Capable of Correcting Deletions, Insertions,
and Reversals. Pages 707–710 of: Soviet Physics Doklady, vol. 10.

Ling, Rich. 2005. The Sociolinguistics of SMS: An Analysis of SMS Use by a Random
Sample of Norwegians. Pages 335–349 of: Mobile communications. Springer.

Ling, Rich. 2007. The Length of Text Messages and the Use of Predictive Texting: Who
Uses It and How Much Do They Have to Say? TESOL, College of Arts and Sciences,
American University.

Lui, Marco, & Baldwin, Timothy. 2012. langid.py: An Off-the-shelf Language Identification
Tool. Pages 25–30 of: Proceedings of the ACL 2012 System Demonstrations. ACL ’12.
Stroudsburg, PA, USA: Association for Computational Linguistics.

Maalej, W., & Nabil, H. 2015. Bug Report, Feature Request, or Simply Praise? On
Automatically Classifying App Reviews. Pages 116–125 of: Proceedings of the 2015
IEEE 23rd International Requirements Engineering Conference (RE).

Mikolov, Tomas, Karafiát, Martin, Burget, Lukás, Cernocký, Jan, & Khudanpur, San-
jeev. 2010. Recurrent Neural Network Based Language Model. Pages 1045–1048 of:
Proceedings of INTERSPEECH.

Mikolov, Tomas, Deoras, Anoop, Kombrink, Stefan, Burget, Lukas, & Cernockỳ, Jan. 2011.
Empirical Evaluation and Combination of Advanced Language Modeling Techniques.
Pages 605–608 of: Proceedings of INTERSPEECH.

Moore, Robert C., & Lewis, William. 2010. Intelligent Selection of Language Model Train-
ing Data. Pages 220–224 of: Proceedings of the ACL 2010 Conference Short Papers.
ACLShort ’10. Stroudsburg, PA, USA: Association for Computational Linguistics.

Munro, Robert. 2011. Subword and Spatiotemporal Models for Identifying Actionable
Information in Haitian Kreyol. Pages 68–77 of: Proceedings of the Fifteenth Conference
on Computational Natural Language Learning. CoNLL ’11. Stroudsburg, PA, USA:
Association for Computational Linguistics.

Munro, Robert, & Manning, Christopher D. 2010. Subword Variation in Text Message
Classification. Pages 510–518 of: Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the Association for Computational Lin-
guistics. Association for Computational Linguistics.

Munro, Robert, & Manning, Christopher D. 2012. Short Message Communications: Users,
Topics, and In-language Processing. In: Proceedings of the 2nd ACM Symposium on
Computing for Development. ACM.

Neviarouskaya, Alena, Prendinger, Helmut, & Ishizuka, Mitsuru. 2007. Textual Affect
Sensing for Sociable and Expressive Online Communication. Pages 218–229 of: Pro-
ceedings of the 2nd International Conference on Affective Computing and Intelligent
Interaction. ACII ’07. Berlin, Heidelberg: Springer-Verlag.

O’Day, Daniel R., & Calix, Ricardo. 2013. Text Message Corpus: Applying Natural Lan-
guage Processing to Mobile Device Forensics. Pages 1–6 of: Proceedings of the 2013
IEEE International Conference on Multimedia and Expo Workshops. ICMEW ’13.

Paek, Tim, & Hsu, Bo-June (Paul). 2011. Sampling Representative Phrase Sets for Text
Entry Experiments: A Procedure and Public Resource. Pages 2477–2480 of: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. CHI ’11. New
York, NY, USA: ACM.

Pauls, Adam, & Klein, Dan. 2011. Faster and Smaller N-gram Language Models. Pages
258–267 of: Proceedings of the 49th Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies - Volume 1. HLT ’11. Stroudsburg,
PA, USA: Association for Computational Linguistics.

Read, Jonathon. 2005. Using Emoticons to Reduce Dependency in Machine Learning
Techniques for Sentiment Classification. Pages 43–48 of: Proceedings of the ACL Stu-
dent Research Workshop. ACLstudent ’05. Stroudsburg, PA, USA: Association for
Computational Linguistics.

40 K. Vertanen and P.O. Kristensson

Renals, Steve. 2010. Recognition and Understanding of Meetings. Pages 1–9 of: Human
Language Technologies: The 2010 Annual Conference of the North American Chapter
of the Association for Computational Linguistics. HLT ’10. Stroudsburg, PA, USA:
Association for Computational Linguistics.

Riordan, Monica A, & Kreuz, Roger J. 2010. Cues in Computer-mediated Communication:
A corpus Analysis. Computers in Human Behavior, 26(6), 1806–1817.

Rosenfeld, Ronald. 2000. Two Decades Of Statistical Language Modeling: Where Do We
Go From Here? Pages 1270–1278 of: Proceedings of the IEEE, vol. 88.

Rough, Daniel, Vertanen, Keith, & Kristensson, Per Ola. 2014. An Evaluation of Dasher
with a High-Performance Language Model as a Gaze Communication Method. Pages
169–176 of: Proceedings of the 2014 International Working Conference on Advanced
Visual Interfaces. AVI ’14. New York, NY, USA: ACM.

Schnoebelen, Tyler. 2012. Do You Smile with Your Nose? Stylistic Variation in Twitter
Emoticons. University of Pennsylvania Working Papers in Linguistics, 18(2), 14.

Shaoul, Cyrus, & Westbury, Chris. 2009. A USENET Corpus (2005-2009). http://www.

psych.ualberta.ca/~westburylab/downloads/usenetcorpus.download.html. Uni-
versity of Alberta, Edmonton, AB.

Stolcke, Andreas. 1998. Entropy-based Pruning of Backoff Language Models. Pages 270–
274 of: Proceedings of DARPA Broadcast News Transcription and Understanding Work-
shop.

Stolcke, Andreas. 2002. SRILM – An Extensible Language Modeling Toolkit. Pages 901–
904 of: Proceedings of INTERSPEECH.

Stolcke, Andreas, Yuret, Deniz, & Madnani, Nitin. 2010. SRILM-FAQ - Frequently
Asked Questions About SRI LM Tools. http://www.speech.sri.com/projects/srilm/
manpages/srilm-faq.7.html.

Stolcke, Andreas, Zheng, Jing, Wang, Wen, & Abrash, Victor. 2011. SRILM at Sixteen:
Update and Outlook. In: Proceedings of IEEE Automatic Speech Recognition and Un-
derstanding Workshop. ASRU ’11, vol. 5.

Strik, Helmer, Cucchiarini, Catia, & Kessens, Judith M. 2001. Comparing the Performance
of Two CSRs: How to Determine the Significance Level of the Differences. Pages 2091–
2094 of: Proceedings of INTERSPEECH.

Tagg, Caroline. 2009. A Corpus Linguistics Study of SMS Text Messaging. Ph.D. thesis,
University of Birmingham, Birmingham, UK.

Thelwall, Mike, Buckley, Kevan, Paltoglou, Georgios, Cai, Di, & Kappas, Arvid. 2010.
Sentiment strength detection in short informal text. Journal of the American Society
for Information Science and Technology, 61(12), 2544–2558.

Tong, Xiang, & Evans, David A. 1996. A Statistical Approach to Automatic OCR Error
Correction in Context. Pages 88–100 of: Proceedings of the Fourth Workshop on Very
Large Corpora.

Vasa, Rajesh, Hoon, Leonard, Mouzakis, Kon, & Noguchi, Akihiro. 2012. A Preliminary
Analysis of Mobile App User Reviews. Pages 241–244 of: Proceedings of the 24th Aus-
tralian Computer-Human Interaction Conference. OzCHI ’12. New York, NY, USA:
ACM.

Vertanen, Keith, & Kristensson, Per Ola. 2011a. The Imagination of Crowds: Conversa-
tional AAC Language Modeling using Crowdsourcing and Large Data Sources. Pages
700–711 of: Proceedings of the 2011 Conference on Empirical Methods in Natural Lan-
guage Processing. Edinburgh, Scotland, UK: Association for Computational Linguistics.

Vertanen, Keith, & Kristensson, Per Ola. 2011b. A Versatile Dataset for Text Entry
Evaluations Based on Genuine Mobile Emails. Pages 295–298 of: Proceedings of the
13th International Conference on Human Computer Interaction with Mobile Devices
and Services. MobileHCI ’11. New York, NY, USA: ACM.

Vertanen, Keith, & Kristensson, Per Ola. 2014. Complementing Text Entry Evaluations
with a Composition Task. ACM Transactions on Computer-Human Interaction, 21(2),
8:1–8:33.

http://www.psych.ualberta.ca/~westburylab/downloads/usenetcorpus.download.html
http://www.psych.ualberta.ca/~westburylab/downloads/usenetcorpus.download.html
http://www.speech.sri.com/projects/srilm/manpages/srilm-faq.7.html
http://www.speech.sri.com/projects/srilm/manpages/srilm-faq.7.html

Mining, Analyzing, and Modeling Mobile Text 41

Vertanen, Keith, Memmi, Haythem, Emge, Justin, Reyal, Shyam, & Kristensson, Per Ola.
2015. VelociTap: Investigating Fast Mobile Text Entry Using Sentence-Based Decoding
of Touchscreen Keyboard Input. Pages 659–668 of: Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems. CHI ’15. New York, NY, USA:
ACM.

Vertanen, Keith, Fletcher, Crystal, Gaines, Dylan, Gould, Jacob, & Kristensson, Per Ola.
2018. The Impact of Word, Multiple Word, and Sentence Input on Virtual Keyboard
Decoding Performance. Pages 626:1–626:12 of: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. CHI ’18. New York, NY, USA: ACM.

Walther, Joseph B., & D’Addario, Kyle P. 2001. The Impacts of Emoticons on Message In-
terpretation in Computer-Mediated Communication. Social Science Computer Review,
19(3), 324–347.

Ward, David J., Blackwell, Alan F., & MacKay, David J. C. 2000. Dasher - a Data Entry
Interface Using Continuous Gestures and Language Models. Pages 129–137 of: Proceed-
ings of the 13th Annual ACM Symposium on User Interface Software and Technology.
UIST ’00. New York, NY, USA: ACM.

Wobbrock, Jacob O. 2007. Measures of Text Entry Performance. Chap. 3, pages 47–74 of:
MacKenzie, I. Scott, & Tanaka-Ishii, Kumiko (eds), Text Entry Systems. San Francisco,
California, USA: Morgan Kauffman.

Yao, Kaisheng, Zweig, Geoffrey, Hwang, Mei-Yuh, Shi, Yangyang, & Yu, Dong. 2013. Re-
current Neural Networks for Language Understanding. Pages 2524–2528 of: Proceedings
of INTERSPEECH.

	Introduction
	Related Work
	Contributions

	Data Collection
	Parsing Text and Host Filtering
	Focused Web Crawler
	Groupings of Posts
	Independent Forum Dataset

	Analysis of Mobile Text
	Per-Post Analysis
	Character-Level Analysis
	Per-Sentence Analysis
	Spelling and Typing Errors

	Language Modeling Experiments
	Training Sets
	Test Sets
	Language Model Training
	Amount of Training Data
	Mixture Model and Model Order
	Effect of Automatic Correction of Training Data
	Pruning to Reduce Model Size

	Touchscreen Keyboard Experiments
	Touchscreen Typing Test Set
	Decoder and Experimental Procedure
	Metrics
	Type of Training Data
	Amount of Training Data
	Model Pruning
	Word Predictions

	Discussion
	Contributions
	Limitations and Future Work

	Conclusions
	Acknowledgements
	References

