
 

Brain stimulation reveals neural 

mechanisms of stereopsis 

 

 

 

 

 

Lukas Fabian Schaeffner 

Fitzwilliam College 

University of Cambridge 

 

 

 

A thesis submitted for the degree of 

Doctor of Philosophy 

September 2018 

 

 



  



Acknowledgements 

Firstly, I would like to thank the Department of Psychology and Fitzwilliam College for 

providing an outstanding environment in which to work, learn and live. I have had the 

opportunity to interact with so many wonderful people on a daily basis and have learnt more 

from this than any thesis could ever describe. 

I want to thank everyone in the Adaptive Brain Lab, Polytimi Frangou, Vasilis Karlaftis, Nuno 

Reis Goncalves, Reuben Rideaux, Joseph Giorgio, Monica Gates, Elisa Zamboni, Seb 

Wride, Liam Doherty, Kathy Purdy, Avraam Papadopoulos and Ke Jia for their support, good 

advice and friendship over the last four years.  

I want to say thank you to everyone in the PRISM network, Zarko Milojevic, Sabrina 

Hansmann-Roth, Jan Jaap van Assen, Carlos Jorge Zubiaga Peña, Dicle Dövencioğlu, 

Tatiana Kartashova, Fan Zhang, Thomas Maier and Irene Caprara, for their support and 

friendship. I also want to thank the senior scientists of the network, Roland Fleming, Karl 

Gegenfurtner, Peter Janssen, Pascal Mamassian and Sylvia Pont, for providing a wonderful 

environment in which we could all learn and grow during our PhDs. 

I also want to thank Tristan Bekinschtein for advising me during my PhD and Valdas Noreika 

for teaching me on the matter of brain stimulation research. 

A special thank you goes to Elizabeth Michael without whom the third chapter of my thesis 

would not have been possible. I am very grateful for your invaluable help with neuroimaging 

and patience with my questions. 

I want to thank Julie Harris and Jon Simons for agreeing to read and discuss this lengthy 

manuscript with me. 

I would like to thank the European Commission (FP7, PRISM) and the Wellcome Trust for 

funding my doctorate degree. 

Finally, I want to thank Katrin Fischer for her support, inspiration and reassurance. Thank 

you for being part of this journey. 

 

 

 

 



  



Preface 

My time as a graduate student at the University of Cambridge was full of intellectual 

stimulation. In the Adaptive Brain Lab, a had the opportunity to research the workings of 

human vision with a variety of different neuroscience research techniques such as magnetic 

resonance imaging, electroencephalography and transcranial magnetic stimulation. I had the 

privilege to work on fascinating topics of stereopsis. Specifically, I investigated how the brain 

uses signals from the left and right eye to estimate visual depth. This is the central point of 

this thesis.  

The contents of the thesis result from my own work, guided by my supervisor Dr. Andrew 

Welchman. I have not submitted any parts of the thesis for any other degree in the University 

of Cambridge or any other institution. The thesis does not exceed the word limit established 

by the Degree Committee for the Faculty of Biology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  



Abstract 

Stereopsis is critical for interaction with our environment. However, binocular disparity in 

natural images is often ambiguous and this makes it difficult to establish a binocular 

correspondence solution. In my thesis, I focus on both the challenges of this problem and 

solutions that the brain applies. To study brain function, I use Transcranial Magnetic 

Stimulation (TMS) which allows me to causally relate induced changes in neural activity with 

changes in depth perception. This way I can map out neural mechanisms of stereopsis 

within the visual cortex. 

As a first step, I conducted a proof of concept study to confirm where in the visual cortex 

TMS can be used to study perception. I systematically mapped out where in the visual cortex 

TMS triggers self-propagating, perceptually noticeable neural activation. I related this to the 

retinotopic organisation and the location of object- and motion-selective areas, identified by 

functional Magnetic Resonance Imaging. My work confirms that TMS can trigger 

perceptually significant neural activation in early and dorsal visual areas. 

In my second chapter, I investigated how incoherent binocular disparity challenges 

stereopsis. As disparity coherence is reduced it becomes increasingly challenging to 

establish global correspondence and consequently observers struggle to perceive depth. 

Interestingly, this problem is less severe when images contain a mixture of bright and dark 

features (mixed contrast polarity). By locating where in the brain disparity processing 

benefits from mixed contrast polarity, I can infer where incoherent disparity might challenge 

mechanisms of stereopsis. I applied TMS during discrimination of incoherent disparity in 

images with mixed or single contrast polarity. I found that stimulation over V1 differentially 

affects perception of mixed and single polarity stimuli. My findings show that mechanisms of 

stereopsis in early visual cortex process mixed and single polarity differently and suggest 

these mechanisms are challenged by incoherent disparity. 

In my final chapter, I investigated the role of parietal cortex in the processing of incoherent 

disparity information. Findings in both macaque monkeys and human observers suggest that 

the dorsal visual cortex is particularly involved in the processing of incoherent disparity 

signals. Here, I tested the role of the posterior parietal cortex in human observers. I used 

brain stimulation to suppress synaptic transmission in parietal cortex and recorded 

electroencephalography during incoherent disparity processing. Disrupting parietal cortex 

caused changes in early, disparity responses in visual cortex. This suggests that parietal 

cortex provides top-down influence to the visual cortex relevant to incoherent disparity 

processing. 
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1. Introduction 

1.1 Binocular vision 

Advantages of front-facing eyes 

Visual perception allows animals to form a sensory representation of their environment using 

a given spectrum of light which is reflected by the natural world. Reflected light is captured 

by an eye’s pupil and directed on the retina at the back of the eye. Photoreceptors in the 

retina react to the impacting photons of light and convert impact frequency to electrical 

signals which are interpreted by the nervous system to construct perception. 

Most prey animals have laterally positioned eyes with minimal overlap between the view of 

the eyes (Allman, 2000). This way the retinae capture the maximum amount of the 

environment while sampling the minimum amount of redundant information. Such an 

arrangement of the eyes allows an animal to detect changes in its environment at up to 360° 

radius (McFarlane, 1976; J. H. Prince, 1970). This ability is useful to spot approaching 

predators. 

In contrast, most predators have front-facing eyes. There is substantial overlap between the 

fields of view of the two eyes at a cost of panoramic vision. This arrangement has proven 

successful because front-facing eyes capture redundant visual information allowing the 

animal to use binocular disparity (differences in the two retinal images) to estimate distances 

between elements in its environment. This ability is useful for a wide range of skills such as 

identifying and capturing prey (Cartmill, 2005), grasping fine branches (Martin, 1990; Watt & 

Bradshaw, 2002), arboreal acrobatics (Le Gros Clark, 1934), breaking camouflage (Bredfeldt 

& Cumming, 2006; Julesz, 1971), overcoming visual occlusions (Changizi & Shimojo, 2008) 

or estimating surface reflectance (Blake & Bülthoff, 1990). 

 

Geometry of binocular vision 

Front-facing eyes are horizontally separated and therefore view the world from slightly 

different vantage points. When an observer attends to a point in their environment their eyes 

converge on this point so that the point projects on the fovea, where vision is most acute 

(Whittaker & Cummings, 1990). This is shown as fixation F in Fig. 1.1. The projections of 



2 
 

any other point P falling onto the left and right retinae will be displaced relative to the fovea 

in a way that depends on the distance between P and the observer.  

 

 

Figure 1.1: The geometry of stereopsis. A point (P) in the environment often projects onto 

non-corresponding locations on the two retinae. The difference of the resulting angles (α – β) 

between the point projections and fixation (F) is called binocular disparity.  

 

The difference in angular displacement between the projections of P and F is defined as 

absolute binocular disparity. Here, I refer to the angles between the projections of P and F 

onto the left and right retinae as α and β. Absolute disparity is then given by δ = α – β. 

Although absolute disparity depends on the position of P, it also changes as a function of F. 

This information can, therefore, only be used to extrapolate the distance between P and F. 

To find the distance between P and the observer, one needs to know the distance between 

the observer and the point at which fixation is maintained. Convergent eye movements and 

pupil accommodation could be used for this purpose. 

Points that project to corresponding locations in the left and right retinae form a surface 

called the horopter. All points in the horopter have zero disparity because α = β. The Vieth-

Müller circle depicts an approximation of the horopter (see Fig. 1.2). Non-zero disparities 

can be grouped into crossed or uncrossed. Crossed disparities have projection lines that 

cross in front of the point of fixation and greater overall temporal displacements on the 

retina. Points with crossed disparity are therefore closer to the observer in relation to the 

fixation point. Uncrossed disparities’ projection lines, on the other hand, do not cross in front 
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of fixation and have greater overall nasal displacements. Points with uncrossed disparity are 

thus further away than the fixation point. The relative disparity between point C with crossed 

disparity and point U with uncrossed disparity is defined as the difference between their 

absolute disparities δCU = δC - δU. This can inform an observer about the distance between U 

and C.  

 

 

Figure 1.2: Crossed and uncrossed disparity. Example points with crossed (C) and 

uncrossed (U) disparity. Points with crossed disparity predominantly project on temporal 

retinal locations, relative to fixation (F), and are perceived as near. Points with uncrossed 

disparity predominantly project on nasal retinal locations, relative to F, and are perceived as 

far. Points on the horopter, which is approximated by the Vieth-Mueller circle, fall on 

corresponding locations in the left and right retina and therefore have zero disparity. Adapted 

from Howard and Rogers (2002). 

 

Stereopsis 

In the previous section, I have described how two eyes with overlapping visual fields give 

rise to binocular disparity. This disparity could, in theory, be used by the observer to resolve 

the visual depth of the environment. However, do observers actually use this information for 

depth perception? 

The first experiment which addressed this question was conducted by Charles Wheatstone 

(Wheatstone, 1838). He invented the first stereoscope to present drawings of a scene from 
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two horizontally separated perspectives to the left and right eye. Observers were able to 

perceive the depth structure of the objects depicted in the scene drawing. Heinrich Dove 

showed that this stereopsis could not be driven by the vergence of eye movements or by 

pupil accommodation because stereopsis could occur quicker than voluntary eye 

movements (Dove, 1841, 1860). Further, Bela Julesz was able to show that binocular 

disparity alone is sufficient to produce perception of depth (Julesz, 1964). He created a new 

type of stimulus called a random dot stereogram (RDS) in which binocular disparity can be 

introduced while keeping all other visual information constant (see Fig. 1.3). Observers can 

perceive depth structures in such stimuli based purely on binocular information. This 

confirms that binocular disparity is used by observers to construct depth perception. 

 

 

Figure 1.3: The first random-dot stereogram. Invented by Bela Julesz. Adapted from 

Julesz (1964). 

 

Observers are much more sensitive to relative disparities compared to absolute disparity, 

which only allows for coarse depth judgements (Blakemore, 1970; Westheimer, 1979). At 

short viewing distances, observers can discriminate disparity differences of up to 5 arcsec at 

the fovea, which corresponds to 25 µm of depth difference (about the width of a human hair) 

(Ponce & Born, 2008). This smallest distinguishable depth difference is ultimately defined by 

the smallest disparity that can be resolved on the retina. The binocular disparity produced by 

a given depth difference varies as the inverse square of the viewing distance, which means 

that stereopsis becomes less acute with longer viewing distances. 
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Stereopsis when disparity signals are noisy 

When first discussing the RDS, Julesz commented on the striking process of filling-in 

through which observers perceive smooth surfaces in RDSs, which actually consist of 

uneven clouds of dots (Julesz, 1964). However, he also noted that observers maintain a high 

sensitivity for sharp disparity differences, which breaks the perception of smooth, coherent 

surfaces (Julesz, 1971). This makes sense because in a natural environment objects tend to 

have much more complex, variable depth profiles (e.g. the branches of a tree spreading in 

all directions). For this reason, psychophysicists normally measure the depth acuity of 

human observers with tasks which require observers to discriminate disparity differences in 

the form of a disparity-based step edge in a RDS (see Fig. 1.4A). When depth information is 

coherent (see Fig. 1.4B), all dots in the stereogram can be considered a part of a reliable 

depth signal. In principle, the observer can solve this task by sampling only the disparity of 

one point on either side of the step edge.  

To make the task more challenging for the observer, the experimenter can reduce the 

coherence of the disparity signal. In Fig. 1.4C the position of all dots in the step edge is 

shifted by a disparity sampled from a normal distribution. All dot positions averaged together 

(dashed line) accurately describe the position of the step edge. However, individual dots no 

longer carry reliable information of the step edge position. The strategy of an ideal observer 

would be to integrate the disparity of all dots to make a decision. In Fig. 1.4D a given 

proportion of dots are randomly repositioned. These dots no longer carry reliable depth 

information of the step edge (crossed out), while dots which remain in their position still 

signal the step edge. An ideal observer should try to identify the position of the step edge by 

locating the depth where most dots are located, while ignoring all other dots. Such a task 

manipulation is called a signal-in-noise task because noise, a random shift in dot position, 

has been added to a signal, the step edge position, which needs to be detected by the 

observer for successful depth discrimination. For the remainder of this thesis, I will refer to 

these random dot position shifts as ‘disparity noise’ and to a disparity signal with added 

noise as a ‘noisy disparity signal’. 
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Figure 1.4: Coherent and incoherent disparity discrimination. A) Task which requires an 

observer to discriminate a disparity based step edge in a RDS. In this example an observer 

is asked to discriminate which surface is closer. B) Example where disparity information is 

coherent. All dots reliably signal the step edge position. C) and D) illustrate examples with 

noisy disparity information. In C) the position all dots in the step edge is shifted by a disparity 

sampled from a normal distribution. In D) a given proportion of dots are randomly 

repositioned (crossed out). 

 

An interesting question is whether stereopsis works equally well for scenes with a noisy 

disparity signal. As it turns out, stereopsis becomes increasingly inefficient when disparity 

information gets noisy and the ability of an observer to distinguish fine depth differences 

suffers greatly. For a noisy disparity signal, as shown in Fig. 1.4C (with 150 dots, a 23-120 

arcsec step edge, and disparity noise sampled from a 2-4 arcmin SD normal distribution), 

human stereo acuity equals the performance of an ideal observer who uses only 2% of the 

dots in the RDS (J. M. Harris & Parker, 1992). This reveals a striking limitation of stereopsis 

which is surprising given that the visual system has evolved in an environment of noisy 

depth scenes which it needs to navigate. 

There are challenges of processing disparity information. A noisy disparity signal might 

increase these challenges which could explain this inefficiency of stereopsis. In order to 

compute binocular disparity, an observer first needs to establish correspondence between 

visual features present in the left and right retinal image. This is known as the stereo-

correspondence problem. For smooth depth structures it is fairly trivial to find a global 

solution while for noisy disparity structures this task becomes much harder due to the 

increasing probability of false matches. In Chapter 1.2, I will introduce mechanisms with 

which the visual brain potentially establishes stereo correspondence and how this process 

could be challenged by noisy disparity information. 

Alternatively, the visual system might struggle to combine the noisy disparity signal into an 

unambiguous depth percept. At a later stage of disparity processing, the observer needs to 
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‘read out’ the different, correctly detected disparities and produce an unambiguous depth 

map of the viewed scene. As described earlier, observers can adopt different strategies, 

such as averaging noisy disparities or ignoring some visual features identified to contain 

noisy disparity, to deal with different types of disparity noise. In Chapter 1.3, I will discuss 

the crucial role of higher visual brain areas in stereopsis, where such strategies may be 

applied. 

 

The mixed polarity benefit 

When Harris and Parker (1995) investigated human depth acuity for noisy disparity signals 

they made a surprising observation: observers’ depth perception is better for noisy binocular 

disparity when stimuli contain a mixture of bright and dark visual features compared to 

stimuli containing only one feature colour. This phenomenon has been called the mixed 

polarity benefit. Interestingly, this benefit only arises for stimuli that contain a noisy disparity 

signal (see Fig 1.4C), but not in tasks that use a coherent disparity signal (see Fig 1.4B). 

Therefore, answering how this perceptual benefit arises might give us a better understanding 

of how noisy disparity challenges the visual system. Read, Vaz, and Serrano-Pedraza 

(2011) were able to replicate the polarity benefit by de-correlating smooth disparity surfaces 

in a RDS. This stimulus manipulation involves randomly replacing a dot in one stereo image 

which leaves a pair of unmatchable dots in the left and right stereo image. Stimulus de-

correlation should predominantly challenge early mechanisms of stereopsis which establish 

stereo correspondence. This is because this task manipulation only reduces binocular image 

correlation but does not introduce fusible disparity noise. Additionally, established 

computational models of disparity processing in early visual cortex, such as the binocular 

energy model (Read & Cumming, 2018) or the binocular neural network (Goncalves & 

Welchman, 2017), can produce such a mixed polarity benefit. These findings suggest that 

the mixed polarity benefit arises in the early visual cortex and is tied to brain mechanisms 

which establish stereo-correspondence. However, thus far, there has not been any 

conclusive evidence to suggest where in the brain disparity processing benefits from mixed 

contrast polarity. In Chapter 2, I will investigate where in the visual cortex sensory 

processing benefits from the availability of mixed contrast polarity. I use non-invasive brain 

stimulation to change neural activity in different areas of the visual cortex during noisy 

disparity processing. A change in this perceptual phenomenon following stimulation will 

suggest that the mixed polarity benefit arises in the stimulated brain area. 
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1.2 Disparity processing in primary visual cortex 

In the previous section, I described how researchers study stereopsis. I discussed that 

stimuli that contain only binocular disparity information give rise to the perception of depth, 

which shows that observers do in fact use disparity for stereopsis. Further, I reported that 

noise in the disparity signal challenges stereopsis, and I described strategies that the 

observer might use to overcome these challenges. To understand how the visual nervous 

system within an observer processes binocular disparity, we need to investigate how 

neurons in the brain behave when incoming depth information is being processed. In the 

following section, I will discuss how neurons in the primary visual cortex respond to binocular 

disparity, and how they could extract visual depth information from incoming disparity 

information. Additionally, I will discuss how these neurons could be challenged with the task 

of processing noisy disparity. 

 

Neural encoding of binocular disparity 

In order to process binocular disparity, a neuron must have access to visual information from 

both eyes. Binocular neurons are cells that respond to incoming light in both eyes (Hubel & 

Wiesel, 1959, 1962). Incoming visual information is largely separated by eye until it reaches 

the primary visual cortex (V1). V1 is the first area in the visual system with binocular 

neurons; it is therefore assumed that stereopsis starts in V1. We distinguish two types of 

binocular neurons in primary visual cortex which are relevant for stereopsis (Hubel & Wiesel, 

1962, 1968): simple cells have clearly defined excitatory and inhibitory subregions for dark 

and light in their receptive fields. Complex cells, on the other hand, do not seem to be 

modulated by the precise position of the stimuli within their receptive field. The receptive 

fields for these binocular neurons are horizontally offset and therefore respond optimally to 

disparity between the two retinal images (Barlow, Blakemore, & Pettigrew, 1967; Nikara, 

Bishop, & Pettigrew, 1968; Pettigrew, Nikara, & Bishop, 1968; Poggio & Fischer, 1977; 

Poggio & Talbot, 1981). Such cells have the potential to encode binocular disparity and 

support stereopsis. 

Simple cells are the first binocular neurons along the stream of the visual system (Anzai, 

Ohzawa, & Freeman, 1999b; Cumming, 1997; Ohzawa, DeAngelis, & Freeman, 1990). 

These neurons only respond to a given portion of the field of view called their receptive field 

(Anzai, Ohzawa, & Freeman, 1997, 1999a; Ohzawa et al., 1990). They encode disparity via 

two different mechanisms: some simple cells encode binocular disparity via a horizontal 
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position shift of their receptive fields (Ferster, 1981; von der Heydt, Adorjani, Hänny, & 

Baumgartner, 1978) (see Fig. 1.5A). These cells respond optimally to offset regions in the 

visual fields of the two eyes. Other simple cells encode disparity through a phase shift in 

their response profiles (Anzai et al., 1997, 1999a, 1999b; DeAngelis, Ohzawa, & Freeman, 

1991; S. J. D. Prince, Cumming, & Parker, 2002; Tsao, Conway, & Livingstone, 2003) (see 

Fig. 1.5B). These cells respond optimally to offset regions of the same receptive field in both 

eyes. But because simple cells only respond to a given portion of the visual field they are not 

sufficient to support global stereopsis. 

 

 

Figure 1.5: Binocular receptive fields with position and phase shifts. A) Positional 

disparity: Identical receptive fields in the left and right eye are horizontally shifted. B) Phase 

disparity: Receptive fields in the left and right eye are situation in the same location of the 

visual field, but have different response functions, which can be related through a shift in the 

phase parameter of a Gabor model.  

 

Complex cells, on the other hand, are invariant to the stimulus position within their receptive 

field and the stimulus contrast polarity (black or white) (Ohzawa et al., 1990). They are 

therefore better equipped to be disparity detectors. They receive excitatory input of simple 

cells for a preferred disparity (Anzai, Ohzawa, & Freeman, 1999c; Ohzawa et al., 1990; 

Ohzawa, DeAngelis, & Freeman, 1997; Ohzawa & Freeman, 1986). Complex cells have very 

diverse tuning properties: some are tuned to specific disparities while others are tuned to a 

range of crossed or uncrossed disparity (Poggio & Fischer, 1977; Poggio, Gonzalez, & 

Krause, 1988; S. J. D. Prince et al., 2002). They cover a wide range of binocular disparities 

and a system that pools their responses could theoretically achieve human-like stereo acuity 

(Lehky, Pouget, & Sejnowski, 1990; Lehky & Sejnowski, 1990). Additionally, it has been 

shown that complex cells signal binocular disparity in RDSs (Poggio et al., 1988; Poggio & 

Poggio, 1984), suggesting that complex cells in V1 play a critical role in stereopsis. 

However, human depth perception does not always match the responses of complex cells. 
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Stereo images can be manipulated in such a way that every white feature in the left eye has 

a black matching feature in the right eye. This is called an anti-correlated stereogram. Such 

stereograms do not elicit a perception of depth for human observers, yet complex cells will 

still exhibit selectivity for anti-correlated disparity (tuning curves are inverted and attenuated) 

(Cumming & Parker, 1997, 2000). From this follows that complex cells in V1 do not 

constitute stereopsis alone, which indicates that subsequent processing in extra-striate 

cortex must be involved. 

 

The stereo-correspondence problem 

As a first crucial step in the process of extracting binocular disparity the visual system needs 

to establish correspondence between features in the left and right retinal images. This 

challenge is known as the stereo-correspondence problem. It is a difficult task because the 

visual environment may contain many similarly looking features and a feature in the left eye 

could be matched with many features in the right eye. Fig. 1.6 illustrates this problem: 

different real world dot positions could produce similar projections onto the retinae and 

therefore give rise to the same percept. The visual system must resolve this ambiguity and 

generate a globally consistent solution. 
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Figure 1.6: The stereo correspondence problem. A) Illustration of the inverse problem of 

visual perception: Multiple different physical geometries can give rise to the same 2D 

projection on the retina. The visual system is challenged with identifying the correct shape. 

Adapted from Sinha and Adelson (1993). B) In stereopsis, this inverse problem makes it 

challenging to retrieve the correct distance of points in the environment from binocular retinal 

input. Three black dots projected into the eyes could be located in many potential 3D 

locations (empty circles). Coloured circles show two potentially correct arrangements of dot 

positions. This problem is called the stereo correspondence problem. 

 

There are different possible explanations of how observers could establish stereo 

correspondence. The visual system might match low-level features such as the brightness of 

small dot elements (Marr & Poggio, 1976; Mayhew & Frisby, 1981), or areas of zero crossing 

where contrast polarity shifts from positive to negative or vice-versa (Grimson, 1981; Marr & 

Poggio, 1979). Alternatively, the visual system might match more complex features such as 

average brightness or contours (Kaufman, 1964; Kaufman & Pitblado, 1965; Ramachandran, 

Madhusudhan Rao, & Vidyasagar, 1973; Ramachandran & Nelson, 1976). 

A good strategy for solving local correspondence problems in the visual scene is to establish 

global correspondence: there are always many possible local feature matches between the 

left and right eye, and the visual system can verify or falsify them by taking into account 

global information of the scene. For example, an observer could constrain the number of 

potential matches based on their physiological plausibility: disparity in surfaces normally 
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varies smoothly and an observer could reject large, local variations in disparity (Dev, 1975; 

Marr & Poggio, 1976; Nelson, 1975; Sperling, 1970). Such a constraint could explain why 

the visual system struggles to compute binocular disparity when incoming disparity 

information is noisy, because such disparity profiles contain large local variety in binocular 

disparity. This rejection of implausibly large disparity variations could help an observer solve 

the stereo correspondence problem. However, such a strategy assumes that observers 

match image features, but it is currently unclear whether the visual system does in fact 

match visual information from left and right eye to support stereopsis. To answer this 

question one needs to investigate how neurons respond to binocular disparity information to 

infer how they compute visual depth. 

 

Computational models of stereopsis 

As summarized above, a large body of research has provided us with insight into how 

binocular neurons respond to binocular disparity. A powerful approach to understand how 

stereopsis is supported by the brain is to build a computational model. Such a model 

consists of processing elements which mimic the behaviour of simple and complex cells 

when exposed to binocular disparity. The success of such a model can be judged by how 

well its output can be used to detect binocular disparity. 

Ohzawa et al. (1990) developed the most influential model of binocular V1 neuron responses 

to disparity: the binocular energy model. According to this model, simple cells perform a 

spatial summation over their receptive fields in the left and right eye followed by a 

rectification to ensure non-negative firing rates (Movshon, Thompson, & Tolhurst, 1978). 

These responses are disparity selective due to interocular differences in receptive field 

position or response profile shape in the left and right eyes (see Fig. 1.5). Disparity selective 

complex cells pool the output of four simple cells in quadrature phase (see Fig. 1.7). The 

output of these complex cells in the binocular energy model supports disparity detection. It is 

noteworthy that this model does not, strictly speaking, match visual features to solve the 

stereo-correspondence problem. Instead, it computes energy as a measure of information, 

which is defined as the interocular cross-correlation between the left and the right retinal 

image. In this way, the binocular energy model differs from theoretical feature-matching 

based approaches described above. 
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Figure 1.7: The binocular energy model. Simple cell units (S) have receptive fields (Gabor 

filter) in both the left and right eye image. The output of these filters is summed (binocular 

summation) and rectified. The output of the simple cell units is then combined into a complex 

cell unit (C) which signals binocular disparity. 

 

Does the binocular energy model explain why observers struggle with noisy disparity? In this 

model, the final choice of disparity is based on a maximum energy criterion, which means 

that the preferred disparity of the most activated complex cell unit is taken as the predicted 

disparity (Qian, 1994; Qian & Zhu, 1997; Read, Parker, & Cumming, 2002). Read and 

Cumming (2018) described how with decreasing consistency of disparity signals, the 

binocular image interocular cross-correlation decreases. Therefore, the energy peak of the 

originally consistent disparity step edge shrinks as the disparity signal becomes noisier, 

which results in a less reliable prediction of depth. As a result, an observer would struggle to 

discriminate depth differences with noisy disparity based on less reliable predictions of 

disparity. It is therefore possible that the visual system applies binocular disparity processing 

mechanisms which are similar to the binocular energy model, which struggles with noisy 

disparity. 

Another relevant question is whether the binocular energy model can explain the mixed 

polarity benefit. Indeed, Read and Cumming (2018) describe how the binocular energy 

model can produce such a phenomenon. When interocular cross-correlation decreases as 
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disparity becomes less consistent, interocular cross-correlation decreases more strongly for 

images with single contrast polarity compared to images with mixed contrast polarity. As a 

result, the energy peak for the original, consistent disparity signal decreases more strongly 

for single compared to mixed polarity stimuli, and the reliability of disparity predictions is 

affected more strongly. As a result, an observer would be better at discriminating noisy depth 

structures when visual information contains mixed contrast polarity information, compared to 

when only one contrast polarity is available. 

This suggests that the mixed polarity benefit could be a by-product of the same disparity 

processing mechanism in the primary visual cortex as described by the binocular energy 

model. However, the binocular energy model is most likely a simplified version of the true 

computations taking place in primary visual cortex. This can be assumed because there are 

still phenomena of early disparity processing which are not explained by the standard 

binocular energy model such as attenuated responses to anti-correlated visual input 

(Cumming & Parker, 1997, 2000). More advanced computational models of disparity 

processing may ultimately explain this perceptual benefit in an entirely different way. 

Additionally, Harris and Parker (1995) proposed that separate ON and OFF channel 

processing in primary visual cortex could also explain the mixed polarity benefit. 

In Chapter 3, I will discuss how different computational models of disparity processing could 

explain the mixed polarity benefit. 

 

1.3 Disparity processing in parietal cortex 

In the previous section, I discussed how neurons in primary visual cortex can already 

function as disparity detectors and support stereopsis. I also examined how noisy disparity 

could challenge disparity processing in primary visual cortex which could explain 

inefficiencies of stereopsis. However, binocular disparity is also processed in many extra-

striate areas in the brain (Parker, 2007). In this section, I will describe the potential roles of 

extra-striate sensory processing in stereopsis. 

As discussed in Chapter 1.1, binocular disparity has been found to support many other 

functions aside from comparing the depth of different objects, such as breaking camouflage 

or control grasping movements. As a consequence, there is no isolated area in the brain 

where binocular disparity is processed. Disparity selective neurons can be found in many 

extra-striate areas involved in vision (Parker, 2007) such as V2 (Hubel & Wiesel, 1970; 

Poggio & Fischer, 1977), V3/V3a (Hubel & Wiesel, 1959; Zeki, 1978), middle temporal lobe 
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(MT) (DeAngelis, Cumming, & Newsome, 1998; DeAngelis & Newsome, 1999), medial 

superior temporal lobe (MST) (Eifuku & Wurtz, 1999), V4 (Shiozaki, Tanabe, Doi, & Fujita, 

2012; Tanabe, Doi, Umeda, & Fujita, 2005; Umeda, Tanabe, & Fujita, 2007; Watanabe, 

Tanaka, Uka, & Fujita, 2002) and IT (P. Janssen, Vogels, Liu, & Orban, 2003; P. Janssen, 

Vogels, & Orban, 1999, 2000; Uka, Tanaka, Yoshiyama, Kato, & Fujita, 2000). Further, 

disparity selective neurons have been found in anterior- (Srivastava, Orban, De Maziere, & 

Janssen, 2009; Verhoef, Vogels, & Janssen, 2010, 2015), lateral- (Genovesio, 2004) and 

ventral (Colby, Duhamel, & Goldberg, 1993) parietal cortex, as well as the frontal eye fields 

(Ferraina, Paré, & Wurtz, 2000). 

 

Disparity processing in the dorsal and ventral pathway 

Given that disparity processing seems to be dispersed over such large portions of the brain, 

it is difficult to assign potential mechanisms of extra-striate disparity processing to isolated 

brain areas. However, there are general concepts which organize the visual brain into 

different processing structures, and would allow us to better map disparity processing in the 

brain. In vision research, two anatomically and functionally distinct processing pathways 

have been proposed in the brain (Goodale & Milner, 1992; Mishkin, Ungerleider, & Macko, 

1983). The ventral pathway projects from the primary visual cortex to infero-temporal cortex, 

and has been suggested to be predominantly involved in object processing. The dorsal 

pathway progresses from primary visual cortex to the PPC and is primarily involved in 

action-oriented, visuo-spatial processing. This dichotomy has proven conceptually useful 

and successfully accounts for a wide range of experimental findings. However, this 

framework is a simplification of a highly complex system and we can almost certainly rule out 

the idea that the ventral and dorsal streams should be functionally independent processing 

pathways (de Haan & Cowey, 2011; Schenk & McIntosh, 2010). 

One prominent hypothesis is that the dorsal and ventral pathways specialise in absolute and 

relative disparity, respectively. This idea is based on the finding that neural populations in 

dorsal areas signal different disparity magnitudes while ventral areas process signal relative 

depth positions categorically (Goncalves et al., 2015; Preston, Li, Kourtzi, & Welchman, 

2008; Srivastava et al., 2009). Based on these observations it has been suggested that the 

dorsal pathway predominantly processes absolute disparity while the ventral pathway 

processes relative disparity (Neri, Bridge, & Heeger, 2004; Uka & DeAngelis, 2006; Umeda 

et al., 2007). However, this proposed dichotomy is controversial. Several studies have 

shown that relative disparity is in fact processed in both pathways (Cottereau, McKee, Ales, 

& Norcia, 2011, 2012; Patten & Welchman, 2015). 
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Another proposed dichotomy incorporates fast but coarse disparity processing in the dorsal 

pathway, and slow but finer disparity processing in the ventral stream. This idea is based on 

the fact that neurons in dorsal areas monkey MT (Uka & DeAngelis, 2003, 2006) and AIP 

(Srivastava et al., 2009) process disparity faster than ventral neurons. However, the disparity 

differences processed in these sites are coarse. It has been suggested that this precision 

versus speed trade-off could be useful for adjusting hand movements during grasping (P. 

Janssen, Verhoef, & Premereur, 2018). In contrast to these findings, disparity processing in 

monkey ventral areas V4 (Shiozaki et al., 2012; Umeda et al., 2007; Watanabe et al., 2002) 

and inferior temporal cortex (IT) (P. Janssen et al., 2003, 2000; Verhoef, Vogels, & Janssen, 

2012) has been found to be slow, yet finer disparity differences are still distinguished. In line 

with the general role of the ventral stream in vision, this mechanism could support more 

detailed 3D shape perception for successful object recognition (P. Janssen et al., 2018). 

Finally, it has been proposed that the dorsal and ventral pathways specialise in different 

types of depth structures. Dorsal areas MT and caudal intraparietal sulcus (CIP) in monkeys 

have been found to respond to disparity which informs about surface slant (Thomas, 

Cumming, & Parker, 2002; Umeda et al., 2007). Ventral areas V2 and V4 in monkeys, on the 

other hand, are activated by disparity in centre surround constellations (Nguyenkim & 

DeAngelis, 2003; Rosenberg, Cowan, & Angelaki, 2013). 

 

Which areas are involved in processing noisy disparity? 

As discussed in this section, neurons along the dorsal and ventral pathway process 

increasingly complex aspects of stereopsis. An interesting question is where in the 

extrastriate cortex neurons specifically respond to noisy depth profiles. When testing 

observers, researchers have widely used noisy depth structures and asked observers to 

distinguish the depth profile of a centre-surround configuration. Based on the traditional 

dichotomy of dorsal and ventral pathways in disparity processing, we would anticipate that 

observers would disproportionately rely on the ventral processing pathway to process fine 

relative disparity differences in such centre-surround configurations. 

However, contrary to this expectation, studies have found that dorsal area MT in monkeys 

preferentially responds to noisy disparity stimuli (DeAngelis et al., 1998; Uka & DeAngelis, 

2003). Importantly, disruption of this area affects observers’ depth perception for noisy depth 

structures which suggests that this area plays a crucial role in constructing a depth percept 

from noisy binocular disparity. In humans very similar results have been found in the 

posterior parietal cortex where the response to noisy depth structures is strongest 
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throughout the brain (Patten & Welchman, 2015), and where disruption of normal brain 

activity causes deficits in depth judgements for noisy depth structures (Chang, Mevorach, 

Kourtzi, & Welchman, 2014). 

There are different potential explanations for this. Typical characteristics of dorsal disparity 

processing (as discussed above) could be beneficial for discriminating depth differences in 

noisy depth structures (e.g. using sufficiently large absolute disparities to make a quick but 

coarse near-far judgement). Alternatively, it is possible that these higher dorsal regions 

serve a purpose that is different from the previously proposed roles of the dorsal pathway in 

stereopsis. In the human brain, PPC has been shown to be involved in higher control 

mechanisms of perception such as evidence accumulation (Kelly & O’Connell, 2013; 

O’Connell, Dockree, & Kelly, 2012) and attentional control for optimal feature processing 

(Pessoa, Kastner, & Ungerleider, 2003).  

To make matters more complicated, in both monkeys (Chowdhury & DeAngelis, 2008) and 

humans (Chang et al., 2014), the contribution of late dorsal regions is abolished by training 

observers on discrimination of fine depth differences with smooth depth structures. 

Additionally, after this training, ventral areas become critical for the judgement of noisy 

depth. This suggests that the role of higher dorsal areas in the processing of noisy disparity 

is only temporarily useful and becomes redundant through optimized processing of noisy 

disparity in ventral areas.  

In Chapter 4, I investigate the contribution of the parietal cortex in the processing of noisy 

disparity. I use neuroimaging with a sufficiently high time resolution to identify whether PPC 

is engaged in early, feedforward disparity processing or late, top-down feedback to control 

perception and decision making. Further, I investigate the causal involvement of PPC in 

disparity processing, using brain stimulation intervention methods. 

 

1.4 Brain stimulation 

Now that I have established the perceptual problems that I investigate in this thesis, I will 

introduce the main research technique that was used to probe brain function. I applied brain 

stimulation to change brain activity and thereby reveal causal links between the function of 

brain areas and mechanisms of stereopsis. Here, I will describe how brain stimulation works 

and why it is a powerful tool to study stereopsis. Importantly, I will establish that brain 

stimulation can be successfully used in human observers to study visual perception. 
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Artificial stimulation of neurons 

In 1781, Luigi Galvani discovered ‘animal electricity’ (electrophysiology). He found that 

connections of nervous tissue conduct electricity, and that this electricity controls contraction 

in connected muscle tissue (Bresadola, 1998). Hodgkin and Huxley (1952) were the first to 

reveal the role of this electricity for signal transmission in nervous tissue. They discovered 

that signals travel along nerve fibres as positive membrane voltages. Further, they pioneered 

the concept of artificial stimulation of neurons. The induction of positive stimulating currents 

inside a neuron increases the cell’s membrane voltage. If it reaches the neuron’s internal 

threshold, membrane sodium channels open and further increase the voltage to an action 

potential. This process can also be triggered by a stimulating current situated outside the 

neuron (Histed, Bonin, & Reid, 2009; Rattay, 1999). Indeed, external stimulation can trigger 

membrane potentials at the axon of the neuron, typically at areas where axon geometry 

becomes irregular. 

Artificial stimulation of nerve cells has become a powerful tool for the research of the 

nervous system. Specifically, it allows the researcher to causally map functions inside the 

nervous system by relating induced changes in neural activity with observed changes in the 

behaviour of an organism. Fritsch and Hitzig (1870) pioneered this approach in living, 

behaving dogs to study the role of the motor system for voluntary body movement. 

Electric stimulation has the potential to both drive or suppress neural activity in the brain 

(Rattay, 1999). While it is possible for an electric current to hyperpolarize neurons, this only 

happens under very specific conditions (Rattay, 1999), and it is therefore assumed that 

neuron suppression following stimulation results from the activation of inhibitory connections 

(Berman, Douglas, Martin, & Whitteridge, 1991; Chung & Ferster, 1998; Creutzfeldt, 

Watanabe, & Lux, 1966; Kara, Pezaris, Yurgenson, & Reid, 2002). Electrical stimulation of 

neural tissue triggers initial short excitation (Adrian & Moruzzi, 1939; Patton & Amassian, 

1954) followed by two waves of GABA-ergic inhibition (Connors, Malenka, & Silva, 1988). 

 

Transcranial Magnetic Stimulation 

If we want to use brain stimulation to study brain function in humans, we have to do so non-

invasively from outside of the head. Direct electric stimulation of the cortex from outside the 

head is challenging due to the high resistivity of the skull. Electrical currents administered on 

the scalp can affect the likelihood of neural activity in underlying brain areas with 

manageable side effects (Nitsche & Paulus, 2001). However, high voltages have to be used 
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to actively change neural activity and this creates very unpleasant side effects such as 

headaches, nausea, muscle pain, disorientation and memory loss (Datto, 2000; Devanand, 

Fitzsimons, Prudic, & Sackeim, 1995). An alternative approach is to use a magnetic field to 

induce an electric current into the brain. A strong electric pulse is discharged through a coil 

which is placed on the scalp. This creates a rapid, time-varying magnetic field which safely 

passes through the skull and creates electric current within the underlying brain area (see 

Fig. 1.8). This technique is called transcranial magnetic stimulation (TMS) and was first 

pioneered by Barker, Jalinous and Freeston (1985). When placed over the motor cortex, the 

coil reliably triggers motor potentials which result in observable muscle twitches. 

 

 

Figure 1.8: Illustration of TMS. An electric current is passed through a coil and creates a 

magnetic field which passes through the scalp (see magnetic field lines in red). In the brain 

the magnetic field induces a secondary electric current which in turn changes neuron 

activity. Adapted from Ridding and Rothwell (2007). 

 

TMS has been shown to cause similar effects in nervous tissue as direct, intra-cranial 

stimulation. The characteristic effects of initial excitation (Boroojerdi, Battaglia, Muellbacher, 

& Cohen, 2001; Devanne, Lavoie, & Capaday, 1997; C. W. Hess, Mills, & Murray, 1987; 

Ziemann, Lönnecker, Steinhoff, & Paulus, 1996) and subsequent GABA-ergic inhibition 

(Kujirai et al., 1993; Murphy, Palmer, Nyffeler, Müri, & Larkum, 2016; Premoli et al., 2014) of 

neurons has been observed with TMS in the human motor cortex. This technique should, in 



20 
 

principle, work similarly for any part of grey matter tissue in the brain (Histed et al., 2009). In 

cat primary visual cortex, TMS predominantly triggers suppression of simple and complex 

cells (see Fig. 1.9) (Moliadze, Giannikopoulos, Eysel, & Funke, 2005; Moliadze, Zhao, 

Eysel, & Funke, 2003). 

 

 

Figure 1.9: Effect of TMS on V1 neuron activity. Firing rate of a cat complex cell in V1 

following TMS during spontaneous activity. TMS changes neuron activity and these changes 

become more pronounced as the stimulation intensity is increased. Adapted from Moliadze 

et al. (2003). 

 

Depending on the structure of a neural circuit, TMS will trigger a different ratio between 

activation and inhibition. Further, depending on the role of these networks in perception, 

activation and inhibition of certain neuron sub-populations will have different effects on 

sensory perception. Additionally, it has been shown that changes in neural activity, caused 

by TMS, do not simply wipe out sensory activation. Rather, both activity patterns interact 

(Miniussi, Harris, & Ruzzoli, 2013). TMS has been shown to impair sensory discrimination for 

visual cues such as motion direction (Pascual-Leone, Bartres-Faz, & Keenan, 1999), motion 

speed (McKeefry, Burton, Vakrou, Barrett, & Morland, 2008), object shape (Silson et al., 

2013) and Gabor orientation (Rahnev, Maniscalco, Luber, Lau, & Lisanby, 2012). It has been 

argued that brain stimulation results in random neural noise, which compromises cell 

populations that encode relevant visual features (J. A. Harris, Clifford, & Miniussi, 2008). 
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However, TMS induced activation has also been shown to sum with sensory activation in a 

meaningful way to improve detection accuracy (Abrahamyan, Clifford, Arabzadeh, & Harris, 

2015, 2011; Schwarzkopf, Silvanto, & Rees, 2011). It has been suggested that TMS induced 

activation can push sensory activation over an internal threshold for signal detection 

(Miniussi et al., 2013). 

However, these explanations are often formulated post hoc to intuitively describe an effect of 

TMS on perception. In most studies, brain activity is not recorded during stimulation and thus 

we cannot know how TMS affects brain activity. Many parameters such as the distance 

between coil and cortex (Stokes et al., 2013), stimulation frequency (Brasil-Neto, McShane, 

Fuhr, Hallett, & Cohen, 1992; Robertson, Théoret, & Pascual-Leone, 2003), electric current 

flow direction relative to the brain tissue (Brasil-Neto, Cohen, et al., 1992; A. M. Janssen, 

Oostendorp, & Stegeman, 2015; Kammer, Beck, Erb, & Grodd, 2001) and the state of 

neurons prior to stimulation (Kiers, Cros, Chiappa, & Fang, 1993; Thompson et al., 1991) 

have been found to affect the outcome of stimulation. Importantly, the geometry of the 

neuron within the electric current will ultimately define whether its activity is changed by TMS 

(Rattay, 1999). Consequently, it is challenging to assess the efficacy of human brain 

stimulation and interpret null results in TMS research. Did brain stimulation not change 

neural activation? Does the architecture of excitatory and inhibitory connections in a brain 

area not allow net-effects of stimulation to become relevant on a behavioural level? Or is 

there no sufficient bottle neck of sensory processing, meaning that we are affecting neural 

activity locally but a different area of the brain with normal neuron activity can compensate? 

So how can we assess whether a certain part of the human brain is amenable to brain 

stimulation? In specific systems of the brain, stimulation can trigger propagating activation 

which becomes externally observable. With the motor system at rest, TMS over the motor 

strip can reliably trigger cortico-spinal activation which results in muscle twitches in the 

contra-lateral hand (Barker et al., 1985). When applied to the visual cortex, TMS can trigger 

brain activation which results in a conscious percept. These sensations are described as 

flashes of light and the term ‘phosphenes’ was coined to describe them (Marg & Rudiak, 

1994). Concurrent functional Magnetic Resonance Imaging (fMRI) and TMS shows that TMS 

triggers local activation which in turn causes a cascade of activation spreading throughout 

the brain when phosphenes are reported (Caparelli et al., 2010). Animal models of 

phosphenes suggest that activation spreading back to V1 underlies the conscious percept 

(Tehovnik & Slocum, 2013). These phosphenes are therefore a useful marker to identify 

whether a particular portion of cortex is amenable to stimulation with TMS. However, so far 

there has not been a systematic attempt to map out where in the visual cortex TMS can 

trigger phosphenes. In Chapter 1 of this thesis, I investigate where in the visual cortex 
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stimulation can produce phosphenes. This tells us whether stimulation of a given area in the 

brain by TMS drives propagating neural activation. 

Thus far, I have discussed how brain stimulation can change neuron activity during its 

application. However, brain stimulation has been shown to have lasting effects on neuron 

activity beyond the window of stimulation. Repetitive electrical stimulation can manipulate 

the efficacy of synaptic transmission leading to long-term potentiation and depression of 

synaptic connections of individual neurons (Froc, Chapman, Trepel, & Racine, 2000; G. 

Hess & Donoghue, 1996; Larson & Lynch, 1986; Trepel, 1998). Repetitive theta-burst TMS 

for 40 seconds has been shown to introduce long term depression of synaptic transmission 

in human motor cortex (Huang, Edwards, Rounis, Bhatia, & Rothwell, 2005). Theta burst 

stimulation affects NMDA receptors which modulate synaptic connections (Huang, Chen, 

Rothwell, & Wen, 2007) and thereby reduces the probability of synaptic transmission in 

underlying brain tissue. This intervention is powerful because it allows researchers to record 

brain activity while TMS affects neural activity. In this way we can relate changes of 

perception after stimulation to recorded changes in brain activity and identify the contribution 

of brain areas to perception. However, the effect of theta-burst TMS has, thus far, only been 

replicated in the motor cortex (Huang et al., 2007) and the outcome of stimulation can be 

variable among individuals (Hamada, Murase, Hasan, Balaratnam, & Rothwell, 2013; Hasan 

et al., 2012; Hordacre et al., 2016). It is unclear whether theta-burst stimulation can affect 

synaptic connections in sensory cortex. Specifically, it is unknown whether the effect of 

theta-burst relies on the unique neural network architecture of the cortico-spinal projections 

in the motor cortex (Hamada et al., 2013). In Chapter 3 of this thesis, I investigate how theta 

burst stimulation can affect synaptic transmission in parietal cortex and how this affects 

stereopsis. 
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1.5 Thesis overview 

In the following chapters, I will describe three research projects in which I have used brain 

stimulation to study perception.  

In Chapter 2, I describe where in the human brain TMS triggers phosphenes. I relate this to 

the retinotopic organisation and the location of object- and motion-selective areas. The goal 

is to substantiate where in the visual cortex TMS can be used to change neural activity. 

In Chapter 3, I characterize a mechanism of stereopsis which is challenged by noisy 

binocular disparity and produces a mixed contrast polarity benefit for stereopsis. Particularly, 

it is unclear where in the brain this mechanism of stereopsis is located. I use TMS to change 

normal neural activity in several key areas of binocular disparity processing to identify where 

the benefit arises and thereby located the mechanism that is challenged by noisy depth 

information. 

In Chapter 4, I examine what role the PPC plays for stereopsis with noisy depth information. 

I apply TMS to disrupt synaptic transmission in the parietal cortex and subsequently record 

electroencephalography (EEG) from the visual cortex. The goal is to establish whether PPC 

is engaged in early, feedforward disparity processing or late, top-down feedback to control 

perception and decision making. 
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2. Mapping the visual brain areas susceptible 

to phosphene induction through brain 

stimulation 

 

This chapter reproduces the work associated with the following published manuscript: 

Schaeffner, L. F., & Welchman, A. E. (2017). Mapping the visual brain areas susceptible to 

phosphene induction through brain stimulation. Experimental Brain Research, 235(1), 205–

217. 

While the content of the chapter is identical to the manuscript, some modifications have 

been made to ensure that the chapter is well integrated with the rest of the thesis. For 

consistency, the references to figures have been updated to reflect the structure of the 

thesis. 

 

2.1 Introduction 

TMS is a non-invasive technique that can be used to temporarily disrupt normal neural 

activity (Robertson et al., 2003; Sandrini, Umilta, & Rusconi, 2011; Walsh, Pascual-Leone, & 

Kosslyn, 2003). This makes it possible to investigate the causal relationship between 

particular cognitive functions and the network of brain activity that supports those functions 

(De Graaf & Sack, 2014; Pascual-Leone, Walsh, & Rothwell, 2000). 

However the efficacy of TMS related effects relies on a great number of parameters: for 

instance, the timing, intensity, duration or current flow direction of stimulation (De Graaf & 

Sack, 2011; Robertson et al., 2003; Sandrini et al., 2011). This poses an interpretative 

challenge to experimenters: when we apply TMS we need some reassurance that the 

method can effectively change neural activity at a particular target site in the brain (De Graaf 

& Sack, 2011). 

In most regions of the brain it is difficult to directly observe the effects of TMS since there is 

no immediate, overt perceptual or behavioural response. However, in limited areas of the 

brain TMS triggers a response making it possible to probe the efficacy of TMS at the target 

location. In particular, in the visual cortex TMS can result in an visual phosphene (Marg & 

Rudiak, 1994), that provides a measure of whether a given stimulation protocol evokes 
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sufficient neural excitation to reach conscious awareness (De Graaf & Sack, 2011; Silvanto, 

2013; Walsh et al., 2003). Thus, this marker is useful in identifying that a particular portion of 

the cortex is amenable to testing using TMS. 

Nevertheless, there is some uncertainty about exactly which parts of the visual cortex will 

yield a phosphene through stimulation. Previous work reported that phosphenes are induced 

most reliably over early visual cortex near the cortical midline (Kammer, Puls, Erb, & Grodd, 

2005; Marg & Rudiak, 1994), although this work did not investigate the stimulation outcome 

for all identified retinotopic visual areas. 

Other work has suggested stimulation locations relative to anatomical landmarks such as the 

inion (Elkin-Frankston, Fried, Pascual-Leone, Rushmore, & Valero-Cabre, 2010; Gerwig, 

Kastrup, Meyer, & Niehaus, 2003). However these suggestions vary between studies and 

there is evidence that functional brain architecture is not well described by scalp landmarks 

(Sack et al., 2009). 

Salminen-Vaparanta et al. (2014) used detailed retinotopic maps and current modelling to 

show that separate stimulation of both V1 and V2d is equally capable of inducing 

phosphenes. Their approach underlines that we need to have knowledge of the individual 

functional structure of the visual cortex if we want to understand where in the brain 

phosphenes can be induced. 

Here, I therefore sought to assess the efficacy of TMS for phosphene induction where I had 

an understanding of which portions of visually responsive cortex were being targeted by 

TMS. In particular, I systematically map out the locations at which participants report 

phosphenes and relate these to the retinotopic organisation and the location of object- and 

motion-selective areas of the visual cortex as revealed by fMRI measurements. To 

anticipate, my results demonstrate that phosphenes are induced reliably over early visual 

areas (V1, V2d, V2v) and dorsal areas (V3d, V3a), and confirm previous observations that 

phosphenes are more likely to be induced close to the cortical midline (Kammer et al., 2005; 

Marg & Rudiak, 1994). 

 

2.2 Methods 

Participants 

I tested 30 healthy participants (18 female; age range from 20 to 38, M = 26.43, SD = 4.32, 

including the author L.F.S.) to determine whether they perceived phosphenes under TMS 
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stimulation. Before the experiment, participants provided written informed consent and were 

screened for contraindications to fMRI and TMS (Rossi, Hallett, Rossini, & Pascual-Leone, 

2009; Wassermann, 1998). Procedures were approved by the University of Cambridge 

ethics committee and were performed in accordance with the ethical standards laid down in 

the Declaration of Helsinki. Twenty-one participants (70%) reported a percept after 

stimulation; the remaining nine did not report experiencing a phosphene under my TMS 

protocol. Eight participants reported a percept after control stimulation and were therefore 

excluded from the experiment. One participant aborted the screening procedure complaining 

of the side effects of TMS. Twelve participants reported phosphenes reliably. Of these, 

seven participants (two female; age range from 23 to 32, M = 26.29, SD = 3.4, including the 

author L.F.S.) agreed to continue to the main experiment.  

 

Experimental setup and Stimulation 

The experiment was conducted in a dimly lit room using a black screen with low luminous 

intensity (0.15 cd/m2). I instructed participants to maintain fixation at a bright dot in the centre 

of the screen. I allowed five minutes for adaptation to the illumination before the start of the 

experiment. 

I applied single TMS pulses with a biphasic MagStim Rapid2 stimulator (MagStim, Whitland, 

UK) via a figure-of-eight coil (outer winding diameter = 70 mm). Throughout the experiment a 

minimum stimulation onset asynchrony of 3 seconds was used to avoid TMS related long 

term effects and muscle fatigue (Kammer, Beck, Erb, et al., 2001; Kammer et al., 2005). The 

induced current direction (during the initial, rising phase of the biphasic waveform) was 

lateral to medial in the targeted hemisphere (Kammer, Vorwerg, & Herrnberger, 2007; 

Taylor, Walsh, & Eimer, 2010) and the coil handle pointed away from the head laterally. 

Stimulation was applied over the left hemisphere. 

 

Phosphene Screening 

Phosphenes were described to participants as flashes of light or distortions of the visual 

field. I provided verbal and graphic illustrations of phosphenes described by previous 

literature (Marg & Rudiak, 1994). Participants were asked to give a conservative yes-no 

response, only reporting a percept when they were absolutely sure. At the start of the 

experiment participants performed a control task to test if phosphenes could be induced and 

to validate the percept: 
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(i) Feedback about the percept had to match previous descriptions from Marg and 

Rudiak (1994). 

(ii) Phosphenes had to appear in the visual hemifield contralateral to the stimulated 

hemisphere or both hemifields, due to the organization of the early visual cortex 

(Kammer et al., 2005). 

(iii) Perception of phosphenes had to be possible with eyes open and closed (Fried, 

Elkin-Frankston, Rushmore, Hilgetag, & Valero-Cabre, 2011; Kammer & 

Baumann, 2010).  

(iv) Stimulation of brain tissue distant from the visual cortex, over the vertex (Cz), 

should not produce a percept (Fried et al., 2011).  

Participants were tested for phosphenes with a hunting procedure in a 4x4cm window over 

the visual cortex. The centre of the window was located 4cm caudal and 2cm lateral relative 

to the inion (Elkin-Frankston et al., 2010; Gerwig et al., 2003). For two participants a MRI 

anatomical scan was available prior to the experiment. For these participants hunting 

stimulations were applied at 16 equally spaced stimulation targets. For the remaining 

participants stimulations were applied randomly within the defined window on the scalp. I 

applied stimulation at 80% stimulator output, approximately 130% of the average phosphene 

threshold reported in previous studies using the same stimulator and coil model 

(Abrahamyan, Clifford, Ruzzoli, et al., 2011; Stokes et al., 2013). 

I applied 48 hunting stimulations. The coil was moved to a new location after each hunting 

stimulation. If participants reported a phosphene, ten stimulations with eyes open and ten 

stimulations with eyes closed were applied at the same location to assess how frequently 

phosphenes could be induced. The screening was successfully finished after participants 

described phosphenes at five different stimulation locations. If participants did not describe a 

percept in 48 hunting stimulations the screening was aborted. At three different times during 

the screening ten control stimulations were applied over the vertex (Cz). The number of 

stimulations I applied during screening depended on the performance of the participant and 

could range from 48 stimulations (no phosphenes perceived) to 178 stimulations. 

Participants that reported more than one phosphene after vertex stimulation (n = 8) or could 

not perceive more than three phosphenes out of ten TMS pulses at any stimulation location 

(n = 9) were excluded from the experiment. 
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Functional Magnetic Resonance Imaging  

Data were acquired with a three-tesla scanner. For all participants a high resolution 

anatomical scan (1 mm3) was acquired. For all scans blood oxygen level-dependent signals 

were measured with an echo-planar imaging sequence. Retinotopic areas V1, V2, V3d, V3a, 

V7, V3v, and V4 were defined with standard retinotopic mapping procedures using rotating 

wedge stimuli. The borders between functional areas were defined by the resulting angular 

maps (Wandell, Dumoulin, & Brewer, 2007). I identified the hMT+/V5 complex as a group of 

voxels that responded significantly more (p < 0.01) to a coherently moving array of dots than 

to a static array of dots (Zeki et al., 1991). The lateral occipital complex (LO) was mapped as 

the set of voxels that responded significantly (p < 0.01) stronger to intact than scrambled 

images of objects (Kourtzi, Betts, Sarkheil, & Welchman, 2005). I analysed fMRI data with 

BrainVoyager QX (BrainInnovation B.V.). 

 

Neuronavigation 

I created a curvilinear reconstruction of the cortex from anatomical MRI data. I used a fully 

automated algorithm provided by Brainsight 2.2.12 (Rogue Research, Montreal, Canada) 

which is based on the Brain Extraction Tool (Smith, 2002). I “peeled” the reconstruction 

4 mm deep to guarantee that stimulation targets were located within the cortex. The 

curvilinear reconstruction was co-registered to the participant through anatomical landmarks 

on the head (the tip of the nose, the bridge of the nose and the notch above the tragus for 

the left and right ear). During the experiment, I monitored the position of the TMS coil and 

the participant’s head with an infrared camera and Brainsight 2.2.12 neuro navigation 

software. A normal vector originating in the centre of the figure-of-eight TMS coil helped to 

guide the coil to a defined location over the curvilinear reconstruction.  

I generated a 6x8 stimulation target grid (10 mm inter-target-distance). I placed this over the 

curvilinear cortical reconstruction with a 5 mm offset from the interhemispheric cleft and the 

cerebellum (See Fig. 2.1A). For each target an ideal trajectory was defined approximately 

normal to the curvilinear surface. A targeting error was defined as the distance from a target 

in the brain to the vector projecting from the coil into the human head. Angular error was 

defined as the angle of the coil vector with respect to the target trajectory (See Fig. 2.1B). 

During stimulation both values were monitored, targeting error was kept <1 mm, angular 

error was kept <15° as suggested by the Brainsight 2.2.12 manual. 
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The coil positions for respective targets in the brain covered a large window on the scalp at 

the back of the head. The location of this window is described relative to the inion for easy 

replication without stereotactic neuronavigation (See Fig. 2.1C). 

 

 

Figure 2.1: Illustration of systematic TMS over the visual cortex. A) Posterior view of the 

curvilinear reconstruction of the cortex (peel depth 4 mm) for one participant. Stimulation 

targets were placed equidistant over the visual cortex with a 5 mm offset to the 

interhemispheric cleft and the cerebellum. B) Illustration of online coil monitoring during the 

experiment with stereotactic neuronavigation. One stimulation target and the ideal trajectory 

are shown in red on the curvilinear reconstruction (dashed line). The trajectory marks the 

ideal coil position on the scalp. A vector projecting from the centre of the TMS coil defines 

the current position relative to brain and stimulation target. For the displayed coil position, 

the targeting error (distance on the curvilinear surface) and the angular error (angle of the 

coil vector with respect to the target trajectory) are shown. C) Window of coil locations on the 

scalp (dashed line) for stimulation targets in A. The outer borders of an average stimulation 

window for all participants is described as the offset (Mean ± SEM in mm Euclidean 

distance) of two corner points (plus sign) to the inion (asterisk) along the scalp. 

 

Cortical excitability  

For each participant, I defined an excitation threshold, using the REPT adaptive staircase 

method (Abrahamyan, Clifford, Ruzzoli, et al., 2011). REPT estimates excitation thresholds 

from 30 stimulations. Thresholds mark the stimulation intensity (% stimulator output) at 

which a phosphene can be elicited in 50% of the stimulations. 

I defined the phosphene threshold at the grid target closest to the centre of area V3d (This 

target tended to lie in the centre of the window that was used in the initial phosphene 
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screening test). Stimulations were applied in a range of 45 to 90% stimulator output. For the 

remaining 47 stimulation targets, I used an adjusted phosphene threshold calculated by 

correcting stimulation intensity for the distance to the underlying cortical surface (Stokes et 

al., 2013). I obtained the surface of the cortex with the segmentation routine (Kriegeskorte & 

Goebel, 2001) from Brainvoyager QX 2.8 (Brain Innovation, Maastricht, The Netherlands). I 

then calculated the average distance from the TMS coil on the scalp to the closest 100 

vertices of the cortical surface segmentation (Cai et al., 2012). For all targets this method 

gave a slightly closer distance estimation than the estimate used by Stokes et al. (2013) 

(Mean difference:–2.17 mm, SD: 0.52 mm). 

 

Mapping phosphenes 

In the main experiment, stimulation at each grid target was set at 110% of the estimated 

phosphene threshold (Salminen-Vaparanta et al., 2014). For some targets stimulation 

intensity suggested by the adjustment algorithm exceeded 90% stimulator output which I 

used as an upper limit on stimulation intensity. In these cases, stimulation was delivered at 

90% of the stimulator’s output. For one participant with a high phosphene threshold all 

targets reached this correction limit, hence no correction was performed. Stimulation results 

for this participant are marked in Fig. 2.2A. In another four participants between 1 and 4 

targets were corrected. Overall for 59 out of 336 targets the stimulation intensity was 

corrected to an upper limit.  

An important question is whether this correction limit systematically affected the stimulation 

outcome. Targets where stimulation intensity was corrected to an upper limit were located in 

almost all functional areas (V1(x1), V2v(x1), V2d(x6), V3d(x4), V3a(x5), hMT+/V5(x2), LO 

(x8)). Of the corrected stimulations (n = 590) 23% induced a phosphene. For comparison: 

considering all stimulations applied in this study, 30% induced a phosphene. It is therefore 

possible that the outcome of stimulations, where intensity was capped at an upper limit, 

underestimates the susceptibility of the targeted areas for phosphene induction. However, 

this correction limit was applied mostly in both areas with a high (V3, V3a) and a low 

(hMT+/V5, LO) phosphene incidence which shows that this did not uniquely affect specific 

areas. 

The intensities used in this experiment ranged from 48 to 90% stimulator output. For each 

grid location 10 stimulations were given, totalling 480 stimulations per participant. The order 

of the stimulations for all targets was randomized. Participants were tested on separate days 

in three sessions that lasted approximately two hours (160 stimulations per session). 
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Location of TMS effects in the brain 

I located the centre of gravity (CoG) of TMS which estimates the point on the cortical surface 

where the maximum electric field is induced. For this, I used a balloon inflation projection 

method (Okamoto & Dan, 2005). The algorithm uses the centre position of the coil on the 

scalp and a segmentation of the grey matter surface (~140,000 vertices for one 

hemisphere). I identified the 200 surface points closest to the coil centre. A vector was 

drawn from the coil centre through the mean coordinates of the 200 surface points. I defined 

a rod with a 5mm radius around the vector, given that stimulation targets in the brain were 

placed in 10mm equidistant steps. The surface point within the radius closest to the vector 

was defined as the CoG for TMS stimulation for the given coil position. This CoG was used 

to assign stimulation effects to underlying functional areas in the visual cortex. 

This algorithm takes into account the local curvature of the cortex and gives a more realistic 

estimate of the location of strongest current induction than a perpendicular vector projection 

from coil to cortical surface (Diekhoff et al., 2011; Weiss et al., 2013). Specifically this 

projection method is not affected by coil tilt, whereas perpendicular projections have been 

found to overestimate the effect of coil tilt for a range of up to 15 degrees used in this study 

(Opitz et al., 2013). 

To validate the CoG locations from my projection method, I created a realistic current model 

for stimulation at 17 coil positions that targeted functional areas in one participant. I used 

simNIBS 2.0 (www.simnibs.org; Windhoff, Opitz, & Thielscher (2013)) to model current 

distributions with a finite element method. This model respects the effects of coil tilt as well 

as the effects of different tissue conductivity and individual cortical architecture on the 

induced current. I constructed a finite element method model consisting of 1.1 million 

tetrahedra based on a structural MRI. I assigned electrical conductivities to different tissue 

types as described by Windhoff et al. (2013). Isotropic conductivity was assumed. A 

magnetic dipole model for a MagStim 70mm figure-8 coil was provided by simNIBS. I 

simulated stimulation for all targeted areas with coil position coordinates as used in the 

experiment. Stimulator output for a given stimulation intensity was defined relative to the 

peak current at 100% stimulator output as provided by MagStim. Since the output is a 

sinusoidal waveform, stimulator output was calculated as the root mean square of the peak 

current for a pulse duration of 300ms. 

To validate that functional areas received stimulation as predicted by my projection method, I 

defined an area of stimulation for each coil position based on the current model: This area 

was defined as all surface points where the electric field intensity was between 80 and 100% 

of the maximum current (Wagner, Rushmore, Eden, & Valero-Cabre, 2009). By comparing 
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which of these surface points fell into which functional areas, I defined the functional area 

that received the maximum amount of stimulation as the target for a given coil position. 

 

Effects of current direction on phosphene induction 

I retested three participants in a control study to test whether current direction of TMS 

systematically affected the stimulation outcome. Participants received twenty training 

stimulations with the stimulation parameters of the main experiment to confirm that TMS still 

created a percept. Additionally all participants received ten control stimulations over Cz to 

reconfirm that percepts were not induced through stimulation side effects.  

I applied stimulations with the original lateral to medial current direction as well as three 

alternative current directions: Posterior to anterior (coil rotated 90 degrees counter 

clockwise), medial to lateral (coil rotated 180 degrees counter clockwise) and anterior to 

posterior (coil rotated 270 degrees counter clockwise). A range of 360 degrees was tested 

because (Kammer et al., 2007) found different stimulation outcomes for opposing current 

directions with a biphasic stimulator.  

For each participant, I applied stimulations for all current directions at nine coil locations: 

three locations that yielded no phosphenes during phosphene mapping, three locations that 

yielded a small number of phosphenes (1-5 out of 10 stimulations) and three locations where 

a high number of phosphenes were induced (6-10 out of 10 stimulations). This allowed me to 

assess whether current orientation systematically affected the differences in susceptibility to 

phosphene induction that I observed during phosphene mapping. 

 

Reliability of phosphenes as a signature of stimulation 

In this study, 18 out of 30 participants did not perceive phosphenes reliably through TMS. It 

is possible my single pulse protocol induced insufficient neural activation in these 

participants. I retested six participants that reported no percept through single pulse 

stimulation with a more powerful repetitive TMS (rTMS) protocol that was reported to induce 

a percept in every participant (Boroojerdi et al., 2002; Ray, Meador, Epstein, Loring, & Day, 

1998). 32 pulse trains (10Hz, 5 pulses, 0.5sec) were applied with 70% stimulator output at 

original screening locations until a percept was reported. rTMS was followed by another 

screening with single pulse stimulation. 
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Data analysis 

I conducted statistical analysis using SPSS (IBM, Inc). I fitted a binary logistic regression 

model to a pooled data set of all stimulations to test whether distance of stimulation site to 

the interhemispheric cleft could predict the outcome of stimulation. Stimulation intensity and 

the distance between coil and cortical surface were included as potential covariates. 

Stimulations were grouped in four groups of stimulation intensity (48-60%, 61-70%, 71-80% 

and 81-90% stimulator output) and four cortical distance groups (8-11 mm, 12-14 mm, 15-17 

mm and 18-22 mm distance to the cortical surface). Since I adjusted stimulation intensity for 

the underlying cortical distance the two potential covariates were correlated (r = .33, p < .01) 

and were therefore added in separate models. I performed polynomial contrasts to test if 

there was an increase in the number of phosphenes for higher stimulation intensity or 

decrease for higher cortical distance. For all significant predictors a partial correlation was 

derived from the respective Wald statistic. 

I assessed whether the probability of inducing a phosphene changed during a two hour 

testing session. In particular, I compared the number of phosphenes reported over intervals 

of 20 stimulations (~15 minutes of testing) using a Repeated Measures ANOVA. I also 

calculated Cronbach’s α as a measure of test-retest reliability for the number of phosphenes 

reported over session intervals. Additionally, I examined whether the probability of inducing a 

phosphene changed between different testing sessions. I calculated Cronbach’s α for the 

number of phosphenes reported at different testing days. 

 

2.3 Results 

Participants were initially screened to determine whether TMS of the visual cortex would 

yield the perception of phosphenes. Of the thirty people tested, I found that twelve reliably 

reported phosphenes. From this group, seven participants were willing to take part in the 

phosphene mapping experiment. I systematically applied TMS over a grid of locations 

covering the visual cortex (see Fig. 2.1A) and recorded the probability of inducing a 

phosphene at each location. 

 

Phosphene Frequency at stimulation targets 

Across all the TMS stimulation locations tested, I found that phosphenes were induced with 

a probability of 30% (SD: 6%). Fig. 2.2A shows a map for each participant with the number 
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of phosphenes that were induced with ten stimulations at targets over the visual cortex. For 

most participants, stimulations in the dorsal visual cortex close to the interhemispheric cleft 

were most likely to induce a phosphene percept. Fig. 2.2B shows this trend in a group map. 

 

 

Figure 2.2: Probability of phosphene induction over the visual cortex. Individual (A) 

and median (B) stimulation results for all participants (n=7). The colour of the heat map 

indicates the number of phosphenes that were perceived in ten stimulations at the defined 

targets shown in Fig. 2.1A. An asterisk marks the stimulation results for one participant for 

whom stimulation was always applied at the maximum stimulator output used in this 

experiment. 

 

I used a logistic regression analysis to identify stimulation parameters that predict the 

outcome of stimulation. I found that moving the stimulation site away from the 

interhemispheric cleft in 10 mm steps reduced the probability of inducing a phosphene 

through stimulation (B=–0.046, SE=0.002, p<.001, R=–.35), model fit: χ2(1)=624.21, p<.001. 

(Fig. 2.3). There was no significant increase in the number of perceived phosphenes with 
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increasing stimulation intensity (B=–0.18, SE= -0.2, p = .370) or decrease in the number of 

phosphenes with larger distances to the cortical surface (B = -0.08, SE = 0.2, p = .68). 

 

 

Figure 2.3: Probability of phosphene induction at the interhemispheric cleft. Mean 

proportion of TMS stimulations that induced a phosphene (circles), displayed as a function of 

the distance from stimulation site to the interhemispheric cleft. Error bars show the variability 

(SEM) of results for individual participants. A solid line shows the outcome of stimulation 

predicted for different stimulation locations by a binary logistic regression model that was 

fitted to the observed data 

 

Phosphene induction in different functional areas of the visual cortex 

For each coil position, I defined a point of the maximum stimulation effect on the cortical 

surface. Fig. 2.4 shows a flatmap of the visual cortex (pial surface) for two participants, the 

defined centre points of stimulation and outlines of functional areas are superimposed. Since 

the effect of TMS decays as a function of distance from the coil to the cortical surface, 

maximum stimulation effects were often located on gyral crowns in the superior parts of the 

visual cortex (see Fig. 2.4). From this, it follows that some functional areas were targeted 

more often than others. 
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Figure 2.4: Retinotopic maps and projected TMS effect locations. Flatmaps for two 

participants showing retinotopic areas, hMT+/V5 and LO projected on the pial surface with 

Brainvoyager ‘VOI to POI plugin’. Sulci are shown in dark grey, gyri in light grey. For each 

stimulation target I defined a centre of TMS related effects (circles). Due to the decay of 

TMS related effects over distance they are mostly located on gyral crowns. Depending on 

individual brain anatomy, I was not able to target areas with TMS that are located on the 

bottom of a sulcus (A V3a and hMT+/V5) or buried between cerebrum and cerebellum (B 

V2v, V3v and V4). 

 

Table 2.1 shows the mean probability of inducing phosphenes for all stimulations that fell in 

respective functional areas. Stimulations of early visual cortex produced phosphenes reliably 

(V1: 40.8%, V2d: 45.4%, V2v: 41.7% of stimulations). Stimulation of areas along the dorsal 

pathway had the highest chance of inducing a phosphene (V3d: 60%, V3a: 56.4% of 

stimulations). At higher visual areas stimulation seldom produced a percept (hMT+/V5: 

13.8%, LO: 12.8% of stimulations).  

There was a significant difference in how often TMS produced phosphenes between primary 

visual cortex (V1) and dorsal visual areas (V2d, V3d, V3a) (F3,9=3.8, p=.05). The 

probabilities in Table 2.1 suggest that TMS induces phosphenes more frequently over dorsal 

areas than over the primary visual cortex. However, pairwise comparisons did not reveal 

significantly higher phosphene probabilities over dorsal areas compared to the primary visual 

cortex (V1 vs. V2d: t5=-0.84, p=.44; V1 vs. V3d: t5=-2, p=.11; V1 vs. V3a: t3=-2.12, p=.12). 

This could be due to the very small number of people tested in this study and so these 

pairwise comparisons unfortunately cannot reveal in which dorsal area TMS induces 

phosphenes significantly more often than in the primary visual cortex.  



38 
 

There were only very few stimulations that targeted ventral visual areas V3v and V4 (less 

than fifty stimulations pooled over all participants). These functional areas are hidden 

between the bottom part of the Cerebrum and the Cerebellum and are therefore hard to 

reach with TMS in most people (see Fig. 2.4). Due to the anatomical constraints, increasing 

the number of participants would not necessarily have resulted in a dramatic increase in the 

number of stimulations to these areas. I therefore present the data, but deliberately do not 

include these areas in the discussion of the study. 

 

Table 2.1: Probability of phosphene induction in different visual areas. Probability 

(percentage) of producing a phosphene through stimulation of functional areas. Results are 

averaged across participants. 

Functional 

area 

Mean (±SEM) 

phosphene probability 

in % of stimulations 

Number of 

stimulations 

Number of 

participants 

V1 40.8 (9.5) 260 6 

V2d 45.4 (7.3) 280 7 

V3d 60 (9.3) 200 7 

V3a 56.4 (12.8) 120 5 

V2v 41.7 (22.4) 60 3 

V3v 40 (20) 20 2 

V4 40 (0) 10 1 

hMT+/V5 13.8 (8.9) 80 4 

LO 12.8 (5.6) 290 7 

 

 

Cortical excitability 

TMS related effects might build up over time during repeated stimulation, changing cortical 

excitability over the duration of a TMS experiment (Walsh et al., 2003). In this experiment the 

average number of phosphene perceptions did not differ significantly over eight subintervals 

(8x20 stimulations) of a test session (F7,140<1, p=.75), and showed good test-retest reliability 

for all participants (Chronbach’s α=.76). This suggests that cortical excitability did not 

change as a function of time or number of applied stimulations during the experiment. Given 
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that I applied single pulse stimulation and kept a minimum stimulus onset asynchrony of 

3 seconds I did not expect any long lasting effects induced by TMS. 

Another concern was that cortical excitability might fluctuate for different days and therefore 

affect my findings at different testing sessions (Walsh et al., 2003). I found that the average 

numbers of phosphenes perceived in different testing session did not differ significantly 

(F1.12,6.72=2.96, p=.13) and were reliable (Cronbach’s α=.69) for all participants. This 

suggests that any changes in cortical excitability across testing days are unlikely to have had 

a strong influence on my findings. 

 

Location of TMS effects in the brain 

To validate localization of stimulation effects with a projection method I compared the 

outcome to a realistic current model for 17 coil positions. I found a good correspondence 

between the target areas predicted by the projection and the target areas indicated by the 

current model: For 14/17 coil positions there was an exact match between the outcome of 

the projection method and the outcome of the current model, while for 2/17 positions the 

projections fell on a neighbouring area that received the second strongest stimulation. For 

one position the projection method predicted stimulation of a functional area where no 

electric field was induced. 

 

Reliability of phosphenes as a signature of stimulation 

Six participants that did not perceive phosphenes through single pulse stimulation were 

retested with a more powerful rTMS protocol. Three out of six participants reported 

phosphenes through rTMS. Subsequently they were able to perceive a stable percept 

through a single pulse phosphene screening. Two participants very sporadically reported a 

percept through rTMS. They did not report any percept through subsequent single pulse 

stimulation. One participant never reported a phosphene after rTMS or single pulse 

stimulation. 

 

2.4 Discussion 

In this study, I systematically map out where in the visual cortex TMS can induce 

phosphenes (Fig. 2.2). Stimulation of the early visual cortex (V1, V2d and V2v) and 
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structures along the dorsal pathway (V3d, V3a) induce phosphenes reliably (see Table 2.1). 

This suggests that in these areas of the visual cortex TMS stimulation reliably induces neural 

activation that will propagate to a degree at which it creates a conscious percept. These 

findings suggest that we can use TMS in the early and dorsal visual cortex to make causal 

inferences regarding the functional role of underlying areas in the human cortex. 

 

Probability of inducing phosphenes in the visual cortex 

The probability of producing a phosphene with TMS is variable for different parts of the 

visual cortex. Moving the stimulation site closer to the interhemispheric cleft increases the 

probability of inducing a phosphene (Fig. 2.3). Similar findings were reported previously 

(Kammer et al., 2005; Marg & Rudiak, 1994). 

One possible explanation for this could be that the part of the cortex next to the cortical 

midline lies close to the scalp (Stokes et al., 2005) and should therefore receive stronger 

TMS related effects (Kammer et al., 2005; Stokes et al., 2013; Wagner et al., 2009). In this 

study, I corrected stimulation intensity for the underlying distance between the coil and the 

cortical surface. I found that, after correction, stimulation intensity or distance from the coil to 

the underlying cortical surface did not significantly predict whether TMS would yield a 

percept. This suggests that I successfully controlled for these predictors of TMS efficacy. 

It is also possible that only TMS related activation of a specific neural structure or network 

close to the cortical midline will produce phosphenes. Different parts of the visual cortex are 

suggested as potential generator structures for phosphenes: the striate cortex (V1), 

extrastriate areas (V2/V3), cortico-cortical tracts projecting from V2/V3 back to V1 or the 

optic radiations as a subcortical structure (Kammer et al., 2005). Pascual-Leone & Walsh 

(2001) showed that phosphene perception induced through extra-striate stimulation can be 

disrupted through subsequent stimulation of V1. Studies of brain-lesioned patients showed 

that an intact V1 is necessary for phosphene perception (Cowey & Walsh, 2000; Gothe et 

al., 2002). These findings suggest that the spread of TMS related neural activation at the 

target site through a network connected to early visual structures might underlie phosphene 

perception. Structural connectivity between V1 and V3d has been demonstrated in non-

human primates (Arcaro & Kastner, 2015; Felleman & Van Essen, 1991; Markov et al., 

2014). In humans strong functional connectivity between V1 and V3d during resting state 

fMRI proposes a similar anatomy (Genç, Schölvinck, Bergmann, Singer, & Kohler, 2016; 

Heinzle, Kahnt, & Haynes, 2011). The higher susceptibility to phosphene induction that I 
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found for dorsal areas V3d and V3a might therefore be explained by the connectivity 

between these areas and the early visual cortex.  

Finally, intracranial parameters that we cannot control (e.g. local orientation of neurons 

relative to the induced current orientation) might play a key role for stimulation in the visual 

cortex (Wagner et al., 2009). Structures close to the midline such as the tracts projecting 

from V2/V3 back to V1 and the optic radiations are more prone to TMS due to their bending 

structure (Kammer et al., 2005). Also, with induced currents running lateral to medial, a 

higher number of phosphenes close to the interhemispheric cleft could be due to current 

orientation running perpendicular to the stimulated gyrus which marks the onset of the 

interhemispheric cleft (Kammer et al., 2007). However, in this study I only found slight 

changes in the stimulation outcome for different current directions (see Effects of current 

direction on phosphene induction) which makes it unlikely that the observed results are 

driven by an interaction between current orientation and intracranial parameters such as the 

orientation of local neurons to the induced current. 

It is worth noting that the phosphene probabilities provided in Table 2.1 are specific to the 

left hemisphere. Previous work indicated that phosphenes can be induced in both 

hemispheres, and suggests that cortical excitability does not differ between hemispheres 

(Kammer, 1999; Kammer et al., 2005; Marg & Rudiak, 1994) in occipital areas V2 and V3 

(Kammer, Beck, Erb, et al., 2001). This gives me no reason to expect any interhemispheric 

differences.  

 

Phosphene induction in different functional areas 

My results suggest that phosphenes are induced through TMS related neural activation in 

visual areas close to the midline. In this study, I predicted a location of the maximum induced 

current to describe TMS related effects relative to functional areas (Okamoto & Dan, 2005). I 

found that stimulation of early visual areas produces phosphenes reliably (V1: 40.8%, V2d: 

45.4%, V2v: 41.7% of stimulations) as previously reported (Abrahamyan, Clifford, Ruzzoli, et 

al., 2011; Salminen-Vaparanta et al., 2014). However, my results suggest that TMS induces 

a percept most frequently when aimed at dorsal visual areas (V3d: 60%, V3a: 56.4% of 

stimulations). 

It is conceivable that intrinsic parameters of the targeted areas might explain these results: 

Stimulation of neurons with larger receptive fields in V3a might produce larger phosphenes 

compared to neurons in V1. This could cause participants to spot phosphenes more easily 
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after dorsal stimulation and potentially explain different susceptibility to phosphene 

perception at different functional areas. However in a previous study participants reported 

slightly smaller phosphenes for stimulation of the dorsal visual cortex (V3d and V3a) 

compared to primary visual cortex V1 (Kammer et al., 2005). In general, previous phosphene 

studies have reported that the overall appearance of phosphenes does not change 

significantly when different areas of the brain are stimulated (Kammer et al., 2005; Salminen-

Vaparanta et al., 2014). This makes it unlikely that phosphene appearance systematically 

affected the stimulation outcome of this experiment. 

The area with the highest average phosphene incidence (V3d) was the same area where 

individual cortical excitability was defined. One concern is that the experiment was therefore 

in some way biased towards ideal stimulation parameters for V3d and neighbouring areas. 

While I cannot rule out this possibility, I think it is unlikely to have played a major role. This is 

because for all different areas in the visual cortex, I controlled all stimulation parameters that 

I can influence extracranially (stimulation intensity, current direction and stimulation 

accuracy) to induce comparable stimulation effects. 

For areas in the ventral visual cortex (V3v, V4) I was only able to apply a relatively low 

number of stimulations in two participants (see Table 2.1). Due to their hidden location at the 

inferior ventral side of the brain these areas are hard to reach with TMS in most participants 

(see Fig. 2.4). I therefore cannot draw any firm conclusions regarding the excitability of 

these areas. 

In higher visual areas, TMS stimulation had a low chance of producing a phosphene 

(hMT+/V5: 13.8%, LO: 12.8% of stimulations). For area hMT+/V5 these findings are 

unexpected as previous studies were able to induce moving phosphenes through stimulation 

at this area (Antal, Nitsche, Kincses, Lampe, & Paulus, 2004; Najib, Horvath, Silvanto, & 

Pascual-Leone, 2010). One possible explanation could be state dependency of phosphene 

behaviour: the absence of any motion priming might have made it harder to spot moving 

phosphenes (Guzman-Lopez et al., 2011). 

It is important to note here that the absence of phosphenes in some parts of the visual cortex 

cannot be used as an indicator that TMS did not induce neural activation. First, there is no 

reason to believe that one part of the brain is excitable and another not (Walsh et al., 2003). 

Second, the underlying process that is triggered by TMS and leads to phosphene perception 

is not understood (Kammer et al., 2005). Finally, TMS related activation of neurons might 

have been below a critical threshold to induce a phosphene, however a population of 

neurons was still activated (Silvanto, 2013; Wagner et al., 2009). In particular, Ramos-

Estebanez et al. (2007) showed that subthreshold stimulation causes substantial neural 
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activation while no percept occurs. With the paradigm used in this experiment, I am not able 

to draw any conclusion from stimulations that did not yield a percept, however it is unlikely 

that no neural excitation was triggered through TMS. 

 

Locating the effects of TMS 

A key limitation of TMS studies is the unknown location and spatial specificity of TMS related 

neural activation. In this study TMS effects where assigned to a single point on the cerebral 

surface where the induced current is estimated to be maximal. This is based on the 

assumption that the impact of TMS on neural tissue is maximally initiated where currents are 

maximal under the centre of the coil (Wagner et al., 2009). This approach has two 

limitations: 

First, depending on the stimulator output the induced electric field is reported to spread 

approximately 100-200 mm2 on the cerebral surface (Wagner et al., 2009). Due to this 

coarse focality and individual differences in functional brain architecture it is often not 

possible to constrain the induced electric field to a single functional area (Salminen-

Vaparanta, Noreika, Revonsuo, Koivisto, & Vanni, 2012). It is possible that stimulations in 

this study might have activated neurons in multiple neighbouring areas.  

One possibility is to define the neural activation based on a model of the theoretical current 

spread of TMS in the brain (Salminen-Vaparanta et al., 2014). However this approach has 

its’ own limitations: It is currently unclear in what way the interactions between the electric 

current and brain tissue trigger neural firing and whether there is a linear relationship 

between current intensity and neural activation (Bestmann, de Berker, & Bonaiuto, 2015). 

The second limitation of this approach is that neural activation due to TMS is predicted to be 

maximal where the induced current was maximal. However this is not necessarily true: 

Recent studies have proposed that a subcomponent of the electric field that is induced by 

TMS can best predict stimulation outcomes in the motor cortex (A. M. Janssen et al., 2015; 

Laakso, Hirata, & Ugawa, 2014). This subcomponent is perpendicular to and directed into 

the cortical surface and, for TMS, maximally affects neurons situated in the sulcal wall. Most 

importantly this component is not necessarily located at the electric field maximum (Laakso 

et al., 2014).  

In this study, I used a realistic electric field model to validate the assignment of stimulation 

effects to functional areas based on a projection method. I found a good correspondence 

between the target areas predicted by the projection and the target areas indicated by the 
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current model. This suggests that the projection method used in this study successfully 

identified functional areas in the visual cortex targeted by stimulation, notwithstanding the 

complications of localizing the effects of TMS pulses in the brain. 

 

Reliability of phosphenes as a signature of stimulation 

A challenge in understanding the efficacy of TMS through phosphenes is to draw general 

conclusions based on a limited subsample. For this experiment, I recruited 30 participants 

but found that only 12 participants (40%) perceived phosphenes reliably. In particular, nine 

participants (30%) did not report phosphenes after any TMS stimulation. While I sought to 

provide the optimal conditions for phosphene perception (see Methods), there are two main 

reasons why this might have occurred. First, it is possible they were overly conservative in 

their responses and were not sufficiently confident in their perception of very briefly induced 

phosphenes. Second, it is possible that the single pulse stimulation induced only 

subthreshold neural activation that was insufficient to induce a conscious percept (Silvanto, 

2013; Wagner et al., 2009). 

To test these two possible explanations, I retested six participants that reported no percept 

with a more powerful rTMS protocol that was reported to induce a percept in every 

participant (Boroojerdi et al., 2002; Ray et al., 1998). Additionally, this protocol creates a 

more vivid, easy-to-spot percept (Kammer et al., 2005; Marg & Rudiak, 1994).  

Three participants reported phosphenes through rTMS. Notably they also were able to 

perceive a stable percept through subsequent single pulse stimulation. This suggests that 

they had not previously spotted the percept through single pulse TMS. Two participants very 

sporadically reported a percept through rTMS. They did not report any percept through 

single pulse stimulation. One participant never reported a phosphene after rTMS or single 

pulse stimulation. It is possible that TMS only induced subthreshold neural activation in 

these participants. 

In this project, I only applied single pulse stimulation while some participants were not able 

to gain a percept from this protocol. I did so because rTMS has certain drawbacks: the area 

of the induced current will be larger making it hard to locate TMS related effects (Robertson 

et al., 2003). Also, repeated stimulation protocols are more prone to not only trigger action 

potentials during the pulse but also alter the level of neural excitability of targeted tissue over 

time (Wagner et al., 2009). 
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Finally, there is some evidence suggesting that there might be functional differences in 

visual neural networks between participants that report phosphenes through TMS and 

participants that do not. Specifically, fMRI activation has been found to differ during visual 

checkerboard stimulation (Meister et al., 2003) as well as TMS (Caparelli et al., 2010) for 

participants that do not report phosphenes. However, Caparelli et al. (2010) observed TMS-

related blood oxygenation level dependent signal changes in both types of participants. 

These findings suggest that, while the behavioural outcome varies between participants, 

TMS does affect neural activity in both types of participants. 

 

Effects of current direction on phosphene induction 

Recent studies which used current modelling have shown that the direction of the induced 

current relative to local brain anatomy has an impact on the strength of the induced electric 

field (A. M. Janssen et al., 2015; Laakso et al., 2014; Opitz et al., 2013). These findings are 

in line with a direct relationship between a change in current direction and the amount of 

triggered neural activation in the motor cortex (Brasil-Neto, McShane, et al., 1992; Kammer, 

Beck, Thielscher, Laubis-Herrmann, & Topka, 2001; Mills, Boniface, & Schubert, 1992). 

In the visual cortex this relationship is less clear cut. Kammer et al. (2007) reported that 

individual brain regions have an ideal current direction for phosphene induction 

(perpendicular to the underlying gyral crown) however these effects were marginal. I 

therefore chose to standardize the current direction for all coil locations. However a 

standardized current direction is unlikely to stimulate a maximum number of neurons at any 

given location in the visual cortex. This might compromise my interpretation that a difference 

in susceptibility to phosphene induction was due to the intrinsic properties of different areas 

in the visual cortex. 

I therefore conducted a control study with three participants (these were the only ones from 

the original participants who were available) to test whether the current direction would affect 

the systematic differences in susceptibility to phosphene induction that I observed. I found 

very slight differences for phosphene induction with different current directions as previously 

reported by Kammer et al. (2007). Importantly, the pattern of high-, medium-, or low 

phosphene susceptibility for different coil locations was preserved irrespective of the coil 

orientation. This suggests that it is unlikely that my results are specific to the lateral-to-

medial current direction used during phosphene mapping. 
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Effects of stimulation intensity corrections 

In this study, I corrected stimulator output to induce comparable stimulation effects at 

different sites in the brain. However for one participant with a high excitation threshold all 

stimulations were delivered at the maximum stimulator output used in this study, hence 

stimulator output was not controlled as a potential predictor of the stimulation outcome. One 

concern was that this might have systematically affected the overall results. However, 

Fig. 2.2A shows that stimulation results for this participant were similar to the results of most 

of the other participants. This shows that the overall results of this study were not 

systematically affected by a partial lack of stimulator output correction. 

 

2.5 Conclusion 

My results show that single pulse TMS can reliably induce phosphenes in early (V1, V2d, 

V2v) and dorsal (V3d and V3a) areas of the visual cortex close to the interhemispheric cleft. 

I propose that TMS-related maximum induced currents located at functional areas V1, V2d, 

V2v, V3d, and V3a can trigger a critical amount of neural activation that will propagate and 

create a conscious percept. Stimulation in dorsal visual areas (V3d, V3a) was most likely to 

induce a phosphene. This could indicate that TMS induced extra-striate neural activation that 

propagates back to primary visual cortex will create the phosphenes. More investigations will 

be necessary to identify the neural activation pattern that drives this artificial conscious 

percept. 
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3. The mixed polarity benefit of stereopsis 

arises in early visual cortex 

 

This chapter reproduces the work associated with the following published manuscript: 

Schaeffner, L. F., & Welchman, A. E. (2018). The mixed polarity benefit of stereopsis arises 

in early visual cortex. Manuscript submitted for publication. 

While the content of the chapter is identical to the manuscript, some modifications have 

been made to ensure that the chapter is well integrated with the rest of the thesis. For 

consistency, the references to figures have been updated to reflect the structure of the 

thesis. 

 

3.1 Introduction 

Depth perception is better when observers view stimuli which contain a mixture of bright and 

dark visual features. Harris and Parker (1995) showed that a RDS, with a noisy disparity 

profile, allows for better depth judgements when it contains black and white dots (mixed 

polarity) compared to when it only contains one dot colour (single polarity) (see Fig. 3.1). 

 

 

Figure 3.1: The mixed polarity benefit. A) Mixed- versus single-polarity stereograms. 

Single-polarity stereograms were either all dark or all bright. B) The task was to discriminate 

the step arrangement of the stereogram. Stimulus disparity was comprised of a disparity 

step to which crossed and uncrossed disparity noise was added (sampled from Gaussian 

distribution centred at stimulus location). C) Example anaglyphs which illustrate the mixed 

polarity benefit (designed for red filter over left eye). 
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An unanswered question is where in the visual cortex disparity processing benefits from the 

availability of different contrast polarity. The stimulus in Fig. 3.1 might challenge both early 

mechanisms which establish stereo correspondence and/or subsequent mechanisms of 

disparity discrimination. Read et al. (2011) were able to replicate the mixed polarity benefit 

using a de-correlated RDS: Instead of binocular dot pairs having different horizontal offsets, 

in a de-correlated RDS some dots do not have a match in the other eye. This stimulus 

should challenge mechanisms of stereo correspondence more strongly, and indeed they 

observed a stronger mixed polarity benefit for de-correlated RDSs. This indicates that early 

mechanisms of disparity processing might benefit from mixed contrast polarity. However, it 

remains unclear where in the brain these mechanisms are located. 

Here, I sought to answer the question where in the brain the mixed polarity benefit arises. I 

applied TMS to early (V1) and higher (V3a & LO) visual brain areas, which have been shown 

to be involved in disparity processing (Goncalves et al., 2015; Patten & Welchman, 2015; 

Preston, Li, Kourtzi, & Welchman, 2008). I assume that the benefit is produced by a neural 

mechanism which extracts a more reliable disparity signal from mixed polarity compared to 

single polarity RDSs. By changing normal neural activity in this system through brain 

stimulation, I expect to differentially disrupt stereopsis for mixed and single polarity stimuli. 

This allows me to locate where in the visual cortex disparity processing benefits from the 

additional information carried by mixed contrast polarity. 

I found that stimulation over V1 but not V3a or LO affected depth perception for mixed- but 

not single polarity stimuli. This confirms that mechanisms of stereopsis in primary visual 

cortex, which are concerned with stereo correspondence, give rise to the mixed polarity 

benefit. Contrary to my expectation TMS over V1 does not disrupt stereopsis. Instead, brain 

stimulation amplifies the mixed polarity benefit by improving depth perception for mixed 

polarity stimuli. I suggest two potential explanations for this surprising result: TMS might 

amplify disparity signals for mixed polarity stimuli due to non-linear processing in visual 

cortex. Alternatively, TMS might drive suppression of binocular contrast mismatches for 

mixed polarity stimuli, which could improve the reliability of disparity signals. 

 

3.2 Methods 

Participants 

For this study, I screened 83 naïve participants. All had normal or corrected-to-normal vision 

with good visual acuity (between -0.1 and 0.1 LogMAR). I screened participants with the 
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demanding depth discrimination task used in this experiment (see Experiment Procedure). 

22 participants successfully passed the screening and were tested for this study. Before the 

experiment, participants provided written informed consent and were checked for 

contraindications to fMRI and TMS (Rossi et al., 2009; Wassermann, 1998). Procedures 

were approved by the University of Cambridge ethics committee and were performed in 

accordance with the ethical standards laid down in the 1964 Declaration of Helsinki. For this 

study, I initially tested seven participants where all brain regions of interest received TMS. 

Another eight participants were tested in a shorter version of the experiment to confirm that 

the main finding holds for a larger sample size. Additionally, seven participants were tested 

in a replication without the acquisition of fMRI data. For this replication, I targeted the 

primary visual cortex and a control site with TMS which should be feasible without fMRI 

based neuro-navigation. 

 

Stimuli 

Participants performed the experiment task with a haploscope in which the two eyes viewed 

separate 22 inch Samsung (2233) LCD displays through front-silvered mirrors. Both screens 

were gamma corrected to linear luminance output. Viewing distance was 50cm. Stimuli were 

displayed on 1680 x 1050 pixel screen at a vertical refresh rate of 60 Hz. Participants were 

instructed to maintain fixation on a square fixation cross at the centre of the screen with 

horizontal and vertical nonius lines.  

Stimuli were RDSs (Dot radius: 0.068 deg, number of dots: 492, stimulus size: 4 x 4 deg) 

depicting a noisy disparity based step function on a medium grey background (see Fig. 3.1). 

Participants performed a 2AFC task and were asked to judge whether the top or bottom half 

of the stimulus appeared closer to them. Stimuli were surrounded by a correlated pink noise 

background to promote stable vergence. 

Task difficulty was manipulated changing the magnitude of the step function relative to the 

fixation point (i.e., I simultaneously varied the crossed and uncrossed disparities in tandem). 

Additionally, each dot in the RDS was randomly assigned crossed or uncrossed Gaussian 

disparity noise (see Fig. 3.1B). Given individual differences in stereoscopic capabilities of 

naïve participants, and the fact that discrimination performance with this type of task can 

improve substantially through training (Chang, Kourtzi, & Welchman, 2013), I varied both the 

step size and variance of the disparity noise during the training portion of the experiment. I 

thereby tailored the stimuli to the participant’s discrimination capabilities. During the main 

experiment, only the step size was changed to manipulate task difficulty. Disparity at the left 
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and right edges of the RDS was tapered to zero to avoid monocular cues of the relative 

position in depth. 

Stimuli were displaced to the left or right of the fixation point to maximize the amount of 

information processed in one hemisphere, and thereby increase the potential to reveal the 

effects of brain stimulation. Specifically, the stimulus was displaced 2 deg horizontally, so 

that one edge of the stereogram became aligned with the centre of the screen. Stimuli were 

presented to the left of fixation on two-thirds of trials (corresponding to the stimulated right 

hemisphere) and to the right of fixation on one-third of trials (corresponding to the 

unstimulated hemisphere). This imbalance represented the intersection between the need to 

acquire sufficient data in an individual condition and the limit of how many TMS can be 

safely applied per day (Rossi et al., 2009; Wassermann, 1998). All testing conditions in this 

experiment had this same imbalance; I recorded eye movements to ensure that there was 

no significant left-side bias of version eye movements.  

Stimuli were rendered for two different RDS conditions: In the single polarity condition all 

dots of the RDS were either white or black. In the mixed polarity condition 50% of the dots 

were white, 50% black. For a given experiment block I always presented 50% mixed polarity 

and 50% single polarity stimuli. I also balanced the number of black and white single polarity 

RDSs to ensure equal overall light exposure between the mixed and single polarity 

condition. 

 

Experiment Procedure 

Stimuli were presented for 300ms and observers had unlimited time to give a response. If no 

TMS was applied during the experiment I kept an inter-stimulus interval (ISI) between 

response and stimulus onset of 800ms. For trials that were accompanied by TMS the ISI 

was a jittered period between 5 and 6 seconds. A longer average ISI was chosen to contain 

TMS effects within the trial duration (Kammer et al., 2005), and the timing was jittered to 

avoid stimulation effects that might build up through rhythmically applied TMS.  

At the beginning of the experiment participants performed a one hour training session to 

familiarize themselves with the task: Participants viewed single and mixed polarity RDSs 

with a range of step sizes of 0.2 – 20 arcmins. They received feedback on their judgments. 

During training the Gaussian disparity noise was increased stepwise, from σ = 1 to σ = 3 

arcmins, to define an optimal noise level at which a range of RDS step sizes would yield 

performance from near chance to near perfect performance. Participants trained for between 
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576 and 1152 trials until a stable performance was reached. During the main experiment 

RDSs always contained the disparity noise magnitude tailored to each participant based on 

the training results.  

Next, I defined a psychometric function for each stimulus polarity condition using the method 

of constant stimuli (MOCS). For each polarity condition, I presented stimuli at seven disparity 

step sizes (between 0.2 and 20 arcmin) with 108 trials per stimulus intensity level (total 

number of trials 2268). Trials of different difficulty and polarity were randomized. For each 

stimulus condition a psychometric function was fitted to the data using psignifit [4.0] (Fründ, 

Haenel, & Wichmann, 2011). I also presented 360 catch trials for lapses (step size 10/20 

arcmin, σ = 0 arcmin) to fix the lapse rate of the psychometric functions. Seven participants 

were unable to fuse the largest disparity step size of the MOCS procedure (which was also 

used as lapse stimuli). For these participants psychometric functions were fitted to only six 

difficulty steps and no lapse data was used.  

From the psychometric function for mixed polarity I estimated a threshold of 80% correct 

performance. Based on previous results, performance differences between single and mixed 

polarity should be largest at this performance range (Read et al., 2011). For the subsequent 

main experiment, stimuli were presented at the task difficulty that was estimated to yield 

80% correct discrimination for mixed polarity stimuli.  

The experiment consisted of five different TMS conditions: In one condition no TMS was 

applied; in the remaining conditions TMS was applied over V1, V3a, LO or Cz during 

stimulus presentation (see Fig. 3.2). Each condition included a total of 456 trials.  
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Figure 3.2: Illustration of TMS application. A) Brain stimulation was applied at 10Hz with 

stimulus onset and covered the full stimulus presentation time. B) I used neuro navigation for 

brain stimulation. Stimulation targets were defined as the centre of gravity of areas V1, V3a 

and LO. The closest point on the scalp results as an ideal coil location for stimulation. I 

report three parameters that describe how precise I could target this ideal location: Targeting 

error d describes the distance between a coil centre projection and an ideal trajectory to the 

stimulation target at the brain surface level. Angular error θ describes the angle between the 

coil projection and the ideal trajectory. Tilt error φ describes the angle between the coil tilt 

and an ideal current direction defined for each stimulation target. The distance between coil 

centre and stimulation target in the brain is described as cortical distance (cd). C) Probability 

maps of V1, V3a and LO location in talairach space. A red arrow describes the average coil 

position for all participants. For each stimulation location, I report the mean (+/-SEM) 

targeting error, angular error, tilt error and cortical distance. 

 

Participants were tested on eight separate days so that I did not exceed the maximum 

number of stimulations that can be safely applied per day (Rossi et al., 2009; Wassermann, 

1998). Each stimulation site was targeted on two different days. I only targeted one brain site 

per day to avoid confounding effects of TMS to different networks in the brain. The no-TMS 
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condition was tested on the same days as TMS conditions, prior to the application of brain 

stimulation to avoid carry-over effects. The order of stimulation sites between testing days 

was randomized to average out potential training effects of disparity discrimination that might 

build up throughout the experiment.  

To test whether task difficulty affects the stimulation outcome, I retested nine participants. 

Task difficulty for the mixed and single polarity conditions were adjusted so that participants 

had matched performance for both conditions prior to brain stimulation. Participants were 

retested for V1 stimulation and a no stimulation condition. 

 

TMS 

I applied stimulation with a MagStim Rapid2 stimulator (MagStim, Whitland, UK), using a 

figure-of-eight coil (70mm outer diameter). The TMS coil was placed tangentially on the 

head, aiming at the defined region of interest in the brain (see Fig. 3.2B). A coil holder 

(Magic Arm; Manfrotto, Bassano del Grappa, Italy) retained the coil at its position on the 

head. Stimulation was applied to the right hemisphere. The right hemisphere was chosen 

based on previous success of right LO stimulation with a similar depth judgement task 

(Chang, Mevorach, Kourtzi, & Welchman, 2014). For stimulation targets V1 and V3a, I had 

no reason to expect any hemispheric differences. 

Stimulation was applied at 10 Hz (5 pulses, 0.4sec) synchronous with stimulus onset at a 

fixed intensity of 60% of maximum stimulator output (see Fig. 3.2A). For all stimulation 

targets, coil orientation was defined based on previous reports of successful TMS 

stimulation. Specifically, for V1 the coil handle was facing to the left (current direction medial 

to lateral) (Mulckhuyse, Kelley, Theeuwes, Walsh, & Lavie, 2011). For V3a (McKeefry et al., 

2008) and LO (Chang et al., 2014), the coil handle was facing upwards (current direction 

superior to inferior). For control stimulations at Cz, the coil handle was facing from the front 

to the back of the head (current direction anterior to posterior) (Chang et al., 2014) . For 

participants with available MRI data, the orientation of the coil was subsequently adjusted 

based on the underlying anatomical structure of the brain. This was done to ensure that the 

induced electric current ran perpendicular to the underlying sulcus, and thereby maximize 

the likelihood of neural activation through stimulation (A. M. Janssen et al., 2015; Laakso et 

al., 2014; Thielscher, Opitz, & Windhoff, 2011). 
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fMRI 

fMRI data were collected on a 3T Siemens Prisma MRI scanner with a 32 channel head coil. 

Blood oxygen level-dependent signals were measured with an echo-planar imaging 

sequence (TE 29 ms; TR 2000 ms; 1.5 × 1.5 × 2 mm, 30 slices covering the visual cortex). 

For each participant, I acquired a high resolution anatomical scan (1mm3). fMRI data was 

analysed with BrainVoyager QX [2.8] (Brain Innovation, Maastricht, The Netherlands) 

(Goebel, Esposito, & Formisano, 2006). Functional data were pre-processed using three 

dimensional motion correction, slice time correction, linear trend removal and high-pass 

filtering. Retinotopic areas V1 and V3a were defined with standard retinotopic mapping 

procedures using rotating wedge stimuli and expanding ring stimuli. The borders of 

functional areas were defined by the resulting angular and eccentricity maps (Wandell et al., 

2007). LO was mapped as the set of voxels that responded significantly (p < 0.01) stronger 

to intact than scrambled images of objects (Kourtzi et al., 2005). Fig. 3.2C shows probability 

maps of V1, V3 and LO position for all participants in talairach space. 

 

Neuronavigation 

During the experiment an anatomical scan was co-registered to the participant’s head using 

anatomical landmarks. For all participants with MRI data, their individual structural scan was 

used, for all remaining participants an average MNI 152 head was fitted using linear 

transformation and scaling (Brainsight 2.2.12; Rogue Research, Montreal, Canada). During 

the experiment I monitored the position of the TMS coil and the participant’s head with an 

infrared camera and Brainsight 2.2.12 neuro navigation software. 

A normal vector originating in the centre of the figure-of-eight TMS coil described the 

expected stimulation location in the brain (see Fig S3.1B). For participants with fMRI data, 

stimulation targets were defined as the centre of a region of interest (V1, V3a or LO) in the 

brain. For participants without fMRI data, V1 was defined as a point 5mm lateral of Oz (10-

20 system). For each target, an ideal trajectory was defined approximately normal to the 

scalp surface. The precision of stimulation during the experiment is described by three coil 

position parameters (targeting error, angular error and tilt error) which are described relative 

to this ideal trajectory (see Fig. 3.2B). During the experiment, coil position parameters were 

monitored and recorded (see Fig. 3.2C).  
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Electric field simulation 

For the seven participants, for whom all areas of interest were stimulated, I created an 

electric current model of TMS to investigate whether stimulation successfully targeted V1, 

V3a and LO. I used simNIBS [2.0] (www.simnibs.org; Thielscher, Antunes, & Saturnino, 

2015) to model current distributions with a finite element method. I constructed detailed 

meshes (1.1 million tetrahedra) from the structural MRI scans and modelled electrical field 

spread. I assigned electrical conductivities to different tissue types as described by Windhoff, 

Opitz and Thielscher (2013). Isotropic conductivity in the brain was assumed. A magnetic 

dipole model for a MagStim 70mm figure-8 coil was provided by simNIBS. I defined coil 

position and orientation in the simulation as the mean position and orientation recorded 

during the experiment with neuro navigation. Rate of change of current flow in the stimulator 

coil, for a given stimulator output, was defined relative to the peak current at 100% stimulator 

output, as provided by MagStim. Since the output is a sinusoidal waveform, current flow in 

the coil was calculated as the root mean square of the peak current for a pulse duration of 

300μs. For a stimulator output of 60% used in this study, this results in a rate of change of 

current flow of 20.08 A/μs. 

 

Eye Tracking 

I recorded binocular eye movements with an EyeLink 1000 remote video tracker (SR 

Research). The system has a stated accuracy of 0.25 deg and resolution of 0.01 deg (root 

mean square). The tracker viewed the participant’s eyes through infrared transmitting cold 

mirrors. At the beginning of each experiment block participants were instructed to keep 

fixating on a calibration marker, which was used to calibrate a four by four degree area on 

the screen in which stimuli were presented.  

To analyse eye movement data I converted raw gaze positions to degrees of visual angle. 

Trials during which tracking was lost in one or both eyes were excluded (average proportion 

of trials per participant 25.7%). This high proportion of lost trials was due to the challenge of 

tracking both eyes through the mirrors and eye holes of the stereoscope. Time series data 

were pre-processed by removing any data that corresponded to periods of blinks or 

saccades, as identified by the EyeLink inbuilt detection functions. I removed an additional 

50ms of data before and after blinks to remove large gaze point offsets which were likely 

caused by eye rotation prior to blinks. Removed data was then linearly interpolated. Finally, 

eye tracking in a stereoscope sometimes led to erroneous tracking of interior parts of the 

stereoscope instead of participant’s pupils (average proportion of trials per participant 7.9%). 
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To remove all trials where this occurred, I excluded all trials where gaze position was located 

outside of a four by four degree window around fixation where stimuli were presented in this 

study. 

I checked whether loosing or removing eye tracking data affected different conditions of the 

experiment disproportionately. In this experiment the loss of eye tracking data was not 

significantly different between experiment conditions. This was true for observers where all 

experiment conditions were tested (F4,24=1.07, p=.39), as well as for a larger group of 

observers for which I replicated the main effect of this study (F2,26=1.9, p=.17). However, the 

amount of eye tracking data which had to be removed due to erroneous tracking differed 

significantly between experiment conditions (main experiment: F1.9,11.5=6.45, p<.05; 

replication: F2,26=10.32, p<.01). This is due to the fact that significantly less erroneous 

tracking occurred in the condition where no TMS was applied compared to when TMS was 

applied at any location on the scalp. The best explanation for this is that increased rates of 

blinking during TMS application (see Fig. 3.10A) leave the eye tracker without a pupil and 

cornea to track, thereby increasing the risk of erroneous tracking. Given that erroneous 

tracking did not significantly between conditions where TMS was applied, it is unlikely that 

missing eye tracking data represents a problem with the experiment which could affect the 

outcome of this study. 

I report vergence and horizontal version eye movements during stimulus presentation to 

check that brain stimulation and lateralized stimulus presentation did not interfere with 

vergence stability. To quantify changes of vergence through TMS, I fit a linear model to 

participants’ average eye vergence during stimulus presentation. I quantify vergence 

changes on each trial in terms of the gradient (β) of the best fit (least-squares). 

 

Analysis 

Statistical analysis was conducted in SPSS (SPSS Inc, Chicago, Ill). I analysed raw 

proportion correct values using repeated-measures ANOVAs and applied Greenhouse-

Geiser correction where appropriate. For post-hoc analysis, I used Bonferroni corrected t-

tests. 
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3.3 Results 

Participants were tested for each polarity condition (black, white or mixed dots) at a range of 

disparity differences and at a fixed disparity noise level. Fig. 3.3 shows the psychometric 

functions that were fitted to the data. I found significant differences for thresholds of 

psychometric functions for black, white and mixed stimuli (F2,36=16.97, p<.01). Participants 

had significantly better depth perception (lower disparity acuity thresholds) when a mixture of 

black and white dots was presented compared to only white (t18=-4.25, p<.01) or black (t18=-

4.73, p<.01) dots (comparison of 80% correct performance thresholds). Depth discrimination 

was marginally better for white stimuli compared to black stimuli (t18=-2.36, p=.03). However, 

this difference was not significant after Bonferroni correction. 
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Figure 3.3: Disparity discrimination for mixed and single polarity stimuli. Discrimination 

performance for RDSs with black dots, white dots and a mixture of black and white dots. 

Task difficulty is defined by two parameters: The disparity offset in the RDS (x-axis) and the 

disparity noise assigned to each dot in RDS (sampled from Gaussian with a SD (σ) in 

arcmin). Psychometric functions were fitted to mean proportion correct responses. For 

fourteen participants the upper asymptote was set to performance at lapse trials (see 

Methods). For eight participants no lapse data was available (marked with *) and the upper 

asymptote was set to the average group lapse rate. Vertical lines mark the threshold where 

participants performed at 80% correct for each condition. 
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Next, I applied brain stimulation during the task to locate where in the visual cortex the mixed 

polarity benefit arises. For seven participants, brain stimulation was applied over all areas of 

interest in the visual cortex (V1, V3a, LO). The application of TMS did not significantly 

change disparity discrimination performance for all TMS conditions (F4,24=1.74, p=.17), 

however a significant interaction between TMS site and stimulus dot polarity (F4,24=5.8, 

p<.01) shows that TMS location is a critical factor in affecting the perceptual benefit between 

mixed and single polarity (see Fig. 3.4A). Post hoc comparisons revealed significant 

improvements in disparity discrimination performance through V1 stimulation compared to 

control stimulation for mixed polarity stimuli (t6=3.37, p= .015). For stimulation of higher 

visual areas V3a and LO I did not observe a significant change in performance for mixed 

polarity stimuli (V3a: t6=1.86, p=.11; LO: t6=0.66, p=.53). For single observer results see Fig. 

3.5A. 
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Figure 3.4: Effect of TMS on disparity discrimination for mixed and single polarity 

stimuli. Mean discrimination performance for different stimulation conditions. Error bars 

depict one standard error of the mean (SEM). Results are shown for stimulus location left of 

fixation. Brain stimulation was applied to right hemisphere visual cortex. A) Results for all 

stimulation conditions investigated in this study (n = 7). B) Results for V1 stimulation 

investigated for a larger sample size (n = 15). C) Replication of V1 stimulation effect of main 

experiment (n = 9). Additionally, task difficulty for mixed and single polarity was adjusted so 

that participants had similar proportions of correct responses for both stimulus conditions 

prior to brain stimulation. This was done to control whether TMS effects depend on task 

performance. 
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Figure 3.5: Effect of TMS on disparity discrimination for singular observers. 

Discrimination performance for different stimulation conditions. Results are shown for 

stimulus location left of fixation. Brain stimulation was applied to right hemisphere visual 

cortex. A) Results for all stimulation conditions investigated in this study (n = 7). B) Results 

for V1 stimulation investigated for a larger sample size (n = 15). 
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To assess which areas of the visual cortex were critically influenced by TMS, I simulated 

intensity and spread of the electric field induced by TMS for all participants which were 

stimulated over V1, V3a and LO (n = 7). Fig. 3.6 shows representative electric fields in one 

participant simulated for stimulation of all target areas. Overlaid are the boundaries of 

functional areas defined by retinotopy and localiser scans. For higher visual areas V3a and 

LO mean electric field intensity was highest in the targeted area (see Fig. 3.7A). Stimulation 

over V1, on the other hand, may have induced a stronger electric field in area V2d (This was 

true for all participants). However, while electric field intensities in V2d were similar for 

stimulation over V1 and V3a, only TMS over V1 produced significant behavioural changes. I 

therefore calculated a measure of behaviourally relevant electric field intensity by subtracting 

electric field intensities for stimulation over V1 and V3a. Fig. 3.7B shows that this 

behaviourally relevant electric field component was greatest in V1 and suggests that 

behaviourally relevant changes of brain activity took place in V1. For Cz control stimulations 

negligible electric field intensities were induced in all areas of interest. 

 

 

Figure 3.6: Electric field simulations of TMS. Representative electric field intensity (V/m) 

simulations in one participant for stimulation over V1, V3a and LO. Retinotopic areas and 

LO, defined from fMRI data, are superimposed. Electric field intensity ranged from 0 to 35 

V/m. 

 



63 
 

 

Figure 3.7: Estimated electric field intensities during TMS. A) Mean simulated electric 

field intensity in functional areas of the visual cortex for stimulation over V1, V3a, LO and Cz. 

Error bars depict one standard deviation. B) Mean contrast of simulated electric field 

intensity for stimulation over V1 and V3a. Error bars depict one standard deviation. Both 

stimulation over V1 and V3a produced comparable stimulation over early visual areas 

outside V1 e.g. V2d, however only V1 stimulation produced significant changes in behaviour. 

This contrast acts as an estimate of behaviourally meaningful stimulation.  

 

I was surprised by the observation that there were significant improvements in disparity 

discrimination under V1 stimulation. I sought to ensure that this was true for a larger sample 

size and therefore continued testing eight additional participants with stimulation over V1. In 

total, 15 participants were tested for V1 stimulation, Cz control stimulation and a no 

stimulation condition (see Fig. 3.4B). Again, there was no main effect of TMS (F2,28=1.13, 

p=.33) but a significant interaction between TMS and stimulus contrast polarity (F2,28=4.32, 

p=.02). This suggests that it is critical where in the visual system TMS is applied. Stimulation 

over V1 significantly improved disparity discrimination performance for mixed polarity stimuli 

compared to control stimulation (t14=3.15, p<.01). For single observer results see Fig. 3.5B. 

No such stimulation effect could be observed for single polarity stimuli (t14=-0.76, p=.46). 

There was no significant difference in discrimination performance between control 

stimulation and no stimulation (Single polarity: t14=1.06, p=.31; Mixed polarity: t14=-0.46, 

p=.65), suggesting that the side effects of TMS were not disruptive for task performance.  

I also tested seven participants without neuro-navigation (no MRI data was collected), where 

V1 stimulation was applied based on scalp landmarks (see Methods). I tested V1 

stimulation, Cz control stimulation and a no stimulation condition. While TMS at the visual 

cortex appears to improve disparity discrimination performance for mixed polarity stimuli, this 
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change was not significant (t6=0.94, p=.39). This was mostly likely due to non-optimal 

stimulation of V1 without neuro-navigation (see Discussion). 

To resolve this conflict of the stimulation outcome with and without neuro-navigation, and to 

decide whether there was an overall effect of stimulation, I performed a single-paper meta-

analysis (McShane & Böckenholt, 2017). Results for the initial seven participants and 

subsequent eight participants with neuro-navigation as well as the seven participants without 

neuro-navigation were treated as three separate experiments. This meta-analysis confirmed 

that stimulation over V1 significantly increased observer disparity discrimination performance 

compared to control stimulation for mixed polarity stimuli (Z=2.98, p<.001). 

To test whether task difficulty affects the stimulation outcome, I retested nine participants in 

the main experiment. Stimulus properties for the mixed and single polarity conditions were 

adjusted so that participants had matched performance for both conditions prior to brain 

stimulation. Participants were tested for V1 stimulation and a no stimulation condition (see 

Fig. 3.4C). Similar to the main experiment, stimulation over V1 significantly improved 

disparity discrimination performance for mixed polarity stimuli (Z=-2.31, p=.02). For single 

polarity stimuli TMS did slightly improve discrimination performance, however this effect was 

not significant (Z=-1.36, p=.17). 

TMS produces methodological challenges that might affect the experiment outcome. Due to 

the large size of the coil, stimulation cannot always be applied at an ideal location on the 

scalp. Additionally, participants will move their head relative to stimulator coil, which makes it 

difficult to reliably target the same underlying population of neurons. In this study, I 

monitored coil position, orientation and tilt relative to stimulation targets in the brain. Fig. 

3.2C shows these control measures for each stimulation condition. For all my measures of 

coil precision, V1 stimulation was equal or less precise than for V3a and LO stimulation. This 

makes it unlikely that V1 stimulation effects can be explained by how easily an area can be 

reached with a TMS coil. 

A useful predictor of the success of TMS in the brain is the distance between stimulation 

target and the centre of the coil during stimulation (Stokes et al., 2013). Fig. 3.2C shows that 

for V1 this distance was lower compared to V3a and LO in my participants. In a previous 

study, I showed that stimulation of comparable intensity has reliable effects on V3a neural 

activity (Schaeffner & Welchman, 2017), suggesting that my null result for V3a in this paper 

is not due to insufficient stimulation intensity. Electric field simulations suggest that 

stimulation of V3a and LO was, in fact, more successful than V1 stimulation (see Fig. 3.7A). 

This makes it unlikely that the results of this study can be explained by stimulation efficacy, 

based on the distance to the target brain region. 
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One challenge of TMS research is that cortical excitability (i.e. how much brain activity is 

changed by TMS) varies considerably between days due to a variety of factors such as 

sleep (Huber et al., 2013). Given that in this experiment participants were tested over up to 

eight sessions on different days, one concern was that differences in cortical excitability 

might affect the outcome of the experiment. In this experiment the order of conditions was 

randomized so differences in cortical excitability should not affect the experiment results in a 

systematic way. I nonetheless controlled whether observer depth discrimination varied 

between experiment sessions. Fig. 3.8 shows the discrimination performance of mixed and 

single polarity stimuli for each experiment session ignoring stimulation condition. Observer’s 

depth discrimination did not differ significantly between experiment sessions (Participants 

with four experiment sessions: F3,39=0.16, p=.93; participants with eight experiment 

sessions: F7,42=2.02, p=.07). Participants did not perform significantly better in the first half 

compared to the second half of the experiment (Mixed polarity: t6=-1.75, p=.13; Single 

polarity: t6=0.42, p=.69). This suggests that differences in cortical excitability did not 

systematically affect the outcome of this study. There was a slight increase in discrimination 

performance over the course of the experiment which is probably due to observers still 

slightly improving at the task.  

However, because TMS conditions were randomized over different experiment sessions, it is 

still possible that daily differences in cortical excitability affected the outcome of this study. 

Fig 3.9. shows observer depth discrimination for each TMS condition on separate testing 

days. To check whether daily variations in cortical excitability systematically affected TMS 

conditions, I compared absolute differences in observer depth discrimination performance 

between the first and second day of testing for all TMS conditions.  No TMS condition 

showed significant larger differences in experiment results between session one and session 

2 of data collection when all TMS conditions were tested (F9,54=0.81, p=.61; see Fig. 3.9A) 

as well as in a larger group of observers for which I only tested the main effect of this study 

(F5,70=0.59, p=.71; see Fig. 3.9B). This suggests that differences in cortical excitability did 

not systematically affect the results of this study. 

 



66 
 

 

Figure 3.8: Depth discrimination in different experiment sessions. Mean discrimination 

performance from session one to session eight of testing. Error bars depict one standard 

error of the mean (SEM). Different stimulation conditions were pooled together for each day 

of testing. For seven participants data were collected in eight experiment sessions. For 

another eight participants data were collected in only four experiment sessions.  
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Figure 3.9: Session wise depth discrimination for different TMS conditions. Mean 

depth discrimination performance in different experiment sessions. Error bars depict one 

standard error of the mean (SEM). Results are shown for two separate experiment sessions 

in which data were collected in this experiment. The figure shows depth discrimination 

performance for mixed and single polarity stimuli during TMS intervention. A) Results for all 

TMS conditions investigated in this study (n = 7).  B) Results for V1 stimulation investigated 

for a larger sample size (n = 15). 

 

Another challenge of combining TMS with psychophysical tasks is the fact that stimulation 

produces muscle twitches on the scalp, which often lead to reflexive blinks. This effectively 

reduces the exposure time during stimulus presentation. Given that stimulation was applied 

at different locations on the head, this might systematically affect the behavioural outcome 

and favour coil locations at the back of the head (e.g. V1), which are furthest away from the 

eyes. Fig. 3.10A shows the number of blinks during stimulus presentation between different 

stimulation conditions. Participants had to blink more often when stimulation was applied 
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during the task. However, this did not favour a specific stimulation condition and could 

therefore not have affected the experiment results in a systematic way. Also, it is 

conceivable that side effects of stimulation were more detrimental on behaviour for a 

particular coil position. Fig. 3.10B shows the number of proportion of trials that participants 

missed for each condition based on catch trials for lapses (see Methods). Lapse rates were 

higher for V1 stimulation (where depth perception improved through stimulation) compared 

to V3a and LO stimulation. This rules out the possibility that distraction, through stimulation, 

might have disproportionately affected observers during V3a and LO stimulation. 
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Figure 3.10: Effect of TMS on blink rate, lapse rate, and vergence and version eye 

movements. A) Number of blinks during stimulus presentation for different stimulation 

conditions. B) Proportion of trials in which participants missed stimulus presentation, based 

on lapse trials (step size 10/20’, σ = 0’). C) Vergence and D) horizontal version change 

during stimulus presentation. Shaded area shows 25-75 percentiles. White bars indicate the 

timing of TMS pulses during stimulus presentation. 

 

Finally, TMS stimulation might have affected the stability of eye vergence during the task. 

This could be the case for two reasons. First, depending on coil location relative to the eyes, 

stimulation might actively interfere with extraocular muscles. Secondly, it is possible that 

TMS affected brain areas involved in control of eye movements such as parietal regions 
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close to V3a (Pierrot-Deseilligny, Milea, & Müri, 2004). To control for this potential confound, 

I recorded pupil positions during stimulus presentation. Fig. 3.10C shows average vergence 

eye movements during stimulus presentation for different stimulation conditions. To quantify 

changes of vergence through TMS, I fitted a linear model to participants’ eye vergence 

during stimulus presentation. Changes in vergence after stimulus onset did not differ 

significantly for different stimulation conditions (F4,24=0.76, p=.56). This confirms that 

stimulation of different brain regions did not affect vergence during stimulus presentation. 

In this study, I presented stimuli at a location lateral to fixation. This was done to maximize 

stimulus processing in one hemisphere, and therefore increase the chances of TMS 

intervention which I could only apply to one hemisphere at a time. I found that the lateral 

position of the stimulus did trigger horizontal version eye movements during stimulus 

presentation around 150ms after stimulus onset (see Fig. 3.10D). Again, to quantify changes 

of version through TMS, I fitted a linear model to participants’ gaze position during stimulus 

presentation. Horizontal eye movements towards stimulus position did not differ significantly 

between TMS conditions (F4,24=2.39, p=.08). This makes it unlikely that horizontal eye 

movements can the changes in stereopsis I observed. 

 

3.4 Discussion 

In this study, I investigated where in the visual cortex disparity processing benefits from the 

availability of a mixture of bright and dark visual features and allows for better depth 

perception. I found that stimulation over V1 with TMS, during stimulus presentation, 

increased this perceptual benefit. Stimulation of higher visual areas V3a and LO did not 

change perception. My findings show that disparity processing in early visual cortex gives 

rise to the mixed polarity benefit. This is consistent with models of stereopsis at the level of 

V1 which produce a mixed polarity benefit.  

 

Where does the mixed polarity benefit occur? 

In this study, I applied TMS over V1, V3a and LO to locate the disparity processing 

mechanism that produces the mixed polarity benefit. I found that stimulation over V1 

significantly improved disparity discrimination for mixed polarity, but not single polarity stimuli 

(See Fig. 3.4). Stimulation of higher visual areas V3a and LO, which are responsive to 
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binocular disparity (Goncalves et al., 2015; Patten & Welchman, 2015; Preston et al., 2008), 

did not significantly change perception.  

In the main experiment of this study, I report results for 15 participants where I applied 

neuro-navigated TMS. However, I also tested an additional seven participants where the 

TMS coil was placed over primary visual cortex based on scalp landmarks because no MRI 

scan was available. With this approach, TMS over primary visual cortex did slightly improve 

observer depth perception for mixed polarity stimuli, but the result was not significant. To 

resolve this conflict of the stimulation outcome with and without neuro-navigation, I 

performed a single-paper meta-analysis (see Results). This meta-analysis confirms that 

TMS over primary visual cortex did significantly improve depth perception for mixed polarity 

stimuli for all 22 participants stimulated in this study. Moreover, I replicated the improved 

performance in a subsequent control condition that matched behavioural performance in the 

mixed and single polarity conditions.  

There are good reasons why stimulation without neuro-navigation did not produce a similar 

outcome. It has been shown that coil placement based on scalp landmarks results in far less 

precise stimulation, and that larger sample sizes are necessary to compensate for this 

imprecision (Sack et al., 2009). It is possible that with a larger sample size I would obtain a 

similar result compared to neuro-navigated TMS. Additionally, in the main experiment, 

neuro-navigation allowed me to optimally adjust the direction of the induced electric current 

for individual participants. This has been shown to optimize the stimulation outcome (A. M. 

Janssen et al., 2015; Laakso et al., 2014; Thielscher et al., 2011). Hence, without neuro-

navigation stimulation can be expected to be less successful, and this can explain the 

attenuated effect on observer performance that I found in this study. 

Another limitation of TMS research is the unknown volume of brain tissue in which we are 

affecting neuronal behaviour. Fig. 3.4A shows that the effect of TMS starts to emerge as I 

move the coil from a distant control site (Cz) to area LO and V3a, which are located closer to 

early visual cortex. It is conceivable that stimulation over V3a caused small changes of 

neural activity in early visual cortex, which was insufficient to significantly affect perception. 

Additionally, TMS related cell activation has been shown to propagate in neural networks 

and can reach interconnected areas (Bestmann, 2008). In previous research, I showed that 

TMS related cell activation in V2d, V3d and V3a propagates back to primary visual cortex 

(Schaeffner & Welchman, 2017). It is possible that in this study TMS induced activation of 

V3a which propagated back to V1, producing marginal changes in perception. 
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It is difficult to confirm where in the brain TMS changes neural activity. In this study, I placed 

the TMS coil to maximize electric field induction in a given target area. However, electric field 

modelling reveals that, due to anatomical brain structure, TMS over V1 creates the strongest 

electric field intensity in V2d (see Fig. 3.7A) (Salminen-Vaparanta et al., 2014). To control 

whether stimulation of V2d played a role in this study, I calculated the differential between a 

behaviourally relevant (TMS over V1) and a behaviourally non-relevant (TMS over V3a) 

electric field intensity (for both coil positions I found comparable electric field intensities in 

V2d). This behaviourally relevant electric field component was maximal in V1 (see Fig. 

3.7B), suggesting that stimulation of V1 neurons underlies the changes in depth perception I 

observed in this study. However, I cannot rule out the possibility that stimulation of V2d or 

V3d also played a role. 

 

How does the mixed polarity benefit arise? 

It is a long standing observation that the presence of both black and white dots in RDSs 

improves disparity-based depth judgments (Harris & Parker, 1995; Read et al., 2011). Here I 

was able to replicate this effect, showing that discrimination thresholds were significantly 

lower for mixed polarity stimuli compared to single polarity stimuli. The benefit is present for 

a large range of disparity magnitudes (See Fig. 3.3). 

One concern about the contrast polarity effect in previous studies was that only small sample 

sizes of experienced psychophysical observers were tested. It is conceivable that this benefit 

only arises when the visual system has been trained to maximize the use of binocular 

disparity as a cue for depth perception. In this study, I specifically tried to test naïve 

observers who did not have a history of year-long exposure to RDSs. I show that the mixed 

polarity benefit is present in a sample of naive participants. 

Different explanations have been proposed for how the mixed polarity benefit arises. Harris 

and Parker (1995) suggested that separate ON and OFF channels process bright and dark 

features in the RDS separately. This would reduce the number of potentially correct dot 

matches in a mixed polarity RDS by half and double the number of correct dot matches a 

human observer can sample to get an optimal representation of the stimulus. Separate ON 

and OFF channels are well established in the early visual system (Jiang, Purushothaman, & 

Casagrande, 2015; Schiller, 1992, 2010), however our current understanding is that these 

separate channels converge in V1 onto simple cells (Schiller, 1992) and therefore cannot 

explain the mixed polarity benefit. Additionally, separate ON and OFF channels produce a 

doubling in observer performance for tasks that require a global correspondence solution 
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(Edwards & Badcock, 1994). However, Read et al. (2011) showed that the mixed polarity 

benefit is not fixed to a doubling of observer performance. This makes it unlikely that the 

benefit can be explained by separate ON and OFF channels. 

Alternatively, the benefit could be explained by different image statistics of mixed and single 

contrast polarity RDSs. Read and Cumming (2018) showed that stimuli used in this study, 

and all previous studies, contain higher inter-ocular image correlation at the target disparity if 

they have mixed contrast polarity compared to a single contrast polarity. A more correlated 

input drives binocular cells in primary visual cortex more strongly and produces a more 

reliable binocular disparity signal. This stimulus artefact arises from the way that dots are 

placed to avoid dot overlap when the RDS is created (for details see Read & Cumming, 

2018) and could explain why the mixed polarity benefit only arises when there is no dot 

overlap in the stimulus (Read et al., 2011). Read and Cumming (2018) showed that the 

standard binocular energy model produces larger energy peaks at preferred disparities for 

mixed polarity RDSs. This could explain why the mixed polarity benefit arises. 

This difference in inter-ocular image correlation was present in the stimuli used in this study 

(see Fig. 3.11A). With increasing disparity noise image correlation at target disparity 

decreases more strongly for single polarity stimuli. From this it follows that, in my 

experiment, the benefit should be larger for observers that can tolerate higher amounts of 

disparity noise in the stimulus. In this study, I tested people at one of three Gaussian 

disparity noise levels, depending on how much noise they could tolerate (see Methods). Fig. 

3.11B shows the depth discrimination performance for increasing levels of disparity noise. I 

found a trend that agrees with the prediction by Read and Cumming (2018): With greater 

disparity noise observers required a larger disparity signals to achieve 80% correct 

discrimination, and this effect is stronger for single polarity stimuli compared to mixed 

polarity stimuli. However, this trend was not significant (F1,19=2.32, p=.14), and so here I 

cannot conclude whether this observation is representative. 
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Figure 3.11: The effect of disparity noise on the mixed polarity benefit. A) Binocular 

image correlation of mixed and single polarity RDSs at target disparity for different amounts 

of added disparity noise (1000 RDSs per bar). B) Mixed polarity benefit with different 

amounts of disparity noise in the stimulus (for lower disparity noise levels data was pooled). 

The data shown are RDS offsets where observers achieved correct discrimination in 80% of 

trials and were taken from psychometric functions in Fig. 3.3. Error bars depict one SEM. 

 

Another explanation of the mixed polarity benefit is offered by a recent augmentation of the 

binocular energy model. Read and Cumming (2007) proposed that the visual system might 

use opposite contrast polarity of features in the two retinal images to reject false matches 

and thereby find the true correspondence by a process of elimination. Recently, Goncalves 

and Welchman (2017) developed a binocular neural network, which is based on an 

advanced concept of the binocular energy model and uses proscription of unmatched image 
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information to achieve stereo correspondence. This neural network produces a mixed 

polarity benefit together with other phenomena of human vision such as Da Vinci stereopsis. 

Additionally, the network only produces a perceptual benefit if dots did not overlap in the 

RDS, as is true for human observers (Read et al., 2011). 

 

Why does brain stimulation increase the benefit? 

It is surprising that brain stimulation has the potential to improve stereopsis. The best 

explanation for why TMS amplifies the mixed polarity benefit is that TMS changes neural 

activity in a sensory processing mechanism through which the benefit arises. I therefore 

discuss the different potential outcomes of stimulation and consider how they could explain 

an improvement of depth perception, given the explanations of the mixed polarity benefit 

which have been proposed above. 

TMS has the potential to both drive excitation and increase suppression of neural activity in 

the brain (Rattay, 1999). While it is possible for TMS to hyperpolarize cells, this only 

happens under very specific conditions (Rattay, 1999), and it is therefore assumed that cell 

suppression following TMS results from the activation of inhibitory connections (Moliadze et 

al., 2003; Murphy et al., 2016). Electrical stimulation of animal neural tissue triggers initial 

brief excitation (Adrian & Moruzzi, 1939; Patton & Amassian, 1954), followed by two waves 

of GABA-ergic inhibition (Connors et al., 1988), in the first 100ms after stimulation. This 

general effect of initial excitation (Boroojerdi et al., 2001; Devanne et al., 1997; C. W. Hess 

et al., 1987; Ziemann et al., 1996) and subsequent GABA-ergic inhibition (Kujirai et al., 1993; 

Premoli et al., 2014) has been replicated in the human motor cortex. TMS to primary visual 

cortex in cats suggests that stimulation predominantly triggers suppression of simple and 

complex cells in a 100ms window (Moliadze et al., 2005, 2003). 

Depending on the structure of a neural network, TMS will trigger a different ratio between 

activation and inhibition. Also, depending on the role of these networks, activation and 

inhibition of certain cell sub-populations will have different effects on the behavioural 

outcome. Accordingly, TMS has been shown to differently affect behavioural tasks and brain 

areas. TMS has been shown to impair sensory discrimination for visual features such as 

motion direction (Pascual-Leone et al., 1999), motion speed (McKeefry et al., 2008), object 

shape (Silson et al., 2013) and local orientation (Rahnev et al., 2012). It has been argued 

that brain stimulation results in random neural noise, which compromises cell populations 

that encode the relevant visual features. However, TMS induced activation has also been 

shown to sum with sensory activation in a meaningful way to improve detection of elusive 
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stimuli (Abrahamyan et al., 2015; Abrahamyan, Clifford, Arabzadeh, et al., 2011; Miniussi et 

al., 2013; Schwarzkopf et al., 2011).  

So how can we explain an improvement in depth perception for mixed polarity stimuli after 

TMS that were observed in this study? All variations of the binocular energy model, which 

describe disparity processing in primary visual cortex, contain a squaring non-linear 

processing step to match the model output with the strong responses of complex cells to 

preferred disparities. Read and Cumming (2018) have shown that the binocular energy 

model produces a stronger population response for mixed compared to single polarity 

stimuli. This is because inter-ocular image correlations are higher for mixed polarity RDSs, 

and this difference is further amplified by non-linear processing after summation of simple 

unit activity. If TMS activates neurons in V1, and thereby drives sensory responses, then we 

would predict a greater amplification for mixed polarity stimuli due to non-linear processing. 

In this way, TMS would provide a stronger disparity signal boost to the visual system for 

mixed polarity stimuli and could thereby improve depth perception. 

To test this assumption, I retested nine participants and adjusted task difficulty until 

observers had similar proportions of correct responses for mixed and single polarity stimuli. 

These stimuli should produce comparable disparity signals for mixed and single polarity 

stimuli in primary visual cortex. Similarly to the finding in the main experiment, V1 stimulation 

significantly improved depth discrimination for mixed polarity stimuli (see Fig 3C). For single 

polarity stimuli, I observed a slight improvement in depth perception, but this increase was 

not significant. This suggests that the increase of the mixed polarity benefit through TMS 

cannot be explained solely by an amplification of differentially strong disparity signals in 

primary visual cortex. 

Alternatively, it is possible that TMS drives inhibitory connections, which lead to stronger 

suppression of binocular mismatches in primary visual cortex. The recently published 

binocular neural network (Goncalves & Welchman, 2017) makes use of the great number of 

potential feature mismatches in a RDS by inhibiting the resulting erroneous disparities to 

support correct stereopsis. This produces a mixed polarity benefit because mixed polarity 

images contain more contrast mismatch information than single polarity images do. In this 

study, I applied stimulation in 100ms intervals during stimulus presentations. Animal models 

of TMS effects in V1 suggest that stimulation in 100ms intervals during stimulus presentation 

causes inhibition of simple and complex cells (Moliadze et al., 2005, 2003). Given that the 

visual system is presented with one global solution and far more potential false matches, 

which would signal incorrect disparities, general inhibition of the full population of simple and 

complex cells could have a net effect of predominantly suppressing binocular mismatches. 
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This would support stereopsis and would increase the perceptual benefit of mixed polarity 

stimuli. For single polarity stimuli this amplification would be less pronounced because less 

contrast mismatch information is available. 

 

3.5 Conclusion 

My results show that a neural mechanism of stereopsis in early visual cortex benefits from 

the availability of a mixture of contrast polarity and improves depth discrimination. I found 

that stimulation over V1 with TMS amplifies this mixed polarity benefit, while stimulation of 

higher visual areas (V3a, LO) had no effect. This finding confirms that the mixed polarity 

benefit arises during disparity processing in early visual cortex. This is consistent with 

computational models of stereopsis at the level of V1, which also produce a mixed polarity 

benefit. The currently most promising explanations for the mixed polarity benefit are that (i) 

higher inter-ocular image correlation in mixed polarity stereograms drives binocular cells in 

primary visual cortex more strongly and produces a more reliable binocular disparity signal 

or that (ii) binocular contrast mismatches, which are available in mixed polarity stimuli, are 

used to inhibit implausible correspondence solutions and thereby lead to a more reliable 

disparity signal. Brain stimulation might further increase this perceptual benefit by (i) 

amplifying responses of binocular cells to mixed polarity stimuli or (ii) by driving the inhibition 

of binocular contrast mismatches in primary visual cortex. Additional research will be 

necessary to conclusively answer the question how the mixed polarity benefit arises in 

stereopsis. 
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4. The role of parietal cortex in stereopsis 

 

This project was carried out in collaboration with Dr Elizabeth Michael. Dr Michael helped 

conducting the experiment, performed the initial EEG data cleaning from blink and muscle 

artefacts and ran the Current Source Density and weighted Phase Lag Index data 

transformations as discussed in the methods section of this chapter. 

 

4.1 Introduction 

Natural scenes often contain complex physical geometries (e.g. the branches of a tree 

spreading in all directions) and the visual system has to make sense of the resulting noisy 

binocular disparity in the scene to estimate the distance of a single branch pointing at the 

observer. Harris and Parker (1992) found that the visual system is surprisingly challenged by 

this task: Observer ability to distinguish fine depth differences suffers greatly when disparity 

noise is introduced. It has been suggested that mechanisms of stereopsis in early visual 

cortex (Schaeffner & Welchman, 2018) which establish stereo correspondence (J. M. Harris 

& Parker, 1992, 1995; Read & Cumming, 2018; Read et al., 2011) provide an unreliable 

disparity signal under such conditions. From this emerges the challenge for later stages of 

stereopsis to correctly construct depth perception based on a noisy disparity signal. 

One such mechanism might be located in higher dorsal regions: Researchers have shown 

that neurons in monkey MT critically support stereopsis for a disparity based signal in 

disparity noise (signal-in-noise task) (DeAngelis et al., 1998; Uka & DeAngelis, 2003). 

However, this substrate for disparity signals in noise is not always required by the visual 

system: After training the discrimination of fine disparity differences, MT neurons are no 

longer critical for stereopsis with noisy disparity input (Chowdhury & DeAngelis, 2008). 

Importantly, tuning properties of cells in MT were not changed after training which suggests 

that the unchanged contribution of this signal-in-noise neural mechanism was no longer 

used.  

Chang, Kourtzi and Welchman (2013) showed that this one-sided learning transfer also 

exists in human observers. In humans area MT is not sensitive to stimulus position in noisy 

disparity (Patten & Welchman, 2015). Instead parietal cortex shows strongest sensitivity for 

noisy disparity based stimuli (Patten & Welchman, 2015) and changing normal neural activity 

in parietal cortex disrupts the perception of depth in noisy disparity (Chang et al., 2014). 
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Similar to monkey MT, after fine disparity discrimination training human parietal cortex is no 

longer critical for processing noisy disparity.  

It is currently unclear how this signal-in-noise neural mechanism benefits stereopsis and why 

this contribution becomes obsolete once the brain learns to distinguish fine disparity 

differences. There are different potential ways in which the parietal cortex might contribute to 

depth judgements with noisy disparity information: 

One possibility is that neural populations in the dorsal stream, which preferentially respond 

to large, absolute disparities (Neri et al., 2004; Uka & DeAngelis, 2006; Umeda et al., 2007), 

support the detection of sufficiently large absolute disparities in smaller disparity noise. Once 

neural populations in the ventral stream, which encode fine, relative disparities, have been 

sufficiently engaged by training they could compensate this role in a one-sided learning 

transfer because relative-disparity-selective neurons can provide information regarding 

absolute disparities if a zero-disparity reference (fixation cross) is available. However, it has 

been shown that there is no strict dichotomy between absolute and relative disparity 

processing in the dorsal and the ventral stream (Cottereau et al., 2011, 2012; Patten & 

Welchman, 2015). 

Alternatively, the signal-in-noise mechanism in human parietal cortex might be involved in 

3D shape perception to extract the disparity based shapes in a noisy disparity stimulus. 

While the ventral visual pathway supports shape discrimination and object recognition (Neri, 

2005; Orban, Janssen, & Vogels, 2006; Tyler, 1990), cells in monkey AIP have been shown 

to be selective to disparity based 3D shape (Srivastava et al., 2009; Theys, Pani, van Loon, 

Goffin, & Janssen, 2012, 2013). These parietal cells signal 3D structure faster than cells in 

ventral areas but are less sensitive to small differences in disparities (P. Janssen et al., 

2018). It has been proposed that this is beneficial for on-the-fly feedback for motor actions. It 

is conceivable that an untrained observer would initially rely on quick, but coarse, disparity 

processing, due to the time constraints of stimulus exposure of classic psychophysical 

experiments.  

Another possibility is that parietal cortex accumulates disparity evidence for discrimination 

judgements. Parietal cells in monkey LIP accumulate sensory evidence for visual 

judgements which is read out by motor areas to create an adequate response (de Lafuente, 

Jazayeri, & Shadlen, 2015; Shadlen & Newsome, 2001). Similar evidence accumulation 

takes place in human parietal regions (Kelly & O’Connell, 2013; O’Connell et al., 2012). 

Electrical stimulation of these evidence accumulation circuits disrupts visual judgements in 

monkeys (Hanks, Ditterich, & Shadlen, 2006; but see also Katz, Yates, Pillow, & Huk, 2016). 
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Additionally, it has been shown that performance improvements on noisy motion tasks 

through training are possible through improved representation of sensory evidence in lateral 

intraparietal sulcus (LIP) (Law & Gold, 2008). In monkey MT cells of this signal-in-noise 

substrate do not show activity patterns that we associate with evidence accumulation 

(DeAngelis et al., 1998). However, it is unclear whether neural populations in human parietal 

cortex could be involved in this process. 

Finally, the brain might apply the strategy to exclude unwanted visual input (in this case 

disparity noise), which it deems irrelevant for a depth judgement. Cueing observer attention 

to a spatial location, where noisy visual information is presented, has been shown to improve 

perceptual discrimination (Dosher & Lu, 2000). Results in psychophysics (Hetley, Dosher, & 

Lu, 2014; Lu & Dosher, 2004; Lu, Lesmes, & Dosher, 2002), monkey single cell 

recording (Desimone & Duncan, 1995; Haenny & Schiller, 1988; Luck, Chelazzi, Hillyard, & 

Desimone, 1997; Moran & Desimone, 1985; Treue & Maunsell, 1996) and functional imaging 

(Kastner, De Weerd, Desimone, & Ungerleider, 1998; Lu, Li, Tjan, Dosher, & Chu, 2011) 

suggest that spatial attention excludes noise by sharpening selectivity of neurons for the 

target feature. Importantly, this effect of attention specifically causes noise exclusion and 

therefore doesn't benefit discrimination of stimuli which do not contain unwanted information 

(fine feature discrimination). Additionally, the effect of attention on perception is much 

greater for coarse discrimination compared to fine discrimination (Hetley et al., 2014). 

Parietal cortex might play a key role in this attentional noise exclusion. Parietal cortex has 

been shown to be part of a larger fronto-parietal attention network in both monkeys 

(Goldberg, Bisley, Powell, Gottlieb, & Kusunoki, 2002) and humans (Corbetta & Shulman, 

2002). It has been shown that changes in attention co-occur with changes of activity in this 

fronto-parietal network, as well as in visual areas which process the attended visual 

input (Pessoa et al., 2003). Parietal cortex might change sensory processing in visual cortex 

by (i) cuing sensory areas for relevant features prior to stimulus onset or by (ii) providing top-

down feedback during stimulus processing (Pessoa et al., 2003). 

All the processes described above have been associated with the parietal cortex and might 

potentially be compensated by ventral areas. It is challenging to isolate these different 

parietal contributions: The neural substrates for absolute disparity processing, disparity 

based shape processing, evidence accumulation and attention overlap spatially in the brain 

and might all contribute for signal-in-noise discrimination in stereopsis. An alternative 

approach is to separate them in time: The different contributions of the parietal cortex 

discussed above are expected to occur at different times between stimulus onset and 

observer response.  



82 
 

In this study, I recorded EEG during stimulus presentation and disparity processing to 

disentangle the neural substrates of different potential contributions of the parietal cortex to 

stereopsis. I combine this approach with TMS to disrupt synaptic transmission in the parietal 

cortex and reveal which component of parietal processing underlies the discrimination of 

disparity signals in noise. 

I found that parietal TMS produces significant deficits in stereopsis. In the visual cortex 

parietal TMS attenuates early disparity responses. This is best explained by the disruption of 

a top-down, inhibitory influence of the parietal. In line with this interpretation, I found that 

parietal TMS reduces alpha power in visual cortex during stimulus presentation. This 

suggests that alpha inhibition was reduced in visual cortex following TMS. Additionally, TMS 

increases a drop in synchronisation after stimulus offset between the parietal and visual 

cortex. This suggests that, following the disruption of parietal, top-down influences, the 

contribution of parietal cortex in stereopsis was further suppressed in the visual system. 

These results suggest that parietal cortex has an early, top-down influence on disparity 

processing in the visual cortex.  

 

4.2 Methods 

Participants 

For this study, I screened 79 naïve, right-handed participants. All had normal or corrected-to-

normal vision with good visual acuity (between -0.1 and 0.1 LogMAR). I screened 

participants for good stereo acuity with the demanding depth discrimination task used in this 

experiment (see Methods). 24 participants successfully passed the screening and were 

tested for this study. From these 24 participants, two participants had to be excluded 

because their neuroimaging data was too noisy. Therefore, data from the remaining 22 

participants is reported in this study. Before the experiment, participants provided written 

informed consent and were screened for contraindications to TMS (Rossi et al., 2009; 

Wassermann, 1998). Procedures were approved by the University of Cambridge ethics 

committee and were performed in accordance with the ethical standards laid down in the 

1964 Declaration of Helsinki. 
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Stimuli 

Participants performed the experiment task with a haploscope in which the two eyes viewed 

separate 22 inch Samsung (2233) LCD displays through front-silvered mirrors. Viewing 

distance was 50cm. Stimuli were displayed on 1680 x 1050 pixels at vertical refresh rate of 

60 Hz. Participants were instructed to maintain fixation on a square fixation cross with 

horizontal and vertical nonius lines.  

Stimuli were RDS (dot diameter: 0.15 deg, dot density: 6 dots/deg2, 50/50 ratio black and 

white dots) depicting a central target (diameter = 6 deg) surrounded by an annulus (“the 

surround”, diameter = 12 deg) on a medium grey background (see Fig. 4.1A). Participants 

judged the position (in front / behind) of the central target relative to the surround. Stimuli 

were presented for 300ms. The target plane had a disparity of ± 6 arcmin (crossed or 

uncrossed) and the surround was located at zero disparity in the fixation plane. Task 

difficulty was adjusted by varying the percentage of dots defining the target relative to noise 

dots that had a random disparity within ± 12 arcmin. Stimuli were surrounded by a grid of 

background squares (size = 0.5 deg), designed to provide a background reference and 

promote stable vergence. 

 

 

Figure 4.1: Signal-in-noise disparity stimulus. A) Stimulus containing a target centre disc 

with crossed or uncrossed disparity and with a surrounding annulus and fixation cross at 

zero disparity. Participants were asked to make a relative near vs. far judgement. B) Task 

difficulty was manipulated by reducing the coherence in the target disc (signal). Dots were 

randomly replaced in a ± 12 arcmin envelope (noise) around the remaining dots of the target 

centre disc. 
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Experiment procedure 

Participants were tested for three sessions on separate days. In the first session participants 

were familiarized with the task and screened for stereo acuity with noisy disparity in four 

different screening tasks. Feedback was provided after every response. In the first task, 

participants were asked to discriminate large disparity offsets (+/- 8 arcmin) with no disparity 

noise. In the second task, participants were asked to discriminate smaller disparity offsets 

(+/- 0.5, 1, 3, or 6 arcmin). In the third task, participants were asked to discriminate a 

disparity offset (+/- 6 arcmin) with different amounts of disparity noise (stimulus coherence: 

30, 50, 60, or 80%) (see Fig. 4.1B). Finally, participants’ stereoacuity for noisy disparity 

discrimination was tested with an adaptive staircase. No feedback on task performance was 

provided. Participants that could discriminate stimuli with a coherence of 45% or lower 

correctly 82% of times were included in the main experiment of this study. This matches the 

performance of participants in previous studies (Chang et al., 2014). The screening was 

constrained to a total of 460 trials to prevent any training effect for this task. Chang et al. 

(2014) showed that parietal contributions in this disparity based signal-in-noise task change 

after task training. 

In the remaining two sessions of the experiment participants performed the same task before 

and after TMS was applied. At the beginning of each session participants performed a 48 

training trials with feedback (+/- 6 arcmin, 80% coherence) to allow participants to re-

familiarize themselves with the task. During the main experiment participants performed the 

task with adaptive difficulty (two QUEST staircases each 50 trials). Staircases were 

designed to converge at a stimulus difficulty that yielded 82% correct observer performance. 

This design allowed me to obtain a reliable measure of task performance in blocks of 100 

trials. Each session contained a total of seven blocks (see Fig. 4.2). Three blocks were used 

to define baseline task performance prior to TMS. Four blocks were run after brain 

stimulation was applied. TMS was applied either over parietal cortex or a control site (Cz) in 

a testing session, the order of stimulation sites for the two testing days was 

counterbalanced.  

At the beginning of every test block a full field checkerboard was presented for 15s, 

reversing contrast at 10Hz (see Fig. 4.2). Participants were asked to passively fixate during 

this period. This was done to assess excitability of the visual cortex at the beginning of each 

block (see EEG). 
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Figure 4.2: Experiment outline. The experiment consisted of blocks in which first a contrast 

reversing checkerboard was presented for 15 seconds. Afterwards observers performed a 

depth discrimination task with random dot stereograms as depicted in Fig. 4.1. During these 

blocks I recorded EEG and eyetracking data. Each experiment session consisted of seven 

experiment blocks. Three blocks were performed prior to TMS application. Next theta burst 

TMS was applied. Afterwards participants performed four more blocks of the experiment.  

 

Transcranial magnetic stimulation 

I applied stimulation with a MagStim Rapid2 stimulator (MagStim, Whitland, UK), using a 

figure-of-eight coil (70 mm outer diameter). The TMS coil was placed tangentially on the 

head aiming at the defined region of interest in the brain. Stimulation was applied to left 

parietal brain regions (over electrode P3) where TMS was applied successfully in previous 

studies (Chang et al., 2014). The induced current was directed rostral to caudal with the coil 

handle facing upwards and towards the front of the head. Control stimulation was applied 

over electrode Cz with the coil handle facing from front to back with current direction anterior 

to posterior. Offline repetitive TMS was delivered as a continuous theta burst stimulation 

(cTBS) protocol (Huang et al., 2005) consisting of 600 pulses at an intensity of 38% of 

maximum stimulator output. 

 

Electroencephalography  

Electroencephalography data were acquired with a 64 channel cap (BrainCap, Brain 

Products GmbH). Data were recorded using BrainVision Recorder software. Caps were fitted 

with 61 Ag/AgCl electrodes positioned according to the standard 10-20 system (Fp1 Fp2 F3 

F4 C3 C4 P3 P4 O1 O2 F7 F8 T7 T8 P7 P8 Fz Cz Pz IO FC1 FC2 CP1 CP2 FC5 FC6 CP5 

CP6 FT9 FT10 F1 F2 C1 C2 P1 P2 AF3 AF4 FC3 FC4 CP3 CP4 PO3 PO4 F5 F6 C5 C6 P5 

P6 AF7 AF8 FT7 FT8 TP7 TP8 PO7 PO8 Fpz CPz POz Oz). Electrooculograms were also 
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acquired, using two pairs of bipolar electrodes placed horizontally and vertically around the 

left eye. Data were acquired at a sampling rate of 1kHz and filtered online at 0.1Hz. 

Temporal markers of stimulus onset were sent using a pair of photodiodes attached to the 

stimulus presentation screen.  

Pre-processing and analyses were performed in MATLAB, using the EEGLAB toolbox 

(Delorme & Makeig, 2004) and custom in-house scripts. Epochs were extracted around the 

stimulus onset to include a 1s pre- and 3s post-stimulus period. All epochs were visually 

inspected and artefactual epochs were rejected (excluding eye movements). Channel 

interpolation was performed on any channels with consistently noisy signal across the entire 

session. Data were filtered offline with a 1Hz high pass and a 40Hz low pass filter. Data 

were re-referenced to an average reference across all channels. ICA decomposition was 

applied for the purpose of artefact identification and resultant ICA components were visually 

inspected before rejection. Only components reflecting eye movements and other likely 

muscle artefacts were removed. As a final pre-analysis step, the raw signal amplitudes were 

converted into Current Source Density (CSD) estimates to minimise the impact of volume 

conduction effects (Srinivasan, Winter, Ding, & Nunez, 2007; Winter, Nunez, Ding, & 

Srinivasan, 2007).  

 

Eye tracking 

I recorded binocular eye movements with an EyeLink 1000 remote video tracker (SR 

Research), at a sampling rate of 500 Hz. The system has a stated accuracy of 0.25 deg and 

resolution of 0.01 deg (root mean square). The tracker viewed participants’ eyes through the 

(infrared transmitting) cold mirrors of the stereoscope. Observers were instructed to maintain 

their gaze on the fixation marker at all times during the experiment. At the beginning of each 

experiment block participants were instructed to keep fixating on a calibration marker which 

was used to calibrate a four by four degree area on the screen in which stimuli were 

presented. 

To analyse eye movement data, I converted raw gaze positions to degrees of visual angle. 

Trials during which tracking was lost in one or both eyes were excluded (average proportion 

of trials per participant 16.4%). This high proportion of lost trials was due to the challenge of 

tracking both eyes through the mirrors and eye holes of the stereoscope. Time series data 

were pre-processed by removing any data that corresponded to periods of blinks or 

saccades, as identified by the EyeLink inbuilt detection functions. I removed an additional 

50ms of data before and after blinks to remove large gaze point offsets which were likely 
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caused by eye rotation prior to blinks. Removed data was then linearly interpolated. Finally, 

eye tracking in a stereoscope sometimes led to erroneous tracking of interior parts of the 

stereoscope instead of participant’s pupils (average proportion of trials per participant 1.8%). 

To remove all trials where this occurred, I excluded all trials where gaze position was located 

outside of the stimulus. I checked whether loosing or removing eye tracking data affected 

different conditions of the experiment disproportionately. In this experiment the loss of eye 

tracking data was not significantly different between experiment conditions (Z=-0.66, p=.51). 

Similarly, excluding eye tracking data due to erroneous tracking did not significantly differ 

between conditions (Z=-0.73, p=.47). 

I report vergence and horizontal version eye movements during stimulus presentation to 

check that brain stimulation and lateralized stimulus presentation did not interfere with 

vergence stability. To quantify changes of vergence through TMS, I fit a linear model to 

participants’ average eye vergence during stimulus presentation. I quantify vergence 

changes on each trial in terms of the gradient (β) of the best fit (least-squares). 

 

Event related potentials 

Event related potentials (ERP) were computed time-locked to stimulus onset. Group 

averages were calculated for each task for occipital (Left: O1, PO7; Right: O2, PO8) and 

centro-parietal (Left: P1, CP1; Right: P2, CP2) electrode groups in both hemispheres. To 

identify any effect of parietal TMS on the visual evoked response, I concentrated the first 

analysis on the first components of the visual evoked response. To overcome any between-

participant differences in ERP latency, I defined individual participant’s P100 and N100 

component peak in a 100+/-50ms window after stimulus onset (see Fig. 4.7). Individual 

component peaks were visually inspected to confirm that all cases the correct peak was 

selected. Additionally, I computed alpha power (8-12Hz) as a measure of local inhibition for 

occipital (Left: O1, PO7; Right: O2, PO8) electrode groups.(EEGLAB; Delorme and Makeig, 

2004)  

In addition to the stimulus-locked components, I also compared the amplitude of evoked 

response in the pre-response period, which has been associated with a decision making role 

in perceptual judgement paradigms. Data were re-aligned to the response time for each trial, 

for 100ms pre-response to 500ms post response.  
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Steady state visual evoked response 

The steady state visual evoked response (SSVEP) in response to the contrast-reversing 

checkerboard was pre-processed in the same way as the task data, using epochs of -2/+18s 

around the stimulus onset. However, no epochs were discarded due to blinks because this 

intense checkerboard stimulus causes blinking too frequently. The first two seconds of data 

were discarded to avoid the onset response, and the subsequent 10s of data were used in 

the analysis. Data from left hemisphere occipital electrodes (O1, PO7) were averaged 

together before a fast Fourier Transform was applied. Each participant had a clearly 

identifiable peak at the expected frequency (see Results), matching the reversal rate of 

10Hz. The amplitude of the 10Hz peak was referenced to the amplitude within +/-20 

frequency bins around the 10Hz peak to estimate the signal-to-noise ratio. 

 

wPLI connectivity measures 

To measure the functional connectivity between the parietal stimulation site (P3) and 

occipital sites, I computed the weighted phase lag index (wPLI; Vinck, Oostenveld, Van 

Wingerden, Battaglia, & Pennartz, 2011). This measured the phase coherence between the 

electrode time series, weighted by the imaginary component of the coherency. This measure 

is intended to be more robust to the spurious signal correlations induced by volume 

conduction.  

To compute the wPLI, I first band-pass filtered the CSD time series at each electrode with a 

Hilbert transform at 0.5Hz sub-band intervals for the frequency range of interest (Alpha: 8-12 

Hz, Theta: 4-8Hz), to calculate the instantaneous phase. The wPLI was calculated for all 

parietal-occipital pairs at the trial level, and then averaged across all pairs and frequency 

sub-bands. The wPLI data was smoothed using a Savitzky-Golay filter. 

Two time windows of interest were selected, to capture pre-and post-stimulus onset changes 

in functional connectivity. Blocks 2 and 3 pre-TMS were averaged and used as a reference 

baseline time series, which was subtracted from each block post-TMS. 

 

Analysis 

All data were analysed using repeated-measures ANOVAs, and Greenhouse-Geiser 

correction was applied where appropriate. For post-hoc analysis I used Bonferroni corrected 

t-tests.  
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4.3 Results 

Behaviour 

Behavioural performance was measured across 7 blocks of trials, using an adaptive 

procedure to estimate the noise level required to achieve 82% accuracy (see Methods). To 

measure the impact of TMS, I compared the difference in performance between the target 

site (P3) and the control site. As these measurements were taken on separate days, the first 

three experiment blocks on each day prior to stimulation were used as a baseline reference 

for the remaining four experiment blocks after TMS. However, Fig. 4.3 shows that during the 

first testing block of each session participants showed elevated thresholds compared to the 

second and third baseline testing block. It is likely that participants took longer than expected 

to reach a stable level of performance at the beginning of a session with this demanding 

depth judgement task. I therefore excluded data from the first baseline block and collapsed 

the data from the remaining baseline blocks to obtain a stable measure of baseline 

performance. Baseline performance before parietal and control stimulation did not differ 

significantly (t21=-1.75, p=.1). Performance across the four post-TMS blocks (Fig. 4.4) is 

shown relative to the pre-TMS baseline.  

 

 

Figure 4.3: Baseline disparity discrimination priori to TMS. Mean baseline disparity 

discrimination thresholds (% stimulus coherence) prior to TMS application for all participants 

tested in both the pilot phase and the main experiment of this study (n = 31). Error bars 

depict one standard error of the mean. 
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I found that TMS over parietal cortex (P3) significantly affected disparity discrimination 

performance (F1,21=4.96 , p=.04) by increasing disparity thresholds where observers judged 

visual depth correctly for 82% of trials. Further, a significant interaction, between the 

stimulation site and the block number, suggests that the impact of TMS on visual depth 

judgements varied over time (F3,63=2.91 , p=.04). Post-hoc paired t-tests revealed that in 

block two (t21=3.1, p=.005) and block three (t21=2.36, p=.028) after TMS P3 thresholds were 

significantly increased relative to Cz (see Fig. 4.4).  

 

 

Figure 4.4: Effect of TMS on disparity discrimination. Mean change in disparity 

discrimination thresholds (% stimulus coherence) after TMS application. Error bars depict 

one standard error of the mean. 

 

Reaction times did not change significantly after parietal stimulation compared to control 

stimulation (F1,21=0.02, p=.89) (see Fig. 4.5). This confirms that the impaired disparity 

discrimination after TMS was not caused by participants giving more rushed responses. 
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Figure 4.5: Reaction times for disparity discrimination after TMS. Mean changes in 

reaction time (ms) after TMS application relative to baseline reaction time prior to TMS (n = 

22). Error bars depict one standard error of the mean. 

 

Disparity evoked response 

Having established that TMS to P3 impairs discrimination in noise performance, I next asked 

how TMS disrupted task-relevant neural processing. To capture any TMS effect, I mirrored 

the structure of the behavioural data comparisons – I first subtracted the pre-TMS baseline, 

and then looked for time windows that showed a significant P3-Cz difference. Fig. 4.6 shows 

a full scalp map of changes in neural responses after TMS. I observed changes of early 

responses (100-200ms after stimulus onset) in the visual cortex of the left, stimulated brain 

hemisphere. This suggests that parietal TMS affects early processing mechanisms of 

stereopsis. 
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Figure 4.6: Full-brain changes of disparity responses after TMS. Scalp map of the 

changes in stimulus evoked responses before and after TMS. This figure shows changes 

after parietal stimulation (P3) relative to control stimulation (Cz). A larger black dot indicates 

the stimulation site. 

 

Next, I assessed how TMS changed neural responses to the stimulus in visual cortex. Fig. 

4.7 shows individual participant and group average ERP responses to the RDS in the left 

visual cortex (data from block 3 prior to control stimulation). In a 200ms time window after 

stimulus onset the RDS produces a prominent P100 and N100 component. I therefore 

focused on these two components to asses TMS related changes in neural responses. 

Because the latencies of these components varied amongst participants (see Fig. 4.7) I 

extracted positive and negative peaks in a 100+/-50ms window (greyed area). The resulting 

peaks were visually inspected to confirm correct selection.  
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Figure 4.7: Disparity evoked response in visual cortex. Example of stimulus evoked 

responses in the left visual cortex of individual participants (black lines) and as a group 

average (red line). This data was recorded prior to control stimulation (Cz) at baseline block 

three. P100 and N100 component peaks were calculated in a 100+/-50ms window (greyed 

area) after stimulus onset.  

 

Fig. 4.8 shows the changes in N100 and P100 amplitude after parietal and control TMS. 

TMS over left parietal cortex significantly decreased N100 amplitudes in the left visual 

hemisphere (F1,21=4.83, p=.04) (see Fig. 4.8A). This effect was particularly pronounced at 

block two after stimulation (t21=3.14, p=.005) where observed the strongest effects of TMS 

on stereopsis. No such effect was observed in the right, non-stimulated hemisphere 

(F1,21=0.48, p=.5) (see Fig. 4.8B). Additionally, I observed a significant decrease of N100 

amplitude over the course of the experiment in both the left- (F3,63=4.84, p=.004) and right 

hemisphere (F3,63=4.25, p=.023) for both parietal and control stimulation. Similarly, for the 

P100 component TMS significantly decreased amplitudes in the left visual hemisphere 

(F1,21=5.42, p=.03) (see Fig. 4.8C). This effect was strongest at block (t21=-2.34, p=.03) as 

well as block four (t21=-2.74, p=.012) of the experiment. I did not find any effect of TMS in the 

right, non-stimulated hemisphere (F1,21=0.07, p=.8) (see Fig. 4.8D). The P100 component 

did not change significantly over the course of the experiment (left hemisphere: F3,63=0.88, 

p=.46; right hemisphere: F3,63=0.28, p=.84). These changes in N100 and P100 amplitude 

through parietal stimulation were correlated at block two (rs(22) = -.53, p = .01) where I 

observe the strongest effects of TMS on stereopsis (see Fig. 4.4). 
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Figure 4.8: Changes of the disparity evoked response in visual cortex after TMS. Mean 

changes in stimulus evoked responses in the visual cortex after TMS. Error bars depict one 

standard error of the mean. A) and C) show changes of the N100 and P100 in the left, 

stimulated brain hemisphere. B) and D) show changes of these components in the right, 

non-stimulated brain hemisphere. 

 

Additionally, I assessed how TMS changed alpha power (8-12Hz) in visual cortex as 

measure of local inhibition. Fig. 4.9A shows individual participant and group average alpha 

power change in the left visual cortex during stimulus presentation (data from block 3 prior to 

control stimulation). Alpha power increased during stimulus presentation and dropped below 
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a pre-stimulus level after stimulus offset. TMS over parietal cortex decreased alpha power 

approximately 100 to 400ms after stimulus onset in the both the left and right visual cortex 

(see Fig. 4.9B). However, this drop in alpha power was not significantly different (p<.05) 

from control stimulation. 

 

 

Figure 4.9: Changes in alpha power after TMS. A) Example of stimulus evoked changes 

in alpha power in the left visual cortex of individual participants (black lines) and as a group 

average (red line). This data was recorded prior to control stimulation (Cz) at baseline block 

three. B) Changes in alpha power after parietal (P3) and control (Cz) stimulation in the left 

and right visual cortex. 

 

Given the reported contribution of parietal regions to later, decision-related processing 

stages, the evoked response at parietal sites was calculated relative to the trial response 

time. This analysis showed that pre-response, there was a slow increase in amplitude until 

the time of response, consistent with the process of evidence accumulation reported 

previously (O’Connell et al., 2012). This increase in parietal response did not significantly 

differ at any time point between the P3 and control stimulation (p<.05), suggesting the P3 

stimulation did not impact on later parietal signals.  

 

Steady state visual evoked response 

Given the observed change in the amplitude of the stimulus locked evoked response, I next 

aimed to identify whether this was a task-specific modulation in response amplitude, or 
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whether TMS over parietal areas induced a broad, nonspecific change in cortical excitability 

in visual cortex. To do this, I compared the amplitude of the steady state visual evoked 

response measured in response to a 10Hz contrast-reversing checkerboard at the start of 

each block (see Fig. 4.10).  

Fig. 4.11 shows changes cortical excitability of both left and right visual cortex after parietal 

and control stimulation. I did not find a significant difference in visual cortex excitability after 

parietal or control stimulation in the left, stimulated hemisphere (F1,21=0.51, p=.82) (see Fig. 

4.11A) or the right, non-stimulated hemisphere (F1,21=0.63, p=.44) (see Fig. 4.11B). 

Changes in cortical excitability also did not change over the course of the experiment (left 

hemisphere: F3,63=0.13, p=.94; right hemisphere: F3,63=0.53, p=.66). 

 

 

Figure 4.10: Frequency response to flickering checkerboard stimulus. Example of 

mean steady state visual evoked response to a contrast-reversing checkerboard (10Hz). The 

shaded area shows the standard error of the mean. The stimulus produces a discernible 

increase in amplitude at a narrow frequency band around 10 Hz. In this study, I used this 

response to quantify cortical excitability within the visual cortex. This data was recorded prior 

to control stimulation (Cz) at baseline block three. 
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Figure 4.11: Changes in frequency response to flickering checkerboard stimulus after 

TMS. Mean changes in cortical excitability in visual cortex after TMS application in the left, 

stimulated (A) and the right, non-stimulated brain hemisphere (B). Error bars depict one 

standard error of the mean. 

 

Phase coherence connectivity measures 

The described modulation of the early components of the visual evoked response after TMS 

suggests that parietal stimulation had a functional impact at distal, visual areas. To 

investigate the mechanism underlying this modulatory influence, I turned to a time-resolved 

measure of functional connectivity. Specifically, I calculated the wPLI (Vinck, Oostenveld, 

Van Wingerden, Battaglia, & Pennartz, 2011) within the alpha frequency band (8-12Hz). I 

was interested in two time windows: pre-stimulus onset (-500-0ms) and post stimulus onset 

(300-700ms). These time windows capture any pre-stimulus anticipatory effects, and the 

post-stimulus desynchronisation within the alpha band. Fig. 4.12A shows individual 

participant and group average functional connectivity before and after stimulus onset (data 

from block 3 prior to control stimulation).  
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Figure 4.12: Functional connectivity between visual and parietal cortex before and 

after TMS. A) Example of changes in functional connectivity between parietal- and visual 

cortex for individual participants (black lines) and a group average (red line). This data was 

recorded prior to control stimulation (Cz) at baseline block three. B) Changes in functional 

connectivity after parietal (P3) and control (Cz) stimulation before and after stimulus onset. 

An asterisk marks the time window where functional connectivity differed significantly after 

parietal and control stimulation (p<.05). C) and D) show changes of functional connectivity in 

the left, stimulated (C) and right, non-stimulated (D) brain hemisphere. Error bars depict one 

standard error of the mean. 
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First, I identified during which time window (relative to stimulus onset) functional connectivity 

between parietal and visual cortex changed through stimulation. Fig. 4.12B shows changes 

in functional connectivity in the left hemisphere averaged over all four blocks. I observed 

significant changes in functional connectivity (p<.05) through parietal stimulation in a time 

window 323-417ms after stimulus onset (highlighted in Fig. 4.12B). Next, I compared 

functional connectivity during this time window for individual blocks:  

I found that TMS over the left parietal cortex significantly reduced functional connectivity in 

the left, stimulated hemisphere (F1,21=7.13, p=.01) (see Fig. 4.12C). This effect was 

particularly pronounced at block two (t21=-2.55, p=.02) and block three (t21=-2.25, p=.04) 

after stimulation where observed the strongest effects of TMS on stereopsis. I did not 

observe a significant effect on functional connectivity in the right, non-stimulated hemisphere 

(F1,21=1.75, p=.2) (see Fig. 4.12D). 

To control whether functional connectivity changes were specific to the parietal and visual 

cortex I also inspected functional connectivity between visual and frontal brain areas. 

Specifically, I chose the dorso-lateral prefrontal cortex (DLPFC) because this area has been 

identified as a part of a wider fronto-parietal attention network which can affect sensory 

processing in visual cortex (Corbetta & Shulman, 2002; Goldberg et al., 2002). Fig. 4.13A 

shows participant’s individual and group average functional connectivity before and after 

stimulus onset (data from block 3 prior to control stimulation). Functional connectivity 

fluctuations around stimulus onset had a similar profile as visual-parietal connectivity (see 

Fig. 4.12A) but were less pronounced. Fig. 4.13B shows that parietal TMS did not induce 

significant functional connectivity changes between DLPFC and visual cortex. 

 



100 
 

 

Figure 4.13: Control measures of functional connectivity. A) Example of changes in 

functional connectivity between DLPFC and visual cortex for individual participants (black 

lines) and a group average (red line). The data in A and C was recorded prior to control 

stimulation (Cz) at baseline block three. B) Changes in functional connectivity between 

DLPFC and visual cortex after parietal (P3) and control (Cz) stimulation before and after 

stimulus onset. C) Example of changes in theta phase coherence between parietal and 

visual cortex for individual participants (black lines) and a group average (red line). D) 

Changes in theta phase coherence between parietal and visual cortex after parietal (P3) and 

control (Cz) stimulation before and after stimulus onset.  
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This analysis focused on the alpha frequency band due to the large body of literature linking 

visual cortex alpha to sensory processing and parietal cortex alpha activity to attentional and 

control functions in visual tasks (Klimesch, Sauseng, & Hanslmayr, 2007). To control 

whether the observed change in connectivity profile was specific to alpha, I performed the 

same analysis in the theta band, which has also been implicated as a mechanisms to 

optimise or control task-relevant information (Palva & Palva, 2011).  

Fig. 4.13C shows participant’s individual and group average theta phase coherence before 

and after stimulus onset (data from block 3 prior to control stimulation). Phase coherence 

changes around stimulus onset were even more pronounced than alpha phase coherence 

changes (see Fig. 4.12A). However, parietal TMS did not induce significant theta phase 

coherence changes between parietal and visual cortex (see Fig. 4.13D). 

 

Eye tracking 

Finally, to control whether TMS affected vergence eye movements during the experiment, I 

recorded pupil positions during stimulus presentation. Fig. 4.14 shows average vergence 

eye movements during stimulus presentation before and after parietal and control 

stimulation. To quantify changes of vergence through TMS, I fitted a linear model to 

participants’ eye vergence during stimulus presentation. Eye vergence during stimulus 

presentation did not differ significantly differ after parietal and control stimulation (F1,12=0.12, 

p=.73). Also, vergence eye movements did not change over the course of the experiment 

(F3,36=0.29, p=.83). This confirms that stimulation of parietal cortex did affect vergence 

during stimulus presentation. 

  



102 
 

 

Figure 4.14: Vergence eye movements before and after TMS. Horizontal vergence 

change during stimulus presentation before (A) and after (B) parietal (P3) as well as before 

(C) and after (D) control (Cz) TMS. Shaded area shows 25-75 percentiles. 

 

4.4 Discussion 

In this study, I applied TMS over parietal cortex and subsequently recorded brain activity 

during a signal-in-noise disparity discrimination task. I found that TMS produced significant 

deficits in stereopsis. In the visual cortex parietal TMS attenuated early disparity responses 

alpha power. Additionally, TMS increased a drop in synchronisation after stimulus offset 

between the parietal and visual cortex. 
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Effect of parietal TMS on stereopsis 

In this study I applied theta burst TMS to change the probability of synaptic transmission 

within parietal cortex, and between parietal cortex and interconnected areas, for a prolonged 

period. I found that TMS over parietal cortex (P3) affected the discrimination of depth 

differences in a disparity-based signal-in-noise task. Specifically, during the time window 

with the largest TMS effect on stereopsis, the intervention increased discrimination 

thresholds on average by ~5% stimulus coherence compared to control stimulation (Cz) (see 

Fig. 4.4). This increase matches previous findings which suggest that human parietal cortex 

plays a critical role when observers have to detect depth differences in noisy disparity 

signals (Chang et al., 2014). 

One limitation of the study was that I used a different TMS intervention from what has 

previously been used to disrupt parietal cortex. In a previous study Chang et al. (2014) used 

online TMS over parietal cortex to disrupt depth discrimination for the same signal-in-noise 

task. Because I recorded brain activity during stimulus processing in this study, I was forced 

to use theta-burst, offline TMS which can be applied prior to the start of the experiment. 

Online TMS changes neural activity during application by actively depolarizing neurons and 

triggering action potentials (Rattay, 1999). Offline TMS, on the other hand, does not directly 

affect neural activity. Instead it changes the probability of synaptic transmission for a 

prolonged time after stimulation (Huang et al., 2005). One concern in this study was that 

online and offline TMS over parietal cortex would not disrupt stereopsis in a comparable 

way, or that online and offline TMS would interfere with different brain mechanisms in 

parietal cortex. In this study I found that offline TMS had the same effect on stereopsis as 

online TMS. Depth discrimination was disrupted and thresholds increased by a similar 

magnitude of ~5% stimulus coherence as reported for online TMS (Chang et al., 2014). This 

suggests that the same parietal mechanism was disrupted with both TMS interventions. 

In this study the effect of theta burst TMS on stereopsis was unstable over time (see Fig. 

4.4). During the first block I did not observe a difference in observer stereopsis for parietal 

and control stimulation. It has been shown that the maximum effect of theta burst on brain 

activity in the motor cortex is reached five minutes after stimulation (Huang et al., 2005). In 

this study testing blocks lasted for approximately six minutes and so it is possible that the 

effects of TMS only arose in block two of this experiment. Additionally, I used an adaptive 

staircase method to estimate perceptual thresholds in a testing block and thereby measured 

the effect of TMS on stereopsis. These adaptive staircases are more sensitive to incorrect 

responses at the beginning of a block when the staircase varies difficulty more greatly. Given 
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that the effect of theta burst might build up over the first five minutes, it is possible that only 

at the beginning of the second block staircases were sensitive enough to capture the effect 

of TMS.  

From block two onwards there was an effect of parietal TMS on observer stereopsis. This 

effect gradually decreased over time, which is expected for the effect of theta burst 

stimulation on synaptic efficiency (Huang et al., 2005). In this study I recorded EEG after 

stimulation which reveals the effect of parietal TMS on brain activity. These measures also 

showed the strongest differences between parietal and control stimulation at experiment 

block two (see Fig. 4.8A&C and Fig. 4.12C). This makes it likely that the effect of TMS on 

mechanisms of stereopsis was strongest in block two, six minutes after brain stimulation. 

 

Effect of parietal TMS on disparity responses in visual cortex 

In this study I recorded EEG during task performance to assess in what way parietal TMS 

changes noisy disparity processing. A first inspection over the whole scalp revealed that 

TMS at the parietal stimulation site caused the largest changes in visual cortex (see Fig. 

4.3). I found that the two earliest ERP components of stimulus processing in visual cortex, 

the P100 and N100, were attenuated in the left hemisphere after stimulation (see Fig. 

4.8A&C). The reductions in the P100 and N100 component were correlated which suggests 

that these changes are connected. The P100 and N100 are the first EEG components which 

are shaped under top-down control (Klimesch et al., 2007). Specifically, it has been 

suggested that top-down, alpha inhibition synchronizes sensory responses in the visual 

cortex and thereby amplifies the ERPs I observe (von Stein, Chiang, & Konig, 2000). 

To test this hypothesis, I analysed alpha power in the visual cortex during stimulus 

presentation. Fig. 4.9A shows that alpha power increased during stimulus presentation and 

dropped off after stimulus offset. This agrees with our hypothesis that top-down-controlled 

alpha inhibition supports disparity processing in visual cortex. If this was true, then we would 

expect parietal TMS to disrupt alpha inhibition in visual cortex, and alpha power should 

decrease. This is what I found in this study: Parietal TMS attenuated the rise in alpha power 

during stimulus presentation (see Fig. 4.9B). However, this effect was present in both the 

stimulated, left hemisphere and the non-stimulated, right hemisphere. Also, the attenuation 

of alpha power after parietal TMS was not significantly different from alpha power changes 

after control stimulation. I can therefore not say with certainty whether attenuated responses 

to disparity in visual cortex after parietal TMS are connected to changes in alpha inhibition. 
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One concern in this study was that TMS over parietal cortex does not affect top-down 

inhibition in the visual cortex, but rather changes cortical excitability in the visual cortex 

directly. Studies which combine TMS with fMRI have shown that TMS does not only affect 

brain activity locally but also in distant, interconnected areas. Given the strong association of 

parietal and visual cortex for our task it is conceivable that theta burst TMS could spread to 

visual areas and reduce cortical excitability directly. To rule out this explanation I measured 

visual cortex excitability with a flickering checkerboard stimulus at the beginning of each 

experiment block. After parietal and control stimulation I did not observe a significant change 

in task-independent visual cortex excitability. This makes it unlikely that TMS interfered with 

visual cortex function directly. 

To control whether evidence accumulation was affected in parietal cortex I also analysed 

response locked ERPs. I found no difference in parietal brain activity leading up to observer 

responses between parietal and control stimulation. This suggests that later, decision-related 

functions of parietal cortex were not affected by stimulation. However, it has been suggested 

that ERPs recorded from classic psychophysical tasks which involve stimulus presentation 

and a subsequent response are not sensitive to the gradual build-up of evidence in parietal 

regions (O’Connell et al., 2012). I therefore cannot rule out that also decision-related 

mechanisms were affected by TMS. 

Neither the changes in early disparity responses nor the changes in alpha power, which I 

report in this study, were significantly correlated with the observed deficits in stereopsis after 

parietal TMS. One possible explanation for this could be the relatively small sample size of 

22 participants for a correlation analysis. Alternatively, it is possible that disrupted brain 

signals of disparity only explain deficits in stereopsis at later, decision-related processing 

stages. In this study I did not observe any differences in response-locked, parietal brain 

activity after TMS. This could suggest that TMS did not disrupt evidence accumulation, 

however, as mentioned above, this experiment was not perfectly suited to investigate 

decision-related mechanisms of stereopsis. I therefore cannot rule out the explanation that 

later disparity processing, based on a disrupted disparity signal, might better explain the 

deficits of stereopsis I observed in this study.  
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Effect of parietal TMS on functional interactions between parietal and visual cortex 

during disparity processing 

In this experiment I applied theta burst TMS which has the potential to change the probability 

of synaptic transmission both within the parietal cortex, and between the parietal cortex and 

interconnected sites (Huang et al., 2007). So far, I have shown that parietal TMS indirectly 

causes changes in visual brain activity. To assess whether interactions between parietal and 

visual cortex were affected after TMS I analysed phase coherence between these two areas 

as a measure of functional connectivity (Vinck et al., 2011). Alpha phase coherence has 

been shown to increase between visual cortex and other task relevant sites during stimulus 

processing (Mima, Oluwatimilehin, Hiraoka, & Hallett, 2001; Varela, Lachaux, Rodriguez, & 

Martinerie, 2001). It has been suggested that this alignment increases the likelihood of 

information transfer and suppresses other, task irrelevant input (Palva & Palva, 2011). 

I observed a pronounced increase in alpha phase coherence between parietal and visual 

cortex during stimulus presentation (see Fig. 4.12A). The strongest interactions between 

these areas fall in a 0-200ms window after stimulus onset which agrees with the idea that 

parietal top-down modulation shapes early disparity processing in visual cortex. After 

stimulus offset the two areas desynchronize, potentially because the feedback is now no 

longer required. In fact coherence levels drop below the level of connectivity prior to stimulus 

onset. 

Parietal TMS caused a significant decrease in functional connectivity between parietal and 

visual cortex. However, while changes in stimulus evoked visual components suggest that 

TMS disrupted early, top-down mechanisms of stereopsis, changes in functional connectivity 

between parietal and visual cortex occurred 300ms after stimulus onset (see Fig. 4.12B). 

Specifically, the drop in alpha phase coherence which occurs after stimulus offset was more 

pronounced after parietal stimulation. This could suggest that parietal TMS and its potential 

effect on visual cortex inhibition leads amplifies the desynchronization of parietal and visual 

cortex after stimulus presentation. This could be due to a reduction of alpha power in visual 

cortex which could reduce phase coherence. Alternatively, it is possible that the connectivity 

to parietal cortex is further reduced (and parietal, top-down influence further suppressed) 

because it´s contribution has been compromised by TMS.  

Similar to changes of disparity responses in visual cortex, changes in functional connectivity 

after TMS did not correlate significantly with the deficits of stereopsis that I observed in this 

study. As discussed above, this could be because early interactions between parietal and 

visual cortex might not be strongly associated with later, decision-related mechanisms. 



107 
 

In this study I investigated the role of parietal cortex in processing noisy binocular disparity. I 

found that parietal cortex shows increased alpha phase synchronisation with the visual 

cortex during stimulus presentation which suggests that parietal cortex involved in noisy 

disparity processing. However, research suggests that parietal cortex is part of a larger 

fronto-parietal network which controls spatial attention and modulates visual processing 

(Corbetta & Shulman, 2002; Goldberg et al., 2002). Based on the close, functional 

interaction between frontal and parietal structures in top-down feedback for sensory 

processing we should expect parietal TMS to also affect functional connectivity between 

frontal and visual cortex during disparity processing. I therefore also analysed alpha phase 

coherence between the visual cortex and the dorsolateral prefrontal cortex (which is a frontal 

part of the fronto-parietal network) during stimulus processing. Stimulus evoked changes in 

functional connectivity between visual and frontal cortex during stimulus processing had a 

similar profile as parieto-visual connectivity, but was less pronounced (see Fig. 4.13C). TMS 

did not cause any changes in alpha phase coherence between frontal and visual cortex (see 

Fig. 4.13D). This could suggest that deficits in disparity processing after parietal TMS are 

mainly due to the disruption of parietal cortex and not a larger fronto-parietal network. 

However, more research is needed to conclusively answer this question.  

Additionally, different fronto-parietal networks with different contributions to perception have 

been proposed. One network between the posterior parietal cortex and the frontal cortex has 

been suggested to be involved in the cognitive selection of information and the anticipation 

of incoming information (Corbetta & Shulman, 2002; Pessoa et al., 2003). Here, I have 

suggested that this network might play a role in top-down modulation of stereopsis. 

However, researchers have also identified another, spatially close network between the 

temporal parietal cortex and the frontal cortex (Corbetta & Shulman, 2002). This network 

could be involved in the detection of sensory events which are salient but unattended. 

Additionally, it has been proposed that the two networks interact, namely that the latter can 

overrule the former when relevant information is presented outside of the focus of attention. 

This could serve to force attention to the newly encountered source of information. In this 

study I propose that TMS over parietal cortex affects attentional top-down modulation of 

visual cortex mechanisms of stereopsis. A potential limitation of this interpretation is that also 

detection of most informative parts of a RDS stimulus could have been affected in the 

temporal parietal cortex. However, this is unlikely because the attentional detection network 

between the temporal parietal cortex and the frontal cortex is strongly lateralized in the right 

hemisphere. In this study, TMS was applied over the left hemisphere which makes it unlikely 

that the TMS intervention affected this brain network. 
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In this study I focused on the alpha frequency band which has been shown to play an 

important role in parietal, attentional top-down modulation of sensory processing (Klimesch 

et al., 2007). Another frequency band which often has been associated with the interaction 

between different brain areas is theta frequency band (Palva & Palva, 2011). To confirm that 

parietal top-down modulation of visual cortex is in fact best captured by alpha phase 

coherence I also analysed theta phase coherence between these two sites (see Fig. 4.13A). 

Theta phase coherence did show a similar stimulus evoked profile change which suggests 

that also in theta band frequency there was a stimulus related interaction between parietal 

and visual cortex. However, parietal TMS did not change theta phase coherence (see Fig. 

4.13B) which suggests that the disruption of stereopsis I observed in this study is not 

associated with any parieto-visual interaction in theta band frequency. 

 

Effect of parietal TMS on eye movements 

Finally, one concern in this study was that TMS might affect the stability of eye vergence 

during the task. Parietal brain regions have been shown to be involved in the control of eye 

movements (Pierrot-Deseilligny et al., 2004). A change in vergence stability during stimulus 

presentation could affect stereopsis negatively and thereby create a spurious result of 

parietal TMS affecting disparity processing. In this study I recorded vergence eye 

movements to control for this potential confound (see Fig. 4.14). I did not find any changes 

in vergence eye movements after parietal or control stimulation. This suggests that our TMS 

effect on stereopsis cannot be explained by a change in vergence stability. 

 

4.5 Conclusion 

In this study, I investigated the role of parietal cortex in stereopsis. I applied TMS over 

parietal cortex and subsequently recorded brain activity during a signal-in-noise disparity 

discrimination task. I found that TMS produced significant deficits in stereopsis. In the visual 

cortex parietal TMS attenuated early disparity responses. This is best explained by the 

disruption of a top-down, inhibitory influence of the parietal. In line with this interpretation, I 

found that parietal TMS reduced alpha power in visual cortex during stimulus presentation. 

This suggests that alpha inhibition was reduced in visual cortex following TMS. Additionally, 

TMS increased a drop in synchronisation after stimulus offset between the parietal and 

visual cortex. This suggests that, following the disruption of parietal, top-down influences, the 
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contribution of parietal cortex in stereopsis was further suppressed in the visual system. 

These results suggest that parietal cortex has an early, top-down influence on disparity 

processing in the visual cortex.  
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5. Discussion 

 

In this thesis, I present my experimental studies, which used non-invasive brain stimulation, 

to advance our understanding of the neural computations of stereopsis. In the final part of 

this thesis I will discuss implications, limitations and potential future research that follow from 

the results of my studies. 

 

5.1 Assessing where in the visual brain TMS can be used 

to study perception 

In Chapter 2, I investigated where in the visual cortex TMS can be used to change neural 

activity in a way that is sufficient to study mechanisms of perception. TMS is a powerful 

research tool that allows researchers to establish causal relationships between brain areas 

and functional mechanisms of perception. However, TMS research is currently challenged 

by a high rate of uninterpretable null results (De Graaf & Sack, 2011). If we want to be more 

successful at probing brain mechanisms with TMS, then we need to get a better 

understanding of what happens in the brain during stimulation. At the single neuron level this 

problem has been well researched: Brain stimulation can directly change neural activity 

during application (Moliadze et al., 2003; Rattay, 1999) or change the probability of synaptic 

transmission for a prolonged period of time after stimulation (Huang et al., 2007, 2005). TMS 

should, in principle, work similarly for any part of grey matter tissue in the brain (Histed et al., 

2009). Therefore, if we observe no effect on behaviour after TMS, we have to assume that 

some neural activity was changed, but the net effect was not substantial enough to affect the 

brain mechanism that we are trying to study. In Chapter 2, I therefore investigated where in 

the visual cortex TMS can cause changes in neural activity that result in measurable effects 

on perception. As a marker of sufficient stimulation, I defined phosphenes, which are a direct 

outcome of TMS-induced changes of neural activity in the visual cortex. I found that TMS 

over dorsal (V3a, V3) and early (V1, V2d, V2v) visual cortex can reliably induce phosphenes. 

Researchers who want to study these brain areas and their role in perception with TMS can 

therefore be confident that stimulation is likely to induce changes in neural activity. 
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What change in brain activity causes phosphenes? 

Previous research has indicated that activity changes in primary visual cortex should 

underlie phosphenes (Kammer et al., 2005; Tehovnik & Slocum, 2013). However, my results 

show that TMS induces phosphene even more frequently over dorsal visual areas. This 

suggests that activity changes which propagate back to the primary visual cortex are most 

suited to produce phosphenes. A similar suggestion has previously been made by (Pascual-

Leone & Walsh, 2001) who showed that it is necessary for brain activity changes, which are 

cause by TMS over parietal cortex, to propagate back to the primary visual cortex to induce 

phosphenes. This emphasizes the role of afferent connections from dorsal to primary visual 

cortex for phosphenes and suggests that phosphenes could be connected to brain 

mechanisms for which this connection exists, e.g. higher visual areas providing top-down 

feedback to primary visual cortex during stimulus processing. By studying the different ways 

in which dorsal visual cortex provides input to primary visual cortex researchers could get a 

better understanding of what brain mechanism ultimately produces a phosphene through 

TMS application. 

Additionally, the observation that TMS induces brain activity spreads so readily from dorsal 

to primary visual cortex poses a challenge to how TMS experiments are designed today. 

fMRI research has already informed us that TMS does not only cause local changes in brain 

activity but also causes BOLD changes at distant, interconnected brain areas (Caparelli et 

al., 2010). However, generally it is assumed that a TMS intervention will always be most 

potent at the location where it is applied because here the magnetic field is strongest. 

Contrary to this assumption, my results have shown that TMS over dorsal visual cortex are 

even more likely to induce phosphenes than TMS directly over primary visual cortex. This 

suggests that, in the context of phosphene research, TMS over dorsal visual areas 

stimulates primary visual cortex more strongly than TMS directly over the primary visual 

cortex. Consequently, we might have to abandon the assumption that TMS effects will 

always be strongest in the brain tissue directly underneath the TMS coil. It is conceivable 

that distant, TMS-induced brain activity, which travels through interconnected brain areas, 

cumulates to a stronger effect on perception than local TMS effects. Future research could 

consider this possibility and provide evidence (e.g. through concurrent neuro-imaging) that 

TMS effects were in fact strongest in a region of interest in the brain. This will allow 

researchers to more reliably connect changes in behaviour after TMS to functional regions in 

the brain. 
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One limitation of this study is that we still don't have a good understanding of what change in 

brain activity produces phosphenes. We know that muscle twitches (the classic metric of 

motor cortex stimulation) are caused by the excitation of interneurons and pyramidal cells in 

the motor cortex (Rothwell, 1997). It is currently unclear whether phosphenes are caused by 

excitation, inhibition (through interneurons) or hyperpolarization of neurons (Kammer et al., 

2005). Answering this question would be useful because researchers could formulate more 

sophisticated a priori hypotheses about the effect of TMS on an area in the visual cortex, 

after it has been established that stimulation of this area induces phosphenes. 

To get a better understanding of how phosphenes occur, researchers could combine TMS 

with neuroimaging techniques to investigate what type of neural activity change underlies the 

perception of phosphenes. This has already been done with fMRI. The occurrence of 

phosphenes is associated with blood-oxygen-level dependent signal (BOLD) increases at 

the stimulation site and distant interconnected sites (Caparelli et al., 2010). However, it has 

been suggested that BOLD changes do not reliably capture neural activity changes that are 

induced by TMS (for a detailed summary see section ‘Can TMS be used in every part of the 

neocortex to study brain function?’).  

A more promising approach would be to combine TMS with electrophysiology. It is possible 

to clean electrophysiological recordings from the artefacts induced by a single TMS pulse 

and recover the underlying recording of neural activity (Mueller et al., 2014; Rogasch et al., 

2014). TMS could be combined with single cell recording in animals to understand how cell 

activity changes in different parts of the brain during phosphene perception. One apparent 

challenge would be to teach monkeys or cats to accurately report the position of phosphenes 

in their visual field. However, an elegant solution to this problem has been proposed by 

(Tehovnik & Slocum, 2013) and would allow researchers to detect phosphenes 

psychophysically. Phosphenes have been shown to interfere with visual information that is 

presented at their visual field location (Kammer, 1999). Consequently, animals show a 

delayed saccadic response to visual stimuli presented at the location of the phosphene, 

which is called the 'delay field' (Tehovnik & Slocum, 2013). This would allow a researcher to 

confirm the occurrence of a phosphene during stimulation and map out the exact location of 

the phosphene in the visual field of the observer.  

In humans TMS can be combined with EEG to record larger neuron population responses 

during phosphene perception. While this technique lacks the spatial specificity to infer how 

the activity of individual neurons changed, there are some ways to categorize different 

changes in neural activity. For example, in the visual cortex alpha power is a well-
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established measure of local inhibition. This could allow researchers to investigate whether 

TMS primarily drives local excitation or inhibition during phosphene perception. 

 

TMS induces phosphenes unreliably 

Another limitation of phosphene research is that not every observer will report phosphenes 

after stimulation. This is likely a consequence of choosing a conservatively safe stimulator 

output which is common practise in brain stimulation research (Rossi et al., 2009; 

Wassermann, 1998). In Chapter 2, I screened a large number of participants of which 30% 

did not report phosphenes after single pulse stimulation. In line with previous reports 

(Boroojerdi et al., 2002; Ray et al., 1998) a large proportion of these 'non-perceivers' reliably 

reported phosphenes when I stimulated them with a longer lasting train of TMS pulses. This 

suggests that the vast majority of participants should be capable of perceiving phosphenes 

with brain stimulation and that the challenge of phosphene research lies in finding 

participants that are capable of spotting these elusive and short-lived percepts. 

A goal of future phosphene research could therefore be to design a testing environment or 

task which makes it easier for participants to spot phosphenes. One characteristic of 

phosphenes, which is currently (to my knowledge) not explored to increase the likelihood of 

phosphene detection, is the observation that phosphenes interfere with visual information 

presented at the same location in the visual field (Kammer, 1999). Future research could use 

stimuli with repetitive patterns which cover the participant's whole visual field. It might be 

easier for the participant to detect distortion in these patterns compared to detecting spots of 

light in a dark room. 

 

Locating the effects of TMS in the brain 

Finally, a further limitation of this study is the challenge to accurately estimate the location of 

TMS effects in the brain without concurrent neuroimaging. The deciding factor, of whether 

neurons get activated by stimulation or not, is a sufficiently strong electric field and the 

geometry of neurons relative to the electric current produced by TMS (Rattay, 1999). Given 

that the electric field is always strongest directly under the TMS coil, I assume that neurons 

in the target location are most likely stimulated by TMS. However, sometimes neurons 

further distant from the coil centre are more ideally situated and will experience the strongest 

effect of stimulation (Opitz, Windhoff, Heidemann, Turner, & Thielscher, 2011; Thielscher et 

al., 2011). In Chapter 2, I used a vector projection method to estimate the location of 
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strongest TMS effects in the brain for a given coil position. I validated this approach with a 

more sophisticated electric field model (SimNIBS; Thielscher, Antunes, & Saturnino, 2015). 

However, both vector projection and electric field simulation are simplified models of the true 

effect of TMS on neural activity. This approach cannot give us full certainty where TMS-

induced effects were located in the brain. 

A future approach, which would overcome this limitation, could be to combine visual field 

maps of phosphenes, retinotopic maps of the visual cortex and electric field simulations. We 

know that the location of the phosphene in the participant's visual field follows the logic of 

retinotopy, e.g. stimulation of the dorsal visual cortex will produce phosphenes in the lower 

visual hemifield and vice versa (Kammer et al., 2005). In previous studies researchers have 

used individual participant retinotopic maps to explore whether neighbouring areas in 

primary visual cortex, which respond to information in different visual field locations, can be 

stimulated separately (Kammer et al., 2005; Salminen-Vaparanta et al., 2014). An interesting 

future approach could be to validate TMS effect localisations in the visual cortex by 

combining electric field simulations and the retinotopic organisation of the visual cortex to 

predict the location of phosphenes in the visual field. A similar study has successfully 

validated electric field model predictions of TMS effect locations in the motor cortex (Opitz, 

Zafar, Bockermann, Rohde, & Paulus, 2014). This could infirm whether phosphenes can be 

induced by any subpopulation of neurons in the visual cortex. Additionally, such an 

experiment could validate electric field models as good estimators for TMS effects in the 

visual brain. 

 

Can TMS be used in every part of the neocortex to study brain function? 

To the broader researcher readership the question remains whether TMS can be reliably 

applied outside of motor and visual cortex. Generally, we know how neurons should behave 

in electric currents (Rattay, 1999), and we can therefore safely assume that TMS will always 

trigger some changes in neural activity in a given portion of the cortex. However, it is a 

common observation that stimulation, which produces reliable effects in motor cortex, 

produces no observable effect on human behaviour when applied somewhere else in the 

brain (De Graaf & Sack, 2011). The critical question is whether TMS can trigger activity 

changes in large populations of neurons to have a substantial impact on neural processing, 

and subsequently human behaviour. To answer this question researchers have started to 

combine TMS with different neuroimaging techniques to get a better understanding of what 

happens during brain stimulation. 
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TMS has been successfully combined with fMRI, where stimulation is applied during a scan 

session (Bergmann, Karabanov, Hartwigsen, Thielscher, & Siebner, 2016). TMS triggers 

local BOLD increases in motor (Bestmann, Baudewig, Siebner, Rothwell, & Frahm, 2004) 

and visual (Caparelli et al., 2010) cortex. BOLD changes could be used as a readout to 

quantify TMS effects on brain activity. A convergent observation is that participants who can 

perceive phosphenes through TMS show larger BOLD changes than participants who 

cannot (Caparelli et al., 2010). However, BOLD change after primary motor cortex (M1) 

stimulation does not correlate with motor evoked potentials (MEPs) amplitude (Turi, Paulus, 

& Antal, 2012). BOLD signal changes might therefore not always capture the same aspects 

of TMS related changes in brain activity.  

Additionally, TMS often triggers widespread BOLD changes in the brain, including in distant, 

interconnected areas (Hartwigsen et al., 2013; Turi et al., 2012; Volman, Roelofs, Koch, 

Verhagen, & Toni, 2011). This would rely on the idea that TMS induced activation might 

spread via axonal connections. However, sometimes changes in BOLD signal due to TMS 

can only be observed in distant brain sites (Dowdle, Brown, George, & Hanlon, 2018; Ruff et 

al., 2006). While it is conceivable that TMS might change brain activity in areas next to the 

stimulation site, the focality of TMS is generally too good to cause stimulation effects in 

distant, contra-hemispheric areas while leaving the local site unaffected (Opitz et al., 2011; 

Thielscher et al., 2011). The only current explanation is that BOLD signals are more 

sensitive to pick up TMS effects for certain brain mechanisms. This suggests that the widely 

distributed BOLD changes in different parts of the brain after TMS cannot be treated equally. 

These limitations currently make it challenging to use fMRI to validate TMS effects. 

Another technique we can record brain activity with, while applying brain stimulation, is 

EEG. TMS-evoked-potentials (TEP) are neuron population activity directly driven by TMS 

which can be recorded with EEG. TEPs can be reliably triggered for many different TMS coil 

locations on the scalp (Lioumis, Kičić, Savolainen, Mäkelä, & Kähkönen, 2009) suggesting 

that TMS induced neural activation can be observed all over the brain. However, the spatial 

specificity of EEG is not good enough to be certain that TEPs are driven by the underlying 

brain region of interest when stimulated by TMS. While this approach allows us to conclude 

that frontal cortex activity can be altered with TMS (Rogasch et al., 2014), it would not allow 

us to distinguish whether the population response was driven by DLPFC or orbitofrontal 

cortex (OFC). 

Finally, a promising, alternative approach is the use of calcium imaging to reveal the effects 

of TMS on brain activity. This involves the injection of fluorescent substances which signal 

calcium concentrations in nervous tissue and allows researchers to record the release of 



117 
 

neurotransmitters at the synapses as a measure of neuron activity. While this technique is 

currently not available for use in healthy humans, it allows researcher to observe how single 

neurons, as well as larger neural networks, change their activity through TMS (Murphy et al., 

2016). This approach has the potential to answer the question why some brain mechanisms 

are prone to TMS intervention, while others are not. 

It would be useful to have a metric brain stimulation effects which can be used in any part of 

the brain. However, the techniques used to observe brain activity in healthy humans do 

currently not provide a reliable marker of TMS effects. Unfortunately, this means that 

researchers will, for now, be forced to continue exploratory TMS research outside of the 

motor and visual cortex. Null results cannot be interpreted and TMS related changes in 

human behaviour will require a post hoc explanation. 

 

5.2 Locating where the mixed polarity benefit of stereopsis 

arises 

In Chapter 3, I investigated where in the visual cortex disparity processing benefits from the 

availability of a mixture of bright and dark visual features, allowing for better depth 

perception. This mixed polarity benefit, which was first discovered by Harris and Parker 

(1995), serves as a great opportunity to validate computational models of stereopsis. Any 

model that aims to describe the neural mechanisms of disparity processing in humans 

should be capable of producing such a benefit. Both the standard binocular energy model 

(Read & Cumming, 2018) and more advanced versions of it (Goncalves & Welchman, 2017) 

have been shown to produce a mixed polarity benefit. This suggests that disparity 

processing in early visual cortex can produce such a benefit. However, an important addition 

to this observation should be that we have empirical evidence which suggests where in the 

brain the mixed polarity benefit arises. Here, I applied brain stimulation to early (V1) and 

higher (V3a & LO) visual brain areas. These areas have been shown to be extensively 

involved in disparity processing (Goncalves et al., 2015; Patten & Welchman, 2015; Preston 

et al., 2008) and were therefore good candidates for a location where the mixed polarity 

benefit might arise. I found that stimulation over V1 increased the mixed polarity benefit. 

Stimulation of higher visual areas V3a and LO did not change perception. This finding shows 

that disparity processing in early visual cortex gives rise to the mixed polarity benefit.  

Subsequently, this emphasizes that computational models of disparity processing in early 

visual cortex should produce such a mixed polarity benefit if we want to consider that they 
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employ similar computations as neural networks in the brain. My findings here provide the 

necessary basis for this approach. Further, the mixed polarity benefit relies on certain 

characteristics such as no dot overlap in the RDS or a sufficiently high dot density. These 

characteristics either categorically allow or disallow a benefit or change the strength of 

benefit magnitude. Researchers could use these facts to further assess how close 

computational models of stereopsis behave compared to human observers. Ideally, 

researchers could put together a range of phenomena of human depth vision (e.g. Da Vinci 

stereopsis) which model of stereopsis should successfully mimic. This will allow us to identify 

the models which most likely resemble the computation of stereopsis in the brain from a 

large number of proposed models which are all suitable to detect disparity but might not be 

biologically implemented. 

 

How does the mixed polarity benefit arise? 

Different models of stereopsis inspire different explanations for the mixed polarity benefit. 

The Binocular Energy Model describes how a mixed polarity benefit can arise purely through 

differently strong image correlation in mixed- and single contrast polarity stereo images 

(Read & Cumming, 2018). The binocular neural network, on the other hand, suggests that 

the mixed polarity benefit arises through the inhibition of unmatched binocular information 

(Goncalves & Welchman, 2017). Both explanations could in principle explain the mixed 

polarity benefit. Also, these explanations are not mutually exclusive, meaning that benefit 

might actually be explained by a combination of both. Ultimately, all current models are likely 

to be a simplified version of the real solution that the brain applies. It is therefore possible 

that a completely different form of binocular disparity processing is implemented in the brain. 

The phenomenon of the mixed polarity benefit therefore has the potential to validate which 

model does best at describing disparity processing in the brain. 

A future experiment might help to confirm whether the mixed polarity benefit arises as 

predicted by the standard binocular energy model. Read and Cumming (2018) showed that 

the binocular energy model produces a mixed polarity benefit for noisy- but not for consistent 

disparity discrimination. Specifically, binocular image correlation is reduced in noisy disparity 

profiles and, because this effect is stronger in single polarity stereo images, a mixed polarity 

benefit could arise. Importantly, this reduction in image correlation is constrained to a given 

pixel shift (i.e. disparity offset) dependent on the dot density on the RDS. In a future 

experiment, we could make use of this insight. Rather than using noisy disparity profile to 

challenge the observer, a discrimination task could employ dots at just two disparities which 

appear as two transparent depth planes. Given the binocular image correlation profile for a 
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stimulus with a given dot density we would be able to predict at what disparity offset, 

between the two transparent disparity planes, stimulus energy is reduced. At this point 

observer performance should drop below their predicted stereo acuity as a function of 

disparity offset magnitude. Additionally, given the shape of the binocular image correlation 

profile, as the two transparent disparity planes converge and approach 0 disparity, the 

discrimination performance should start to recover to the normal stereo acuity function. If 

observer performance for mixed and single polarity RDSs are exactly the same for larger 

offsets of the transparent planes discrimination task, and the benefit only starts to arise once 

the plane offset reaches the disparity magnitude predicted by the binocular image correlation 

profile, then we can conclude that the binocular energy model can completely explain the 

mixed polarity benefit. However if the benefit exists outside of this sweet spot, then we must 

conclude that other aspects (e.g. inhibition of incorrect correspondence) also contribute to 

the benefit. 

Another way to explore which model of early disparity processing correctly describes how 

the mixed polarity benefit arises would be to add the effect of brain stimulation to the model. 

If we can replicate the amplification of the mixed polarity benefit through external stimulation 

then this would be strong evidence that the model produces the benefit in a similar way as 

human brains do. While this approach is intuitive, there are certain pitfalls with this idea: With 

enough modifications it might be possible to achieve almost any desired change in the 

behaviour of the standard binocular energy model. We would need an a priori assumption of 

how the model units, which resemble simple and complex cells, should change their 

behaviour during TMS. For this, we would need to record single cell responses to mixed and 

single polarity RDSs during TMS application. These data would have to be recorded in 

animals. Unfortunately, the changes in neuron activity we might observe during TMS 

application would not be directly transferrable to humans due to different stimulation 

parameters such as brain size. Neuroimaging techniques that can safely be used with 

human observers do not allow us to infer changes in the activity of either simple or complex 

cells during stimulation. Given these constraints, I think it is unlikely that researchers will 

follow this approach. 

 

5.3 The role of parietal cortex in stereopsis 

In Chapter 4, I investigated the role of parietal cortex in stereopsis. Researchers have found 

that dorsal area MT in monkeys (DeAngelis et al., 1998) and parietal cortex in humans 

(Chang et al., 2014) play a critical role for stereopsis. Specifically, parietal cortex seems to 
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be involved in processing disparity signals in disparity noise. However, it was previously 

unclear in what way parietal cortex contributes to stereopsis. There are many documented 

roles of the parietal cortex in perception which might be involved, such as primarily 

processing absolute disparity (Neri et al., 2004; Uka & DeAngelis, 2006; Umeda et al., 

2007), supporting 3D shape perception (Srivastava et al., 2009; Theys et al., 2012, 2013), 

accumulating evidence for perceptual decisions (de Lafuente et al., 2015; Kelly & O’Connell, 

2013; O’Connell et al., 2012; Shadlen & Newsome, 2001) and suppressing unwanted 

information (Pessoa et al., 2003). Here, I applied brain stimulation to disrupt the contribution 

of parietal cortex to stereopsis and recorded EEG to investigate how disparity processing is 

affected when the parietal contribution is reduced. I found that TMS produced significant 

deficits in stereopsis. In the visual cortex parietal TMS attenuated early disparity responses.  

My findings suggest that TMS over parietal cortex disrupts an early, top-down influence of 

parietal cortex on disparity processing in visual cortex. Specifically, top-down input could 

inhibit noisy disparity at disparity magnitudes which are irrelevant for depth discrimination 

and therefore should not be attended. In line with this interpretation, I found that parietal 

TMS reduced alpha power in visual cortex during stimulus presentation. This suggests that 

alpha inhibition was reduced in visual cortex following TMS. Additionally, TMS increased a 

drop in synchronisation after stimulus offset between the parietal and visual cortex. This 

suggests that, following the disruption of parietal, top-down influences, the contribution of 

parietal cortex in stereopsis was further suppressed in the visual system.  

 

Is the contribution of the parietal cortex to stereopsis specific to signal-in-noise 

tasks? 

One open question is how general the contribution of parietal cortex is to stereopsis. The 

results of this study suggest that the parietal cortex provides top-down inhibition during early 

disparity processing in visual cortex. It is possible that this inhibition serves to suppress 

disparity noise. However, as discussed in the introduction of this thesis, the strategy of 

suppressing disparity noise is specific to signal-in-noise task. Other forms of disparity noise 

might require a different strategy to minimize the influence of disparity noise on the 

observer's depth estimate. All the studies which investigated the role of monkey MT 

(DeAngelis et al., 1998) and human parietal cortex (Chang et al., 2014) in stereopsis have 

used this exact signal-in-noise task. It is an open question whether the parietal cortex is still 

involved with different forms of disparity noise, which might require different strategies of 

disparity processing. 
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In a future study, researchers could address this question using tasks that employ noisy 

disparity discrimination, but don’t allow the observer to use a strategy in which noise is 

suppressed. In Chapter 3, I used an RDS stimulus where I introduced disparity noise by 

adding random (randomly distributed around zero) disparity shifts to each dot in the stimulus. 

Here, to nullify the effect of disparity noise, an observer should try to integrate all depth 

information into a mean estimate which will match the true underlying disparity signal. If 

parietal cortex exclusively serves to suppress information, we would expect no parietal 

contribution and disruption of parietal activity should not affect stereopsis. Alternatively, we 

could modify the task which was used in this study. Rather than changing stimulus 

coherence (the number of dots that is replaced) to manipulate task difficulty we could 

change the disparity magnitude of the signal in the stimulus. Here, I expect no or a delayed 

parietal contribution because at stimulus onset it is unclear to the observer where the 

disparity signal will be located in depth. Such an experiment could answer the question 

whether parietal cortex is primarily engaged in the suppression of disparity noise in a signal-

in-noise task or whether this area provides a more general contribution to stereopsis. 

My findings in this study suggest that parietal cortex has an early, top-down influence on 

disparity processing in the visual cortex. The timing of this top-down influence matches that 

of early, attentional modulation of perception (Lu, Jeon, & Dosher, 2004). My results suggest 

that attention does in fact aid the processing of certain disparity magnitude ranges and 

suppresses clutter at different visual depth. This contribution would make sense as it has 

been proposed that depth-based figure-ground-segmentation is one of the mayor benefits of 

stereopsis (Bredfeldt & Cumming, 2006; Julesz, 1971). Recent studies have found that the 

fronto-parietal network plays a critical role not only in two-dimensional but also three-

dimensional detection tasks (Ogawa & Macaluso, 2015). This suggests that the contribution 

of parietal cortex does in fact go beyond tasks where observers need to detect disparity 

signals in disparity noise. Future research could combine classic experimental paradigms for 

studying two-dimensional spatial attention (e.g. priming the observer for spatial locations and 

subsequently measuring detection accuracy; Dosher and Lu, 2000) with stereoscopic 

research. This will allow us to investigate how well our understanding of two-dimensional 

spatial attention describes attentional effects in three-dimensional space. 

 

Does parietal cortex also contribute to evidence accumulation for decisions of depth 

discrimination? 

Another limitation of this study is that the results are less sensitive to decision related 

mechanisms of stereopsis. During the experiment I kept observer performance almost 
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constant and recorded task difficulty as a measure of observer depth acuity. Specifically, in 

each experiment block I used adaptive staircases which converged at 82% correct 

performance. It was necessary to obtain quick, reliable estimates of observer depth acuity in 

short blocks because it was to be expected that the effect of TMS would decay over time. 

This means that for a majority of the trials observers performed at 82% correct performance 

and decision related mechanisms of stereopsis should have received similar amounts of 

evidence for either a 'near' or 'far' depth judgement. Importantly, this means that decision 

related areas still received the same amount of evidence after parietal TMS when observer 

depth acuity was affected. This could suggest that this experiment was not sensitive enough 

to detect any changes of decision related activity in parietal cortex after stimulation. 

 

How directly does TMS cause changes of disparity responses in visual cortex? 

Another limitation is that it is not clear whether the different effects of TMS on neural activity 

that we observe in this study are separate effects or rather causing each other. Given that 

TMS over parietal cortex did not directly change cortical excitability in visual cortex, we can 

be confident that TMS changed brain activity outside the visual cortex which in turn affected 

early disparity responses in visual cortex. However, it is unclear whether TMS also caused 

the decrease in local inhibition during stimulus presentation and the observed functional 

connectivity drop between parietal and visual cortex after stimulus offset. These effects 

could also be of a secondary nature and primarily caused by the changes in early disparity 

responses. All of these effects happen at different time windows relative to stimulus onset. If 

these effects are in fact signatures of different steps of disparity processing, then future 

experiments could aim at disentangling each of these different steps individually. 

Additionally, if these time windows contain different steps of disparity processing, it would be 

interesting to know which disruption of what steps underlies the changes in observer stereo 

acuity. 

One way a future experiment could answer this question is by interfering with parietal brain 

activity at different time points during disparity processing. The results of this study could be 

used to define time windows in which TMS can be used to directly change neural activity in 

parietal cortex, as has previously been done by (Chang et al., 2014). Additionally, it is 

possible to clean EEG from the artefacts of single pulse of online TMS, which in turn would 

allow us to record changes in disparity responses in visual cortex. The effect of a single 

pulse is very constrained in time. Any effects on disparity responses that occur more than 

200ms after TMS can be expected to be secondary effects driven by a preceding TMS effect 

(De Graaf, Koivisto, Jacobs, & Sack, 2014). This will allow researchers to confirm exactly at 
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what time a parietal, top-down contribution is critical to stereopsis and will show whether 

disruption of parietal cortex causes longer lasting changes of disparity responses in visual 

cortex.  
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