
Privacy-Preserving Personal Model Training
Sandra Servia-Rodrı́guez∗, Liang Wang∗, Jianxin R. Zhao∗, Richard Mortier∗ and Hamed Haddadi†

∗Department of Computer Science and Technology, University of Cambridge
†Dyson School of Design Engineering, Imperial College London

Abstract—Many current Internet services rely on inferences
from models trained on user data. Commonly, both the training
and inference tasks are carried out using cloud resources fed
by personal data collected at scale from users. Holding and
using such large collections of personal data in the cloud creates
privacy risks to the data subjects, but is currently required
for users to benefit from such services. We explore how to
provide for model training and inference in a system where
computation is pushed to the data in preference to moving data
to the cloud, obviating many current privacy risks. Specifically,
we take an initial model learnt from a small set of users and
retrain it locally using data from a single user. We evaluate on
two tasks: one supervised learning task, using a neural network
to recognise users’ current activity from accelerometer traces;
and one unsupervised learning task, identifying topics in a large
set of documents. In both cases the accuracy is improved. We
also analyse the robustness of our approach against adversarial
attacks, as well as its feasibility by presenting a performance
evaluation on a representative resource-constrained device (a
Raspberry Pi).

Index Terms—Privacy, Machine Learning, Algorithms

I. INTRODUCTION

Large-scale data collection from individuals is at the heart
of many current Internet business models. Access to these data
allow companies to train models from which to infer user
behaviour and preferences, typically leveraging the generous
computation resources available in the public cloud. Unfortu-
nately, this data collection is increasingly pervasive and inva-
sive, notwithstanding regulatory frameworks such as the EU’s
General Data Protection Regulation (GDPR) which attempt to
restrain it. The result is that user privacy is compromised, and
this is becoming an increasing concern due to reporting of the
ongoing stream of security breaches that result in malicious
parties accessing such personal data.

Such data collection causes privacy to be compromised even
without security being breached though. For example, consider
wearable devices that report data they collect from in-built
sensors, e.g., accelerometer traces and heart rate data, to the
device manufacturer. The device might anonymise such data
for the manufacturer to use in improving their models for
recognising the user’s current activity, an entirely legitimate
and non-invasive practice. However, the manufacturer might
fail to effectively anonymise these data and instead use them
for other purposes such as determining mood, or even to sell to
third-parties without the users’ knowledge. It is not only data
from wearables that creates such risks: web queries, article

This research was supported by the EPSRC through Grant Databox
(EP/N028260/1). The work was completed while Hamed Haddadi and Sandra
Servia-Rodrı́guez were at Queen Mary University of London.

reads and searches, visits to shopping sites and browsing
online catalogues are also indexed, analysed, and traded by
thousands of tracking services in order to build preference
models [1].

So far, users’ personal data were mainly sensed through
their computers, their smartphones or wearable devices such
as smartwatches and smart wristbands. But nowadays smart
technology is entering into our homes. We are heading towards
an ecosystem to the revolution where sooner or later, every
device in our home will talk to an Amazon Echo [2], Google
Home [3], or Apple HomeKit [4]. Apart from controlling smart
home appliances such as light bulbs and thermostats with
our voice, these smart controllers for the entire home will be
required to perform more complex tasks such as detecting how
many people are in the house and who they are, recognising
the activity they are performing or even telling us what to wear.
In this new scenario, users are becoming progressively more
aware of the privacy risks of sharing their voice, video or any
other data sensed in their homes with the service providers,
at the same time that these applications are demanding more
accurate and personalised solutions. Sending personal data to
the public cloud to perform these tasks seems no longer to
be an acceptable solution, but solutions should take advantage
of the resource capabilities of personal devices and bring the
processing locally, where data resides.

Approaches such as homomorphic encryption allow user
data to be encrypted, protecting against unintended release
of such data, while still being amenable to data processing.
This affords users better privacy – their data cannot be used
arbitrarily – while allowing data processors to collect and use
such data in cloud computing environments. However, current
practical techniques limit the forms of computation that can
be supported. We are interested in an alternative approach
where we reduce or remove the flow of user data to the
cloud completely, instead moving computation to where the
data already resides under the user’s control [5], [6]. This
can mitigate risks of breach and misuse of data by simply
avoiding it being collected at scale in the first place: attack
incentives are reduced as the attacker must gain access to
millions of devices to capture data for millions of users, rather
than accessing a single cloud service. However, it presents
challenges for the sorts of model learning processes required:
how can such models be learnt without access to the users’
personal data?

In this paper we address these challenges using the Edge
Computing paradigm. Specifically, our contributions include:
(i) we develop our personal training method for implementing

machine learning in an environment where personal data
largely remains on constrained devices under the control of
the data subject (§II); (ii) we apply this method to two well-
known learning tasks, one supervised (activity recognition
from accelerometer traces, §III), and one unsupervised (mod-
elling topics in text documents, §IV) and report the results; and
(iii) we explore the robustness of our method against adver-
sarial attacks, as well as the feasibility of implementing such
techniques on a representative resource-constrained personal
device: a Raspberry Pi 3 Model B [7] (§V).

The essence of our approach is a two-step process: (i) we
first train a shared model using a small set of voluntarily
shared users’ data and distribute this model to all users; and
(ii) we then retrain this model locally using personal data held
by each user, drawing inferences from the resulting personal
model. We evaluate this approach using (i) a neural network
to recognise users’ activity on the WISDM dataset [8] and
(ii) the Latent Dirichlet Algorithm (LDA) [9] to identify topics
in the Wikipedia and NIPS datasets [10], [11]. In both cases
we show that the model resulting from local re-training of an
initial model learnt from a small set of users performs with
higher accuracy than either the initial model alone or a model
trained using only data from the specific user of interest.

We also demonstrate the feasibility of training and testing a
small classifier in a resource-constraint, light-weight personal
device: a Raspberry Pi 3 Model B [7]. We find that such a
device is certainly capable of supporting these algorithms,
with negligible time to obtain inferences (on the order of
milliseconds), and reasonable training times as well (on the
order of tens of seconds).

II. METHODOLOGY

The current approach, which we wish to avoid, of sending
all users’ personal data to the cloud for processing, is one
extreme of a spectrum whose other extreme would be to train a
model for a specific user using only that user’s data. For some
applications, e.g., activity recognition, it has been shown that a
model trained solely using data from the individual concerned
provides more accurate predictions for that individual than a
model trained using data from other individuals [12]. At the
same time, this solution offers more privacy to the user as
all computation, for both training and inference, can be done
locally on the device [5]. However, this approach leads to
substantial interactional overheads as training the model will
likely require each user to label a significant amount of data
by hand before they can obtain accurate inferences.

We propose and evaluate an alternative, hybrid approach that
splits computation between the cloud and the users’ personal
devices. We start by first training a model in the cloud using
data from a small (relative to the population) set of users. We
then distribute this shared model to users’ personal devices,
where it can be used locally to generate inferences. In addition,
it can be retrained using locally-stored personal data to become
a personal model, specialised for the user in question.

We now describe this approach following the overview
depicted in Figure 1. For clarity of exposition, we first describe

!"#$%$%&'
(#)# *+

,#)-.'/0#"%$%&

*12
$32(2

($32

4%50"0%-0*12
$32*6
$32

7%/$%0'/0#"%$%&

8

4%50"0%-0

Fig. 1. Our privacy-preserving methodology for activity recognition.

our approach in the case of supervised learning, taking the
activity recognition task we later use in our evaluation as
a running example. We then generalise this description to
other applications, including our second evaluation example of
identifying topics in documents which uses an unsupervised
algorithm. This suggests that any learning task, supervised or
unsupervised, is amenable to our approach allowing features
extracted from users’ personal data that they do not wish to
disclose to be used to further personalise the initial shared
model.

We start by training a shared model, MS , to recognise the
activity that the user is performing using data sensed with his
smartphone’s built-in sensors. This batch learning is done on
a remote server in the cloud using available public data, dp. In
the event of not having sufficient public data available for this
task, data can be previously gathered from a set of users that
have agreed to share their personal data perhaps by providing
them with suitable incentives. To assure the confidentiality
of their data as well as their presence in the dataset, the
shared model might be obtained using differentially private
training [13], [14], [15], [16].

The user u then obtains the shared model from the remote
server. With every new sample or group of samples gathered
from the smartphone’s sensors, the activity that the user is
performing is locally inferred using this model. In order to
allow for more accurate inferences, the user is prompted
to “validate” the results by reporting the activity they were
performing. The new labelled data so gathered are then used
for locally retraining the model, resulting in a new personal
model, MP .

A. Architecture

Having described our approach, we now sketch a system
architecture that might be used to implement it. This is
divided into two parts: (i) residing in the cloud, the first part
is responsible for constructing a shared model using batch

learning; and (ii) residing on each individual user’s device,
the second part tunes the model from the first part using the
locally available data, resulting in a personal model.

We identify five components in this architecture:
1) The batch training module resides in the cloud, and is

responsible for training a shared model as the starting
point using public, or private but shared, datasets that it
also maintains. As this component may need to support
multiple applications, it will provide a collection of
different machine learning algorithms to build various
needed models. It may also need to perform more
traditional, large scale processing, but can easily be built
using modern data processing frameworks designed for
datacenters such as Mllib [17] or GraphLab [18].

2) The distribution module resides on users’ devices
and is responsible for obtaining the shared model and
maintaining it locally. In the case of very large scale
deployments, standard content distribution or even peer-
to-peer techniques could be used to alleviate load on the
cloud service.

3) The personalisation module builds a personal model
by refining the model parameters of the shared model
using the personal data available on the user’s device.
This module will also require a repository of different
learning algorithms, but the nature of personal computa-
tional devices means that there will be greater resource
constraints applied to the performance and efficiency of
the algorithm implementation.

4) The communication module handles all the communi-
cations between peers or those between an individual
node and the server. Nodes can register themselves with
the server, on top of which we can implement more
sophisticated membership management.

5) The inference module provides a service at the client to
respond to model queries, using the most refined model
available.

In our implementation, we rely on several existing software
libraries to provide the more mundane of these functions,
e.g., ZeroMQ [19] satisfies most of the requirements of the
communication and model distribution modules, and so we
do not discuss these further here.

There are many toolkits, e.g., theano [20] and scikit-
learn [21], that provide a rich set of machine learning al-
gorithms for use in the batch training and personalisation
modules. However, in the case of the latter, we must bal-
ance convenience with performance considerations due to the
resource-constrained nature of these devices. In light of this,
we use a more recent library, Owl [22], [23], to generate more
compact and efficient native code on a range of platforms, and
the source code can be obtained from its Github repository1.

B. Typical Workflow

We briefly summarise the workflow we envisage using
activity recognition as an example.

1https://github.com/ryanrhymes/owl

1) When the user activates the device for the first time, the
device contacts the server and registers itself in order
to join the system. The device notices there is no local
data for building the model, and sends a request to the
server to obtain the shared model.

2) After processing the registration, the server receives the
download request. The shared model has been trained
using a initial dataset collected in a suitably ethical and
trustworthy way, e.g., with informed consent, appropri-
ate compensation, and properly anonymised. The server
can either approve the download request, or return a list
of peers from whom the requesting user can retrieve the
model.

3) Having obtained the shared model, the device can start
processing inference requests. At the same time, the
device continuously collects user’s personal data, in this
case, their accelerometer traces. Once enough local data
is collected, the personalisation phase starts, refining the
shared model to create a personal model.

4) After the personal model has been built, the system uses
it to serve requests, and continues to refine it as more
personal data is collected.

This methodology and hypothesised architecture can be ap-
plied to supervised and unsupervised learning tasks in different
domains. We next show how it applies to (supervised) activity
recognition (§III) and (unsupervised) topic modelling (§IV)
using two well-known learning algorithms respectively.

III. ACTIVITY RECOGNITION USING ACCELEROMETER
TRACES

In this section, we validate our methodology for supervised
learning using a neural network to recognise users’ activity
using accelerometer traces. Our evaluation for unsupervised
learning is detailed in §IV, where we take the task of identi-
fying topics in documents as a case study.

Here we consider a scenario where smartphone users want
to train a motion-based activity classifier without revealing
their data to others. To test the algorithms, we use the WISDM
Human Activity Recognition dataset [8], which is a collection
of accelerometer data on an Android phone by 35 subjects
performing 6 activities (walking, jogging, walking upstairs,
walking downstairs, sitting and standing). These subjects
carried an Android phone in their front pants leg pocket while
were asked to perform each one of these activities for specific
periods of time. Various time domain variables were extracted
from the signal, and we consider the statistical measures
obtained for every 10 seconds of accelerometer samples in [8]
as the d = 43 dimensional features in our models. Our final
sample contains 5, 418 accelerometer traces from 35 users,
with on average 150.50 traces per user and standard deviation
of 44.73.

For the purpose of validation, we compare the performance
of the following models:
• Shared: classifier trained using data from N − 1 subjects

and tested using data from the remaining subject;

• Local: classifier trained using only data from 1 subject
and tested using also data from the same subject; and

• Personal: classifier trained using data from N−1 subjects
(shared model), retrained using data from 1 subject (local
model) and tested using also data from the latter subject
(personal model).

Thus, we simulated a case where a shared model MS

is trained with data from 34 subjects, while the personal
model ML is trained with different samples of data from the
remaining participant (u). We then compare the accuracy of
the personal model with the shared and local models. To this
aim, we simulated two other cases: the shared model trained
using data from 34 subjects, and the local model trained using
only local data from u. Being Su the samples of u and Sr

the samples of all subjects but u, the samples considering for
training, validation and test in each model are the following:
• Shared:

– Training set: 80% of Sr

– Validation set: 20% of Sr

– Test set: 20% of Su

• Local:
– Training set: {1..60%} of Su

– Validation set: {1..20%} of Su

– Test set: 20% of Su

• Personal: We started from the shared model and, in
order to fine-tune it to obtain the (personal model), we
considered the same setup as in the local model.

A. Multi-Layer Perceptron

We used a Multi-Layer Perceptron as the supervised learn-
ing algorithm for recognising activity using accelerometer
traces. A Multi-Layer Perceptron or MLP is a type of feed-
forward Artificial Neural Network that consists of two layers,
input and output, and one or more hidden layers between these
two layers. The input layer is passive and merely receives
the data, while both hidden and output layers actively process
the data. The output layer also produces the results. Figure 2
shows a graphical representation of a MLP with a single
hidden layer. Each node in a layer is connected to all the nodes
in the previous layer. Training this structure is equivalent to
finding proper weights and bias for all the connections between
consecutive layers such that a desired output is generated for
a corresponding input.

The standard back-propagation learning algorithm is used
for training the MLP neural architecture. For each accelerom-
eter trace in the training set, weights and bias are modified
by computing the discrepancy between the desired and actual
outputs and feeding back this error to the inputs, updating the
weights and bias in proportion to their responsibility for the
output error. The main steps of the back-propagation algorithm
are the following:

1) Initialise the parameters. All wij’s (wjk’s) are ini-
tialised to small random values such as the variance of
neurons in the network should be 2.0/N (2.0/M), being
wij (wjk) the value of the connection weight between

unit j (k) and unit i (j) in the previous layer, and N
(M) the number of input (hidden) units [24]. The bias,
bj (bk), are initialised to zero.

2) Compute the class scores. Let the individual compo-
nents of an input accelerometer trace be denoted by ai,
with i = 1, 2, ..., N . The output of the neurons at the
hidden layer are obtained as: Hj = ϕ(

∑N
i=1 aiwij + bj)

with j = 1, 2, ...,M , where ϕ(·) is the activation
function and wij is the weight associated to the con-
nection between the i-th input node and the j-th hidden
node, and bj the bias. The current recommendation is
to use ReLU (Rectified Linear Unit) units [25], [24]
as the activation function (ϕ(x) = max(0, x)) though
other options are possible. The outputs of the MLP
are obtained using Ok = ϕ(

∑M
j=1Hjwjk + bk), with

k = 1, 2, ..., C. Here, wjk is the weight associated to
the connection between the j-th hidden node and the
k-th output node, and bk the bias.

3) Compute the analytic gradient with back-
propagation. This is done by an iterative gradient
descent procedure in the weight space which minimises
the total loss between the desired and actual outputs
of all nodes in the system. The delta terms for
every node in the output layer are calculated using
δok = (Ok − dk)ϕ

′(·), with k = 1, 2, ..., C. Here,
ϕ′(·) is the first derivative of the activation function.
Delta terms for the hidden nodes are obtained by
δhj =

∑C
k=1(wjkδ

o
k)ϕ
′(·), with j = 1, 2, ...,M .

4) Performing a parameter update. That is, adjust the
weights and bias according to the delta terms and η, the
learning rate parameter. For the weights, this is done
using wij = wij − ηδhj ai and wjk = wjk − ηδokHj .
The bias are updated according to bj = bj − ηδhj and
bk = bk − ηδok.

This process is repeated until the network stabilises (con-
verges).

In order to control the capacity of Neural Networks to pre-
vent overfitting, `2-regularisation is perhaps the most common
form of regularisation. It can be implemented by, for every
weight w in the network, adding the term 1

2λw
2 to the ob-

jective, where λ is the regularisation strength. Early-stopping
is another mechanism to combat overfitting by monitoring
the model’s performance on a validation set. A validation
set is a set of examples neither used for training nor for
testing. During training, if the model’s performance ceases
to improve sufficiently on the validation set, or even degrades
with further optimisation, then the training gives up on much
further optimisation.

An important aspect of the MLP is the initialisation of the
weights and bias, and here is also the main contribution of our
proposal. For the shared model, MS , we initialise the weights
to random small values and the bias to zero in both layers,
as suggested by previous literature [24]. However, for training
the personal model, MP , we start from the weights and bias
of the shared model, MS .

...

...
...

I1

I2

I3

In

H1

Hm

O1

Oc

input
layer

hidden
layer

output
layer

Fig. 2. The architecture of the two-layer feed-forward network.

B. Experimental setup

We set up a Multilayer Perceptron with 2 layers for activity
recognition, including 1 hidden layer with 128 nodes and 1
logistic regression layer, resulting in 6, 406 parameters to be
determined during training. We construct the input layer using
the statistical measures of users’ accelerometer traces. Because
of the sensitivity learning stages to feature scaling [26] we
normalise all statistical measures to have zero mean and unit
standard deviation. In the output layer each unit corresponds
to an activity inference class, such that unit states can be
interpreted as posterior probabilities.

All training procedures were implemented in python using
the Theano deep learning library [20]. The training and testing
were performed with 5-fold cross validation, using early
stopping as well as `2-regularisation to prevent overfitting.
Each neuron’s weight in the shared and local models was
initialised randomly from N (0, 1)/

√
2.0/n, where n is the

number of its inputs, and biases were all initialised to zero.
Parameters in the personal model were initialised to the values
obtained in the shared model. Finally, we used grid search
to determine the values of the hyper-parameters, setting the
learning rate to 0.05 for the shared model and to 0.001 for the
local and personal models, and the `2-regularisation strength
to 1e−5 for all the models. The training epochs were set to
1000 in all models, while the batch size was set equal to the
size of the training sets in the shared model, and to 1 (online
learning) in the local and personal ones. The reasons behind
this are the small size of the dataset, and the availability of
the training samples in a real scenario (samples for the shared
model can be assumed to be all available for training, whereas
samples in the local and personal models become available for
training as time goes by).

We repeated the experiment for each participant, using 5-
fold cross-validation and different number of samples to train
the local and personal models. In each simulation of every

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●
●

●

● ●

●

●

●●
●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

● ●

●

●

●
●

●

●

●
●

●
●

●
●

● ●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
● ●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

● ●

●

●

●

●

●
● ●

●

●

●
●

● ●

●

●
●

●

●
●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●
●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●● ●●●● ●● ●●●● ●● ●●●● ●● ●●●● ●● ●●●● ●● ●●●● ●● ●●● ● ●● ● ●●● ●● ●●● ●●● ●●●● ●● ●●● ● ●● ●● ●● ●●●● ● ●●● ● ●●●●● ●● ●● ●● ● ●●● ●● ●● ● ●●●● ●● ● ●● ●●●●●● ●●●● ●● ●●● ●● ●● ● ●●● ● ● ●●● ●● ●● ● ●● ●● ●●●● ● ● ●●● ● ●●● ●● ● ● ●●●● ●●● ● ●● ● ●●●●●● ● ● ●●● ●● ●● ●●● ●●● ● ●●● ●●●● ●● ●● ●●●● ● ●●● ●●● ● ●●● ●● ●● ●●● ●●● ●●● ● ●●● ●● ● ●● ● ●● ●●●● ●● ●●● ●●● ●● ●● ●●● ●●● ● ●●●●● ●● ● ● ●●● ●● ● ●●● ●● ●●● ● ●●● ● ●●● ● ●● ●● ●●● ●● ●● ●●● ●● ● ●●●● ●● ●●● ● ●● ●● ●● ●●●● ●● ●●●● ● ● ●●● ● ● ●● ●● ●● ●● ● ●● ●●● ●●● ●● ●●● ●● ● ●● ●● ●●● ● ●●● ●● ● ●● ●● ● ●● ●●●● ●● ●● ● ● ●● ● ● ●●●●● ●● ●●●● ● ●● ●● ●●● ● ●● ●● ● ●●●● ● ● ●● ●●●● ●●●● ●●● ● ● ●● ●● ● ●●● ●● ●● ● ●●●● ●●● ● ●●●● ●● ●● ●● ● ●●● ●● ●● ●●● ● ●● ●● ●●● ●● ●●● ● ● ●●● ●●● ●● ●● ● ●● ● ●● ● ● ●●● ●● ●●●● ●● ●● ●● ● ●●● ● ●● ●●● ●● ●● ●●● ● ●●● ●●● ●● ●● ●● ●● ●● ●●● ●● ●●● ●● ●●●● ● ●●● ● ●● ●● ● ●●● ●● ●● ● ●●●● ● ●● ●●● ● ●●● ●● ●●● ●● ●● ● ●●●● ●● ●● ●● ●●● ● ●● ●●● ●● ● ● ●●● ● ●● ●● ● ●● ● ●●● ● ●● ●● ●● ●● ● ●●●● ●● ●●● ● ●● ● ● ●● ●● ● ●●● ●●● ●● ●●● ● ●● ● ●● ●●● ●●●● ●●● ●●● ●● ●● ●● ●●● ●● ●● ● ●● ●●● ●● ● ●● ●● ●● ●● ●● ● ● ●● ● ●●●● ●● ● ●● ●●● ● ● ●●● ● ●●● ●● ●● ● ●● ●● ●● ●●● ●●●● ● ●●●● ●●● ● ● ●● ●● ●●● ●● ●● ●● ●● ●● ●● ● ●● ● ● ● ●● ● ●●● ● ● ●● ●●● ● ● ●● ●●● ●● ●● ●●● ● ●● ●●● ●●●● ●● ● ●● ●● ●● ● ●● ●●●● ● ●●● ●● ●● ●●● ●●●● ● ●● ●● ●●● ● ● ●● ●● ●● ●● ●● ●● ● ●● ●●● ● ●● ●● ● ●●● ● ●●●● ● ●● ●● ●●● ● ● ●●● ●● ●● ● ●●●● ●●● ● ●● ●● ●●●● ●●● ● ●● ●● ●●● ● ●● ●● ●●●● ● ●● ●●● ●● ●●● ●● ●● ● ●● ● ● ● ●● ● ●● ●●● ● ●● ● ●●●●● ●● ●● ●● ●● ●●●● ●●● ●● ● ●● ●● ●● ●● ● ●●●● ● ● ●● ● ● ● ● ●● ● ● ●● ●●● ●● ● ●●● ●●● ● ● ● ●● ●● ●●● ● ●●● ●● ● ● ●● ●●● ● ● ●●● ●● ● ●● ● ●●●● ●● ●● ● ●● ● ● ●●●●● ●●●● ●●● ●● ●● ● ●● ●●● ● ●● ●●● ●● ● ●● ●●● ●● ● ● ●● ● ● ●●● ● ●●● ● ● ●●● ● ●●● ● ●● ●● ●● ● ●● ●● ●● ● ●●● ● ●●● ●● ●●● ●● ● ●●● ●● ●● ●● ●● ●● ●● ● ●● ●● ● ● ●●●● ● ●●●●● ●●● ●● ● ● ●●● ● ●● ●● ●● ●●● ● ●●● ●● ●● ●●● ●●● ●● ●● ● ●●●● ●●● ●●● ●●● ●●● ● ● ●● ● ●● ●● ●● ●● ●●●● ●●● ●●●● ●● ●● ●● ●● ●● ● ●●● ● ●● ● ● ●● ●● ● ●● ●●● ●●● ●●● ●● ●● ● ● ●● ● ● ●● ● ●●● ● ●●● ● ●● ●● ●● ● ●●● ●●●●● ●● ● ●●● ●●● ●● ●●●● ● ● ●● ● ●●● ● ●●●● ●●●● ● ● ●● ● ●● ●● ●●● ●● ●●● ●● ● ●● ● ● ●●● ●● ●● ●●●● ●● ●●●● ●● ● ● ●● ● ●● ●● ●●● ●● ● ●● ●● ●●● ●● ● ●● ●●● ●● ●●● ● ●●● ●● ● ●● ● ●● ●● ● ● ●●● ● ●● ●● ●● ●●●● ●●● ● ●●● ● ●●● ●●●● ●● ●● ● ●●●● ● ●●● ●● ●●● ●● ●● ●●● ●● ●●● ●● ●● ●●● ● ●● ● ●● ●●● ●● ●● ● ●● ●● ●●● ● ●● ●● ● ●●● ● ●● ●● ●● ●● ●● ● ●●● ● ●●● ● ●● ●● ●● ●●● ● ●● ● ●●●● ● ●● ●● ●●● ●● ●● ● ● ●● ●● ● ● ●●● ●●●● ●●● ● ● ● ●●● ● ●●● ●● ●● ●● ● ●● ●● ●●● ●●●● ● ●● ●● ●● ● ●● ●● ●●● ● ●● ● ●● ●● ●● ●● ●● ●●●● ●●● ●●● ● ● ●●● ● ●●● ● ●●● ●● ●●● ● ●●● ●● ●● ● ●●●● ●● ●●● ●● ●● ●●●● ●● ●●● ●●●● ● ●● ●●● ● ●● ●● ● ●● ●● ● ●● ●● ● ●●● ●● ● ●● ●● ●● ● ●●● ●● ●● ●● ● ●● ● ● ● ●●● ●● ●● ●● ●● ● ●●●●● ●● ●● ● ●● ●● ●● ● ●● ● ●●● ●● ● ●● ● ●● ●● ● ● ●● ●● ● ●● ●●● ● ● ●●● ●● ●●● ●● ● ●●● ●●● ● ●● ● ●● ● ●● ●●●●● ●●● ●● ●● ● ●●●● ●●● ●● ●● ●● ●● ●●●● ● ●● ● ●● ● ● ●●● ● ●● ● ●●●● ●●● ●●● ● ●● ●●● ●●● ● ●● ●● ●●● ●●● ●● ●● ●●●● ● ●● ●● ●●● ●●●● ● ●●● ●● ●● ●●● ●●● ●● ● ●● ● ●●● ● ● ●● ●●●● ● ●●● ● ●● ● ●● ● ● ●●● ● ●●● ●● ●●● ●●●●● ● ● ●●● ●●●● ●● ● ●● ●●● ●● ●● ● ●●● ● ●● ●● ● ●● ● ●● ●● ●●●● ●● ● ● ●● ●● ●● ● ●● ● ●● ● ●●● ●●● ● ●● ●● ●●●● ● ● ●● ●● ●● ● ●● ●●● ● ●● ● ● ●●● ● ● ● ●●● ●● ●● ● ●●● ●●● ● ● ●● ●● ● ●● ● ●●● ● ● ●●● ● ●● ●●●● ● ●● ●●●● ● ●● ●●●● ● ●●●●● ● ●●●● ● ●● ●● ●● ●● ●● ●● ● ● ●●● ● ●●● ● ●●●● ● ●●●● ● ●●●● ● ●●● ● ●●● ● ●●● ● ●● ●● ●● ●● ● ●● ● ●● ● ●● ● ●● ●● ●● ●● ●● ●●●●●●

0.0

0.2

0.4

0.6

0.8

0 40 80 120 160
of samples

A
cc

ur
ac

y

●

●

●

shared model
local model
personal model

Fig. 3. Accuracy obtained with each model for different number of local
samples per user.

user, we incremented in 1 the number of samples used for
training, and also incremented in 1 the samples used for
validation until reaching 60% of samples for training and 20%
for validation, respectively.

C. Results

Figure 3 reports the accuracy achieved with each model
when considering different number of local samples per user.
Results show that the effect of training or retraining a model
with few samples from the individual under test produces
worse predictions than using samples from other individuals
(shared model). That is, while the model is adapting to the
new scenario, the performance of the prediction slightly drops.
However, when more samples (20 on average or more) are
used to retrain this shared model, the accuracy of the pre-
diction exceeds the accuracy obtained with the shared model
itself. Specifically, the accuracy increases with increments in
the number of samples used for retraining the model. That is,
the more local samples considered to retrain the model, the
more personalised it becomes for the considered individual.
However, although the improvement on the accuracy with the
increment of the number of samples is also shared with the
local model, more samples per individual are required for
training a model from scratch (local model) in order to obtain
the same accuracy than when starting from a shared model
(personal model). We also observe that, after on average 163
samples, the local model performs better than the personal
model. However, this is not significant, since there is one
unique user in the dataset with that number of samples or
higher available for training. In summary, (i) retraining a
shared model locally using 20 or more samples from the
user increases the accuracy with respect to that obtained with
the shared model, and (ii) to obtain the same accuracy when
training a model from scratch using only local samples, more
than 150 training samples are required on average.

IV. TOPIC MODELLING OF PERSONAL TEXT CORPUS

Text corpus, such as web pages, documents, e-books and
emails, is one of the most widely distributed media on
the Internet and also dominates many users’ devices. Text
classification therefore has a wide application to facilitate
people’s daily life by grouping or filtering the items in a text
corpus based on certain topics. Because personal text corpus
often contains a significant amount of private information,
uploading such corpus to a public cloud will certainly breach
user privacy.

Consider now a scenario where users wish to classify the
textual documents on their computers without revealing their
content to others. Being more precise, we consider researchers
working on a confidential project within a company that do
not wish to disclose the publications they are reading, but they
do wish to have the documents classified according to their
content. To simulate such a scenario, we use two text datasets
in our evaluation: the NIPS [10] and the Wikipedia [11]
datasets. The NIPS dataset is a collection of papers published
in NIPS conference over the past two decades. It contains
about 1.5k papers and 1.9 million words. For Wikipedia,
we download its latest English dump in January 2017 which
contains about 5 million articles and 2.9 billion words. For
the purpose of validation, we compare the performance of the
following models:
• Local: topic extraction using only data from the NIPS

dataset (local data);
• Personal: topic extraction using only data from the

Wikipedia dataset (shared model), and retraining using
data from the NIPS dataset (local model).

Thus, we simulated a case where a shared model MS

is trained with data from the Wikipedia dataset, while the
personal model ML is trained with the NIPS dataset. We then
compare the accuracy of the personal model with the local
model. To this aim, we also simulated the case where the local
model trained using only local data from the NIPS dataset.

A. Latent Dirichlet Allocation

A topic model is an effective tool for text mining. It aims to
construct a statistical model to represent the abstract “topics”
contained in a collection of documents. By doing so, similar
documents can be grouped together for future queries. As
each document is composed of a sequence of words, it is
often represented as a very high-dimensional and sparse vector
using a bag-of-words model. Each dimension represents one
unique vocabulary in the dictionary extracted from the corpus,
and the magnitude of each dimension is often calculated as
the term frequency in the corresponding document. Therefore,
the dimensionality of these vectors depends on the size of
dictionary, and it is common the dimensionality is over dozens
of thousands.

LDA is a generative model which explicitly models topics
as latent variables based on the co-occurrences of terms and
documents in a text corpus. LDA is similar to pLSA [27]
but replaces the maximum likelihood estimator with Bayesian

estimator, hence it is sometimes referred to as the Bayesian
version of pLSA. LDA assumes that the topic distribution has
a Dirichlet prior.

As each document can be represented as a vector, finding a
given document’s similar documents is equivalent to search for
its k-nearest neighbours in the high-dimensional space. Many
prior works [28], [29], [30], [31] focus on building compact
and efficient data structure and search algorithm to speed up
the queries to the models.

As mentioned, LDA is an unsupervised learning method and
its goal in training is to maximise its likelihood function. Its
model contains two important parameters:
• Document-Topic distribution: it indicates the probabil-

ity distribution of each document over a set of topics.
• Topic-Word distribution: it indicates the probability

distribution of each topic over a set of words extracted
from the text corpus.

Essentially, the two parameters are represented as two matri-
ces in the algorithm containing the information of document-
topic and topic-word assignment respectively. A typical train-
ing task can be divided into two phases: First, the two parame-
ters will be initialised by assuming both have a Dirichlet prior;
second, the model will be updated by applying Collapsed
Gibbs Sampling to all the documents. The second phase will
be applied iteratively until we reach the pre-defined number of
iterations or the model converges. To evaluate the effectiveness
of an LDA model, we can measure the log likelihood of the
constructed model over a test data set. The log likelihood
indicates how well the model can interpret the given data set,
and the higher value it is, the better it is.

B. Experiment setup

In our topic modelling scenario, a user u owns a set
of text documents, Du, and wants to identify their topics
without revealing their content. There is another set of publicly
available documents, Dr, that he can benefit from. The set of
u’s documents, Du, is composed by the documents in the NIPS
dataset, whereas Dr is formed by different random samples
of documents from the Wikipedia dataset.

We start by building a shared LDA model called MS out of
the public available documents Dr as we did in the previous
activity recognition case. However, one thing worth noting
here is that MS only includes the Topic-Word distribution (as
well as a dictionary to tokenise the documents) which is a very
sparse matrix. The Document-Topic parameter depends on the
specific text corpus and is not useful for others to initialise a
personal model, hence it is not necessary to include into MS .

We then build the new LDA model, personal model or
MP , using the new document samples that corresponds to
users’ personal data, i.e., Du, and compare it with the local
model trained solely using user’s documents. Specifically, the
method for building the local model is just repeating the
typical process of building the model from scratch. Alternative
method, i.e. the method to build the personal model, is to
request MS and use it to initialise the local Document-Topic
distribution parameter instead of assuming a Dirichlet prior.

0 10 20 30 40 50
of iterations

-11

-10.9

-10.8

-10.7

-10.6

-10.5

-10.4

-10.3

-10.2

Lo
g

lik
el

ih
oo

d

local model
personal model

Fig. 4. Log likelihood in each iteration while building a LDA model with
and without using a shared model MS . That is, for building the personal and
local LDA models.

In the following, we will compare and present the accuracy
and efficiency of the local and personal models.

We use the topic modelling module in Owl [22] library to
perform the aforementioned experiments. Each experiment is
repeated 10 times to guarantee its consistency.

C. Improved accuracy and efficiency

Figure 4 presents the evolution of log likelihood in each
iteration while building the personal (MP) and local models.
NIPS dataset is used in this first experiment, and the shared
model, MS , is trained using 50% of the data. A user’s local
data are generated by randomly selecting 300 documents from
the rest of the dataset.

The two lines in the figure correspond to the two ways of
building the user’s topic model: the red line is for using MS

to initialise model (personal model) whereas the blue line is
for building the model from scratch by solely using the user’s
local documents (local model). As we see, the personal model
is able to achieve higher likelihood in each iteration than the
local one. Meanwhile, it also indicates that the model is able
to converge much faster given a target accuracy.

The NIPS dataset is larger than the activity recognition
dataset, which allows us to raise and answer the next question:
how much public data do we need to use for building the
shared model MS? This question becomes very relevant espe-
cially when the amount of public or shared data is limited. In
the next experiment, while keeping the rest of the experiment
settings the same, we build multiple shared models MS by
increasing the amount of documents for training step by
step, from 100 to 1000. With these new MS , we repeat the
same experiment presented in Figure 4 to investigate how the
amount of public data used to train MS impacts the personal
training (personal model). Figure 5 presents our results. The
blue line with “+” marker at the bottom is the same as that
in Figure 4, representing the training without using MS (local
model). The rest of the lines represent the log likelihood of
the MS using different percentage of the 1000 documents as

0 10 20 30 40 50
of iterations

-11

-10.9

-10.8

-10.7

-10.6

-10.5

-10.4

-10.3

-10.2

Lo
g

lik
el

ih
oo

d

local model
MS (10%)
MS (20%)
MS (30%)
MS (40%)
MS (50%)
MS (60%)
MS (70%)
MS (80%)
MS (90%)
MS (100%)

Fig. 5. Log likelihood in each iteration while building a personal LDA model
by including different amount of public data into the shared model MS .

the public sample. All MS models are trained using a fixed
number (i.e., 50) of iterations.

Results in Figure 5 show that including more data in MS

will certainly improve the efficiency and accuracy when local-
ising or personalising the shared model which is reflected as
gradually improved likelihood in each line. Note that including
more data in training MS will not increase the parameter size
therefore it does not introduce extra overhead in distributing
the shared model. However, these results also deliver another
important message, namely such benefits drop quickly as we
add more and more data. The most significant improvement
appears in the very beginning when we only include a small
amount of data (i.e., 10%). To some extent, it justifies our
proposal by showing a small amount of public data is able to
boost local training.

D. Topic-based local dataset

Wikipedia dataset contains a rich set of meta information
such as manually assigned topic categories, which can help
us in simulating users who have different interests in various
topics. Users of different interest may possess a rather different
local dataset from each other. The question is whether our
method is still effective when the topics in the local data are
only a subset of those included in the documents used for
training the shared model.

To answer the question, we design other experiment wherein
when we generate the local dataset, we only randomly se-
lect the articles from a pre-determined topic, e.g., computer
networking, architecture design, British history. We generate
multiple local datasets using different topics. The x-axis in
Figure 6 shows the topic indices in the Wikipedia dataset,
and we present the results of 10 of those selected topics. The
way of selecting the shared data for training MS remains the
same. In total, we randomly sample 1000 articles from the
whole Wikipedia as public or shared data, and 500 articles of
a given topic for each local dataset.

We first measure the absolute amount of improvement in
log likelihood between the first and the tenth iteration while

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

Ac
cu

ra
cy

1 2 3 4 5 6 7 8 9 10
Topic index

0

0.2

0.4

0.6

Ef
fic

ie
nc

y

Percentage of reduction in training iterations given a fixed
targeted likelihood, average value = 0.3783

Percentage of improvement in likelihood given a fixed
number of iterations, average value = 0.0385

Fig. 6. Shared model also helps in improving accuracy and efficiency even
when the local datasets have a strong focus on specific topics. Ten randomly
selected topics from Wikipedia are used to generate local dataset. The upper
figure presents the percentage of improving log likelihood for a fixed number
of iterations, while the lower figure measures the percentage of reduction in
training iterations for a targeted likelihood. Both figures have the same x-axis
which is indexed by topic numbers.

training a local model, based on which we then calculate
how much we can improve by starting with a shared model
(personal model). The results in upper part of Figure 6 show
that the improvement varies between 3.22% to 4.53% with an
average equals to 3.85%. We also measure the improvement
in efficiency by investigating how much we can reduce the
number of iterations to reach a targeted log likelihood with the
help of a shared model. In this experiment, we set the targeted
log likelihood to −10.203 and the lower part of Figure 6
presents our results. Similar to the upper one, using a shared
model can significantly boost the training efficiency, with the
minimum over 30% reduction in iterations over all cases. On
average, we are able to save over 37.8% iterations. Another
thing worth mentioning here is that since the shared model
is already sparse, it further reduces the time spent in each
iteration than training purely on local data (local model) which
needs to start with a highly dense local model. This indicates
the saving is even more significant in terms of absolute amount
of training time reduced.

V. PRACTICAL CONSIDERATIONS

In the following, we discuss the privacy guarantees of our
methodology and its robustness against adversarial attacks
(§V-A). We then demonstrate the feasibility of its deployment
by presenting a performance evaluation on a representative
resource-constrained device (§V-B).

A. Adversarial attacks

Our system can suffer the attacks and consequences of
malicious users. There are several potential attacks against
any learning system [32], [33]. Here we focus on how privacy
and causative attacks might affect our system. On a privacy
attack the adversary obtains information from the learner,
compromising the secrecy or privacy of the system’s users. The

aim of a causative attack is on altering the parameters of the
target model by manipulating the training dataset. An example
of this type of attacks are poisoning attacks, where an attacker
may poison the training data by injecting carefully designed
samples to eventually compromise the whole learning process.
The target model then updates itself with the poisoned data
and gradually compromises. Below we describe the potential
effects of these attacks in our system.

1) Privacy attacks: Our solution guarantees the confiden-
tiality of users’ data (potential users) given that their devices
are not compromised, since their personal data never leave
their devices. Since both the data and the personal model
resides on the user’s device, attacks such as model inver-
sion [34] –where an attacker, given the model and some
auxiliary information about the user, can determine some
user’s raw data; and membership query [35], where, given a
data record and black-box access to a model, an adversary
could determine if the record was in the model’s training
dataset, cannot affect our users. However, we cannot assure
the confidentiality of the data, neither robustness against these
attacks, for those users that have freely aggreed to share
their data in the same way as the big corporations are not
doing so with their customers data. For many applications we
envisage and describe in the introduction, such as those based
on object recognition or those that work with textual data,
there is already a large amount of data freely available on
the Internet with which to build the shared model, and whose
confidentiality does not need to be guraranteed. On the other
hand, for applications such as face or speaker recognition,
techniques based on differentially private training [13], [14],
[15], [16] could be applied in order to, a priori, guarantee
the confidentiality of the volunteers’ data. On the contrary,
the training of the personal model for the final users happens
locally on their devices so that neither their data nor their
personal model leave their devices, and its confidentiality is
guaranteed by the security offered by their device, security
that is out of the scope of the methodology proposed here.

2) Poisoning attacks: We envisage two different points or
steps in our system that adversaries might wish to attack:
when building the shared model in a remote server in the
public cloud using public data available or shared by a group
of volunteers, and when personalising the model by local
retraining in the user’s device (personalisation). In the case of
a poisoning attack to our proposed methodology, the shared
model can be corrupted by malicious volunteers poisoning the
data with fake samples. However, during the local retraining,
if the adversary wishes to corrupt the personal model, he needs
to gain access to the local device of the user to poison the data
and fool the model. Poisoning the data to train the personal
model needs the attacker to gain access to the local device of
the user.

B. Deployment Feasibility

The success of our privacy-preserving methodology for
learning personal models is conditional on the ability to run
model refinement in near real-time on resource-constrained

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●
●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

● ●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●●

●●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●●●
●●●●

0.0

2.5

5.0

7.5

10.0

12.5

0 40 80 120 160
of samples

T
im

e
(s

)

●

●

local model
personal model

Fig. 7. Time for training with each model, varying the number of local
samples per user.

personal devices which lack the capabilities of cloud-based
servers. These environments are of increasing interest for
deployment of such techniques as availability of computa-
tion resources outside datacenters continues to increase with
creation of “fog computing” environments using cheep and
energy-efficient platforms such as those based on ARM pro-
cessors [36].

To verify the deployment feasibility of our approach on
resource-constrained personal devices we evaluate, for both
tasks, the second phase of our approach, testing the refinement
and inference aspects on a Raspberry Pi 3 Model B [7] as
representative of these sorts of environments.

Figure 7 shows the time taken for training a personal model
(refining the initial shared model), and for the alternative ap-
proach of learning a local model using only a single user’s data
available locally, for the setup in §III. In both cases training
takes seconds to complete, with time increasing linearly with
the number of samples considered due to the online nature of
the training process (only one sample is considered at every
update of the model). The time for making the inference is
insignificant compared with the time for training, being on
the order of milliseconds.

Figure 8 reproduces results from §IV on the same resource-
constrained device using the NIPS dataset. Figures 8(a-b)
show the time spent per iteration while building the model,
respectively varying the number of training documents while
keeping the vocabulary size fixed, and the vocabulary size
while keeping the number of training documents fixed. Each
test is repeated for 20 iterations. In both cases, we observe the
expected linear growth in model training time.

Figures 8(c-d) show the time it takes to reach a certain
level of likelihood (we use -10.230 as the threshold, as in
the previous experiments) given different shared models. All
models are trained with 200 documents. The results align with
what we have found out in Figure 5: including more data
decreases both the time and number of iterations required to
reach the desired precision threshold. This decrease is most

obvious when the model moves from not using any data to
including a small amount (10%). As further data are included,
the benefits quickly diminish.

VI. RELATED WORK

Data-driven solutions are now pervasive in areas such as
advertising, smart cities and eHealth [37], [38]. Almost ev-
erything we do in our daily lives is tracked by some means
or another. Although the careful analysis of these data can be
highly beneficial for us as individuals and for the society in
general, this approach usually entails invasion of privacy, a
high price that progressively more people are not willing to
pay [39].

Several privacy-preserving analytical solutions have been
proposed to guarantee the confidentiality of personal data
while extracting useful information [40], [41], [42], [43].
Prominent among them are those that build on Dwork’s
differential privacy framework [44], [45], [46], [34], [47],
which formalises the idea that a query over a sensitive database
should not reveal whether any one person is included in the
dataset [48]. In the case of machine learning, the idea is that
a differentially-private model should not reveal whether data
from any one person were used to train the model. Most of
these techniques for differentially-private machine learning are
usually based on adding noise during the training, which leads
to a challenging trade-off between accuracy and privacy.

Distributed machine learning (DML) arised as a solution to
well utilize large computer clusters and highly parallel com-
putational architectures to speed up the training of big models
over the large amounts of data available nowadays [49].
Systems dealing with very large datasets have already had
to handle the case where no single node can contain and
process the entire dataset, but the dataset and/or the model
to learn are paralellised among different machines, models
are sequentially trained on each single machine, and some
sort of synchronisation mechanism is applied to aggregate the
parameters of the model to learn [50], [51], [52], [53]. DML
may also be a potential solution when the volume of the data
is not the main issue, but the distribution occurs when different
entities own different datasets which, if aggregated, would
provide useful knowledge. However, the sensitivity of such
data often prevents these entities from sharing their datasets,
restricting access to only a small set of selected people as
in the case of patients’ medical records [43]. Several solu-
tions have been proposed for privacy-preserving distributed
learning, where information is learnt from data owned by
different entities without disclosing either the data or the
entities in the data. Shokri and Shmatikov [13] and McMahan
et al. [14] propose solutions where multiple parties jointly
learn a neural-network model for a given objective by sharing
their learning parameters, but without sharing their input
datasets. A different approach is proposed by Hamm et al. [15]
and Papernot et al. [16], where privacy-preserving models are
learned locally from disjoint datasets, and then combined on a
privacy-preserving fashion. However, the privacy guarantees

200 400 600 800 1000

Training doc amount

0

10

20

30

40

50

60

T
im

e
 (

s)

10 20 30 40 50

Vocabulary amount

0

5

10

15

20

25

30

35

T
im

e
 (

s)

0% 20% 40% 60% 80% 100%

Percentage of the
data included in g0

0

100

200

300

400

T
im

e
 (

s)

0% 20% 40% 60% 80% 100%

Percentage of the
data included in g0

0

20

40

60

80

100

It
e

ra
tio

n

(a) (b) (c) (d)

Fig. 8. Time taken to reach a given likelihood (-10.230) started from different shared models. The y-axis is the time in seconds, and x-axis is the percentage
of the data included in the initial shared model.

of some of these solutions have recently been called into
question [54].

Contrary to previous approaches, our aim is not on learning
a global model from sensitive data from multiple parties, but to
learn a personalised model for each individual party that builds
on a model learnt from a relatively small set of others parties,
without requiring access to their raw data. We build personal
learning models similar to the personal recommender system
by Balasubramanian et al. [55] but generalising the solution
to any learning algorithm. Our solution takes advantage of
transfer learning [56] to achieve better performance than
algorithms trained using only local data, particularly in those
common situations where local data is a scarce resource. This
solution brings most of the data processing to where the
data resides and not the other way around, exactly as the
edge computing paradigm calls for [57]. Recent work have
demonstrated the feasibility of running complex deep learning
inferences on local devices such as smarphones [58], [59].
While in these works models are previously trained in an
offline manner, our experiments in §V-B proved that both the
inference and the local retraining can be performed locally
on a low-power device such as the Rasperry Pi in a timely
manner.

VII. CONCLUSION

Our privacy-preserving methodology for learning analytics
relies on the ability of current personal devices such as
smartphones, tablets and small form-factor computers such as
the Raspberry Pi to carry out traditionally resource-demanding
tasks. By splitting model training between the cloud and the
personal device, we avoid sending personal data to untrustwor-
thy remote entities in the cloud while maintaining efficiency
and improving accuracy of both training and inference. Users
thus keep all rights over their personal data while retaining
the benefits of learning-based services.

We demonstrated our methodology for two typical learning
tasks, one supervised and one unsupervised: activity recog-
nition from accelerometer data, and identification of topics
in text documents. Our experiments showed improvements
both in accuracy and efficiency using this methodology with
respect to both traditional cloud-based solutions and solutions
based on training the model using only the data available

from the user to whom we are providing the service. We
also demonstrated the feasibility of our approach by exam-
ining performance of implementation of the local step of our
methodology on a Raspberry Pi 3 Model B.

Our results prove that this approach is promising, and we
believe that it is widely applicable and able to positively
improve the privacy-preservation of applications where data
is distributed between entities whose confidentiality needs
to be secured. In a world where the Internet of Things is
connecting progressively more devices everyday – some of
which already reside in our home, and the rising concerns
about the possibility of private data leaving or getting stolen
from our smart homes, our privacy-preserving methodology
comes to the aid of designers and developers of smart home
applications to fulfil the need of privacy guarantees that their
users demand. However, there are certainly areas appropriate
for future work. For example, our current solution does not
leverage any cooperation between user nodes, and we plan
to explore a cooperative learning approach to allow similar
users to jointly train machine learning models in cases where
they do not individually have sufficient labelled data locally to
retrain a shared model, likely the case during the first moments
they use the learning service. A potential solution to boost the
accuracy may deal with similar users retraining the shared
model collaboratively, in a privacy-preserving fashion.

REFERENCES

[1] M. Falahrastegar, H. Haddadi, S. Uhlig, and R. Mortier, “Tracking
personal identifiers across the web,” in Passive and Active Measurement
conference (PAM 2016), 2016.

[2] “Amazon echo,” https://www.amazon.com/Amazon-Echo-Bluetooth-
Speaker-with-WiFi-Alexa/dp/B00X4WHP5E/, No date, accessed May
25, 2017.

[3] “Google home,” https://madeby.google.com/home/, No date, accessed
May 25, 2017.

[4] “Apple homekit,” https://www.apple.com/ios/home/, No date, accessed
May 25, 2017.

[5] A. Chaudhry, J. Crowcroft, H. Howard, A. Madhavapeddy, R. Mortier,
H. Haddadi, and D. McAuley, “Personal data: Thinking inside the
box,” in Proceedings of The Fifth Decennial Aarhus Conference on
Critical Alternatives, ser. AA ’15. Aarhus University Press, 2015, pp.
29–32. [Online]. Available: http://dx.doi.org/10.7146/aahcc.v1i1.21312

[6] R. Mortier, J. Zhao, J. Crowcroft, L. Wang, Q. Li, H. Haddadi,
Y. Amar, A. Crabtree, J. Colley, T. Lodge, T. Brown, D. McAuley, and
C. Greenhalgh, “Personal data management wiht the Databox: What’s

inside the box?” in Proc. Cloud Assisted Networking workshop at ACM
CoNEXT, Dec. 12 2016.

[7] “Raspberry pi,” https://www.raspberrypi.org/products/raspberry-pi-3-
model-b/, No date, accessed February 15, 2017.

[8] J. R. Kwapisz, G. M. Weiss, and S. A. Moore, “Activity recognition us-
ing cell phone accelerometers,” ACM SigKDD Explorations Newsletter,
vol. 12, no. 2, pp. 74–82, 2011.

[9] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
J. Mach. Learn. Res., vol. 3, pp. 993–1022, Mar. 2003. [Online].
Available: http://dl.acm.org/citation.cfm?id=944919.944937

[10] “Nips - bag of words data set,” https://archive.ics.uci.edu/ml/machine-
learning-databases/bag-of-words/, No date, accessed January 20, 2017.

[11] “Wikipedia dataset,” https://dumps.wikimedia.org/enwiki/latest/, No
date, accessed January 20, 2017.

[12] G. M. Weiss and J. W. Lockhart, “The impact of personalization on
smartphone-based activity recognition,” in AAAI Workshop on Activity
Context Representation: Techniques and Languages, 2012.

[13] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in
Proceedings of the 22nd ACM SIGSAC conference on computer and
communications security. ACM, 2015, pp. 1310–1321.

[14] H. B. McMahan, E. Moore, D. Ramage, S. Hampson et al.,
“Communication-efficient learning of deep networks from decentralized
data,” arXiv preprint arXiv:1602.05629, 2016.

[15] J. Hamm, P. Cao, and M. Belkin, “Learning privately from multiparty
data,” in Proceedings of the 33rd International Conference on Machine
Learning, 2016, pp. 555—-563.

[16] N. Papernot, M. Abadi, Ú. Erlingsson, I. Goodfellow, and K. Talwar,
“Semi-supervised knowledge transfer for deep learning from private
training data,” in Proceedings of the 5th International Conference on
Learning Representations, 2017.

[17] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu,
J. Freeman, D. Tsai, M. Amde, S. Owen et al., “Mllib: Machine learning
in apache spark,” Journal of Machine Learning Research, vol. 17, no. 34,
pp. 1–7, 2016.

[18] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and
J. M. Hellerstein, “Distributed graphlab: A framework for machine
learning and data mining in the cloud,” Proc. VLDB Endow.,
vol. 5, no. 8, pp. 716–727, Apr. 2012. [Online]. Available:
https://doi.org/10.14778/2212351.2212354

[19] “Zeromq - distributed messaging,” http://zeromq.org, No date, accessed
January 20, 2017.

[20] “Theano deep learning,” http://deeplearning.net/software/theano, No
date, accessed January 20, 2017.

[21] “scikit-learn,” http://scikit-learn.org/, No date, accessed January 20,
2017.

[22] L. Wang, “Owl: A general-purpose numerical library in ocaml,” 2017.
[Online]. Available: http://arxiv.org/abs/1707.09616

[23] L. Wang, B. Catterall, and R. Mortier, “Probabilistic Synchronous
Parallel,” ArXiv e-prints, 2017.

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proceedings of the IEEE international conference on computer vision,
2015, pp. 1026–1034.

[25] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltz-
mann machines,” in Proceedings of the 27th International Conference
on Machine Learning (ICML-10), 2010, pp. 807–814.

[26] G. Hinton, “A practical guide to training restricted boltzmann machines,”
Momentum, vol. 9, no. 1, p. 926, 2010.

[27] T. Hofmann, “Probabilistic latent semantic indexing,” in Proceedings
of the 22Nd Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, ser. SIGIR ’99.
New York, NY, USA: ACM, 1999, pp. 50–57. [Online]. Available:
http://doi.acm.org/10.1145/312624.312649

[28] L. Wang, S. Tasoulis, T. Roos, and J. Kangasharju, “Kvasir: Scalable
provision of semantically relevant web content on big data framework,”
IEEE Transactions on Big Data, vol. 2, no. 3, pp. 219–233, Sept 2016.

[29] K. Hajebi, Y. Abbasi-Yadkori, H. Shahbazi, and H. Zhang,
“Fast approximate nearest-neighbor search with k-nearest neighbor
graph,” in Proceedings of the Twenty-Second International Joint
Conference on Artificial Intelligence - Volume Volume Two, ser.
IJCAI’11. AAAI Press, 2011, pp. 1312–1317. [Online]. Available:
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-222

[30] J. He, W. Liu, and S.-F. Chang, “Scalable similarity search with
optimized kernel hashing,” in Proceedings of the 16th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining,
ser. KDD ’10. New York, NY, USA: ACM, 2010, pp. 1129–1138.
[Online]. Available: http://doi.acm.org/10.1145/1835804.1835946

[31] V. Hyvönen, T. Pitkänen, S. Tasoulis, E. Jääsaari, R. Tuomainen,
L. Wang, J. Corander, and T. Roos, “Fast nearest neighbor search through
sparse random projections and voting,” in 2016 IEEE International
Conference on Big Data (Big Data), Dec 2016, pp. 881–888.

[32] M. Barreno, B. Nelson, A. D. Joseph, and J. Tygar, “The security of
machine learning,” Machine Learning, vol. 81, no. 2, pp. 121–148, 2010.

[33] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. Tygar, “Ad-
versarial machine learning,” in Proceedings of the 4th ACM workshop
on Security and artificial intelligence. ACM, 2011, pp. 43–58.

[34] M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, and T. Ristenpart,
“Privacy in pharmacogenetics: An end-to-end case study of personalized
warfarin dosing.” in USENIX Security, 2014, pp. 17–32.

[35] R. Shokri, M. Stronati, and V. Shmatikov, “Membership inference
attacks against machine learning models,” in Proceedings of the 38th
IEEE Symposium on Security and Privacy, 2017.

[36] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and
its role in the internet of things,” in Proceedings of the First Edition
of the MCC Workshop on Mobile Cloud Computing, ser. MCC ’12.
New York, NY, USA: ACM, 2012, pp. 13–16. [Online]. Available:
http://doi.acm.org/10.1145/2342509.2342513

[37] C. P. Chen and C.-Y. Zhang, “Data-intensive applications, challenges,
techniques and technologies: A survey on big data,” Information
Sciences, vol. 275, pp. 314 – 347, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0020025514000346

[38] X. Wu, X. Zhu, G. Q. Wu, and W. Ding, “Data mining with big data,”
IEEE Transactions on Knowledge and Data Engineering, vol. 26, no. 1,
pp. 97–107, Jan 2014.

[39] L. Brandimarte, A. Acquisti, and G. Loewenstein, “Misplaced
confidences,” Social Psychological and Personality Science,
vol. 4, no. 3, pp. 340–347, 2013. [Online]. Available:
http://dx.doi.org/10.1177/1948550612455931

[40] R. Agrawal and R. Srikant, “Privacy-preserving data mining,”
in Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’00. New
York, NY, USA: ACM, 2000, pp. 439–450. [Online]. Available:
http://doi.acm.org/10.1145/342009.335438

[41] C. C. Aggarwal and S. Y. Philip, “A general survey of privacy-preserving
data mining models and algorithms,” in Privacy-preserving data mining.
Springer, 2008, pp. 11–52.

[42] Z. Erkin, J. R. Troncoso-pastoriza, R. L. Lagendijk, and F. Perez-
Gonzalez, “Privacy-preserving data aggregation in smart metering sys-
tems: an overview,” IEEE Signal Processing Magazine, vol. 30, no. 2,
pp. 75–86, March 2013.

[43] G. Bellala and B. Huberman, “Securing private data sharing in multi-
party analytics,” First Monday, vol. 21, no. 9, 2016. [Online]. Available:
http://www.firstmonday.dk/ojs/index.php/fm/article/view/6842

[44] A. D. Sarwate and K. Chaudhuri, “Signal processing and machine learn-
ing with differential privacy: Algorithms and challenges for continuous
data,” IEEE signal processing magazine, vol. 30, no. 5, pp. 86–94, 2013.

[45] S. Song, K. Chaudhuri, and A. D. Sarwate, “Stochastic gradient descent
with differentially private updates,” in Global Conference on Signal and
Information Processing (GlobalSIP), 2013 IEEE. IEEE, 2013, pp. 245–
248.

[46] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate, “Differentially private
empirical risk minimization,” Journal of Machine Learning Research,
vol. 12, no. Mar, pp. 1069–1109, 2011.

[47] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov,
K. Talwar, and L. Zhang, “Deep learning with differential privacy,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2016, pp. 308–318.

[48] C. Dwork, “Differential privacy: A survey of results,” in International
Conference on Theory and Applications of Models of Computation.
Springer, 2008, pp. 1–19.

[49] M. Li, D. G. Andersen, A. J. Smola, and K. Yu, “Communication
efficient distributed machine learning with the parameter server,” in
Advances in Neural Information Processing Systems, 2014, pp. 19–27.

[50] T. H. Cormen and M. T. Goodrich, “A bridging model for parallel com-
putation, communication, and i/o,” ACM Computing Surveys (CSUR),
vol. 28, no. 4es, p. 208, 1996.

[51] A. Agarwal and J. C. Duchi, “Distributed delayed stochastic optimiza-
tion,” in Advances in Neural Information Processing Systems, 2011, pp.
873–881.

[52] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A.
Gibson, G. Ganger, and E. P. Xing, “More effective distributed ml via
a stale synchronous parallel parameter server,” in Advances in neural
information processing systems, 2013, pp. 1223–1231.

[53] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein, “Distributed graphlab: a framework for machine learning
and data mining in the cloud,” Proceedings of the VLDB Endowment,
vol. 5, no. 8, pp. 716–727, 2012.

[54] B. Hitaj, G. Ateniese, and F. Pérez-Cruz, “Deep models
under the GAN: information leakage from collaborative deep
learning,” CoRR, vol. abs/1702.07464, 2017. [Online]. Available:
http://arxiv.org/abs/1702.07464

[55] S. Jain, V. Tiwari, A. Balasubramanian, N. Balasubramanian,
and S. Chakraborty, “Pria: A private intelligent assistant,” in
Proceedings of the 18th International Workshop on Mobile
Computing Systems and Applications, ser. HotMobile ’17. New
York, NY, USA: ACM, 2017, pp. 91–96. [Online]. Available:
http://doi.acm.org/10.1145/3032970.3032988

[56] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans-
actions on knowledge and data engineering, vol. 22, no. 10, pp. 1345–
1359, 2010.

[57] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[58] P. Georgiev, N. D. Lane, K. K. Rachuri, and C. Mascolo, “Dsp.
ear: Leveraging co-processor support for continuous audio sensing on
smartphones,” in Proceedings of the 12th ACM Conference on Embedded
Network Sensor Systems. ACM, 2014, pp. 295–309.

[59] ——, “Leo: Scheduling sensor inference algorithms across heteroge-
neous mobile processors and network resources,” in Proceedings of the
Annual International Conference on Mobile Computing and Networking,
MOBICOM, no. CONFCODE. ACM, 2016, pp. 320–333.

