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Abstract

In this note we investigate U(N) gauge theories with matter in the fundamental and
adjoint representations of the gauge group, interacting via generalized Yukawa terms of
the form Tr [Q®"Q)]. We find agreement between the matrix model and the gauge theory
descriptions of these theories. The analysis leads to a partial description of the Higgs
branch of the gauge theory. We argue that the transition between phases with different
unbroken flavor symmetry groups is related to the appearance of cuts in the matrix model
computation.
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1 Introduction

Recently, Dijkgraaf and Vafa have proposed [[l, B, B] a method for computing pertur-
batively the effective glueball superpotential of N/ = 1 theories with fields transforming
in the adjoint and bifundamental representations of the gauge group. According to this
proposal, the planar free energy of the matrix model whose potential is the tree-level
superpotential of the AN/ = 1 theory yields the effective superpotential of this theory.

When fields transforming in the fundamental representation of the gauge group (quarks)
are present, one only needs to include the planar free energy coming from diagrams with
one quark boundary M, H]. More explicitly, the gauge theory effective superpotential is
proposed to be

S OF =2
Wee(S,A) = N.S(1 — In F) + Ncﬁ

This prescription was successfully used to compare matrix model predictions with
known gauge theory results for theories with massive and massless flavors, with N = 1
and N = 2 supersymmetry [A-[L]].

For theories with fields transforming in the adjoint representation of the gauge group,
proofs that planar graphs are the only ones which contribute to the matrix effective super-
potential were presented in [[I] (based on the analysis of superspace Feynman diagrams)
and [[Z] (based on holomorphy and symmetries). The latter arguments were extended in
[[3] to the case of theories with fields transforming in the fundamental representation of
the gauge group and it was shown that only planar diagrams with one (appropriately gen-
eralized) quark boundary contribute to the gauge theory effective superpotential. Other
interesting related work has appeared in [I4]-[B])].

The correspondence between gauge theories and matrix models has been pushed very
far for superpotentials depending only on the adjoint fields. However, these checks have
only been performed in the simplest cases of theories with fields transforming in the funda-
mental representation of the gauge group. While it seems reasonable that the arguments
of [[Y and [[J| generalize to generic superpotentials, it would be interesting to perform
some explicit checks, along the lines of [l and [f] .

_ In this paper we work out the details of the matrix model and the gauge theory for the
QP"Q coupling. With these results as a starting point, we then outline how a polynomial
of generalized Yukawa couplings QP(®)(Q can be analyzed. We find complete agreement
between the matrix model with one boundary and the gauge theory. The Coulomb branch
of such theories was discussed in detail in [BJ]. However, the Higgs branch seems largely
unexplored. The matrix model computations suggest a simple way for analyzing it.

In the next section we use the matrix model to compute the effective superpotential
of this theory. Since the adjoint field does not interact with itself, this superpotential is
just the sum of a Veneziano-Yankielowicz piece (coming from the dynamics of the gauge
field) and the free energy given by diagrams with one quark boundary.

We find that the sum of these diagrams gives a free energy identical to that of a theory
containing an adjoint and n quarks with regular Yukawa couplings ¢;Q;®Q);, where the
coupling constants g; are proportional to the n roots of the unity. We then show that one
can go from the second theory to the first by simply integrating out certain combinations
of the n quarks until only one quark and the adjoint are left.

+Nf]:x=1 . (1)



We then discuss the gauge theory origin of the matrix model results. The nonpertur-
bative contribution to the effective superpotential of the theory with a Q®"(Q coupling is
hard to obtain by symmetry and holomorphy arguments. One might hope that integrating
® out might make things better, since only quarks will be left and the nonperturbative
contribution to the superpotential would be of Affleck-Dine-Seiberg type [B3]. Neverthe-
less, after integrating out ®, one is left with a “tree level” superpotential which contains
the coupling constant to a negative power. Since this term does not have a well defined
limit as ¢ — 0, one can no longer argue that this term cannot mix with the Affleck-Dine-
Seiberg contribution. Therefore, one expects nonperturbatively generated terms which
contain combinations of A and ¢g. These nonperturbative terms cannot be easily found
using analyticity and charge conservation.

It appears therefore that in order to find the nonperturbatively generated contribution
to the superpotential one has to find a theory (related to the theory of interest by inte-
grating in and integrating out) where the nonperturbative contribution has a simple form.
Fortunately, as the matrix result hints also, the theory with Yukawa coupling Tr [Q®"Q)]
can be obtained by integrating out n — 1 nontrivial linear combinations of quarks in a
theory with an adjoint, n quarks, and Yukawa couplings 31", e>™/"Tr [Q,®(Q);]. At this
stage one can integrate out the adjoint field and find a theory with n quarks and interac-
tions of the form Tr [(3; ¢;Q;Q;)?]. For this theory one can use the usual holomorphy and
charge conservation arguments [B4] to show that the only nonperturbatively generated
superpotential is the Affleck-Dine-Seiberg one.

Once we have the full gauge theory effective potential it is not hard to integrate out all
the fields and relate the resulting effective superpotential W (A, m;, g;) with the matrix
model computation. The Higgs branch of the original theory can also be analyzed.

We emphasize that his effective superpotential is the same, regardless of the order in
which one integrates out the fieldsf], and thus regardless of the hierarchy of the m;. This
is quite obvious from the matrix model perspective: by summing all (planar) Feynman
diagrams one obtains the same function of mass parameters, regardless of their hierarchy.

One can also see this in the gauge theory. The physical mass of a field depends both
on its superpotential mass parameter m, and on the Kahler potential. Since by adjusting
the latter any hierarchy can be achieved (regardless of the magnitudes of the m’s), and
since this adjustment does not affect the superpotential, it follows that the final result is
independent on the mass hierarchy and on the order one integrates fields out.

Therefore, the effective superpotential Wg(A, m;, g;) one finds after integrating out
all the fields is the same if the theories we start from can be related to each other by
integrating in or integrating out. In the case of the theory we discuss, this effective
superpotential is most easily obtained by considering the related theory with n quarks
and simple Yukawa interactions, finding its nonperturbatively generated superpotential,
and integrating out all the quarks. This computation appears in the last section of this
note.

Note Added: When this work was near completion we received the preprint [[[{]
which, while having a different focus, overlaps with the technical details of our work.

4We are grateful to Eric D’Hoker for pointing this out to us.



2 Matrix model

As we recalled in the Introduction, the part of the matrix model free energy F(.S) which is
related to gauge theory via extensions of the DV prescription is computed by summing all
the planar Feynman diagrams with one quark boundary. If the quark-adjoint interaction
is of the form Q;PQ);, the necessary combinatorics of the Feynman diagrams was described
in @, BY: a diagram with 2k vertices comes with a factor of (% from the exponential;
then, the different ways of contracting the quarks produce a factor of (2k—1)!; the number
of ways of connecting, in a planar manner, the boundary points with adjoint propagators
give rise to a factor (k(il;), - Since each diagram contains 2k quark propagators, k adjoint
k

propagators, and 2k vertices, it is multiplied by <Mq—fjng> . Finally, the external flavor
loop gives a factor of Ny, while the k + 1 color loops give a factor of S¥*!, where S is the
't Hooft coupling of the matrix model, and becomes identified under the correspondence
with the gauge theory glueball superfield.

Thus, the free energy contribution of these diagrams is [d]

2 k
Fr=1 _ Gkl g
:1__Nfz k‘—l—l 'k" < 2) (2)

M¢mQ

In the case of diagrams with a ¢,Q;®"(Q; interaction, it is necessary to distinguish
between the case of odd and even n. If n is odd, only diagrams with even numbers of
insertions contribute. The combinatorial factors coming from the quarks are unchanged.
Nevertheless since now there are nk @& lines, there will be (2nk). ; different ways of

(nk+1)!(nk)!
connecting them, and the overall power of S will be nk + 1. Thus
k
dd =~ (2nk —1)! nk+1 ( 9p )
! fz (nk + 1)!(nk)! Mgmd
If n = 2p is even, diagrams with any number of insertions contribute. The free energy
is .
> (2pk —1)! i n
‘chc N B Sp +1 4
fz (pk + 1)!(pk)! Mjmg @)

One might have also expected extra factors of n! coming from the different orderings
of the ®’s originating from one vertex. However, since the ®’s are matrices, one cannot
interchange them at a vertex because this would make the diagrams nonplanar. Thus,
the diagrams give the same answers as if the n ®’s originating at one interaction vertex
were separated by tiny propagators of some auxiliary quarks. This is depicted in Figure
1, and is a hint toward the equivalence of our theory to a theory with n quarks and simple

Yukawa couplings, equivalence which will be discussed in the next section.
If one introduces the new variable p, such that px = n where

k = 2 if n is even,

k= 1 if n is odd , (5)
it is not hard to see that the free energy for both even or odd n is given by:

Fy=1 = —kpNIC,, (6)



Figure 1: Equivalence between Yukawa and generalized Yukawa couplings.

where /C, is the value of the sum in ().
The radius of convergence of the sum K, can be easily found to be S, = i. For S < S,

the sum is:
OREEL Pl L. lm K(—)*as 1] nS(1 41— 4(—)%as)| (7
== -+ —— —4(=)"*raS -1 —In= —4(-)"ra
"UpE |2 4(-)%as 2

2
and " = <Mq%g>.

For S > S, the sum is divergent, and one must find its value by analytical continuation
[[0]. Since ([) contains square roots, one expects branch cuts in the complex S plane
starting from the points where the square roots become zero and ending at infinity.

Moreover, since we have n square roots, each comes with a choice of branch. Therefore,
for S outside the radius of convergence, the sum ([]) has 2" values, depending on the choice
of branch for each square root. Furthermore, since the sum ([]) applies separately for each
of the flavors, there will be a total of 27Vs branches for the free energy. The result is:

K,(c) = %gs B + m lel,f\h _A(—)has — 1] - ln% (1 Fas- 4(—)2%a5>]

(8)
with ¢ =+1withl=1,...,nand f=1,...,Ny.

For the example discussed in [[I(], the choice of branch in the matrix integral was
matched in gauge theory with the choice of roots of a certain the second order equations.
However, one can choose the parameters of the theory such that all relevant values of
S lie inside the radius of convergence. We limit ourselves to showing agreement in this
regime. We will show that the convergence of ([]) for S < S, has a precise meaning in
gauge theory. The branch structure and the corresponding phase structure of the theory
[[Q] follows from the careful analytical continuation of our results.

To evaluate the superpotential ([l]) at its critical point we begin by constructing a single
formula which covers both cases kK = 1 and k = 2. Since the set of odd roots of unity goes
to itself when squared, it is not hard to see that the free energy can be expressed solely




in terms of n:

(| 1 . 1 .
Fei=—N; 38 [5 b [\/1 —4e* N al — 1] ~Ing(L+ 1= 4627”%@5)]
=0

4e¥™% oS
(9)
Since all roots of order n of unity appear in the above expression, it is clear that all phases
in the definition of o below equation ([]) are equivalent.

It is quite easy to see that each term in the sum in equation (fJ) reproduces the 1-
boundary free energy of a theory with a single quark and a regular Yukawa coupling.
The ratios of the coupling constants of these theories are n-th roots of unity. In the next
section we will show how this comes about in the gauge theory.

Using (), the critical points of the effective superpotential ([l]) are given by the solution
of the equation:

Nc S n—1 1 Y n—ll 2l
—1In Zln§(1+\/1—4e’”na5):1nH5(1—1— 1 —4e™waf) |, (10)
1=0

Nf A3 =0

which can be trivially transformed into:
Ne | o 2L
v =150+ V1-4em55y) (11)

with y = 2 and 8 = aA?.
Then, the values of the superpotential at its critical points are given by

W|crit - A3

n & 1
NC—§Nf+NfZ ]y (12)

=1 14 /1— 425 By

where we have to replace y by a solution of ([[1]). This is the result that we will compare
with the gauge theory predictions. We stress that this equation is valid only in the limit
of small 3, i.e. far from branch points of the series ([7).

For generic 8 the critical values of the superpotential are given by

W|crit - A3

n 1
Ne= 5 Np+323 — }y : (13)
f=1i=114¢ s\/1 =4 By

where y is given by an equation similar to ([[T), except that the square roots are dressed
with e coefficients.

3 Gauge theory

Let us begin the gauge theory analysis by showing that the generalized Yukawa coupling
Tr [QP"Q)] is equivalent to a set of n ordinary Tr [QPQ)] terms whose strenghs differ by
n-th roots of unity. To this end we notice that, by starting with the superpotential

Wew = sMTE® 4 m > Tr(QQ]+ 90> T Q8] with Qu =G (14)

i=1 i=1



and integrating out Q; and Q; for all i = 2,...n we recover
1 ~ ~
Wsee = 5 M Tx P* + mTr [QQ] + gTr [QP"Q)] (15)

provided that m" g} = g.
Equation ([4) can be rewritten as

1 ~ i ~
Wiee = M Tr @ +m 3 T [QiQ] +m™ Vg0 3 Tr[Qi®Q;Py  (16)

i,j=1

with the matrix P being given by

0 0 0 0 1
1 00 0 0

D 010 ... 00 ‘ (17)
000 ... 1O

Since we chose the mass matrix of the n/Ny quarks to be proportional to the identity
matrix, it is clear that the Yukawa and the mass terms can be simultaneously diagonalized.
Noticing that eigenvalues of P are given by the roots of unity, we can immediately rewrite

(I4) as

1 ~ " « :
Wisee = g M Tr @ +m 3 Tr[QuQi) + 2 wigoTr [Q®Q)] - with w = (18)
i =1

We have thus shown that the coupling Tr [Q@"Q] is equivalent to a set of diagonal Yukawa
couplings whose strengths differ by roots of unity.

Unlike equation ([[4), the superpotential ([[§) is invariant under global SU(Ny)®" trans-
formations. In constructing the Affleck-Dine-Seiberg superpotential it is useful to think
of (I§) as a particular case of

Witee = % MTr®? + mTr[QQ] + Tr [GQPQ] (19)

where now Q are in SU(nNy) and G is a diagonal matrix. The SU(nNy) invariance if
broken either by having different coupling constants or by having different masses for the
n sets of Ny quarks.

Since we are interested in comparing this gauge theory to the matrix model of the
previous section, we first integrate out the adjoint fields. The effective superpotential is
given by:

- 1 - -
We will later identify the coupling constant matrix with the one given by equation ([[§),
but we will derive the formulae for an arbitrary diagonal G = diag(gi, ..., gn).

To this tree level superpotential we have to add the nonperturbative contributions. It
is not hard to see that they are given by the ADS superpotential for Q@ and Q. Indeed,
in the limit of vanishing m and G this is the only possible term. Demanding analyticity



as well as preservation of the symmetries leads to the conclusion that no corrections are
possible.

Next we want to integrate out all quarks. The easiest way to find the result is to rewrite
the above superpotential in terms of mesons and notice that, since the mass matrix as
well as G are diagonal, all off-diagonal components of the mesons are constrained to
vanish. Writing the remaining components of the meson field as X;; = Q;Q; = z;ly, the
remaining effective superpotential is:

Wcﬁ': meZLL’Z —NfZai:L’?—i- (Nc—an)

1
A3Ne=nNp | Ne=nNy
[ ] " (21)

N
i=1 i=1 [T, x; f
2
where a; = 2. Minimizing this superpotential gives
2M
3Ne—nN; n  _ Ng
-~ Ne—nN
max; — 2a;x; — AN [ T =0 (22)
i=1

To compare with the matrix model, it is useful to make the following change of variables:
Ny

y=11y, ", (23)

i=1

in terms of which the equations of motion can be rewritten as:

n _ Ny
Ne—nN
Yi — ﬁiy? - H Y, =0 (24)
j=1
where we defined
chan
3chan —Ne
2%’ A chan
Bi = — , (25)
m m

and we recall that ¢ = 1, ..., n labels the different types of quarks. This gives a system of
n coupled non-linear equations. To proceed it is helpful to introduce a “radial” variable:

n _ Ny
Ne—nN
y=11v; " (26)
j=1
The equation of motion becomes
yi_ﬁiyiz_y:() . (27)

We can solve for each individual y; in terms of the couplings and the radial variable:

Y = —21@ [—1 +eiy/1 - 4@-?;] : (28)

where ¢; = +1. Each choice of e-s one finds an equation for y:

B _n 28, o 14e/T= 16
yNr o = H = H 23
i=1 -1 + EiV 1— 4ﬁzy i=1 4ﬁ2y

(29)



Bringing factors of y together, we get the following equation:

yNr = ﬁ%(1+5i\/1_4ﬁiy) (30)

This algebraic equation can be solved numerically for various values of n and the couplings.
Once one has a solution of this equation, one can obtain the y;’s from equation (£§) for
each of the 2" choices of ¢;.

We next compute the effective superpotential at the minimum:

1
A3Nc—an‘| Ne—nNy
N

n f

i=1 T

1 1
W|crit = §meZIZ 2 2N ’)’LNf)[

an 3Nc— an

n Ny
= mm AT [ Nfzy, —aN) [T ™ ”Nf] . (31)
i=1

In fact, the superpotential can be written in terms of the variable y alone by using equation

(B3)

1 -1

1
_ 3
— AO[N 2Nf+NfZHEZ 1—4@@/“ (32)

where the scale L is defined by

an 3chan

Al =mT e AT (33)

which is the correct relation between scales when all nN; quarks are integrated out.
So far the discussion was for general §;. Now, when all of the couplings 5;, [ =1,...,n,
are different, the number of solutions to the system (P7]) is 2" times the number of solutions

of equation (P7). If we chose a more general form of the meson, X;; = diag(x}, ... Lzl ),
the number of different vacua would increase to 2™V times the number of solutions of the
apropriately modified equation (B{). This matches the total number of branch cuts in the
matrix model computation. Furthermore, it is easy to see that specializing the coupling
constants g; to the ones implied by the equation ([[§) we find

a gy m?

2ri 2 2mi 2
m2/n 202

aq=eTna=e

Therefore, the gauge theory and the matrix model results match in the region where
the series ([]) develops branch cuts. However, since for y8 < i the series leading to (B) is
convergent, all ¢; s coefficients are fixed to unity, while in gauge theory the choice of signs
€;, 5 seems to persist for all values of y.

To understand the solution of this apparent discrepancy we should note that the ap-
pearance of different branch points leads to a spontaneous breaking of the U(Ny) flavor
symmetry in a theory with N; identical quarks. In the regions of parameters where both
€, = +1 and ¢ 5 = —1 are allowed, there exist vacua with broken flavor symmetry.

ﬁz = €2m2_”lﬁ . (34)




However, one expects that, as the coupling constant is reduced, the flavor symmetry will
be restored. Indeed, by taking the small ; limit on equation (B§) we find that, for any 4,
the solution corresponding to ¢; = —1 moves off to infinity while the one corresponding
to €, s = +1 remains at finite distance. Thus, in the small coupling limit, only the choice
€; = +1 is allowed.

This has definite meaning in the matrix model computation. In the small coupling
limit the radius of convergence of the series ([]) becomes very large. Therefore, all branch
points move off to infinity and there remains a unique choice for the free energy F,—;.

We are therefore led to interpret the appearance of branch cuts in the series () as the
matrix model version of transitions between domains of the Higgs branch with different
flavor symmetry.

4 More generic quark-adjoint interactions

We can generalize the techniques we developed for Tr [Qq)k@] interaction to study theories
with superpotentials of the form Tr [QP(®)Q], where P(®) is an arbitrary polynomial of
finite degree.

The matrix prescription is obvious. One must compute quark contribution to the
free energy by summing all the one boundary Feynman diagrams with arbitrary types of
insertions. The vertices are given by the monomials appearing in P(®), and the quark
and adjoint propagators are the inverse of their masses.

While a formal expression for the free energy of the matrix model can be written for a
generic P(®), it does not seem of any particular use. Let as only illustrate the procedure
by considering a theory with an interaction term of the form

Tr [Q(g1 D% + go®%2 + g30%P) Q)] (35)

where we have chosen the powers of ® to be even in order to keep the counting easy.
A general diagram containing k; vertices of type i comes with a factor of 1/(k1!ko!ks!)
from the expansion of the exponential; the different ways of contracting the quarks give
a factor of (ky + ko + k3 — 1)!; the different ways of connecting the boundary points with
non-intersecting adjoint propagators give [Bg a factor

(2k1p1 + 2kopa + 2ksps)!
(k1p1 + kopa + ksps + 1)!(kipy + kapa + k3ps)!

(36)

Since each diagram contains ky + ko + k3 quark propagators, kip; + kops + ksps adjoint
propagators, and ky, ko, and respectively ks vertices, it is multiplied by

k1 ko ks

91 92793

Mk11171+k2102+k3p3
[}

m13+k2+k3 (37)
Finally, the external flavor loop gives a factor of Ny, while the (kip; + kopa + ksps + 1)
color loops give the appropriate power of the glueball superfield. Thus, the 1-boundary

contribution to the free energy of this model is simply

.F 1 = _N S
o ! k1,k2§3_o (1{51']{;2']{;3|)
k1+k2+ks#0

(38)



(2k1p1 + 2kops + 2ksps)! < S >k1p1+k2p2+k3p3 9?1952953

X - - - -
(kup1 + kopa + ksps + 1)!(k1py + kaps + kaps)! \ M, m’éj*’”*’”

For odd monomials the above sums have to be only over combinations of terms which
give an even number of ® propagators. It is quite easy to see that in general such sums
are hard to compute explicitly.

Nevertheless, it is possible to obtain this free energy by using the vertex splitting
procedure we used in section 3. A vertex of the form g, Tr [Q®" Q] can be thought of as
arising from a theory with n quarks and off diagonal Yukawa interactions ¢Tr [Q,PQ,P,]
of the type ([If) by integrating out the auxiliary quarks ;. .

Therefore, the matrix model of the theory with a polynomial interaction Tr [QP(P)Q)]
can be related to that of a theory with interactions linear in @ if one introduces n — 1
auxiliary quarks for each monomial g,Tr [Q®"Q)] coming from P(®P). One obtains an off-
diagonal interaction matrix whose dimension is the sum of the powers of the monomials
in P(®) minus the number of monomials plus one. Since the auxiliary quarks have
the same mass as @ [], one can diagonalize the interaction matrix and obtain a theory
with diagonal Yukawa interactions \;Tr [Q;®Q);], where the ); are the eigenvalues of the
interaction matrix.

As in the case discussed in section 2, the partition function will be the sum of 1-
quark regular Yukawa partition functions with couplings A;. The only difference from the
equation ([) will be that the couplings will not be proportional to the roots of unity, but
will have a more complicated form.

To treat this theory correctly in the gauge theory, one must perform the same steps,
by integrating in the auxiliary quarks and obtaining a theory with only linear couplings
of the adjoint field ®. One can then integrate out ® and obtains a theory with only
quarks. For this theory it is possible to determine that only the regular Affleck-Dine-
Seiberg superpotential is generated nonperturbatively; one can then integrate out all the
quarks and obtain a superpotential which can be related to the matrix one.

It appears therefore that since integrating in and out work identically on the two
sides, the equivalence of the matrix result and the gauge theory result is ensured by the
equivalence of these results for theories with quarks with equal mass and different Yukawa
couplings. This equivalence is obvious from the computations in sections 2 and 3, and
follows also from the results of [[J] by making particular choices for the mass parameters
and rescaling the quarks.

5 Conclusions

We have investigated an U(N) gauge theory with adjoint and fundamental matter in-
teracting via a coupling of the form Tr [Q®"(Q]. We have solved the matrix model and
found the exact low energy effective superpotential. This effective superpotential is iden-
tical to that of a theory with n quarks minimally coupled to ®, with coupling constants
proportional to the n’th roots of unity. As expected, these two theories are related by
integrating in/out n — 1 quarks.

On the gauge theory side we argued that in order to determine unambiguously the
nonperturbatively generated contribution to the superpotential one needs to first integrate

5As we explained, this does not affect integrating them out.
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in these auxiliary n—1 quarks, obtain a theory with minimal couplings between the quarks
and the adjoint field ®, and then integrate out ® to obtain a theory with n massive
quarks and a quartic tree-level superpotential. One can then use standard holomorphy
and symmetry arguments to argue that the only nonperturbative superpotential in this
theory is the Affleck-Dine-Seiberg one. By integrating out all the quarks we obtained the
low energy effective superpotential of our theory, and we found it agrees with the one
computed in the matrix model.

We also described a method to investigate theories with more complicated adjoint-
quark couplings, of the form Tr [QP(P)Q|, where P(®) is a generic polynomial of finite
degree. We illustrated this technique by writing down the matrix free energy for a poly-
nomial P built out of three monomials of arbitrary even powers. While the generalization
is straightforward, the perturbation theory is difficult to resume. It is also possible to
further generalize this discussion by adding an arbitrary superpotential depending only
on the the adjoint field.

We then presented a method to solve these theories by relating them to gauge theo-
ries with many quarks but only minimal couplings A\, Tr [Q;PQ;]. When the polynomial
contains just one monomial of order n (this is the case discussed in the first two sections
of this note), the \; are proportional to the n’th roots of unity. For more complicated
polynomials, the \; are the eigenvalues of the quark interaction matrix.
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