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7 ABSTRACT 

8 This paper devises, implements and benchmarks a novel framework, named CLOI, that can 

9 accurately generate individual labelled point clusters of the most important shapes of existing 

10 industrial facilities with minimal manual effort in a generic point-level format. CLOI employs 

11 a combination of deep learning and geometric methods to segment the points into classes and 

12 individual instances. The current geometric digital twin generation from point cloud data in 

13 commercial software is a tedious, manual process. Experiments with our CLOI framework reveal 

14 that the method can reliably segment complex and incomplete point clouds of industrial facilities, 

15 yielding 82% class segmentation accuracy. Compared to the current state-of-practice, the proposed 

16 framework can realize estimated time-savings of 30% on average. CLOI is the first framework of 

17 its kind to have achieved geometric digital twinning for the most important objects of industrial 

18 factories. It provides the foundation for further research on the generation of semantically enriched 

19 digital twins of the built environment. 

 

20 INTRODUCTION 

21 The industrial sector and especially the oil and gas is an industry with the highest potential 

22 growth in terms of worker productivity and economic value of the sector within the next couple 
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23 of years. The Global Infrastructure Initiative forecasts that heavy industrial buildings and the oil 

24 and gas sector are among the construction sectors with the highest potential for investments with 

25 an average Compound Annual Growth Rate (CAGR) of 3.4% (McKinsey Global Institute 2015). 

26 Therefore, it is crucial that the industrial sector is properly maintained given the high value of the 

27 industrial assets for our economies. 

28 Maintenance, safety management and retrofitting are vital operations in the life-cycle of existing 

29 industrial facilities.   Corrective or poor maintenance incurs unplanned downtime costs, which 

30 are estimated to be $50 billion per year (National Institute of Standards and Technology 2018). 

31 The primary reasons for these incidents are ineffective and inefficient facility management and 

32 poor mapping of the existing industrial equipment. Faster digital industrial documentation is 

33 urgently required to reduce unscheduled equipment downtimes and boost the Overall Equipment 

34 Effectiveness (OEE) of a factory, which is currently estimated to be between 5 to 20% (PECI 1999). 

35 There are limits on the acceptable shut down duration that will not impede production. These 

36 limits cannot be violated without incurring extra costs. This is why adoption of Digital Twins (DTs) 

37 is crucial for the industrial sector. The greatest value of using DTs is that they are projected to save 

38 substantial costs for facility managers by automating the preventive maintenance process which 

39 will enable accurate positioning of each industrial object and timely maintenance decisions. For 

40 example, DTs can help to keep records of the inventory, processes, historical data and additional 

41 equipment. This allows owners to identify inefficiencies and ways to address them. 

42 There are four maintenance strategies that a factory owner can follow to prevent damages. 

43 These are reactive, planned, proactive and predictive maintenance (Coleman et al. 2017). Each 

44 maintenance strategy is measured with the OEE metric with the highest OEE being for a predictive 

45 maintenance strategy, which indicates an effective strategy. OEE is low for reactive maintenance, 

46 since potential damage caused to machines can deteriorate the machines’ condition, hence mainte- 

47 nance costs will be higher and unplanned downtime of a factory will affect performance. Planned 

48 maintenance can also have increased replacement costs over time and there is an implied need of 

49 storing additional spare parts in the factory’s inventory. Proactive maintenance treats the root cause 
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50 of the problem, ultimately reducing costs without impeding production. Predictive maintenance 

51 uses historical data of equipment and production units to predict when they are likely to fail. These 

52 measures can reduce machine downtime by 30% to 50% and increase the machine life by 20 to 

53 40% (Dilda et al. 2018). 

54 Predictive maintenance is where a DT would be most helpful for predicting failures using real- 

55 time factory space and sensor data. DTs have the potential to automated the preventive maintenance 

56 process which will enable accurate positioning of each industrial object and timely maintenance 

57 decisions. Studies show that the wider adoption of DTs will unlock 15-25% savings to the global 

58 infrastructure market by 2025 (Barbosa et al. 2017; Gerbert et al. 2016). 

59 The concept of DTs is not new. NASA first generated the term “twin” when building two identical 

60 space vehicles for its Apollo program (Glaessgen and Stargel 2012). The modern terminology of a 

61 “digital twin” has been attributed to Dr Michael Grieves as part of his research in Product Lifecycle 

62 Management (PLM) (Grieves 2014). Reports based on the digitization index have shown that the 

63 oil and gas industry has been highly digitised as compared to the construction industry, which is in 

64 the bottom of the list (Agarwal et al. 2016). Despite the high value DTs have in the industrial sector, 

65 yet, industrial facilities do not have DTs for existing industrial factories due to the high perceived 

66 cost which outweighs their benefits (West and Blackburn 2017). 

67 The generation of a geometric Digital Twin (gDT) is the core and first step in the DT generation 

68 (Borrmann and Berkhahn 2018). The inputs for the generation of gDTs are usually point clouds 

69 scanned with Terrestrial Laser Scanners (TLS) (Marshall 2016). 90% of the gDT generation cost 

70 is spent on converting point cloud data to 3D models due to the sheer number of objects of each 

71 industrial facility (Fumarola and Poelman 2011; Hullo et al. 2015). Hence, cost reduction is only 

72 possible by automating the generation of gDTs. However, automatically classifying millions of 

73 objects is a very hard classification problem due to the very large number of classes and the strong 

74 similarities between them. We provided in our previous work (Agapaki et al. 2018) a comprehensive 

75 technical assessment and viable evaluation of existing state-of-the-art software tools available. In 

76 the following paragraphs, we summarize the state-of-practice based on this evaluation. 
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77 State-of-practice 

78 In our previous work (Agapaki et al. 2018), we identified the most frequent and laborious to 

79 model object types, which are cylindrical objects (straight pipes, electrical conduit and circular 

80 hollow sections), valves, elbows, I-beams, angles, channels and flanges. Cylinders require 80% 

81 of the total modelling time of the ten most important object types in EdgeWise (ClearEdge 2019) 

82 and represent 45.5% of the total number of objects in an industrial plant on average. EdgeWise 

83 was selected compared to other state-of-the-art software, because it is the only commercially 

84 available tool that attempts to automatically extract cylinders from the point cloud of an industrial 

85 plant without significant user assistance. EdgeWise has significantly accelerated 3D modelling of 

86 industrial plants according to the findings discussed above. However, it has some limitations, which 

87 can be summarized as follows: 
 

88 1. Structural elements (I-beams, angles, channels) should be manually modelled and their 

89 location in the point cloud is roughly defined based on the modeler’s discretion. 

90 2. Segmentation of cylinders has been partially achieved with detection rates being 75% recall 

91 and 62% precision on average (Agapaki et al. 2018). The same metrics for cylindrical 

92 objects labelled as pipes are 58% and 47% respectively. It is also important to note that 

93 EdgeWise erroneously includes points that do not belong to a geometric shape. This is 

94 due to fitting errors, which occur since primitive shapes are perfect shapes, whereas the 

95 scanned, physical objects are imperfect (e.g. a cylindrical pipe may be bent). 

96 3. EdgeWise is not designed to output geometric shapes in an open and generic format. 

97 As such, modelers cannot easily exchange data between different operational-phase gDT 

98 platforms due to data inconsistency between them. 
 

99 Therefore, the evaluation of EdgeWise uncovered (a) the substantial performance of this software 

100 in detecting cylinders with its pitfalls, (b) the inability of the software to (i) further classify cylinders 

101 into conduit or pipes or CHSs and (ii) detect and further classify I-beams, channels, flanges, valves 

102 and angles in spite of their high frequency in an industrial facility. 
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103 This performance of EdgeWise has substantial room for improvement and this paper intends 

104 to address the above-mentioned limitations in order to automatically generate gDTs of industrial 

105 facilities and assist the tedious current practice. We propose a geometric twinning framework for 

106 existing industrial facilities and bench-mark it with the current state of practice. The goal of this 

107 research is to devise, implement and benchmark a novel framework that can accurately generate 

108 individual labeled point clusters of the most important shapes of existing industrial facilities with 

109 minimal effort in a generic point-level format. In the following section, the state-of-the-art research 

110 methods related to the above-mentioned limitations are presented. We then outline the framework 

111 in the proposed solution, which is followed by the experiments and results. The conclusions are 

112 then derived in the last section. 

 

113 BACKGROUND 

114 We first investigated gDT generation strategies in the literature and grouped them into S1 and 

115 S2 strategies in Figure 1. The S1 strategy is composed of (a) primitive industrial shape detection 

116 and (b) fitting. The S2 strategy includes (a) class segmentation, (b) instance segmentation and 

117 (c) fitting. Class segmentation describes the task of partitioning a set of measurements in the 3D 

118 point cloud space into smaller, coherent and connected subsets, which are called classes (Li et al. 

119 2019a). Classes represent objects with common geometric characteristics such as cylinders, elbows, 

120 I-beams, valves, flanges, angles and channels. Instance segmentation assigns a label per point based 

121 on the individual object that the point belongs to. Shape detection is the procedure of identifying 

122 the location and geometric properties of instances of semantic objects that belong to a certain class. 

123 Detected individual objects are usually represented by a bounding box containing the object. 3D 

124 object fitting is the process of assigning instance point clusters to geometric representations. 

125 The main reasons for selecting the S2 gDT strategy in this paper are: 
 

126 1. Class segmentation directly processes and labels the TLS point clouds without converting 

127 3D points into other geometric representations such as bounding boxes. On the other hand, 

128 S1 detection methods need to convert 3D points to geometric primitive shapes. 
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129 2. Primitive fitting RANSAC-based methods cannot properly detect samples with points that 

130 are closely located to each other (Liang et al. 2018; Li et al. 2019a; Agapaki and Brilakis 

131 2020a). 

132 3. Another merit of the S2 gDT strategy is that classes are easily separable for further pro- 

133 cessing and information is not lost due to data conversions. S1 strategy methods rely on 

134 point cloud fitting to generate standardized geometric representations. S1 methods similar 

135 to those of (Jin and Lee 2019; Patil et al. 2017; Rabbani 2006; Liu et al. 2013; Kawashima 

136 et al. 2014; Schnabel et al. 2007; Son and Kim 2016) are out of the scope of this work. 

 

137 Therefore, the literature review is elaborating on: (a) S2 class segmentation methods and (b) 

138 S2 instance segmentation methods. Fitting methods are not discussed, since they are out of scope 

139 of this paper. 

 
140 Class segmentation 

141 Class segmentation methods applied on industrial shapes have been widely investigated. We 

142 categorize them into three groups: (a) attribute based methods, (b) machine learning and (c) deep 

143 learning methods. A comprehensive review of class segmentation methods based on hand-crafted 

144 features is provided by (Agapaki and Nahangi 2020) and some of the most important methods are 

145 explained in the paragraphs that follow. 
 

 
146 Attribute-based Attribute-based methods are bottom-up approaches that cluster base elements 

147 to generate complex systems in successive higher levels until a top-level system is formed (e.g. 

148 bridge, facility) (Borenstein and Ullman 2008). These methods cluster points with similar attributes 

149 into subsets. An n-dimensional attribute space is created to extract the attributes in the parameter 

150 domain, where n represents the estimated number of attributes. These methods process a point cloud 

151 starting from point-wise features and generate higher-level features, such as surface normals (Rusu 

152 et al. 2009; Sampath and Shan 2010), mesh (Marton et al. 2009) or patches (Vosselman 2009; Zhang 

153 et al. 2015). Attribute-based methods group points based on the similarity of low-level features 

154 such as color, curvatures, roughness, density or surface normal vectors. The estimated attributes 
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155 are clustered and extracted in the parameter domain. Attribute based methods can be divided in two 

156 broad categories based on the shape descriptors they use: global or local. Local descriptors allow 

157 for partial matching of features, therefore are preferred for occluded scenes compared to global 

158 descriptors. Global descriptors describe the scene as a whole. For instance, local descriptors of a 

159 cylinder are curvature and normal vectors, whereas global descriptors are its length and diameter, 

160 which correspond to properties for the whole cylinder. Curvature has been extensively used as a 

161 local feature for industrial piping segmentation (Dimitrov and Golparvar-Fard 2015; Perez-Perez 

162 et al. 2016). However, substantial manual segmentation is needed to pre-process the input TLS 

163 data. (Xiong et al. 2013) uses local geometric features as well as contextual relationships between 

164 point clusters to segment planar segments as wall, floor and ceiling. However, their method cannot 

165 be applied to more complex shapes such as industrial shapes. 
 

 
166 Machine learning We review one of the most widely used parametric supervised machine learn- 

167 ing methods in the class segmentation literature, which is Support Vector Machines (SVMs). 

168 (Li et al. 2016) used SVMs on TLS urban point clouds and then a multi-classification graph-cut 

169 algorithm to optimize the initial segmentation result. Similarly, (Zhang et al. 2013) used a region- 

170 growing algorithm before applying an SVM for urban point cloud segmentation. (Huang and You 

171 2013) and (Armeni et al. 2016) use SVM classifiers with local features to segment cylindrical and 

172 indoor space objects. The use of SVMs in these approaches though has inherently two limitations: 

173 (1) SVM is not designed for imbalanced classes. Weights inversely proportional to the class fre- 

174 quency are applied to the imbalanced classes. Industrial facility datasets are highly imbalanced 

175 with respect to the most important object types they have, since their distribution follows the Zipf’s 

176 law as proved in (Agapaki et al. 2018). For this reason, the application of SVMs on TLS industrial 

177 facility data is not preferred, unless one oversamples the object types that appear less frequently. 

178 (2) the success of SVMs depends on the selection of hand-crafted features, the type of kernel 

179 function and the parameters to the kernel function. Improper selection of features can result in 

180 misclassifications, whereas application of different kernel functions for a dataset gives different 
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181 results. 

182 Other popular methods that are widely used for class segmentation of the built environment are 

183 Conditional Random Fields (CRF) and Markov Random Fields (MRF). (Perez-Perez et al. 2016) 

184 uses a MRF method together with a CRF to distinguish geometric and semantic attributes of point 

185 cloud clusters for ceiling, floor, wall and pipe categories. Pipes are segmented at 79% precision 

186 and 3% recall. Low recall rates and manual pre-processing of the point cloud data are the main 

187 limitations of this study. (Bassier et al. 2019) and (Perez-Perez et al. 2021) used the combination 

188 of geometric (AdaBoost classifier) and contextual features (SVM classifier) to segment floors, 

189 ceilings, roofs, beams, walls and clutter of indoor buildings. 
 

 
190 3D Class Segmentation Deep Learning methods CNNs have been widely used for a variety of 

191 tasks in image segmentation (Krizhevsky et al. 2012; LeCun et al. 2008; Taha and Hanbury 2015; 

192 Pang et al. 2012; Wang et al. 2018a; Teichmann et al. 2018). We group these methods in three main 

193 categories as suggested by (Wang et al. 2019b): (DLa) view-based (Su et al. 2015; Kalogerakis 

194 et al. 2017; Wei et al. 2016), (DLb) volumetric (Maturana and Scherer 2015; Wu et al. 2015; Zhou 

195 and Tuzel 2017; Klokov and Lempitsky 2017; Tatarchenko et al. 2017) and (DLc) geometric deep 

196 learning methods (Qi et al. 2017b; Qi et al. 2017a; Wang et al. 2019b). 

197 DLa methods represent objects in 3D space as a collection of 2D views. These 2D projected 

198 views are then processed by applying standard Convolutional Neural Networks (CNNs). A CNN 

199 is applied to each 2D view and then the features are aggregated using max pooling (Su et al. 2015). 

200 Recently, their results were refined by aggregating the predicted 2D projections of 2D onto the 3D 

201 shapes through a CRF (Kalogerakis et al. 2017). This technique is more useful for data acquired 

202 by RGB-D sensors since a single view can be processed at a time (Wei et al. 2016) rather than TLS 

203 point clouds. The main drawback of these methods is that they cannot be applied if the input is 

204 noisy and/or incomplete. Therefore, these methods are not further investigated for TLS point cloud 

205 industrial applications. 

206 A key difference of 3D data compared to image data is that adjacent 3D points in the Euclidean 
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207 space are not necessarily correlated. There are two widely used volumetric CNN methods that can 

208 accommodate for this. These are voxelization and octree based CNN methods. Voxelization is a 

209 technique to convert the unstructured geometric data to a regular 3D grid, so that standard CNN 

210 operations can be applied (Maturana and Scherer 2015; Wu et al. 2015). The main drawbacks 

211 of voxelization is the complexity of the network that does not take into account the sparsity of 

212 data. For instance, the 3DShapeNET (Wu et al. 2015) for a small 3D voxel input of 30x30x30 has 

213 30x30x30 = 27, 000 parameters and becomes prohibitively large for larger voxel inputs. A solution 

214 to this is anisotropic probing that only selects parts of images to train and results in a very low 

215 number of parameters and low computational cost (Su et al. 2015). Another solution would be to 

216 only store the occupied voxels and constrain the computations near the surface of the 3D object. 

217 Voxelization produces a sparse grid, so the volumetric representation is not often useful and results 

218 in loss of data. Voxel based object detection (Zhou and Tuzel 2017) and class segmentation has 

219 the limitation of high memory usage which is dependent on the 3D voxel resolution. 3D space 

220 partitioning methods (k-d trees or octrees) (Klokov and Lempitsky 2017; Tatarchenko et al. 2017) 

221 do not consider local geometry. 

222 The second set of volumetric methods uses octrees which recursively partition the 3D space and 

223 label each voxel according to object occupancy (Meagher 1980) with internal nodes having exactly 

224 eight children. Octree based methods do not compute features per individual 3D point. Rather, they 

225 process cubes of data based on a voxel data structure. The convolutions on octrees are performed 

226 using hash tables that only search around neighbourhoods (Shao et al. 2018). Octree CNN methods 

227 tend to be memory efficient in comparison to voxel-based CNN methods, but they still require 

228 substantial time to train. Yet, octree size determination highly depends on the TLS point density 

229 and the desired level of detail (LOD) of output point clusters. Therefore, these methods are not 

230 suitable for the class segmentation of industrial facilities and are not further analyzed. 

231 The unstructured nature of point clouds hinders the use of convolutions between 3D points, 

232 unlike images where 2D convolutions can be applied on pixels. DLc methods solve this challenge 

233 by directly processing point cloud data in 3D space. Geometric deep learning methods are chosen 
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234 as the most suitable for class segmentation as explained by (Agapaki and Brilakis 2020a), since they 

235 address the following challenges that TLS industrial point cloud processing has: (1) irregularity 

236 in the TLS data structure, (2) TLS data sparsity, noise, presence of outliers and occlusions as 

237 well as density variations especially in industrial settings and (3) differences in industrial object 

238 scales, rotation and translation variant objects as well as geometric similarities between objects of 

239 the same class. PointNETs (Qi et al. 2017b; Qi et al. 2017a) and their derivatives (Wang et al. 

240 2019b; Wang et al. 2018b; Landrieu and Simonovsky 2018; Thomas et al. 2019) have solved these 

241 challenges by applying permutation invariant functions as well as local 3D filters in their network 

242 architectures. PointNET networks concatenate global and local features into point feature vectors 

243 based on which class labels are predicted. PointNET++ improves the PointNET architecture by 

244 adding local neighbourhood geometric features. 

245 These networks and their derivatives ave been extensively used to automatically extract geo- 

246 metric features from point clouds and segment indoor objects, openings (e.g., doors and windows), 

247 and structural components (e.g., beams, ceilings, columns, floors, and walls) (Komori and Hotta 

248 2019; Wang et al. 2019a; Liang et al. 2019; Peyghambarzadeh et al. 2020; Lu et al. 2020; Li et al. 

249 2019b; Ma et al. 2020). 

250 The advantages and limitations of each category of methods discussed above are summarized 

251 in Figure 2. 

 
252 Instance Segmentation 

253 3D instance segmentation is based on 3D geometric class segmentation networks. These 

254 methods can be grouped into shape-based (top-down), shape-free (bottom-up) or class-agnostic 

255 (bottom-up). Our readers can refer to (Agapaki and Brilakis 2020b) for a comprehensive literature 

256 review of each of these methods. We elaborate on the state-of-the-art literature on shape-free 

257 methods, since these are more suitable for the generation of gDTs from TLS industrial data 

258 (Agapaki and Brilakis 2020b). 

259 Shape-free methods are based on deep learning networks, which aggregate features per point 

260 and output instance labels per point given a similarity matrix between pairs of points (Wang et al. 
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261 2018b; Wang et al. 2019b) or embedding another network measuring point-wise distances (Pham 

262 et al. 2019). PointNET (Qi et al. 2017b) and PointNET++ (Qi et al. 2017a) are the backbone 

263 networks for these methods, meaning that they achieve class segmentation as well.   Although 

264 these networks take into consideration the local neighbourhoods of points, they cannot explicitly 

265 define the boundaries of complex industrial shapes. Object boundaries can be taken into account 

266 by considering the class and instance segmentation labels. (Chen et al. 2019) use a graph-based 

267 instance segmentation method in combination with PointNET to classify points. They addressed 

268 oversegmentation by using a component merging approach based on the object classes, normals of 

269 each point and contextual relationships of certain objects such as walls. Their method is specific to 

270 indoor building scenes and cannot be generalized to industrial objects. (Liu et al. 2021) use a CNN 

271 that learns to correlate geometric and color information in order to determine instance boundaries. 

272 However, color does not assist segmentation in industrial settings (Agapaki and Brilakis 2020a). 

273 The readers can refer to (Xie et al. 2019) for a detailed review of all the instance segmentation 

274 methods. 

275 Another category of recent bottom-up instance segmentation methods are class-agnostic meth- 

276 ods. (Chen et al. 2021) propose an instance segmentation method (LRGNet) and validate it on 

277 popular indoor and outdoor point cloud datasets (S3DIS, ScanNet and KITTI dataset). They use a 

278 deep learning network to optimize their region growing method without assigning class labels to 

279 points. LRGNet is agnostic to objects of any class and geometry, however it lacks to generate the 

280 class and instance segmentation labels per point cluster. This translates to either additional labor 

281 hours or additional processing of the segmented clusters (e.g. training a classifier) to assign those 

282 labels that are needed for the gDT generation. 

 

283 PROPOSED SOLUTION 

284 We target to solve the problem of the generation of gDTs of existing industrial facilities with 

285 respect to cost and modelling time reduction. The main objective of this paper is to develop a 

286 benchmark framework as the foundation for future research. 
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287 Overview 

288 The proposed framework consists of two major parts. Specifically, these parts are (1) class 

289 segmentation and (2) instance segmentation that intend to answer the research questions as 

290 outlined in the Background section and aim to outperform the existing state of practice and research 

291 in the industrial modelling space. 

292 We propose a novel hybrid framework which develops deep learning networks and leverages 

293 their detected outputs with industrial engineering knowledge, in order to automatically extract 

294 labelled point clusters corresponding to industrial shape components without generating surface 

295 primitives (class point clusters) and then to efficiently detect individual industrial shapes from the 

296 labelled point clusters (instance point clusters). 

297 Real-world industrial environments are more challenging than buildings that have been exten- 

298 sively studied and scanned in previous research efforts as mentioned in the Background section. 

299 Industrial components do not comply with a universal colour scheme, rather colours depend on 

300 each manufacturer’s specifications (Agapaki and Brilakis 2020a). There are significant challenges 

301 to be addressed when segmenting industrial objects. Previous class and instance segmentation 

302 methods rely on color information to segment building components, however industrial object 

303 colors change based on each manufacturer. This makes color information an inconsistent feature to 

304 use when processing industrial point clouds. The dimensions of industrial facilities as well as lack 

305 of contextual rules between shapes differentiate them from indoor buildings, which are structured 

306 based on rooms. In other words, the relative location of a cylinder in a facility does not imply that 

307 the locations of these objects should comply to specific spatial rules, however the relative location 

308 of an elbow and a pipe are strongly correlated. We propose a 3D-slicing facility window method, 

309 CLOI-NET-class based networks and CLOI-Instance graph-connectivity algorithms to tackle these 

310 challenges. The 3D windows are used to segment the TLS dataset in non-overlapping parts, so that 

311 a portion of these windows will be used for training. These windows should be non-overlapping, so 

312 that the training and test set are disjoint. These algorithms are the core foundation of the methods 

313 built upon them to enhance the segmentation and detection results. The proposed algorithms can 
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314 deal with the challenges outlined above and can accurately detect the majority of CLOI industrial 

315 classes. 

316 The outputs of the CLOI framework are both class labels (e.g. cylinder, elbow, valve) and 

317 instance labels (e.g. cylinder 1, cylinder 2, valve 3). Subclassification of cylinders to pipes, circular 

318 hollow sections, handrails and electrical conduit is beyond the scope of this work. The proposed 

319 algorithms address scale variance. The algorithms are scale invariant, since we feed them with 

320 objects at different scales from a few centimeters to some meters and there are intra-class variations. 

321 For instance, there are many types of valves as expressed above, which are grouped in one class and 

322 the proposed algorithms should be able to segment valves of all the above mentioned categories. 

323 We illustrate the developed hybrid framework in Figure 3. It consists of two major processes: 

324 Process 1, class segmentation of CLOI industrial point clusters, and Process 2, instance segmen- 

325 tation of CLOI industrial geometric shapes from point clusters. 

326 The proposed framework starts with a raw, laser-scanned, Point Cloud Dataset (PCD) of an 

327 existing industrial facility (data format: points in .pcd, .txt, .las, .xyz). External noise such as 

328 vegetation, adjacent buildings is removed using commercial software as explained in (Agapaki and 

329 Brilakis 2020a). The industrial PCD contains CLOI geometric shapes and any other industrial 

330 shapes inside a factory (data format: points in .pcd, .txt, .las, .xyz). The first step of the framework 

331 is to automatically split the PCD facility in 3D windows and the 3D windows in “3D blocks”. 

332 Then, the 3D blocks are aligned in the global coordinate system. As such, the outputs of this step 

333 are 3D block PCDs (data format: points in .pcd, .txt, .las or .xyz). Then, we manually annotate 

334 industrial facilities to generate a benchmark dataset and the outputs of this step are class and instance 

335 segmentation labels and points. It is important to note that this is an essential offline step needed 

336 for training purposes and serves as the ground truth for the validation of the framework. 

337 Next, we propose a three-step class segmentation method (Process 1) to segment the CLOI 

338 point clusters from the 3D blocks. The final outputs of this process are seven industrial shapes, 

339 namely cylinders, elbows, channels, I-beams, angles, flanges and valves, in the form of labelled 

340 point clusters (data format: points in .pcd, .txt, .las, .xyz). Then, we suggest an optimal manual 
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341 annotation (if the users select it) to remove the erroneous point clusters maintained from Process 

342 1 followed by proposing an efficient instance segmentation method (Process 2) through which the 

343 seven CLOI classes (in point cluster format) can be directly segmented to individual shapes. The 

344 final outputs of this process are point data corresponding to the points, class and instance labels per 

345 point. We elaborate on each process in the following sections. 

346 We validate Process 1 on the CLOI benchmark dataset (Agapaki et al. 2019), which is composed 

347 of four laser scanned industrial facilities. The original number of laser scanned points, the number 

348 of instances, the area and the manual labor hours to manually annotate (with class and instance 

349 labels) each facility are documented in Figure 4. 

 
350 Process 1: CLOI-NET-Class segmentation 

351 The methods of Process 1 bypass the stage of surface generation altogether and directly output 

352 segmented and labelled point clusters. The 3D window parsing method breaks down the whole 

353 industrial facility into subset windows for more efficient processing. The key insight behind Process 

354 1 is to formulate a high dimensional feature space to automatically assign labels per point so that 

355 the target point clusters can be quickly located in the point cloud. 

356 The inputs of Process 1 are the 3D coordinates of the TLS point cloud.   The outputs are 

357 segmented point clusters that are labelled based on the class they belong to.   The main steps 

358 of the method include (1) 3D space parsing into smaller blocks, (2) geometric deep learning 

359 segmentation with PointNET++ SFR and (3) further refinement of class labels using contextual 

360 rules. Step 2 allows the user to use passive (no test data used in training) or active (test data used 

361 in training) learning with the goal to minimize the manual annotation time. Step 3 is composed 

362 of three processes. These are: (a) a cylinder classifier to segment cylinder with diameter greater 

363 or equal to 1m using curvatures, (b) steel shape (angles, I-beams, channels) segmentation based 

364 on computation of normals and (c) class label confidence adaptation to correct misclassified class 

365 labels from previous steps. Details of our methodology, named CLOI-NET-Class, can be found in 

366 (Agapaki and Brilakis 2020a). 
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367 Process 2: CLOI-Ins instance segmentation 

368 The inputs of Process 2 are the predicted point clusters from the CLOI-NET-Class method for 

369 the evaluation of the proposed framework. The same 3D block generation method from Process 1 

370 is used for segmenting the input data. The outputs of this process are point-wise instance labels 

371 (individual point clusters of CLOI classes). 

372 Process 2 consists of two major steps: Step 1 predicts an instance label per point by using a 

373 graph-based method, namely Breadth First Search (BFS) that was originally introduced by (Bauer 

374 and Wössner 1972). Step 2 is a boundary segmentation method that is used to enhance the instance 

375 segmentation results of Step 1. An assumption of the method is that the initial TLS industrial data 

376 is partitioned in 3D non-overlapping sliding windows with overlapping 3D blocks. The outputs 

377 of Step 1 are connected components based on connectivity relationships in order to segment the 

378 instances as output. The boundary segmentation method in Step 2 outputs binary labels on whether 

379 a point is a boundary point or not. These instance point clusters present industrial shapes at Level 

380 of Detail (LOD) 300. 

381 The novelty of Process 2 in isolation is two-fold: 
 

382 1. the efficiency of the BFS algorithm by applying it on the entire PCD and connectivity 

383 between points 

384 2. the intelligence of the boundary segmentation method to account for boundary points and 

385 robustly process points in small regions. 
 

386 Readers can refer to (Agapaki and Brilakis 2020b) for details of the CLOI-Ins instance segmen- 

387 tation process. 

388 In our previous work, we have validated the performance of the framework’s processes in 

389 isolation, to ensure that they are likely to contribute to the performance of the CLOI framework as 

390 a whole. The CLOI-NET-Class and CLOI-Ins segmentation processes are integrated together and 

391 evaluated as a complete framework in this paper. The novelty of the CLOI framework is to prove 

392 that it requires competitively less manual segmentation time compared to current state-of-practice. 
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393 The novelties of this work are: (1) the experimental evaluation of the integrated CLOI-NET 

394 Class and CLOI-Ins segmentation processes, (2) showing how the parameters of the instance 

395 segmentation method change when predicted class labels are used instead of ground truth class 

396 labels, (3) proving that instance segmentation performance is correlated with class segmentation 

397 performance or in other words that good class segmentation performance is crucial for achieving 

398 good instance segmentation performance and (4) evaluating the time-savings of the complete 

399 CLOI-framework and comparing it to the current state-of-practice. 
 

400 EXPERIMENTS AND RESULTS 

 
401 Implementation 

402 We validate the CLOI framework on the first industrial dataset of class and instance labelled 

403 point clusters, CLOI, (Agapaki et al. 2019). Figure 4 summarizes the four industrial datasets used 

404 for validation. We tested our framework on indoor and outdoor industrial scenes which include four 

405 industrial facility types: a warehouse, a petrochemical plant, an oil refinery and a processing unit. 

406 We used the class and instance labels of this dataset as ground truth annotations. CLOI consists of 

407 12,497 shapes and 7.1 billion labelled points. Detailed statistics and scanner specifications of the 

408 data can be found in (Agapaki et al. 2019). 

409 Two research platforms were developed for the framework validation; one capable of high 

410 computing for training deep neural networks and one for visualisations of large scale TLS industrial 

411 datasets. Training of the CLOI-NET-Class method was performed on Google Cloud instances. 

412 We developed a proof of concept prototype and implemented the CLOI framework on Tensorflow 

413 2.0. We used a Google Cloud VM with NVIDIA Tesla P100 GPUs to run our experiments and 

414 visualized the point clouds and segmentation outputs of the CLOI framework on the CLOI platform 

415 that we developed. This platform is built on the Potree Viewer (http://potree.org/) and a demo is 

416 available on Youtube (https://youtu.be/K3rnBctMYAU). Potree is built upon ThreeJS and allows 

417 for rendering of large point clouds in a WebGL web browser (Schuetz 2016; Devaux et al. 2012). 

418 We created the user interface to select the TLS dataset of a CLOI facility, then segment the CLOI 

419 classes and validate with the ground truth class labels. The user can also select a point and only view 

http://potree.org/
https://youtu.be/K3rnBctMYAU
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420 the points associated with that CLOI class. Further details about the implementation of Process 

421 1 and Process 2 can be found in (Agapaki and Brilakis 2020a) and (Agapaki and Brilakis 2020b) 

422 respectively. 

 
423 Manual annotation 

424 The CLOI dataset was generated by manually annotating the four industrial facilities. The 

425 Ground Truth (GT) datasets are the desired outputs to compare against those generated by the 

426 proposed methodology and also used for training. The following GT datasets were created for the 

427 CLOI dataset validation. 

428 GT class: A given industrial facility, TLS scanned, point cloud input is segmented into the 

429 eight CLOI classes. Each individual point was assigned a class point-wise label. Figure 4 shows 

430 each CLOI facility coloured with one of the eight class labels and the manual annotation time 

431 involved to generate the GT per facility. The number of shapes (instances), original number of 3D 

432 points and the area per facility are also provided. One can distinguish that even if a small facility 

433 area is scanned, the density of the scans may be so high that the number of points is much higher 

434 compared to a sparsely scanned facility. For instance, the oil refinery is only 300m2, making it the 

435 smallest facility of the dataset, but it has the largest number of surveyed 3D points. 

436 GT instance: A given point cloud input is assigned to an individual instance point cluster. 

437 GT boundary: A given point is classified as a “boundary” point if there is more than one 

438 instance in a neighbourhood of radius 4cm around it. The data structure used to define the 

439 neighbourhoods around each point is a kDTree. 

 
440 Experiments 

441 The performance of the framework was evaluated based on the performance of the CLOI-NET- 

442 Class segmentation method (Process 1) and the CLOI-Instance segmentation method (Process 

443 2). 

444 We evaluate our CLOI-NET class and CLOI-Ins segmentation methods on each of the four CLOI 

445 datasets using a k-fold cross validation strategy. Therefore, each facility is evaluated separately 

446 and the trained facilities are disjoint from the test facility. For example, in order to evaluate 
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447 performance on the oil refinery dataset, we trained on the petrochemical facility, the warehouse and 

448 the processing unit point cloud datasets. 

449 The inputs of the proposed framework are the class segmented clusters of Process 1. The 

450 average accuracy and mean Intersection over Union (mIoU) of the class segmentation experiments 

451 from (Agapaki and Brilakis 2020a) was 79.8% and 44.65% respectively. The training and test 

452 sets are disjoint. In other words, we trained on all the CLOI facilities (three facilities used for 

453 training on every experiment) except the one of interest to segment that is used for validation. We 

454 validated the theoretical active learning model as outlined in (Agapaki and Brilakis 2020a). Results 

455 showed that the total cost annotation function and the validation accuracy follow the theoretical 

456 model and the optimal data pre-annotation percentage that minimized the total annotation cost is 

457 between 20±10%. The CLOI-NET-Class performance following the active learning approach had 

458 on average 15% higher accuracy than the passive learning approach. 

459 The performance of Process 2 (CLOI-Ins segmentation) was 73% mPrec and 71% mRec on 

460 all CLOI facilities using the ground truth class labels as inputs (Agapaki and Brilakis 2020b). For 

461 the evaluation of the framework, we compared the state-of-the-art instance segmentation networks 

462 (SGPN (Wang et al. 2018b; Wang et al. 2019b)), the BFS algorithm and the proposed CLOI 

463 framework in Table 1. The results illustrated in Table 1 show that SGPN has very low performance 

464 on the oil refinery data with the ASIS network performing better in all efficiency metrics. The oil 

465 refinery is used to compare the state-of-the-art deep learning instance segmentation networks, the 

466 BFS algorithm and the CLOI framework methodology. For the application of the BFS algorithm, 

467 the minimum instance size was selected for the predicted CLOI class point clusters based on 

468 performance. Therefore, the author conducted experiments to determine the minimum instance size 

469 based on the performance in terms of precision and recall on the CLOI datasets. The performance 

470 (precision and recall) was measured after running the BFS algorithm for a different minimum 

471 instance size. The minimum instance sizes tested are 0, 100, 200, 300, 400 and 500 and the results 

472 are presented in the curves of Figure 5. The results in Figure 5 illustrate that the optimal trade-off 

473 between precision and recall is for minimum instance size 200 points instead of the minimum 
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474 instance size of 20 points that was computed based on the ground truth class segmentation labels 

475 (Agapaki and Brilakis 2020b). This is attributed to noisy predicted class labels compared to the 

476 ground truth class labels used to evaluate Process 2 independently. There is an exception for the 

477 minimum instance size (µ) and the minimum neighbourhood size (E ) for the case of cylinders. The 

478 results indicate to set the instance size at 50 points and the minimum neighbourhood size (E ) at 3cm 

479 (instead of 4cm) only for cylinder instance point clusters due to the observation that cylinders have 

480 higher class segmentation label predictions and the CLOI-Instance methodology benefits from that. 

481 We also observe in Table 1 a 10% increase in precision due to the class boundary constraint on the 

482 BFS algorithm for a minimum neighbourhood of 4cm. 

483 Given a set of predicted instances and a set of ground truth instances, the performance of instance 

484 segmentation is measured in the following way, which is standard in instance segmentation literature: 

485 For any predicted instance predi and ground truth instance gt } we say that they are matched if 

486 ( predi, gt } ) >= 0.25, where IoU is the number of common points in predi and gt } , divided 

487 by the total number of points in predi and gt } . Then, precision is defined as the percentage of 

488 predicted instances of some class c, that are matched to some ground truth instance of the same 

489 class. Similarly, recall is defined as the percentage of ground truth instances of some class c, that 

490 are matched to some predicted instance of the same class. 

491 We present these results for the oil refinery dataset as an example for comparison of the best 

492 performing existing instance segmentation methods and the proposed CLOI framework. The illus- 

493 trated results in Table 1 and 2 demonstrate that the CLOI-Instance methodology clearly outperforms 

494 the current state-of-the-art research. 

495 Another important note is that the CLOI framework results are calculated assuming that the 

496 users pre-annotate X% of the test facility with X% being the value from Table 3 depending on the 

497 facility. These percentages are based on the active learning curves of (Agapaki and Brilakis 2020a). 

498 Then, we present the precision and recall per CLOI class and the average precision and recall curves 

499 in Figure 6 as a reference. The results for the other three facilities are included in the Appendix. 

500 It is evident that for all datasets the recall metric of all the CLOI classes outperforms the precision 
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501 metric for all the IoU threshold values. The greater difference between the mean precision and mean 

502 recall is for the oil refinery (Figure 6(c)), which is attributed to the high complexity of this dataset, 

503 the large number of highly occluded conduits and the large number of connected I-beams. This 

504 leads to reduced performance for all classes. Although the CLOI-Instance proposed methodology 

505 has promising results compared to the state-of-the-art methods for the instance segmentation task, 

506 the results demonstrate that the predicted class labels significantly reduce the precision and recall 

507 metrics compared to the same results presented given the ground truth class labels (Agapaki and 

508 Brilakis 2020b). 

509 We observed the following based on Table 4 and Figures 6, 7, 8 and 9. Missed instances are 

510 attributed to the large number of conduits that are placed inside cable trays and also the large 

511 number of pipe junctions where the boundaries cannot be clearly defined between instances of the 

512 same class (i.e. cylinders) for all facility types. Another interesting observation is that the recall 

513 of valves in the petrochemical facility (91.7%) is due to instances being separated from each other 

514 and the likelihood of encountering two valves adjacent to each other in the petrochemical dataset 

515 being very low. The most frequently encountered types of valves in this dataset are hand-wheel 

516 ball valves and check valves or the sequence of a ball valve and a gate valve are grouped together 

517 in the same instance.   A reason for the reduced precision of the warehouse valves (29.4%) is 

518 the over-segmentation of the hand-wheel parts of gate valves. This can be attributed to occluded 

519 connections between the hand wheel and the body of the valves or the steam and the hand wheel 

520 part. The performance of flanges in the processing unit dataset is very low compared to the other 

521 facilities (14.3% Prec and 0.5% Rec), which is due to the prevalence of weld neck flanges that 

522 have not clearly defined boundaries with pipes. This results in grouping part of the pipe and flange 

523 in one instance. A similar case is for connections between flanges with threaded rods and pipes. 

524 Also, there are cases where there are instances directly connected to concrete slabs and the floor, 

525 such as pumps or other equipment. For those cases, all points are grouped in one instance point 

526 cluster. Also, there are cases where there are instances directly connected to concrete slabs and the 

527 floor, such as pumps or other equipment in all facilities. For those cases, all points are grouped in 
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528 one instance point cluster, leading to under-segmentation. A possible improvement of the method 

529 could be to obtain more accurate point clouds in areas close to object connections (i.e. I-beam 

530 connections, pipe to flange or valve connections). 

531 The CLOI framework performance of cylinders is relatively high across the CLOI facilities 

532 given their high class segmentation performance (Agapaki and Brilakis 2020a) for all the IoU 

533 threshold values. We remind the reader that the cylinder class segmentation performance was 

534 81.25% precision, 81.75% recall and 68.25% IoU on average. There are though some cases where 

535 the cylinder instance point clusters are over- or under-segmented. These cases are the Cyl cases 

536 presented in (Agapaki and Brilakis 2020b). The results of the CLOI framework show an additional 

537 pain point. This is the uncertainty of the CLOI-NET-Class segmentation on predicting the class 

538 labels of the points. This leads to erroneous instance label predictions and mostly impacts the CLOI 

539 classes that have low class segmentation performance (the reader can refer to (Agapaki and Brilakis 

540 2020a) for a detailed discussion). Figure 11(e) shows an example where the highlighted I-beam 

541 is correctly segmented when ground truth labels are used. However, the evaluation of the CLOI 

542 framework shows that incorrect prediction of the class labels of the I-beam point cluster (Figure 

543 11(d)) leads to incorrect instance segmentation of the same I-beam (Figure 11(f)). 

544 The class and instance segmentation recall were plotted in Figure 12 in order to investigate the 

545 impact of low class segmentation recall on instance segmentation. Figure 12 shows that class and 

546 instance segmentation for all CLOI classes are highly correlated; the higher the class segmentation 

547 recall, the higher instance segmentation recall is. Channels of the warehouse dataset are an 

548 exception, since the recall rate of channels on instance segmentation is low (34.6%) compared to 

549 their class segmentation recall (91%). In other words, the instance segmentation performance is not 

550 explained by the linear correlation plot. This can be attributed to channels being in close proximity 

551 (parts of stairs or roof steel members) in the warehouse dataset, which impacts the BFS algorithm 

552 and subsequently their instance segmentation recall. Another reason of the low recall metric is 

553 the connectivity of strut channels to conduit. In this case, cylinders and channels are erroneously 

554 predicted as one instance. 
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555 Another achievement of the CLOI framework is that it correctly segments sub-instances of an 

556 instance point cluster that has the “other” class label and even outperforms the manual instance 

557 segmentation in cases where a ground truth instance is under-segmented (Figure 10(a) and Figure 

558 10(b)). This particularly applies for instances close to the floor or roof of a facility. The superior 

559 performance of the CLOI framework is attributed to the connectivity information that the BFS 

560 algorithm uses to segment instances. Another case where the CLOI framework outperforms the 

561 manual instance segmentation is for sequences of pipe components that have different radii. An 

562 example of that is Figure 10(c) where the CLOI framework correctly segmented the cylinder from 

563 a pump and a flange with steel rods. 

564 We then recommend to use the 25% IoU threshold that gives slightly improved results (50% 

565 mPrec and 35.3% mRec for all the CLOI facilities). The CLOI classes that have significantly higher 

566 metrics are those with higher class segmentation results as explained above. These are cylinders 

567 (53.6% mPrec and 44% mRec), elbows (66.8% mPrec) and I-beams (63% mPrec and 64.3% mRec). 

 
568 Time savings in Geometric Digital Twinning 

569 One of the main goals of Process 2 was to prove that the CLOI-Instance method requires 

570 competitively less manual segmentation time compared to the current practice. We validated 

571 this hypothesis for the overall framework given that the class segmentation labels are predicted 

572 from the CLOI-NET-Class method (Process 1). We use the percentage of CLOI classes that 

573 the CLOI-Instance method correctly predicts as a proxy to approximate the number of manual 

574 labour hours that are still needed in order to achieve an accurate gDT generation. The results are 

575 summarized for each CLOI dataset in Table 5. A comparison of the manual instance segmentation 

576 time for the CLOI benchmark dataset generation and the CLOI overall framework segmentation 

577 time is presented in Figure 13. The total number of man hours needed when deploying the overall 

578 framework is calculated as follows. The number of manually segmented CLOI classes is computed 

579 as the product of the number of shapes that are missed by the framework (1−recall) and the average 

580 time it takes a modeller to manually segment a given shape. An assumption for the simplification 

581 of the calculation here that each CLOI class takes the same time regardless of its complexity. The 
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582 results illustrate that 35% of the manual labour hours are saved on average. The oil refinery dataset 

583 is one of the most complex CLOI datasets and this is reflected in reduced savings in labour hours 

584 for instance segmentation. It is noteworthy that for all CLOI facilities, the cylinder CLOI class has 

585 relatively low recall (≈ 40%) which is attributed to the large number of conduit that are clustered 

586 together in one instance. 

587 We evaluated in (Agapaki et al. 2018) the state-of-the-art commercial software that semi- 

588 automatically segments cylinders from TLS industrial datasets, however a direct comparison cannot 

589 be made since the total number of cylinders considered in that evaluation does not match the number 

590 of cylinders in the CLOI dataset. However, the number of cylinders correctly detected by EdgeWise 

591 can be compared with the number of cylinders segmented by the proposed framework. The results 

592 in Table 6 demonstrate that the proposed framework correctly segments more cylinders than those 

593 detected by EdgeWise. The proposed framework is designed to better segment conduits and even 

594 with the discussed limitations, Table 6 illustrates its superiority to EdgeWise which is mostly in the 

595 correctly predicted conduits that EdgeWise does not identify. 

596 The performance of the proposed framework is then compared directly with EdgeWise assuming 

597 that the modeling of CLOI classes will be manually performed in EdgeWise. Therefore, the average 

598 modeling labour time per object is taken from (Agapaki et al. 2018) and multiplied with the number 

599 of objects that are not automatically segmented. The output in labour hours in shown in Figure 14 

600 and compared with the manual labour hours for the objects that EdgeWise cannot automatically 

601 detect (a fraction of cylinders and the rest of CLOI classes). Figure 14 shows that 21% and 39% 

602 more time savings are achieved when the proposed framework is utilized for the warehouse and 

603 petrochemical plant respectively. 

604  The warehouse and the petrochemical plant datasets are then used as a proxy to estimate the 

605 average percentage of labour hour reduction of the CLOI framework compared to EdgeWise per 

606 CLOI class. The average percentage per class is shown in Table 7. An assumption was made that 

607 the modeling time of all cylindrical shapes is the same, since our framework detects cylinders and 

608 not their sub-classes, i.e. pipes. Then, the CLOI framework is directly compared with EdgeWise 
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609 for the petrochemical plant with 240,687 objects that was used for manual modeling in (Agapaki 

610 et al. 2018). The same assumptions are used here for consistency of the results. The results in 

611 Figure 15 reveal that 12 person-months are needed when using the CLOI framework instead of the 

612 17 person months that are needed when using EdgeWise. In particular, CLOI saves 10% more 

613 man-hours for cylinder modeling, which is translated in 773 labour hours saved. Although there is 

614 still time required for manual cylinder extraction, the proposed framework clearly outperforms the 

615 commercial software EdgeWise. 

 

616 CONCLUSIONS 

617  This paper presents CLOI, an automated benchmarking framework for generating gDTs of 

618 existing industrial facilities from point cloud data. This work focuses on the generation of instance 

619 point clusters in a cost-effective approach compared to the current practice. The framework consists 

620 of two main processes: the CLOI-NET-Class segmentation (Process 1), which generates the ten 

621 most important industrial objects in the format of class point clusters and CLOI-Ins segmentation 

622 (Process 2), which segments the class point clusters into individual point clusters. The CLOI 

623 framework was experimentally validated on the largest published industrial point cloud dataset, 

624 which consists of four TLS industrial point clouds. The consistent results on the CLOI dataset 

625 demonstrate that the proposed framework can reduce the onerous, repetitive manual work of 

626 segmenting industrial shapes and therefore reduce the modelling time of the resulting models. 

627 The proposed framework provides the foundation for other researchers to cost-effectively segment 

628 industrial factories by realizing estimated time-savings of 30% on average and can be used to 

629 generate efficiently a gDT of the facility. In the following paragraphs, we present the contributions 

630 (Con) and limitations (Lim) of the CLOI framework in detail. 

631  Con 1 This is the first framework of its kind to achieve significantly high and reliable perfor- 

632 mance (50% mPrec and 35.3% mRec) compared to current state-of-the-art research and commer- 

633 cially available software. It is the first framework to provide significant improvements on cylinder 

634 segmentation (53.6% mPrec and 44% mRec) and the first to segment the rest of the CLOI classes. 

635 It, therefore, provides a solid foundation for future work in generating DTs of industrial facilities. 
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636 Con 2 This research moves forward the state of automated class and instance segmentation from 

637 TLS point cloud datasets as well as promotes the value of adding “intelligence” to the PCD data. 

638 The interpretation of the results strongly suggest that the performance of both the CLOI-NET-Class 

639 and the CLOI-Instance methods are significantly improved by using the optimal amount of data 

640 during training (≈ 30%) and contextual enforcement rules to accurately segment the CLOI classes. 

641 Con 3 It is the first framework of its kind to significantly reduce the manual labour hours (by at least 

642 33%) compared to the state of practice, EdgeWise. It also has 21% and 39% more time savings 

643 when segmenting the warehouse and the petrochemical facility dataset compared to EdgeWise. 

644 Con 4 The connectivity of pipe components or members of steel frames assist the modeller in 

645 identifying all the connected components of a pipe spool or steel frame when using the outputs of 

646 this framework. Figure 16 shows characteristic examples from the warehouse and the oil refinery 

647 datasets. The confidence level of the predicted class labels from the CLOI-NET-Class method 

648 is also an indicator of whether the performance of the instance segmentation under-segments in- 

649 stances. Figure 16(aiii) shows that the elbows of the pipe spool were predicted with uncertainty 

650 (confidence level score ≤ 80%) and this performance led to the under-segmentation of the pipe 

651 spool into cylinder and elbow instances. In this case, under-segmentation can be helpful for the 

652 modellers since segmentation of the pipe spool into its parts will be an easier task to achieve. 

653  Lim 1 The CLOI dataset, although the largest available dataset of TLS industrial point clouds, 

654 is not enough to fully validate the proposed framework. More industrial facility point clouds 

655 with various configurations are needed to enhance the statistical validity of the framework with an 

656 increased confidence level and decrease the bias between facilities especially for the CLOI classes 

657 that are underrepresented in the dataset. As demonstrated in (Agapaki and Brilakis 2020a) more 

658 data is not always beneficial, so careful experimental set-up should be conducted to alleviate from 

659 negatively impacting the performance. Lim 2 Manual annotation of TLS industrial point clouds 

660 according to the data preparation explained in the experiments section is an onerous task. In these 

661 efforts, an automated segmentation interface should be adopted to enable for easy generation of 

662 labelled class and instance point clusters. Lim 3 Finally, the framework is not designed to segment 
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663 objects of the same geometric group, for instance pipes, conduits and circular hollow sections or 

664 further object types within the same class i.e. globe valves, gate valves. This could be an interesting 

665 direction for future research. 

666  There are several gaps in knowledge around industrial gDT in research that follows based on 

667 the findings of this work and would benefit from further research, to extend and further enhance 

668 the developed framework. Direct future research includes: (a) improved point cloud parsing that 

669 is used as input to the CLOI framework and (b) enhanced instance segmentation methods. Future 

670 research can focus on improved active learning selection methods based on influence, diversity 

671 and uncertainty similar to approaches for active image segmentation (Jain and Grauman 2016). 

672 For the CLOI-ins instance segmentation part, a graph-cut based method could be used to improve 

673 the instance results instead of the BFS method. The stability of segmentation of instances can be 

674 further investigated in future research especially in noisy TLS industrial datasets. 

675  Use classification of cylinders is another interesting research direction to pursue, since in 

676 this line of research we assumed that all cylindrical shapes belong to the same “cylinder” class. 

677 However, these shapes can be either pipes, conduits, circular hollow sections (i.e. parts of staircases 

678 or columns) or even vessels. Sub-classification of cylinders could be achieved by adding further 

679 contextual relationships in the CLOI-NET class segmentation method. 

680 Another research direction is fluid recognition in the pipelines that run in industrial facilities and 

681 especially in an oil and gas refinery, which is critical for the production of the unit. Photogrammetry 

682 data sources and/or P&IDs can be correlated to the laser scanned data and inference suggestions on 

683 the material type can be made. For example, features used for material recognition can be either the 

684 colour, texture, micro-texture, outline shape (i.e. curvature) or reflectance-based features and CNN 

685 networks have recently been used for material recognition from images (Schwartz and Nishino 

686 2019). Longer term directions of this research include optimized generative design of structural 

687 shapes based on their automatically generated gDTs. 



27 Agapaki, June 24, 2021  

688 DATA AVAILABILITY 

689 Some or all data, models, or code used during the study were provided by a third party. Direct 
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(%) 

TABLE 1. CLOI framework performance for the oil refinery dataset 

Method 
mPrec

 
mRec 

(%) 
 

SGPN (Wang et al. 2018b) 5.3 6.5 

ASIS (Wang et al. 2019b) 16.7 4.5 

CLOI-Framework (without boundary) 20.6 19.9 

CLOI-Framework 31.1 21.0 
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TABLE 2. Performance of instance segmentation networks per CLOI shape in the oil refinery 

dataset 
 

Prec (%) Angles Channels Cylinders Elbows I-beams Valves Flanges 

ASIS 0 0 27.2 25 41.5 6.3 0 
SGPN 3.8 4.2 3.5 7.6 8.6 5.3 14 

BFS 15.3 5.3 33.7 36.6 30 10.2 13.5 

CLOI-Instanc e 29.7 17.1 28.2 54.3 45.6 15.1 28 

Rec (%) Angles Channels Cylinders Elbows I-beams Valves Flanges 

ASIS 0 0 4.6 0.1 25.5 1.5 0 
SGPN 2.8 3.5 4.2 3.6 5.9 15.2 4.6 

BFS 18.1 8.8 23.2 15 39.3 25.7 9.3 

CLOI-Instanc e 17.7 11.7 28.8 15.7 39.0 25.3 8.8 
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TABLE 3. Optimal class segmentation pre-annotation percentage of test facility data for active 

learning 
 

 
Test facility 

Optimal 

pre-annotated data 

(%) 

Warehouse 30 

Processing unit 30 

Oil refinery 25 

   Petrochemical 20  



40 Agapaki, June 24, 2021  

TABLE 4. Performance of the CLOI-Instance method per CLOI shape for all the CLOI datasets 

(IoU=25%) 
 

Oil refinery Angles Channels Cylinders Elbows I-beams Valves Flanges 

Prec (%) 43.9 27.1 49.6 70.2 57.4 21.3 34.7 

Rec (%) 26.1 18.6 43.1 20.4 49.1 35.9 10.8 

Warehouse Angles Channels Cylinders Elbows I-beams Valves Flanges 

Prec (%) 56 67.1 64.7 76.9 44.4 29.4 30.8 

Rec (%) 16.5 34.6 49.1 18.6 100 41.7 28.6 

Petrochemical Angles Channels Cylinders Elbows I-beams Valves Flanges 

Prec (%) 50 52.6 51.1 70 77.8 29.7 40 

Rec (%) 35 46.2 48.2 20 61.8 91.7 8.3 

Processing unit Angles Channels Cylinders Elbows I-beams Valves Flanges 

Prec (%) 36.8 39.1 48.8 50 72.3 41.4 14.3 

Rec (%) 8.7 23.7 35.5 9.1 46.4 43.5 0.5 



41 Agapaki, June 24, 2021  

TABLE 5. Manual labour hours and total segmentation savings of the overall framework per CLOI 

facility. 
 

Oil refinery Angles Channels Cylinders Elbows I-beams Valves Flanges Other 

Recall (%) 26 19 43 20 49 36 11 25 

Total # of shapes 211 2347 94 121 723 215 202 563 

Manually segmented 
# of shapes 156 1910 54 96 368 138 180 425 

Total # of man hours    173     

Total savings (%)    26     

Warehouse Angles Channels Cylinders Elbows I-beams Valves Flanges Other 

Recall (%) 16.5 34.6 56 18.6 100 41.7 28.6 27.9 

Total # of shapes 111 168 910 258 12 85 21 195 

Manually segmented 

# of shapes 93 110 400 210 0 50 15 141 

Total # of man hours    67     

Total savings (%)    42     

Petrochemical Angles Channels Cylinders Elbows I-beams Valves Flanges Other 

Recall (%) 35 46.2 41.8 20 61.8 91.7 8.3 29 

Total # of shapes 60 264 1489 376 140 53 130 828 

Manually segmented 
# of shapes 39 142 866 301 54 4 119 588 

Total # of man hours    74     

Total savings (%)    37     

Processing unit Angles Channels Cylinders Elbows I-beams Valves Flanges Other 

Recall (%) 8.7 23.7 35.5 9.1 46.4 43.5 0.4 25.1 

Total number of shapes 188 34 1100 382 274 341 229 370 

Manually segmented         

# of shapes 172 26 710 347 147 193 228 277 

Total # of man hours    117     

Total savings (%)    28     
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TABLE 6. Correctly predicted cylinders of the petrochemical plant and warehouse point clouds 

using EdgeWise and our framework. 
 

# of cylinders 

correctly predicted 
Warehouse Petrochemical 

 
 

EdgeWise 468 164 

Proposed framework 510 623 
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TABLE 7. Percentage (%) of the reduction of the labour hours of the CLOI framework compared 

to EdgeWise per class. 
 

CLOI class % of labour hour reduction 

Cylinders 22.3 

Channels 40.4 

I-beams 81 

Valves 67 

Elbows 19.3 

Flanges 18.5 

Angles 25.7 
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Fig. 1. Automated geometric Digital Twinning strategies. 
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Fig. 2. Advantages and limitations of segmentation methods discussed. 
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Fig. 3. Workflow of the proposed CLOI framework. 
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Fig. 4. CLOI benchmark dataset specifications. 
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Fig. 5. Performance of the BFS algorithm with respect to the minimum instance size (mu) for 

IoU=50% and epsilon=4 cm. Test on the oil refinery facility. 
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Fig. 6. (a) CLOI framework precision and (b) recall per CLOI class and (c) mean precision and 

recall for different IoU thresholds for the oil refinery facility. 
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Fig. 7. (a) CLOI framework precision and (b) recall per CLOI class and (c) mean precision and 

recall for different IoU thresholds for the processing unit facility. 
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Fig. 8. (a) CLOI framework precision and (b) recall per CLOI class and (c) mean precision and 

recall for different IoU thresholds for the petrochemical plant facility. 
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Fig. 9. (a) CLOI framework precision and (b) recall per CLOI class and (c) mean precision and 

recall for different IoU thresholds for the warehouse facility. 
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Fig. 10. Examples where the CLOI framework outperforms the manual instance segmentation. (i) 

refers to ground truth instances and (ii) refers to predicted instances with the CLOI framework. 
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Fig. 11. (a) Class segmented ground truth and predicted point clusters (CLOI-NET outputs), (b) 

instance segmented ground truth and predicted point clusters (CLOI-Ins outputs) and (c) instance 

segmented ground truth and predicted point clusters (CLOI framework outputs). 
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Fig. 12. Class and instance segmentation recall per CLOI class for the oil refinery, processing unit, 

petrochemical and warehouse datasets. 
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Fig. 13. Manual and our framework’s total labor hours per CLOI dataset. 
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Fig. 14. Comparison of EdgeWise and our framework with respect to manual labour hours per 

CLOI shape for the (a) petrochemical and (b) the warehouse dataset. 
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Fig. 15. Average modelling labor hours per object type for the most important objects of a sample 

facility with shown numbers of objects. 
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Fig. 16. Examples of ground truth and predicted instances of piping elements (a,b) and (c) I-beams 

of a steel frame. (aiii) Predicted class label predictions (predictions with <= 80% confidence score 

coloured in red). 


