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Organisms use diverse mechanisms involving multiple

complementary enzymes, particularly glycoside hydrolases

(GHs), to deconstruct lignocellulose. Lytic polysaccharide

monooxygenases (LPMOs) produced by bacteria and fungi

facilitate deconstruction as does the Fenton chemistry of

brown-rot fungi. Lignin depolymerisation is achieved by

white-rot fungi and certain bacteria, using peroxidases and

laccases. Meta-omics is now revealing the complexity of

prokaryotic degradative activity in lignocellulose-rich

environments. Protists from termite guts and some

oomycetes produce multiple lignocellulolytic enzymes.

Lignocellulose-consuming animals secrete some GHs, but

most harbour a diverse enzyme-secreting gut microflora in a

mutualism that is particularly complex in termites. Shipworms

however, house GH-secreting and LPMO-secreting bacteria

separate from the site of digestion and the isopod Limnoria

relies on endogenous enzymes alone. The omics revolution is

identifying many novel enzymes and paradigms for biomass

deconstruction, but more emphasis on function is required,

particularly for enzyme cocktails, in which LPMOs may play an

important role.
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Introduction
Land plants direct most photosynthetically fixed carbon

into lignocellulose, a composite of the polymers cellu-

lose, hemicellulose, pectin and lignin. During the life of

the plant, this complex matrix provides structural in-

tegrity, and resistance to herbivores and pathogens, so

most lignocellulosic biomass is processed by sapro-

phytes and detritivores in detrital food webs. Biomass

can be used as a feedstock for biofuel generation, but is

recalcitrant to enzymatic processing due to barriers to

enzyme access that arise from the paracrystallinity of

cellulose, the complexity of the hemicellulose coating of

cellulose microfibrils, and the interpenetration and

encapsulation of polysaccharide components by lignin.

In industrial processes, recalcitrance is overcome by

severe chemical and physical pre-treatments, but organ-

isms achieve lignocellulose deconstruction under physi-

ologically tolerable conditions. To assist the prospecting

of biodiversity for lignocellulolytic mechanisms with

potential for biotechnology applications, a discussion

meeting was held in September 2013 at the Linnean

Society in London, which reviewed the vast array of

mechanisms across the Tree of Life. This article cap-

tures and updates the diverse chemical and organismal

perspectives brought to the subject by the participants

in the meeting.

Diversity of deconstruction mechanisms
Organisms achieve lignocellulose deconstruction in di-

verse ways. Oxidative attack, hemicellulases and, in ani-

mals, mechanical disruption all reduce recalcitrance,
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which improves access for depolymerising enzymes.

Information on carbohydrate-active enzymes and sub-

strate-binding proteins (carbohydrate-binding modules)

is collated within the CAZy database [1]. Peptide pattern

recognition (PPR) has recently been used to assist the

classification of GH and AA families into subfamilies,

based on predicted function, and to provide a tool for

mining genome data for new enzymes [2]. Here we focus

on the CAZy categories of glycoside hydrolases (GHs)

and Auxiliary Activities (AAs) — redox enzymes that act

with GHs, often in a synergistic manner.

Enzymatic depolymerisation of cellulose and
hemicelluloses
The enzymatic degradation of cellulose and hemicellu-

lose is accomplished in Nature via the collective action of

multiple carbohydrate-active enzymes, typically acting

together as a cocktail with complementary, synergistic

activities and modes of action [3��]. GHs are the primary

enzymes that cleave glycosidic linkages present in cellu-

lose and hemicellulose. GHs are assisted in their function

by polysaccharide esterases that remove methyl, acetyl

and phenolic esters, allowing the GHs to function on

hemicelluloses [4]. In some cases, polysaccharides are also

depolymerised by the action of polysaccharide lyases [4].

Across the Tree of Life, the GH cocktail composition is

greatly dependent on the kingdom of the cellulolytic

organism, the evolutionary pressure the organism has

faced, and the environmental niche wherein it resides.

For example, filamentous cellulolytic fungi produce GH

Family 7 enzymes, which are potent cellobiohydrolases

[3��], but in prokaryotes this function is provided by other

families such as GH48. Until recently, it was also long

thought that GH7 enzymes were only found in fungi, but

recent studies have revealed their existence in other

eukaryotic kingdoms of life [5,6]. Despite phylogenetic

diversity, remarkable sequence and structural similarities

occur within this GH family (e.g., Figure 1a,b), though

the enzyme surface properties may be markedly different

(Figure 1c). Greater diversities of sequence and function

are found within other GH families.

Cellulolytic enzymes can also be arranged in multiple

domain architectures. For example, some rumen bacteria

and fungi employ a large, multi-modular cellulosome

approach with many catalytic units on a large scaffold

[7], whereas many prokaryotic and eukaryotic species

employ free enzyme paradigms with single catalytic units

able to diffuse and act independently (Figure 2a,b). Some

enzymes have interpolation between these paradigms

wherein a single protein contains more than one active

site [8�], for example, a multimodular enzyme with GH5,

GH6, CBM5 and CBM10 domains has been found [9�].

Oxidative polysaccharide depolymerisation
Recently, a new oxidative enzymatic paradigm was dis-

covered for cleavage of polysaccharide linkages [10];
www.sciencedirect.com 
these enzymes have been termed lytic polysaccharide

monooxygenases (LPMOs), but some were originally

classified as GH Family 61 cellulases and others, Family

33 Carbohydrate-Binding Modules. Cellulose-degrading

LPMOs are now assigned to AA family 9, which contains

fungal enzymes, and AA10 with predominantly bacterial

enzymes [11��]. LPMOs can act on crystalline cellulose

[11��], but also hemicelluloses [12]. They act by direct

oxidative attack on the polymer chains (Figure 2a)

through a flat active site with a centrally located copper

atom [13�]. Non-enzymatic deconstruction of the cellu-

lose can also be demonstrated, including iron-dependent

Fenton chemistries found in the brown rot wood-degrad-

ing fungi [14].

Lignin depolymerisation
Lignin is a heterogeneous, alkyl-aromatic polymer found

in plant cell walls formed from three aromatic alcohols

that differ in their extent of methoxylation. Multiple

strategies exist in Nature for the modification of lignin,

though a much more limited range of organisms can

achieve lignin degradation than cellulose degradation.

White rot basidiomycetes and some ligninolytic bacteria

serve as the primary degraders of lignins via the action of

secreted oxidative enzymes such as peroxidases and

laccases [15,16��] (Figure 2c), producing a pool of hetero-

geneous aromatics. These are ultimately metabolized by

the secreting organism or other microbes. Brown rot fungi,

which have no lignin degrading enzymes, employ small

molecule reactive species to depolymerize lignin

(Figure 2d), cleave the propyl side chain, and also

demethoxylate the ring before repolymerizing the mate-

rial elsewhere as a means of freeing the cellulosic com-

ponents and generating greater access for deconstruction

[14]. The modified lignin is not metabolized by brown rot

fungi and instead persists in the soil.

Diversity of lignocellulose-degrading
organisms
Cellulose is generated by a diversity of marine organisms

so cellulose breakdown is probably to have an ancient

origin. The evolution of lignin degradation, however,

coincided with the decline in organic carbon burial at

the end of the Permian [17]. Land plants appeared after

most the major branches of the Tree of Life had already

diverged, so the ability to deconstruct lignocellulose has

multiple origins and has continued to evolve in diverse

smaller branches widely, but sparsely dispersed across the

Tree of Life (Figure 3). For example, the ecologically

important insect-protist symbiosis, which facilitates ligno-

cellulose digestion, emerged in the late Jurassic [18��] and

wood digestion aided by bacterial mutualists was a feature

of the last common ancestor of the bivalve families Ter-

edinidae and Xylophagainae [19]. In Nature, symbioses

and consortia of organisms with complementary enzymes

feature widely in breakdown of bulk biomass. Deconstruc-

tion is achieved under a wide range of (sometimes
Current Opinion in Chemical Biology 2015, 29:108–119
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Figure 1

Chaetomium Coniophora Dictyostelium

Trichoderma Limnoria Daphnia

(a)

(b)

(c)
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Variability within the CAZy Family GH7. Conservation of GH7 family enzymes from across the Tree of Life. (a) Primary sequences of the core

regions of Trichoderma reesei, Dictyostelium discoideum, Chaetomium thermophilum, Coniophora puteana, Daphnia pulex and Limnoria

quadripunctata were aligned with CLUSTALW [69]. Sequences were rendered using ESPRIPT [70]. Conserved regions are marked in blue boxes,

identity by white text on red background and similarity with red letters. Secondary structure elements are based on the T. reesei structure

(PDB ID: 1CEL) with helices displayed as coils, b-strands as arrows, strict b-turns as TT letters and strict a-turns as TTT letters. Green

numbers for cysteine residues indicate their pairing in disulphide bridges as known from the structures of the Trichoderma and Limnoria enzymes.

(b) Homology models generated with SWISSMODEL [71] rendered as cartoons with PyMOL (Schrödinger, LLC) were compared to the X-ray

structures of T. reesei (PDB ID: 1CEL) and L. quadripunctata (PDB ID: 4IPM) revealing a high conservation prediction of the structural fold.

Differences in loop regions correspond with regions of low identity in part (a). Note the size of the protein relative to a cellulose chain bound in

the tunnel of T. reesei GH7 (Glc9 oligosaccharide from PDB ID: 4C4C [72]). (c) Electrostatic surface mapping of T. reesei, L. quadripunctata and

Current Opinion in Chemical Biology 2015, 29:108–119 www.sciencedirect.com
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extreme) environmental conditions, particularly of pH,

redox potential, temperature, and pressure. This range

is reflected in the diversity of the organisms involved.

Prokaryotes
Recent developments in powerful meta-omic techniques

are making it possible to mine the incredible genetic

diversity of prokaryotic communities of lignocellulose-

enriched environments, such as compost, for new robust

lignocellulose degrading enzymes that could potentially

perform well under industrial conditions. Comparative

meta-transcriptomic analysis has recently been used to

identify highly expressed genes in compost-derived mi-

crobial communities capable of degrading rice straw

under high loading conditions [20]. Studies on lignocel-

lulose degrading microorganisms in complex communi-

ties, using meta-genomics and meta-proteomics, are

revealing the structure and roles of individual community

members and how they respond to changes in environ-

mental conditions such as nutrient availability at func-

tional and genetic levels.

Meta-omics also yields new insights into the complex

inter-relationships in gut-resident microbial consortia.

Termites provide particularly intriguing examples of

digestive mutualism [21]. In lower termites, bacteria

and archaea live in the cytoplasm and on the external

surfaces of gut-resident, wood-particle-phagocytosing fla-

gellates, but also in the viscous gut fluids. Bacteriodetes,

Firmicutes, Spirochaetes, Proteobacteria and Elusibac-

teria are prominent members of this microbiota which

participate in the pathways leading to conversion of

biomass to methane, hydrogen and acetate [18��]
(Figure 4b). Over 4700 bacterial phylotypes have been

detected by 16S rRNA probes in the lower termite

Reticulitermes [22]. The hindgut of higher termites con-

tains only prokaryotes and these promote the breakdown

of wood particles pre-treated by enzymes from the ter-

mite. Hindgut fluids have low cellulolytic activity, but

strong cellulolytic activity is found in wood particles and

the bacteria associated with them [23].

A number of soil bacteria have been identified that are

able to oxidise lignin, the majority of which fall into the

Actinobacteria, a-Proteobacteria or g-Proteobacteria,

members of which have also been found in termite guts

and wood-boring insects [15]. The enzymes responsible

for degradation of lignin in prokaryotes were until recent-

ly poorly understood, but peroxidases from the dye-deco-

lorising peroxidase family have been shown to be active

for oxidation of Mn(II) and b-aryl ether lignin model
( Figure 1 Legend Continued ) D. pulex demonstrates that while the backb

properties corresponding to environment. Electrostatic potential between �
from red (acidic) to blue (basic). The fresh water Daphnia has a relatively ne

contrast, the other crustacean, L. quadripunctata, has a highly acidic surfac

environment.

www.sciencedirect.com 
compounds in Gram-positive actinobacteria Rhodococcus
jostii RHA1 [24] and Amycolatopsis sp. 75iv2 [25], and in

Gram-negative g-proteobacterium Pseudomonas fluorescens
Pf-5 [26]. Bacterial laccases have also been shown via

gene deletion to be required for production of acid-

precipitable lignin in Streptomyces A3(2) [27]. Glutathi-

one-dependent b-etherase enzymes that catalyse stereo-

specific cleavage reactions on b-aryl ether lignin model

compounds have also been characterised from Sphingo-
bium SYK-6 [28�], though the role of these enzymes and

their contribution to lignocellulose degradation remains

to be characterised. Laccase and peroxidase activity has

been identified and characterised in a range of bacteria

grown on biomass-derived lignin [29].

Archaea are also found in composts [30] and termite guts

[22,31], but their mechanisms of lignocellulose deconstruc-

tion are less well explored. Some Archaea can degrade

lignocellulose at high temperature [32,33]. An endogluca-

nase GH12 has been identified in the archaeon Pyrococcus
[33]. Five genes encoding laccase enzymes that might

oxidise lignin have been identified in Archaea, three in

the Halobacteriales, and one in the Thermoproteales [31].

Free-living, wood degrading prokaryotes from marine

sources are categorized into tunnelling or erosion bacteria,

distinguished by their distinct patterns of plant cell-wall

degradation [34]. Tunnelling bacteria are gram negative

rods and erosion bacteria are assigned to the Cytophaga-

Flavobacteria group: neither type have been grown in pure

culture so their evidently independent action is poorly

understood, but the rate is slow compared with fungal

decay [34], leaving lignin little altered while degrading

cellulose and hemicellulose [35]. Wood exposed in deep

water recruits characteristic assemblages of pressure-toler-

ant bacteria which are distinct from those found in faecal

material produced by borers feeding on the wood [36].

Single celled eukaryotes and protists
Endogenous cellulases have been detected in some free-

living protists. The genome of the slime mould Dictyos-
telium encodes a putative GH7 cellobiohydrolase [37] and

the chlorophyte Chlamydomonas is capable of breaking

down extracellular cellulose using an endoglucanase [38].

The dinoflagellate Alexandrium generates a cellulase sim-

ilar to one from termite symbionts, but this probably

assists cell division rather than digestion [39]. However,

the pathogenic oomycete, Phytophthora generates a suite

of cell wall degrading enzymes that target hemicellulose

and cellulose, including members of GH families 1, 5, 6,

7 and 10, and AA9 and 10 [40]. Lower termites host up to
one is highly conserved, there is a striking evolution of surface

7kT/e and 7kT/e was plotted with DELPHI [73] as a coloured gradient

utral surface coat similar to that of the Trichoderma fungus. By

e coat, presumably adapted for digestive processes within the marine

Current Opinion in Chemical Biology 2015, 29:108–119
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Figure 2
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Figure 3

Serpula

Pleurotus
Termitomyces

Trichoderma

Rhodococcus Clostridia

Bacteroides

Burkholdia

Teredinibacter

Sphingomonas

Holomastigotoides

Phytophthora

Trichonympha

Pyrococcus

Chlamydomonas

Archaea
Protista
Algae

BacteriaAnimalia
Fungi
Plantae

Text  Endogenous
Text  Endogenous & symbionts
Text  Only symbionts

Corbicula
Lyrodus

Xylophaga

Porcellio
Limnoria

Chelura

Coptotermes

Anobium Caster Ailuropoda
Panaque

Panaque

Ursidae

Castoridae

Coleoptera

Isoptera

Isopoda

Amphipoda

Xylophagainae

Teredinidae

Veneroida Basidiomycota
Ascomycota

Actinobacteria Firmicutes

Bacteroidetes

Proteobacteria
γ

α

β

Chlorophyta

Oomycota

Parabasalia

Oxymonadadida

Chlorophyta

Oomycota

Parabasalia

Oxymonadadida

Current Opinion in Chemical Biology

The sparse and localised distribution of selected organisms capable of lignocellulose or cellulose degradation mapped onto the Tree of Life, with

highest taxonomic ranks colour-coded as shown in key. Genus names of organisms degrading lignocellulose using endogenous enzymes shown

in bold, those with endogenous plus symbiont-derived enzymes shown printed pale and those with only symbiont-derived enzymes shown

underlined.
19 species of flagellate parabasilian and oxymonadid

protists in their paunch which phagocytose wood parti-

cles. These protists contain a plethora of enzymes in their

digestive vacuoles: endoglucases, GH7-cellobiohydro-

lases, b-glucosidases, xylanases, mannanosidases and

arabinosidases [18��].

Fungi
Biomass degrading fungi rely on complex degradative

machineries that generally catalyse two types of processes:
( Figure 2 Legend ) Schematics of microbial mechanisms of lignocellulose d

bacteria and fungi. Cellulose is hydrolysed via the synergistic interaction of in

sites only shown on the cartoon, not to scale). NR-, non-reducing ends; -R, r

is a complex attached to the bacterial cell wall via an anchoring subunit. The

to a scaffoldin subunit which anchors the bacterial cell and enzymes to the s

degradation by white rot fungi which secrete extracellular enzymes such as p

generate oxidative radical species which catalyse the oxidation of lignocellulo

manganese peroxidases and laccases oxidise phenolic subunits. Laccase ca

(Med). (d) Disruption of the lignocellulose complex by brown rot fungi using t

of plant cells produce iron-reducing compounds (RC), hydrogen peroxide (H2

diffuses into cell wall along with H2O2 and RC. With the pH change, RC sequ

then reacts with H2O2 (Fenton reaction) and produces hydroxyl radicals (�OH

Modified from (a) Refs. [74,11��] and (d) Ref. [14].

www.sciencedirect.com 
first, direct enzymatic depolymerization, for example, by

cellobiohydrolases and second, generation of oxidative

species (e.g., radicals) that then act on the biomass. Cate-

gorization terminology is changing with new genomic

information on the Basidiomycota suggesting that fungal

species traditionally classed as white rot or brown rot may

no longer fit neatly into these categories because of grada-

tions both in the expression of metabolites and the result-

ing patterns of decay [41��]. Traditionally however, in

typical white rot degradation, the fungi employ a mode
egradation. (a) Aerobic cell-free cellulase system employed by many

dividual GH and LPMO (AA9 or 10) secreted enzymes (enzyme reaction

educing ends. (b) Anaerobic ‘cellulosome’ mechanism. The cellulosome

 complex consists of enzymes capable of cellulose hydrolysis attached

ubstrate via a carbohydrate binding module (CBM). (c) Lignin

eroxidases and laccases and their low molecular weight co-factors to

se. Lignin peroxidases oxidise non-phenolic aromatic moieties while

n act upon non-phenolic subunits of lignin by the inclusion of a mediator

he chelator-mediated Fenton system (CMF). Fungal hyphae in the lumen

O2) and oxalic acid. The oxalic acid binds Fe3+ as a complex which

esters Fe3+ from the Fe-oxalate complex and reduces it to Fe2+. Fe2+

) which disrupt the lignocellulose.

Current Opinion in Chemical Biology 2015, 29:108–119
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Figure 4
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Examples of mechanisms employed by animals in lignocellulose degradation. (a) Shipworms bore into the wood using a shell with toothed ridges,

creating small wood fragments which are ingested. Shipworms house dense communities of endosymbiotic bacteria in an internal region of the gill

referred to as the gland of Deshayes. Some of the endosymbiont lignocellulose degrading enzymes are selectively translocated from gill to gut

Current Opinion in Chemical Biology 2015, 29:108–119 www.sciencedirect.com
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of attack that is primarily enzymatic. Attack of the wood cell

wall proceeds only from lignocellulose surfaces in white rot

fungi because degradative enzymes are too large to pene-

trate the intact cell wall. The enzymes employed by the

white rot fungi include a complete suite of cellulases, and

these fungi also produce a suite of enzymes that can oxidise

lignin components, including ligninase, manganese perox-

idase, versatile peroxidase or laccase, or a combination of

these (Figure 2c) [16��]. Some white rot fungi have also

been shown to have large numbers of LPMO genes [42��].

Brown rot fungi have evolved multiple times from the

predecessors of current white rot fungi and in these evolu-

tionary advances, lignolytic enzyme systems and crucial

types of cellulases have been lost [17]. A chelator-mediated

Fenton (CMF) system (Figure 2d) has evolved to substi-

tute for much of the cellulolytic enzyme machinery in at

least three orders of brown rot fungi (Gloeophyllales,

Polyporales and Boletales), thus generating an alternative

efficient mechanism for depolymerization and biomodifi-

cation of biomass [14,43]. The CMF system is unique

among biological systems in being the only reported sub-

strate deconstruction system based on oxygen radical

chemistry that permits non-enzymatic deconstruction at

a considerable distance (several microns) from the organ-

ism. The efficiency of the CMF system is thought to

provide brown rot fungi advantages in exploiting ecological

niches, and for example, these fungi have displaced white

rot predecessors in the degradation of conifer wood.

Some ascomycete fungi can also degrade wood cell walls,

forming chains of diamond-shaped cavities that generally

follow the orientation of the S2 elementary fibrils, causing

soft rot [34]. Soft rot fungi are known to produce a full

complement of cellulolytic enzymes; however, their lig-

nin degrading ability has been variably reported to con-

tain unspecified extracellular peroxidases and oxidases

that appear to be more limited in function than those

isolated from white rot fungi.

Animals
Many invertebrates express endogenous cellulases. Plant-

parasitic nematodes, cockroaches and termites were among

the first to be proven to carry cellulase genes, but more

recently these genes (mostly of the families GH5, 9 and 45)

have also been unambiguously demonstrated in other taxa,

such as other insects [44], Gastropoda [45], Crustacea

[6,46,47] and Annelida [48]. The lack of large digestive
( Figure 4 Legend Continued ) where they mix with host enzymes to digest

mixed with enzymes excreted by salivary glands and further comminuted in

partially digested wood particles pass through to the hindgut. They are pha

polysaccharides using cellulases and hemicellulases that are secreted into 

are mainly short-chain fatty acids) are resorbed by the host, and the lignin-r

digestive tract with two paired posteriorly directed hepatopancreas lobes (c

eats, it mechanically breaks down the wood into small fragments. In the sto

secreted by the hepatopancreas. The wood fragments are compressed tog

pellets.Modified from (a) Ref. [50��], (b) Ref. [18��] and (c) Ref. [6].

www.sciencedirect.com 
gut chambers (as known from ruminants and termites) for

cultivation of microbial gut symbionts in many insects or

crustaceans argues that endogenous cellulases are needed

in these herbivorous and detritivorous animals. Overcom-

ing recalcitrance is partially achieved by mechanical break-

down of substrate by mouth parts or shells.

Wood-boring teredinid bivalves (commonly called ship-

worms) ingest wood particles produced by the grinding

action of their shells. They lack a conspicuous gut micro-

biota [49] and instead, harbour endosymbiotic g-proteo-

bacteria within specialized cells in the gills. In the

shipworm Bankia setacea, these bacteria produce lignocel-

lulose-degrading enzymes that are selectively transported

to the gut [50��]. These enzymes include representatives

of GH families 5, 6, 9, 10, 11, 45 and 53 and carbohydrate

esterase families 1, 3, 4, 6 and 15, as well as LPMOs from

the AA10 family [9�]. This separation of bacterial resi-

dence from digestion may allow the capture of liberated

sugars without competition from a resident gut microbiota

(Figure 4a). The endosymbiotic bacteria have been shown

to fix nitrogen in vivo and thus may help to complement

the limited organic nitrogen sources in wood [51]. Deep

sea relatives of shipworms — the Xylophagainae — have

a similar symbiosis and breakdown mechanism, but one

that is capable of operating at extreme pressures [19].

Endogenous GH 9, 10 and 45 enzymes have been

detected in the digestive gland and crystalline style of

the bivalve Corbicula which consumes particulate detritus

from terrestrial plants [52]. The role of the crystalline style

in breakdown of heavily lignified substrates remains to be

elucidated and is a promising line of enquiry.

In termites, endogenous cellulases (produced in the sali-

vary glands and midgut) are complemented by microbial

enzymes produced by flagellates and bacteria in the

hindgut [53] (Figure 4b), the latter also allowing partial

access to cellulose fibres through oxidative breakdown of

the embedding lignin matrix. The role of endogenous

phenol oxidase-like enzymes in lignin degradation in

other invertebrates remains unclear, but recent studies

suggest an involvement of activated haemocyanin in

phenol oxidation [6,54]. Hemicellulases have been dem-

onstrated in crustaceans, of which at least laminarinases

are endogenous [55]. In termites, hemicellulases (xyla-

nase, galactanase) appear to be mostly of bacterial origin

[53], though mannanase activity has been ascribed to a

symbiotic protist of a termite [56].
 the wood fragments. (b) In the termite foregut, wood particles are

 the gizzard. Glucose released in the midgut is resorbed, whereas the

gocytized by cellulolytic flagellates, which hydrolyse the remaining

their digestive vacuoles. The microbial fermentation products (which

ich residues are voided as faeces. (c) Limnoriids have a simple straight

aeca) which join the stomach in the head region. As the crustacean

mach the small wood fragments mix with the digestive enzymes

ether and the indigestible components are excreted as faecal
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Whilst most termites rely on gut-resident microbiota,

sometimes resident within the cells or even nuclei of

the flagellate protists [18��,57], members of the Macro-

termitinae cultivate the basidiomycete fungus Termito-
myces on termite faecal pellets formed into comb-like

structures in their mounds. This fungus produces a wide

range of GHs capable of hydrolysing complex polysac-

charides. The termite workers host bacteria capable of

digesting oligosaccharides released by the fungus [58].

The wood-consuming crustaceans Chelura (Amphipoda)

and Limnoria (Isopoda) generate endogenous enzymes

belonging to a number of CAZy families, with GH5, 7 and

9 members being most prominent in the transcriptome of

the digestive gland [6,59�]. They, together with certain

other crustaceans, are the only metazoans known to

produce GH7 enzymes. They have digestive tracts de-

void of resident microorganisms and thus lack the bio-

logically structured gut chemistry found in termites.

These organisms have an enzyme-reactor type of gut

(Figure 4c) and offer an exciting model for examining

enzyme function without the complication of microbial

interactions.

Lignocellulose digestion is a rare dietary strategy in

vertebrates, but a few terrestrial (e.g., beavers, pandas

and porcupines) and aquatic vertebrates consume high

levels of lignocellulose in their normal diet [60,61], but it

is unclear whether this is obligate xylophagy, except in

the case of pandas, which are surprisingly poorly adapted

to their diet [62]. The microbiomes that facilitate ligno-

cellulose digestion in vertebrates vary greatly and are now

being investigated. Loricariid catfish are found predomi-

nantly in freshwater ecosystems of the Neotropics, and a

subset — Panaque spp. are xylivorous. Using 16S rRNA

gene analysis it was found that P. nigrolineatus GI tract

possesses a microbial community comprising close rela-

tives of microorganisms capable of cellulose degradation

and nitrogen fixation [63]. Cellulose-degrading bacteria

from this community have been characterised and found

to exist in symbiosis with nitrogen-fixers within this

vertebrate GI tract [64].

Conclusions
The advent of omics technologies, coupled to heightened

interest in biofuels motivated by the drive towards a

sustainable energy future, has driven a rapid increase

in our repertoire of lignocellulose-active genes and un-

derstanding of natural paradigms. Furthermore, recent

discoveries in polysaccharide oxidation [11��], substrate

binding paradigms [65�], enzyme domain architectures

[8�,9�], synergies between enzymatic modes of action [66]

and enzymes for lignin bond cleavage [28�] highlight the

fact that many discoveries remain ahead of us. Our

understanding of the deconstruction process at molecular

and microscopic levels has been enhanced by innovative

visualisation of degradation of experimental substrates
Current Opinion in Chemical Biology 2015, 29:108–119 
[8�,67]. However, the development of detailed sequence–
structure–function relationships for individual enzymes

still lags behind, even for enzymes that are considered to

be well characterised, such as fungal cellulases [3��] and

hemicellulases [68�], and certainly in more recently dis-

covered oxidative enzymes [11��] and those involved in

lignin degradation [15]. Beyond understanding single

enzymes, the ability to understand how cocktails of

enzymes work together synergistically will be undoubt-

edly crucial to understanding how to harness paradigms

observed in Nature and to optimize these to industrial

conditions. The ability of organisms and microbial com-

munities to adjust their enzyme cocktails to different

substrates almost certainly contains some clues. Tolerance

to specific conditions may guide selection of enzymes

for biotechnological exploitation [59�]. A more complete

understanding and exploitation of the evolutionary inven-

tions offered by the Tree of Life to overcome recalcitrance

will ultimately be achieved by combining tools from

diverse fields including microbiology, zoology, biochem-

istry, omics approaches, synthetic biology, advanced

imaging and substrate characterisation [3��].
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