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Abstract This study presents a novel roughness for-

mulation to conceptually account for microtopography

and compares it to four existing roughness models from

literature. The aim is to increase the grid size for com-

putational efficiency, while capturing subgrid scale ef-

fects with the roughness formulation to prevent the loss

in accuracy associated with coarse grids. All rough-

ness approaches are implemented in the Hydroinfor-

matics Modeling System and compared with results of

a high resolution shallow water model in three test

cases: rainfall-runoff on an inclined plane with sine-

wave shaped microtopography, flow over an inclined

plane with random microtopography and rainfall-runoff

in a small natural catchment. Although the high resolu-

tion results can not be reproduced exactly by the coarse

grid model, e.g. local details of flow processes can not

be resolved, overall good agreement between the up-
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scaled models and the high resolution model has been

achieved. The proposed roughness formulation gener-

ally shows the best agreement of all compared models.

It is further concluded that the accuracy increases with

the number of calibration parameters available, how-

ever the calibration process becomes more difficult. Us-

ing coarser grids results in significant speedup in com-

parison with the high resolution simulation. In the pre-

sented test cases the speedup varies from 20 up to 2520,

depending on the size and complexity of the test case

and the difference in cell sizes.

Keywords upscaling · roughness formulation · shallow

water equations · overland flow

1 Introduction

Recent developments in survey technology such as light

detection and ranging (LIDAR) and laser scanning are

able to provide high-resolution elevation data sets, yet

the integration of these data into numerical models is

often challenging because of finite computer resources

[6, 8, 23]. The use of high-resolution elevation data is

generally desirable, because it allows a better represen-

tation of spatial heterogeneity and localized flow pro-

cesses. However, high-resolution simulations of practi-

cal interest, e.g. across catchment or city scales, are

often unfeasible without supercomputers because they

are computationally very demanding [29]. Therefore,

high-resolution elevation data is usually averaged over

relatively coarse grid cells [19] which results in loss of

model accuracy [41].

The accuracy of coarse grid models can be improved

by conceptually accounting for subgrid-scale effects by

calibrating the roughness coefficient [26]. This is a valid

natural approach because by definition, a roughness

coefficient expresses a parameterization of subgrid to-

pography [30]. In principal, the roughness coefficient

in shallow water models represents the shear stress at

the bottom of a water column but is often used to

account for all unresolved processes, e.g. turbulence,

depth-averaging effects, and therefore may lose its phys-

ical meaning [24]. The value of the calibrated roughness

coefficient is usually heavily dependent on the calibra-

tion conditions, e.g. water depth, grid size, and can not

be transferred easily to different conditions [17,40].

Upscaling is the approximation of a system of par-

tial differential equations by another system of par-

tial differential equations that can be solved with fewer

computing resources [7]. The upscaling process usu-

ally requires the determination of a set of coefficients,

which conceptually account for properties of the origi-

nal system. The main advantage of using roughness for-

mulations instead of more sophisticated upscaling ap-

proaches for shallow water models, e.g. [9,17,21,23,38],
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is their easy implementation into existing models with-

out the need to modifiy the governing equations or nu-

merical methods. Certainly, the more sophisticated up-

scaling approaches improve the model accuracy better

than a simple roughness formulation.

This study presents a novel roughness formulation

to account for the effects of microtopography and inves-

tigates limits and capabilities of upscaling shallow water

equations based overland flow models using roughness

formulations. The proposed new formulation uses the

experimental studies in [20, 32, 37] as theoretical basis

and is to some extent inspired by the roughness mod-

els in [18,27]. The distribution function of the subgrid-

scale bottom elevation and the water depth are used

to calculate a dimensionless inundation ratio, which is

then used to calculate a roughness coefficient. Further,

the bottom slope is taken into account. The formula-

tion is compared with four different roughness models:

Manning’s model with constant roughness coefficient;

Lawrence’s model [20]; Manning’s model with a water-

depth dependent roughness coefficient [25] and Razafi-

son’s furrow roughness model [27]. All approaches are

implemented in the Hydroinformatics Modeling System

(hms) [28] and evaluated in three test cases: rainfall-

runoff on an inclined plane with sine-wave shaped mi-

crotopography; surface flow over an inclined plane with

random microtopography; and rainfall-runoff in a small

Alpine catchment.

2 Governing equations

2.1 Shallow water equations

The depth-averaged shallow water equations can be

written in a conservative form as

∂q

∂t
+
∂f

∂x
+
∂g

∂y
= S, (1)

where t is time, x and y are the Cartesian coordinates,

q, f and g denote the vectors of conserved flow vari-

ables, fluxes in the x- and y-directions, respectively. S

is the source vector including bed slope source Sb and

friction source term Sf . q, f and g are usually expressed

as

q =


h

qx

qy

 , f =


qx

uqx + 0.5gh2

uqy

 , g =


qy

vqx

vqy + 0.5gh2

 .
(2)

Here, h, u, v are the water depth and depth-averaged

velocity in x- and y-directions, respectively; qx and qy

are the unit-width discharges in x- and y-directions, and

qx = uh, qy = vh; g represents the gravity acceleration.

The source vector S can be splitted into

S = Sb + Sf + So. (3)
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Here So accounts for additional source terms, e.g. rain-

fall, wind shear on the free surface, Coriolis-force. It is

noted that the first entry of the vector S is the mass

source, the second entry and third entry are momentum

source terms in x- and y-direction, respectively. Writing

out the vectors leads to

S =


0

sb,x

sb,y

+


0

sf,x

sf,y

+ So, (4)

S =


0

−gh∂zb/∂x

−gh∂zb/∂y

+


0

−gu|v|/C2

−gv|v|/C2

+ So. (5)

zb stands for bottom elevation; v = {u, v} is the vec-

tor of velocity; | · | denotes the vector norm and C is

the so-called Chézy coefficient accounting for flow re-

sistance. As shown in, e.g. [28, 31], every friction law

coefficient can be transformed into the Chézy coeffi-

cient and therefore can be incorporated in Equation 1.

Viscosity of the fluid and turbulence are neglected in

this study. The incorporation of these effects into the

shallow water equations can be found in, e.g. [10].

2.2 Existing roughness formulations

Friction laws can be written in a generalized form as

Sf = −Khα|v|βv (6)

where α and β are positive real numbers. Well known

friction laws such as, e.g. Manning’s law and the Darcy-

Weisbach law, can be obtained by a certain choice for

α and β. When formulating a friction law, the choice of

α and β is arbitrary [27], however the choice is usually

related to experimental data sets.

Manning’s law with constant roughness can be ob-

tained by choosing α = −1/3 and β = 1 in Equation

6:

Sf = −nh−1/3|v|v (7)

Here, n is the Manning roughness coefficient, which re-

lates to the Chézy coefficient as

C =
h1/6

n
. (8)

In Lawrence’s roughness model [20], different flow

regimes associated with different roughness formula-

tions are identified for different inundation ratios. The

inundation ratio Λ is calculated as

Λ =
h

k
(9)

by using a characteristic roughness length k, which is

identified as the mean grain size of the river bed. For

increasing Λ, the influence of the subgrid-scale topogra-

phy decreases. The frictional resistance f is calculated

for Λ < 1 with a drag force approach

f =
8φCd
π

min
(π

4
, Λ
)
, (10)
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where Cd stands for the drag coefficient for roughness

elements, and φ is the fraction of the surface covered

by roughness elements. For the drag coefficient, Cd = 1

is assumed [20]. The operator min (·) is the minimum

function, which outputs the smallest value of all input

values. For 1 ≤ Λ ≤ 10, a power law in the form of

f =
10

Λ2
(11)

is suggested. For Λ > 10, f is calculated with

f =
1

(1.64 + 0.803 lnΛ)
2 . (12)

Here, ln (·) stands for the natural logarithm function.

The suggested calibration parameters of this model are

φ (cf. Equation 10) and k (cf. Equation 9) [25]. f can

be transformed into the Chézy coefficient by using

C =

√
8 g

f
. (13)

The depth-dependent variable Manning’s coefficient

has been developed for rainfall-runoff models in [18] and

is calculated as follows:

n (h) =


n0

(
h
h0

)−ε
for h < h0,

n0 for h ≥ h0

(14)

In this model, n0 is defined as the Manning’s roughness

occuring at flow depth h0 beyond which n is assumed

constant and ε is a parameter accounting for vegeta-

tion. The transformation into the Chézy coefficient is

done according to Equation 8. The variable Manning’s

coefficient model has three calibration parameters: n0,

h0 and ε.

2.3 New roughness formulation

Common roughness formulations usually express a re-

lationship between water depth and roughness, often in

the form of a power law, e.g. [18, 25, 27, 37]. In the au-

thors opinion, a more general approach can be obtained

for free surface flows by using the inundation ratio in-

stead of the water depth and by including the unitless

bottom slope into the formulation. In this study, α = 0

and β = 1 are chosen in Equation 6, which allows to

rewrite the friction source term in Equation 5 as

Sf = −
(
g

C2
0

+K

)
|v|v. (15)

Here, subgrid-scale topography is accounted for with

the variable dimensionless roughness value K, which

increases the roughness of the model in dependency of

the inundation ratio, and an increased Chézy coefficient

C0.

Experimental results reported in [32] show that the

bottom slope I reduces the influence of tillage signifi-

cantly. This findings certainly can be extended to mi-

crotopography in general, as increasing the slope is as-

sociated with a loss of surface storage [35].

Then, Equation 15 is required to satisfy the follow-

ing requirements:

1. If Λ increases, the influence of the subgrid-scale to-

pography should decrease significantly, henceK should

converge to 0.
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2. If I increases, the influence of the subgrid-scale to-

pography should decrease, hence K should decrease.

3. For large Λ, only C0 should account for subgrid-scale

effects.

C0 is a model calibration parameter. In this study, a

constant Manning formulation (Equation 8) is used to

calculate C0. Based on preliminary numerical studies

by the authors [34], the following formulation for K is

proposed, which satisfies these requirements:

K = α0 exp (−α1 (Λ− 1)) (16)

Here, exp (·) stands for the natural exponential func-

tion. The inundation ratio is calculated by a modified

expression of Equation 9 to take the effect of bottom

slope into account:

Λ =
h

(1− I) k
(17)

In this study, the standard deviation of microtopogra-

phy, hereinafter referred to as σ, is used as the charac-

teristic roughness length k. σ represents a summary of

topographic irregularity and is often used as a rough-

ness indicating parameter [30,31], hence it is reasonable

to use it as the characteristic roughness length. The re-

lationship between σ and the maximum value of the

distribution ar can be approximated by ar = 2σ [4],

which means that Λ = 1 does not indicate full inun-

dation but marks the point, where the majority of the

subgrid-scale topography has been inundated. For the

derivation of the depth-averaged shallow water equa-

tions, I is required to be very small. In shallow water

flow simulations, I is usually in the range of 0 to 0.1.

Equations 15, 16 and 17 together represent the pro-

posed roughness formulation. To provide some physical

interpretation on the calibration parameters, α0 can be

regarded as a dimensionless friction coefficient. α1 can

be interpreted as a geometric conveyance parameter. It

accounts for the influence of the spatial distribution of

the subgrid-scale elevations, e.g. blockade effects due

to clustering mentioned in [41]. A large α1 indicates

that the conveyance of the spatial distribution is high,

so K decreases faster. In the applications presented in

this work, α0 and α1 are model calibration parameters.

Thus, in total three parameters are used for model cal-

ibration; C0, α0, and α1. However, as C0 is calculated

via Equation 8, the model is actually calibrated using

a Manning’s coefficient n.

3 Numerical implementation

The shallow water equations, shown in Equation 1, are

discretized with cell-centered finite volumes. The dis-

cretized equations are solved numerically with a second

order monotonic-upstream-centered scheme for conser-

vation laws (MUSCL) as presented in [28]. For the sake

of completeness, a brief overview of the implementation

is given below, but it is noted that no novel contribu-



Upscaling shallow water models with roughness formulations 7

tion to the numerical methods has been made in this

work.

3.1 Interface flux calculation

The fluxes at cell interfaces, given by the vectors f and g

in Equation 2, are functions of the state variables h and

v. Appropriate values for the state variables are calcu-

lated by solving the Riemann problem on the interface

via a Harten, Lax and van Leer approximate Riemann

solver with the contact wave restored (HLLC) [36]. The

Riemann states at the left and right side of the inter-

face, namely hL, hR and vL, vR where L and R stand

for the left and right side of the interface, respectively,

are extrapolated from the cell center with a three-point-

stencil with slope limiters, shown in [14, 15]. In this

study, the min-mod limiter is used to suppress spurious

oscillations.

To well preserve the C-property, non-negative hy-

drostatic reconstruction of the bottom elevation at the

interface is used [1]. The water depth and bottom ele-

vation are modified prior to the Riemann solution [13].

Discussion of the non-negative hydrostatic reconstruc-

tion method is given in [5, 16]. Implementation details

within hms are found in [28].

3.2 Slope source term treatment

The bottom slope source term Sb of a cell (cf. Equation

3) is transformed into fluxes through the cell faces [13].

The bottom slope flux fbk over the edge k becomes:

fbk · nk =


0

−nxk0.5g (hk + h) (zBk − zB)

−nyk0.5g (hk + h) (zBk − zB)

 (18)

nk is the unit normal vector of the edge k with com-

ponents nxk, nyk in x- and y-direction respectively, de-

fined to be positive if it points outside of the cell. The

subscript k denotes that the variable is considered at

the edge k. Variables without subscript k are the val-

ues at the centroid of the considered cell.

3.3 Friction source term treatment

The splitting point-implicit method derived in [22] al-

lows a fully implicit integration of the friction source

term. In this section, q stands for the vector of unit

discharges, i.e. only the second and third entries of the

vector q in Equation 2 are considered. The splitting

point-implicit method approximates the friction source

term on the next time level n + 1 with a first order

Taylor series as

Sn+1
f = Snf +

(
∂Sf
∂q

)n
∆q +O

(
∆q2

)
, (19)

where ∆q = qn+1−qn. The point-implicit formulation

of the equations of momentum in the shallow water
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equations (Equations 1 and 2) is written as

qn+1 − qn

∆t
= − 1

A

∑
k

fnk nk∆k + Sn+1
f . (20)

Substituting Equation 19 into Equation 20 gives

∆q

∆t
= − 1

A

∑
k

fnk nk∆k + Snf +

(
∂Sf
∂q

)n
∆q. (21)

∆k is the length of edge k and A is the area of the cell.

Rearranging Equation 21 leads to

(
I−

(
∂Sf
∂q

)n)
∆q

∆t
= − 1

A

∑
k

fnk nk∆k + Snf , (22)

where I is the identity matrix. ∂Sf/∂q is usually re-

ferred to as the Jacobian matrix of the friction source

term. Further, if the matrix PI is defined to be

PI =

(
I−

(
∂Sf
∂q

)n)
, (23)

then Equation 21 can be rewritten as

qn+1 = qn + (PI)
−1

(
−∆t
A

∑
k

fnk nk∆k +∆tSnf

)
,

(24)

where (·)−1
is the inversion of a matrix.

In order to avoid numerical instabilites caused by

too high friction source terms, the entries sf,x and sf,y

of the vector Sf (cf. Equation 5) are limited as shown

in [22]:

sf,i


≥ −qni ∆t if qni ≥ 0

≤ −qni ∆t if qni < 0

(25)

Here, the subscript i stands for either x or y, denoting

the direction in cartesian coordinates. With this limi-

tation, friction no longer changes the direction of the

flow [13].

4 Computational examples

All simulations were carried out with the Hydroinfor-

matics Modeling System (hms), an in-house scientific

prototyping framework [28]. The proposed roughness

approach is compared with results of different rough-

ness models and a high-resolution model with explicitly

discretized microtopography, called HR model in the

following. The parameters of all models are optimized

with the SciPy library [39] by minimizing the RMSD

of the model results in regard to the HR model, us-

ing either Brent’s method [2] for one free parameter or

the Limited-memory Broyden, Fletcher, Goldfarb and

Shanno algorithm (L-BFGS-B) [3, 42] for more param-

eters.

Model results are evaluated using the root mean

square deviation (RMSD) which is calculated as:

RMSD =

√∑n
t=1 (q̂t − qt)2

n
(26)

Here, q̂t is the roughness model result value, qt stands

for the value of the reference solution of a HR model;

t is a sample index and n is the number of samples.

The normalized root mean square deviation NRMSD is
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calculated as

NRMSD =
RMSD

qmax − qmin
, (27)

where qmax and qmin are the maximum and minimum

values of the reference solution calculated by the HR

model, respectively.

4.1 Rainfall-runoff over an inclined plane with

sine-wave shaped microtopography

One-dimensional rainfall-runoff over an inclined plane

with sine-wave shaped microtopography is simulated.

Although synthetic, this test case is suitable to study

the capability of roughness models because in the limit,

any theory for complex microtopography has to con-

verge to the solution of this idealized set up [35]. The

domain is 4 m long and its topography is described by

zb = −0.05x+ 0.01 sim
(

20π x+
π

2

)
(28)

for a high-resolution model with explicitly discretized

microtopography (HR) on a 0.01 m grid. The standard

deviation of the microtopography is σ = 0.01 m. Results

for the proposed roughness model (RM), Lawrence’s

model (LAW), constant Manning’s coefficient model

(CM) and variable Manning’s coefficient model (VM)

using a grid size of 0.1 m are calculated.

The topography for these models is described by

zb = −0.05x. (29)

Fig. 1 Rainfall-runoff over an inclined plane with sine-wave

shaped microtopography: Computational domain of different

models: HR (black), all other models (blue).

Additionally, the model results presented in [27] (RA)

for this test case on a 0.1 m grid are given for compar-

ison. The RA model also uses the topography calcu-

lated by Equation 29. The side-view of the domain with

microtopography (HR) and without (other) is plotted

in Figure 1. At x = 4 m, an open boundary condition

which forces the gradient of water depth to be equal to

the gradient of bottom elevation is imposed. All other

boundaries are closed walls. The roughness is expressed

via a Manning’s coefficient of n = 0.04 sm−1/3. Rainfall

is imposed with a constant intensity of i = 8 · 10−4 m/s

for a duration of 22.5 s. The RA model is developed

for furrows and calculates the friction coefficient KR as

follows:

KR = K0,R exp

(
−h+ 〈hF 〉
C · 〈hF 〉

)
(30)
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Here, K0,R and C are unitless model parameters; and

〈hF 〉 is the average height of water trapped in furrows

which may be calculated with

〈hF 〉 =
V

LF · L
, (31)

whereby V is the volume of trapped water in a furrow,

LF is its wavelength and L is the length of the do-

main. Razafison suggests to approximate 〈hF 〉 numer-

ically (personal communication, August 4, 2014). The

optimal parameters of the RA model for this test case

were taken from the literature [27]. The unit discharges

at the outlet of the domain divided by the total unit

discharge of the rain qrain = 3.2 · 10−3 m2/s are plotted

in Figure 2. Optimiziation was carried out regarding the

discharge at the outlet of the domain. The optimized

parameters for each model together with the resulting

RMSDs are given in Table 1. The CM model poorly re-

produces the HR model result by overshooting it in the

early stage of the simulation and undershooting it in

the later stage. The VM model with three free parame-

ters shows very good agreement. The RM model shows

the best agreement. At the beginning, the HR model

results are slightly overshot however in the later stages

the curves show very good agreement. The LAW model

with two calibration parameters shows good agreement

with the HR model. The discharge in the early stages

of the simulation is overshot by the LAW model, how-

Fig. 2 Rainfall-runoff over an inclined plane with sine-wave

shaped microtopography: Unit discharges compared at the

outlet.

Table 1 Rainfall-runoff over an inclined plane with sine-

wave shaped microtopography: Calibrated parameter values

and corresponding RMSD for each model.

Model Calibrated parameter(s) RMS

CM n = 0.22 sm−1/3 0.081

VM n0 = 0.018sm−1/3;h0 = 0.04m;ε = 2.4 0.014

LAW φ = 5.6 %; k = 0.06 m 0.040

RA C = 0.4; K0,R = 0.02 0.058

RM n = 0.15 sm−1/3;α0 = 28.57;α1 = 7.26 0.007

ever the later stages are captured well. The discharge

calculated by the RA model rises later than all other

models and keeps undershooting the HR model results.

A discontinuity occurs at about t = 20 s, which marks

the time for 〈hF 〉 < h. At the end of the simulation,

the RA model catches up with the HR model.

All models can be calibrated to match the HR re-

sults to some extent. However, it could be argued that

the VM model parameter h0 and the LAW model pa-
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rameter k are geometric parameters and should not

be used for calibration. From their conceptual point

of view, h0 and k should either be set to the stan-

dard deviation of microtopography, i.e. 0.01 m, or the

amplitude of the microtopography, i.e. 0.02 m. It was

found out that using these values for h0 and k signif-

icantly reduces these models accuracy. Especially the

LAW model can not be calibrated to satisfactory accu-

racy using only φ, because φ represents a fraction and

therefore is bounded between 0 and 1 and is not very

sensitive. The simulation of the coarse models runs on

a mesh with 40 cells in average 50 times faster than the

HR model simulation, which runs on a mesh with 400

cells.

4.2 Flow over an inclined plane with random

microtopography

The following example simulates a run-dry process of

an inclined surface with random microtopography. The

domain is initally ponded with water which is then

discharged during the simulation at the outlet of the

domain. No rainfall is imposed. The study area is a

4 m × 1 m inclined plane with a Manning coefficient of

n = 0.02 sm−1/3 (cf. Figure 3 (top)). Random micro-

topography is generated as square blocks with a hori-

zontal length of 0.05 m and a vertical elevation accord-

ing to a Gaußian distribution with a standard devia-

tion of σ = 0.02 m (cf. Figure 3 (bottom)). The maxi-

mum value of the microtopography is about 0.07 m and

the minimum value about −0.08 m. Several simulations

with different slope and initial water depth are carried

out. The slope I is varied in steps of 0.01 from −0.01 to

−0.14 for different simulation runs. For each different

slope, different simulation runs with varying initial wa-

ter depth h0 from 0.005 m to 0.08 m in 0.005 m-steps

are carried out. For example, for I = −0.01, simulation

runs with h0 = 0.005 m, h0 = 0.01 m, h0 = 0.015 m

until h0 = 0.08 m are carried out, and after that the

slope is set to I = −0.02 and again simulation runs

with varying h0 are carried out. The boundary condi-

tion at the outlet is an open boundary which sets the

gradient of water depth equal to the gradient of bot-

tom elevation, all other boundaries are closed walls. The

simulation runs for t = 60 s. Four different roughness

models are compared for every possible combination of

I and h0 with results of a high-resolution model explic-

itly discretizing the microtopography (HR): a model us-

ing a calibrated constant Manning’s coefficient (CM);

a model using a variable Manning’s coefficient (VM),

Lawrence’s model (LAW); and the proposed roughness

approach (RM). The HR model uses quadratic grid cells

with an edge length of 0.01 m, all other models use grids

with coarser cells.
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Fig. 3 Flow over an inclined plane with random microtopog-

raphy: Global topography for I = 0.05 (top); microtopogra-

phy (bottom).

All models were calibrated on a 0.05 m×0.05 m-grid

with regard to the unit discharge calculated by the HR

model at the outlet of the domain for a slope of I =

−0.02 and an initial water depth of h0 = 0.04 m, i.e. an

initial inundation ratio of Λ0 = h0/σ = 2. First, a simu-

lation on the 0.05 m×0.05 m grid using the same rough-

ness coefficient as the HR model (n = 0.02 sm−1/3) is

carried out (UCM), to show the effects of increasing

the grid size without using an upscaling approach. Re-

sults for the unit discharge at the outlet for the UCM

model run are plotted in Figure 4 (top). The peak of

the discharge curve of the UCM model is about 20 times

higher than the HR model. After the peak is reached,

the UCM model discharge decreases too quickly which

indicates that the roughness is overall underestimated.

A NRMSD of 1.0 is calculated.

The calibrated parameters of all models with the

corresponding NRMSDs are given in Table 2. The unit

discharges at the outlet are plotted in Figure 4 (bot-

tom). While the LAW model is showing the worst agree-

ment with the HR model, the VM model agrees the

best, followed by the RM model. Although the first

peak of the HR model can not be captured by any of

the models, overall the VM and RM models capture

the HR model results very well. The CM model under-

shoots the HR solution significantly at the beginning

of the simulation and starts to overshoot it after about

t = 12 s. The overall agreement is not satisfactory. Ad-

ditional calibrations which were carried out with dif-

ferent initial conditions suggest that all models except

the LAW model should be calibrated for Λ0 ≥ 2, be-

cause for Λ0 < 2 the calibration may fail to deliver good

results. One reason for this may be, that for Λ0 < 2

the blockade effects of the microtopgraphy outweigh its

roughness effects, i.e. the flow depends on the spatial

configuration and geometric properties of single micro-

topography elements. Then, spatial heterogeneity sig-

nificantly influences the flow and therefore the rough-

ness effects can not be averaged over the domain. For

h0 = 0.04 m, the LAW model uses Equation 11 to cal-

culate the roughness and therefore has no calibration

parameters. The calibrated values in Table 2 effect only

the stage of the simulation when the inundation ratio
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Fig. 4 Flow over an inclined plane with random microtopog-

raphy, 0.05 m grid size: Unit discharges of the UCM and HR

models (top) and all models except UCM (bottom) compared

at the outlet for h0 = 0.04 m and I = 0.02.

becomes smaller than 1. Calibrating the LAW model

for smaller Λ0 might deliver better results, however the

calibration difficulties regarding the LAW model men-

tioned in the test case before still remain.

To study the transferability of the calibrated param-

eters to different hydraulic conditions, the calibrated

parameters in Table 2 are used to simulate the unit

discharge for every I-Λ0 combination. The grid cell size

used by the models is 0.05 m. Results are compared

with HR model results. Figure 5 shows the NRMSD

Table 2 Flow over an inclined plane with random microto-

pography, 0.05 m grid size: Calibrated parameter values and

corresponding NRMSD for h0 = 0.04 m and I = 0.02 for each

model.

Model Calibrated parameter(s) NRMS

CM n = 0.18 sm−1/3 0.120

VM n0 = 0.14sm−1/3;h0 = 0.045m;ε = 1.4 0.026

LAW φ = 50 %; k = 0.023 m 0.173

RM n = 0.112sm−1/3;α0 = 5.52;α1 = 2.61 0.030

of all models in dependency of I and Λ0, where each

cell is the result of a simulation run of a certain I-Λ0

combination. The main focus of Figure 5 is the change

of the NRMSD in dependency of I and Λ0 within one

model. Because of this reason and the significant dif-

ferences in the NRMSDs of different models, the range

of the legends are not set equal. The I-Λ0 combination

used for the calibration is denoted with a black rectan-

gle. High NRMSD in the CM model results occur for

small Λ0 combined with small I. As Λ0 or I increase,

the NRMSD decreases as the influence of the microto-

pography decreases. The minimum NRMSD occurs for

the calibration conditions, i.e. Λ0 = 2 and I = −0.02.

Except for the region around Λ0 = 0.75 and I = −0.01,

which is the location of the maximum NRMSD, the

transfer of the calibrated parameters to different I and

Λ0 does not significantly alter the NRMSD. It stays

almost constant around the mean value of 0.133. The
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NRMSD distributions of the VM model and the RM

model are qualitatively very similar. High NRMSD oc-

curs for small Λ0 combined with large I. For the VM

model, the minimum NRMSD occurs for the calibration

conditions, but for the RM model smaller NRMSD is

calculated for other simulation runs. For both models,

transfering the calibrated parameters to hydraulic con-

ditions with Λ0 > 1.5 leads to increased NRMSDs, but

transfering the parameters to conditions with higher

Λ0 has not a significant influence on the NRMSD. The

LAW model has the highest NRMSD of all considered

models. The NRMSD increases significantly for Λ0 < 1,

for Λ0 > 1 the NRMSD is about 0.15 and remains

constant. With increasing Λ0, the NRMSD decreases.

The maximum NRMSD, the minimum NRMSD and

the mean NRMSD of all simulations for each model are

given in Table 3. Here it is seen that the RM model

calculates a smaller minimum, maximum, and mean

NRMSD than the VM model, but the VM model can be

locally calibrated to show better agreement (cf. Figure

4 (bottom)).

Grid size is increased from 0.05 m to 0.1 m and to

0.2 m to study the transferability of the calibrated pa-

rameters to different meshes. It is desirable, that the

RMSD decreases with decreasing cell size (which is also

called grid convergence) because this allows to efficiently

calibrate the model on coarser cells and then transfer

Table 3 Flow over an inclined plane with random microto-

pography, 0.05 m grid size: Minimum (min), maximum (max)

and mean NRMSD values of all I-Λ0-combinations for differ-

ent models.

Model min max mean

CM 0.095 0.468 0.133

VM 0.026 0.347 0.105

LAW 0.093 1.688 0.335

RM 0.022 0.304 0.091

the calibrated parameters to a model with the desired

spatial resolution [12]. If this can not be achieved, it

is desirable that at least the RMSD stays the same

for different cell sizes. Table 4 shows the NRMSD in

dependency of grid cell length averaged over all I-Λ0-

combinations. The calibration of all models is stable

across the investigated scales. The change in the NRMSD

is negligable. Oddly, coarsening the grid size to 0.2 m

improves the NRMSD. The reason for this negligibly

small improvement may be due to numerical round-

off somehow benefiting the accuracy of the solution,

yet this has not been further investigated. The inclined

plane as a study area is not very sensitive to grid size,

because the geometry is captured perfectly accurate

by the second order discretization in combination with

the non-negative hydrostatic reconstruction (cf. [28]).

The plane has no other spatial heterogeneities than the

subgrid-scale microtopography, which is accounted for
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Fig. 5 Flow over an inclined plane with random microtopography, 0.05 m grid size: Normalized root mean square deviation

in relation to initial inundation ratio Λ0 and slope I.

by the roughness formulation, i.e. the model domain

is a smooth inclined plane. Therefore, increasing grid

size is not associated with further loss of geometric

information and only reduces accuracy because of nu-

merical diffusion. The HR model simulation runs on a

mesh with 40000 cells. The simulation on the mesh with

0.05 m cell size (1600 cells) runs about 20 times faster

than the HR model simulation, the simulation on the

mesh with 0.1 m cell size (400 cells) runs about 40 times

faster than the HR model and finally the simulation on

Table 4 Flow over an inclined plane with random microto-

pography: Mean NRMSD in dependency of grid cell length

averaged over all I-Λ0-combinations.

Model 0.05 m 0.1 m 0.2 m

CM 0.133 0.133 0.133

VM 0.105 0.105 0.105

LAW 0.336 0.336 0.335

RM 0.092 0.092 0.091

the mesh with 0.2 m cell size (100 cells) runs about 70

times faster than the HR model simulation.
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4.3 Rainfall-runoff in a small alpine catchment

4.3.1 Study area and preliminary studies

Hortonian overland flow in a natural catchment, the

Heumöser slope, Vorarlberg Alps, Austria, is simulated.

The study area is a 100 000 m2 large subcatchment

of the Heumöser slope. Bottom elevation of the area

is provided in 1 m × 1 m resolution by a digital ele-

vation model of the Austrian department Torrent and

Avalanche Control, representing the high-resolution model.

Figure 6 (top) shows the topography of the domain and

the location of the outlet, where discharge was mea-

sured. Rainfall is imposed according to a time series

measured in July 2008 with a resolution of 10 min (Fig-

ure 6 (middle)). The simulation runs for t = 120 h, i.e.

5 days.

Extensive numerical simulations of surface and sub-

surface runoff for this domain were carried out in [28,33]

within Research Unit ’Coupling of flow and deformation

processes for modelling the movement of natural slopes’

funded by the German Research Foundation [11]. Dur-

ing these simulations, the model was calibrated with a

runoff coefficient Ψ = 0.3 in combination with a lin-

ear reservoir model to account for the slower discharge

component in the subsurface, which was identified as a

crucial contributor to the discharge at the outlet of the

domain. The linear reservoir is described by the follow-

Fig. 6 Rainfall-runoff in a small alpine catchment: Bottom

elevation, watershed (blue) and location of the outlet (top);

intensity of the rainfall event plotted over time (middle); HR

model results with parameters from [28] (bottom)

ing equations:

dS (t)

dt
= I (t)−Q (t) (32)

S (t) = KQ (t) (33)

Here, S (t) stands for the storage at time t; I (t) for

the inflow; and Q (t) for the outflow of the reservoir.
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K is the constant of proportionality which can be ob-

tained by calibration. A calibration in [28] resulted in

a constant of proportionality K = 6 h and a Manning

coefficient of n = 0.067 sm−1/3. Because the same nu-

merical model (hms) as in [28] is used in this study, the

same values for Ψ and K are used in all models. For ref-

erence, the results of a high-resolution simulation with

these parameters on a 1 m×1 m grid (HR) is plotted in

Figure 6 (bottom).

4.3.2 Upscaling with roughness formulations

The proposed roughness formulation (RM) and three

other roughness approaches are compared in this test

case: calibrated constant Manning’s coefficient (CM),

variable Manning’s coefficient (VM) and Lawrence’s model

(LAW). Model discharges at the outlet are superposed

with the interflow computed by the linear reservoir (cf.

Equations 32 and 33) and are compared with measure-

ment data. Models are calibrated for a quadratic grid

with a cell size of 10 m. In additional simulation runs,

the grid size is refined to 5 m and then coarsened to

20 m, while the same model parameters were kept con-

stant. The bottom elevation inside a cell is set to the

arithmetic average of all DEM points located inside the

cell. The discretization is shown in Figure 7 and will be

further discussed later. In addition, the RM model re-

quires the standard deviation of the microtopography.

Fig. 7 Rainfall-runoff in a small alpine catchment: Bottom

elevation discretization in dependency of mesh resolution

Therefore, the microtopography is isolated by calculat-

ing the deviations of each DEM point in a cell from the

bottom elevation of the cell. The standard deviation of

the microtopography is then calculated as σ = 0.19 m

for a grid cell size of 5 m and σ = 0.21 m for a grid cell

size of 10 m and 20 m.

The discretized bottom elevation for the investigated

cases is given in Figure 7. As expected, the discretiza-

tion with a cell size of 5 m (Figure 7 (top)) has the

most information about local details in the topography.
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Table 5 Rainfall-runoff in a small alpine catchment, 10 m

grid size: Calibrated parameter values and corresponding

RMSD for each model

Model Calibrated parameter(s) RMS

HR n = 0.067 sm−1/3 0.011

CM n = 0.115 sm−1/3 0.010

VM n0 = 0.01sm−1/3;h0 = 0.058m;ε = 0.11 0.012

LAW φ = 10 %; k = 0.21 m 0.012

RM n = 0.035sm−1/3;α0 = 0.3;α1 = 0.87 0.010

It also can be seen that the discretization with a cell

size of 10 m (Figure 7 (middle)) still represents an ac-

ceptable amount of local heterogeneities and even the

discretization with a cell size of 20 m (Figure 7 (bot-

tom)) is able to capture the main topologic character-

istics of the catchment. However, in the latter case the

watershed boundaries start to blur and the location of

the measurement weir is captured in a single cell. Small

scale preferential flow paths in the domain as observed

in [28] can not be represented by the coarse resolution.

Additionally, numerical diffusion increases due to the

mesh resolution effects [41]. All these effects have to be

captured to some extent by the roughness formulations.

Table 5 shows the calibrated model parameters and

the corresponding RMSD with regard to measurement

data for each model. All models have almost the same

RMSD, however the RM model ans the CM model give

the lowest RMSD. The HR model results in a similar

RMSD as the coarse models. The reason is that due to

computational restraints, the HR model was calibrated

manually with fewer trials than an optimization algo-

rithm would require [28]. The usage of numerical opti-

mization algorithms to calibrate the HR model would

demand unfeasibly high computational effort. The re-

sulting hydrographs are plotted in Figure 8 (blue tri-

angles). In the early stages of the rainfall event, the

interflow is overestimated by the linear reservoir (cf.

Figure 6 (bottom)) and thus, the model results over-

shoot the measured data significantly. Reason for this

deviation might be previous hydrological events in the

catchment, which can not be taken into account. This

can be seen in Figure 6 (bottom), where at the be-

ginning of the simulation the interflow overshoots the

measured time series. Most likely, in the real event the

rainfall infiltrated into the groundwater instead of be-

coming part of the interflow. Better results might be

obtained by using a more sophisticated approach than a

constant runoff coefficient to estimate the effective rain-

fall. At around t = 20 h the deviation between model

and measurement begins to decrease. After t = 30 h, the

hydrograph is captured quite accurately by the models.

The CM model shows good agreement for the calibrated

cell size. Both peaks are captured well. The VM model

captures both occuring peaks (at about t = 35 h and

t = 65 h) the best. The LAW model and the RM model
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Table 6 Rainfall-runoff in a small alpine catchment: RMSD

for each model in dependency of cell size

Model 5 m 10 m 20 m

CM 0.015 0.010 0.013

VM 0.012 0.012 0.012

LAW 0.013 0.012 0.014

RM 0.016 0.010 0.013

tend to undershoot both peaks. However, the RM model

captures the tails of both curves more accurately.

In order to investigate the transferability of cali-

brated parameters to different resolutions, cell size is

varied to 5 m and 20 m. Table 6 shows the RMSD for

each model in dependency of cell size. In Figure 8, the

hydrographs for a cell edge length of 5 m (red circle) and

a cell edge length of 20 m (black square) are plotted.

For the CM model, varying the cell size decreases both

peaks and decreases the arrival time of the first wave.

In Table 6 it can be seen that the RMSD increases with

varying cell size. For the VM model, increasing or de-

creasing the cell size lowers both peaks (Figure 8). For

the LAW model, mesh refinement leads to an overall

increase in discharge and increasing the cell size leads

to an overall decrease in the discharge. Varying the cell

size for the RM model leads to a significant decrease

in both peaks. The arrival time of both waves is cap-

tured accurately in all cases. In Table 6 it can be seen

that the VM model shows good transferability, while
Fig. 8 Rainfall-runoff in a small alpine catchment: Dis-

charges of different models
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the calibration of the CM, LAW and RM model results

show higher RMSDs if the cell size is changed.

A manual calibration of the RM model was carried

out to further investigate this models parameters trans-

ferability. It was found out that the transferability of

the parameters of the RM model can be increased if ac-

curacy is sacrificed. For the parameters n = 0.07 sm−1/3,

α0 = 0.51 and α1 = 0.54, which result in a RMSD =

0.012, the RM model showed good transferability of its

parameters across the investigated cell sizes.

Finally, the significant speedup gained by increasing

the cell size should be emphasized. The HR model run

with 147400 cells was completed in 3.5 days. Increasing

cell size to 5 m reduced the cell count to 5896 cells and

a computational time of 1.5 h (56 times faster). The

simulations on grids with a cell size of 10 m result in

1474 cells and are on average completed in 15 min (336

times faster). Increasing the cell size to 20 m further

reduces the cell number to 374 and leads to a com-

putational time of 2 min, i.e. about 2520 times faster

than the HR model. Of course the computational time

depends on the hardware and the numerical code, how-

ever the speedup certainly can be transferred with little

variance to different hardware and codes.

5 Conclusions

A novel conceptual roughness formulation for shallow

water simulations on coarse grids was developed. The

formulation is dependent on the inundation ratio, which

is calculated using the standard deviation of the micro-

topography with regard to its mean value. A physical

interpretation of the free parameters was given: the pa-

rameter C0 is an increased Chézy coefficient, α0 is an

additional dimensionless roughness coefficient account-

ing for the microtopography and α1 is a geometric con-

veyance parameter. The presented roughness formula-

tion was then compared to several existing roughness

formulations from literature. It was demonstrated in

three computational examples, that high-resolution re-

sults can be approximated with satisfactory accuracy

by calibrating the roughness formulation parameters.

The exact values of the calibration parameters may vary

in dependency of the numerical methods used to solve

the equations, hence the optimized parameters reported

in this study should be taken with a grain of salt.

The first example studied one-dimensional rainfall-

runoff over a sine-wave shaped microtopography. The

presented roughness approach returned the lowest root

mean square deviation from the high-resolution model

results. In the second example, calibrated parameters

were transferred to different hydraulic conditions with
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some success. Varying the slope or the initial inundation

increased the error for all models. The presented rough-

ness formulation, together with the variable Manning’s

coefficient, resulted in the lowest root mean square devi-

ations. It was shown that the proposed roughness for-

mulation can be calibrated more accurately than the

variable Manning’s coefficient formulation, however the

latter showed a better calibration stability. In the last

example, the proposed roughness approach was tested

for a real case application. Here, again the presented

roughness formulation and the variable Manning’s co-

efficient approach were shown to be good trade-offs

between accuracy and computational efficiency. It was

shown that it is possible to upscale shallow water mod-

els using suitable roughness formulations. Due to mesh

resolution effects [12, 41], the coarse grid models are

not able to reproduce the high-resolution solutions ex-

actly. In general, it can be concluded that accuracy in-

creases with the number of free calibration parameters.

However, as the number of parameters increases, the

calibration process becomes more difficult. The compu-

tational benefit of using coarser cells is significant. The

speedup varied from 20 to 2520 in dependency of the

size and complexity of the test case and the difference

in cell sizes.
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