# The expected effect of deleterious mutations on within-host adaptation of pathogens 

```
Judith M. Fonville a,b,c#
```

Centre for Pathogen Evolution, Department of Zoology, University of Cambridge, UK ${ }^{\text {a }}$ WHO Collaborating Center for Modeling, Evolution, and Control of Emerging Infectious Diseases, UK ${ }^{\text {b }}$; Department of Viroscience, Erasmus MC, The Netherlands ${ }^{\text {c }}$

Running Head: Expected effect of deleterious mutations on adaptation
\#Address correspondence to Dr. Judith M Fonville, jmf77@cam.ac.uk.

```
Word count: Abstract: 237
    Text introduction-acknowledgements: 6855
```

Keywords: deleterious, evolution, adaptation, epistasis, compensatory, fitness valley, fitness landscape, mutation order


#### Abstract

Adaptation is a common theme in both pathogen emergence, for example in zoonotic cross-species transmission, and pathogen control, where adaptation might limit the effect of the immune response and antiviral treatment. When such evolution requires deleterious intermediate mutations, fitness ridges and valleys arise in the pathogen's fitness landscape. The effect of deleterious intermediate mutations on within-host pathogen adaptation is examined with deterministic calculations, appropriate for pathogens replicating in large populations with high error rates. The effect of deleterious intermediates on pathogen adaptation is smaller than their name might suggest: when two mutations are required, and each individual single mutation is fully deleterious, the pathogen can jump across the fitness valley by obtaining two mutations at once, leading to a proportion of adapted mutant that is 20 -fold lower than for the situation where all mutants are neutral. The negative effects of deleterious intermediates are typically substantially smaller, and outweighed, by fitness advantages of the adapted mutant. Moreover, requiring a specific mutation order has a substantially smaller effect on pathogen adaptation than the effect of all intermediates being deleterious. These results can be rationalized when calculating the number of routes of mutation available to the pathogen, providing a simple approach to estimate the effect of deleterious mutations. The calculations discussed here are applicable when assessing the effect of deleterious mutations on the within-host adaptation of pathogens, for example in the context of zoonotic emergence, antigenic escape, and drug resistance.


## IMPORTANCE

Adaptation is critical for pathogens after zoonotic transmission into a new host species, or to achieve antigenic immune escape and drug resistance. Using a deterministic approach, the effects of deleterious intermediate mutations on pathogen adaptation are calculated whilst avoiding commonly made simplifications that do not apply to large pathogen populations replicating with high mutations rates. Perhaps unexpectedly, pathogen adaptation does not halt when the intermediate mutations are fully deleterious. Negative effects of deleterious mutations are substantially outweighed by fitness gains of adaptation. To gain an understanding of the effect of deleterious mutations on pathogen adaptation, a simple approach is introduced that counts the number of routes available to the pathogen with and without deleterious intermediate mutations. This methodology enables a straightforward calculation of the proportion of the pathogen population that will cross a fitness valley or traverse a fitness ridge, without reverting to more complicated mathematical models.

## INTRODUCTION

The fitness landscape of a pathogen is likely to have a rugged shape and consist of multiple optima. Reductions in fitness occur when underlying combinations of genetic mutations lead to an unfit or deleterious phenotype, creating depressions in the fitness landscape. One phenomenon causing sharp peaks and troughs in the fitness landscape is sign epistasis, where a beneficial adaptation involves a combination of individually deleterious mutations (1-5). In the case where intermediate mutations are less fit than the wild type and adapted virus, a fitness valley is created - a barrier of disadvantageous mutations hampering the access to other landscape regions $(4,6)$. If there is a specific order in which mutations can occur without compromising the fitness, for example where compensatory or obligatory co-mutations can remove the deleterious effect of another mutation, the landscape contains a fitness ridge. Such fitness valleys and ridges are commonplace in virology, as will be illustrated with examples drawn from the influenza field.

During zoonotic overspill infections of an avian influenza virus into humans, pressure exists for the pathogen to adapt to this possible new host (7-9). The virus was fit in its original host, and needs to be fit in the new host, but this adaptation process might require deleterious intermediate mutations. The need for adaptation of a zoonotic pathogen is illustrated by the requirement of a combination of mutations in avian A/H5N1 virus for airborne transmission
between mammals $(10,11)$. Interestingly, two of the mutations that were found necessary to confer airborne transmissibility, polymerase basic protein 2 (PB2) E627K and polymerase basic protein 1 (PB1) H99Y (11, 12), increased the fitness of the adapted virus if both mutations occurred together, as inferred from substantially larger plaque sizes than the wild type, yet each individual mutation decreased the fitness compared to the wild type virus (12). Similarly, Imai et al. showed that the receptor-binding mutations $N 224 \mathrm{~K}$ and Q 226 L in the hemagglutinin gene (HA), required for an airborne transmissible phenotype of A/H5N1, reduced the stability of HA, but could be compensated for by mutation T318l in the HA stalk, which restored protein stability (10). Although the stabilizing mutation was not essential for virus survival, it did substantially increase viral fitness.

Another example of deleterious intermediate mutations is escape from preexisting host immunity through fitness-decreasing mutations for antigenically variable pathogens $(13,14)$. For example, the altered receptor-binding avidity and lower replication resulting from the antigenic escape mutation HA K165E in A/Puerto Rico/8/1934(H1N1) could be compensated for by mutations in HA or the neuraminidase (NA) $(15,16)$, and stabilizing mutations were required to occur prior to the introduction of immune-escape mutations in influenza A/H3N2 virus (17). Similarly, there are numerous examples where antiviral-resistance conferring mutations come at a fitness cost for the virus, that can be compensated for by other mutations: several neuraminidase substitutions can
occur and have occurred as either permissive or compensatory mutations to counteract the adverse fitness effects of the oseltamivir-resistance mutation NA H275Y in influenza A/H1N1 virus (18-20); and similarly the I222V NA mutation in A/H3N2 partially restored the viral fitness-decreasing oseltamivir-resistance mutation NA E119V (21).

The name "deleterious mutation" may suggest that the existence of such mutations is unlikely, and thus the expectation that the crossing of a fitness valley comprised of individually deleterious mutations is difficult, if not impossible. Indeed, when evolution is described as an adaptive walk or directed evolution, adaptation consists of a series of incrementally neutral or beneficial mutations, and thus the crossing of the fitness valley would be technically impossible (2226). Also the possibility of obtaining several mutations at once, to "jump across" a fitness valley, is not considered in some theoretical models (27-29). A methodological framework frequently used to study pathogen evolution making such assumptions is the "strong-selection-weak-mutation" (SSWM) approximation (30, 31). Models using the SSWM assumption describe the evolutionary trajectory of a population where selective sweeps cause the sequential fixation of advantageous mutations, whilst deleterious or neutral mutations are disregarded (32-34).

Here, we demonstrate how pathogens replicating in large population sizes and with high error rates, such as RNA viruses, can cross fitness valleys, based on a
simple, and appropriate, deterministic model of within-host pathogen evolution. Instead of following the evolution of a pathogen population toward fixation of certain mutations, as is for example done in SSWM models, we calculate the probability of a randomly drawn virion from the within-host virus population after initial infection with a single genotype to have obtained a set of mutations after a given number of replication rounds. This probability, when multiplied with the pathogen population size, gives the expected number of virions with this specific set of mutations. In other words, the probability is directly related to the proportion of viruses in the total within-host population with this set of mutations.

This probability of a virion to have a set of mutations is highly relevant, because increased proportions are likely to correspond to increased probability of spread of such mutants. When the bottleneck of transmission is narrow, for example in the case where a single virion is transmitted to the next host, the probability describes the likelihood that infection of the next host will begin with the adapted virus. Alternatively, if the bottleneck is wide, the expected proportion of adapted virus at the start of the infection of the next host can be calculated and used to estimate the chances of further adaptation.

In this manuscript, we calculate the effects of deleterious mutations, fitness valleys and fitness ridges on within-host pathogen evolution using a straightforward deterministic model $(35,36)$. Such a deterministic probability calculation is appropriate for studying the dynamics and evolution of large
populations with asexual reproduction at a high mutation rate, such as most RNA viruses, because stochastic effects play a limited role. The proportion of the adapted mutant is calculated for varying valley depths (i.e. the fitness of the deleterious mutation) and breadths (i.e. number of deleterious mutations). Finally, we also describe the probability of traversing a fitness ridge, for varying numbers of mutations that need to be acquired in order.

## METHODS

The within-host population dynamics of virus mutants were calculated as deterministic probabilities, based on the methodology described previously (35, 36). In this calculation, the errors made by the virus polymerase are represented by an error rate, and form the source of introduction of mutations, but the approach can equally be used for non-viral pathogens, where mutations are introduced through another mechanism. The probability of accumulating mutations and the within-host evolutionary dynamics of the virus population are explored as a function of the fitness of the wild type, intermediate and adapted mutants.

## Calculating virus populations

A virus type $j$ is a virus with a particular set of mutations. The probability of each virus type $\left(N_{j}\right)$ after a replication round is given by the sum of contributions from each type in the previous replication rounds:
eq. $1 \quad N_{j}(t)=\sum_{i}\left[N_{i}(t-1) \mu_{i j}\right]$

Where $\mu_{i j}$ is the probability of type $i$ mutating to type $j$, and each type contributes exactly its expected value. If the mutation rate $\mu_{i j}$ is low, the main contribution to the proportion of the population that is $N_{j}$ at time $t$ will be from the proportion of the population that was $N_{j}$ at time $t-1$, and a smaller contribution from virus type
$N_{i}$ at time $t-1$ that mutated into type $N_{j}$. The probability of mutation $\mu$ is calculated as follows:
eq. $2 \quad \mu_{i j}=\prod_{\{m=0\}}(1-r) \prod_{\{m=1\}} r$

Where $r$ is the polymerase error rate. Thus, $\mu_{i j}$ is the product of the probabilities of non-mutation $(1-r)$ for the set $\{m=0\}$, i.e. positions for which no mutation is required, and of the probability for mutation $(r)$ for the set of positions that need to mutate $\{m=1\}$.

## Accounting for fitness values

The deleterious and beneficial selection values were incorporated by adjusting the "progeny" of each virion to express the fitness disadvantage or advantage in each genome replication step, prior to the start of the next generation. The starting population (generation zero) consists only of zero-mutant, the starting virus. After the first replication round (equation 1), the population of each type $N_{i}$ is multiplied by its relative fitness $f_{i}$, and the population is normalized (such that $\sum_{i}$ $\left.N_{i_{-} a d j}=1\right)$ through division by the sum of the fitness-weighted prevalence all types:
eq. $3 \quad N_{i_{-} \text {adj }}(t)=\frac{N_{i}(t) * f_{i}}{\sum_{i}\left[N_{i}(t) * f_{i}\right]}$

The $N_{i \_a d j}$ represent the populations at the start of the next genome replication step, and are used as $N_{i}$ in equation 1 in the multiplication with the mutation matrix. When calculating the effect of deleterious mutations the fitness $f$ is varied, and a "fully deleterious mutant" has a fitness of $f=0$, which causes relative increases in the probability of the other virus types in the total virus population.

Unless otherwise noted, the fitness of the wild type (i.e. starting) virus, and the final type with the full set of mutations of interest, the "adapted virus", is neutral: $f$ $=1$.

Because this model normalizes the virus population via equation 3, and accounts for back-mutations in equation 2, the results are slightly different from the shorthand formula introduced in equation 4 in the results section. For this reason, calculating the number of routes (see below) is a fast and informative approach to very closely approximate the probability of a certain set of mutations, but is not analytically identical to the modeling results.

## Stochastic model runs

In addition to the deterministic modeling results above, a set of stochastic discrete-time multi-type branching process simulations were run, see also Russell et al. (35). The starting population of a single virion expanded exponentially with a branching factor of 32 (leading to $10^{3}$ virions produced per infected cell, after the two genome replication steps), until the population size
exceeded $10^{10}$ virions, from which point onwards the branching factor was set to 1. For each genome replication step, the expected number of each mutant type was determined with a Poisson distributed random variable with the expectation value based on the mutation matrix shown in equation 2 and the number of virions of each mutant type existing before the replication step, as was done for equation 1. This number was then multiplied by the relative fitness of each type, and rounded to the nearest integer, prior to starting the next genome replication step. We performed 10,000 stochastic runs for each of the 101 settings of fitness of the deleterious intermediate mutants (between 0 and 1 in steps of 0.01 ). The intensity of the shade of the pale red and blue colors is calculated based on the $\log _{2}$ of the number simulation runs that have the resulting proportion of double mutants for each fitness setting; the average proportion across the 10,000 runs per fitness setting is indicated with the line connecting the circles.

## Determining the route

We introduce the terminology "through singles" to mean the process by which the two mutations are acquired through separate single mutations occurring in distinct replication rounds, and "through doubles" to mean to process where two mutations are achieved by mutating both sites in a single replication round. We investigated the probability of a double mutant to occur through doubles by setting the $\mu$ for single mutations to zero in the mutation matrix. The through singles probability is calculated as the difference between the probability when all routes are allowed, and the through doubles probability.

Similarly, to calculate how often the required set of mutations was achieved through a specific order, the fitness of any non-order mutant was set to zero. The difference between the probability calculated if any order is allowed and the probability when only a specific order is available determines the probability of non-order mutation routes.

The fraction of available routes is calculated as the number of available routes given the constraints divided by the number of original routes.

## Parameter choice

The mutation rate is parameterized by the current best estimate for the influenza virus polymerase error rate $\left(r=1 \times 10^{-5}\right.$ mutations per site, per genome replication $(37,38)$ ), and can trivially be adjusted for other mutation rates - indeed all results in the manuscript are not specific to influenza virus, or viruses in general, but to all large populations where mutations occur.

A "replication round" in this manuscript refers to any step in which RNA is synthesized, because in each round of replication polymerase errors can be introduced. For influenza viruses, where vRNA is replicated into cRNA and then cRNA is copied into vRNA, there are (at least) two replication rounds per cell cycle. Results are shown after 20 viral replication rounds, which corresponds to five days of influenza virus infection (where each replication round lasts around 6
hours, and virions exit the cell after 12 hours), but again, the number of replication rounds can be varied in the equations above.

## RESULTS

## Adaptation depends on the fitness of the deleterious intermediate mutations

When all mutations are neutral, a simple probabilistic calculation of mutation accumulation closely approximates the probability that any randomly drawn virion from the within-host virus population in an individual initially infected with a single genotype, would have mutated the $m$ sites of interest over time (the number of replication rounds, $t$ ):

$$
\text { eq. } 4 \quad \mathrm{p}(m, t)=t^{m} r^{m}
$$

This equation multiplies the probability of getting $m$ mutations (based on the polymerase error rate $r$ ), $r^{m}$, with the number of combinatorial options to acquire these $m$ mutations over $t$ generations $\left(t^{m}\right)$, see also Russell et al. (35) and Gokhale et al. (39).

The probability that a given virion will have mutated $m=2$ sites after $t=20$ replication rounds with a polymerase error rate $r=1 \times 10^{-5}$ is approximated by equation 4 as $4 \times 10^{-8}$. Naturally, this probability of observing both sites mutated will be less if either of the individual mutations is deleterious. If both individual mutations are deleterious, the pathogen will have to get across a fitness valley. The fitness of each single deleterious mutant determines the likelihood of the
virion to cross this fitness valley. A fully deleterious mutation has a relative fitness of 0 , which means that no progeny is made from these virions at all, whilst for a relative fitness of 0.5 half as much progeny descends from these virions compared to virions with a relative fitness of 1 .

Figure $1 A$ explores how the probability of a pathogen to cross a fitness valley depends on the deleterious effect of the intermediate mutations. In this scenario, each individual mutation is equally deleterious, and the wild type (starting) and the virus with the two required mutations (the "adapted virus") have neutral fitness. The blue line shows the deterministic probability of a virion to be a double mutant as a function of the fitness of the intermediate mutants. In the neutral scenario without any fitness valley, where the fitness of each intermediate mutant is 1 , the probability of the double mutant after 20 replication rounds is, as approximated above, $4 \times 10^{-8}$. As the relative fitness of each intermediate mutant decreases toward zero (fully deleterious), the probability that any random virion in the virus mixture is a double mutant decreases to $2 \times 10^{-9}$. Note that, despite the two intermediate mutants being fully deleterious, the probability of the double mutant is only twenty-fold lower than without the fully deleterious fitness valley. The pale region is composed of 10,000 stochastic model simulations for each of the 101 different settings of fitness $f$. The average of these runs, indicated by the connected circles, is somewhat lower than the deterministic calculations, most visibly for intermediate values of deleterious fitness. These stochastic simulations
highlight that even though stochastic effects may play a role, double mutations do occur regularly, even when the intermediate mutants are fully deleterious.

Such double mutants can arise when both mutations were acquired simultaneously in a single replication round, the "through doubles" mechanism. The purple line in Figure $1 B$ shows how much this mechanism of acquiring both mutations at once contributes toward the likelihood of a virion being a double mutant. Note that this probability is not affected by the relative fitness: because the deleterious intermediates were never formed when two mutations were obtained at once, the virions avoid having to incur the designated fitness cost. The fitness valley is not crossed, but the virus "jumps" over it. The cyan line describes the alternative "through singles" mechanism where the two single mutations were obtained in distinct replications rounds - the situation in which the virions did incur the deleterious cost of the intermediate, and actually crossed through the valley. In Figure $1 B$, it can be seen that this contribution depends strongly on the fitness of the intermediate single mutants. If the intermediate mutants are neutral, or have a high relative fitness, the through singles mechanism is the main contributor toward the probability of acquiring a double mutant (right hand side of Figure 1B). However, when the intermediate single mutants are highly deleterious the main contributor to the probability of a double mutant is the through doubles mechanism.

Returning to Figure 1A, it appears that the through doubles mechanism is less sensitive to stochastic variations than the through singles mechanism, and the deviation between the deterministic model and stochastic results is largest for intermediate values of deleterious fitness. Here, the non-negligible deleterious cost causes stochastic loss of single mutants before the second mutation occurs. Such stochastic losses are less prominent for fit intermediates ( $f=1$ ) or identical or similar to the losses calculated in the deterministic model for highly deleterious intermediates.

## An intuitive understanding: counting the number of "routes"

Although the "through doubles" and "through singles" mechanisms in Figure 1 both require two polymerase errors, the probability of which is $r^{2}$, the relative contribution of through singles to obtain two mutations is larger than through doubles at $f=1$. This phenomenon can be understood by considering "the number of routes". The through doubles route can happen once in each replication round, and thus in $t$ different ways (here 20). However, to get two single mutations, there can be e.g. single mutations in two subsequent rounds (for which there are 19*2 options - the factor of two accounts for which of the mutations is first), or single mutations in two replication rounds separated by a replication round without mutation (for which there are $18^{*} 2$ options), and so on, until there is one single mutation in round 1 and one in round 20 (for which there are 2 options only). The sum of these possibilities is 380 routes, which when combined with the 20 routes of through doubles, corresponds to $20^{2}$ ways to
obtain two mutations in twenty replication rounds, i.e. the factor $t^{m}$ in equation 4. Although the term $t^{m}$ is nothing more than a combinatorial factor, it was found that explicitly analyzing the number of routes represented by this term is useful for reasoning about the expected effects of varying fitness valley shapes.

If the single mutants are fully deleterious, the effective number of routes to obtain a double mutant through singles is 0 , because a double mutant can never arise from a single mutant if single mutants do not have progeny. In this situation, only the through doubles mechanism is possible, and thus 20 out of the original 400 routes remain, causing a reduction in the probability of a double mutant by a factor 0.05 (the probability decreased from $4 \times 10^{-8}$ to $2 \times 10^{-9}$ ).

A general description to calculate the effective number of routes to obtain a double mutant through singles for any relative fitness $f$ of the single mutations can be given as well: if single mutations happen in successive replication rounds (delay $=1$ ), the fitness cost is incurred once, if they are separated by one replication round (delay $=2$ ), the fitness cost is incurred twice, whilst if the single mutations are 19 generations apart (delay $=19$ ), the fitness cost $f$ is incurred 19 times. In total, the effective contribution to the number of routes through singles weighted by the incurred deleterious cost is given by:
eq. 5 Effective number of routes $=\sum_{\text {delay }=1}^{\text {delay }=(t-1)}\left[2 *(t-\right.$ delay $\left.) * f^{\text {delay }}\right]$

Where $t$ is the number of replication rounds, as before, and delay is the time lapse in replication rounds between the two single mutations (for $t=20$ replication rounds, the maximum delay is 19). The factor of two reflects the fact that the single mutations can be acquired in two different orders; the term ( $t$ delay) represents the number of options for any given delay (19 for a delay of 1 , 18 for a delay of 2 , etc.); while $f^{\text {delay }}$ is the penalty term for the incurred fitness cost over delay rounds of replication.

Figure 2 illustrates how the number of effective routes is composed of the contribution of the through doubles mechanism (in grey), and the different singlesingle mutation routes. If the relative fitness of the intermediate mutants is 0 , the through doubles mechanism is the only contributor to the number of routes, as was seen in Figure 1. Again, the effective number of routes for the through doubles mechanism is independent of the fitness of the deleterious single mutants, as any deleterious fitness cost is not incurred. Figure 2 also demonstrates that the effective number of routes of two single mutations separated by many replication rounds (e.g. delay $=19$, in pink) is substantially smaller than the effective number of routes for two subsequent single mutations (delay $=1$, in red). The reason for this is twofold: first, if there are 20 replication rounds, there are $19 * 2$ routes to generate two single mutations 1 generation apart, whilst there are only $1 * 2$ routes to obtain two single mutations 19 generations apart. Second, any deleterious effect of the single mutants is incurred for more replication rounds if the delay between the two single mutations
is longer, and thus the contribution of these single-single routes with longer delays decreases even more as the intermediate mutants become more deleterious.

Table 1 shows that the total number of routes increases $\left(t^{m}\right)$ as more mutations are required, listing the results for two to seven mutations required. It also shows the fraction of routes remaining when all intermediate mutants are fully deleterious. In the case where five mutations are required, for example, this means that all individual and combined intermediates (and thus all single, double, triple and quadruple mutants) are deleterious. Because all intermediate mutants are fully deleterious, all mutations have to be acquired at once, for which there are $t$ options: so $t$ out of $t^{m}$ routes remain. Although there were initially many routes to acquire 5 mutations $\left(20^{5}\right)$, only 20 remain.

When comparing the fraction of available routes for the situation where 5 mutations are required, $6.3 \times 10^{-6}$, with the fraction when 2 mutations are required, $5.0 \times 10^{-2}$, it is clear that the fraction of the available number of routes decreases greatly as the number of intermediate deleterious mutations increases. Note, in addition to a larger number of deleterious intermediate mutants slowing down the viral adaptation, there is also the increased difficulty of acquiring more mutations in the first place (which is given by $r^{m}$ ).

When a set of mutations is required of which only some are deleterious, the ratio of the effective number of routes compared to the total number of routes when that subset of mutations was not deleterious is the same as the fraction of routes available for the number of deleterious mutations. As an example, consider the situation where 5 mutations are required, and two of the mutations need to be acquired as a double. When none of the 5 mutations are deleterious, there are $20^{5}$ routes $\left(t^{m}\right)$. When the two mutations are individually fully deleterious, the second mutation of the double pair needs to occur simultaneously with the first mutation of the pair. As a result, the timing of mutation, for which there are 20 options if there are 20 replication rounds, needs only to be established for 4 mutations, as the timing of the last mutation needs to be identical to the timing of the other mutation in the pair. Hence, when two of the five mutations need to be acquired as a double, there are $20^{4}$ routes left, and the fraction $20^{4} / 20^{5}$ is 0.05 , see 2 mutations required in Table 1.

## The effect of deleterious intermediates is outweighed by the fitness advantage of adaptation

In the previous calculations, we studied situations where the fully adapted mutant had neutral fitness, and the number of available routes could directly be used when calculating the probability of a virion being a fully adapted mutant. Next, we investigate whether the deleterious cost of an intermediate mutant can be outweighed by the fitness gain that would be obtained upon achieving the full set of mutations, for example as a result of obtaining a certain beneficial phenotype
such as antigenic escape or increased replication. In Figure 3, the probability of any virion being a double mutant after $t=20$ replication rounds is indicated by color, as a function of the relative fitness advantage $f$ of the double mutant, varied from 1 to 4 , and the relative fitness of the deleterious single mutants, varied from 0 to 1 .

Figure 3 demonstrates that the probability of a random virion having obtained two mutations after 20 replication rounds varied relatively little with the fitness of the deleterious intermediates (along the x -axis): for example, the maximum change in the neutral scenario (see Figure 1) was 20 -fold, which corresponds to 1.3 units on a $\log _{10}$ axis. In contrast, the fitness gain of the double mutant causes changes across 9 orders of magnitude, and this fitness gain therefore appears to be the main determinant of the probability of a double mutant. The mechanism behind these observations is that, in contrast to the deleterious cost, which is often incurred only briefly, or avoided altogether by obtaining both mutations at once, the fitness benefit of the double mutant is incurred in every single replication round once it has arisen, hence exponentially increasing its presence in the pathogen population. For fitness $f=4$ of the double mutant, the minimum probability of a virion to be a double mutant, across all fitnesses of the single mutants, was 0.99998 .

## Adaptation via fitness ridges: compensating mutations imposing

 orderRequiring mutations to occur in a specific order is a special case of deleterious mutations: imagine the scenario in which two mutations are required, whereby one single mutation $\alpha$ compensates for or removes the deleterious effect of the other single mutation $\beta$ (both the single intermediate $\alpha$ and the double mutant $\alpha \beta$ have neutral fitness). To understand the effect of such imposed order on the probability of obtaining a certain mutant, again the number of effective routes calculation is helpful.

In the scenario where the double mutant and mutation $\alpha$ are neutral, while mutation of only site $\beta$ is fully deleterious, the two ways toward the double mutant are to either get both mutations simultaneously, or to obtain the non-deleterious, compensating mutation $\alpha$ before mutating the site $\beta$. As explained above, there are 20 routes out of 400 to obtain both mutations at once, and half of the remaining 380 routes will have had the compensating mutation $\alpha$ prior to mutation of site $\beta$ : in total 210 out of the 400 routes remain. Even though mutation $\beta$ was fully deleterious, $52.5 \%$ of the routes are still available, thus incurring only a 2-fold reduction in the total proportion of double mutant.

Table 2 shows the number of allowed routes when all mutations need to be obtained in order, for situations where two to seven mutations are required. As more order is required, the reduction in fraction of allowed routes increases: for
stringent ordering of five mutations, only $1.3 \%$ of the routes remain, which is less than the $52.5 \%$ for requiring order of two mutations.

Because imposing order does not necessarily require multiple mutations to occur at once, the fraction of available routes is substantially larger in the situation where order is required than for the situation where all intermediate mutants were deleterious. For example, when requiring five mutations, $1.3 \%$ of the routes remain if requiring specific ordering of these five mutations, whereas only $0.00063 \%$ of the routes remained when all intermediates were deleterious (see Table 1). Thus, using available fitness ridges is always, and often considerably, easier than jumping across or crossing a fitness valley.

The red line in Figure $4 A$ also shows that the effect of requiring order on the probability of a virion obtaining two mutations is relatively small, even if the nonordered single mutant is fully deleterious (compare $f=0$ and $f=1$ ), especially when compared to the situation where both single mutants were deleterious (blue line). The pale region is composed of 10,000 stochastic model simulations for the fitness ridge, in red, and fitness valley, in blue. The average of the stochastic runs, shown as circles, again indicate how traversing via a fitness ridge is substantially more likely than jumping or crossing a fitness valley. Moreover, stochastic effects play virtually no role for the outcome of a virion that can travel via a fitness ridge, as the results are very similar to the deterministic model.

Figure $4 B$ shows the contribution of the three different mechanisms that could lead to a double mutant. First, the virus could follow the imposed order and travel via two subsequent mutations along the fitness ridge. Second, the virus could simultaneously mutate both sites and jump across the surrounding fitness valley. Both of these mechanisms do not violate the imposed order, and their contributions in Figure 4B are independent of the fitness of the deleterious single mutant. Third, the virus could disobey the imposed order and obtain the nonordered single mutation first, which will incur the deleterious cost for a certain time. The contribution of this latter mechanism depends on the fitness of the nonordered deleterious single mutant, and becomes zero when $f=0$. As $f$ decreases, the ridge in the fitness valley becomes the main mechanism toward obtaining the set of mutations. In general, following the imposed order and travelling via the fitness ridge becomes more attractive as the fitness valley deepens and widens, as non-ordered single intermediates become even less viable, and obtaining simultaneous mutations even less likely.

## DISCUSSION

Using probabilistic calculations on within-host genetic evolution, we found that the effect of a fitness valley of deleterious intermediate mutations on adaptation is much smaller than might be expected, and that the effect of requiring a specific order for mutations to occur is even smaller. In coinfected individuals, mechanisms such as reassortment (if the mutations of interest are on separate genes) and recombination are additionally affecting the ability of viruses to overcome fitness valleys, processes that are not currently included in the model. Instead, we calculated, based on within-host evolution of a single starting virus genotype infecting an individual, the probability of any virion getting a set of hostadaptation mutations. This probability is directly related to the expected proportion of adapted mutant in the total population. The equations and calculations presented in this work can be used in any situation with fitness valleys and ridges where the deterministic assumptions are fulfilled, and the population reproduces asexually. As a result, this method can aid the study on the effects of deleterious mutations in a wide range of pathogens, including, for example, tuberculosis and $\operatorname{HIV}(5,40,41)$.

The methodology of counting the number of routes is a straightforward approach to calculate the effect of deleterious intermediate mutants, and understand the ways by which pathogen populations traverse fitness valleys and ridges. For example, in the situation where a virus requires two mutations that are each
individually fully deleterious, the evolution is not halted, as this trap is avoided by acquiring multiple mutations at once. In addition, if viruses need to follow a specific order of mutation, the out-of-order intermediate mutants can be described as fully deleterious. If only a handful of mutations need to be acquired in order, the influence on the adaptation of the virus is minimal, because the compensating mutations will occur beforehand without much difficulty: many routes are still available. Indeed, a key finding of this research is that fitness disadvantages of intermediate mutants sometimes have a great effect on the proportion of adapted mutant, but only when a large number of intermediate mutants are deleterious, and their fitness cost is large.

Although some studies recognize the importance of deleterious intermediates and the crossing of fitness valleys to the overall adaptive evolution of pathogens (27, 29, 42, 43), and the possibility of multiple simultaneous mutations to overcome such fitness valleys (44), various other models assume a strong-selection-weak-mutation paradigm (32-34, 45), ignoring any adaptive trajectories that require the crossing of a fitness valley. Such assumptions might be appropriate for small population sizes, or pathogens with low mutation rates (5, 30). However, for a pathogen with a large population size and high mutation rate, these SSWM assumptions are substantially violated. For influenza virus for example, the mutation rate is around 1 mutation per $10^{5}$ nucleotides, per round of genome replication $\left(r=10^{-5}\right)(37,38)$, and the population size $P$ easily exceeds
$10^{10}$ virions in a single host, hence the SSWM conditions $4 r P \ll 1$ or $r P \ll 1 / \ln (P s)$, where $s$ is the fitness increase, are not fulfilled $(30,46)$.

It should be noted though, that the assumptions of the deterministic approximation are violated in parts of Tables 1 and 2 (which showed the numbers of routes for scenarios where up to 7 mutations are required). When the inverse of the error rate to the power of the number of mutations required $\left(1 / r^{m}\right)$ is larger than or comparable to the population size, stochastic variations may become relevant. This was seen in Figure 1A, where for a population size around $10^{10}$ the two mutations were not acquired as readily as the deterministic model would have suggested. The smaller the population size is in comparison to $\left(1 / r^{m}\right)$, the higher the likelihood that stochastic effects decrease the expected proportion observed in the pathogen population. Especially when large numbers of mutations are required, the expected number of times the adapted mutant occurs will be small, if not zero, when taking account of the population size. Moreover, stochastic death of rare intermediate or fully adapted mutants will further affect the observed proportions. In a single host, one can multiply the effective virus population size, say $10^{10}$, with the probability of interest, e.g. $6.65 \times 10^{-7}$ for a random virion being a double mutant when the intermediate single mutants were fully deleterious, the starting mutant neutral and the double mutant has a fitness $f$ $=1.5$, to get the expected number of virions with the mutations of interest, here 6650. In the context of transmission, where frequently small populations consisting of less than a handful of virions are estimated to start new infections
for e.g. influenza virus, HIV and hepatitis C (47-50), the probability of any virion being a mutant of interest is informative for epidemiological studies and risk assessment. In the biologically implausible case (but just to clarify) that each virion has the same chance of being transmitted and starting the next infection, if only a single virion starts the next infection, the chance that the next host is infected with only the adapted virus is identical to the proportion of this adapted virus in the donor host.

Interestingly, evolutionary models have also been used to improve the understanding of the developmental stages and processes in cancer, and to increase the efficacy of treatment regimes (51). In the evolution of a cancerous cell, there is often a fitness valley to be crossed before the cell is able to progress to expansive, uncontrolled growth (51). As with many other evolutionary models, models for cancer evolution are focused on population-level adaptation. The cancer literature describes two main mechanisms for the population-level crossing of the fitness valley: sequential fixation, whereby the full cancerous cell population acquires one mutation, and only after fixation of the first mutation, the second mutation becomes fixated; and stochastic tunneling, whereby the second mutation establishes prior to fixation of the first mutation $(52,53)$. Stochastic tunneling describes the probability of fixation on a population-level, and allows for sequential but not necessarily simultaneous mutations, in contrast, the deterministic calculations above describe the probability of obtaining multiple mutations simultaneously by any single unit (cell or pathogen or virion), and can
be converted to an expected proportion in the population, but does not equate to fixation.

An advantage of the deterministic calculations used here is that this approach can easily be adjusted to encompass more complicated schemes of required mutations and associated fitnesses. It is, for example, not limited to the investigation of effects of deleterious intermediates, but can also be used when individual mutations are neutral or beneficial, and the combined mutation is synergistic, for example mutations at positions 138 and 229 in the non-structural protein 1 (NS1) (54) and 147, 339 and 588 in PB2 (55) of influenza A/H5N1 virus affecting virulence.

The implementation can be easily changed to model other situations, for example i) where a mutation has a fitness effect when in the vRNA, but not when occurring in the cRNA, as those molecules are not transcribed into mRNA and translated into protein; or ii) to encompass delayed phenotypes of mutations (56, 57) whereby deleterious or advantageous fitness effects are not fully observed as the respective proteins are only generated in a meaningful amount at a later time. Such mechanisms might alter the likelihood of deleterious and adaptive mutations occurring, for example by a deleterious mutation arising as nondeleterious in the cRNA, and the compensatory mutation arising in the next replication round, such that deleterious vRNA is never formed and both mutations were effectively neutral.

In the stochastic model, the branching factor governs population growth, and as a result of the founder effect this leads to mutations arising earlier in time achieving higher proportions; an effect that can be seen as a banded simulation runs, for example in Figure 4A, where the top band shows that there are fewer instances (lower red intensity) but higher proportions of double mutants for mutants arising early. Again, the implementation of this model can be adjusted such that the branching factor varies in both steps of replication to match the specific parameters for the virus of interest.

The calculations enable both estimating the likelihood of crossing fitness valleys, as well as the probability of passing a narrow fitness ridge. The work presented here on assessing the effect of fitness ridges and required order is relevant, for example, in modeling antibiotic resistance (26), and pyrimethamine resistance of malaria (58). The equations can easily incorporate variable mutation rates (59), which may be useful to investigate different polymerase error rates of influenza virus (60), and to account for varying replication fidelity of HIV reverse transcriptase along different positions in the genome (61). This feature is also important in the evolutionary modeling of cancer, where disease progression often involves the acquisition of decreased genetic stability, and thus an altered mutation rate (62).

Counting the number of routes is also a method that could be applied to determine the multiplicity of drug therapy, as the acquisition of drug-resistant mutations might be avoided by a treatment regime shaping the fitness valley deep and wide enough to prevent the pathogen from crossing, an approach that has been described with combination therapy for example in influenza, tuberculosis and HIV treatment (61, 63-65). In the context of drug therapy, Ribeiro et al. already noted that for totally defective intermediate HIV mutants, all higher order strains have to be produced directly from wild-type, i.e. only allowing routes where all mutations are acquired at once; they also described that for smaller selective disadvantages, a $k+1$ mutant is most likely produced from a $k$ point mutant, i.e. a qualitative phrasing of our quantitation of the contribution to the number of routes from obtaining two subsequent mutations for lessdeleterious intermediates (66).

The introduction of fitness valleys can also be exploited as a mitigation strategy for infectious diseases. One could, for example, design vaccines that require a pathogen to obtain destabilizing mutations to enable immune escape. Models of pathogen evolution can help to establish whether such approaches will completely stall adaptation of the pathogen, or with what likelihood the created fitness valleys would be crossed. Moreover, such approaches could also be used to explore alternative routes as a result of epistatic interactions that might allow deleterious mutations to occur if acquired in the right order $(15,17,20)$.

The successful and efficient invasion of zoonoses into the human population is often thought to be constrained by the existence of deleterious mutations on the path to adaptation. Therefore, calculations on the effects of fitness valleys are of critical importance in pandemic risk assessment of emerging pathogens (8, 33, $35,44,67,68$ ), and in addition to inform the cost-benefit analyses of gain-offunction experiments and dual-use research of concern.

In summary, the ability to calculate the effect of deleterious mutations and order, and to understand the results with the description of the number of available routes, helps to assess the expected impact of fitness valleys and ridges in pathogen evolution, with applications in drug resistance, immune escape, and zoonotic risks assessments.

## ACKNOWLEDGEMENTS

The author declares no conflict of interest. I would like to acknowledge André Brown and Colin Russell for previous designs of the deterministic model, Sander Herfst and Gabriele Neumann for providing input on examples of deleterious mutations, and Ana Mosterín-Höpping, Leah Katzelnick, Ramona Mögling, David Pattinson and Derek Smith for careful reading of previous manuscript versions. This work was supported by the award of a Fellowship in Biomedical Informatics from the Medical Research Council UK (MR/K021885/1) and a Junior Research Fellowship from Homerton College Cambridge to JMF; and the award of HHSN272201400008C (NIAID Centres of Excellence for Influenza Research and Surveillance) to the Center for Pathogen Evolution.

## REFERENCES

1. Whitlock MC, Phillips PC, Moore FB-G, Tonsor SJ. 1995. Multiple fitness peaks and epistasis. Annu Rev Ecol Syst 26:601-629.
2. Maisnier-Patin S, Andersson DI. 2004. Adaptation to the deleterious effects of antimicrobial drug resistance mutations by compensatory evolution. Res Microbiol 155:360-369.
3. Wilke CO, Lenski RE, Adami C. 2003. Compensatory mutations cause excess of antagonistic epistasis in RNA secondary structure folding. BMC Evol Biol 3:3.
4. Poelwijk FJ, Kiviet DJ, Weinreich DM, Tans SJ. 2007. Empirical fitness landscapes reveal accessible evolutionary paths. Nature 445:383-386.
5. da Silva J, Coetzer M, Nedellec R, Pastore C, Mosier DE. 2010. Fitness epistasis and constraints on adaptation in a human immunodeficiency virus type 1 protein region. Genetics 185:293-303.
6. de Visser JAGM, Krug J. 2014. Empirical fitness landscapes and the predictability of evolution. Nat Rev Genet 15:480-490.
7. Paulson JC, de Vries RP. 2013. H5N1 receptor specificity as a factor in pandemic risk. Virus Res 178:99-113.
8. Kuiken T, Holmes EC, McCauley J, Rimmelzwaan GF, Williams CS, Grenfell BT. 2006. Host species barriers to influenza virus infections. Science 312:394-397.
9. Webby R, Hoffmann E, Webster R. 2004. Molecular constraints to interspecies transmission of viral pathogens. Nat Med 10:S77-S81.
10. Imai M, Watanabe T, Hatta M, Das SC, Ozawa M, Shinya K, Zhong G, Hanson A, Katsura H, Watanabe S, Li C, Kawakami E, Yamada S, Kiso M, Suzuki Y, Maher EA, Neumann G, Kawaoka Y. 2012. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 486:420-428.
11. Herfst S, Schrauwen EJA, Linster M, Chutinimitkul S, de Wit E, Munster VJ, Sorrell EM, Bestebroer TM, Burke DF, Smith DJ, Rimmelzwaan GF, Osterhaus ADME, Fouchier RAM. 2012. Airborne transmission of influenza A/H5N1 virus between errets. Science 336:15341541.
12. Linster M, van Boheemen S, de Graaf M, Schrauwen EJA, Lexmond P, Mänz B, Bestebroer TM, Baumann J, van Riel D, Rimmelzwaan GF, Osterhaus ADME, Matrosovich M, Fouchier RAM, Herfst S. 2014. Identification, characterization, and natural selection of mutations driving airborne transmission of A/H5N1 virus. Cell 157:329-339.
13. Kryazhimskiy S, Dushoff J, Bazykin GA, Plotkin JB. 2011. Prevalence of epistasis in the evolution of influenza A surface proteins. PLoS Genet 7:e1001301.
14. Das SR, Hensley SE, David A, Schmidt L, Gibbs JS, Puigbò P, Ince WL, Bennink JR, Yewdell JW. 2011. Fitness costs limit influenza A virus hemagglutinin glycosylation as an immune evasion strategy. Proc Natl Acad Sci U S A 108:E1417-E1422.
15. Myers JL, Wetzel KS, Linderman SL, Li Y, Sullivan CB, Hensley SE. 2013. Compensatory hemagglutinin mutations alter antigenic properties of influenza viruses. J Virol 87:11168-11172.
16. Hensley SE, Das SR, Gibbs JS, Bailey AL, Schmidt LM, Bennink JR, Yewdell JW. 2011. Influenza A virus hemagglutinin antibody escape promotes neuraminidase antigenic variation and drug resistance. PLoS One 6:e15190.
17. Gong LI, Suchard MA, Bloom JD. 2013. Stability-mediated epistasis constrains the evolution of an influenza protein. Elife 2:e00631.
18. Duan S, Govorkova EA, Bahl J, Zaraket H, Baranovich T, Seiler P, Prevost K, Webster RG, Webby RJ. 2014. Epistatic interactions between neuraminidase mutations facilitated the emergence of the oseltamivirresistant H1N1 influenza viruses. Nat Commun 5:5029.
19. Bloom JD, Gong LI, Baltimore D. 2010. Permissive secondary mutations enable the evolution of influenza oseltamivir resistance. Science 328:1272-1275.
20. Butler J, Hooper KA, Petrie S, Lee R, Maurer-Stroh S, Reh L, Guarnaccia T, Baas C, Xue L, Vitesnik S, Leang S-K, McVernon J, Kelso A, Barr IG, McCaw JM, Bloom JD, Hurt AC. 2014. Estimating the fitness advantage conferred by permissive neuraminidase mutations in recent oseltamivir-resistant $\mathrm{A}(\mathrm{H} 1 \mathrm{~N} 1)$ pdm09 influenza viruses. PLoS Pathog 10:e1004065.
21. Simon P, Holder BP, Bouhy X, Abed Y, Beauchemin CAA, Boivin G. 2011. The 1222 V neuraminidase mutation has a compensatory role in replication of an oseltamivir-resistant influenza virus A/H3N2 E119V mutant. J Clin Microbiol 49:715-717.
22. Maynard Smith J. 1970. Natural selection and the concept of a protein space. Nature 225:563-564.
23. Orr HA. 2005. The genetic theory of adaptation: a brief history. Nat Rev Genet 6:119-127.
24. Romero PA, Arnold FH. 2009. Exploring protein fitness landscapes by directed evolution. Nat Rev Mol Cell Biol 10:866-876.
25. Orr HA. 1998. The population genetics of adaptation: the distribution of factors fixed during adaptive evolution. Evolution (N Y) 52:935-949.
26. Weinreich DM, Delaney NF, DePristo MA, HartI DL. 2006. Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312:111-114.
27. Covert AW, Lenski RE, Wilke CO, Ofria C. 2013. Experiments on the role of deleterious mutations as stepping stones in adaptive evolution. Proc Natl Acad Sci U S A 110:E3171-3178.
28. Gerrish PJ, Lenski RE. 1998. The fate of competing beneficial mutations in an asexual population. Genetica 102-103:127-144.
29. Cowperthwaite MC, Bull JJ, Meyers LA. 2006. From bad to good: fitness reversals and the ascent of deleterious mutations. PLoS Comput Biol 2:1292-1300.
30. Gillespie JH. 1983. Some properties of finite populations experiencing strong selection and weak mutation. Am Nat 121:691-708.
31. Dean AM, Thornton JW. 2007. Mechanistic approaches to the study of evolution: the functional synthesis. Nat Rev Genet 8:675-688.
32. Franke J, Klözer A, de Visser JAGM, Krug J. 2011. Evolutionary accessibility of mutational pathways. PLoS Comput Biol 7:e1002134.
33. Park M, Loverdo C, Schreiber SJ, Lloyd-Smith JO. 2013. Multiple scales of selection influence the evolutionary emergence of novel pathogens. Philos Trans R Soc Lond B Biol Sci 368:20120333.
34. Weinreich DM, Watson RA, Chao L. 2005. Perspective: Sign epistasis and genetic constraint on evolutionary trajectories. Evolution ( N Y) 59:1165-1174.
35. Russell CA, Fonville JM, Brown AEX, Burke DF, Smith DL, James SL, Herfst S, van Boheemen S, Linster M, Schrauwen EJ, Katzelnick L, Mosterín A, Kuiken T, Maher E, Neumann G, Osterhaus ADME, Kawaoka Y, Fouchier RAM, Smith DJ. 2012. The potential for respiratory droplet-transmissible A/H5N1 influenza virus to evolve in a mammalian host. Science 336:1541-1547.
36. Fonville JM, Burke DF, Lewis NS, Katzelnick LC, Russell CA. 2013. Quantifying the fitness advantage of polymerase substitutions in influenza A/H7N9 viruses during adaptation to humans. PLoS One 8:e76047.
37. Sanjuán R, Nebot MR, Chirico N, Mansky LM, Belshaw R. 2010. Viral mutation rates. J Virol 84:9733-9748.
38. Drake JW. 1993. Rates of spontaneous mutation among RNA viruses. Proc Natl Acad Sci U S A 90:4171-4175.
39. Gokhale CS, Iwasa Y, Nowak MA, Traulsen A. 2009. The pace of evolution across fitness valleys. J Theor Biol 259:613-620.
40. Gagneux S, Long CD, Small PM, Van T, Schoolnik GK, Bohannan BJM. 2006. The competitive cost of antibiotic resistance in Mycobacterium tuberculosis. Science 312:1944-1946.
41. Coffin JM. 1995. HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science 267:483-489.
42. Weissman DB, Desai MM, Fisher DS, Feldman MW. 2009. The rate at which asexual populations cross fitness valleys. Theor Popul Biol 75:286300.
43. Loverdo C, Lloyd-Smith JO. 2013. Evolutionary invasion and escape in the presence of deleterious mutations. PLoS One 8:e68179.
44. Alexander HK, Day T. 2010. Risk factors for the evolutionary emergence of pathogens. J R Soc Interface 7:1455-1474.
45. Weinreich DM, Chao L. 2005. Rapid evolutionary escape by large populations from local fitness peaks is likely in nature. Evolution ( N Y) 59:1175-1182.
46. Desai MM, Fisher DS. 2007. Beneficial mutation-selection balance and the effect of linkage on positive selection. Genetics 176:1759-1798.
47. Varble A, Albrecht RA, Backes S, Crumiller M, Bouvier NM, Sachs D, Garcia-Sastre A, TenOever BR. 2014. Influenza A virus transmission bottlenecks are defined by infection route and recipient host. Cell Host Microbe 16:691-700.
48. Wilker PR, Dinis JM, Starrett G, Imai M, Hatta M, Nelson CW, O'Connor DH, Hughes AL, Neumann G, Kawaoka Y, Friedrich TC. 2013. Selection on haemagglutinin imposes a bottleneck during mammalian transmission of reassortant H5N1 influenza viruses. Nat Commun 4:2636.
49. Wang GP, Sherrill-Mix S a, Chang K-M, Quince C, Bushman FD. 2010. Hepatitis $C$ virus transmission bottlenecks analyzed by deep sequencing. J Virol 84:6218-6228.
50. Keele BF, Giorgi EE, Salazar-Gonzalez JF, Decker JM, Pham KT, Salazar MG, Sun C, Grayson T, Wang S, Li H, Wei X, Jiang C, Kirchherr JL, Gao F, Anderson JA, Ping L-H, Swanstrom R, Tomaras GD, Blattner WA, Goepfert PA, Kilby JM, Saag MS, Delwart EL, Busch MP, Cohen MS, Montefiori DC, Haynes BF, Gaschen B, Athreya GS, Lee HY, Wood N, Seoighe C, Perelson AS, Bhattacharya T, Korber BT, Hahn BH, Shaw GM. 2008. Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc Natl Acad Sci U S A 105:7552-7557.
51. Merlo LMF, Pepper JW, Reid BJ, Maley CC. 2006. Cancer as an evolutionary and ecological process. Nat Rev Cancer 6:924-935.
52. Iwasa Y, Michor F, Nowak MA. 2004. Stochastic tunnels in evolutionary dynamics. Genetics 166:1571-1579.
53. Komarova NL, Sengupta A, Nowak MA. 2003. Mutation-selection networks of cancer initiation: tumor suppressor genes and chromosomal instability. J Theor Biol 223:433-450.
54. Fan S, Macken CA, Li C, Ozawa M, Goto H, Iswahyudi NFN, Nidom CA, Chen H, Neumann G, Kawaoka Y. 2013. Synergistic effect of the PDZ and p85 $\beta$-binding domains of the NS1 protein on virulence of an avian H5N1 influenza A virus. J Virol 87:4861-4871.
55. Fan S, Hatta M, Kim JH, Halfmann P, Imai M, Macken CA, Le MQ, Nguyen T, Neumann G, Kawaoka Y. 2014. Novel residues in avian influenza virus PB2 protein affect virulence in mammalian hosts. Nat Commun 5:5021.
56. Valcárcel J, Ortín J. 1989. Phenotypic hiding: the carryover of mutations in RNA viruses as shown by detection of mar mutants in influenza virus. J Virol 63:4107-4109.
57. Wilke CO, Novella IS. 2003. Phenotypic mixing and hiding may contribute to memory in viral quasispecies. BMC Microbiol 3:11.
58. Lozovsky ER, Chookajorn T, Brown KM, Imwong M, Shaw PJ, Kamchonwongpaisan S, Neafsey DE, Weinreich DM, HartI DL. 2009. Stepwise acquisition of pyrimethamine resistance in the malaria parasite. Proc Natl Acad Sci U S A 106:12025-12030.
59. Mansky LM, Cunningham KS. 2000. Virus mutators and antimutators: roles in evolution, pathogenesis and emergence. Trends Genet 16:512517.
60. Suárez P, Valcárcel J, Ortín J. 1992. Heterogeneity of the mutation rates of influenza A viruses: isolation of mutator mutants. J Virol 66:2491-2494.
61. Ribeiro RM, Bonhoeffer S, Nowak MA. 1998. The frequency of resistant mutant virus before antiviral therapy. AIDS 12:461-465.
62. Loeb LA. 1991. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res 51:3075-3079.
63. Schrag SJ, Perrot V, Levin BR. 1997. Adaptation to the fitness costs of antibiotic resistance in Escherichia coli. Proc $R$ Soc London Ser B 264:1287-1291.
64. Perelson AS, Rong L, Hayden FG. 2012. Combination antiviral therapy for influenza: predictions from modeling of human infections. J Infect Dis 205:1642-1645.
65. Müller B, Borrell S, Rose G, Gagneux S. 2013. The heterogeneous evolution of multidrug-resistant Mycobacterium tuberculosis. Trends Genet 29:160-169.
66. Ribeiro RM, Bonhoeffer S. 1999. A stochastic model for primary HIV infection: optimal timing of therapy. AIDS 13:351-357.
67. Pepin KM, Lass S, Pulliam JRC, Read AF, Lloyd-Smith JO. 2010. Identifying genetic markers of adaptation for surveillance of viral host jumps. Nat Rev Microbiol 8:802-813.
68. Holmes EC. 2013. What can we predict about viral evolution and emergence? Curr Opin Virol 3:180-184.

## FIGURES:

Figure 1: A) The blue line shows the deterministic probability of any virion being a double mutant $\left(\log _{10}\right)$ as a function of the relative fitness of the intermediate single mutants (a relative fitness of 0 means the single mutants are fully deleterious). The probability is shown after $t=20$ replication rounds, in the situation where the starting (wild type) virus and the adapted (double) mutant are neutral (relative fitness $=1$ ). The pale shades of blue indicate the results of 10,000 stochastic simulations for each of the 101 settings of the relative fitness $f$. The circles indicate the average of the stochastic runs for each fitness setting. B) The probability of any virion being a double mutant is split into a mechanism where two mutations were acquired in a single replication round ("through doubles"); and a mechanism where the two single mutations occurred in distinct replication rounds ("through singles").

Figure 2: The effective number of routes to a double mutant is shown as a function of the relative fitness of the intermediate single mutants (a relative fitness $f=0$ means the single mutants are fully deleterious). The results are shown after $t=20$ replication rounds, in the situation where the starting (wild type) virus and the adapted (double) mutant are neutral ( $f=1$ ). The colors illustrate the relative contributions of a double mutation at once (grey, delay $=0$ ), and the single-single mutation routes, with an increasing delay of 1 until 19
replication rounds between the mutation events represented by the gradient shown in the colorbar.

Figure 3: The probability of any virion being a double mutant $\left(\log _{10}\right)$ is shown in color as a function of the relative fitness of the deleterious intermediate single mutants (x-axis) and the relative fitness of the double, i.e. host-adapted, mutant ( $y$-axis). The probability is shown after $t=20$ replication rounds, and the starting (wild type) virus is neutral ( $f=1$ ).

Figure 4: A) The deterministic probability of any virion being a double mutant $\left(\log _{10}\right)$ is shown as a function of the relative fitness of the deleterious intermediate single mutant(s). The graph shows the situation when both single mutants are deleterious ("fitness valley", see the blue line in Figure 1), or when only the non-ordered single mutant is deleterious ("fitness ridge"). The probability is shown after $t=20$ replication rounds, the starting (wild type) virus, ordered single mutant (for the fitness ridge) and double mutant are neutral ( $f=1$ ). The pale shades of blue and red indicate the results of 10,000 stochastic simulations for each of the 101 settings of the relative fitness $f$ for the fitness valley, and fitness ridge, respectively. The circles indicate the average of the stochastic runs for each fitness setting. B) The probability of double mutant for the fitness ridge (red line) is divided into the contribution toward this probability by the mechanism where two mutations were acquired in a single replication round ("through doubles"); as two single mutations in distinct replication rounds in order ("through
ordered singles"); and as two single mutations in distinct replication rounds occurring in the incorrect order, where the deleterious single mutation is obtained first and incurs the fitness cost ("through deleterious singles").

| \# mutations required |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 2 | 3 | 4 | 5 | 6 | 7 |
|  | 20 | 20 | 20 | 20 | 20 | 20 |
| Effective \# of routes | 20 | $8 \times 10^{3}$ | $1.6 \times 10^{5}$ | $3.2 \times 10^{6}$ | $6.4 \times 10^{-1}$ | $1.28 \times 10^{9}$ |
| Total routes | 400 | $5.5 \times 10^{-3}$ | $1.3 \times 10^{-4}$ | $6.3 \times 10^{-6}$ | $3.1 \times 10^{-1}$ | $1.6 \times 10^{-8}$ |
| Fraction available | $5.0 \times 10^{-2}$ | 20 |  |  |  |  |

Table 1: The effective number of routes if all intermediate mutants are fully deleterious, the number of available routes if all intermediate mutants were viable (total routes), and the fraction of routes available (Effective \# of routes/Total routes). The results are shown for two to seven mutations required, for $t=20$ replication rounds. The starting (wild type) virus and the adapted (double) mutant are neutral $(f=1)$, and all possible intermediates are fully deleterious $(f=0)$.

| \# mutations required |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 2 | 3 | 4 | 5 | 6 | 7 |
|  |  | 210 | 1540 | 8855 | 42504 | 177100 |
| Allowed routes | 400 | $8 \times 10^{3}$ | $1.6 \times 10^{5}$ | $3.2 \times 10^{6}$ | $6.4 \times 10^{7}$ | $1.28 \times 10^{9}$ |
| Total routes | 40000 |  |  |  |  |  |
| Fraction available | 0.525 | 0.193 | 0.055 | 0.013 | 0.003 | $5.14 \times 10^{-4}$ |

Table 2: The number of allowed routes if complete and strict order is required for all mutations, the number of available routes if all intermediate mutants were viable (total routes), and the fraction of routes available, for situations where two to seven mutations are required. As an example, for 4 mutations required, this would mean that mutation $A$ has to occur prior to or simultaneously with mutation $B$; mutation $B$ has to occur prior to or simultaneously with mutation $C$; and mutation $C$ has to occur prior to or simultaneously with mutation $D$. The results are shown for $t=20$ replication rounds, the starting (wild type) virus and each ordered mutant are neutral ( $f=1$ ), and all possible non-ordered intermediate mutants are fully deleterious $(f=0)$.

