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Abstract. We construct unique local solutions for the spherically-symmetric Einstein–

Klein-Gordon–AdS system subject to a large class of initial and boundary conditions

including some considered in the context of the AdS-CFT correspondence. The proof
relies on estimates developed for the linear wave equation by the second author and

involves a careful renormalization of the dynamical variables, including a renormalization
of the well-known Hawking mass. For some of the boundary conditions considered this

system is expected to exhibit rich global dynamics, including the existence of hairy black

holes. The present paper furnishes a starting point for such global investigations.
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1. Introduction

Consider the coupled Einstein–Klein-Gordon system in 3 + 1 dimensions in the

presence of a negative cosmological constant Λ = − 3
l2 and mass-squared m2 = 2a

l2

for the Klein-Gordon field:

Rµν −
1

2
gµνR−

3

l2
gµν = 8πTµν ,

�gψ −
2a

l2
ψ = 0 , (1.1)

∂µψ∂νψ −
1

2
gµν∂σψ∂

σψ − a

l2
ψ2gµν = Tµν .

We wish to construct spherically symmetric solutions of (1.1) in the class of space-

times which are asymptotically anti de Sitter (aAdS) at infinity. The asymptotically-
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flat case (with Λ = 0, a = 0) has been considered in [6] and the asymptotically-de

Sitter case (with Λ > 0, a ≥ 0) in [20,7] .

As is well-known, the study of hyperbolic systems (linear or non-linear) in aAdS

spacetimes generally necessitates the prescription of boundary conditions at the

timelike asymptotic infinity. In perhaps the simplest case, that of the linear wave

equation

�gψ −
2a

l2
ψ = 0 (1.2)

on a fixed aAdS background g, the field has an expansion near infinity of the form:

ψ ∼ ψ−ρ
3
2−κ + ψ+ρ

3
2 +κ +O

(
ρ

5
2

)
,

where ρ = 0 defines the conformal boundary and κ =
√

9/4 + 2a. For the mass-

squared in the range 5/4 < −2a < 9/4, the well posedness of the initial-boundary

value problem with inhomogeneous Dirichlet (ψ− prescribed), Neumann (ψ+ pre-

scribed) or Robin (linear combination of ψ± prescribed) boundary conditions was

understood in the context of classical energy estimates in [22]. For an earlier treat-

ment of the Dirichlet case see [21,12]. We remark that for −2a ≤ 5/4 there is no

freedom in specifying boundary conditions (at least in the context of the renor-

malised energies of [22]; finite energy solutions have been constructed in [21,12]),

while for −2a > 9/4, the Breitenlohner-Freedman bound [3], the classical well-

posedness theory based on energy estimates breaks down.

The connection between the linear problem (1.2) and (1.1) is that the lineariza-

tion of the system (1.1) around a fixed spherically symmetric aAdS background g

yields the Klein-Gordon equation (1.2).

In the case of Dirichlet conditions imposed on ψ, in [13] the first author in

collaboration with J. Smulevici proved – based on estimates for the linear problem

[12] – that the system (1.1) was well-posed. A companion paper [14] established the

stability of the Schwarzschild-AdS spacetime within this model.

With the recent results of [22], which ensure well-posedness of (1.2) for general

boundary conditions (and 5/4 < −2a < 9/4), it is very natural to ask whether the

non-linear system (1.1) is also well-posed for general boundary conditions. This is

a non-trivial problem, because the weaker decay exhibited by ψ for non-Dirichlet

boundary conditions can lead to divergences in the equations for the metric coeffi-

cients.a At the level of applications, imposing these other boundary conditions will

allow one to study more interesting global dynamics such as non-trivial solitons,

which are absent in the Dirichlet case.b A flavour of this is already provided by our

aIn particular, the metrics we construct extend only at the C1,η level to the conformal boundary
after rescaling for certain choices of a. The problems this introduces will be resolved by a careful

renormalization exploiting certain cancellations, see below.
bSuch boundary conditions are also of particular interest in the context of the AdS-CFT corre-
spondence. See for instance [1] where a black hole spacetime in a model incorporating an electro-

magnetic field is excited by imposing a time dependent inhomogeneous Dirichlet condition at the
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[15], which investigates the global dynamics of (1.2) at the linear level, establishing

among other things the existence of solitons for certain choices of boundary condi-

tions. Therefore, the present paper opens the door for the mathematical analysis of

the global evolution of asymptotically AdS spacetimes under physically more inter-

esting boundary conditions, allowing, for instance, the study of stability of “hairy

black holes”.

We finally mention that the global non-linear dynamics of the system (1.1) has

been intensely investigated numerically, see [2,4,5].

Remark. For a = −1, the scalar field is conformally coupled. In this case (or more

generally, for the Einstein equations coupled to any conformal matter model), well-

posedness of the system (1.1) can be proven without symmetry restrictions by the

conformal method of Friedrich, see [8,17]. However, it is not clear whether or how

these methods extend to the general case.

New ideas and comparison with [13]. In the remainder of this introduction

we highlight the main difficulties and novel ideas in extending the results of [13]

(homogeneous Dirichlet case) to general boundary conditions.

We recall that a key ingredient of the argument in [13] was the consideration of

a renormalized system whose well-posedness was equivalent to that of the original

system. The solutions of the renormalized system were then constructed via a fixed

point argument, which combined L2-energy estimates for ψ and (suitably weighted)

pointwise estimates for the metric coefficients. Because the linear statement of [12]

required H2-regularity of solutions of the wave equation (1.2), the contraction map

was quite elaborate and required commutation of the wave equation, while carefully

keeping track of the regularity of the metric coefficients.

The approach taken in this paper is similar (in particular the set-up of doing

L2-estimates for ψ and pointwise estimates for the metric components is retainedc)

but based on several new ingredients:

(1) Unlike in the Dirichlet case, the energy estimates for ψ have to be phrased

in terms of the twisted derivatives introduced in the linear context in [22].

The twisting, while eventually enabling one to prove an energy estimate for

non-Dirichlet conditions, introduces certain non-linear error-terms whose

regularity and decay towards infinity has to be controlled. In addition, at

several points (see for instance the formulation of the boundary condition

in Section 3.2) it becomes quite subtle whether the twisting is done with

AdS boundary. See also [18] for further examples of non-trivial boundary value problems in the
AdS/CFT context.
cIf the boundary were at a finite distance, an approach based entirely on pointwise estimates would

be possible using integration along characteristics for ψ. Here, unless one is in the conformally
coupled case (which is essentially a “finite” problem), it is not immediate whether and how this

approach generalizes to the situation with the boundary being at infinity.
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respect to a fixed boundary defining function or the inverse of the (dynami-

cal!) geometric area radius. This difficulty is coupled with the low regularity

we are working with, cf. (4) below.

(2) Unlike in the Dirichlet case, the equation for the Hawking mass also needs

to be renormalized. This may be viewed as a consequence of the fact that

the usual ∂t-energy for the linear problem diverges. With the renormaliza-

tion one finally obtains a regular system (with a “ψ-renormalized” Hawking

mass (2.13) as a regular variable), whose contraction property can be es-

tablished.

(3) Our contraction map scheme only uses the wave equation for the (inverse)

area radius r̃ = 1
r and the scalar field ψ together with a first order equa-

tion for the renormalized Hawking mass which is integrated from the data

towards the boundary. The Hawking mass can a posteriori be shown to be

constant along null-infinity in the homogeneous Dirichlet and Neumann

case but remarkably, for Robin boundary conditions, it is in fact non-

constant along the boundary, with the difference of renormalized Hawking

mass between any two points on the boundary related to the (renormal-

ized) energy flux of the scalar field through the boundary familiar from

the linear problem [22]. See Section 3.2. We emphasize that having only

three equations in the contraction map considerably simplifies the overde-

termined scheme of [13], where constancy of the Hawking mass is imposed

a-priori.

(4) Because the well-posedness statement of [22] is proven at the H1-level, we

can close the argument with lower regularity for the contraction map than

in [13].d The improvement of the regularity by commutation can be done

a posteriori. In particular, we obtain as a corollary an H1-well-posedness

result for the linear wave equation in a spherically symmetric background

(with precise (low) regularity assumptions on the metric), see Section 8.

This may be useful for future applications.

(5) In addition, some novel estimates are obtained in the context of the con-

traction map, which can be directly used to simplify the proof of [13]. See

Section 5.3.

Overview. In the next section we derive the renormalized system culminating in

the definition of a weak solution to the renormalized system (Definition 1). Ini-

tial and boundary data for this system are constructed in Section 3 followed by

a statement of the main theorem in Section 4. The proof of the main theorem is

the content of Section 5: After definition of the relevant function spaces in Section

5.1, the contraction map is formulated in Section 5.2, with the contraction property

dThe lower regularity also allows us to work with the simple change of variables r̃ = 1/r, while

[13] had to capture more detailed asymptotics.
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being demonstrated in Sections 5.3-5.5. In conjunction with a proposition about the

propagation of the constraint equations (proven in Section 5.6) the main theorem

then follows. Generalizations of the main theorem are discussed in Section 6 and

an appropriate higher order regularity version is obtained a posteriori in Section 7.

The last section provides a useful Corollary for the linear wave equation in spherical

symmetry with rough coefficients.

2. The Renormalized System of Equations

Recall that l2 = − 3
Λ , where Λ is the cosmological constant and define

κ =
√

9/4 + 2a with −9/4 < 2a < −5/4 (2.1)

where 2a is the mass-squared of the Klein-Gordon field, cf. (1.1). We are interested in

constructing spherically symmetric solutions of the Einstein–Klein-Gordon system

with a negative cosmological constant and with (possibly inhomogeneous) Dirichlet,

Neumann or Robin boundary conditions. In [13] the same system was studied with

homogeneous Dirichlet boundary conditions, so we may start from the following

result of that paper:

Lemma 2.1. Let (M, g, ψ), with (M, g) a four dimensional, smooth Lorentzian

manifold with C2-metric g and ψ ∈ C2(M), be a solution to the EKG system (1.1).

Assume that (M, g, ψ) is invariant under an effective action of SO(3) with principal

orbit type an S2. Denote by r the area-radius of the spheres of symmetry. Then,

locally around any point of M, there exist double-null coordinates u, v such that the

metric takes the form

g = −Ω2dudv + r2dσS2 (2.2)

where Ω := Ω(u, v) and r := r(u, v) are C2 functionse and dσS2 is the standard

round metric of unit radius on S2. Let Q =M/SO(3) be the quotient of the space-

time by the isometry group. Then, the Einstein–Klein-Gordon equations reduce to:

∂u

( ru
Ω2

)
= −4πr

(∂uψ)2

Ω2
, (2.3)

∂v

( rv
Ω2

)
= −4πr

(∂vψ)2

Ω2
, (2.4)

ruv = −Ω2

4r
− rurv

r
+

2πar

l2
Ω2ψ2 − 3

4

r

l2
Ω2, (2.5)

(log Ω)uv =
Ω2

4r2
+
rurv
r2
− 4π∂uψ∂vψ, (2.6)

∂u∂vψ = −ru
r
ψv −

rv
r
ψu −

Ω2a

2l2
ψ. (2.7)

eIn fact, it suffices that r ∈ C2, Ω ∈ C1 with Ωuv ∈ C0 for the metric to be C2 in the sense that

the Riemann tensor has C0 components.
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While the variables Ω, r, ψ have a clean geometrical interpretation, they are not

very suitable for the purposes of solving the system of equations (2.3)-(2.7) because

they become singular at the conformal boundary of anti-de Sitter, where we expect

r → ∞, with Ω2 ∼ r2, ψ ∼ r−
3
2 +κ. In order to capture the asymptotic behaviour

more carefully, we introduce a renormalised system of equations. We follow [13] in

first introducing the Hawking mass:

$ =
r

2

(
1 +

4rurv
Ω2

)
+
r3

2l2
. (2.8)

This is a scalar under changes of (u, v) coordinates which fix the metric form (2.2)

and is simply a constant for the Schwarzschild–anti-de Sitter metric. The Hawking

mass obeys the following transport equations, which hold assuming (2.3)-(2.7):

∂u$ = −8πr2 rv
Ω2

(∂uψ)2 +
4πr2a

l2
ruψ

2 , (2.9)

∂v$ = −8πr2 ru
Ω2

(∂vψ)2 +
4πr2a

l2
rvψ

2 . (2.10)

We can replace some of the Einstein–Klein-Gordon system of equations in the pre-

vious Lemma with equations involving $. For the purposes of the following Lemma,

we may assume all derivatives to be taken in the weak sense.

Lemma 2.2. Suppose that (2.5), (2.7), (2.9), (2.10) hold, where Ω is understood

to be defined by (2.8). Then as a consequence, (2.3), (2.4) also hold. If furthermore

the right hand side of (2.5) may be differentiated in u, then (2.6) holds.

Proof. We first show that (2.3) holds as a consequence of (2.5), (2.8), (2.9). Con-

sider the left hand side. We can replace ru
Ω2 with a term involving r, rv, $ using

(2.8). Differentiating this in u, we can replace the ruv and $u terms which appear

by making use of (2.5) and (2.9). Simplifying the resultant expression, we arrive at

(2.3). Similarly (2.4) holds as a consequence of (2.5), (2.8), (2.10). To show that

(2.6) holds, we can multiply (2.3) by Ω2 and then differentiate with respect to v.

Doing so, we obtain a term involving (log Ω)uv, a term involving ψuv and one involv-

ing ruuv together with lower order terms. The first of these we retain, the second

can be replaced by making use of (2.7), and the final one we can write as ∂u(ruv)

and substitute in (2.5). Simplifying the resulting expression, we arrive at (2.6).

The Hawking mass may loosely be thought of as the mass-energy inside a sphere

of radius r. In the case of homogeneous Dirichlet conditions, this approaches a con-

stant on the conformal boundary. For other choices of boundary condition, $ in fact

diverges towards the conformal boundary. This is a consequence of the fact that the

un-renormalised energy in the scalar field ψ is infinite for such boundary conditions.

In the linear problem one must renormalise the energy-momentum tensor to give a

finite energy for the field [22,15,3]. In much the same way, we shall renormalise $

and render it finite by subtracting a term which grows towards the boundary. To

do so, we recall that key to the construction of the renormalised energy-momentum
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tensor for the linear problem is the introduction of twisted derivatives. Consider

equation (2.9). We can replace ∂uψ with a twisted derivative as follows:

∂uψ = f∂u

(
ψ

f

)
+
fu
f
ψ

for some C1 function f . From here we deduce:

(∂uψ)
2

=

(
f∂u

(
ψ

f

)
+ ψ

fu
f

)2

=

[
f∂u

(
ψ

f

)]2

+ 2fuψ∂u

(
ψ

f

)
+ ψ2

[
fu
f

]2

=

[
f∂u

(
ψ

f

)]2

− ψ2

[
fu
f

]2

+
fu
f
∂uψ

2. (2.11)

Our intuition from the linear case leads us to expect that a suitable choice for f is

to take f = rg for some g to be determined below. After substituting (2.11) into

(2.9), the term involving ∂uψ
2 can be moved to the left hand side, at the expense

of introducing some new zero’th order terms in ψ. Doing this and using (2.8) to

replace terms involving rurv/Ω
2, we find

∂u

(
$ − 2πg

r3

l2
ψ2

)
=− 8πr2 rv

Ω2

[
f∂u

(
ψ

f

)]2

+ 4πg (r − 2$)ψ

(
f∂u

ψ

f

)
+ 2πψ2ru

(
r2

l2
[
−g2 − 3g + 2a

]
+ g2

(
1− 2$

r

))
(2.12)

Now we see that the choice

g = −3

2
+ κ ,

suggested by linear theory, indeed leads to a cancellation of the top order term on

the right hand side and we will henceforth work with g defined by this choice. We

therefore introduce a renormalised Hawking mass by

$N = $ − 2πg
r3

l2
ψ2 . (2.13)

If (2.3)-(2.7) hold, then $N obeys the equations

∂v$N =− 8πr2 ru
Ω2

[
f∂v

(
ψ

f

)]2

+ 4πg (r − 2$N )ψ

(
f∂v

ψ

f

)
+ 2πψ2rv

(
g2

(
1− 2$N

r

))
− 16π2g2 r

3

l2
ψ3

(
f∂v

ψ

f

)
− 8π2g3 r

2

l2
rvψ

4

(2.14)

∂u$N =− 8πr2 rv
Ω2

[
f∂u

(
ψ

f

)]2

+ 4πg (r − 2$N )ψ

(
f∂u

ψ

f

)
+ 2πψ2ru

(
g2

(
1− 2$N

r

))
− 16π2g2 r

3

l2
ψ3

(
f∂u

ψ

f

)
− 8π2g3 r

2

l2
ruψ

4

(2.15)
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which follow immediately from (2.12), together with the same equation after swap-

ping u, v.

To renormalise the wave equation for ψ (2.7), we can simply follow the procedure

applied in [22,15] for twisting a Klein-Gordon equation. We claim that by expanding

the terms (assuming f = r−
3
2 +κ, r ∈ C1, and that the equation (2.5) for ruv holds)

the following equations are readily seen to be equivalent to one another and also to

(2.7).

∂v

(
fr

(
∂u
ψ

f

))
= −∂u (rf)

(
∂v
ψ

f

)
− Ω2

4
rV ψ, (2.16)

∂u

(
fr

(
∂v
ψ

f

))
= −∂v (rf)

(
∂u
ψ

f

)
− Ω2

4
rV ψ, (2.17)

where the potential is given by:

V =
2$

r3

(
κ− 3

2

)2

+ 8π

(
κ− 3

2

)
a

l2
ψ2 − 1

r2

(
κ2 − 2κ+

3

4

)
=

2$N

r3

(
κ− 3

2

)2

+
ψ2

l2

(
κ− 3

2

)[
8πa+ 4π

(
κ− 3

2

)2
]
− 1

r2

(
κ2 − 2κ+

3

4

)
.

(2.18)

Note that for κ > 1
2 , i.e. beyond the conformally coupled case a = −1, the potential

decays slower than r−2. This is a consequence of the fact that, even assuming all

the metric functions are smooth on the interior, the rescaled metric r−2g can no

longer be extended as a C2 metric across the conformal boundary, but rather only in

C1,2−2κ. We shall be forced to confront this issue at various points in our arguments.

Finally, the radial coordinate r may be simply renormalised by considering in-

stead r̃ = 1
r . Making use of (2.5), together with the expressions (2.8), (2.13) relating

Ω, $N , it is a matter of simple calculation to show that

r̃uv =
Ω2

r2

(
3$N

2r2
− 1

2r
+

2πrψ2

l2

(
−a+

3

2
g

))
. (2.19)

2.1. Notation

In view of their importance, we introduce a notation for the twisted derivatives

introduced above. We let ρ = 1
2 (u− v) and define

∂̂uψ := ρ
3
2−κ

∂

∂u

(
ψ

ρ
3
2−κ

)
(2.20)

and

∂̃uψ := r̃
3
2−κ

∂

∂u

(
ψ

r̃
3
2−κ

)
. (2.21)

Note that in (2.20) we twist with the function ρ known explicitly in terms of the

coordinates u and v, while in (2.21) we twist with the geometric area radius r̃ which
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is itself a dynamical variable. The wave equation (2.16) twists naturally with r̃ while

the norms are more cleanly expressed in terms of ρ-twisted derivatives. A relation

between (2.20) and (2.21) in the context of the contraction map is established in

Lemma 5.9.

We also denote t = 1
2 (u+ v) and observe that this is a useful coordinate along

I .

2.2. Restriction on κ

Let us recapitulate what the above renormalization has achieved. We recall that

from the linear theory we expect

ψ ∼ r−3/2+κ , ∂̃uψ, ∂̃vψ ∼ rmax(−3/2+κ,− 1
2−κ) , ∂uψ, ∂vψ ∼ r−1/2+κ .

Investigating the right hand side of (2.14) and (2.15) we see that (assuming the

decay from the linear theory for the moment) all but the last of the five terms are

integrable for 0 < κ < 1, while the last is integrable only for 0 < κ < 3
4 . This

situation can be remedied with an additional renormalization to be discussed in

Section 6.1. A further restriction on κ, κ < 2
3 , will arise when proving the energy

estimate for the wave equation (2.16) in view of the ψ2-term in the potential (2.18)

not decaying sufficiently strongly. This can also be remedied as shown in Section

6.1. However, to avoid cumbersome formulae and obscuring the main ideas, for the

remainder of the paper we are simply going to assume

0 < κ <
2

3
. (2.22)

In Section 6.1 we outline a proof of the general case 0 < κ < 1.

It is not surprising that the problem becomes more technically challenging for κ

close to 1. The solutions we shall construct at the H1 level will have an expansion

in a suitable coordinate chart of the form

ψ = ψ−(t)ρ
3
2−κ +O

(
ρ

3
2

)
g =

l2

ρ2
[(1 +O (ρη)) dudv + (1 +O (ρη)) dσS2 ]

where η = min(2, 3− 2κ). Moreover this expansion is sharp: at the classical level of

regularity one indeed sees terms in the metric proportional to ρ3−2κ and ρ2 which

cannot be removed by a coordinate choice. We thus see that the metric is only

weakly asymptotically AdS for κ > 1
2 .

2.3. The renormalised problem

Motivated by the previous considerations, we are now ready to set up the problem

which we will actually solve. Define the triangle ∆δ,u0
:= {(u, v) ∈ R2 : u0 ≤ v ≤

u0 + δ, v < u ≤ u0 + δ}, and the conformal boundary I := ∆δ,u0 \∆δ,u0 = {(u, v) ∈
∆δ,u0

: u = v}. We shall allow ourselves to write ∆ for ∆δ,u0
as long as there is no
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ambiguity. We also define v0 := u0 (as it is sometimes more intuitive to refer to the

v-range as v0 ≤ v ≤ v0 + δ). We will take as our dynamical variables

r̃ : ∆δ,u0
−→ R+ , ψ : ∆δ,u0

−→ R , $N : ∆δ,u0
−→ R , (2.23)

and treat these as defining the auxiliary variables:

r :=
1

r̃
, $ := $N +2πg

r3

l2
ψ2, Ω2 := −4r4r̃ur̃v

1− µ
, 1−µ := 1− 2$

r
+
r2

l2
. (2.24)

With these definitions, we can understand (2.14), (2.15), (2.16), (2.19) as equations

for r̃, $N , ψ.

Definition 2.3. A weak solution to the renormalised Einstein–Klein-Gordon equa-

tions is a triple (r̃, $N , ψ) ∈ C1
loc. ∩W

1,1
loc. ∩H1

loc. such that ψu, r̃uu, ($N )u ∈ C0
loc.

and which satisfies (2.14), (2.15), (2.16), (2.19) in a weak sense.

We note that as a consequence of the equations holding, a weak solution to the

renormalised Einstein–Klein-Gordon equations necessarily has r̃uv, r̃uuv ∈ C0
loc.. We

justify considering the renormalised system of equations with the following result.

Lemma 2.4. Suppose that we have a weak solution to the renormalised Einstein–

Klein-Gordon equations. Then in fact the equations (2.3)-(2.7) hold in a weak sense,

and hence we can say that the metric (2.2) satisfies the Einstein–Klein-Gordon

equations, (1.1), in a weak sense.

Remark 2.5. Such a statement obviously makes sense with higher regularity. In

particular if r ∈ C2
loc., $ ∈ C1

loc., ψ ∈ C1
loc. then the metric g defined by (2.2) has C0

curvature, and the Einstein–Klein-Gordon equations hold in a classical sense. We

also remark that (2.15) only needs to hold on the initial data and is then propagated

by (2.19), (2.16), (2.14) as shown explicitly in Section 5.6.

3. Initial and boundary data

3.1. Initial data

In this section we shall give conditions on initial data which are sufficient for the

construction of a weak solution to the Einstein–Klein-Gordon system. When we

turn later to showing that better regularity is propagated by the equations, we

shall introduce further conditions, see Section 7.

Definition 3.1. Let N = (u0, u1] be a real interval. We call a pair of functions(
r̃, ψ

)
∈ C2 (N )× C1 (N ) a free data set, provided the following holds:

• r̃ > 0 and r̃u > 0 in N , as well as limu→u0
r̃ (u) = 0, limu→u0

r̃u (u) = 1
2

and limu→u0 r̃uu = 0.

• There is a constant Cdata such that∫ u1

u0

[(
f∂u

(
ψ

f

))2

+ ψ
2

]
(u− u0)

−2
du < Cdata (3.1)
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sup
N
|ψ · r̃−

3
2 +κ|+ sup

N

∣∣∣r 1
2

(
f∂u

ψ

f

) ∣∣∣ < Cdata (3.2)

Here f =
[

1
2 (u− u0)

]3/2−κ
. In particular, the limit Ψ := limu→u0

ψ · r̃−
3
2 +κ

exists.

From a free data set as above, we construct a complete initial data set(
r̃, ψ,$N , r̃v

)
∈ C2 (N )×C1 (N )×C1 (N )×C1 (N ) by integrating the constraints

as follows.

The function $N is obtained as the unique solution $N ∈ C1 (N ) of the linear

ODE

($N )u = 2πr2 1− 2$N
r + r2

l2 − 4πg r
2

l2 ψ
2

ru

[
f∂u

(
ψ

f

)]2

+ 4πg (r − 2$N )ψ

(
f∂u

ψ

f

)
+ 2πψ

2
ru

(
g2

(
1− 2$N

r

))
− 16π2g2 r

3

l2
ψ

3
(
f∂u

ψ

f

)
− 8π2g3 r

2

l2
ruψ

4

(3.3)

where r := r̃
−1

, ru = − r̃u
r̃
2 corresponds to the original geometric area radius func-

tion, subject to the boundary condition

lim
u→u0

$N = MN , (3.4)

where MN is some constant (see the Remark below). The function r̃v is obtained

as the unique solution r̃v ∈ $N ∈ C1 (N ) of the ODE

(
r̃v
)
u

=
−4r2r̃ur̃v

1− 2$N
r + r2

l2 − 4πg r
2

l2 ψ
2

(
3$N

2r2 −
1

2r
+

2πrψ
2

l2

(
−a+

3

2
g

))
(3.5)

with boundary condition

lim
u→u0

r̃v = −1

2
. (3.6)

Remark 3.2. The choice of r̃ fixes the scale of the u-coordinate along N corre-

sponding to the gauge-freedom in the problem. A simple and convenient choice is

r̃ = 1
2 (u− u0). The function ψ is the free data in the problem and can be specified

arbitrarily modulo the integrability conditions of Definition 3.1.

The choice of boundary condition for r̃v ensures that initially T r̃ = 0 corre-

sponding to the fact that we would like to have T r̃ = 0 along the boundary u = v in

the evolution. It is also a convenient gauge freedom.

The choice of boundary condition (3.4) for $N is again “free”. However, we

could also specify an initial value at u1 and integrate outwards, determining $N as

u→ u0, which may be the case in applications where u1 corresponds to the axis on

which a regularity condition $N = 0 has to be imposed.

The following Lemma is useful and a direct consequence of Definition 3.1.
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Lemma 3.3. For any 0 < s < 1, given δ′ > 0 we can choose δ > 0 such that the

following bounds hold on the truncated initial data ray Nδ := N ∩ {u ≤ u+ δ}:

‖r̃‖C0 + ‖r̃u −
1

2
‖C0 + ‖r̃v +

1

2
‖C0 + ‖r̃uu‖C0 < δ′ (3.7)

∫ u0+δ

u0

[(
r̃
−1 · f∂u

(
ψ

f

))2

+ r̃
−2
ψ

2

]
du < δ′ and

∣∣∣r̃− 1
2 + s

4 · f∂u
(
ψ

f

) ∣∣∣ < δ′

(3.8)

‖$N −MN‖C0 < δ′ and ‖r̃1+s
∂u$N‖C0 < δ′ (3.9)

‖ψ̄ρ̄− 3
2 +κ −Ψ‖C0 < δ′ (3.10)

where ‖ · ‖C0 denotes the sup-norm in Nδ.

Remark 3.4. The appearance of s is merely technical (to guarantee an additional

smallness factor). The weights could be improved in the context of higher regularity.

In particular, one expects to be able to propagate sharper decay for f∂u

(
ψ

f

)
if higher

(C2 regularity of ψ) is imposed.

Proof. The bound (3.7) follows from the fact that r̃ is C2 and its asymptotics at

(u0, v0). The first bound of (3.8) follows from localizing (3.1). Using (3.8), integrat-

ing the equation (3.3) for ($N )u establishes the first bound of (3.9) after carefully

checking the r̃-weights in each term. The second bound of (3.8) follows directly

from (3.2) using Cdatar̃
s/4 ≤ Cdataδ

s/4 < δ′. The second bound of (3.9) follows

from estimating pointwise the right hand side of (3.3) after multiplying it by r̃
1+s

.

The bound (3.10) follows from

|ψρ̄− 3
2 +κ −Ψ| ≤ 0 +

∫ u0+δ

u0

du′|∂u
(
ψρ̄−

3
2 +κ −Ψ

)
| ≤ ‖ψ‖H1(u0,u0+δ)δ

κ . (3.11)

3.2. Boundary Conditions

We require boundary conditions for the fields in order to produce a unique evolution.

For the dynamical field ψ there are a variety of boundary conditions studied in the

context of the linear problem in [22,15]. We shall work with the non-linear version

of inhomogeneous Robin conditions, which includes the homogeneous Neumann

boundary condition as a special choice. While we do not discuss the inhomogeneous

Dirichlet condition, it can be treated by precisely the same methods. We will state

the boundary conditions on ψ in a form that may be applied to the non-spherically

symmetric case, before specialising to the case in hand.

We say that a triple (ρ,β,γ) is a representative choice of boundary data if ρ is a

smooth boundary defining function for I (i.e. ρ > 0 on ∆ \I , with ρ = 0, dρ 6= 0

on I ) and β,γ are functions along I . We will take β,γ to be smooth, but this is
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stronger than required. Given a representative choice of boundary data, we define

P to be the unique vector which is normal to I with respect to the rescaled metric

ρ2g and further satisfies P (ρ) = 1. We say that ψ satisfies the boundary conditions

determined by (ρ,β,γ) if

ρ1−2κP
(
ρκ−

3
2ψ
)∣∣∣

I
+ 2

(
ρκ−

3
2ψ
)∣∣∣

I
β = γ. (3.12)

Notice that if ω is a smooth function with ω > 0, P (ω) = 0 on I , then the rep-

resentative choice of boundary data (ωρ, ω1−2κβ, ω−
1
2−κγ) gives rise to the same

boundary conditions. If κ < 1
2 then the requirement on P (ω) may be dropped.

We define a choice of boundary data B = [(ρ,β,γ)]∼ to be an equivalence class of

representative choices of boundary conditions under the equivalence relation

(ρ,β,γ) ∼ (ωρ, ω1−2κβ, ω−
1
2−κγ), ω ∈ C∞; ω > 0 and P (ω) = 0 on I

Here we understand that for κ < 1
2 the condition P (ω) can be dropped. Note that

the homogeneous Neumann boundary conditions β = γ = 0 are invariant under the

similarity transformation, so for these boundary conditions the choice of boundary

defining function is immaterial.

In this paper, we will work with boundary conditions of the form [(ρ, β, γ)]∼,

where ρ = 1
2 (u− v) was previously introduced. For κ ≤ 1

2 this represents no restric-

tion, while for κ > 1
2 there exist choices of boundary data which do not belong to

this set.

For technical reasons, it will turn out to be very convenient to work with the

boundary conditions in the form

ρ−
1
2−κ

(
∂̃u − ∂̃v

)
ψ + 2β (t) ρ−

3
2 +κψ = γ (t) on I (3.13)

where ∂̃ is the derivative twisted with respect to r. These two conditions can be

seen to be equivalent provided that

ρ1−2κ
(
ρκ−

3
2ψ
)[ r̃u − r̃v

r̃
− 1

ρ

]
→ 0

as I is approached. The term in square brackets can be shown to be bounded for

solutions at the H1 level of regularity, which gives equivalence of (3.12), (3.13) for

κ < 1
2 . At the H2 level, the term in square brackets has improved asymptotics of

O
(
ρmin(1,2−2κ)

)
, which shows equivalence for κ < 3

4 . The reason we need to improve

regularity to show equivalence seems to be that for κ ≥ 1
2 one requires cancellations

coming from the next to leading order terms in the expansion of ψ near infinity.

At the H1 level one has no control over these in general, but certain combinations

(such as ψr̃−
3
2 +κ) exhibit better behaviour than one may expect. At the H2 level

of regularity another term in the expansion is available with which one can see

cancellations explicitly.

Remark 3.5. As is well-known, the boundary condition (3.13) does not make sense

classically if ψ is only in H1. See the paper [22] for the appropriate weak formula-

tions.
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One might wonder why we introduce a boundary defining function ρ, rather

than stating the boundary conditions in terms of the geometric quantity r̃ which

furnishes a convenient, canonical, boundary defining function. We could take as

boundary conditions:

r̃1−2κP
(
r̃κ−

3
2ψ
)∣∣∣

I
+ 2

(
r̃κ−

3
2ψ
)∣∣∣

I
β = γ. (3.14)

with P (r̃) = 1. This is not included in our choice of boundary data allowed above,

since it assumes knowledge of r̃ which we do not have until we have found the

solution. Our reasons for not considering these boundary conditions are twofold.

Firstly, the existence of r̃ is a feature of the spherical symmetry. With the non-

spherically symmetric problem in mind it is clear that the boundary conditions may

only be stated once one has made a choice of ρ. The second reason is a technical

one: namely that for κ ≥ 1
2 we cannot, unless β = 0, close the contraction map

argument with these boundary conditions at the H1-level. However, we believe

that the problem with boundary conditions (3.14) could also be solved directly for

κ ≥ 1
2 by closing the contraction map at the H2-level.

We shall also require some boundary conditions for the metric. In spherical

symmetry this reduces to a condition on r̃. To produce aAdS spacetimes we impose

r̃|I = 0 . (3.15)

A consequence of our choice of boundary conditions is that the renormalised

Hawking mass at infinity, which we may think of as a measure of the energy in

the spacetime, need not be constant. To state the properties of the renormalised

Hawking mass at the boundary cleanly, it is convenient to introduce two vector

fields which are invariant under changes of the u, v coordinates preserving the form

of the metric. These are T = Ω−2(ru∂v − rv∂u) and R = −Ω−2(ru∂v + rv∂u).

Examining the fall-off of the terms in the $N evolution equations, we find that if

(2.14), (2.15) are satisfied then

T $N |I = lim
ρ→0

8πr2(T̃ ψ)(R̃ψ)

Where T̃ ψ := T µ∂̃µψ, and similarly for the other derivative. The right hand side has

a finite limit in L1(I ) provided that ψ is at least H2, from the results of [22] (see

§7). Notice that for homogeneous Dirichlet conditions (corresponding to T̃ ψ = 0)

or homogeneous Neumann (R̃ψ = 0), the renormalised Hawking mass is conserved.

Otherwise we find that the time derivative is proportional to the energy flux of the

field ψ across I , as one might expect.

4. The Main Theorem

We are now ready to state the main theorem.

Theorem 4.1. Fix 0 < κ < 2/3 and let
(
r̃, ψ

)
be a free data set on the interval

N = (u0, u1] as defined in Definition 3.1. Fix also a choice of boundary condition
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of the form (3.13), where β and γ are smooth along I . Then there exists a δ > 0

such that the following holds. There exists a unique weak solution (r̃, $N , ψ) of the

renormalised Einstein–Klein-Gordon equations (cf. Definition 2.3) in the triangle

∆δ,u0
such that

• r̃ satisfies (2.19) with boundary condition (3.15)

• ψ satisfies (2.16) with boundary condition (3.13) in a weak sense

• The functions ψ and r̃ agree as C1 functions with ψ and r̃ respectively when

restricted to u = u0.

Proof. The results that prove this theorem make up §5. The solution is constructed

by a fixed point argument for a map Φ, constructed in §5.2. Propositions 5.2, 5.3,

assert that Φ is a contraction map and Corollary 5.4 then asserts the existence

of a unique weak solution to (2.14), (2.16), (2.19) with given intial-boundary data.

Finally, Corollary 5.12 asserts that for such a solution, the constraint equation (2.15)

propagates in the evolution.

Remark 4.2. The restriction on κ is technical and could be improved to the full

range 0 < κ < 1 with an additional renormalization of the system of equations.

See §2.2 and §6.1. The theorem may be extended to consider nonlinear potentials

for the Klein-Gordon equation, as well as nonlinear boundary conditions. These

possibilities are discussed in §6.2 and §6.3.

Given a weak solution we can improve the regularity and in particular obtain a

classical solution:

Theorem 4.3. Suppose the initial data of Theorem 4.1 satisfy the additional regu-

larity conditions of Section 7 then the weak solution is actually a classical solution.

Proof. This follows immediately from Corollary 7.6, established in §7.

Geometric Uniqueness. A priori, Theorem 4.1 only provides a uniqueness state-

ment in the double-null coordinates in which the theorem is proven. For homo-

geneous Neumann boundary conditions, one can define the notion of a maximum

development and obtain also a geometric uniqueness statement within spherical

symmetry. This argument follows precisely §8.1 of [13].

For Robin conditions, as well as inhomogeneous conditions it appears that a

geometric uniqueness result of this kind does not hold. The reason is that one

requires a choice of boundary defining function ρ in order to state such boundary

conditions, and a choice of ρ necessarily makes reference to the spacetime manifold

itself (rather than being intrinsic to the embedded surface I ). In this circumstance,

we may say that for a given spacetime manifold with initial data (r̃, ψ) and boundary

data [(ρ,β,γ)]∼ specified, the fields g, ψ are uniquely determined in the domain of

dependence of the data. This is weaker than the geometric uniqueness statement

for homogeneous Dirichlet or Neumann boundary conditions, which may crudely be
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thought of as asserting the uniqueness of the spacetime manifold itself, given the

initial data.

5. Proof of Theorem 4.1

5.1. The function spaces

We set up the appropriate function spaces for the dynamical variables. We denote

by C1+
r̃ (∆δ,u0) the space of positive functions r̃ on ∆δ,u0 that are C1 in ∆δ,u0

with r̃u > 0, r̃v < 0, agree with r̃ on N and are such that both the uv- and the

uu-derivative exist and are continuous. We employ that space with the distance:

dr̃ (r̃1, r̃2) =‖ log
r̃1

r̃2
‖C0 + ‖ log |(r̃1)u| − log |(r̃2)u|‖C0

+ ‖ log |(−r̃1)v| − log |(−r̃2)v|‖C0 +
∥∥∥T (r̃1)

ρ
− T (r̃2)

ρ

∥∥∥
C0

+ ‖ (r̃1)uv − (r̃2)uv ‖C0 + ‖ (r̃1)uu − (r̃2)uu ‖C0 . (5.1)

Here ‖ · ‖C0 = sup∆δ,u0
| · | denotes the sup-norm in the triangle ∆u0,δ and T :=

∂u + ∂v. Similarly, we define C0+
$N (∆δ,u0

) as the space of real-valued functions $N

that are C0 in ∆δ,u0 , agree with $N on N and are such that the u-derivative exists

and is continuous. We equip that space with the distance

d$ (($N )1 , ($N )2) = ‖ ($N )1 − ($N )2 ‖C0 + ‖ρ1+s∂u ($N )1 − ρ
1+s∂u ($N )2 ‖C0 .

The appearance of the small number 0 < s < 1 is technical and will provide an

additional source of smallness in the contraction map. Finally, C0+
ψ H1 (∆) is the

space of real-valued functions that are continuously differentiable in u, agree with

ψ on N and are both continuous in u with values in H1 (v) and continuous in v

with values in H1 (u). We equip that space with the distance

dψ (ψ1, ψ2) = ‖ψ1−ψ2‖C0H1+‖ (ψ1 − ψ2) ρ−
3
2 +κ‖C0+‖ρ− 1

2 + s
4 ∂̂uψ1−ρ−

1
2 + s

4 ∂̂uψ2‖C0 ,

where we recall the definition of the twisted derivative (2.20) and the norm (ρ :=
u−v

2 ):

‖ψ‖2C0H1(∆) = sup
(u,v)∈∆

∫ u

v

[
ρ−2

(
∂̂uψ

)2

+ ρ−2ψ2

]
du′

+ sup
(u,v)∈∆

∫ v

u0

[
ρ−2

(
∂̂vψ

)2

+ ρ−2ψ2

]
dv′ . (5.2)

This produces the metric space C = C1+
r̃ (∆δ,u0

)×C0+
$N (∆δ,u0

)×C0+
ψ H1 (∆δ,u0

)

with distance

d ((r̃1, ($N )1, ψ1) , (r̃2, ($N )2, ψ2)) = dr̃ (r̃1, r̃2)+d$ (($N )1 , ($N )2)+dψ (ψ1, ψ2) .
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We denote by Bb the ball of radius b centred around
(
u−v

2 ,MN ,Ψρ
3
2−κ

)
where we

recall Ψ = lim(u,u0)→(u0,u0) ψr̃
− 3

2 from Definition 3.1 and MN from (3.4). It is easy

to check that Bb equipped with the above distance is a complete metric space.f

5.2. The contraction map

We now define a map Φ : Bb 3 (r̃, $N , ψ) 7→
(̂̃r, $̂N , ψ̂

)
by

̂̃r = ¯̃r (u)− ¯̃r (v) +

∫ u

v

du′
∫ v

u0

dv′
[

Ω2

r2

(
3$N

2r2
− 1

2r
+

2πrψ2

l2

(
−a+

3

2
g

))]
(5.3)

ψ̂ :=Unique H1 solution of ∂v

(
fr

(
∂u
ψ̂

f

))
= −∂u (rf)

(
∂v
ψ̂

f

)
− Ω2

4
rV ψ

with boundary condition ρ−
1
2−κ

(
∂̃u − ∂̃v

)
ψ̂ + 2β (t) ρ−

3
2 +κψ̂ = γ (t)

and initial condition ψ̂ (u, u0) = ψ (u).

(5.4)

$̂N = $N (u) +

∫ v

u0

dv′
[
− 8πr2 ru

Ω2

[
f∂v

(
ψ̂

f

)]2

+ 4πg (r − 2$N ) ψ̂

(
f∂v

ψ̂

f

)

+2πψ̂2rv

(
g2

(
1− 2$N

r

))
− 16π2g2 r

3

l2
ψ̂3

(
f∂v

ψ̂

f

)
− 8π2g3 r

2

l2
rvψ̂

4
]

(u, v′)

(5.5)

Remark 5.1. See Proposition 8.1 for the well-posedness of (5.4) and recall also

(2.16).

The fact that ψ̂ (and not ψ itself) appears on the right hand side of (5.5) is

merely technical as we will show existence of a fixed point. It somehow reflects the

fact the true dynamics is in the gauge function r̃ and the free field ψ. To the same

effect, we could have moreover replaced r̃ by ̂̃r in (5.5) but prefer not to. Finally, we

mention that in (5.4) the last ψ does not have a hat. This is because it is favourable

from a technical point of view to treat this term entirely as an inhomogenous term

in the wave equation.

We now state the main technical results of this section, and indeed of the paper,

as two propositions:

Proposition 5.2. The map Φ is well-defined and for sufficiently small δ, Φ in fact

maps the ball Bb into itself.

fTo prove this, one requires the results of Lemma 5.5, which permit one to deduce that a Cauchy
sequence has a uniform lower bound on r̃u, r̃v and r̃

ρ
.
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Furthermore, we have

For δ sufficiently small, Φ : Bb → Bb is a contraction with respect to the distance

d.

From these immediately follows the corollary

Corollary 5.4. There exists a unique weak solution (r̃, $N , ψ) ∈ Bb of the equations

(2.14), (2.16), (2.19) which satisfies the initial and boundary conditions, as in §3,

3.2.

Proof. By the Banach fixed point theorem, Φ has a unique fixed point. By con-

struction of Φ, a point (r̃, $N , ψ) ∈ Bb is a fixed point of Φ if and only if it solves

(2.14), (2.16), (2.19).

The remainder of this section deals with the proof of Propositions 5.2, 5.3. In

§5.3 we prove some useful auxilliary lemmas, before proving Proposition 5.2 in §5.4

and Proposition 5.3 in §5.5.

5.3. Properties of Bb

Before we prove Propositions 5.2, 5.3, we first establish some properties of elements

in the ball Bb. We denote by Cb a constant depending only on b (the size of the ball)

and possibly the initial data quantities Ψ, MN and the parameter κ determined by

the Klein-Gordon mass via (2.1).

Lemma 5.5. Let (r̃, $N , ψ) ∈ Bb ⊂ C. Then we have the following estimates for r̃:

e−b ≤ 2r̃

u− v
≤ eb , e−b ≤ 2r̃u ≤ eb , e−b ≤ −2r̃v ≤ eb (5.6)

|r̃uv| ≤ b , |T (r̃) | ≤ b · ρ (5.7)

Furthermore, ψ satisfies

|ψ| ≤ Cb · r̃
3
2−κ and |∂̂uψ| ≤ Cb · r̃

1
2−

s
4 .

Finally, the auxiliary variables Ω and $ satisfy

$ ≤ Cb · r̃−2κ and
∣∣∣Ω2

r2

∣∣∣ ≤ Cb , (5.8)

where to achieve the last estimate we choose δ of the region ∆δ,u0
sufficiently small

depending on b.g

Proof. Straightforward computation.

Corollary 5.6. The function r̃ extends continuously to the boundary v = u. The

functions r̃u and r̃v extend to bounded functions on the boundary.

gThis is to ensure an upper bound on 2$r̃3.
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Corollary 5.7. In addition to the above bounds we have∣∣∣ r̃v
r̃

+
1

2ρ

∣∣∣ ≤ 3b · eb ,
∣∣∣ r̃u
r̃
− 1

2ρ

∣∣∣ ≤ 3b · eb (5.9)

Proof. We start from the following equality which holds in the triangle ∆δ,u0
:

∂u

(
ρr̃v +

1

2
r̃

)
=

1

2
T (r̃) + ρ · r̃uv .

The quantity in brackets on the left extends to zero on the boundary v = u. Inte-

grating the right hand side yields∫
du

[
1

2
T (r̃) + ρ · r̃uv

]
≤
∫
du

(
1

2
b · ρ+ b · ρ

)
≤ 3b · ρ2 .

Dividing the resulting integrated inequality by r̃ ·ρ and using the first bound of the

Lemma yields the desired (first) inequality. The second is proven analogously.

The following version of the previous Corollary for differences will also be useful

in the sequel:

Corollary 5.8. Given two elements (r̃1, ($N )1, ψ1) , (r̃2, ($N )2, ψ2) ∈ Bb ⊂ C we

have the estimate∣∣∣ (r̃1)v
r̃1
− (r̃2)v

r̃2

∣∣∣
≤ eb

(
1 + 3b · eb

) [
sup
∆

∣∣∣T (r̃1 − r̃2)

ρ

∣∣∣+ sup
∆

∣∣∣(r̃1)uv − (r̃2)uv

∣∣∣+ sup
∆

∣∣∣ r̃1 − r̃2

ρ

∣∣∣]

≤ Cb · dr̃ (r̃1, r̃2)

and the same estimate with v replaced by u on the left hand side.

Proof. Note first that similar to the previous corollary we have

∂u

(
ρ ((r̃1)v − (r̃2)v) +

1

2
(r̃1 − r̃2)

)
=

1

2
T (r̃1 − r̃2) + ρ · ((r̃1)uv − (r̃2)uv) ,

which after integration leads to

|ρ ((r̃1)v − (r̃2)v) +
1

2
(r̃1 − r̃2) | ≤ ρ2

[
sup
∆

∣∣∣T (r̃1 − r̃2)

ρ

∣∣∣+ sup
∆

∣∣∣(r̃1)uv − (r̃2)uv

∣∣∣] .
Secondly, observe that we can write∣∣∣ (r̃1)v

r̃1
− (r̃2)v

r̃2

∣∣∣ ≤ 1

r̃1

∣∣∣ ((r̃1)v − (r̃2)v) +
(r̃2)v
r̃2

(r̃2 − r̃1)
∣∣∣

≤ ρ−1eb
(∣∣∣ ((r̃1)v − (r̃2)v) +

1

2ρ
(r̃1 − r̃2)

∣∣∣+
∣∣∣ (r̃2)v
r̃2

+
1

2ρ

∣∣∣ · |r̃2 − r̃1|
)

≤ ρ−2eb
∣∣∣ρ ((r̃1)v − (r̃2)v) +

1

2
(r̃1 − r̃2)

∣∣∣+ eb · 3beb sup
∆δ

∣∣∣ r̃1 − r̃2

ρ

∣∣∣ ,
where we have used Corollary 5.7 in the last step. Inserting the previous estimate

yields the result. The u-direction is proven analogously.
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Corollary 5.7 allows us to establish the equivalence between the twisted deriva-

tives defined by (2.20) and (2.21). Indeed, the identity

∂̃uψ = ∂̂uψ + ψ

(
3

2
− κ
)(

1

2ρ
− r̃u

r̃

)
immediately proves

Lemma 5.9. Let (r̃, $N , ψ) ∈ Bb ⊂ C. Then we have

1

Cb

[(
∂̂uψ

)2

+ ψ2

]
ρ−2 ≤

[(
∂̃uψ

)2

+ ψ2

]
r̃−2 ≤ Cb

[(
∂̂uψ

)2

+ ψ2

]
ρ−2 . (5.10)

This Lemma will be useful, because the energy estimates will turn out to natu-

rally twist with r̃. The Lemma guarantees that for the norm (5.2) twisting with ρ

or r̃ are equivalent.

5.4. Map to the ball (Proof of Proposition 5.2)

The radial bounds

We first verify that the contraction map respects the boundary conditions required

of r̃. To do so, note that the integrand in (5.3) satisfies∣∣∣ [Ω2

r2
(...)

] ∣∣∣ ≤ Cb · r̃min(1,2−2κ)

and is hence integrable in v. Therefore ̂̃r|I = 0 on the boundary. Note also that

T
(̂̃r) = (∂u + ∂v) ̂̃r extends to zero on the boundary by the dominant convergence

theorem. Moreover, clearly ̂̃r (u, u0) = r̃ (u).

We now compute

̂̃ruu (u, v) = r̃uu (u) +

∫ v

u0

dv′∂u

[
Ω2

r2

(
3$N

2r2
− 1

2r
+

2πrf2

l2

[
ψ

f

]2(
3

2
g − a

))]
(u, v′) .

Writing Ω2

r2 = − 4r̃ur̃v
(1−µ)r̃2 and using the properties of the element of the ball it is not

hard to see that the integrand can be bounded pointwise by

|∂u [...] | ≤ Cb · r̃min(0,1−2κ) , (5.11)

which is integrable for 0 < κ < 1 and hence

|̂̃ruu (u, v)− r̃uu (u) | ≤ Cb
min (1, 2− 2κ)

δmin(1,2−2κ) , (5.12)

which means that for sufficiently small δ

|̂̃ruu (u, v) | ≤ δ′ + b

100
.

Similarly,

|̂̃ruv (u, v) | ≤ Cb · r̃min(1,2−2κ) ≤ Cb · δmin(1,2−2κ) (5.13)
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leads to

|̂̃ruv (u, v) | ≤ b

100
.

The lower derivatives are also straightforward:

|̂̃ru (u, v)− r̃u (u) | ≤ Cb · δmin(2,3−2κ) , (5.14)

|̂̃rv (u, v) + r̃u (v) | ≤ Cb · δmin(2,3−2κ) , (5.15)

̂̃r ≤ sup r̃u (u− v) + Cb · δmin(2,3−2κ) (u− v) <

(
1

2
+ δ′ + Cbδ

)
ρ ,

̂̃r ≥ inf r̃u (u− v)− Cb · δmin(2,3−2κ) (u− v) ≥
(

1

2
− δ′ − Cbδ

)
ρ ,

(5.16)

which implies that for δ sufficiently small,∣∣∣ log
̂̃r
ρ

∣∣∣+ | log 2̂̃ru|+ | log
(
−2̂̃rv) | < b

100
.

Finally, note that indeed T
(̂̃r) = (∂u + ∂v) ̂̃r vanishes on the boundary u = v and

hence

T
(̂̃r) (u, v) = 0 +

∫ u

v

du′
(̂̃rvu + ̂̃ruu) (u′, v) , (5.17)

which using that the integrand is δ small by previous bounds leads to∣∣∣∣∣T
(̂̃r)
ρ

∣∣∣∣∣ ≤ Cb · δmin(1,2−2κ) <
b

100
.

In summary, for sufficiently small δ we indeed map back into the ball.

Estimates for ψ

From the wave equation (5.4) we derive

1

2
∂u

f2r2

(
∂v
ψ̂

f

)2

+ r2ψ̂2

+
1

2
∂v

f2r2

(
∂u
ψ̂

f

)2

+ r2ψ̂2


= −T (rf)

rf
· fr

(
∂v
ψ̂

f

)
· fr

(
∂u
ψ̂

f

)
+
T (r)

r
r2ψ̂2

+
Ω2

4r2
· r3V (ψ,$, r)ψ · fr

(
∂v
ψ̂

f
+ ∂u

ψ̂

f

)
+ r2ψ̂f

(
∂v
ψ̂

f
+ ∂u

ψ̂

f
+
T (f)

f2
ψ̂

)
Integrating this over space-time and using that∣∣∣T (rf)

rf

∣∣∣+
∣∣∣T (r)

r

∣∣∣ ≤ Cb (5.18)
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holds for elements in the ball, we can estimate the first two terms on the right hand

side by ∫
∆

second line ≤ Cb · δ · ‖ψ̂‖2C0H1(∆) (5.19)

where we recall Lemma 5.9 (ensuring the equivalence between twisting with ρ and

r̃ as far as the H1-norm is concerned) and the third line by∫
∆

third line ≤ Cb · δ · ‖ψ̂‖2C0H1(∆) +

∫
∆

(
Ω2

r2

)2

V 2r6ψ2 (5.20)

and naively applying pointwise bounds∫
∆

(
Ω2

r2

)2

V 2r6ψ2 ≤ Cb
∫

∆

ρ2·min(2,3−2κ)ρ−6ρ3−2κdudv ≤ Cb · δ (5.21)

The last step follows from our assumption κ < 2
3 , which implies 3 − 6κ > −1 and

makes the expression integrable. The δ is coming from the integration in the other

direction. To compute the boundary term on I we recall the boundary condition

ρ−
1
2−κ

(
∂̃u − ∂̃v

)
ψ̂ + 2β (t) ρ−

3
2 +κψ̂ = γ (t) . (5.22)

Hence the boundary term on I becomesh∫
I

dt
1

2
r2f2

(
∂v
ψ̂

f
+ ∂u

ψ̂

f

)(
∂v
ψ̂

f
− ∂u

ψ̂

f

)

=

∫
I

dt
1

2
r2ρ−1+2κ(−β)f2 (∂u + ∂v)

[
ψ̂

f

]2

+

∫
I

dt
1

2
r2f

(
∂v
ψ̂

f
+ ∂u

ψ̂

f

)
γ (t) ρ

1
2 +κ

=
1

2
β (t = u0) Ψ2 − 1

2
β (t) ψ̂2r̃−2ρ−1+2κ

∣∣∣
(u0+δ,u0+δ)

+

∫
I

dt
1

2
T
(
r̃−2ρ−1+2κβf2

) [ ψ̂
f

]2

−1

2
Ψγ (t = u0) +

1

2
γ (t) · ψ̂r̃−2ρ1/2+κ

∣∣∣
(u0+δ,u0+δ)

−
∫

I

dt
1

2
T
(
r̃−2ρ1/2+κγ (t)

)
ψ̂ ,

where |(u0+δ,u0+δ) is to be understood as a limit. Since T (r̃) ∼ r̃, the last term in

both the third and the fourth line are easily seen to be controlled by δ · ‖ψ̂‖2
C0H1

and δ · ‖ψ̂‖C0H1 respectively, the δ coming from integration in t. Therefore,∣∣∣ ∫
I

dt (...)
∣∣∣ ≤ 1

2
|β (u0 + δ) | · sup

∆δ,u0

|r̃−2ρ−1+2κψ2 −Ψ2|+ 1

2
Ψ2|β (u0 + δ)− β (u0) |

+
1

2
|γ (u0 + δ) | · sup

∆δ,u0

|r̃−2ρ1/2+κψ −Ψ|+ 1

2
|Ψ||γ (u0 + δ)− γ (u0) |+ Cbδ · ‖ψ̂‖2C0H1 ,

of which the second term in both lines can be estimated by CΨ,β,g · δ, provided that

β and g are C1. For the terms involving the sup, we recall that | r̃ρ − 1| is δ-small

hNotice that it suffices to assume that γ ∈ H1−κ to deal with the inhomogeneous term, which will

be relevant when we later consider non-linear boundary conditions.
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in ∆δ,u0 (integrate ∂v

(
r̃
ρ − 1

)
which is uniformly bounded by Corollary 5.7 from

initial data where it is δ′-small) and that we also have (cf. (3.11)),

|ρ− 3
2 +κψ̂(u, v)−Ψ| ≤ |ρ− 3

2 +κψ̂(u, v)− ρ− 3
2 +κψ(u)|+ |ρ− 3

2 +κψ(u)−Ψ|

≤ Cb · δκ · ‖ψ̂‖C0H1(∆) .

Combining all of the above, for sufficiently small δ we obtain

‖ψ̂‖2C0H1(∆) ≤ 4

∫ u0+δ

u0

dur2

f2

(
∂u
ψ̂

f

)2

+ ψ̂2

+ Cb,β,g,Ψ · δ + Cb · δκ · ‖ψ̂‖C0H1(∆) .

Applying Cauchy’s inequality to the last term we find

‖ψ̂‖C0H1(∆) ≤ 3 (δ′)
1
2 + Cb,β,g,Ψ · δκ <

b

100
(5.23)

and of course also immediately

|ρ− 3
2 +κψ̂(u, v)−Ψ| < Cb · δκ · ‖ψ̂‖C0H1(∆) <

b

100
.

Writing the wave equation as a transport equation, we can also retrieve the pointwise

bound for the u-derivative: Starting from

∂v

(
fr

(
∂u
ψ̂

f

))
= −∂u (rf)

(
∂v
ψ̂

f

)
− Ω2

4
rV ψ̂ (5.24)

we derive∣∣∣fr(∂u ψ̂
f

)
(u, v)

∣∣∣
≤
∣∣∣fr(∂u ψ̂

f

)
(u, v0)

∣∣∣+ Cb · r
1
2 · ‖ψ̂‖C0H1(∆) + Cb

∫ v

v0

r3− 3
2 +κV

(
|Ψ|+ b

100

)
≤ Cb · Cdata · r

1
2 (u, v0) + Cb · δκ · r

1
2 + Cb (|Ψ|+ 1) r

3
2 +κ−min(2,3−2κ)−1 (5.25)

and since both − 5
2 + 3κ < 1

2 and − 3
2 + κ < 1

2 holds for 0 < κ < 1 we obtain after

using that r (u, v) > r (u, v0) in ∆δ,u0
, the bound∣∣∣fr 1

2

(
∂u
ψ̂

f

)
(u, v)

∣∣∣ ≤ Cb · Cdata + Cb,Ψ · δmin(3−3κ,2−κ) . (5.26)

Clearly

fr
1
2

(
∂u
ψ̂

f

)
= r

1
2

(
∂̂uψ̂

)
+ r

1
2 ψ̂
[ρ
r̃

]− 3
2 +κ

∂u

([ρ
r̃

] 3
2−κ

)
and since Corollary 5.7 establishes boundedness for the u-derivative of the round

bracket in the last term, we finally obtain∣∣∣ρ− 1
2 + s

4

(
∂̂uψ̂

) ∣∣∣ ≤ (Cb · Cdata + Cb,Ψ · δmin(3−3κ,2−κ)
)
δ
s
4 <

b

100
,

for sufficiently small δ depending only on the initial data constant Ψ and b.
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The renormalized mass

Using Cauchy-Schwarz and basic properties of the weights following from Lemma

5.5 it is not hard to see that for δ sufficiently small

|$̂N −MN | ≤ δ′ + Cb · ‖ψ̂‖2C0H1(∆) <
b

100
. (5.27)

Taking a u-derivative one establishes after a tedious computationi using the wave

equation that

|∂u$̂N (u, v) | ≤ δ′r̃−1−s (u, v0) + Cb,Ψr̃
−1− s4 (u, v) ‖ψ̂‖2C0H1(∆) , (5.29)

which after multiplying by ρ1+s retrieves also

|ρ1+s∂u$̂N | <
b

100
.

5.5. Contraction property (Proof of Proposition 5.3)

Let
(̂̃r1, ($̂N )1 , ψ̂1

)
and

(̂̃r2, ($̂N )2 , ψ̂2

)
be two points in B. To establish the

contraction property it suffices to prove

d
((̂̃r1, ($̂N )1 , ψ̂1

)
,
(̂̃r2, ($̂N )2 , ψ̂2

))
≤ 1

2
· d ((r̃1, ($N )1 , ψ1) , (r̃2, ($N )2 , ψ2)) .

(5.30)

We begin with a few decomposition formulae:

Lemma 5.10. We have

|r2 − r1| ≤
Cb
ρ
· dr̃ (r̃1, r̃2) , (5.31)

(Ω2)
2 − (Ω1)

2 ≤ Cb
ρ
· d ((r̃1, ($N )1 , ψ1) , (r̃2, ($N )2 , ψ2)) , (5.32)

∣∣∣ (r1)u
(Ω1)2

− (r2)u
(Ω2)2

∣∣∣ ≤ Cb · d ((r̃1, ($N )1 , ψ1) , (r̃2, ($N )2 , ψ2)) . (5.33)

Proof. This follows from the computations:

|r2 − r1| =
∣∣∣ 1

(r̃2)
− 1

(r̃1)

∣∣∣ =
∣∣∣ 1

r̃1r̃2
(r̃1 − r̃2)

∣∣∣ ≤ Cb
ρ

sup
∣∣∣ r̃1 − r̃2

ρ

∣∣∣ (5.34)

iHere we only mention the most critical term arising in this computation which is estimated∫ v

v0

dv′
∣∣∣8πr2 ru

Ω2

∂v (fr)

fr
∂̃vψ̂∂̃uψ̂

∣∣∣ ≤ Cb‖ψ̂‖C0H1(∆)

√∫ v

v0

r3+ s
2 dv′ ≤ Cb · δ · ρ−1− s

4 (u, v) (5.28)

providing the required smallness for (5.29) after multiplication by ρ1+s (u, v).
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and

(Ω2)
2 − (Ω1)

2
= −4

(r̃2)u
r̃2

(r̃2)v
r̃2

(r2)2

1− µ2
+ 4

(r̃1)u
r̃1

(r̃1)v
r̃1

(r1)2

1− µ1

= −4

(
(r̃2)u
r̃2
− (r̃1)u

r̃1

)
(r̃2)v
r̃2

(r2)2

1− µ2
− 4

(r̃1)u
r̃1

(
(r̃2)v
r̃2
− (r̃1)v

r̃1

)
(r2)2

1− µ2

−4
(r̃1)u
r̃1

(r̃1)u
r̃1

(
(r2)2

1− µ2
− (r1)2

1− µ1

)
.

Indeed, by Corollary 5.8 and Lemma 5.5 and exploiting a cancellation of the top

order term in the last line, namely

(r2)2

1− µ2
− (r1)2

1− µ1

=
(1− 2($N )1

r1
)(r2)2 − (1− 2($N )2

r2
)(r1)2 − 4πg (r1)2(r2)2

l2

(
(ψ1)2 − (ψ2)2

)
(1− µ1)(1− µ2)

,

we obtain after further massaging (5.32). The estimate (5.33) is then straightfor-

ward.

Turning to the proof of (5.30), we first establish

The radial bound

dr̃ (r̃1, r̃2) ≤ Cb · δmin(1,2−2κ) · d ((r̃1, ($N )1 , ψ1) , (r̃2, ($N )2 , ψ2)) ,

which follows by decomposing

(Ω1)2

(r1)2

(
3($N )1

2(r1)2
− 1

2r1
+

2πr1(ψ1)2

l2

(
−a+

3

2
g

))
− same with 1↔ 2 = ...

(5.35)

as differences, of which we only discuss the most difficult term:∣∣∣ (Ω2)2

(r2)
(ψ2)2 − (Ω1)2

(r1)
(ψ1)2

∣∣∣ =
∣∣∣ (ψ2)2

r2

∣∣∣| (Ω2)
2 − (Ω1)

2 |+ (Ω1)2

r2
|ψ2 + ψ1||ψ2 − ψ1|

+(Ω1)2(ψ1)2|r̃2 − r̃1| ≤ ρmin(1,2−2κ)d ((r̃1, ($N )1 , ψ1) , (r̃2, ($N )2 , ψ2)) ,

(5.36)

which follows by inserting previous bounds on elements in the ball. This already

etablishes

|ˆ̃r1 − ˆ̃r2| ≤ Cb
∫ v

u

du′
∫ v

u0

dv′ρmin(1,2−2κ)d ((r̃1, $1, ψ1) , (r̃2, $2, ψ2))

≤ Cb · ρ · δ · δmin(1,2−2κ) · d ((r̃1, ($N )1 , ψ1) , (r̃2, ($N )2 , ψ2)) , (5.37)

and similarly

|(ˆ̃r1)u − (ˆ̃r2)u|+ |(ˆ̃r1)v − (ˆ̃r2)v|

≤ Cb · δ · δmin(1,2−2κ) · d ((r̃1, ($N )1 , ψ1) , (r̃2, ($N )2 , ψ2)) , (5.38)
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as well as

|(ˆ̃r1)uv − (ˆ̃r2)uv| ≤ Cb · δmin(1,2−2κ) · d ((r̃1, ($N )1 , ψ1) , (r̃2, ($N )2 , ψ2)) . (5.39)

To estimate the differences of ̂̃ruu, we need to differentiate the difference of the

integrands (5.35) in u. Schematically:

(̂̃r1)uu − (̂̃r2)uu =

∫ v

v0

dv′ [∂u (integrand1 − integrand2)] ,

and we need to estimate the integrand analogous to what we did in (5.36) for the

most difficult term. Again we omit this tedious computation and present only the

most difficult term: ∣∣∣∂u [ (Ω2)2

(r2)
(ψ2)2

]
− ∂u

[
(Ω1)2

(r1)
(ψ1)2

] ∣∣∣
=
∣∣∣∂u [4(r2)3−(r̃2)u(r̃2)v

(1− µ2)
(ψ2)2

]
− ∂u

[
4(r1)3−(r̃1)u(r̃1)v

(1− µ1)
(ψ1)2

] ∣∣∣ ,
from which we see (counting weights) that the r̃uu difference (and the r̃uv differ-

ence) will enter with a factor ρ−3+2+3−2κ. When the derivative hits the r- or the

(1− µ)-terms we lose one power compared with the computation (5.36) and hence

obtain ρmin(0,1−2κ) as a factor, which is integrable for 0 < κ < 1 and provides the

required smallness factor. Finally, when the derivative hits the (ψ)2-term we twist

the derivative to obtain a zeroth order term (which loses one power and is hence

handled as previously) and ∣∣∣ [ (Ω2)2

(r2)
(ψ2)(∂̃uψ2)

]
−
[

(Ω1)2

(r1)
(ψ1)(∂̃uψ1)

] ∣∣∣
≤ Cb · ρ−1+ 1

2−
s
4 + 3

2−κ · |ρ− 1
2 + s

4

(
∂̃uψ2 − ∂̃uψ1

)
|+ Cbρ

3
2−κ+ 1

2−
s
4−1|ρ− 3

2 +κ (ψ2 − ψ1) |

+Cbρ
−2+ 3

2−κ+ 1
2−

s
4 |r̃2 − r̃1|+ Cbρ

−2+ 3
2−κ+ 1

2−
s
4 d ((r̃1, ($N )1 , ψ1) , (r̃2, ($N )2 , ψ2)) ,

where (5.32) was used. We note that also here all ρ-weights are integrable. We

conclude∣∣∣(̂̃r1)uu − (̂̃r2)uu

∣∣∣ ≤ Cb
2− 2κ

· δmin(1,2−2κ) · d ((r̃1, ($N )1 , ψ1) , (r̃2, ($N )2 , ψ2)) .

Finally to get the T
(̂̃r1 − ̂̃r2

)
difference, we recall that this quantity vanishes on

the boundary and therefore integrating from the boundary yields

T
(̂̃r1 − ̂̃r2

)
(u, v) =

∫ v

u

du′∂u

(
∂u

(̂̃r1 − ̂̃r2

)
+ ∂v

(̂̃r1 − ̂̃r2

))
(u′, v) ,

from which we obtain∣∣∣∣∣T
(̂̃r1 − ̂̃r2

)
ρ

∣∣∣∣∣ ≤ Cb · δmin(1,2−2κ) · d ((r̃1, ($N )1 , ψ1) , (r̃2, ($N )2 , ψ2))

from our previous estimates for the ̂̃ruu and the ̂̃ruv difference.
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Estimates for ψ

The goal is to establish

dψ

(
ψ̂1, ψ̂2

)
≤ Cb · δ · d ((r̃1, ($N )1 , ψ1) , (r̃2, ($N )2 , ψ2)) . (5.40)

From the wave equation we derive

∂u

(
f1r1∂v

(
ψ̂1

f1
− ψ̂2

f2

))
= −∂v (r1f1) ∂u

(
ψ̂1

f1
− ψ̂2

f2

)
+ E (5.41)

and similarly

∂v

(
f1r1∂u

(
ψ̂1

f1
− ψ̂2

f2

))
= −∂u (r1f1) ∂v

(
ψ̂1

f1
− ψ̂2

f2

)
+ E (5.42)

where

E :=
(Ω2)2r2V2ψ2

4

(
r1f1

r2f2
− 1

)
− f2r2∂v

(
ψ̂2

f2

)
∂u

(
f1r1

f2r2

)

−f2r2∂u

(
ψ̂2

f2

)
∂v

(
f1r1

f2r2

)
− (Ω1)2

4
r1V1ψ1 +

(Ω2)2

4
r2V2ψ2 (5.43)

is invariant under interchanging u and v. Now note the identityj

∂u

(
f1r1

f2r2

)
=

(
1

2
− κ
)(

r̃1

r̃2

) 1
2−κ [ (r̃1)u

r̃1
− (r̃2)u

r̃2

]
(5.44)

and the same identity replacing u by v, which implies∣∣∣∂u(f1r1

f2r2

) ∣∣∣ ≤ Cb · d ((r̃1, ($N )1 , ψ1) , (r̃2, ($N )2 , ψ2)) . (5.45)

On the other hand, one also has by integrating the v-version of (5.45) from data

(where r1 = r2)∣∣∣r1f1

r2f2
− 1
∣∣∣ ≤ Cb · δ · d ((r̃1, ($N )1 , ψ1) , (r̃2, ($N )2 , ψ2)) (5.46)

and∣∣∣− (Ω1)2

4
r1V1ψ1 +

(Ω2)2

4
r2V2ψ2

∣∣∣ ≤ Cb · ρ 3
2−κ−3+3−2κ · |ρ− 3

2 +κ (ψ1 − ψ2) |

+... ≤ Cb · ρ
3
2−3κ · d ((r̃1, $1, ψ1) , (r̃2, $2, ψ2)) . (5.47)

In the energy estimate we need the square of the ρ-weight to be integrable which

yields 3 − 6κ > −1 and hence the familiar κ < 2
3 . With the above estimates we

indeed see∫ v

u

du′
∫ v

v0

dv′E2 ≤ Cb · δ · (d ((r̃1, ($N )1 , ψ1) , (r̃2, ($N )2 , ψ2)))
2
, (5.48)

jObserve also that the conformally coupled case κ = 1
2

is special.
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the δ arising from the fact that we integrate in both u and v. The only thing

missing to close the energy estimate associated with (5.41) and (5.42) is to estimate

the boundary term. A calculation shows that one needs to control∫
I

dt (...) =−
∫

1

2
(f1)2(r̃1)−2ρ−1+2κβ · T

(
ψ̂1

f1
− ψ̂2

f2

)2

. (5.49)

Integrating by parts and treating the terms as in the original estimate in Section

5.4 we control this term by δκCb · d
(
ψ̂1, ψ̂2

)
.

In summary, the energy estimate associated with (5.41) and (5.42) furnishes the

estimate

sup
(u,v)∈∆

∫ u

v

ρ−2

(f1∂u

(
ψ̂1

f1
− ψ̂2

f2

))2

+ (f1)2

(
ψ̂1

f1
− ψ̂2

f2

)2
 du′

+ sup
(u,v)∈∆

∫ v

v0

ρ−2

(f1∂v

(
ψ̂1

f1
− ψ̂2

f2

))2

+ (f1)2

(
ψ̂1

f1
− ψ̂2

f2

)2
 dv′

≤ Cb · δ · [d ((r̃1, ($N )1 , ψ1) , (r̃2, ($N )2 , ψ2))]
2
, (5.50)

which is almost what we need. To relate it to the honest C0H1-energy we observe

f1∂v

(
ψ̂1

f1
− ψ̂2

f2

)
= f1∂v

(
ψ̂1 − ψ̂2

f1
+
ψ̂2

f2

(
f2

f1
− 1

))

= ∂̃(1)
v (ψ̂1 − ψ̂2) +

(
∂̃(2)
v ψ̂2

)(
1− f1

f2

)
+ f1

ψ̂2

f2
∂v

(
f2

f1
− 1

)
(5.51)

To control the last two terms, we recall that the H1-energy of ψ̂2 was already

established to be bounded. Therefore, the first of them picks up smallness through

(5.46) while the second is estimated through (5.45) and picks up smallness via the

pointwise bound on ψ̂. As a result we obtain∫ v

v0

dv′ρ−2|∂̃(1)
v (ψ̂1 − ψ̂2)|2 ≤

∫ v

v0

dv′ρ−2

(
f1∂v

(
ψ̂1

f1
− ψ̂2

f2

))2

+Cb · δmin(1,2−2κ) · [d ((r̃1, ($N )1 , ψ1) , (r̃2, ($N )2 , ψ2))]
2
. (5.52)

Similarly one shows∫ v

v0

dv′ρ−2|ψ̂1 − ψ̂2|2 ≤
∫ v

v0

dv′ρ−2
∣∣∣ψ̂1 − ψ̂2

(
f1

f2

)2 ∣∣∣2 +

∫ v

v0

dv′ρ−2(ψ̂2)2

(
1− f1

f2

)2

≤
∫ v

v0

dv′ρ−2
∣∣∣ψ̂1 − ψ̂2

(
f1

f2

)2 ∣∣∣2 + Cb · δmin(1,2−2κ) [d ((r̃1, ($N )1 , ψ1) , (r̃2, ($N )2 , ψ2))]
2
,

the last step following from the L2-energy of ψ̂2 being small and (5.46). Thus we

have established that the left hand side of (5.50) actually controls the energy of the
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difference twisted with f1. Since Lemma 5.9 establishes the equivalence of twisting

with ρ and r̃, we have our desired contraction property

‖ψ̂1 − ψ̂2‖C0H1 ≤ Cb · δmin(1,2−2κ) · d ((r̃1, ($N )1 , ψ1) , (r̃2, ($N )2 , ψ2)) .

The pointwise bounds for the differences

|ρ− 3
2 +κ

(
ψ̂1 − ψ̂2

)
and |ρ− 1

2 + s
4 ∂u

(
ψ̂1 − ψ̂2

)
| then follow as for the estimates for

ψ̂ alone (note that the quantities vanish on v = u0) establishing (5.40).

The renormalized mass

The goal is to establish

d$ (($N )1, ($N )2) ≤ Cb · δ · d ((r̃1, ($N )1 , ψ1) , (r̃2, ($N )2 , ψ2)) (5.53)

This is again a lengthy but straightforward computation. We focus on the most

difficult term, which is clearly the first:

A =
−(r1)u
(Ω1)2

(
r1f1∂v

(
ψ̂1

f1

))2

− −(r2)u
(Ω2)2

(
r2f2∂v

(
ψ̂2

f2

))2

≤

(
r1f1∂v

(
ψ̂1

f1

))2 [
(r2)u
(Ω2)2

− (r1)u
(Ω1)2

]

+
(r2)u
(Ω2)2

[
r1f1∂v

(
ψ̂1

f1

)
+ r2f2∂v

(
ψ̂2

f2

)][
r1f1∂v

(
ψ̂1

f1

)
− r2f2∂v

(
ψ̂2

f2

)]
,

(5.54)

where we have used Lemma 5.10. Since the twisted H1-energy of both ψ̂1 and ψ̂2

was already shown to be δ-small, one obtains∣∣∣ ∫ v

v0

A (u, v′) dv′
∣∣∣ ≤ Cb · δ · d ((r̃1, ($N )1 , ψ1) , (r̃2, ($N )2 , ψ2)) .

The other terms are handled similarly establishing (5.53) for ‖ ($̂N )1 − ($̂N )2 ‖C0

on the left hand side. To get the statement for ‖ρ1+s∂u ($̂N )1 − ρ1+s∂u ($̂N )2 ‖C0

one differentiates the expression in the contraction map. We again concentrate on

the most difficult term (as all other terms simply lose one power of r̃ which is

overcome by multiplying with the ρ1+s-weight in the end). The most difficult term

in ∂uA is the one involving u derivatives of ψ̂ as for this we only have the pointwise

bound (losing ρ−s/2) available. Finally,∫ v

v0

dv′|∂uA (u, v′) | ≤ Cb · ρ−1− s2 (u, v) · d ((r̃1, ($N )1 , ψ1) , (r̃2, ($N )2 , ψ2)) ,
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and smallness is obtained after multiplying by ρ1+s.k

5.6. Propagating the constraints

Now, thus far we have established that there exists a solution of (2.19), (2.16),

(2.14) with (r̃, $N , ψ) ∈ Bb. This alone is insufficient to enable us to reconstruct

a solution of Einstein’s equations. We need to also establish that the constraint

equation, (2.15) is satisfied in the region ∆. We proceed by showing that we can

propagate the constraint through ∆ using a transport equation in the v-direction.

We first wish to establish that the transport equation for $N may be differen-

tiated in u. We first rewrite (2.14), simplifying the twisted derivatives and making

use of the expression for Ω in terms of $N , ψ, r to get:

∂v$N = −4π

rv

(
r∂̃vψ + grvψ

)2 ($N

r

)
+

2π

rv

(
r∂̃vψ + grvψ

)2

+
2π

rv

r4

l2
(
1− 4πgψ2

) (
∂̃vψ

)2

(5.55)

−16πg2 r
3

l2
ψ3∂̃vψ − 8πg3r2rvψ

4

Now, we claim that the right hand side may be differentiated in u, with the resultant

expression belonging locally to C0
uL

1
v. Since we know that (r̃, $N , ψ) ∈ Bb, we have

that r ∈ C1(∆◦δ,u0
), $N , ∂u($N ), ruv, ψ, ∂̃uψ ∈ C0(∆δ,u0

), ∂̃vψ ∈ C0
uL

2
v(∆δ,u0

).

Finally, we note that the wave equation may be written in the form

∂u

(
r∂̃vψ

)
= −(1 + g)rv∂̃uψ −

Ω2

4
rV ψ (5.56)

whence we deduce that ∂u(r∂̃vψ) ∈ C0. Now, on differentiating (5.55) with respect

to u, the only terms which are not manifestly in C0 (and hence C0
uL

1
v) are those

involving ∂̃vψ. These are either of the form f1(∂̃vψ)2 or f2∂̃vψ, where fi ∈ C0. The

terms quadratic in ∂̃vψ are manifestly in C0
uL

1
v since ∂̃vψ ∈ C0

uL
2
v. The terms linear

in ∂̃vψ can be dealt with by the Cauchy-Schwarz inequality. We thus conclude from

the Lemma of the appendix:

Lemma 5.11. Suppose (r̃, $N , ψ) ∈ Bb solves (2.19), (2.16), (2.14), with suitable

boundary conditions imposed on I together with initial data on v = u0 according to

Definition 3.1. Then the weak derivative ∂v∂u($N ) = ∂u∂v($N ) exists and belongs

locally to C0
uL

1
v.

kActually, most terms already have a δ-smallness in them. However, the term arising from differ-
entiating the last term in (5.54)

(r2)u

(Ω2)2

[
−
∂v (f1r1)

f1r1
r1∂̃

(1)
u ψ̂1 +

∂v (f2r2)

f2r2
r2∂̃

(2)
u ψ̂2

][
r1f1∂v

(
ψ̂1

f1

)
− r2f2∂v

(
ψ̂2

f2

)]
does not.
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Having established that we can differentiate equation (2.14) with respect to u,

we can show

Corollary 5.12. Under the assumptions of Lemma 5.11, the constraint equation

(2.15) holds on ∆δ,u0
.

Proof. We rewrite the constraint equation as

0 = ω := −∂u$N −
4π

ru

(
r∂̃uψ + gruψ

)2 ($N

r

)
+

2π

ru

(
r∂̃uψ + gruψ

)2

+
2π

ru

r4

l2
(
1− 4πgψ2

) (
∂̃uψ

)2

−16πg2 r
3

l2
ψ3∂̃uψ − 8πg3r2ruψ

4

We note that under the assumptions, ω ∈ C0. Differentiating (2.14) with respect

to u, which we can do by the previous Lemma, and making use of the equations

satisfied by r̃, ψ,$N it is a matter of (tedious) calculation to show that ω satisfies

∂vω = −4πr̃

r̃u

(
∂̃vψ + g

rv
r
ψ
)2

ω.

Now, since the coefficient on the right hand side is locally in C0
uL

1
v, we conclude

immediately that ω = 0 on ∆δ,u0
(see again the Lemma in the appendix).

6. Generalizations

6.1. Removing the restriction κ < 2
3

In this section we provide a sketch of how to extend our results to the entire range

0 < κ < 1. Let κ ≥ 2
3 . The first step is to observe that the only non-integrable term

in (2.14) and (2.15) (cf. Section 2.2) can be rewritten as a boundary term and an

integrable term

−8π2g3 r
2

l2
rvψ

4 =
1

1− 4
3g

[
−∂v

(
8

3
π2 g

3

l2
r3ψ4

)
+

32

3
π2 g

3

l2
r3ψ3∂̃vψ

]
for κ 6= 3

4

(6.1)

−8π2g3 r
2

l2
rvψ

4 = −∂v
(

8π2g3 1

l2
ψ4r3 log r

)
+ 32π2g3 1

l2
ψ4r3∂̃vψ log r for κ =

3

4

(6.2)

which allows to define a “doubly renormalized” Hawking mass

$ND = $N +
8

3
π2 g3

1− 4
3g

r3

l2
ψ4 for κ 6= 3

4
, (6.3)

$ND = $N + 8π2g3 r
3

l2
ψ4 log r for κ 6= 3

4
, (6.4)
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which is expected to be finite for all 0 < κ < 1. In the second step one reformulates

the entire system (2.14)-(2.19) as equations for the variables (r̃, $ND, ψ) and sets

up the analogue of the contraction map. Here we recall that the only other occasion

where a restriction on κ entered was in the energy estimate for ψ, cf. (5.21). To

remove that obstruction, we observe that it arose from the term proportional to

ψ2 in the potential (2.18), which did not decay sufficiently strongly (i.e. at least

like r−2) for κ < 2
3 . However, one can easily see (formally) that this term will

enter as an (infinitel for κ ≥ 3
4 ) boundary term in the energy estimate for the wave

equation. Therefore, assuming a well-posedness theorem for the non-linear equation

�gψ = ψ3 on asymptotically AdS spacetimes (which is strongly suggested by the

a-priori energy estimate that can be derived for this equation) we can replace (5.4)

in the contraction map by defining ψ̂ as the unique solution of

−∇̃†µ∇̃µψ̂ −
ψ̂3

l2

(
κ− 3

2

)[
8πa+ 4π

(
κ− 3

2

)2
]
− Vreg (ψ,$, r)ψ = 0 (6.5)

with boundary condition ρ−
1
2−κ

(
∂̃u − ∂̃v

)
ψ̂+2β (t) ρ−

3
2 +κψ̂ = γ (t). Note that the

ψ̂3 term has the correct sign to appear as a positive term in the energy estimate (in

case that κ ≥ 3/4 that term is however divergent and a further renormalization is

needed, cf. footnote l). Now the potential Vreg (which is the potential V of (2.18)

minus its “divergent” part) is regular for all 0 < κ < 1 and the contraction property

is established as before using the non-linear well-posedness theory for �gψ = ψ3 on

a fixed aAdS background. It may be that �gψ = ψ3 is well posed only at a higher

level of regularity, in which case one should work at the H2-level, as in [13].

6.2. Nonlinear potentials

Examining the proof of the main theorem, we see that the only properties of the

function V we use are an L2-boundedness condition to ensure that we map into the

ball, together with a Lipschitz condition to ensure the map contracts. Thus we can

readily verify that the above theorem generalizes to non-linear scalar fields with

energy momentum tensor

Tµν = ∂µψ∂νψ −
1

2
gµν

[
(∂ψ)

2
+

2a

l2
ψ2 +W0 (ψ)

]
provided W0 (ψ) satisfies:

i) For any (r̃, $N , ψ) ∈ Bb we have∫
∆

[
Ω2rW ′0(ψ)

]2 ≤ Cbδε
for some ε > 0.

l For κ ≥ 3/4 the divergent boundary term needs to be removed by a further renormalization of

ψ, as done for the Hawking mass in (6.1) and (6.2).
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ii) For any (r̃i, ($N )i, ψi) ∈ Bb we have∫
∆

[
Ω2

1r1W
′
0(ψ1)− Ω2

2r2W
′
0(ψ2)

]2 ≤ Cbδε′d((r̃1, ($N )1), ψ1), (r̃2, ($N )2), ψ2))

for some ε′ > 0.

This is of interest in applications, see for example [9] where a potential corre-

sponding to

W0(ψ) = − 1

l2

(
cosh

√
2ψ − 1− ψ2

)
+K

[
6 sinh

√
2ψ − 2

√
2ψ(2 + cosh

√
2ψ)
]
,

is considered. This potential satisfies i), ii) above provided that κ < 2
3 , however,

as for the minimally coupled case, we expect this is merely a technical restriction

and that the result could be improved to the whole range (in [9], κ = 1
2 ). For

related work where the metric is assumed to have hyperbolic rather than spherical

symmetry, see [19,16]. This potential with K = 0, κ = 1
2 is also considered in [11],

where it comes from N = 8, D = 4 gauged supergravity (the massless sector of the

compactication of D = 11 supergravity on S7) after truncation to an abelian U(1)4

sector.

We note that including scalar fields with several components should also repre-

sent a straightforward generalisation of our proof.

6.3. Non-linear boundary conditions

With a minor modification of the proof, the above theorem also generalizes to certain

non-linear (and in principle non-local) boundary conditions. In particular we can

consider boundary conditions of the form

ρ−
1
2−κ

(
∂̃u − ∂̃v

)
ψ + 2β (t) ρ−

3
2 +κψ = G

[
ρ−

3
2 +κψ

]
on I (6.6)

where G : Hκ(I )→ H1−κ(I ) satisfies the Lipschitz condition

||G[p1]−G[p2]||H1−κ(I ) ≤ K ||p1 − p2||Hκ(I )

with K < 1 for all pi ∈ Hκ(I ). In the case κ > 1
2 , if we take G[p] = F (p, t) with

F : R×I → R assumed to be C1
loc., we may arrange that this condition is satisfied

by taking δ sufficiently small.

In the case κ < 1
2 , we appear to only be able to establish well posedness for

non-linear boundary conditions which are also non-local. The reason for this is that

to have a solution in the energy class for the linear wave equation with inhomo-

geneous Robin conditions we require (in the absence of further structure) that the

inhomogeneity be at least H1−κ, however the trace theorem only guarantees a trace

in Hκ.

Nonlinear boundary conditions have been considered, for example in [11,10].

The conditions considered in these papers are of the form (in 3+1 dimensions)

ρ−
1
2−κ

(
∂̃u − ∂̃v

)
ψ = k

[
ρ−

3
2 +κψ

] 3+2κ
3−2κ

on I (6.7)
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Our results extend to these boundary conditions for κ > 1
2 , as well as the case κ = 1

2

provided a smallness assumption is made on the data at infinity.

7. Improving the regularity: Proof of Theorem 4.3

Having established that we can always construct a unique weak solution to the

renormalized Einstein–Klein-Gordon system of equations subject to appropriate

boundary conditions, we wish now to demonstrate that higher regularity is in fact

propagated by the equations. Our approach to this will be to show that the con-

traction map we constructed in §5.2 in fact respects a certain subspace of Bb which

consist of functions with better regularity than a generic element of Bb. In essence we

establish that by commuting the contraction map with the vector fieldm T = ∂u+∂v
we preserve much of the structure. As a result, the subspace of elements of Bb whose

T−derivative also belongs to a ball in the metric space C is preserved by the con-

traction map. We first give more stringent conditions on the initial data which

guarantee that they represent the restriction to the initial data of a more regular

solution to our equations.

7.1. Constructing higher regularity initial data

Motivation

In order to construct solutions with higher regularity, we will of course need to

assume better regularity for the initial data. Before we do so, we motivate the

assumptions we make by recalling some facts from [22]. For a solution ψ of the

Klein-Gordon equation on a fixed asymptotically AdS background, at the H2 level

one finds that ψ should have an expansion near I of the form:

ψ = ρ
3
2−κψ− + ρ

3
2 +κψ+ +O

(
ρ

5
2

)
where ψ± are functions on I , and we have ψ− ∈ H1(I ), ψ+ ∈ L2(I ). Moreover,

we have

Tψ = ρ
3
2−κTψ− +O

(
ρ

3
2

)
for any vector field T , tangent to I and

ρ
3
2−κ∂ρ

(
ψ

ρ
3
2−κ

)
= 2κρ

1
2 +κψ+ +O

(
ρ

3
2

)
for the twisted derivative normal to the boundary. As a result, we expect that the

null derivatives of an H2 solution to the Klein-Gordon equation on an asymptoti-

mIt will be convenient also to define T̃ψ = r̃−
3
2

+κT (r̃
3
2
−κψ) as the twisted T -derivative of ψ.
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cally AdS background should have expansions:

2ρ
3
2−κ∂u

(
ψ

ρ
3
2−κ

)
= ρ

3
2−κψ̇− ρ 1

2 +κψ′ +O
(
ρ

3
2

)
2ρ

3
2−κ∂v

(
ψ

ρ
3
2−κ

)
= ρ

3
2−κψ̇+ ρ

1
2 +κψ′ +O

(
ρ

3
2

)
for some functions ψ̇,ψ′ ∈ L2(I ). Note that, as expected, the null derivatives decay

like ρmin( 3
2−κ,

1
2 +κ). Restricting to an initial data surface we have some necessary

conditions on the asymptotic behaviour of initial data which develops into an H2

solution. Of course, the spacetimes that we construct are not asymptotically AdS in

as strong a sense as those studied in [22]. This manifests itself in part in the subtle

distinction between twisting with respect to ρ and r̃, and accordingly also in the

asymptotic expansions.

7.1.1. Constructing the data

We now give conditions on a free data set, (r̃, ψ) (with associated full data set

(r̃, ψ,$N , r̃v)) such that we can construct the functions (T r̃, T̃ψ, T$N ) which gen-

erate a jet on M = {(u, v) ∈ ∆u0,δ : v = u0} satisfying the equation and boundary

conditions there. We first note that we already have constructed T r̃ = r̃u + r̃v.

In order to construct T̃ψ, we will impose some conditions on the behaviour of

∂̃uψ near u0. As discussed above, these conditions are necessary in order that the

data launch an H2 solution of the Klein-Gordon equation. In particular we require:

• Defining Ψ′ := γ(t0)−2β(t0) limu→u0
ρ−

3
2 +κψ, which we should think of as

the initial value of the twisted derivative of ψ normal to the boundary, we

have:

ρκ−
3
2

[
f∂u

(
ψ

f

)
− 1

2
r̃

1
2 +κ

Ψ′
]
∈ C0(N )

• Defining Ψ̇, which we should think of as the initial value of the time deriva-

tive of ψ on the boundary by:

Ψ̇ := 2 lim
u→u0

ρκ−
3
2

[
f∂u

(
ψ

f

)
− 1

2
r̃

1
2 +κ

Ψ′
]

we furthermore require

ψR(u) := ρ−
3
2

[
f∂u

(
ψ

f

)
− 1

2
r̃

1
2 +κ

Ψ′ − 1

2
r̃

3
2−κΨ̇

]
∈ C0(N )

so that:

∂̃uψ :=
1

2
r̃

3
2−κΨ̇ +

1

2
r̃

1
2 +κ

Ψ′ + r̃
3
2ψR(u).

ψR(u) should be thought of as the remainder of ∂̃uψ after subtracting the

singular terms in a series expansion at the boundary.
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• If these conditions on ψ hold, then we can construct the function

∂̃vψ :=
1

2
r̃

3
2−κΨ̇− 1

2
r̃

1
2 +κ

Ψ′ + r̃
3
2 ψ̃R(u)

where ψ̃R(u) ∈ C0(N ), which should be thought of as the remainder of ∂̃vψ

after subtracting singular terms at the boundary, is defined by

ψ̃R(u) := −r̃−
1
2

∫ u

u0

T (r̃)∂̃uψ

r̃
2 +

1

4r̃
Ω

2
V ψ −

(
1

2
− κ
)
ψR

r̃
1
2

∣∣∣∣∣
u′

du′

with

V := 2g2r̃
3

(
$N + 2πg

ψ
2

l2r̃
2

)
− 8πg

a

l2
ψ

2 − r̃2
(
κ2 − 2κ+

3

4

)
.

and

Ω
2

:= −4rurv

(
1− 2$N

r
+
r2

l2
− 4πg

r2

l2
ψ

2
)−1

.

This is enough to define T̃ (ψ) = ∂̃uψ+ ∂̃vψ, with ρ−
3
2 +κT̃ (ψ) ∈ C0(N ) and

to verify that the boundary condition

ρ−
1
2−κ

(
∂̃uψ − ∂̃vψ

)
+ 2β(t0)ρ−

3
2 +κψ → γ(t0), as u→ u0

holds. Moreover, the trace of the Klein-Gordon equation:

∂u

(
r∂̃vψ

)
= −

(
1

2
− κ
)
∂vrr̃

3
2−κ

(
∂u
ψ

f

)
− Ω

2

4
rV ψ,

holds on N . We are going to assume that T̃ψ satisfies the conditions im-

posed on ψ in §3, which in particular will imply that ψ ∈ C2
loc..

• We are now in a position to define

∂v$N :=− 8πr2 ru

Ω
2 ∂̃vψ

2

+ 4πg (r − 2$N )ψ∂̃vψ

+ 2πψ
2
rv

(
g2

(
1− 2$N

r

))
− 16π2g2 r

3

l2
ψ

3
∂̃vψ − 8π2g3 r

2

l2
rvψ

4

(7.1)

and we have as a consequence constructed T$N := ∂u$N +∂v$N . We can

verify directly that T$N ∈ C0(N ), and we denote

ṀN := lim
u→u0

T$N =
4π

l2
Ψ′Ψ̇

• Finally, we may construct r̃vv by integrating the linear ODE

∂u(r̃vv) = αr̃vv + αv
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with the initial conditionn that r̃vv(u0) = 0. Here α is the restriction to the

initial data of the quantity

α :=
Ω2

r̃vr2

(
3$N

2r2
− 1

2r
+

2πrψ2

l2

(
−a+

3

2
g

))
and αv is obtained by first differentiating α in v and then restricting to the

initial data, using the definition of Ω to see that no term appears which we

have not already constructed on N . Doing this, we can verify that both α,

αv are integrable in u. As a result, we have constructed T r̃v = r̃vv + (r̃v)u,

and we can check that T r̃, (T r̃)u, T r̃v all vanish at u = u0. We will assume

that T r̃uu ∈ C0(N ), and that T r̃uu(u0) = 0. This in particular implies that

r̃ ∈ C3
loc..

Remark 7.1. Note that the Hawking mass at infinity (which requires this level of

regularity to define) will not generally be constant in time for the boundary condi-

tions we impose. This is a consequence of the fact that we are permitting energy to

enter the space from I . If we impose homogeneous Neumann boundary conditions,

the flux vanishes and the Hawking mass is constant.

Definition 7.2. We say that a free data set (r̃, ψ) gives rise to H2−initial data if

it satisfies the conditions given above to allow us to construct (T r̃, T̃ψ, T$N ), and

furthermore we have that for any 0 < s < 1, the following bounds hold on the initial

data ray N for some C

‖T r̃‖C0 + ‖(T r̃)u‖C0 + ‖T r̃v‖C0 + ‖T r̃uu‖C0 < C (7.2)

∫ u0+δ

u0

(r̃−1 · f∂u

(
T̃ψ

f

))2

+ r̃
−2
T̃ψ

2

 du < C and

∣∣∣∣∣r̃− 1
2 + s

4 · f∂u

(
T̃ψ

f

)∣∣∣∣∣ < C

(7.3)

‖T$N − ṀN‖C0 < C and ‖r̃1+s
∂uT$N‖C0 < C (7.4)

‖T̃ψρ̄− 3
2 +κ − Ψ̇‖C0 < C (7.5)

For any free data set giving rise to H2−initial data, by truncating the initial data

ray we may assume that C < δ′ for any δ′ > 0.

nThere is some freedom in how we choose boundary conditions for the higher derivatives of r̃ on
the initial data, but we choose a convenient gauge in which T r̃ vanishes at I to all orders on the

initial data.
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7.2. The commuted function space

Recall that in §5.1 we defined a metric space C = C1+
r̃ (∆δ,u0

) × C0+
$N (∆δ,u0

) ×
C0+
ψ H1 (∆) with distance

d ((r̃1, ($N )1, ψ1) , (r̃2, ($N )2, ψ2)) = dr̃ (r̃1, r̃2)+d$ (($N )1 , ($N )2)+dψ (ψ1, ψ2) ,

and denoted by Bb the ball of radius b centred around
(
u−v

2 ,MN ,Ψρ
3
2−κ

)
. We then

showed that the map Φ : Bb → Bb is in fact a contraction map, provided we take

the size of the domain δ to be sufficiently small.

Definition 7.3. We define the commuted ball B1
b to consist of those elements

(r̃, $N , ψ) of Bb for which we additionally have that T r̃v, T r̃uv, T r̃uu, T$N ,

(T$N )u, Tψ, Tψu are C0, with the following bounds:∣∣∣∣∣∣∣∣TT r̃ρ
∣∣∣∣∣∣∣∣
C0

+ ||T r̃uv||C0 + ||T r̃uu||C0 < b ,

‖T$N − ṀN‖C0 + ‖ρ1+s∂u (T$N )1 ‖C0 < b ,

‖T̃ψ − ρ 3
2−κΨ̇‖C0H1 + ‖T̃ψρ− 3

2 +κ − Ψ̇‖C0 + ‖ρ− 1
2 + s

4 ∂̂uT̃ψ‖C0 < b ,

where we define T̃ψ = ∂̃uψ + ∂̃vψ. We also require that at u = u0 we have

r̃(u, u0) = r̃(u), T r̃(u, u0) = T r̃(u), $N (u, u0) = $N (u),

ψ(u, u0) = ψ(u), T̃ψ(u, u0) = T̃ψ(u).

It is convenient to note the following bounds that can be derived for elements

of the commuted ball B1
b :

Lemma 7.4. Suppose (r̃, $N , ψ) ∈ B1
b . Then the following estimates hold:

|T$| ≤ Cb · ρ−2κ,

∣∣∣∣T (Ω2

r2

)∣∣∣∣ ≤ Cb, |T (V )| ≤ Cbρmin(2,3−2κ)

and ∣∣∣∣T ( r̃ur̃
)∣∣∣∣+

∣∣∣∣T ( r̃vr̃
)∣∣∣∣ ≤ Cb, ∣∣∣∣∂u(T r̃r̃

)∣∣∣∣+

∣∣∣∣∂v (T r̃r̃
)∣∣∣∣ ≤ Cb

Proof. The first three estimates follow by direct computation, making use of the

fact that we already know T r̃/r̃ is bounded. To prove the final estimates, first note,

as in Corollary 5.7, we have

∂v

(
ρT r̃u −

1

2
T r̃

)
= ρT r̃uv −

1

2
TT r̃

whence we immediately estimate∣∣∣∣ρT r̃u − 1

2
T r̃

∣∣∣∣ ≤ 3b

∫ u

v

(u− v′)dv′ ≤ 3bρ2
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which gives ∣∣∣∣T r̃ur̃ − T r̃

2ρr̃

∣∣∣∣ < 3beb.

Now, we note that

T

(
r̃u
r̃

)
=
T r̃u
r̃
− r̃uT r̃

r̃2

=

(
T r̃u
r̃
− T r̃

2ρr̃

)
+
T r̃

r̃

(
1

2ρ
− r̃u

r̃

)
whence it immediately follows that T

(
r̃u
r̃

)
is bounded by some Cb. The v−derivative

follows in a similar fashion. The final estimate follows by noting that T
(
r̃u
r̃

)
=

T (∂u log r̃) = ∂u(T log r̃) = ∂u
(
T r̃
r̃

)
.

7.3. Propagation of regularity

We are now ready to state the main result of this section concerning the propagation

of regularity.

Proposition 7.5. Suppose that the initial data is in the H2-class. Then the map

Φ : Bb → Bb defined in §5.2 maps B1
b into itself for δ sufficiently small.

Before we prove this result, we note the following:

Corollary 7.6. Suppose we start with initial data in the H2−class. Then then the

weak solution (r̃, $N , ψ) ∈ Bb to the renormalised Einstein–Klein-Gordon system

which we constructed above in fact belongs to B1
b . As a consequence the associated

metric g is of class C0.

Proof of Proposition 7.5. As in §5.2 we define (ˆ̃r, $̂N , ψ̂) := Φ(r̃, $N , ψ). We

first note that the conditions

ψ(u, u0) = ψ(u), r̃(u, u0) = r̃(u), $N (u, u0) = $N (u).

are clearly respected by the contraction map. Now note that the condition that

(r̃, $N , ψ) ∈ B1
b permits us to directly differentiate (5.3) and establish that

T ̂̃r = ru(u)− ru(v) +

∫ u

v

du′
[

Ω2

r2

(
3$N

2r2
− 1

2r
+

2πrψ2

l2

(
−a+

3

2
g

))]
(u′, u0)

+

∫ u

v

du′
∫ v

u0

dv′T

[
Ω2

r2

(
3$N

2r2
− 1

2r
+

2πrψ2

l2

(
−a+

3

2
g

))]
(u′, v′)

We can re-write the first line, using the fact that by (3.5)

rv(u)−rv(v) =

∫ u

v

du′
−4r2r̃ur̃v

1− 2$N
r + r2

l2 − 4πg r
2

l2 ψ
2

(
3$N

2r2 −
1

2r
+

2πrψ
2

l2

(
−a+

3

2
g

))
(u′),
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together with the initial conditions assumed on (r̃, $N , ψ) to give

T ̂̃r = Tr(u)− Tr(v)

+

∫ u

v

du′
∫ v

u0

dv′T

[
Ω2

r2

(
3$N

2r2
− 1

2r
+

2πrψ2

l2

(
−a+

3

2
g

))]
(u′, v′). (7.6)

Clearly we recover from here the condition

T r̃(u, u0) = T r̃(u).

Now, since acting on any of the fields with T leaves the behaviour near u = v

unchanged, we can repeat the arguments of §5.4 to show that∣∣∣∣∣
∣∣∣∣∣TT ˆ̃r

ρ

∣∣∣∣∣
∣∣∣∣∣
C0

+
∣∣∣∣∣∣T ˆ̃ruv

∣∣∣∣∣∣
C0

+
∣∣∣∣∣∣T ˆ̃ruu

∣∣∣∣∣∣
C0

< b ,

for δ sufficiently small.

Now let us consider the wave equation. Now note that by the results of §8 we

know that ψ̂ ∈ H2
loc.. As a consequence, since the wave equation holds in C0 along

the initial data ray, with ψ(u, u0) = ψ(u), together with the boundary conditions

at (u0, u0), we can deduce that T̃ψ(u, u0) = T̃ψ(u). Moreover, we have sufficient

regularity to differentiate the wave equation. Doing so, we deduce that ̂̃Tψ :=

fT (f−1ψ̂) is a weak solution of the wave equation:

∂v

fr
∂u ̂̃Tψ

f

 = −∂u (rf)

∂v ̂̃Tψ
f

+ F, or equivalently

∂u

fr
∂v ̂̃Tψ

f

 = −∂v (rf)

∂u ̂̃Tψ
f

+ F,

where

F :=

(
κ− 1

2

)[
T

(
r̃u
r̃

)
fr∂v

(
ψ̂

f

)
+ T

(
r̃v
r̃

)
fr∂u

(
ψ̂

f

)]
− T

[
Ω2V ψ

f

]
fr,

and ̂̃Tψ weakly satisfies the boundary condition

ρ−
1
2−κ

(
∂̃u − ∂̃v

)
T̃ ψ̂ + 2β (t) ρ−

3
2 +κT̃ ψ̂ = γ′ (t)− 2β′ (t) ρ−

3
2 +κψ̂.

Now, note that since we control the C0H1(∆)−norm of ψ̂ in terms of b from the

lower order energy estimates, we can immediately bound∫
∆

dudvF 2 ≤ b

100

provided that δ is sufficiently small, making use of the estimates of Lemma 7.4.

Proceeding as in §5.4 we deduce that for δ sufficiently small we have

‖ ̂̃Tψ − ρ 3
2−κΨ̇‖C0H1 + ‖ ̂̃Tψρ− 3

2 +κ − Ψ̇‖C0 + ‖ρ− 1
2 + s

4 ∂̂u
̂̃Tψ‖C0 < b ,
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Finally, note that we actually wish to control ˆ̃T ψ̂ = f̂T (f̂−1ψ). However, we have

that

ˆ̃T ψ̂ − ̂̃Tψ =

(
T ˆ̃r

ˆ̃r
− T r̃

r̃

)
ψ̂

and by Lemma 7.4 the term in brackets belongs to C1(∆), so for small enough δ

we have

‖ ˆ̃T ψ̂ − ρ 3
2−κΨ̇‖C0H1 + ‖ ˆ̃T ψ̂ρ−

3
2 +κ − Ψ̇‖C0 + ‖ρ− 1

2 + s
4 ∂̂u

ˆ̃T ψ̂‖C0 < b .

Now let us finally consider the equation for $N . Differentiating in T and making

use of the expression (7.1) for ∂v$N we deduce that

T$̂N = T$N (u) +

∫ v

v0

dv′T
[
− 8πr2 ru

Ω2

[
f∂v

(
ψ̂

f

)]2

+ 4πg (r − 2$N ) ψ̂

(
f∂v

ψ̂

f

)

+2πψ̂2rv

(
g2

(
1− 2$N

r

))
− 16π2g2 r

3

l2
ψ̂3

(
f∂v

ψ̂

f

)
− 8π2g3 r

2

l2
rvψ̂

4
]

(u, v′) .

Making use of the bounds for T−derivatives on the unhatted functions, together

with the bounds derived above for ψ̂, we can again verify that the argument of §5.4

goes through without serious alteration, so that for sufficiently small δ we have.

‖T$N − ṀN‖C0 + ‖ρ1+s∂u (T$N )1 ‖C0 < b ,

whence we are done.

8. Well posedness for the wave equation with rough coefficients

In constructing the contraction map in §5.2 we assumed the following result:

Proposition 8.1. Suppose that r̃ is the radial function for some metric belonging

to Bb. Then there exists a unique solution ψ ∈ C0H1(∆) to the wave equation

∂v

(
r̃

1
2−κ∂u

(
r̃−

3
2 +κψ

))
+ ∂u

(
r̃

1
2−κ

)
∂v

(
r̃−

3
2 +κψ

)
= F (8.1)

with initial conditions

ψ = ψ on v = u0

and boundary conditions

ρ−
1
2−κ

(
∂̃u − ∂̃v

)
ψ + 2β (t) ρ−

3
2 +κψ = γ (t) on I

where β is at least C1, provided the spherically symmetric data F,ψ, γ satisfy

i) ∫
∆

F 2dudv := ||F ||2L2(∆) <∞
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ii) ∫ u1

u0

(r̃ 3
2−κ∂u

(
ψ

r̃
3
2−κ

))2

+ ψ
2

 (u− u0)
−2
du :=

∣∣∣∣ψ∣∣∣∣2
H1(N )

<∞

iii)

||γ||H1−κ(I ) <∞

where r̃ is the restriction of r̃ to the ray v = u0.

In this section we shall prove this result. Before we do so, let us note that the

subtlety here is in the low regularity assumed on the function r̃.

We first note the following consequence of the energy estimates in 5.4:

Lemma 8.2. Suppose that r̃
ρ ∈ C

1(∆), β ∈ C1(I ), and that ψ ∈ C0H1(∆) solves

the initial-boundary value problem of Proposition 8.1. Then we have the estimate

||ψ||C0H1(∆) ≤ C
(∣∣∣∣ψ∣∣∣∣

H1(N )
+ ||F ||L2(∆) + ||γ||H1−κ(I )

)
for some constant

C = C

(∣∣∣∣∣∣∣∣ r̃ρ
∣∣∣∣∣∣∣∣
C1(∆)

, ||β||C1(I )

)
This immediately gives us the uniqueness statement in Proposition 8.1, since

the assumptions on elements of the ball ensure that r̃
ρ ∈ C

1(∆). This estimate also

shows that it will be enough to prove the result for a dense subset of the data

(ψ,F, γ).

From the results of [22], the following Lemma follows:

Lemma 8.3. Suppose that in addition to the assumptions above we have that β ∈
C∞(I ) and r̃

ρ ∈ C
∞(∆), then Proposition 8.1 holds.

Proof. Let us define the wave operator

Lδψ := ∂v

(
r̃

1
2−κ∂u

(
r̃−

3
2 +κδψ

))
+ ∂u

(
r̃

1
2−κ

)
∂v

(
r̃−

3
2 +κδψ

)
Defining w = r̃−

3
2

(
r̃
ρ

)κ
ψ, a calculation shows that

Lψ =
ρ

1
2

4

(
r̃

ρ

) 1
2−κ

{
∂

∂t

[(
r̃

ρ

)1−2κ
∂w

∂t

]
− ρκ−1 ∂

∂ρ

[(
r̃

ρ

)1−2κ

ρ1−2κ ∂

∂ρ
(ρκw)

]}
so that (8.1) is equivalent to

∂

∂t

[(
r̃

ρ

)1−2κ
∂w

∂t

]
− ρκ−1 ∂

∂ρ

[(
r̃

ρ

)1−2κ

ρ1−2κ ∂

∂ρ
(ρκw)

]
= 4

(
r̃

ρ

)κ− 1
2 F

ρ
1
2

. (8.2)
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This is almost of the form considered in [22] (see §4.1). Unlike in that paper, we

have an additional term linear in wt, with a regular coefficient, but this can easily

be handled with a slight modification of the same methods.

To account for the fact that we have a characteristic initial surface, rather than

a spacelike initial surface, it is possible to show that (at least for a dense set of

data), we can construct a function δψ such that L(δψ) ∈ L2(∆) and δψ = ψ on

the initial ray and at the boundary. This demonstration follows a similar strategy

to §7.1, but is somewhat technical, so we omit it here. Having constructed such a

δψ, we can reduce to the case of trivial initial and boundary data by considering

ψ − δψ.

Let us assume then that we wish to solve the characteristic initial-boundary

value problem above, with F ∈ L2(∆) and the initial and boundary data trivial.

We extend the problem to the region U :=
[
0, δ2
]
ρ
× [u0, u0 + δ]t. We take any

positive extension of r̃ such that r̃
ρ ∈ C

∞(U) and we extend F by 0, noting that

extending in this way leaves F ∈ L2. We can then solve a spacelike initial-boundary

problem with ψ = ψt = 0 on t = u0. By the domain of dependence property, the

resulting ψ restricted to ∆ solves the characteristic initial-boundary value problem.

Next, we need to show that if we approximate r̃/ρ and β in C1 by suitable

smooth functions, then the sequence of solutions that we construct will converge in

C0H1.

Lemma 8.4. Fix data (ψ,F, γ) ∈ H1 × L2 × C1. Suppose βi ∈ C∞(I ) and r̃i
ρ ∈

C∞(∆) for i = 1, 2, with ||βi||C1 +||r̃i/ρ||C1 < K for some K. Let ψi be the solution

of

∂v

(
r̃

1
2−κ
i ∂u

(
r̃
− 3

2 +κ
i ψi

))
+ ∂u

(
r̃

1
2−κ
i

)
∂v

(
r̃
− 3

2 +κ
i ψi

)
= F

with initial conditions

ψi = ψ on v = u0

and boundary conditions

ρ−
1
2−κ

(
∂̃u − ∂̃v

)
ψi + 2βi (t) ρ−

3
2 +κψi = γ (t) on I

Then we have the estimate

||ψ1 − ψ2||C0H1(∆) ≤ C

(∣∣∣∣∣∣∣∣ r̃1

ρ
− r̃2

ρ

∣∣∣∣∣∣∣∣
C1(∆)

+ ||β1 − β2||C1(I )

)
for some constant

C = C(ψ, F, γ,K).

Proof. This proof mirrors the discussion of the contraction property for the wave

equation in §5.5. From the equations satisfied by ψi, we derive

∂u

(
r̃

1
2−κ
1 ∂v

(
r̃
− 3

2 +κ
1 ψ1 − r̃

− 3
2 +κ

2 ψ2

))
= −∂v

(
r̃

1
2−κ
1

)
∂u

(
r̃
− 3

2 +κ
1 ψ1 − r̃

− 3
2 +κ

2 ψ2

)
+ E
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and similarly

∂v

(
r̃

1
2−κ
1 ∂u

(
r̃
− 3

2 +κ
1 ψ1 − r̃

− 3
2 +κ

2 ψ2

))
= −∂u

(
r̃

1
2−κ
1

)
∂v

(
r̃
− 3

2 +κ
1 ψ1 − r̃

− 3
2 +κ

2 ψ2

)
+ E

where

E := F

(
1−

[
r̃1

r̃2

] 1
2−κ

)
− r̃

1
2−κ
2 ∂v

(
r̃
− 3

2 +κ
2 ψ2

)
∂u

[
r̃1

r̃2

] 1
2−κ

− r̃
1
2−κ
2 ∂u

(
r̃
− 3

2 +κ
2 ψ2

)
∂v

[
r̃1

r̃2

] 1
2−κ

From these equations, we can derive an energy estimate controlling ||ψ1 − ψ2||C0H1

in terms of the L2 norm of E and a term on I , just as in §5.5. It is straightforward

to show that

||E||L2(∆) < C

∣∣∣∣∣∣∣∣ r̃1

ρ
− r̃2

ρ

∣∣∣∣∣∣∣∣
C1(∆)

,

using the fact that r̃1/r̃2 is C1−close to 1. For example, we have∣∣∣∣∂u( r̃1

r̃2

)∣∣∣∣ ≤ CK ∣∣∣∣∣∣∣∣ r̃1

ρ
− r̃2

ρ

∣∣∣∣∣∣∣∣
C1(∆)

.

The boundary term on I is

F := r̃1−2κ
1 (∂u − ∂v)

[
r̃
− 3

2 +κ
1 ψ1 − r̃

− 3
2 +κ

2 ψ2

]
(∂u + ∂v)

[
r̃
− 3

2 +κ
1 ψ1 − r̃

− 3
2 +κ

2 ψ2

]
= r̃

1
2−κ
1

[
r̃
− 3

2 +κ
1

(
γρκ+ 1

2 − 2β1ρ
1+2κψ1

)
− r̃−

3
2 +κ

2

(
γρκ+ 1

2 − 2β2ρ
1+2κψ2

)]
× r̃

1
2−κ
1 T

[
r̃
− 3

2 +κ
1 ψ1 − r̃

− 3
2 +κ

2 ψ2

]
Now, since β1 is C1−close to β2 and r̃1/r̃2 is C1−close to 1, we can proceed as in

previous energy estimates, integrating by parts to remove the derivatives from the ψ

terms and replace them with terms involving ψi at the endpoints and ψ2
i integrated

over the boundary, both of which we control by the energy estimate. We eventually

show ∣∣∣∣∫
I

F
∣∣∣∣ < C

(∣∣∣∣∣∣∣∣ r̃1

ρ
− r̃2

ρ

∣∣∣∣∣∣∣∣
C1(∆)

+ ||β1 − β2||C1(I )

)
.

Note that we need to assume better control on γ in order to do this, as some of the

derivatives will hit γ. Once we have established existence for γ ∈ C1(I ), we will be

able to relax this condition to γ ∈ H1−κ(I ) using the energy estimate. Now that

we control E ,F , we are done.

Armed with this result, we are able to prove Proposition 8.1.

Proof of Proposition 8.1. Now suppose that (r̃, $N , ψ) is an arbitrary element

of Bb and β ∈ C1(I ). As a consequence, we have that r̃/ρ ∈ C1(∆). We may

thus construct a sequence r̃k, βk such that r̃k/ρ ∈ C∞(∆), βk ∈ C∞(I ) and
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r̃k/ρ → r̃/ρ in C1(∆), βk → β in C1(I ). Assume we have data with γ ∈ C1(I ).

Let ψk ∈ C0H1(∆) be the solution of the approximated problem:

∂v

(
r̃

1
2−κ
k ∂u

(
r̃
− 3

2 +κ

k ψk

))
+ ∂u

(
r̃

1
2−κ
k

)
∂v

(
r̃
− 3

2 +κ

k ψk

)
= F

with initial conditions

ψ = ψ on v = u0

and boundary conditions

ρ−
1
2−κ

(
∂̃u − ∂̃v

)
ψk + 2βk (t) ρ−

3
2 +κψk = γ (t) on I

which exists by Lemma 8.3. Taking k → ∞, we deduce that ψk converges in

C0H1(∆) to a solution of (8.1) by Lemma 8.4, satisfying the same boundary con-

ditions. By Lemma 8.2 this is the unique solution of our problem. At this point we

can relax the assumption that γ ∈ C1 by approximating γ ∈ H1−κ(I ) by a C1

function and using the energy estimate.

We note in passing that a similar result holds for T ψ̂ provided (r̃, $N , ψ) ∈ B1
b ,

with TF, Tψ, Tγ assumed to satisfy i) − iii). This can be deduced by commuting

with T and making use of estimates similar to those established in §7. In particular,

we deduce from this that under these assumptions ψ̂ ∈ H2
loc..

Remark 8.5. Note that our approximation here was at the level of r̃, rather than

at the level of the metric. In particular, we did not approximate in the metric we

used for the contraction map. Metrics constructed from (r̃, $N , ψ) ∈ Bb are forced to

have some non-analytic behaviour at I by the presence of the ψ−dependent terms

in the renormalisation of ψ. While these non-analytic terms are not an obstruction

to the well posedness of the wave equation, they do alter the asymptotic expansions

of solutions below the top order and as a result are not considered in [22].
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Appendix A. Estimates for the transport equation

The equation for the renormalised Hawking mass, $N takes the form of a linear

transport equation in v, with rough coefficients. We give here a Lemma to allow us

to handle such an equation. Firstly let us define the Banach space C0
uL

1
v(∆δ,u0

) to

be the completion of C∞(∆δ,u0) with respect to the norm:

||α||C0
uL

1
v

:= sup
u∈[u0,u0+δ]

∫ u

u0

|α(u, v)| dv <∞

We say thato φ ∈ C0
uL

1
v(∆δ,u0

) if for any cut-off function χ ∈ C∞(∆) vanishing

near I , we have that φχ ∈ C0
uL

1
v(∆δ,u0). Clearly C0

uL
1
v(∆δ,u0) ⊂ C0

uL
1
v(∆δ,u0).

Lemma Appendix A.1. Suppose α, β ∈ C0
uL

1
v(∆δ,u0

) and φ0 ∈ C0((u0, u0 + δ]).

Then there exists a unique φ ∈ C0(∆δ,u0
) such that:

i) For each u ∈ (u0, u0 +δ], and 0 < ε < u−u0, the map v 7→ φ(u, v) is absolutely

continuous on the interval [u0, u− ε].
ii) The transport equation

∂vφ = αφ+ β

holds for all u and almost every v in ∆δ,u0
with the initial condition φ(u, u0) =

φ0(u).

iii) If moreover α, β ∈ C0
uL

1
v(∆δ,u0

) and φ0 ∈ C0([u0, u0 +δ]), then: φ ∈ C0(∆δ,u0
);

for each u ∈ [u0, u0 + δ] the map v 7→ φ(u, v) is absolutely continuous on the

interval [u0, u]; and we have the estimate

||φ||C0 ≤ e2||α||C0
uL

1
v

(
||β||C0

uL
1
v

+ ||φ0||C0

)
(A.1)

Suppose now that additionally ∂uα, ∂uβ ∈ C0
uL

1
v(∆δ,u0) and φ0 ∈ C1((u0, u0 + δ]).

Thenp ∂uφ ∈ C0(∆δ,u0
) and we have

i) For almost every u ∈ (u0, u0+δ], and for any 0 < ε < δ, the map v 7→ ∂uφ(u, v)

is absolutely continuous on the interval [u0, u− ε].
ii) The equation

∂u∂vφ = ∂v∂uφ = α∂uφ+ (∂uα)φ+ ∂uβ (A.2)

holds almost everywhere in ∆u0,δ.

iii) If moreover α, β, ∂uα, ∂uβ ∈ C0
uL

1
v(∆δ,u0

) and φ0 ∈ C1([u0, u0 + δ]) then:

∂uφ ∈ C0(∆δ,u0); for each u ∈ [u0, u0 + δ] the map v 7→ ∂uφ(u, v) is abso-

lutely continuous on the interval [u0, u]; and we have the estimate

||∂uφ||C0 ≤ 2e
2||α||C0

uL
1
v

(
||β||C0

uL
1
v

+ ||∂uβ||C0
uL

1
v

+ ||∂uα||C0
uL

1
v

+ ||φ0||C1

)
(A.3)

orecall ∆δ,u0
= ∆δ,u0

\I
pWe understand the derivative here to be a weak derivative, which will agree with the strong

derivative almost everywhere.
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Proof. First we note that if α ∈ C0
uL

1
v(∆δ,u0

) then the function

γ(u, v) := e
−

∫ v
u0
α(u,v′)dv′

belongs to C0(∆δ,u0
), and for any u0 < u ≤ u0 + δ, 0 < ε < u − u0, the map

v 7→ γ(u, v) is absolutely continuous on the interval [u0, u − ε]. Furthermore, if

α ∈ C0
uL

1
v(∆δ,u0) we estimate

|γ(u, v)| ≤ e
∫ v
u0
|α(u,v′)|dv′ ≤ e

∫ u
u0
|α(u,v′)|dv′

≤ e
||α||C0

uL
1
v

and a similar estimate holds for
∣∣γ(u, v)−1

∣∣.
Now let us define

φ(u, v) = γ(u, v)−1

(∫ v

u0

β(u, v′)γ(u, v′)dv′ + φ0(u)

)
.

We readily verify that this is absolutely continuous in v ∈ [u0, u − ε], for any

u0 < u ≤ u0 + δ, 0 < ε < u− u0. Furthermore, φ satisfies

∂vφ = αφ+ β, ψ(u, u0) = ψ0(u)

for all u ∈ (u0, u0 + δ] and almost every v ∈ [u0, u). To prove uniqueness, suppose

β = 0, φ0 = 0. We can differentiate φγ to find

∂v(φγ) = 0

for all u and almost every v, whence φ ≡ 0. Finally we may directly estimate from

the equation for φ to show (A.1) holds if the coefficients are assumed to be globally

bounded.

Now we consider the case where ∂uα, ∂uβ ∈ C0
uL

1
v(∆δ,u0

) and φ0 ∈ C1((u0, u0 +

δ]). Since α and ∂uα are locally integrable on ∆u0,δ, we have that

∂uγ(u, v) = γ(u, v)

(
−
∫ v

u0

∂uα(u, v′)dv′
)

holds almost everywhere. Furthermore, the right hand side is in C0(∆δ,u0
). Directly

differentiating the expression for φ above, making a similar argument to differentiate

β under the integral sign, we conclude that ∂uφ ∈ C0(∆δ,u0
). Here we must interpret

the derivative as a weak derivative, so that continuity holds modulo redefinition on

a set of measure zero. Differentiating once more with respect to v we conclude (A.2)

holds. Finally, if we make the further assumption that α, β, ∂uα, ∂uβ ∈ C0
uL

1
v(∆δ,u0

)

and φ0 ∈ C1([u0, u0 + δ]) we can readily estimate (A.3) by applying the estimate

from the previous discussion.
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