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Abstract 

  We evaluated the performance of a large set of serum biomarkers in the prediction 

of rapid progression of chronic kidney disease in people with type 2 diabetes.  We 

used a case-control design, nested within a prospective cohort of people with 

baseline eGFR 30-60 ml/min/1.73m2.  Cases (n=154) had a >40% eGFR decline 

within 3.5 years of follow-up and controls (n=153) maintained>95% of baseline 

eGFR at end of follow-up.  We measured 207 serum biomarkers and used logistic 

regression with forward selection to select a subset of biomarkers that maximized 

prediction on top of clinical variables including age, sex, HbA1c, eGFR and 

albuminuria.  Nested cross-validation was used to determine the best number of 

biomarkers to retain and to evaluate predictive performance. 30 biomarkers showed 

significant associations with rapid progression (p<0.0003 adjusted for clinical 

characteristics).  A panel of 14 biomarkers increased the area under the ROC curve 

from 0.706 (clinical data alone) to 0.868.  Biomarkers selected included fibroblast 

growth factor-21, symmetric:asymmetric dimethylarginine ratio, beta 2-microglobulin, 

C16-acylcarnitine, and kidney injury molecule-1.  Using more extensive clinical data, 

including pre-baseline eGFR slope improved prediction but to a lesser extent than 

biomarkers (Area under the ROC curve = 0.793).  We report several novel 

associations of biomarkers with Chronic Kidney Disease progression and the utility 

of a sparse panel of biomarkers in improving prediction. 
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Introduction 
Kidney disease is a major cause of morbidity and mortality in patients with type 2 

diabetes. (1)  Developing new therapies to prevent kidney disease incidence and 

progression is a priority with many pharmaceutical companies currently having drugs 

in development.  However, clinical trials in this area are challenging as there is a 

need to demonstrate prevention of progression of renal function decline or 

progression to end stage renal disease (ESRD) over a typical trial time horizon of a 

few years.  Even from stage 3 Chronic Kidney Disease (CKD) the majority of patients 

progress only very slowly over say a five year horizon.  Albuminuria and estimated 

Glomerular Filtration Rate (eGFR) status are currently our best means of identifying 

those at highest subsequent risk of ESRD.  Identifying those at risk of more rapid 

progression would allow risk stratification and improved trial power and efficiency 

and would also enable targeting of new therapies as they become available.   

 

There is considerable interest in developing biomarkers that would help in such 

prediction beyond the commonly used legacy biomarkers serum creatinine, 

albuminuria, and cystatin-C. Many evaluations of single or small sets of candidate 

biomarkers have been reported.(2, 3)  In this study we explored a broad set of 207 

serum protein and metabolite biomarkers, some candidate and some unbiased 

discovery biomarkers in 154 incident cases of rapid progression of renal function 

decline from CKD3 and 153 non-progressing controls from the Genetics of Diabetes 

Audit and Research Tayside Study (GO-DARTS) a Scottish type 2 diabetes cohort.  

Our aim was to identify a subset of biomarkers that together could maximise 

prediction of rapid progression of renal function decline on top of clinical history.  The 

study is part of the Surrogate markers for Micro- and Macro-vascular hard endpoints 

for Innovative diabetes Tools programme, ’SUMMIT’, funded by the Innovative 
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Medicines Initiative.(4)  This is a collaborative endeavour across 19 academic 

centres and 6 pharmaceutical industry partners across Europe to identify novel 

biomarkers for the complications of diabetes in order to reduce bottlenecks in 

diabetes drug development.  The study was designed to be closely aligned to the 

typical trial setting i.e. taking CKD 3 as the baseline state from which to improve 

prediction of further renal function decline.  

 

Results 

Overall 12.5% of the Go-DARTS population with CKD3 at baseline lost >40% of their 

baseline eGFR within 3.5 years and were defined as cases. Follow-up eGFR data 

was available for a median of  5.5 (IQR  3.2, 6.0) years. Baseline demographics for 

the study population are shown in Table 1.  Cases had longer diabetes duration, 

greater prevalence of albuminuria and retinopathy and a lower median eGFR at 

baseline than the controls. 

Data reduction steps 

All 207 biomarkers measured are listed in Online Supplementary Material (OSM) 

Table 1.  From this initial panel we removed forty-two biomarkers from further  

analysis as being uninformative (OSM Table 2), either because very few patients 

had detectable levels of the biomarker (n=22), or the biomarker was in tight 

correlation (r>0.9) with another biomarker (n=15)  or because of too few results due 

to inadequate sample volume analysis (n=5).  This left 165 biomarkers and we also 

evaluated the ratio of symmetric dimethylarginine (SDMA) to asymmetric 

dimethylarginine (ADMA).  Many of the biomarkers measured had very strong 

correlations with each other (OSM Table 3).   
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Univariate associations 

 

The medians by case control status for all 166 biomarkers are shown in OSM Table 

4. The volcano plot (Figure 1) shows the associations with rapid progression for all 

166 biomarkers evaluated singly and adjusted for baseline age, sex, eGFR, 

albuminuria, HbA1c, and ACE Inhibitor and Angiotensin Receptor Blocker (ARB) 

use.  Cystatin-C and beta 2-microglobulin which are strongly correlated (rho =0.82) 

had the strongest associations with similar effect sizes per standard deviate.  We 

retained 62 biomarkers for further evaluation as having at least suggestive evidence 

for association in the initial cross validated logistic regression for each biomarker 

evaluated alone.  Table 2 lists the 30 biomarkers that reached Bonferroni adjusted 

significance level (p<0.0003) on adjustment for clinical covariates, examined singly 

with odds ratios for association with being a case.  

 

Biomarker panel performance 

 

Figure 2a shows the performance on withdrawn data of the biomarker panels 

chosen by the forward selection process with a fixed termination criterion and those 

chosen by a top down selection process that was run with varying sparsity 

constraints i.e. set to terminate at different numbers of retained biomarkers.  The 

Area under the ROC curve (AUROC) for a model including only clinical covariates 

was 0.706 (95% CI: 0.654, 0.772).  The forward selection process selected 14 

biomarkers as contributing to prediction improvement beyond the clinical covariates.  

This yielded a substantial increment in AUROC to 0.868 (95% CI: 0.832, 0.915).  

The difference in log-likelihoods computed on withdrawn data between the two 
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models was 35 natural log units, indicating that the addition of biomarkers 

significantly improved the prediction of the model.  Using the top down approach, 

performance could be improved to varying degrees depending on the number of 

biomarkers selected reaching a maximum AUROC of 0.892 (95% CI: 0.859-0.934), 

but requiring 35 biomarkers to achieve this.  

 

The GO-DARTS dataset contains retrospective clinical data pre-baseline so we 

further examined the contribution of biomarkers to prediction beyond that achieved 

by using an extended set of clinical covariates data including longitudinal eGFR pre-

baseline (see methods for full list).  This extended clinical dataset showed a 

substantially higher prediction than the basic clinical covariate model (AUROC = 

0.793 (95% CI: 0.738, 0.841) vs. 0.706 respectively).  Addition of selected 

biomarkers improved prediction somewhat further with an increment in AUROC to 

0.859 (95% CI: 0.816-0.902) with a panel of 7 biomarkers selected by forward 

selection, and a maximal AUROC of 0.871 (95% CI: 0.834-0.915) achieved with top 

down selection retaining 25 biomarkers (Figure 2b).  

 

Replacing the dichotomous albuminuria variable with a continuous measure of 

urinary albumin concentration for the 220 individuals with data available using a 

single method did not improve the AUROC for either the restricted clinical covariate 

or extended clinical covariate models and the improvement in AUROCs due to the 

addition of biomarkers was of similar degree whether the clinical covariate model 

included the dichotomous or continuous albumin measure  (data not shown).   
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Figure 3a shows the AUROC curves for the forward selection panel of 14 

biomarkers and the top down selection of 35 biomarkers. However, a useful metric 

that summarises the potential value of biomarkers in selection of patients for a 

clinical trial is the “predicted event rate enrichment” achieved by using the biomarker 

panel in a given potential clinical trial population (Figure3b).  For example in the Go-

DARTS cohort just 12.5% of those meeting the eGFR baseline entry criterion of 30-

60ml/min/1.73m2 progressed to being a case within 3.5 years.  Thus, without any 

selection by risk stratification (y axis of Figure 3b= 1) the expected cumulative 

incidence of progression is 12.5% (x-axis).  The plot illustrates that selecting say the 

top 20% (y axis =0.2) of patients based on their score from a model combining 

clinical covariates and selected biomarkers could enrich the cumulative incidence of 

rapid progression to >60%.   

 

Components of the Selected Panels 

The 14 biomarkers selected by forward selection and their association with rapid 

progression adjusted for each other and clinical covariates in a logistic regression 

model are shown in Table 3.  These biomarkers are for the most part a subset of the 

maximally predictive 35 biomarker panel selected by top down regression with the 

exception that cystatin-C was selected with top down, whereas beta-2-microglobulin,   

was selected instead in forward selection.  Also adrenomedullin showed only weak 

association with progression when adjusted for the other biomarkers and was not 

included in the top down selection (see OSM Table 5).  

 

The 7 biomarkers selected in the forward selection panel on top of the extended 

clinical covariates are a subset of the 14 biomarker panel– Kidney Injury Molecule 1 



9 
 

(KIM-1), SDMA:ADMA ratio, beta 2-microglobulin, alpha-1 antitrypsin (2), C-16 

acylcarnitine, fibroblast growth factor-21 (FGF-21) and uracil.  

 

Discussion 

In this study of individuals with type 2 diabetes and CKD3 we found that within a 

large set of candidate and global discovery biomarkers, at least 62 showed some 

evidence for association with subsequent rapid renal function decline.  Many of these 

biomarkers showed high correlations with each other and with clinical covariates so 

that a much sparser set of 14 biomarkers contained most of the predictive 

information beyond clinical covariates.  We found that the increment in prediction 

with these biomarkers was of sufficient magnitude that it would be useful for risk 

stratification into clinical trials.  Some of the biomarkers identified in the most 

predictive panels are already known to be associated with eGFR (i.e.beta-2-

microglobulin and cystatin-C), whereas others have little or no prior data (e.g. 

SDMA:ADMA ratio, FGF-21, uracil).  The best biomarker panel for prediction 

consisted of the restricted clinical covariates along with 35 biomarkers; however, this 

was only modestly better than the best sparse model which only required 

measurement of 14 biomarkers.  The expense and logistics associated with 

validation and subsequent utilization of any new panel means that the 14 biomarker 

panel represents a more pragmatic approach.  This panel of biomarkers now 

warrants further evaluation in other cohorts.  

 

We used clinical creatinine measurements to calculate eGFR in this study and as 

there is considerable variability in this measure it is unsurprising that the in-sample 

measure of creatinine was also selected in our biomarker panels.  Space does not 
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permit a detailed discussion of each of the 14 biomarkers selected and some of the 

associations have been described elsewhere.  (5, 6) Here we focus on some of the 

more novel associations.  

 

One of the strongest predictive biomarkers in our study was the ratio of 

SDMA:ADMA. SDMA and ADMA are released during proteolytic breakdown of 

nuclear proteins and both have been studied as biomarkers for cardiovascular 

disease (CVD).(7-9)  SDMA is primarily excreted via the kidney and is strongly 

associated with renal function(7) but there is also some evidence that the protein 

methyltransferase PRMT5 that synthesises SDMA regulates interleukin-2-gene 

expression (10) suggesting that higher levels of SDMA might also reflect 

inflammation.  We did not find any association of SDMA with inflammatory 

biomarkers such as C-reactive protein but there was a positive correlation (rho=0.39) 

with interleukin-2 receptor 1-alpha levels. However rather than a bioactive effect of 

SDMA itself, the observed prediction in our study may simply indicate that SDMA 

accumulates when filtration falls and thus it is predictive because it is a good 

biomarker of filtration.  In contrast to SDMA we found that ADMA was only weakly 

inversely correlated with eGFR but more strongly correlated with arginine.  The ratio 

may be a biomarker of these complex interactions and we note that models including 

the ratio yielded higher AUROCs than models including ADMA and SDMA 

separately. 

 

KIM-1 is a protein expressed on the apical membrane of proximal tubule cells.  Its 

ectodomain is shed into the lumen and serves as a urinary biomarker of kidney injury 

though there have been mixed results for it as a prognostic biomarker in diabetic 
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kidney disease.(11, 12)  Studies have shown that KIM-1 expression is increased in 

the glomerulus in diabetic animal models (13) and is elevated in their plasma.(14)    

Recently, it was reported that shed KIM-1 also serves as a blood biomarker of kidney 

injury in humans, since plasma KIM-1 levels were higher in patients with acute 

kidney injury (AKI) than in healthy controls or post-cardiac surgery patients without 

AKI.(2)  In that study serum KIM-1 level at baseline in type 1 diabetes patients 

strongly predicted rate of eGFR loss and risk of ESRD during 5-15 years of follow-

up.    

 

We identified associations with rapid progression of two fibroblast growth factor 

members -FGF-21 and FGF-23. FGF-21 is a 181 amino acidpolypeptide secreted 

predominantly by the liver and adipose tissue and has been shown to play an 

important role in lipid and energy metabolism.(15, 16)  Previous studies have 

reported cross sectional associations with eGFR. (17)  Median serum FGF-21 levels 

were >7-15-fold higher in dialysis patients than controls (18, 19) but fell after short 

term angiotensin blockade.(19)  In cross sectional studies FGF-21 levels were also  

elevated with albuminuria even when eGFR was >60 ml/min.(20)  FGF-21 was 

independently associated with urinary albumin in type 2 diabetes.(20)  The kidney 

has relatively low levels of FGF-21 (21) and FGF-21 activity depends on the tissue 

specific expression of its co-factor Klotho β, which is predominantly in the liver and 

adipose tissue rather than the kidney.  Thus, association between FGF-21 and renal 

disease progression may reflect simple accumulation in renal disease.  However, it 

might also reflect an anti-fibrotic response; it was shown that FGF-21 prevented the 

expression of pro-fibrotic cytokines, including TGF-β1 in the kidney.(22)  FGF-23 is a 

32-kD bone derived hormone with several known endocrine functions in the kidney, 
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including the promotion of urinary phosphate excretion and the inhibition of the 

hydroxylation of 25-hydroxyvitamin D.(23)  Elevated FGF-23 was an independent 

risk factor for end-stage renal disease in patients with relatively preserved kidney 

function and for mortality across the spectrum of CKD.(24)  Recently it was shown in 

13,448 subjects of the Atherosclerosis Risk in Communities study (ARIC), that higher 

serum level of FGF-23 were associated with increased risk of incident ESRD, 

independent of the baseline level of kidney function and a number of other risk 

factors.(25) 

 

C16-acylcarnitine was one of the strongest predictors of rapid progression in our 

study.  Previously in the KORA cohort acylcarnitines and especially the ratio of 

serine to glutarylcarnitine were associated with eGFR(26) and in FinnDiane urinary 

acylcarnitines were associated with albumin levels.(27)  Higher plasma 

acylcarnitines were also predictive of ESRD in a small study of people with type 1 

diabetes.(28)  We found that C16-acylcarnitine was only weakly inversely correlated 

with eGFR (rho=-0.11) and only modestly associated with cystatin C (rho=0.31) yet 

was strongly associated with rapid progression. 

 

Our study found other novel associations with renal disease progression that warrant 

further investigation including alpha 1 antitrypsin, which has been identified as a 

potential urinary biomarker for renal disease.(29, 30)  We should note this measure 

had 50% of values missing at random, however a sensitivity analysis restricted to 

data without imputation showed the univariate odds ratio for it was essentially 

unchanged (1.77 in the imputed data vs. 1.74 in the unimputed data).  Other 
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biomarkers such as hydroxyproline, creatine, uracil and Fatty Acid Binding Protein 

Heart reported here currently have no direct explanation for the associations. 

 

We also showed that much of the increment in prediction gained with biomarkers 

could be obtained with the use of more extensive historical clinical data.  However, 

typically in clinical trials there is little historical data available. In using this more 

extensive data we did not do any variable selection, instead we fitted a model using 

all the variables available that were likely to be relevant.  There is no consensus on a 

risk prediction model for renal disease progression.  A recent review of risk 

prediction models for patients with CKD revealed limited data with a wide range of 

end points including ESRD, incident CVD, and mortality.(31) Risk prediction models 

for clinical purposes will also become more important as new treatments arise for 

prevention of progression of renal disease in diabetes and biomarkers may be useful 

additions to clinical covariates again where extensive past medical history, including 

historical eGFR measures are not available.   

 

The strengths of this study are that we have measured a large number of biomarkers 

covering numerous pathophysiological pathways.  We have also made use of k-fold 

cross-validation and machine learning methods that avoid the problem of over-fitting 

when testing large numbers of associations and increase the generalisability of 

findings to other settings.  Though further studies of the generalisability of findings 

are warranted.   

 

There are also weaknesses. The sample size is modest and only one cohort has 

been studied and validation in external cohorts is needed. We used a dichotomous 
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variable for albuminuria due to no single method used for all samples to assess 

albuminuria status. As a result there is potential for residual confounding due to 

albuminuria. However, a sensitivity analysis of the sub-group with albumin 

concentration data measured by a single method showed that the increment in 

AUROC achieved by adding biomarkers to the clinical covariates was not reduced by 

the use of a continuous measure of albuminuria rather than the dichotomous 

variable. Thus, we think it is reasonable to conclude that the biomarkers are not 

materially affected by residual confounding. Another weakness is that we only have 

limited data from blinded duplicate samples due to limited volume availability though 

in general the repeatability data was good (see OSM page 4). We also note that the 

effect of errors in measurement act to reduce the power to detect associations rather 

than introduce false positive associations. Thirdly, we did not have a measure of 

every biomarker in every sample which required us to impute missing values. 

However, the degree of missing at random was not high with only 6 biomarkers in 

the study having ≥30% of values imputed and a sensitivity analysis examining 

individual biomarker associations after adjustment for clinical covariates in the non-

imputed data showed consistent associations with those seen in the imputed 

dataset.  

 

In keeping with our aim to identify biomarkers that might improve clinical trial 

stratification we have restricted the study to individuals with CKD3 at baseline.  It is 

not possible to conclude that biomarkers that are associated with progression at this 

stage will also be predictive of progression in individuals with CKD1 or 2 and studies 

are needed to examine biomarkers in such individuals.  It should also be noted that 

panels of biomarkers predicting from earlier stages of renal disease are more likely 
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to include biomarkers that are in the causal pathway whereas panels predicting from 

CKD3 may include biomarkers altered secondarily due to declines in glomerular 

filtration.  The study also does not identify biomarkers that are necessarily specific 

for renal decline due to diabetic kidney disease as the underlying cause of renal 

disease in people with type 2 diabetes is highly heterogeneous. (32)  

 

In conclusion we identified a panel of biomarkers that substantially improved the 

prediction of rapid progression of renal decline in people with diabetes and identified 

novel associations of biomarkers that warrant further investigation for relevance to 

pathogenesis of kidney disease in type 2 diabetes.   

 

Methods 

Data and Sample Sources 

All samples for this study came from the Go-DARTS cohort. Go-DARTS is a hospital 

clinic and primary care based sample of people diagnosed with type 2 diabetes in 

the Tayside region of Scotland.  Adults attending primary and secondary care in the 

area were invited to participate and enrolled in the study between December 1998 

and May 2009 and are continuously followed up using linked electronic health care 

data.(33)   The final sample comprises ~75% of all those with type 2 diabetes 

residing in Tayside.  Diabetes status was based on a clinical record of a diagnosis of 

diabetes and was validated by checking against the clinical record data, on-going 

prescription and biochemistry laboratory data for results in keeping with the presence 

of diabetes.  Patients gave a blood sample at study entry and agreed to have their 

routine and diabetes specific clinical and mortality records ascertained prospectively.  

Covariate data including prescription information, blood pressure and anthropometry 
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results were obtained by extraction from the ongoing primary care and hospital 

diabetes electronic records.  Laboratory data is supplied directly to the Go-DARTS 

database so we have access to all serum creatinine values measured as part of 

routine clinical practice both before and after study enrollment. 90% of study 

participants had ≥1 eGFR measure per year of available follow-up.  The study 

complied with the Declaration of Helsinki guidelines and informed consent was 

obtained from all study participants. 

 

Rapid Progressor Phenotype 

The phenotype for this study was designed around the typical enrolment criteria into 

trials for assessing reno-protective drugs.  We identified all individuals with CKD3 

(i.e. an eGFR of 30-60ml/min/1.73m2) at enrolment.  People were classified as cases 

if they lost >40% of their baseline eGFR within 3.5 years of follow-up and as controls 

if their most recent eGFR measure was >95% of baseline after follow-up of >3.5 

years and had no fall in eGFR to <80% of baseline at any time during follow-up.  

Individuals were excluded if they had not received anti-hypertensive treatment within 

1 year of baseline (to eliminate people not receiving active management) or had a 

history of hospital admission for acute renal failure (as assessed by hospital 

admission data) during follow-up. EGFR was calculated using the serum creatinine 

measured at the clinical laboratory (principally measured with alkaline picrate based 

methods) using the MDRD4 equation eGFR = 186 x (creatinine in mmol/l/88.4)-1.154 x 

(age-0.203) x 0.742 (if female)x (1.210 if black).(34) 

 

Biomarker Measurements 
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Biomarkers were selected either on the basis of hypothesis-driven rationale (i.e. 

published biomarkers from relevant pathophysiological pathways such as kidney 

function, tubular intestinal injury, glomerular injury, endothelial dysfunction, oxidative 

stress, inflammation, fibrosis, cardiovascular dysfunction, metabolic disorders) or 

hypothesis-free as part of global discovery.  

We used three platforms; 1) ELISA kits were used to measure 5 candidates at the 

University Heart Center Hamburg biomarker laboratory 2) Luminex technology was 

used to perform multiplexed, microsphere-based assays for 58 biomarkers by 

combining optical classification schemes, biochemical assays, flow cytometry and 

advanced digital signal processing as described (35) at the CLIA certified Myriad 

RBM laboratory (Austin TX, USA).  Some of the biomarkers measured on this 

platform were selected specifically due to high interest for example KIM-1, Cystatin-

C, while others were included due to being plexed with biomarkers of high interest 

for example beta-amyloid 42); and 3) liquid chromatography (LC) electrospray 

tandem mass spectrometry (MSMS) platforms for targeted metabolite and tryptic 

peptide analyses were used to yield quantitation of 144 metabolites and peptides at 

the WellChild Laboratory (Kings College London, UK).  Here we made use of the 

extensive biomarker platform that has been developed, to measure biomarkers in 

which we had specific interest (e.g SDMA, NAG) and at the same time acquire data 

on a broader set of metabolites and tryyptic peptides dereived from plasma proteins 

for which we had no prior evidence.  Further details of methods and sample quality 

control data for the 207 biomarkers measured is given in the OSM methods section 

and OSM table 1.     

 

Clinical Covariates 
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Clinical covariates were recorded at the study day visit and included Body Mass 

Index (BMI) and blood pressure (the average of two readings). HbA1c and serum 

creatinine were measured on the day of sampling as part of routine clinical testing by 

standard clinical laboratory methods.  Albuminuria was assessed by either a urinary 

albumin concentration on a spot urine or a 24hour urinary protein concentration with 

evidence of albuminuria based on the highest level of albuminuria (normo, micro or 

macroalbuminuria) recorded in the 5 years prior to baseline.  Smoking status was 

based on patient report at study enrolment.  Prior CVD was based on the presence 

of an ICD-9 or ICD-10 code consistent with a major CVD event prior to sampling.  

Medication was based on primary care prescribing data at study enrolment.  

Retinopathy status was derived from the retinal screening examination grade closest 

to study enrolment.  We used all measures of serum creatinine up to the time of 

sampling to calculate a weighted historical eGFR with greatest weight given to the 

more recent measures.  For analysis we considered a basic set of clinical covariates 

(age, sex, eGFR, albuminuria, HbA1c, ACE Inhibitor use and ARB use) as well as an 

extensive set which also included blood pressure, the weighted average of past 

eGFRs over a median of 7.2 years, diabetes duration, BMI, prior CVD, insulin use 

and use of antihypertensive drugs. 

Data cleaning and imputation 

The data from the biomarker laboratories was cleaned and imputed before analysis. 

We used a sparse iterative regression model for imputation (see OSM methods).  

We used imputation for two issues: left censoring i.e. values below detection limit 

and for completely missing at random values.  All data were Gaussianized prior to 

analysis  

Data analysis 
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We applied two complementary approaches to biomarker selection: forward 

selection using logistic regression, and sparse logistic regression with the L1 

(LASSO) regularization penalty (36) (see OSM methods).  Prior to selection models 

we included two filter steps: step one identified all biomarkers with a correlation of 

>0.9 and for each pair retained a single biomarker (see OSM table 2)- where one of 

the pair of biomarkers was of high prior interest we selected it over the non-high prior 

interest biomarker (this was the case with the retention of N-Terminal Prohormone B 

type Natriuretic Peptide over Malondialdehyde-Modified Low-Density Lipoprotein), 

but otherwise the choice of which biomarker in the pair to retain was random; and 

step two used the training set data to identify biomarkers with univariate association 

with the outcome and selected the 50 biomarkers with the strongest associations.  

We assessed prediction in models where we included or omitted this second filtering 

step and showed that the best performance was seen with the filtered models.  

 

  We used nested k-fold cross validation for learning the parameters of the selection 

models and actually performing the selection of the biomarker panels.  This learning 

was done on the training fold data (and inner folds defined within it), while the test 

fold is reserved exclusively for testing the performance of the biomarker panel by 

computing AUROCs.  By only testing the performance on test data not used for 

selection this yields an unbiased estimate of the AUROC.  We used the AUROC on 

test data as the performance criterion.  The highest-scoring method was re-applied 

to select the final biomarker panel using the complete dataset, and summary 

statistics of the resulting biomarkers were reported.  We used difference in log 

likelihood computed on withdrawn data to determine whether there was a significant 

difference between pairs of models using a threshold of a difference of 1 natural log 
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units as a cut point for statistical significance (see OSM page 4).  We also calculated 

the positive predictive value of the test where the probability of a case being correctly 

identified as such is plotted against the percentile of the score, to demonstrate how 

using different cut points of the model score might alter probability of identifying 

those at risk for progression.  

 

All data preparation and analyses were performed using R version 2.15.2. 

 

Disclosures 

HCL, MC, BF and DD are co-inventors of a patent on biomarkers as predictors in 

rapid decline of renal function pending.  SH is an employee with Sanofi Aventis and 

is a co-inventor of a patent on biomarkers as predictors in rapid decline of renal 

function pending; MJB is an employee of Pfizer and a shareholder in Pfizer and is a 

co-inventor of a patent on biomarkers as predictors in rapid decline of renal function 

pending; RND and CT were contracted on a fee for service basis for the 

measurement of biomarkers included in this study with payment coming from EFPIA 

partners and IMI-JU as part of the SUMMIT project, and outside the submitted work 

are also founding directors of SpOtOn Clinical Diagnostics Ltd; RND has also 

received non-financial support from Pfizer Ltd and is a co-inventor of a patent on 

biomarkers as predictors in rapid decline of renal function pending;   EN is employee 

with F. Hoffmann-La Roche Ltd, Switzerland and is a co-inventor of a patent on 

biomarkers as predictors in rapid decline of renal function pending  FA is a director of 

data analysis company Pharmatics Limited and is a co-inventor of a patent on 

biomarkers as predictors in rapid decline of renal function pending ; PMM is a 

stakeholder in Pharmatics Limited and is a co-inventor of a patent on biomarkers as 



21 
 

predictors in rapid decline of renal function pending.  HMC reports grants and 

personal fees from Pfizer Inc., grants and institutional consultancy fees from Sanofi 

Aventis, Regeneron and Novartis Pharmaceuticals and is a co-inventor of a patent 

on biomarkers as predictors in rapid decline of renal function pending.   

MW, CNP, LG, and VS report no conflicts of interest. 

 

Authorship 

All authors meet the ICMJE criteria for authorship 

 

 

  



22 
 

REFERENCES 

1. IDF Diabetes Atlas, 4th edition. Brussels, Belgium: International Diabetes Federation; 2009. 

2. Sabbisetti VS, Waikar SS, Antoine DJ, et al. Blood Kidney Injury Molecule-1 Is a Biomarker 
of Acute and Chronic Kidney Injury and Predicts Progression to ESRD in Type I Diabetes. Journal of 
the American Society of Nephrology : J Am Soc Nephrol  2014 ;25:2177-86.  

3. Pavkov ME, Nelson RG, Knowler WC, et al. Elevation of circulating TNF receptors 1 and 2 
increases the risk of end-stage renal disease in American Indians with type 2 diabetes. Kidney int 
2015; 87:812-819. 

4. Sam C, Massaro JM, D'Agostino RB, Sr., et al. Warfarin and aspirin use and the predictors 
of major bleeding complications in atrial fibrillation (the Framingham Heart Study). The American 
journal of cardiology. 2004;94:947-51.  

5. Spanaus KS, Kronenberg F, Ritz E, et al. B-type natriuretic peptide concentrations predict 
the progression of nondiabetic chronic kidney disease: the Mild-to-Moderate Kidney Disease 
Study. Clin Chem. 2007;53:1264-72.  

6. Dieplinger B, Mueller T, Kollerits B, et al. Pro-A-type natriuretic peptide and pro-
adrenomedullin predict progression of chronic kidney disease: the MMKD Study. Kidney 
international. 2009;75:408-14.   

7. Meinitzer A, Kielstein JT, Pilz S, et al. Symmetrical and asymmetrical dimethylarginine as 
predictors for mortality in patients referred for coronary angiography: the Ludwigshafen Risk and 
Cardiovascular Health study. Clin Chem. 2011;57:112-21.  

8. Siegerink B, Maas R, Vossen CY, et al. Asymmetric and symmetric dimethylarginine and 
risk of secondary cardiovascular disease events and mortality in patients with stable coronary 
heart disease: the KAROLA follow-up study. Clin Res Cardiol. 2013;102:193-202.  

9. Gore MO, Luneburg N, Schwedhelm E, et al. Symmetrical dimethylarginine predicts 
mortality in the general population: observations from the Dallas heart study. Arterioscler Thromb 
Vasc Biol. 2013;33:2682-8.  

10. Richard S, Morel M, Cleroux P. Arginine methylation regulates IL-2 gene expression: a role 
for protein arginine methyltransferase 5 (PRMT5). Biochem J. 2005;388(Pt 1):379-86.  

11. Nielsen SE, Andersen S, Zdunek D, et al. Tubular markers do not predict the decline in 
glomerular filtration rate in type 1 diabetic patients with overt nephropathy. Kidney Int. 
2011;79:1113-8.  

12. Conway BR, Manoharan D, Jenks S, et al. Measuring urinary tubular biomarkers in type 2 
diabetes does not add prognostic value beyond established risk factors. Kidney Int. 2012;82:812-8.  

13. Zhao X, Zhang Y, Li L, et al. Glomerular expression of kidney injury molecule-1 and 
podocytopenia in diabetic glomerulopathy. Am J Nephrol. 2011;34:268-80.  

14. Alter ML, Kretschmer A, Von Websky K, et al. Early urinary and plasma biomarkers for 
experimental diabetic nephropathy. Clin Lab. 2012;58:659-71.  

15. Antonellis PJ, Kharitonenkov A, Adams AC. Physiology and Endocrinology Symposium: 
FGF21: Insights into mechanism of action from preclinical studies. J Anim Sci. 2014;92:407-13.  



23 
 

16. Adams AC, Kharitonenkov A. FGF21: The center of a transcriptional nexus in metabolic 
regulation. Curr Diabetes Rev. 2012 Jul 1;8(4):285-93.  

17. Lin Z, Zhou Z, Liu Y, et al. Circulating FGF21 levels are progressively increased from the 
early to end stages of chronic kidney diseases and are associated with renal function in Chinese. 
PLoS One. 2011;6:e18398.  

18. Stein S, Bachmann A, Lossner U,  et al. Serum levels of the adipokine FGF21 depend on 
renal function. Diabetes Care. 2009;32:126-8.  

19. Han SH, Choi SH, Cho BJ, et al. Serum fibroblast growth factor-21 concentration is 
associated with residual renal function and insulin resistance in end-stage renal disease patients 
receiving long-term peritoneal dialysis. Metabolism. 2010;59:1656-62. 

20. Jian WX, Peng WH, Jin J, et al. Association between serum fibroblast growth factor 21 and 
diabetic nephropathy. Metabolism. 2012;61:853-9.  

21. Fon Tacer K, Bookout AL, Ding X, et al. Research resource: Comprehensive expression atlas 
of the fibroblast growth factor system in adult mouse. Mol Endocrinol. 2010;24:2050-64.  

22. Kim HW, Lee JE, Cha JJ, et al. Fibroblast growth factor 21 improves insulin resistance and 
ameliorates renal injury in db/db mice. Endocrinology. 2013;154:3366-76. 

23. Shimada T, Hasegawa H, Yamazaki Y, et al. FGF-23 is a potent regulator of vitamin D 
metabolism and phosphate homeostasis. J Bone Miner Res. 2004;19:429-35.  

24. Isakova T, Xie H, Yang W, et al. Fibroblast growth factor 23 and risks of mortality and end-
stage renal disease in patients with chronic kidney disease. JAMA. 2011;305:2432-9.  

25. Rebholz CM, Grams ME, Coresh J, et al. Serum Fibroblast Growth Factor-23 Is Associated 
with Incident Kidney Disease. J Am Soc Nephrol. 2015; 26: 192-200.  

26. Goek ON, Doring A, Gieger C, et al. Serum metabolite concentrations and decreased GFR in 
the general population. Am J Kidney Dis. 2012;60:197-206.  

27. van der Kloet FM, Tempels FW, Ismail N, et al. Discovery of early-stage biomarkers for 
diabetic kidney disease using ms-based metabolomics (FinnDiane study). Metabolomics. 
2012;8:109-19.  

28. Niewczas MA, Sirich TL, Mathew AV, et al. Uremic solutes and risk of end-stage renal 
disease in type 2 diabetes: metabolomic study. Kidney Int. 2014;85:1214-24.  

29. Zurbig P, Jerums G, Hovind P, et al. Urinary proteomics for early diagnosis in diabetic 
nephropathy. Diabetes. 2012;61:3304-13.  

30. Siwy J, Zoja C, Klein J, et al. Evaluation of the Zucker diabetic fatty (ZDF) rat as a model for 
human disease based on urinary peptidomic profiles. PLoS One. 2012;7(12):e51334. 

31. Tangri N, Kitsios GD, Inker LA, et al. Risk prediction models for patients with chronic kidney 
disease: a systematic review. Ann Intern Med. 2013;158:596-603.  

32. Bell S, Fletcher EH, Brady I, et al. End-stage renal disease and survival in people with 
diabetes: a national database linkage study. QJM : monthly journal of the Association of 
Physicians. 2015;108:127-34.  



24 
 

33. Pearson ER, Donnelly LA, Kimber C, et al. Variation in TCF7L2 influences therapeutic 
response to sulfonylureas: a GoDARTs study. Diabetes. 2007;56:2178-82.  

34. Levey AS, Coresh J, Greene T, et al. Using standardized serum creatinine values in the 
modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann 
Intern Med. 2006;145:247-54.  

35. Welsh BTMJ. An Overview of Assay Quality Systems at Myriad RBM1st July 2014. Available 
from: https://rbm.myriad.com/scientific-literature/white-papers/quality-control-white-paper. 

36. Tibshirani R. Regression Shrinkage and Selection via the Lasso. Journal of the Royal 
Statistical Society Series B-Methodological. 1996;58:267-88. 

 

 

Acknowledgements 

We wish to acknowledge all the SUMMIT partners (http://www.imi-summit.eu/) for 

their assistance with this project. 

This work was funded by the Innovative Medicine Initiative under grant agreement n° 

IMI/115006 (the SUMMIT consortium) and the GoDarts cohort was funded by the 

Chief Scientists Office Scotland. 

 

 

 

 

 

 

 

 

 

  

http://www.imi-summit.eu/


25 
 

Figure Legends 

Figure 1: Volcano Plot of Association of 166 Biomarkers with Rapid 

Progression of eGFR decline  

The labelled points are where there was a level of significance -log10(pvalue) >9 or a 

fold-change greater than +/- >0.6.  

Figure 2: Performance Metrics of Models by Number of Biomarkers Retained 

and Selection Method  

Model performance plots showing the AUROC achieved with the forward selection 

panel (shown by filled blue square) compared with the performance of the top down 

selected panels (shown by yellow diamonds) with the number of retained biomarkers 

allowed to vary up to 35 biomarkers. 

A) On top of the AUROC achieved by age, sex, HbA1c, albuminuria, eGFR. ACE 

Inhibitor and Angiotensin Receptor Blocker use alone 

B) On top of the AUROC achieved by an extended set of clinical covariates 

including longitudinal eGFR (see methods for full list) 

Figure 3: Performance of Panels of Biomarkers Chosen by Forward Selection 

and Top Down Selection Compared with Clinical Data Alone 

Performance plots for the best overall and sparse biomarker models including clinical 

covariates age, sex, HbA1c, albuminuria, eGFR and ACE Inhibitor and Angiotensin 

Receptor Blocker use (red line), clinical covariates and forward selection biomarkers 

(blue line) and clinical covariates and 35 biomarker panel (yellow line) 

A) Area Under the ROC curves  

B) Positive Predictive Value Plot 
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Table 1: Baseline demographics for cases and controls 

 Control Case 

 Frequency/ 

Median 

Interquartile 

Range 

Frequency/ 

Median 

Interquartile 

Range 

Female sex (%) 64.3 - 57.5 - 

Age (years) 72 66, 76 74 69, 80 

Diabetes Duration (years) 7.2 3.5, 11.0 9.1 5.1, 15.4 

Body Mass Index (kg/m
2
) 29.5 26.1, 34.4 30.6 27.1, 34.8 

Systolic Blood Pressure (mmHg) 144.3 129.8, 153.4 144.0 131.0, 158.5 

Diastolic Blood Pressure (mmHg) 73.3 66.5, 79.4 71.0 63.5, 78.0 

HbA1c (%) 7.1 6.4, 8.2 7.3 6.5, 8.4 

Baseline eGFR (ml/min/1.73m
2
) 51.3 44.9, 54.6 48.2 40.5, 54.8 

Weighted Average eGFR 

(ml/min/1.73m
2
) 

57.8 52.6, 63.5 50.7 44.8, 56.7 

Insulin Use (%) 25.3 - 30.7 - 

Antihypertensive Use (%) 95.5 - 96.1 - 

Diabetic Retinopathy (%) 55.2 - 74.5 - 

Smoking (%) 

      Current smoking  

Ex smoker 

      Never smoker 

 

11.7 

40.3 

48.1 

 

- 

- 

- 

 

11.1 

58.2 

30.7 

 

- 

- 

- 

Prior CVD (%) 21.43 - 28.1 - 

Albuminuria * (%) 18.8 - 45.1 - 

Median follow-up (years) 5.8 5.5, 6.2 3.2 2.2, 5.7 

Median time to caseness (years) - - 1.8 1.2, 2.3 

* Albuminuria status relates to the presence of microalbuminuria or macroalbuminuria at the 

time of sampling or any time in the prior 5 years. 

Data was complete except for: BMI missing for 2 people, SBP missing for 3 people, DBP 

missing for 2 people, HbA1c missing for 1 person, and drug treatment missing for 1 person. 
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Table 2: Thirty Biomarkers Significantly Associated with Rapid Progressionof eGFR Examined Singly and Adjusted for Clinical 

Covariates.  

 
Control 
Median 

Control 
IQR 

Case 
Median 

Case 
 IQR OR 95% CI p.value 

Adrenomedullin (ng/ml) 2.2 1.7, 2.6 2.9 2.4, 3.6 2.94 2.10, 4.22 <0.00001 

Alpha-1 Antitrypsin (2) 161.37 127.79, 187.81 186.38 165.60, 214.51 1.77 1.36, 2.33 <0.00001 

Alpha-1-Microglobulin (ug/ml) 17.0 14.0, 20.0 21.0 19.0, 24.3 3.31 2.31, 4.88 <0.00001 

Beta-2-Microglobulin (ug/ml) 2.0 1.7, 2.4 2.7 2.4, 3.4 6.11 3.90, 10.05 <0.00001 

C16-acylcarnitine (nM/l) 284.14 227.66, 355.38 305.26 280.32, 395.84 1.68 1.29, 2.21 0.00015 

Creatinine (uM/l) 98.18 80.49, 112.60 113.1 91.16, 127.90 3.43 1.97, 6.36 <0.00001 

Cystatin-C (ng/ml) 1340 1140, 1510 1680 1490, 1900 6.34 3.88, 10.97 <0.00001 

Fibroblast Growth Factor 21 (ng/ml) 0.25 0.16, 0.43 0.40 0.30, 0.65 2.06 1.56, 2.80 <0.00001 

Fibroblast growth factor 23 (ng/ml) 0.08 0.05, 0.13 0.12 0.08, 0.22 1.85 1.37, 2.55 <0.00001 

Growth Derived Factor 15 (pg/ml) 2328 1761, 3355 3785 2681, 5555 2.30 1.69, 3.20 <0.00001 

High Sensitivity Troponin T  (pg/ml) 5.29 2.89, 12.89 16.53 9.78, 26.75 3.15 2.11, 4.85 <0.00001 

Interleukin-2 receptor alpha (pg/ml) 2493 2075, 3152 3174 2710, 4180 2.45 1.79, 3.43 <0.00001 

Kidney Injury Molecule-1 (ng/ml) 0.05 0.04, 0.08 0.09 0.07, 0.16 2.60 1.88, 3.68 <0.00001 

Lysine (uM/l) 217.67 190.63, 244.12 203.9 174.87, 215.00 0.55 0.42, 0.72 <0.00001 

Methylmalonic acid (nM/l) 270 220, 350 366 310, 460 2.09 1.56, 2.87 <0.00001 
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Control 
Median 

Control 
IQR 

Case 
Median 

Case 
 IQR OR 95% CI p.value 

N-acetylaspartate (nM/l) 296.58 239.50, 378.61 341.62 306.09, 452.19 1.76 1.33, 2.37 0.00013 

N-terminal prohormone of brain natriuretic 

peptide (pg/ml) 
552.5 247.00, 1152.50 1487.23 607.00, 3170.00 2.10 1.54, 2.94 

<0.00001 

Osteopontin (ng/ml) 15 11, 23 26 18, 33 2.58 1.82, 3.78 <0.00001 

Sialic acid (uM/l) 1.09 0.93, 1.31 1.37 1.19, 1.76 2.43 1.73, 3.52 <0.00001 

Symmetric Dimethylarginine (nM/l) 564 499.00, 647.50 662.91 578.00, 786.00 2.49 1.72, 3.69 <0.00001 

SDMA:ADMA 1.06 (0.93, 1.22) 1.23 1.13, 1.49 2.63 1.86, 3.81 <0.00001 

Tamm-Horsfall Urinary Glycoprotein (ug/ml) 0.04 0.03, 0.05 0.03 0.02, 0.03 0.46 0.33, 0.62 <0.00001 

Thrombomodulin (ng/ml) 5.39 4.60, 6.40 6.5 5.75, 7.40 2.00 1.48, 2.73 <0.00001 

Tissue Inhibitor of Metalloproteinases 1 

(ng/ml) 
170 150, 192 188 172, 218 2.02 1.52, 2.74 

<0.00001 

Trefoil Factor 3 (ug/ml) 0.17 0.13, 0.22 0.27 0.21, 0.37 4.17 2.81, 6.42 <0.00001 

Tryptophan (uM/l) 57.31 50.65, 64.25 52.21 43.10, 56.76 0.54 0.41, 0.72 <0.00001 

Tumor Necrosis Factor Receptor I (pg/ml) 2639 1985, 3217 3440 2852, 4130 2.41 1.76, 3.37 <0.00001 

Tumor Necrosis Factor Receptor 2 (ng/ml) 9.7 8.30, 12.00 13 10.00, 16.00 2.55 1.84, 3.63 <0.00001 

Uracil (nM/l) 119.26 94.25, 152.80 136.54 121.23, 172.55 1.76 1.35, 2.35 <0.00001 
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Control 
Median 

Control 
IQR 

Case 
Median 

Case 
 IQR OR 95% CI p.value 

Vascular Cell Adhesion Molecule-1 (ng/ml) 603 530, 747 724 612, 885 1.77 1.34, 2.36 <0.00001 

Odds ratios (OR) are per standard deviate.  

Clinical covariates adjusted for were: age, sex, baseline eGFR, Albuminuria status, HbA1c, use of ACE inhibitors and use of ARBs
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Table 3:  Association of 14 Biomarkers Contributing to Prediction of Rapid 

Progression in Forward Selection Adjusted for Each Other and Clinical 

Covariates* 

 

Odds 

Ratio per 

Standard 

Deviate 

95% Confidence 

Interval P-value 

Symmetric Dimethylarginine : 

Asymmetric Dimethylarginine 
8.36 3.83, 20.40 <0.0001 

Creatinine 3.52 1.54, 8.76 0.0042 

Beta-2-Microglobulin 3.19 1.56, 6.84 0.0019 

Symmetric Dimethylarginine 0.32 0.13, 0.72 0.0075 

Alpha-1 Antitrypsin (2) 2.05 1.38, 3.14 0.0006 

Kidney Injury Molecule-1 1.93 1.18, 3.27 0.0111 

Uracil 1.84 1.22, 2.84 0.0046 

N-terminal prohormone of brain 

natriuretic peptide 
1.84 1.15, 3.01 0.0123 

C16-acylcarnitine 1.76 1.16, 2.73 0.0090 

Hydroxyproline† 1.73 1.12, 2.72 0.0151 

Fibroblast Growth Factor 21 1.69 1.06, 2.75 0.0288 

Fatty Acid-Binding Protein heart † 0.63 0.38, 1.02 0.0588 

Creatine† 0.65 0.41, 1.01 0.0590 

Adrenomedullin 1.07 0.56, 2.04 0.8370 

*Clinical covariates included: age, sex, baseline eGFR, Albuminuria status, HbA1c, 

and use of ACE Inhibitors or Angiotensin Receptor Blockers† biomarker not 

statistically significant in univariate analyses adjusted only for clinical covariates 
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