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P H Y S I C S

Fluctuation-induced force in homogeneous  
isotropic turbulence
Vamsi Spandan1, Daniel Putt2, Rodolfo Ostilla-Mónico2*, Alpha A. Lee3*

Understanding force generation in nonequilibrium systems is a notable challenge in statistical physics. We 
uncover a fluctuation-induced force between two plates immersed in homogeneous isotropic turbulence using 
direct numerical simulations. The force is a nonmonotonic function of plate separation. The mechanism of force 
generation reveals an intriguing analogy with fluctuation-induced forces: In a fluid, energy and vorticity are local-
ized in regions of defined length scales. When varying the distance between the plates, we exclude energy struc-
tures modifying the overall pressure on the plates. At intermediate plate distances, the intense vorticity structures 
(worms) are forced to interact in close vicinity between the plates. This interaction affects the pressure in the slit 
and the force between the plates. The combination of these two effects causes a nonmonotonic attractive force 
with a complex Reynolds number dependence. Our study sheds light on how length scale–dependent distribu-
tions of energy and high-intensity vortex structures determine Casimir forces.

INTRODUCTION
A fluctuating medium can exert a force on boundaries that confine the 
fluctuation (1). The most celebrated of these fluctuation-induced 
forces is the quantum Casimir effect: Metallic plates in a vacuum 
experience an attractive force because they confine vacuum fluctu-
ations of the electromagnetic field. Recent studies have shown that 
the attractive force is also seen in systems containing active media 
that continuously consume energy on confining boundaries (2–4). 
Systems where large-scale structure and spatiotemporal chaos emerge 
through energy injection at small scales are referred to as active tur-
bulence. The magnitude of the attractive Casimir-like force observed 
in these systems is determined by the partitioning of energy across 
various length scales. On the other hand, in classical hydrodynamic 
turbulence, energy is injected at large scales and allowed to transfer 
to smaller scales. Hydrodynamic turbulence is a paradigmatic non-
equilibrium system with coherent spatial structures and well-studied 
mechanisms of energy transfer and dissipation. The phenomenon of 
force generation observed in other systems such as active media has not 
yet been studied in classical hydrodynamic turbulence. Understand-
ing the interactions between objects in turbulence is crucial in ex-
plaining a plethora of phenomena, ranging from collective dynamics 
of plankton to volcano eruptions and multiphase flows in industrial 
processes.

In this work, we report the first observation of a force between 
objects immersed in a turbulent Newtonian fluid driven in a homo-
geneous and isotropic manner. We achieve this by performing direct 
numerical simulation of the governing Navier-Stokes (NS) equa-
tions where all the spatiotemporal scales are fully resolved without 
any background modeling. The nonlinearities in the NS equations 
cause the energy injected into the fluid cascade across length scales, 
energizing smaller and smaller structures. This process occurs up to 
length scales where viscosity dominates (the Kolmogorov scale), where-
by energy is dissipated. If the forcing is continuous in time, then the 

system reaches a statistically stationary state with a continuous en-
ergy spectrum. Intermediate scales are energetic and play an active 
role in the cascade. They are known as “inertial” length scales and 
are neither artificially forced nor heavily dissipative. In this inertial 
range, there is a robust relationship between energy and wave num-
ber known as the “−5/3 law” (5), with the longest wavelengths con-
taining the most energy.

In such a system, which is rich with nonlinearities, energy cas-
cade, and spatiotemporal chaos, we show the existence of an attrac-
tive fluctuation-induced “Casimir” force and find that the force is a 
nonmonotonic function of plate separation. By analyzing the pres-
sure distribution between the immersed plates as well as the loca-
tion of the force maximum, we show that the mechanism of force 
generation is linked to the ability of the plates to pack, or exclude, 
specific flow features in between them and thus causing a Casimir-
like force. Previous numerical studies of rigid spheres (6, 7) and de-
formable bubbles (8) in turbulence focused on the wake instabilities 
of a single particle or the collective long-range effects of swarms of 
particles on the underlying turbulence. These results provide a mech-
anistic characterization of how hydrodynamic turbulence generates 
force between objects.

RESULTS
Homogeneous isotropic turbulence (HIT) (9) is an idealized state of 
turbulence that can be approximated numerically by using a triply 
periodic computational domain, which is randomly forced at the 
largest wavelengths that fit in the computational box. We perform 
direct numerical simulations of HIT using the incompressible NS 
equations to study the nature of force between two closely placed ob-
jects immersed in a forced fluid. The NS equations relate fluid ve-
locity u and pressure p

	​​  ∂ u ─ ∂ t ​ + u ⋅ ∇u =  −  ​ 1 ─ ​​ F​​ ​  ∇ p +  ​∇​​ 2​ u + F​	 (1)

	​ ∇ ⋅ u =  0​	 (2)

where t is time,  is the fluid kinematic viscosity, and F is the fluid 
density. F = ftur + fibmis a force vector that is a sum of two terms; i.e., ftur 
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is a contribution from the forcing needed to generate homogeneous 
turbulence in the domain, while fibm is the force needed to enforce 
the influence of the immersed plates on the flow through the immersed 
boundary method, which will be described later.

We use a computational periodic cube of side ℒ, with two square 
parallel plates of size of lp/ℒ = 0.25, and vary the plate distance d 
between d/ℒ = 0.05 and 0.25. Taylor-Reynolds numbers of Re = 
u′/ = 65, 100, and 140 are simulated, where  is the Taylor micro
scale ​  = ​ √ 

_
 15( / ) ​​u ′ ​​. This Re is a measure for the range of scales 

covered by the inertial range. The values simulated are enough to 
provide a well-developed inertial range while limiting computa-
tional costs.

Figure 1 is the central result of this work: Turbulent flow gener-
ates an attractive force between rigid plates, which increases with Re 
and is a nonmonotonic function of plate separation. We quantify the 
force with the dimensionless coefficient ​​C​ F​​ =  F / ​1 _ 2​ ​​ F​​ ​u​​ ′2​A​, where F is 
the temporally averaged normal force on the plates and A is the 
plate area. To ensure that the force is not a numerical artifact caused 
by the sharp edges of the plates, we also show the results of a simu-
lation with two spheres of radius r/ℒ = 0.05. In this case, the attractive 
force is weaker but still present and persistent over long time scales.

DISCUSSION
We now discuss the nature and origin of the computed attractive force. 
Any surface (plate here) immersed in a flow field experiences two 
kinds of stresses: viscous stresses and pressure, which act in the tan-
gential and normal direction, respectively. A difference in local pres-
sure on both sides of a rigid plate leads to a force along the normal 
direction. The pressure in a fluid is directly related to the velocity 
gradients in the flow, i.e., the curl of velocity, also known as vorticity (), 
and the rate of strain in the fluid  by the relation ∇2(p/F) = 2/2 − 
2 = 2Q (5), where Q acts like a source in the pressure evolution 
equation. A series of classical studies in the past have looked at the 
consequences of the above equation and the nature of distribution 
of pressure in the flow (10–12). In a homogeneous and isotropic 
turbulent flow field, large-scale structures and strain-dominated re-
gions are markers for positive pressure fluctuations, while thin and 
tubular high-intensity vorticity structures lead to negative pressure 

fluctuations. Another interesting observation is that the pressure 
distribution is highly skewed toward negative pressure with expo-
nential tails as opposed to more Gaussian-like behavior toward pos-
itive pressure fluctuations. This is primarily a consequence of the 
interaction between strain-dominated and vorticity-dominated re-
gions in the flow where it is clearly observed that high-strain regions 
are typically associated with high vorticity, while the converse does 
not necessarily hold (10). This leads to a bias in the source term (Q) 
for the pressure Poisson equation and consequently extremely low-
pressure fluctuations within regions of high-intensity vorticity struc-
ture. The interaction between structures with different characteristics 
and length scales leads to a nontrivial pressure distribution in the flow.

The forces acting on the plates are directly governed by the local 
pressure, which, in turn, is governed by the organization of the un-
derlying energy field and vorticity. While energy is contained in the 
largest wavelengths, regions of intense vorticity organize themselves 
into tubular-like structures, referred to as worms in literature (13). 
The radius of these tubular structures scales as the Kolmogorov length 
K = (3/)1/4 (a measure of the viscous cutoff length), where  is the 
energy dissipation in the system. Their length scales as the integral, 
or decorrelation, length scale. An estimate for this decorrelation length 
scale is provided by the large-eddy length scale, defined as L = k3/2/, 
with k = 3/2Fu′2 the kinetic energy of the flow and u′ the root mean 
squared velocity fluctuation in one direction (in our simulations, L 
is approximately constant). The complex organization of energy and 
vorticity into spatial structures in hydrodynamic turbulence, which 
affects the nature of positive and negative pressure fluctuations com-
bined with the geometrical confinement induced by the plates, leads 
to the Casimir-like force.

A single plate in a randomly forced fluid will feel, on average, sym-
metric forces on both sides. However, two rigid plates placed next to 
each other restrict the structures that “fit” between the plates. Such 
a geometrical confinement completely excludes high-energy struc-
tures except when the plates are far apart. The geometrical confine-
ment also affects the magnitude and direction of intense vorticity 
structures that fit between the plates (see the Supplementary Mate-
rials for a quantification of anisotropy). Both effects modify the pres-
sure fluctuations and generate a net force. The mechanism of force 
generation is analogous to thermal or quantum Casimir forces (1), 
where a restriction in the fluctuations imposed by the boundaries 
leads to force generation. Here, as the energy and vorticity fluctua-
tions organize themselves into defined and distinct length scales, we 
would expect the Casimir force to be nonmonotonic, with the peak force 
achieved when the plate separation is comparable to the length scale of the 
excluded structures (4). As Re increases, the magnitude of the force in-
creases, possibly because of increase in the intensity of thin vortex struc-
tures, which are markers for negative pressures. The plate distance at 
which optimal force is achieved varies between ​d/ℒ = 0.05 and 0.1​ as 
we vary the Reynolds number between Re = 65 and 140. To fully 
understand how the plate distance for optimal force generation varies 
with Reynolds number, a denser sweep of the parameter space is 
required, and this is anticipated in future studies.

To quantitatively understand the above arguments, we examine 
how the fluctuation modes distribute themselves inside the slit. 
Figure 2 shows an instantaneous snapshot of the flow for two plate 
distances. The left panel clearly shows that the energetic structures 
have lengths comparable to or larger than the plates. They can only 
penetrate between the plates for the large plate distances. Mean-
while, the right panels clearly show the tubular vorticity structures. 

Fig. 1. Force between two plates. The turbulent Casimir force is attractive and non-
monotonic and arises as confinement modifies the fluctuation energy between 
the plates. The plot shows the average attractive force on the plates as a function 
of distance. The inset shows the force normalized by the value of the force mini-
mum CF, min. The blue, orange, and green solid lines are for Re = 65, Re = 100, and 
Re = 140, respectively. The red star is the attractive force between two spheres of 
radius r/ℒ = 0.05 at Re = 65.
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By comparing both figures, we can see how for close distances, the 
plates organize the tubular structures within, while for large distances, 
they are more disordered.

The time-averaged kinetic energy and the marker for intense vor-
tex structures Q in the planes normal to the plates (Fig. 2, C and D) 
further corroborate the relationship between energy, vorticity struc-
tures, and force generation. A narrower plate separation leads to 
lower mean energy inside the walls, agreeing with our physical pic-
ture that the plates filter the fluctuations in between and outside the 
plates. However, no qualitative change is seen in the profiles of ki-
netic energy close to the maximum, and the nonmonotonicity of the 
force cannot be explained from energy statistics alone. For the Q pro-
files, there is a qualitative change of behavior around the plate sep-
aration at which the maximum force is attained (green and yellow 
curves). The mean value of Q increases within the gap for plate sep-
arations at which the maximum force is found, indicating the sig-
nificance of structures where vorticity dominates strain rate (14). At 
very close distances between the plates, viscous effects damps the 
evolution of the vortical structures in the gap. The whole flow be-
comes quiescent between the plates, and no structures fit. As the 
plate separation increases, the region between the plates becomes 
populated, first by intense vorticity structures and later by energy-
containing structures.

By immersing the plates into the flow, we selectively filter the 
flow fields. In Fig. 3, we plot the pressure within and outside the 
immersed plates. We note that while the sharp edges of the plates 
are clearly visible in this figure, this is not the source of the force. To 
ensure this, in Fig. 1, we reported that an attractive force was also 
found between two spheres. Instead, we can understand the force 
from the fact that when we place two plates in the flow, we exclude the 
energy-containing structures from between the plates, which gener-

ates high pressures at the plate centers. At the same time, we force 
the intense vorticity structures to interact in close quarters within 
the confinement, which enhances vortex stretching and produces even 
more intense vortex structures, which decreases the pressure (13). 
The pressure on the outside section of the plate can be seen to in-
crease greatly between the left and middle pictures, as structures 
are excluded from a larger volume. The pressure in the inside re-
mains relatively low in comparison to the outside, generating the 
attractive force. As the plates separate further, the prominent peak 
in the pressure fluctuations at the midgap fades, and the pressure 
fluctuations profile between the plates becomes horizontal; the in-
teraction between intense vortical structures is now less localized. 
This coincides with a sharp decrease in the force magnitude between 
the plates.

Because of the intimate link between vorticity and pressure, one 
can expect this effect to show up in the pressure fluctuations, shown 
in Fig. 3B. Around d/ℒ = 0.075, a sharp peak of pressure fluctuations 
develops at the midgap. The peak is present for the plate separations 
that cause the highest attractive forces. The profiles of Q (in Fig. 2B) 
and the pressure fluctuations indicate the enhancement of intense 
vortex structures (source of low-pressure regions), which also con-
tributes to optimal force generation. To reassure the reader that the 
force in not a numerical artifact, we further characterize the nature 
of force generation in the Supplementary Materials.

In summary, we demonstrate the existence of an attractive tur-
bulent Casimir-like force by direct numerical simulation of two plates 
immersed in a homogeneous isotropic turbulent flow. Our study 
sheds light on the interaction between objects in a turbulent flow at 
very close distances. We anticipate that this force can be experimen-
tally realized in setups previously used for studying single-phase 
and multiphase HIT (15). Further research to understand the Re 

A B

C D

Fig. 2. Turbulent structures are excluded from the space in between narrowly separated plates, which causes the Casmir force to arise. (A) Visualization of energy 
(purple indicates regions of high energy) and (B) Q (green indicates regions of positive Q) for the cases with Re = 65, parallel square plates with separation d = 0.1ℒ [left 
panel in (A) and (B)] and d = 0.2ℒ [right panel in (A) and (B)]. Videos are available in the Supplementary Materials. (C and D) Spatial distribution of fluid kinetic energy (k) 
and pressure source (Q) in the direction normal to the plates for Re = 100, lp/ℒ = 0.25, and several plate distances. Legend: Blue, orange, green, red, and purple lines are 
d/ℒ = 0.05, 0.075, 0.1, 0.15, and 0.2, respectively.
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dependence is needed. Moreover, we speculate that this mechanism 
of generating a nonmonotonic Casimir-like force due to nontrivial 
spatial redistribution of energy containing structures and intense 
vortex filaments might be a general phenomenology for active and 
nonequilibrium systems and could appear in large classes of biolog-
ical fluids comprising microbial suspensions that exhibit notable 
analogies with turbulent flows (16–19).

MATERIALS AND METHODS
The NS equations are solved using an energy-conserving second-
order centered finite difference scheme in a Cartesian domain with 
fractional time stepping. An explicit Adams-Bashforth scheme is used 
to discretize the nonlinear terms, while an implicit Crank-Nicholson 
scheme is used for the viscous terms (20). Time integration is per-
formed via a self-starting fractional-step third-order Runge-Kutta 
scheme, and the time step is dynamically chosen so that the maxi-
mum Courant-Friedrich-Lewy condition number is 1.2. The domain 
is periodic in all three directions with a periodicity length L. To spa-
tially discretize the equations, a cubic grid is used, with 2403 points 
for Re = 65, 3603 points for Re = 100, and 4803 points for Re = 
140. The formulation of the force vector ftur is based on random pro-
cesses driving the time evolution of a selected number of large scales 
(or small–wave number modes). Additional details on the forcing 
scheme and its corresponding parameters can be found in the study 
by Eswaran and Pope (21) and the study by Chouippe and Uhlmann 
(22). Further details on how this forcing injects energy and how the 
forces on the objects are affected by it can be found in the Supple-
mentary Materials.

The influence of rigid plates on the surrounding fluid is simu-
lated using an immersed boundary method based on the moving 
least squares approximation. This involves discretizing the immersed 
plates using several (∼104) triangular computational elements. Fur-
ther details about the method are described in the Supplementary 
Materials (23, 24). The forces acting on the immersed rigid plates 
can be computed from the pressure interpolated on both sides indi-
vidual triangular elements. Temporal convergence of the forces was 

assured by running the simulations until the force from the hydro-
dynamic pressure on both plates were equal (but oppositely signed) 
to within 3%. This defined the magnitude of the error bars. In prac-
tice, this meant running up to more than 100 large-eddy turnover 
times defined by Te = u′2/.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/14/eaba0461/DC1
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