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ABSTRACT
We present two catalogues of active galactic nucleus (AGN) candidates selected from the latest
data of two all-sky surveys – Data Release 2 of the Gaia mission and the unWISE catalogue
of the Wide-field Infrared Survey Explorer (WISE). We train a random forest classifier to
predict the probability of each source in the Gaia–unWISE joint sample being an AGN,
PRF, based on Gaia astrometric and photometric measurements and unWISE photometry.
The two catalogues, which we designate C75 and R85, are constructed by applying different
PRF threshold cuts to achieve an overall completeness of 75 per cent (≈90 per cent at Gaia
G ≤ 20 mag) and reliability of 85 per cent, respectively. The C75 (R85) catalogue contains
2734 464 (2182 193) AGN candidates across the effective 36 000 deg2 sky, of which ≈0.91
(0.52) million are new discoveries. Photometric redshifts of the AGN candidates are derived
by a random forest regressor using Gaia and WISE magnitudes and colours. The estimated
overall photometric redshift accuracy is 0.11. Cross-matching the AGN candidates with a
sample of known bright cluster galaxies, we identify a high-probability strongly lensed AGN
candidate system, SDSS J1326+4806, with a large image separation of 21.′′06. All the AGN
candidates in our catalogues will have ∼5-yr long light curves from Gaia by the end of the
mission, and thus will be a great resource for AGN variability studies. Our AGN catalogues
will also be helpful in AGN target selections for future spectroscopic surveys, especially those
in the Southern hemisphere. The C75 catalogue can be downloaded at https://www.ast.cam.ac
.uk/∼ypshu/AGN Catalogues.html.

Key words: catalogues – galaxies: active – quasars: general.

1 IN T RO D U C T I O N

Active galactic nuclei (AGNs) are compact cores in active galaxies
that emit strong electromagnetic radiation over a broad wavelength
range. They are believed to be powered by the accretion activities
of the central supermassive black holes (e.g. Lynden-Bell 1969;
Rees 1984; Tanaka et al. 1995). Very luminous AGNs can also
be referred to as quasars (also known as QSOs). Large samples
of AGNs are of great importance in astrophysics. They can be
used to define celestial reference frames (e.g. Ma et al. 1998; Fey
et al. 2015; Mignard et al. 2016; Gaia Collaboration 2018b). The
variability from AGNs has been used to constrain the properties
of supermassive black holes and the fuelling mechanisms (e.g.
Blandford & McKee 1982; Vanden Berk et al. 2004; Li & Cao 2008;
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Liu et al. 2008; MacLeod et al. 2010; LaMassa et al. 2015; Shen et al.
2015; Yang et al. 2018). Among the most luminous sources in the
sky, AGNs have been detected back to within the first billion years
of the Universe and help to understand the growth of supermassive
black holes (e.g. Fan et al. 2006; Wu et al. 2015; Wang et al. 2018b;
Pons et al. 2019; Shen et al. 2019). In addition, AGNs have been
suggested to play an important role in regulating the formation and
evolution of host galaxies (e.g. Silk & Rees 1998; Kang, Jing & Silk
2006; Fabian 2012; Dubois et al. 2013). Furthermore, spectroscopic
observations of AGNs across a wide redshift range can probe the
neutral hydrogen fraction in the intergalactic medium and mass
distribution in general, which further constrain the history of re-
ionization and cosmological parameters (e.g. Mortlock et al. 2011;
Delubac et al. 2015; Bautista et al. 2017; Bañados et al. 2018; Zhao
et al. 2019).

AGNs can be selected based on X-ray observations or by ultra-
violet (UV), infrared (IR), or optical photometry and spectroscopy.
Each has different biases that affect the resulting samples. Optical

C© 2019 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/489/4/4741/5561523 by U
niversity of C

am
bridge user on 25 O

ctober 2019

http://orcid.org/0000-0002-9063-698X
http://orcid.org/0000-0003-2644-135X
http://orcid.org/0000-0002-0038-9584
http://orcid.org/0000-0003-2456-9317
https://www.ast.cam.ac.uk/~ypshu/AGN_Catalogues.html
mailto:yiping.shu@ast.cam.ac.uk


4742 Y. Shu et al.

identification militates against heavily obscured AGNs, while X-
ray selected samples are more robust against obscuration. Mid-IR
and optical identification can be hampered by the host galaxy’s
emission, and this is known to bias against AGNs accreting at low
fractions of the Eddington limit. Mid-IR and X-ray observations are
usually space based because of the Earth’s atmosphere, though the
latter require significantly longer exposure time.

The advent of data from the Wide-field Infrared Survey Explorer
(WISE) (Wright et al. 2010) spurred the construction of AGN
catalogues based solely on mid-IR data. The WISE mission imaged
the entire sky in four mid-IR bands, centred at 3.4, 4.6, 12, and 22
μm, referred to as W1, W2, W3, and W4, respectively. As noticed
in previous work (e.g. Lacy et al. 2004; Stern et al. 2005, 2012;
Nikutta et al. 2014), AGNs tend to have redder W1 − W2 colours
relative to stars and inactive, low-redshift galaxies. As a result, a
number of works relied on the W1 − W2 colour in selecting AGNs
from the AllWISE Data Release (e.g. Assef et al. 2013; Secrest
et al. 2015; Assef et al. 2018). Very recently, Schlafly, Meisner &
Green (2019) provided an enhanced unWISE catalogue of roughly
2.03 billion objects that is based on significantly deeper imaging
from use of coadds of all publicly available WISE data (Lang 2014;
Meisner, Lang & Schlegel 2017a,b) and has a superior treatment of
crowding. This paper provides the first AGN catalogues using the
unWISE data.

Nevertheless, the mid-IR-only selection techniques have some
limitations. The first is the generally poor imaging resolution of
mid-IR data (∼6 arcsec in WISE W1 and W2 bands). As a result,
source blending can become a considerable issue and lead to
misclassifications or render the blended data unusable. Secondly,
some non-AGNs have similarly red W1 − W2 colours as AGNs,
which are difficult to distinguish with mid-IR data alone. For
example, high-redshift (z � 1.2) early-type galaxies also have red
W1 − W2 colours because of the rest-frame 1.6 μm stellar bump
being shifted beyond the W1 band at z � 1.2 (e.g. Papovich 2008;
Papovich et al. 2010; Galametz et al. 2012; Yan et al. 2013). This
type of contamination is not significant in the AllWISE data because
the characteristic magnitude of high-redshift early-type galaxies in
the W2 band is about 16.7 mag (e.g. Mancone et al. 2010), at which
the AllWISE catalogue is very incomplete. However, it becomes
more pronounced in the deeper unWISE catalogue, which reaches
≈50 per cent complete at W2 = 16.7 mag (Schlafly et al. 2019).
In addition, young stellar objects (YSOs), dusty asymptotic giant
branch (AGB) stars, and extended planetary nebulae are also found
to have similar W1 − W2 colours as AGNs (e.g. Rebull et al. 2010;
Koenig et al. 2012; Nikutta et al. 2014; Assef et al. 2018).

Optical data have also been used to efficiently select AGNs,
through mostly the ‘UV excess’ method or multicolour cuts (e.g.
Sandage & Wyndham 1965; Warren et al. 1987; Hewett, Foltz &
Chaffee 1995; Richards et al. 2002, 2004; Smith et al. 2005;
Schneider et al. 2010; Bovy et al. 2011; Myers et al. 2015).
Furthermore, the combination of optical and IR data is found to
improve the success rate of AGN selections (e.g. Wu & Jia 2010;
Maddox et al. 2012; McGreer et al. 2013; Richards et al. 2015;
Wang et al. 2016). High-redshift galaxies, YSOs, and AGB stars
can also be better identified with the inclusion of optical data.
Hitherto, the sky coverage has been limited due to the lack of an
all-sky optical survey. However, the European Space Agency’s Gaia
space telescope, launched in 2013, is delivering precise astrometry
and optical photometry for more than a billion sources across
the entire sky for the first time (Gaia Collaboration 2016). Gaia
measures three broad-band photometry (Evans et al. 2018), i.e.
G band (330–1050 nm), the blue prism photometer (BP, 330–

680 nm), and the red prism photometer (RP, 630–1050 nm). On
2018 April 25, Gaia delivered its second data release (Gaia DR2;
Gaia Collaboration 2018a) containing astrometry and photometry
for 1.69 billion sources, based on the first 22 months of operation.

In this paper, we construct new all-sky AGN catalogues based
on the combination of these two latest catalogues from Gaia and
unWISE. This paper is organized as follows. Section 2 describes
some properties of the Gaia–unWISE sample. Section 3 explains
the methods and procedures used to classify AGNs and estimate
their photometric redshifts. Section 4 presents our catalogues of
AGN candidates. Discussion and conclusion are given in Sections 5
and 6, respectively. Throughout the paper, we adopt a cosmological
model with �m = 0.308, �� = 0.692, and H0 = 67.8 km s−1 Mpc−1

(Planck Collaboration 2016). All the magnitudes are given in the
Vega system, unless otherwise noted.

2 SAMPLE PRO PERTIES

2.1 Data preparation

To build the Gaia–unWISE sample for AGN selection, we perform
a nearest-neighbour cross-match between the Gaia DR2 catalogue
(the leading catalogue) and the unWISE catalogue using a matching
radius of 2 arcsec. In the cross-match process, we only consider
sources with non-zero fluxes in both W1 and W2 bands. As will
be shown later, this requirement reduces the number of AGNs in
the sample by ∼ 2.6 per cent relative to requiring non-zero flux
in W1 alone. We take into account the proper motions of sources
(as provided by Gaia DR2) in the cross-match process because
the source positions in the Gaia DR2 catalogue and the unWISE
catalogue are given at different reference epochs. The Gaia–
unWISE sample thus includes 641 266 363 unique Gaia sources
(corresponding to 564 948 465 unique unWISE sources). One thing
to note is that due to the design of the Gaia mission, mostly point-
like objects can be detected by Gaia, so the Gaia–unWISE sample
consists of stars, AGNs, and bright and compact (presumably star-
forming) regions in extended galaxies.

2.2 Completeness and depth of the Gaia–unWISE sample

It is known that the Gaia completeness and limiting magnitude
exhibit complex spatial variation patterns, primarily related to
the Gaia scanning law (e.g. Arenou et al. 2018). However, the
completeness and limiting magnitude for the Gaia–unWISE sample
are still unclear. We thus compute the peak and 99th percentile in
the Gaia G-band magnitude distribution in individual spatial bins
for all the ≈567 million sources in the Gaia–unWISE sample with
G ≥ 16 mag. The peak G magnitude, Gpeak, should be a good
indicator of the completeness, and the 99th percentile in G, G99,
has been used to quantify the limiting magnitude (Arenou et al.
2018). Fig. 1 shows the spatial distributions and one-dimensional
cumulative sky coverage histograms of Gpeak and G99 for the Gaia–
unWISE sub-sample. We point out that although shown in the Gaia
G-band magnitude, these maps and histograms have also taken into
account the incompleteness and limiting magnitudes in W1 and W2
of the unWISE catalogue. In particular, the brighter Gpeak structures
at low latitudes and towards the bulge and Magellanic Clouds are
primarily caused by the brighter incompleteness limits in W1 and
W2 (see Figs A1 and A2). We also find that the Gaia–unWISE
sample is complete at G ≈ 19.5 mag in more than 50 per cent of
the sky. The G99 map clearly shows the Gaia scanning law, where
the limiting magnitude is deeper in regions that have more repeated
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Gaia–unWISE AGN catalogues 4743

Figure 1. Top: Spatial distributions in Mollweide projection (cell size of ≈0.84 deg2) of Gpeak (left) and G99 (right) for the Gaia–unWISE subsample with G
≥ 16 mag. The white polygon indicates the location of the Boötes field (at l ≈ 57◦, b ≈ 67◦). Bottom: One-dimensional cumulative sky coverage histograms
(bin size of 0.1 mag) of Gpeak (left) and G99 (right) for the same Gaia–unWISE subsample.

observations by Gaia. This is primarily because faint sources that
have more repeated observations by Gaia tend to have more precise
astrometric and photometric measurements and are more likely to
be included in the Gaia DR2 catalogue relative to sources in the less
Gaia-scanned regions. The faintest limiting magnitude of the Gaia–
unWISE sample is about G = 21.4 mag, and more than 50 per cent
of the sky has a limiting magnitude fainter than G ≈ 21.1 mag.
We note that the overall limiting magnitude and completeness for
the Gaia–unWISE sample will improve in the near future as more
repeated Gaia observations will be conducted across the whole
sky.

The completeness of the expected AGNs in the Gaia–unWISE
sample needs to be assessed separately. Fig. A1 shows that the
unWISE catalogue is complete at W1 ≈ 16.5 mag in more than
90 per cent of the sky. As will be shown later, the expected AGNs
in the Gaia–unWISE sample generally have G − W1 > 3 mag.
Considering the Gpeak distribution in Fig. 1, it is suggested that the
expected AGNs will be complete at G 	 19.5 mag in more than
50 per cent of the sky (mostly at high latitudes of |b| > 20◦).

2.3 AGN density in the Gaia–unWISE sample

To estimate the expected AGN number density in the Gaia–unWISE
sample, we use the deep and wide Boötes field of the NOAO Deep
Wide-Field Survey (NDWFS; Jannuzi & Dey 1999). The Boötes
field is a ∼9.2 deg2 region centred at approximately R.A. = 218◦,
Decl. = 34◦ (indicated by the small, white polygon in Fig. 1)

with deep observations in a broad range of (up to 17) filter bands
from UV to mid-IR, and therefore has been used for quantifying
the performance of AGN selection techniques and AGN studies
in general (e.g. Assef et al. 2010, 2013, 2018; Chung et al. 2014;
Williams et al. 2018). In particular, we make use of the catalogue
from Chung et al. (2014) that contains 431 038 sources extracted
from the Boötes field, referred to as the Boötes source catalogue,
down to R � 23.9 mag, which should be complete towards the faint
end for our purpose as the limiting magnitude of the Gaia–unWISE
sample is G ∼ 21 mag. At the bright end, the typical saturation
limit of the NDWFS survey is R 	 17 mag (Chung et al. 2014),
which roughly corresponds to G ≈ 17 mag. For every source in
the Boötes source catalogue, Chung et al. (2014) fitted its observed
spectral energy distribution (SED) with stellar, galaxy, and galaxy
+ AGN spectral templates, based on which one can decide whether
the source is a star, a galaxy, or an AGN.

We first select a 2◦ × 2◦ subregion centred at R.A.= 218◦, Decl.
= 34◦ from the Boötes field, which contains 159 754 sources from
the Boötes source catalogue. We perform a nearest-neighbour cross-
match between these sources and the Gaia–unWISE sample with a
matching radius of 1 arcsec. Considering that the source positions
are given at different reference epochs, we apply a correction to
the Gaia DR2 positions in the cross-match process for sources
with well-measured proper motions (i.e. S/N > 5), and obtain 4564
matched sources. The unmatched ones are mostly either extended
or fainter sources that are not catalogued in Gaia and/or unWISE.
Fig. 2 shows offsets from positions in Gaia DR2 to positions in
the Boötes catalogue for the matched 4564 sources after proper
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Figure 2. Positional offsets from Gaia DR2 to the Boötes catalogue for the
4564 matched sources using a matching radius of 1 arcsec. Matches with
separations ≤0.′′6 (enclosed by the grey dashed circle) are considered as true
matches.

motion corrections. We find that the median positional offsets are
−0.′′014 in the right ascension direction and −0.′′07 in the declination
direction. More than 99 per cent (4523) of the matched sources have
absolute positional offsets less than 0.′′6, which are considered as true
matches. Further removing sources whose SEDs are better fitted by
stellar templates instead of the galaxy + AGN templates as indicated
by the reduced χ2

ν values, i.e. χ2
ν (star) ≤ χ2

ν (galaxy + AGN), we
obtain 718 extragalactic sources in this subregion.

To determine how many of the extragalactic sources are AGNs,
we consider two metrics that have been previously used for the
Boötes source catalogue. The first is the F ratio derived from the
reduced χ2

ν values and degrees of freedom by Chung et al. (2014).
They suggested that a threshold of F > 10 should yield a reasonably
complete and clean AGN sample. On the other hand, Assef et al.
(2018) defined a parameter â, which is the AGN contribution to the
total luminosity based on the SED fitting results, and used â > 0.5
for selecting AGN candidates. To decide which AGN selection
criterion is appropriate for our purpose, we consider the Sloan
Digital Sky Survey (SDSS) DR14 QSO catalogue (Pâris et al.
2018), based on which our AGN classification is calibrated (as
will be shown later). In the 2◦ × 2◦ subregion, there are 89 DR14
QSOs that are in the Gaia–unWISE sample and have been assigned
an F ratio and an â value by Chung et al. (2014). We find that
requiring F > 10 or â > 0.5 alone only recovers 76 or 80 DR14
QSOs, while requiring F > 10 or â > 0.5 can recover 84 DR14
QSOs (i.e. ≈95 per cent). We therefore assume that sources with
either F > 10 or â > 0.5 can be considered as AGNs that will be
detected in this work.

315 of the 718 extragalactic sources in the Boötes subregion
satisfy the requirement of F > 10 or â > 0.5 and are considered as
AGNs, which implies that the AGN number density in the Gaia–
unWISE sample is ∼100 deg−2 in the Boötes field. Considering that
the Boötes field is among the deepest and most complete regions in
the current Gaia–unWISE sample with Gpeak ≈ 20.1 mag and G99

≈ 21.2 mag, the overall AGN number density in the Gaia–unWISE
sample is expected to be less than ∼100 deg−2. It also suggests that

≈99.5 per cent of the 641 million Gaia–unWISE sources will be
non-AGNs. An efficient and clean way of selecting AGNs from the
Gaia–unWISE sample is thus highly necessary.

3 ME T H O D O L O G Y

3.1 Random forest algorithm

In this work, we use the random forest (RF) algorithm for AGN/non-
AGN classification and AGN photometric redshift estimation. The
RF is a widely used supervised machine learning algorithm that has
been shown to generate robust models and work efficiently with
large data sets.

The RF algorithm relies on an ensemble of decision trees to
make predictions for both classification and regression problems
(Breiman 2001). The decision trees are built independently based
on features (i.e. source properties in our case) of input data sets,
which are different bootstrap samples of the original training set.
The decision tree is grown in a top-down fashion. At each node of
a decision tree, the data set is split into two subsets according to the
feature among a randomly selected subset of all features that gives
the highest information gain. The nodes are grown recursively until
the stopping criterion is met. In a classification problem, each tree
will calculate the probability (1 or 0) of an input object belonging
to a particular class, and the mean class probability of all the trees is
returned. In a regression problem, each tree will make a prediction
on the unknown quantity that we are interested (photometric redshift
in our case), and the average value from all the trees is used as the
final estimation.

The RF algorithm has been successfully applied to a variety
of tasks in astronomy (e.g. Carliles et al. 2010; Dubath et al. 2011;
Richards et al. 2012; Carrasco Kind & Brunner 2013; Wyrzykowski
et al. 2014; Chen et al. 2019; Jayasinghe et al. 2019), including AGN
classification and photometric redshift estimation (e.g. Pichara et al.
2012; Carrasco et al. 2015; Schindler et al. 2017; Jin et al. 2019;
Nakoneczny et al. 2019). We note that our work is the first RF-
assisted AGN classification across the whole sky.

3.2 AGN classification

3.2.1 Training and test sets

We use RandomForestClassifier provided in the scikit-
learn package (Pedregosa et al. 2011) for AGN classification.
We build the AGN data set for the RF classifier from the largest
spectroscopically confirmed quasar sample – the SDSS DR14 QSO
catalogue (DR14Q; Pâris et al. 2018). We perform a nearest-
neighbour cross-match between Gaia DR2 and DR14Q using a
matching radius of 0.′′5, and find that 354 586 of the 526 356
quasars in DR14Q are detected and catalogued in Gaia DR2. The
unmatched DR14Q quasars are mostly fainter than i ∼ 20.2 mag,
beyond which Gaia is significantly incomplete. Requiring unWISE
counterparts within 2 arcsec with non-zero fluxes in W1 results
in 348 252 quasars, of which 339 194 (i.e. 97.4 per cent) further
have non-zero fluxes in W2. We notice that some of the matched
DR14Q quasars appear to have significant Gaia parallaxes or proper
motions, inconsistent with the fact that they should be stationary.
After visual inspections of the images and spectra, we find that
the majority of those ‘moving’ quasars have close companions
mostly due to projection effects, which affect the estimation of
their parallaxes and proper motions. Consequently, parallax, proper
motion, and photometry of those objects are no longer reliable,
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Table 1. Features considered in the AGN classification.

Feature Description

PLXSIG Parallax significance defined as | PARALLAX/PARALLAX ERROR |, set to −999 if null
PMSIG Proper motion significance defined as

√
(PMRA/PMRA ERROR)2 + (PMDEC/PMDEC ERROR)2, set to −999

if null
G Extinction-corrected Gaia G-band mean magnitude (PHOT G MEAN MAG)
G VAR Variation in Gaia G-band flux defined as√

PHOT G N OBS× (PHOT G MEAN FLUX ERROR/PHOT G MEAN FLUX)
BP − G Extinction-corrected Gaia BP − G colour (BP G), set to 999 if null
G − RP Extinction-corrected Gaia G − RP colour (G RP), set to 999 if null
BPRP Extinction-corrected Gaia BP − RP colour (BP RP), set to 999 if null
BPRP EF BP/RP excess factor (PHOT BP RP EXCESS FACTOR)
AEN Excess noise of the source (ASTROMETRIC EXCESS NOISE)
GOF Goodness-of-fit statistic of the astrometric solution (ASTROMETRIC GOF AL)
CNT1 Number of Gaia sources within a 1 arcsec radius circular aperture
CNT2 Number of Gaia sources within a 2 arcsec radius circular aperture
CNT4 Number of Gaia sources within a 4 arcsec radius circular aperture
W1 − W2 unWISE W1 − W2 colour
G − W1 Extinction-corrected G − W1 colour
GW SEP Separation (in arcsec) between a Gaia source and its unWISE counterpart

and may confuse the RF classifier. We therefore remove the 220
DR14Q quasars that have parallax or proper motion significance
larger than 5σ . The remaining 338 974 quasars comprise the AGN
data set and are also referred to as the Gaia–unWISE–DR14 QSO
sample.

To build the non-AGN data set, we randomly select 10 million
objects from the Gaia–Pan-STARRS1 cross-match table and cross-
match them with the unWISE catalogue using a matching radius
of 2 arcsec, which results in 2351 443 objects with unWISE
counterparts with non-zero W1 and W2 fluxes. Obviously, we need
to further clean this non-AGN data set by identifying and removing
as many AGNs as possible. We therefore put together a known
AGN compilation including almost 29 million known AGNs and
AGN candidates (duplicates not removed) from the million quasar
catalogue, version 5.7 (MILLIQUAS; Flesch 2015), the AllWISE
two-colour selected AGN catalogue (Secrest et al. 2015), and the
AllWISE R90 and C75 AGN catalogues (Assef et al. 2018). We
then remove the 10 902 objects in the non-AGN data set that have
counterparts in the known AGN compilation within an aggressive
matching radius of 5 arcsec and are therefore potential AGNs. This
number is consistent with the expectation based on the AGN/non-
AGN fraction found in Section 2.3, which suggests ∼11 500 AGNs
in this data set. The cleaned non-AGN data set now has 2340 541
objects.

The AGN data set and the cleaned non-AGN data set together
make up the full data set for the RF classifier, which includes
2679 515 objects. The full data set is shuffled and randomly split
so that 80 per cent is used as the training set and the remaining
20 per cent is used as the test set. The training set contains 271 218
AGNs and 1872 394 non-AGNs, while the test set contains 67 756
AGNs and 468 147 non-AGNs.

3.2.2 Feature selection

The RF classifier relies on a set of features (i.e. source properties)
to determine whether a source is an AGN or not. In this work,
we consider 16 features that we think are relevant in separating
AGNs from stars and compact star-forming regions in galaxies.
The features are summarized and explained in Table 1. Most of

the features are directly available from the Gaia DR2 catalogue
and the unWISE catalogue, and more detailed descriptions can
be found in Lindegren et al. (2018), the Gaia DR2 data model,1

and Schlafly et al. (2019). We apply extinction corrections to the
Gaia G, BP, and RP magnitudes according to the extinction laws in
Cardelli, Clayton & Mathis (1989) and O’Donnell (1994), with the
E(B − V) value along each sightline extracted from the extinction
map in Schlegel, Finkbeiner & Davis (1998). Gaia DR2 does not
report parallax or proper motion for some sources (see Lindegren
et al. 2018, for details), and BP or RP under certain circumstances
(see Riello et al. 2018, for details). We flag those null parallaxes
and proper motions as −999, and null BP − G, G − RP, or
BP − RP colours as 999. In the full data set, 61 332 AGNs and
198 208 non-AGNs do not have parallaxes and proper motions,
21 273 AGNs and 197 300 non-AGNs do not have BP − G colours,
21 252 AGNs and 196 511 non-AGNs do not have G − RP colours,
and 21 285 AGNs and 197 637 non-AGNs do not have BP − RP
colours.

Following Belokurov et al. (2017), we construct one feature,
G VAR, from direct measurements as

G VAR = √
PHOT G N OBS

×PHOT G MEAN FLUX ERROR

PHOT G MEAN FLUX
, (1)

in whichPHOT G N OBS is the number of observations contributing
to G photometry, PHOT G MEAN FLUX is the G-band mean flux,
and PHOT G MEAN FLUX ERROR is the standard deviation of
the G-band flux divided by

√
PHOT G N OBS. Clearly, 2.5 ×

G VAR/ln(10) is equivalent to the variation in the G-band magni-
tude. It is therefore helpful to include this feature, which should
encode a source’s variability information during the observing
epochs. However, some other technical effects can also lead to
a substantial variation in the G-band flux, for instance, a mix of
different Gaia scanning directions, especially for extended sources
with non-circular surface brightness distributions. For each source,

1https://gea.esac.esa.int/archive/documentation/GDR2/Gaia archive/cha
p datamodel/sec dm main tables/ssec dm gaia source.html
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we compute the numbers of Gaia sources (the target source is
included) within circular apertures of 1, 2, and 4 arcsec radii and
denote them as CNT1, CNT2, and CNT4, respectively. These three
features, together with the separation between a Gaia source and
its unWISE counterpart, GW SEP, provide a measure of the local
crowding effect and the robustness of the Gaia astrometric solution
and Gaia and unWISE photometric measurements, and thus help in
better classifying a source.

To select the most important/relevant features for AGN classi-
fication, we first train a RandomForestClassifier with its
default parameter choices with the training set using all the features
listed in Table 1, and record its performance on the test set as
measured by the f1 score metric. The F1 score is defined as

F1 = 2 × completeness × reliability

completeness + reliability
. (2)

For example, suppose a data set contains 100 AGNs and 10 000
non-AGNs. For a classifier that misclassifies 1 AGN and 10 non-
AGNs, the F1 score is 0.947. We choose to optimize the classifier
for the F1 score because it measures both the completeness and
reliability. For this baseline model using 16 features, the F1 score
is 0.9875. The relative importance of the 16 features is returned by
thefeature importances attribute of theRandomForest-
Classifier method. We remove four features (i.e. AEN, GOF,
CNT2, and CNT1) that have a cumulative importance less than 0.01,
and retrain the model. The F1 score of the new model is 0.9874,
i.e. nearly as good as the baseline model. We therefore only use the
remaining 12 features for the AGN classification.

3.2.3 Classifier tuning and performance

RF classifiers require specification of a number of parameters
describing what kinds of trees may be built. Fortunately, we find
that we can obtain clean samples of AGNs over a wide range of RF
parameters. Nevertheless, we select the best possible RF parameters
by optimizing the RF performance over the four parameters, i.e.
max features, max depth, class weight, and criterion, that are most
relevant to the classifier’s performance in our case. We refer
interested readers to thescikit-learn documentation2 for a full
description of the role of the parameters. We consider max features
= [3, 4, 5, 6], max depth = [none, 25, 50], class weight = [none,
balanced, {0:1, 1:100}, {0:1, 1:200}, {0:1, 1:500}, {0:1, 1:1000},
{0:1, 1:10000}], and criterion = [entropy, gini]. The remaining
parameters of RandomForestClassifier are set to their
default values. We find that the combination of parameters that
gives the highest F1 score is max features = 3, max depth = 50,
class weight = {0:1, 1:200}, and criterion = entropy. We therefore
adopt these choices and obtain the best-trained AGN classifier after
training on the training set. Nevertheless, we note that changes in
the F1 score for the considered various parameter combinations are
very tiny, on the level of 0.001.

The relative importance, in descending order, of the 12 features
used in the best-trained AGN classifier is shown in the upper corner
of Fig. 3. The lower corner of Fig. 3 shows the two-dimensional
distributions and one-dimensional histograms of the 12 features,
ordered by the importance, for AGNs and non-AGNs in the training
set. The first thing to notice is the clear separation between AGNs
and non-AGNs in the W1 − W2 colour, which confirms again the
effectiveness of W1 − W2 colour in distinguishing AGNs from stars

2https://scikit-learn.org/stable/documentation.html

and galaxies. The PMSIG distribution is also different for AGNs
and non-AGNs, with non-AGNs having an extended tail towards
large PMSIG due to the presence of moving stars. The G − W1
colour of AGNs in the training set peaks around 4, with more than
95 per cent having (extinction-uncorrected) G − W1 > 2.9. The
G − W1 colour of non-AGNs show a bimodal distribution, with
the bluer component contributed mostly by stars and the redder
component mostly by galaxies. Recent work by Lemon, Auger &
McMahon (2019) showed that one can efficiently distinguish QSOs
and strongly lensed QSOs from stars using the combination of W1 −
W2 and G − W1 colours. As expected, AGNs generally have larger
G VAR with a peak value of ≈0.12, or 0.13 mag, while non-AGNs
peak at G VAR ≈ 0.01.

Table 2 presents the performance of the best-trained AGN
classifier when applied to the test set. The true positive rate
(TPR, equivalent to completeness) is the fraction of AGNs that are
classified as AGNs, while the false positive rate (FPR) is the fraction
of non-AGNs that are misclassified as AGNs. A good classifier
should deliver a high TPR and maintain a low FPR at the same
time. We show two sets of results that correspond to two different
AGN probability thresholds, which, as will be shown later, yield
75 per cent completeness (PRF ≥ 0.69) and 85 per cent reliability
(PRF ≥ 0.94), respectively. For the test set, the best-trained AGN
classifier achieves a TPR of � 93 per cent, and the FPR is 0.08–
0.15 per cent.

To illustrate the advantage of combining Gaia (optical) and WISE
(mid-IR) data in identifying AGNs, we apply the WISE-only AGN
selection criteria used in Stern et al. (2012) and Assef et al. (2018)
to the same test set. More specifically, sources are classified as
AGNs if they satisfy W1 − W2 ≥ 0.8 (Stern et al. 2012), or W1 −
W2 > 0.71 (the C75 criterion used by Assef et al. (2018) to achieve
75 per cent completeness), or

W1 − W2 >

{
0.650 × e[0.153×(W2−13.86)2], W2 > 13.86,

0.650, W2 ≤ 13.86

(the R90 criterion used by Assef et al. (2018) to achieve 90 per cent
reliability). It is clear that using optical and mid-IR data, the TPR
becomes significantly higher, i.e. more AGNs can be identified.
More importantly, our FPRs are lower by 0.25 per cent on average
than those of the WISE-only criteria (the R90 criterion in Assef
et al. (2018) achieves a comparably small FPR, but at the cost
of a substantially lower TPR). Although the improvement of
∼0.25 per cent in the FPR seems tiny, it will lead to a huge
improvement in the reliability because the number of non-AGNs
in the Gaia–unWISE sample is almost 640 million. If assuming the
non-AGN test set is representative of the non-AGNs in the Gaia–
unWISE sample, an improvement of 0.25 per cent in the FPR can
prevent ≈1.6 million non-AGNs being misclassified as AGNs.

3.3 Photometric redshift estimation

We use RandomForestRegressor provided in the scikit-
learn package for the photometric redshift estimation. 80 per cent
of the Gaia–unWISE–DR14 QSO sample (271 179 AGNs) is
randomly chosen as the training set, and the remaining 20 per cent
is used as the test set. The 10 features that are used in the RF
regressor are G, W1, BP − G, BP − RP, G − RP, G − W1, RP
− W1, W1 − W2, G VAR, and GW SEP. The RP − W1 feature
is derived from G − W1 and G − RP. Again, we find that similar
photometric redshift accuracy can be achieved for a wide range of
RF parameters. Nevertheless, we optimize the choices for the two
parameters, i.e. max features and max depth, that are usually most
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Figure 3. Upper corner: Relative importance of the 12 features used by the best-trained AGN classifier. Lower corner: Two-dimensional distributions and
one-dimensional histograms of AGNs (blue) and non-AGNs (grey) in the training set in various feature spaces. The contours enclose 68, 95, and 99 per cent
of AGNs and non-AGNs. The features are ordered by the relative importance.

relevant to a regressor’s performance. In particular, we consider
max features = [2, 3, 4, 6, 8, 10] and max depth = [none, 10, 25,
50]. The remaining parameters of RandomForestRegressor
are set to their default values.

We use the standard R2 score to evaluate the performance of the
RF regressor. Assuming the true, spectroscopic redshifts are denoted
as zi

spec, the mean of zi
spec is denoted as z̄, and the predicted redshifts

are denoted as zi
phot, the R2 score (also known as the coefficient of

determination) is defined as

R2 ≡ 1 −
∑

i(z
i
spec − zi

phot)
2∑

i(z
i
spec − z̄)2

. (3)

Clearly, the best R2 score is 1. The combination of parameters
that gives the highest R2 score of 0.752 is max features = 4 and
max depth = 25. Nevertheless, changes in the R2 score for the
considered parameter combinations are very tiny. For example, an
RF regressor with all its parameters set to default values delivers
an R2 score of 0.749. In the best-trained RF regressor, the most
important feature is RP − W1 (relative importance of 0.22), followed
by G − W1, W1 − W2, W1, BP − G, GW SEP, BP − RP, G, G VAR,
and G − RP.

Following the convention in the literature (e.g. Ilbert et al. 2009;
Ananna et al. 2017; Fotopoulou & Paltani 2018), we estimate the
photometric redshift accuracy using the normalized median absolute
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Table 2. Performance of our AGN classifier based on the test
set. The definitions of the TPR and FPR are explained in the
text. A good classifier should deliver a high TPR and maintain
a low FPR at the same time. For comparison, we also show the
results of applying the WISE-only AGN selection criteria used
in Stern et al. (2012) and Assef et al. (2018) to the same test set.
Our AGN classifier delivers significantly better performance.

TPR FPR

This work, PRF ≥ 0.69 98.10% 0.15%
This work, PRF ≥ 0.94 92.73% 0.08%
Stern et al. (2012) 84.03% 0.34%
Assef et al. (2018), C75 90.63% 0.58%
Assef et al. (2018), R90 60.67% 0.17%

Figure 4. Top: Comparison between the estimated photometric redshift
and the spectroscopic redshift for the test set. The overall two-dimensional
histogram follows the solid one-to-one line, and the photometric redshift
accuracy σNMAD is 0.11. 4 per cent of the objects fall outside the region
bounded by the two dashed lines, and are referred to as catastrophic outliers.
Bottom: The mean and 1σ dispersion of the fractional difference (zphot

− zspec)/(1 + zspec) in five redshift bins. A mild bias at �1σ level is
seen, suggesting the photometric redshifts tend to be overestimated for
low-redshift AGNs and underestimated for high-redshift AGNs.

deviation defined as

σNMAD = 1.48 × median

⎛
⎝

∣∣∣zi
phot − zi

spec

∣∣∣
1 + zi

spec

⎞
⎠ . (4)

The top panel in Fig. 4 shows the comparison between zphot from
the best-trained RF regressor and zspec of the test set. The overall
distribution is centred on the one-to-one relation (solid black line),
and σ NMAD = 0.11. We estimate the rate of catastrophic outliers η

as the fraction of sources that have∣∣zphot − zspec

∣∣
1 + zspec

> 3 × σNMAD = 0.33. (5)

The two dashed lines indicate the boundary where |zphot − zspec| >

0.33 × (1 + zspec). The rate of catastrophic outliers is η = 4 per cent.
We further divide the test set into five equally spaced redshift bins
from 0 to 5, and find that the mean and standard deviation of (zphot

− zspec)/(1 + zspec) is 0.10 ± 0.19 for 0 < zspec ≤ 1, 0.06 ± 0.13 for
1 < zspec ≤ 2, −0.05 ± 0.10 for 2 < zspec ≤ 3, −0.12 ± 0.10 for 3
< zspec ≤ 4, and −0.13 ± 0.15 for 4 < zspec ≤ 5 (bottom panel in
Fig. 4), which implies a mild bias (at� 1σ level) in the sense that our
best-trained regressor tends to overestimate the redshifts for AGNs
at z� 2 and underestimate the redshifts for AGNs at z� 3. We have
tried two other commonly used, machine learning based regression
methods, i.e. XGBoost (Chen & Guestrin 2016) and support vector
regression. They deliver very similar photometric redshift accuracy
as the RF regressor, and the bias persists. It suggests that this bias
is due to the intrinsic uncertainties in the AGN photometric redshift
estimation rather than the choices of the regression method or the
parameter settings, especially when only broad-band colours are
used.

Nevertheless, the photometric redshift accuracy is comparable
to performances of recent work on AGN photometric redshift
estimation, most of which use more colours than our photometric
redshift estimator (e.g. Maddox et al. 2012; Chung et al. 2014;
Schindler et al. 2017; Jin et al. 2019). We thus use the best-trained
RF regressor to estimate the photometric redshifts of our AGN
candidates.

4 R ESULTS

We apply the best-trained AGN classifier to the Gaia–unWISE
sample of 641 266 363 sources and obtain 3175 537 sources with
AGN probability PRF ≥ 0.5, which we refer to as AGN candidates.
Upon visual inspections, we notice significant overdensities of AGN
candidates towards the directions of the Large Magellanic Cloud
(LMC) and Small Magellanic Cloud (SMC). Querying against the
SIMBAD data base finds that the majority of those AGN candidates
are actually YSOs and AGB stars in the LMC and SMC that have
AGN-like W1 − W2 colours (e.g. Nikutta et al. 2014). Because
of the extremely high source densities in these nearby galaxies,
the Gaia and WISE photometry become less reliable. We therefore
remove AGN candidates that are located within twice the radius of
LMC, SMC, and M31, which is the nearest big galaxy to the Milky
Way. The central positions and radii of LMC, SMC, and M31 are
taken from the Catalog and Atlas of the Local Volume Galaxies
(Karachentsev, Makarov & Kaisina 2013). This step removes an
area of 541 deg2. The total number of AGN candidates with PRF

≥ 0.5 is reduced to 3104 739, which is referred to as the raw AGN
catalogue.

In this work, we will construct two AGN catalogues out of the raw
AGN catalogue that are optimized for completeness and reliability,
respectively. We now explain how this can be achieved by imposing
simple cuts on PRF.

4.1 C75 and R85 AGN catalogues

We use the Boötes field, which is among the deepest fields in
the Gaia–unWISE sample, as a reference to estimate the overall
completeness and reliability of the final AGN catalogue at different
PRF thresholds. We construct a reference sample including all the
6703 sources in the Gaia–unWISE sample that fall within the
previously defined 2◦ × 2◦ subregion in the Boötes field (denoted
as the reference field). For every source in the reference sample,
we obtain its AGN probability PRF from the best-trained AGN

MNRAS 489, 4741–4759 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/489/4/4741/5561523 by U
niversity of C

am
bridge user on 25 O

ctober 2019



Gaia–unWISE AGN catalogues 4749

Figure 5. The mean completeness–reliability relation (filled circles) de-
rived from 100 spatially randomly distributed test fields. The error bars
correspond to 1σ variations in completeness and reliability. Squares rep-
resent the completeness–reliability relation in the Boötes reference field
obtained by the best-trained RF classifier. Diamonds and triangles represent
the same relation obtained by two other RF classifiers using fewer features.
The symbols are colour coded according to the PRF threshold. The dashed
lines highlight two PRF thresholds at which the mean completeness reaches
75 per cent (PRF ≥ 0.69) and the mean reliability reaches 85 per cent (PRF

≥ 0.94).

classifier. On the other hand, a nearest-neighbour cross-match using
a matching radius of 0.′′6 finds that 4523 sources in the reference
sample are also in the Boötes source catalogue, for which we can
decide whether they are AGNs based on the F ratio and â parameter
requirement. The unmatched ones are mostly bright objects that
were not included in the Boötes source catalogue due to the
saturation limit/incompleteness, which we conservatively assume
to be non-AGNs. At any given PRF threshold, we can compute the
number of sources in the reference sample that have PRF larger than
or equal to the threshold (denoted as Ncandidate) and the number of
sources among those candidates that satisfy the F > 10 or â > 0.5
criterion (denoted as NAGN). In addition, we know from Section 2.3
that the total number of AGNs in this reference field is 315. The
completeness is therefore given by NAGN/315, and the reliability is
given by NAGN/Ncandidate. The squares in Fig. 5 correspond to the
completeness–reliability relation at different PRF thresholds in the
Boötes reference field. We note that the actual reliability should
be slightly higher than the inferred values because of the adopted
conservative treatment of the unmatched objects in the reference
sample.

Clearly, the completeness–reliability relation derived from the
deep Boötes reference field will be optimistic for the final AGN
catalogue. Nevertheless, due to the lack of Boötes-like fields with
sufficient and representative sky coverage, we choose to estimate
the overall completeness and reliability of the final AGN catalogue
through simulations. In particular, we select 100 test fields with the
same area as the reference field that are randomly distributed across
the high-latitude sky (i.e. |b| > 20◦). We adopt this requirement
because the majority of the raw AGN catalogue is distributed at |b|
> 20◦. For each test field, we first obtain the Gaia G-band magnitude
distribution, dN/dG (test), for all the Gaia–unWISE sources therein.
A mock sample is generated by resampling the reference sample to
match dN/dG (test). Because the source density in the test field can
be different from that of the reference field, we adjust the relative

Figure 6. Mean completeness at PRF ≥ 0.69 of the 100 test fields (filled
circles) and the completeness of the Boötes reference field (squares) as a
function of the G magnitude threshold.

weight of non-AGNs to AGNs in the reference sample to wnon-AGN ≡
[Nsource(test) − 315]/[Nsource(ref) − 315], in which Nsource(test) and
Nsource(ref) are the total number of Gaia–unWISE sources in the test
field and reference field, respectively, and 315 is the total number of
AGNs in the reference field. As a result, the probability of selecting
a non-AGN from the reference sample is a factor of wnon-AGN larger
than the probability of selecting an AGN in the resampling process.
For each test field, 100 independent mock samples are generated.
We compute the completeness–reliability relation for each mock
sample following the aforementioned procedures for the Boötes
reference field, and take the mean completeness–reliability relation
as the relation for this test field. This process is done for all the 100
test fields.

The circles in Fig. 5 show the mean completeness–reliability
relation for the 100 test fields, and the error bars represent the 1σ

standard deviations in completeness and reliability. The colour of
the circles corresponds to the PRF threshold. The completeness and
reliability vary significantly across the test fields, on the levels of
∼7 and ∼13, per cent respectively, due to the spatial variations
of source density and Gaia–unWISE completeness and limiting
magnitude. We find that the mean completeness reaches at least
75 per cent (mean reliability ∼ 79 per cent) at PRF ≥ 0.69, and the
mean reliability reaches at least 85 per cent (mean completeness
∼ 71 per cent) at PRF ≥ 0.94. We therefore construct two AGN
catalogues, denoted as C75 and R85, by selecting AGN candidates
of PRF ≥ 0.69 and PRF ≥ 0.94, respectively. The C75 AGN catalogue
contains 2734 464 sources, and the R85 AGN catalogue contains
2182 193 sources. It is obvious that the R85 catalogue is a subset of
the C75 catalogue. The C75 AGN catalogue is publicly available as
an FITS file at https://www.ast.cam.ac.uk/∼ypshu/AGN Catalogue
s.html.

The completeness of our AGN catalogues is sensitive to the G
magnitude threshold. We can see from Fig. 6 that although the
estimated overall completeness is 75 per cent, the C75 catalogue
is ≈ 95 per cent complete for AGN candidates at G ≤ 19.5 mag
and ≈ 90 per cent complete for AGN candidates at G ≤ 20 mag.
For the Boötes field that is among the deepest regions in the current
Gaia–unWISE sample, the completeness at PRF ≥ 0.69 is about 93–
100 per cent, and it varies very little with the G magnitude threshold.
We thus expect the overall completeness of AGN catalogues built
from later Gaia data releases to improve substantially to that of the
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Boötes field as more repeated Gaia observations across the whole
sky will be conducted.

To assess by how much the performance of the RF classifier
degrades when fewer features are used, we consider two other
RF classifiers that are trained on the top four most important
features W1 − W2, PMSIG, G − W1, and G and on the most
important feature W1 − W2 alone. The diamond and triangle
symbols in Fig. 5 show the completeness–reliability relations in
the Boötes reference field using PRF values given by these two
other RF classifiers, respectively. RF classifiers trained on fewer
features generally deliver lower completeness and reliability values.
At PRF ≥ 0.69, the RF classifier using 4 features has the same
completeness of 93.6 per cent as the best-trained RF classifier using
12 features, while the RF classifier using only 1 feature has a lower
completeness of 90.8 per cent. At PRF ≥ 0.94, the best-trained RF
classifier achieves a reliability of 90.7 per cent, while the other two
RF classifiers deliver lower reliability of 86.0 and 82.4 per cent,
respectively.

4.2 Demographics of the AGN candidates

Fig. 7 shows the spatial density distributions of the C75 and R85
AGN catalogues in the Galactic coordinate system. The colour
scale is chosen such that white corresponds to an AGN density
of 100 deg−2 as estimated from the Boötes field, and redder or
bluer colour corresponds to higher or lower densities. The first
thing to notice is that the AGN density distributions of the C75
and R85 catalogues strongly correlate with the Galactic extinction
distribution, and the AGN densities drop quickly to zero towards
the Galactic plane and the bulge region, primarily because the high
extinction in those regions prevents faint AGNs being detected when
optical data are involved. In addition, this could be partially related
to a selection bias in our model. The mean E(B − V) value of
the AGN training set is about 0.03 mag and more than 99 per cent
AGNs in the training set have E(B − V) ≤ 0.13 mag, while the mean
E(B − V) value in the region within 15◦ of the Galactic plane is
almost 1 mag. As a result, even if there were AGNs behind the high-
extinction regions that are bright enough to be detected in Gaia, they
would tend to have brighter extinction-corrected Gaia G magnitudes
than AGNs in the training set, and hence smaller PRF values. The
effective sky coverage is taken as the total area containing at least
one AGN candidate from the R85 catalogue, which is approximately
36 000 deg2. The average AGN number densities in the C75 and R85
catalogues are 76 and 61 deg−2, respectively. Another clear feature
in the spatial distributions of our AGN catalogues is the imprint of
the Gaia scanning law, i.e. the patchy or filamentary structures in
Fig. 7. As explained in Section 2.2, the Gaia limiting magnitude
is deeper in regions that have more repeated Gaia observations.
As a result, the catalogue completeness and hence AGN density
distribution show correlations with the Gaia scanning law. We
expect this to improve in later Gaia data releases.

The top two panels in Fig. 8 show the normalized histograms
of parallax and overall proper motion for the C75 (solid red) and
R85 (dashed blue) AGN catalogues. AGN candidates with null
parallaxes or proper motions are not included in the histograms.
The two catalogues have very similar parallax distributions. Ignor-
ing AGN candidates with null parallaxes, the mean and median
parallaxes of the C75 (R85) catalogue are −0.019 (−0.026) mas
and −0.022 (−0.026) mas. The mean parallax of the more reliable
R85 catalogue is consistent with the global parallax zero-point of
−0.029 mas found for Gaia DR2, considering the typical parallax
uncertainty of 0.03–0.7 mas (Lindegren et al. 2018).

The bottom left panel in Fig. 8 shows the normalized, extinction-
corrected Gaia G-band magnitude distributions for the C75 (solid
red) and R85 (dashed blue) AGN catalogues. At the faint end, the
distributions for both samples drop sharply beyond G ∼ 20.6 mag.
We find that the C75 catalogue has a larger fraction of objects in faint
magnitude bins compared to the R85 catalogue, implying that the
contamination rate in the C75 catalogue becomes higher in fainter
magnitude bins.

We apply the best-trained photometric redshift estimator to
the C75 catalogue, and the bottom right panel in Fig. 8 shows
the normalized histograms of the estimated redshifts for AGN
candidates in the C75 (solid red) and R85 (dashed blue) catalogues.
76 620 (28 929) AGN candidates in the C75 (R85) catalogue are
predicted to be at zphot ≥ 3, and 1602 (193) AGN candidates in the
C75 (R85) catalogue are predicted to be at zphot ≥ 4. Considering
the photometric redshift bias found using the test set, we expect
the number of high-redshift (z � 3) AGNs in our catalogues being
higher than that suggested by the estimated redshifts.

5 D ISCUSSION

5.1 Comparisons with other AGN catalogues

We build the AGN training set from the DR14Q catalogue because
it is the largest spectroscopically confirmed AGN sample to date. To
examine whether our RF classifier inherits any selection bias from
this choice of training set, we compare our AGN catalogues with
some known, large AGN catalogues selected in different wavelength
domains and by various techniques in the literature.

The MILLIQUAS catalogue (version 5.7; Flesch 2015) is a com-
pendium of almost 2 million AGNs and high-confidence AGN can-
didates including the DR14Q sample, the 2-degree Field QSO sam-
ple (2QZ; Croom et al. 2004), QSO catalogues from the Large Sky
Area Multi-Object Fiber Spectroscopic Telescope (LAMOSTQ; Ai
et al. 2016; Dong et al. 2018; Yao et al. 2019), the NBCKDE
v3 catalogue (Richards et al. 2015), the SDSS-XDQSO catalogue
(Bovy et al. 2011), the AllWISE AGN catalogue (Secrest et al.
2015), and the Million Optical-Radio/X-ray Associations Catalogue
(MORX, Flesch 2016), with the remaining from various other
discovery papers.3 Cross-matching the MILLIQUAS catalogue with
the Gaia–unWISE sample using a matching radius of 0.′′5 results
in 1166 573 matches, which are referred to as the MILLIQUAS–
Gaia–unWISE sample. We find that 94.7 and 89.4 per cent of the
MILLIQUAS–Gaia–unWISE sample are successfully recovered
in our C75 and R85 catalogues, respectively. We note that these
recovery rates should not be directly compared to the completeness
levels of the C75 and R85 catalogues because the MILLIQUAS–
Gaia–unWISE sample is not complete in the first place. Instead, the
overall, high recovery rates demonstrate the effectiveness of our RF
classifier.

Breaking the MILLIQUAS–Gaia–unWISE sample apart, we
find that the recovery rates for the DR14Q, 2QZ, and LAM-
OSTQ samples are higher than the aforementioned overall rates,
at ≈98 per cent (C75) and ≈95 per cent (R85), respectively. The
bulk of the DR14Q sample is used in the training process, so its
recovery rates are expected to be higher than average. The similarly
high recovery rates for the 2QZ and LAMOSTQ samples may be
attributed to their target selections being similar to what are used

3A complete list of the MILLIQUAS input catalogues and references can
be found at https://heasarc.gsfc.nasa.gov/W3Browse/all/milliquas.html.
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Figure 7. Spatial distributions (in Mollweide projection) of AGN candidates in the C75 (top) and R85 (bottom) AGN catalogues in the Galactic coordinate
system.

for the DR14Q sample. The 2QZ quasars are selected based on
optical ubJr colours (Smith et al. 2005), which is similar to how
some of the SDSS DR7 quasars (a subset of the DR14Q sample)
are selected. The LAMOSTQ sample is primarily selected using
optical–IR colours (Wu & Jia 2010; Wu et al. 2012; Ai et al. 2016)
together with the extreme deconvolution (Bovy et al. 2011) and
kernel density estimation (Richards et al. 2009) techniques. The
CORE sample in the DR14Q is selected based on the extreme
deconvolution technique, and a part of the BONUS sample in the
SDSS DR12 QSO catalogue (a subset of the DR14Q sample) is
selected based on the extreme deconvolution and kernel density
estimation techniques. For the MORX sample, the recovery rates
are 82 per cent (C75) and 71 per cent (R85), significantly lower than
the overall rates. The MORX sample included in the MILLIQUAS
catalogue corresponds to AGNs that are discovered in radio/X-ray
(Flesch 2016). Considering that radio/X-ray observations are less

affected by dust obscuration compared to optical, the lower-than-
average recovery rates for the MORX sample may indicate that
our RF classifier is less efficient in selecting obscured AGNs. It is
also possible that the MORX sample has a higher contribution from
host galaxy emission, which would result in redder G − W1 and
bluer W1 − W2 colours compared to AGNs in the training set (e.g.
Ostrovski et al. 2017; Lemon et al. 2019).

To determine the number of new AGN candidates in our cata-
logues, we cross-match the C75 and R85 catalogues with the known
AGN compilation using an aggressive matching radius of 5 arcsec.
We find that at least 911 622 and 515 246 AGN candidates in our
C75 and R85 catalogues are previously unknown. Fig. 9 shows the
spatial distributions of these new AGN candidates, which we refer
to as residual maps. Within the extensively observed and studied
SDSS footprint, there are few new AGN candidates because our
catalogues are limited by the Gaia detection limit, which is brighter
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Figure 8. Normalized histograms of parallax (top left), proper motion (top right), extinction-corrected G-band magnitude (bottom left), and photometric
redshift (bottom right) for the C75 (solid red) and R85 (dashed blue) AGN catalogues.

than those of the known AGN catalogues in this field. Although
there have been searches for AGNs outside the SDSS footprint
(mostly using the all-sky WISE data), our AGN catalogues still
find, on average, 30–50 new AGN candidates per deg2 in those
regions, demonstrating the high completeness of our AGN selection
technique (e.g. Table 2). Comparing the residual maps of the C75
and R85 catalogues, we find that the number densities of the low-
probability AGN candidates close to the Galactic plane and bulge
are higher than average, which we think is due to the higher overall
source densities therein.

Lastly, we examine how many known strongly lensed quasars
are recovered in our AGN catalogues. To date, there are 204 known
strongly lensed quasar systems according to the Gravitationally
Lensed Quasar Database4 (Lemon et al. 2019). In total, 333 lensed
quasar images in 168 known systems are in the Gaia–unWISE
sample, of which 126 lensed quasar images in 104 systems have
large enough PRF values to be included in the C75 catalogue. The
recovery rate is much lower than that found earlier for AGNs in
general. Fig. 10 shows the top three most important features, W1
− W2, PMSIG, and G − W1, for the 333 known lensed quasar
images. We can see that the unrecovered lensed quasar images
(blue symbols) generally have smaller W1 − W2 and larger PMSIG

4https://www.ast.cam.ac.uk/ioa/research/lensedquasars/

and G − W1 than the recovered lensed quasar images (red symbols)
or AGNs in the training set (black contours). From imaging data,
we find that those unrecovered lensed quasar images are usually
close to the lensing galaxies or clustered within small separations.
They have lower PRF values because (1) their W1 − W2 and G
− W1 colours are contaminated by the nearby lensing galaxies
(e.g. Lemon et al. 2019); (2) their proper motions and parallaxes
are inaccurately inferred, perhaps due to Gaia misassigning nearby
images at each epoch; and (3) they generally have CNT4 > 1, which
makes them less similar to AGNs in our training set where more than
99 per cent of AGNs have CNT4 = 1. We note that finding highly
clustered AGNs on small scales (�10 arcsec) in the presence of
nearby, bright galaxies is essentially a different task from building a
large and clean sample of AGNs, and a separate classifier/approach
might be needed.

5.2 A wide-separation, strongly lensed AGN candidate

Although our AGN catalogues are not effective in finding small-
separation, strongly lensed AGN systems, they are useful in finding
wide-separation strong-lens systems. It has been shown that strongly
lensed AGNs with wide image separations (>10 arcsec) are valu-
able cosmological probes (e.g. Narayan & White 1988; Fukugita,
Futamase & Kasai 1990; Turner 1990; Kochanek 1995, 1996;
Wambsganss et al. 1995; Lopes & Miller 2004; Oguri et al. 2004,
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Figure 9. Spatial distribution (in Mollweide projection) of new AGN candidates in the C75 and R85 AGN catalogues in the Galactic coordinate system after
removing overlaps with the known AGN compilation.

2012; Li et al. 2007). However, only four known strongly lensed
AGNs have maximum image separations larger than >10 arcsec
(Inada et al. 2003, 2006; Dahle et al. 2013; Shu et al. 2018). We
thus carry out a search for wide-separation, strongly lensed AGNs by
identifying brightest cluster galaxies (BCGs) that have at least two
AGN candidates from our C75 catalogue located within a circular
aperture of 30 arcsec radius. The BCG sample we use is compiled
from Wen & Han (2011, 2015, 2018) and Wen, Han & Yang
(2018), which contains 209 419 BCGs (duplicates not removed) up
to redshift of 1. 57 unique BCGs with at least two neighbouring AGN
candidates are found, and their optical images are visually inspected.
We rediscover two previously known wide-separation, strongly
lensed quasar systems SDSS J1004+4112 (Inada et al. 2003) and
SDSS J1029+2623 (Inada et al. 2006). The other two known wide-
separation, strongly lensed quasar systems, SDSS J0909+4449
(Shu et al. 2018) and SDSS J2222+2745 (Dahle et al. 2013), are not

recovered because they only have zero and one lensed quasar image
detected in Gaia DR2. In addition, we identify a high-probability
strongly lensed AGN candidate – SDSS J1326+4806. The majority
of the remaining BCGs have AGN candidates with significantly
different optical colours, and therefore unlikely to be images of the
same AGN, or the BCG does not lie between the AGN candidates.

The left-hand panel in Fig. 11 shows a colour cut-out centred
on the BCG of SDSS J1326+4806 made from gri imaging data
from the Panoramic Survey Telescope and Rapid Response System
(Pan-STARRS) survey (Chambers et al. 2016). The BCG, at R.A.
= 201.50006◦, Decl. = 48.11208◦, is an SDSS spectroscopically
confirmed massive early-type galaxy at z = 0.396. Two blue,
point-like sources, labelled as A and B, are located on either
side of the BCG, consistent with the image configuration of a
doubly lensed system. The separation between A and B is 21.′′06.
Our AGN classifier suggests that A and B are very likely to be
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Figure 10. Distributions of the top three most important features, W1 − W2, PMSIG, and G − W1, for the 333 known lensed quasar images in the Gaia–
unWISE sample. The black contours correspond to distributions of AGNs in the training set. Compared to AGNs in the training set or lensed quasar images
recovered in the C75 catalogue (red symbols), lensed quasar images that are not in the C75 catalogue (blue symbols) tend to have smaller W1 − W2 and larger
PMSIG and G − W1.

Figure 11. Left: Pan-STARRS imaging data of the new wide-separation strongly lensed quasar SDSS J1326+4806. The bright object in the centre is a BCG
at z = 0.396. Object A is a spectroscopically confirmed quasar at zA = 2.0812 ± 0.0003. Object B is classified as an AGN in our catalogue with PRF = 0.93.
The separation between A and B is 21.′′06. Top right: Smoothed WHT spectra of A (black) and B (red). Fitting the spectrum of B confirms it to be a quasar at
zB = 2.078 ± 0.009. Bottom right: Flux ratio of B to A. The median flux ratio is 0.74, as indicated by the black dashed line.

AGNs with PRF(A) = 0.99 and PRF(B) = 0.93. In fact, source A
was spectroscopically confirmed to be a zA = 2.0812 ± 0.0003
AGN by the Baryon Oscillation Spectroscopic Survey (Bolton
et al. 2012).

To determine the nature and redshift of B, we obtained low-
resolution spectra for A and B with the Intermediate-Dispersion
Spectrograph and Imaging System on the William Herschel Tele-
scope (WHT) on the night of 2019 February 11. The R158R (1.81
Å pixel−1) and R300B (0.86 Å pixel−1) gratings were used on the
red and blue arms, respectively, along with the standard 5300 Å
dichroic and GG495 second-order cut filter in the red arm. The
right-hand panel in Fig. 11 shows the smoothed, reduced spectra
for A (black) and B (red), which confirms that B is indeed an AGN
with a spectral profile that appears to be similar to A. Fitting the

spectrum of B using a linear combination of quasar eigenspectra
following Bolton et al. (2012) further suggests zB = 2.078 ± 0.009,
consistent with the spectroscopic redshift of A.

Both A and B have experienced substantial variations in bright-
ness over the past ∼16 yr. The SDSS data in 2003 showed that
the g-band AB magnitudes of A and B were about 21 and 22
mag, respectively, with A being brighter than B. The multi-epoch
photometry from Pan-STARRS DR2 taken between the years 2011
and 2014 showed significant brightness variations, with the largest
change reaching more than 1 mag. In particular, B was brighter
than A when averaging over the Pan-STARRS period, as indicated
in the left-hand panel of Fig. 11. The Pan-STARRS g-band mean
magnitudes of A and B were about 21.6 and 21 mag, respectively.
The median flux ratio of B to A from recent WHT spectroscopic
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data is 0.74, indicating that A now has become brighter than B again.
Nevertheless, no clear correlation between brightness variations in
A and B is detected.

We consider a simple lens model for SDSS J1326+4806 con-
sisting of a singular isothermal sphere (SIS) mass distribution in
an external shear field. The total number of free parameters is 7
(assuming the SIS mass component and the external shear field
are co-centred). Considering the substantial brightness variations
in A and B, we only use the relative positions of the BCG,
A, and B as constraints, but not the flux ratios between A and
B. As a result, the number of free parameters is more than the
number of constraints, and no unique lens model can be determined.
Nevertheless, the goal of this procedure is to examine whether the
image configuration of SDSS J1326+4806 can be explained by a
typical lens model with reasonable parameters. We optimize the
model parameters with the lensmodel toolkit (Keeton 2001),
and find that the relative positions can be perfectly recovered
(as expected for this underconstrained problem). All the model
parameters have reasonable values. The best-fitting Einstein radius
of the SIS component is 10.′′3, consistent with the 21.′′06 separation
between A and B. It suggests that the total projected mass within the
Einstein radius is ≈2.1 × 1013 M�. On the other hand, Wen, Han &
Liu (2012) estimated the r200 radius of this cluster to be 1.51 Mpc.
Assuming that the dark-matter distribution of this cluster follows
a simple Navarro–Frenk–White (NFW) profile (Navarro, Frenk &
White 1996, 1997), the total dark-matter mass within the sphere of
radius r200 is approximately M200 = 5.6 × 1014 M�. The typical
concentration for dark-matter haloes of this mass scale at z ∼ 0.4
is about 5 (e.g. Duffy et al. 2008; Macciò, Dutton & van den Bosch
2008; Zhao et al. 2009; Klypin, Trujillo-Gomez & Primack 2011;
Prada et al. 2012; Auger et al. 2013; Diemer & Kravtsov 2015). The
total projected dark-matter mass within the Einstein radius (57 kpc
in physical unit) is thus 2.0 × 1013 M�, in close agreement with the
required mass by strong gravitational lensing.

Based on the aforementioned analyses, SDSS J1326+4806 has a
very high probability of being a strongly lensed AGN. Follow-
up higher resolution spectroscopic and deeper imaging data
could pin down the lensing nature of this system. If confirmed,
SDSS J1326+4806 will be the second most widely separated
strongly lensed AGN discovered so far. More wide-separation,
strongly lensed AGN systems are expected to be discovered by
cross-matching the C75 AGN catalogue with other catalogues of
galaxy groups and clusters.

5.3 Future prospects

It is worth mentioning that as more repeated Gaia observations
will be conducted in the coming years, we expect the overall
limiting magnitude of future Gaia data releases to become similar
to the current value of the Boötes field or even deeper in some
regions. Considering that in the Boötes reference field, the current
completeness at the C75 threshold is 93.6 per cent and the reliability
at the R85 threshold is 90.7 per cent, we expect the quality of
AGN catalogues built from future Gaia data releases to improve
substantially in both completeness and reliability. In addition, the
sample size and quality in astrometry and photometry of future Gaia
data releases are also expected to improve with beneficial effects
for future AGN catalogues.

On average, Gaia will measure astrometrically each of its targets
∼70 times over the nominal 5-yr operation period since 2013, and
10 photometric measurements in the G band are made during each
astrometric measurement (Gaia Collaboration 2016). In total, every

Gaia source will therefore have ∼700 G-band measurements in 5
yr. In Gaia DR2 (data from the first 22 months of operation), the av-
erage and highest number of G-band measurements for AGNs in the
Gaia–unWISE–DR14 QSO sample are 211 and 1100, respectively.
However, Gaia will not release the multi-epoch photometric data
until the end of the mission, at which point all the AGN candidates
in our catalogues will have Gaia light curves spanning a time-scale
of 5 yr. These light curves will be helpful in identifying variable
AGNs and even optical changing-look AGNs. These are AGNs that
show optical spectral feature transitions involving appearance and
disappearance of broad emission lines on time-scales of years or
decades. There are a few tens of known optical changing-look AGNs
so far (e.g. Denney et al. 2014; LaMassa et al. 2015; MacLeod et al.
2016; Ruan et al. 2016; Gezari et al. 2017; Yang et al. 2018; Wang,
Xu & Wei 2018a). The physical mechanisms responsible for the
transitions are still not fully understood. A large sample of variable
AGNs and changing-look AGNs with a wide range of properties
including redshift, luminosity, and black hole mass can help to
better understand the structure of the accretion disc and broad line
region and the evolution of AGNs. Our AGN catalogues, which
include AGNs up to redshift ∼4, can be a useful input catalogue
for future spectroscopic surveys that study AGNs and large-scale
structures, especially ones in the Southern hemisphere, for example,
4MOST (de Jong et al. 2019; Merloni et al. 2019; Richard et al.
2019).

6 C O N C L U S I O N

In this work, we perform an AGN/non-AGN classification of more
than 641 million sources in the Gaia–unWISE sample across the
entire sky using astrometric and photometric data from the latest
data releases of Gaia and WISE. We use the supervised machine
learning algorithm RF to estimate the probability of a source being
an AGN, PRF. We construct two AGN catalogues, C75 and R85,
by applying two different PRF threshold cuts that deliver an overall
completeness of 75 per cent (≈ 90 per cent at G ≤ 20 mag) and an
overall reliability of 85 per cent respectively. The C75 catalogue
contains 2734 464 AGN candidates with PRF ≥ 0.69, of which
2182 193 AGN candidates with PRF ≥ 0.94 comprise the R85
catalogue (Fig. 7). We estimate the photometric redshifts of the
AGN candidates using an RF regressor. We find that 76 620 and
1602 AGN candidates in the C75 catalogue are predicted to be at
redshifts higher than 3 and 4, respectively.

Comparing to WISE-only AGN selection techniques used in Stern
et al. (2012) and Assef et al. (2018), our RF classifier using both
optical and mid-IR data achieves significantly better TPR and FPR
when applied to the Gaia–unWISE sample (see Table 2). Among
the 1166 573 known AGNs and high-confidence AGN candidates
in the MILLIQUAS that are also catalogued in the Gaia–unWISE
sample, 94.7 and 89.4 per cent are successfully recovered in our
C75 and R85 catalogues, respectively. Cross-matching against the
known AGN compilation including almost 29 million AGNs and
AGN candidates with an aggressive matching radius of 5 arcsec, we
find that at least ≈0.91 (0.52) million AGN candidates in our C75
(R85) catalogue are new discoveries.

The large sample of AGN candidates provided in this work is
a useful resource for many applications. As an example, we have
identified a strongly lensed AGN candidate, SDSS J1326+4806,
with an image separation of 21.′′06 by cross-matching the C75
catalogue with a sample of known BCGs (Fig. 11). The BCG in
SDSS J1326+4806 is at z = 0.396, and the two AGN candidates on
either side of the BCG are spectroscopically confirmed to be true
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AGNs at z ∼ 2.08 with similar spectral profiles. A simple SIS plus
external shear lens model can explain the relative positions between
the BCG and the two AGNs. The total mass within the inferred
Einstein radius required by strong gravitational lensing is in close
agreement with the mass of dark matter within the same aperture
when assuming dark matter in SDSS J1326+4806 following a
simple NFW profile. Follow-up imaging and spectroscopic data
will pin down the lensing nature of this system.

Moreover, all the AGN candidates in our catalogue will even-
tually have light curves consisting of, on average, ∼70-epoch
photometry across 5 yr from Gaia, which are very helpful for
identifying highly variable AGNs and changing-look AGNs. Our
AGN catalogues are also useful for future spectroscopic surveys
such as 4MOST.
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Figure A1. The same set of plots as Fig. 1, but for W1 for 2094 307 508 unWISE sources with W1 ≥ 8 mag.

Figure A2. The same set of plots as Fig. 1, but for W2 for 1180 720 229 unWISE sources with W2 ≥ 8 mag.
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APPEN D IX B: D ESCRIPTION O F THE
C ATA L O G U E

The C75 AGN catalogue is publicly available as an FITS file
at https://www.ast.cam.ac.uk/∼ypshu/AGN Catalogues.html. De-

scriptions of all the columns in the FITS file are summarized in
Table B1. The R85 AGN catalogue can be constructed from the
C75 AGN catalogue by applying a probability threshold cut of
PROB RF ≥ 0.94.

Table B1. Format of the AGN catalogue FITS file.

Column Name Description

1 RA Right ascension in decimal degrees from Gaia DR2 (J2015.5)
2 DEC Declination in decimal degrees from Gaia DR2 (J2015.5)
3 GAIA SOURCEID Unique Gaia source identifier source id
4 UNWISE OBJID Unique unWISE source identifier unwise objid
5 PLX Parallax in mas from Gaia DR2, set to −999 if null
6 PLX ERR Error in parallax in mas from Gaia DR2, set to −999 if null
7 PMRA Proper motion in right ascension direction (mas yr−1) from Gaia DR2, set to −999 if null
8 PMRA ERR Error in proper motion in right ascension direction (mas yr−1) from Gaia DR2, set to −999 if null
9 PMDEC Proper motion in declination direction (mas yr−1) from Gaia DR2, set to −999 if null
10 PMDEC ERR Error in proper motion in declination direction (mas yr−1) from Gaia DR2, set to −999 if null
11 PLXSIG Parallax significance defined as | parallax/parallax error |, set to −999 if null
12 PMSIG Proper motion significance defined as

√
(pmra/pmra error)2 + (pmdec/pmdec error)2, set to −999 if null

13 EBV Galactic E(B − V) reddening from Schlegel et al. (1998)
14 N OBS Number of observations contributing to G photometry
15 G Gaia DR2 G-band mean magnitude (extinction corrected)
16 BP Gaia DR2 BP-band mean magnitude (extinction corrected)
17 RP Gaia DR2 RP-band mean magnitude (extinction corrected)
18 W1 unWISE W1-band magnitude
19 W2 unWISE W2-band magnitude
20 BP G Gaia DR2 BP − G colour (extinction corrected), set to 999 if null
21 BP RP Gaia DR2 BP − RP colour (extinction corrected), set to 999 if null
22 G RP Gaia DR2 G − RP colour (extinction corrected), set to 999 if null
23 G W1 Gaia DR2 G − unWISE W1 colour (extinction corrected)
24 GW SEP Separation (in arcsec) between a Gaia source and its unWISE counterpart
25 W1 W2 unWISE W1 − W2 colour
26 G VAR Variation in Gaia G-band flux defined as

√
PHOT G N OBS× (PHOT G MEAN FLUX ERROR/PHOT G MEAN FLUX)

27 BPRP EF BP/RP excess factor from Gaia DR2 (PHOT BP RP EXCESS FACTOR)
28 AEN Astrometric excess noise from Gaia DR2 (ASTROMETRIC EXCESS NOISE)
29 GOF Goodness-of-fit statistic of the astrometric solution from Gaia DR2 (ASTROMETRIC GOF AL)
30 CNT1 Number of Gaia DR2 sources within a 1 arcsec radius circular aperture
31 CNT2 Number of Gaia DR2 sources within a 2 arcsec radius circular aperture
32 CNT4 Number of Gaia DR2 sources within a 4 arcsec radius circular aperture
33 CNT8 Number of Gaia DR2 sources within an 8 arcsec radius circular aperture
34 CNT16 Number of Gaia DR2 sources within a 16 arcsec radius circular aperture
35 CNT32 Number of Gaia DR2 sources within a 32 arcsec radius circular aperture
36 PHOT Z Photometric redshift
37 PROB RF AGN probability

This paper has been typeset from a TEX/LATEX file prepared by the author.
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