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Abstract  26 

Microwave pyrolysis using a well-mixed bed of activated carbon as both the 27 

microwave absorber and reaction bed was investigated for its potential to recover useful 28 

products from waste palm cooking oil – a cooking oil widely used in Asia. The carbon bed 29 

provided rapid heating (~18 °C/min) and a localized reaction hot zone that thermally 30 

promoted extensive pyrolysis cracking of the waste oil at 450 °C, leading to increased 31 

production of a biofuel product in a process taking less than 25 min. It also created a 32 

reducing reaction environment that prevented the formation of undesirable oxidized 33 

compounds in the biofuel. The pyrolysis produced a biofuel product that is low in oxygen, 34 

free of sulphur, carboxylic acid and triglycerides, and which also contains light C10-C15 35 

hydrocarbons and a high calorific value nearly comparable to diesel fuel, thus showing 36 

great potential to be used as fuel. This pyrolysis approach offers an attractive alternative to 37 

transesterification that avoids the use of solvents and catalysts, and the need to remove free 38 

fatty acids and glycerol from the hydrocarbon product. The pyrolysis apparatus operated 39 

with an electrical power input of 1.12 kW was capable of producing a biofuel with an 40 

energy content equivalent to about 3 kW, showing a positive energy ratio of 2.7 and ≥73% 41 

recovery of the energy input to the system. The results show that the pyrolysis approach has 42 
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huge potential as a technically and energetically viable means for the recovery of biofuels 43 

from the waste oil.  44 

Keywords: pyrolysis; microwave pyrolysis; waste cooking oil; palm oil; activated carbon 45 

1. Introduction 46 

Cooking oil can be derived from various biological resources such as seeds from 47 

plants (e.g. sunflower oil, sesame oil), nuts (e.g. soybean oil, peanut oil), and fruits (e.g. 48 

palm oil, olive oil). Once the cooking oil is used, it becomes an undesirable waste that 49 

needs to be properly disposed of. The production of waste cooking oil has been increasing 50 

each year throughout the world. For example, United States generated approximately 10 51 

million tons of waste cooking oil each year [1], whereas China generated approximately 5 52 

million tons/year of waste cooking oil [2]. Due to the large amount of waste cooking oil 53 

generated annually, the disposal of waste cooking oil has become a challenge and concern 54 

to the modern society.  55 

Recently, pyrolysis techniques have been reported to show increased efficiency in 56 

transforming biomass and waste materials into potential fuel products [3-8]. Pyrolysis is a 57 

thermal degradation process that can be used to treat waste materials in an oxygen-free 58 

atmosphere to produce liquid oil, gases and char. It has been reported that the liquid oil and 59 

gases can be utilized as a chemical feedstock or they can be upgraded to obtain light 60 

hydrocarbons for use as a fuel, and the char produced can also be used as a substitute for 61 

activated carbon [9].  There has been further development in the conversion of triglyceride-62 

based vegetable oil into biofuel by pyrolysis techniques [10]. Waste cooking oil, containing 63 

significant amounts of triglycerides, represents a potential feedstock to be converted into a 64 

biofuel.  The waste oil is readily available in large quantity, do not contend with other food 65 

crops, and presents a cost effective resource for biofuel production by pyrolysis techniques.  66 

Microwave pyrolysis has recently shown advantages over conventional pyrolysis 67 

techniques that use traditional thermal heat sources in transforming waste materials into 68 

potential fuel products [7, 11-15]. The microwave technique involves the use of 69 

carbonaceous materials as a microwave absorber, which is heated by microwave radiation 70 

to reach the target temperature in order for extensive pyrolysis to occur. The use of 71 

microwave heating shows excellent heat transfer compared to conventional heating since 72 

microwave energy can penetrate the material being heated and in turn generates heat 73 

throughout the volume of the material, and thus providing a rapid and energy-efficient 74 

heating process which also facilitates increased production rates. This type of pyrolysis 75 

process may result in a different heating mechanism which can promote certain chemical 76 

reactions leading to an improved yield of desirable products. 77 

Most pyrolysis studies on biomass conversion have focused on processes heated by 78 

a conventional heating source (e.g. furnace, oven). There have been limited reports on the 79 
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application of pyrolysis to the treatment and recycling of waste cooking oil, except for a 80 

study performed by Omar and Robinson [12] on conventional and microwave-assisted 81 

pyrolysis of rapeseed oil in which the authors had focused on the effects of temperature and 82 

microwave power. These microwave pyrolysis experiments were performed in the absence 83 

of specifically added microwave absorber, and it was shown that low amounts microwave 84 

energy were absorbed by the waste oil and this resulted in low yields of pyrolysis products. 85 

This indicates that waste cooking oil requires heating by contact with materials of high 86 

microwave absorbency to achieve higher temperatures in order for extensive pyrolysis to 87 

occur.  88 

Carbonaceous materials such as particulate carbon have been used as microwave 89 

absorber to heat materials that are poor microwave-absorbers to achieve high temperatures 90 

by microwave radiation [9]. They are known to have high microwave absorbency, heat 91 

tolerance, and low in cost, and thus they are widely used for such heating applications [16]. 92 

The use of carbonaceous materials as a reaction bed has been shown to be an effective 93 

method of recovering and recycling chemicals present in troublesome wastes such as waste 94 

engine oil [9, 14, 17] and plastic waste [18].  95 

In this study, an alternative pyrolysis approach was proposed for the recovery of 96 

diesel fuel from waste palm cooking oil (WPCO) by pyrolysis using a microwave heated 97 

bed of activated carbon (AC) - a carbonaceous material with a high surface area. The AC 98 

bed can act as both the microwave absorber and the energy transferring agent necessary for 99 

heating WPCO, and the AC can also act as a catalyst to pyrolyze the WPCO to yield 100 

products that can constitute diesel fuel. Thus, such a pyrolysis approach has the potential to 101 

maximize the production of potentially useful pyrolysis products for use as a fuel or 102 

chemical feedstock. This paper reports an investigation on the pyrolysis of WPCO over a 103 

range of process temperature (200-550 °C). The yield and characteristics of pyrolysis 104 

products were examined with an emphasis on the composition of the liquid fraction 105 

generated from the pyrolysis process; this fraction is of particular interest due to its high 106 

energy content and potential to be upgraded as a substitute for diesel fuel or other bio-based 107 

hydrocarbon products [19]. 108 

 109 

2. Materials and methods 110 

2.1 Preparation of WPCO and AC 111 

WPCO was collected from a fried chicken restaurant in Kuala Terengganu, 112 

Malaysia. The WPCO was filtered by Whatman No. 4 filter paper to remove unwanted 113 

suspended food particles. The filtered oil was collected and stored in glass bottles wrapped 114 

with aluminium foil. The glass bottles were filled up completely to prevent oxidation of the 115 
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oil during storage.  The WPCO was analyzed for its characteristics and these are presented 116 

in Table 1.  117 

AC with a particle size ranging from 0.5 to 2.0 mm was obtained and used as a bed 118 

of microwave absorber to heat and pyrolyze the WPCO. The AC was detected to have a 119 

porous structure and a high surface area of 850 m2/g. It was pre-heated to 800 °C for 2 120 

hours to remove any water and sulphur-containing compounds. 121 

 122 

2.3 Microwave pyrolysis experiments on WPCO 123 

Microwave pyrolysis of WPCO was conducted in a stirred batch reactor heated by a 124 

modified 800 W microwave oven operating at a frequency of 2.45 GHz (Fig. 1). 125 

Approximately 100 g of WPCO was placed in a pyrolysis reactor (150 x 100 x 100 mm). 126 

150 g of AC was added to the reactor for use as a bed of the microwave absorber to absorb 127 

and convert microwave energy to heat for pyrolyzing the WPCO; the ratio of WPCO to AC 128 

is 1:1.5. The AC was stirred to ensure a uniform temperature distribution throughout the 129 

reactor. The microwave oven was then switched on to heat the bed of AC and WPCO from 130 

room temperature to the target process temperature ranging from 200 °C to 550 °C at which 131 

the WPCO was pyrolyzed at the appropriate process temperatures. The process temperature 132 

was selected for study as it is the most important parameter that dictates the thermal 133 

cracking of the WPCO. A stainless steel type K thermocouple connected to an Autonics 134 

dual indicator temperature controller was used to measure the temperature of the reaction 135 

zone within the reactor. When the microwave oven had been heated to the target 136 

temperature, the temperature controller also functioned to maintain the oven at the target 137 

temperature. The reactor was purged with nitrogen gas at a flow rate of 0.2 L/min to 138 

maintain an inert atmosphere in the reactor. The reactor was covered with ceramic fiber 139 

blanket to minimize the heat loss occurred during the heating and pyrolysis process.  140 

Pyrolysis products in gaseous form (termed ‘pyrolysis volatiles’) were generated 141 

during the pyrolysis process and these gases then left the reactor and passed through a 142 

condensation system consisting of Vigreux and Liebig condensers in addition to an ice 143 

bath. The gases were either collected as non-condensable pyrolysis gases or condensed 144 

within the collecting vessels and collected as a liquid biofuel product, whereas any solid 145 

char residues were collected after the reactor was cooled to the room temperature.  146 

The weight increase in the 1st and 2nd collecting vessels were measured to obtain the 147 

yield of biofuel. It was previously found that a small amount of biofuel was obtained in the 148 

2nd collecting vessel (<1 wt%), thus the collected biofuel was mixed with the biofuel 149 

obtained in 1st collecting vessel for further analysis. The yield of char residue was obtained 150 

by calculating the weight of reactor and its content before and after pyrolysis process, and 151 

the gas yield was determined by resulting mass difference. The biofuel was then transferred 152 



5 
 

into glass bottles and stored for further analysis. All the pyrolysis experiments were 153 

repeated for three times to ensure good reproducibility of the data. 154 

 155 

2.4 Analytical methods 156 

Elemental analysis was performed to determine the content of carbon, hydrogen, 157 

nitrogen, sulphur and oxygen of liquid hydrocarbon samples using Vario MACRO 158 

Elemental Analyzer (Elementar Analysemsysteme GmbH). Fatty acid composition of 159 

WPCO was analyzed using Agilent GC-FID. The chemical compositions of the produced 160 

biofuel were determined by Shimadzhu GC-MS QP2010 Ultra. The column used was a BP-161 

5 capillary column (length 30mm, diameter 0.25mm, film thickness 0.25µm) from SGE 162 

Analytical Science. The CV of the biofuel were also determined according to ASTM D240 163 

using a 1341 Plain Jacket bomb calorimeter instrument (Parr Instrument).  164 

 165 

3. Results and discussion 166 

3.1 Characteristics of WPCO 167 

Table 1 shows the characteristics of the WPCO. The high calorific value of the 168 

waste oil (39 MJ/kg) suggests that the WPCO can be a suitable feedstock for conversion 169 

into a fuel source by exploiting the potential of pyrolysis to recover the energy value of the 170 

waste oil. It was found that the WPCO is dominated by palmitic acid and oleic acid, which 171 

are considered as carboxylic acids with long hydrocarbon chains. These carboxylic acids 172 

are normally attached to a glycerol molecule to form triglycerides that contribute to the 173 

majority of the composition of WPCO, thus the overall size of these triglycerides is either 174 

C51 equivalent (i.e. 3xC16+3) or C57 equivalent (i.e. 3xC18+3), indicating the presence of 175 

very large hydrocarbon molecules that are unsuited for use as a biofuel. However, the 176 

WPCO can be a suitable pyrolysis feedstock since the very large hydrocarbon molecules 177 

(i.e. C51 or C57 hydrocarbons) could be pyrolyzed and converted into light hydrocarbons for 178 

potential use as a fuel.  179 

 180 

3.2 Microwave pyrolysis of WPCO in the presence of a bed of AC both the microwave 181 

absorber and reaction bed 182 

Microwave pyrolysis of WPCO was performed over a range of process 183 

temperatures using a microwave-heated bed of AC in order to assess the technical 184 

feasibility of using this pyrolysis approach as a route to convert bio-based waste oils into 185 

products suitable for use as a potential fuel or chemical feedstock.  186 
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The microwave-heated bed of AC showed considerable advantages in providing a 187 

rapid heating process (~16-18 °C/min) to heat and pyrolyze the WPCO at a desirable high 188 

temperature (up to 550 °C) in which the process time taken for the heating and pyrolysis 189 

cracking of the WPCO at 450 °C was fully completed in less than 25 min (Fig. 2). In 190 

contrast, it has been reported that a longer process time ranging from 60 to 120 min was 191 

needed for the conventional fixed-bed pyrolysis of rapeseed oil [12] and palm oil [10] that 192 

used furnace as the heat source, albeit in completely different apparatus. The rapid heating 193 

represents a favorable feature in providing an energy-efficient pyrolysis process to reduce 194 

the power consumption when compared with pyrolysis processes heated by a conventional 195 

heating source (e.g. furnace, oven). Conventional pyrolysis processes usually employ an 196 

external heating source that needs to heat all the substances in the heating chamber 197 

including the evolved pyrolysis-volatiles, the surrounding N2 gas, and the chamber itself, 198 

thus energy is not fully targeted to the material being heated and this results in significant 199 

energy losses and in turn leads to a long process time. On the contrary, the use of a well-200 

mixed bed of AC in microwave pyrolysis process provides a localized reaction ‘hot zone’ 201 

in contact with the added WPCO. The intimate contact of the WPCO with the AC particles 202 

in the stirred bed ensures minimal distances for the heat to be transferred to the WPCO 203 

rapidly in order for pyrolysis cracking to occur more quickly and extensively. Furthermore, 204 

energy is efficiently targeted only to microwave receptive AC bed and not to gases within 205 

the heating chamber or to the walls of the chamber itself.   206 

 207 

3.3 Product yields 208 

Fig. 3 shows the product yields obtained from the pyrolysis of WPCO at different 209 

process temperatures. Data are not recorded for temperatures of 300 ºC and below, as 210 

although some pyrolysis conversion occurred and small amounts of pyrolysis-volatiles were 211 

produced, no biofuel had been collected after 1 h of reaction time; so these experiments 212 

were terminated.  213 

The study showed that the WPCO were thermally cracked to pyrolysis products 214 

dominated by biofuel and lower amounts of pyrolysis gases and char residue, except for the 215 

pyrolysis performed at 350 °C in which incomplete pyrolysis cracking occurred and most 216 

of the WPCO remained unpyrolyzed (77 wt%) and only small amounts of biofuel and 217 

pyrolysis gases were generated. It was found that the WPCO needs to be heated to a 218 

temperature higher than 350 ºC in order for a more extensive pyrolysis cracking to occur. 219 

The process temperature was found to have a significant influence on the yields of 220 

pyrolysis product. The yield of biofuel was found to increase from 3 wt% to 70 wt% with 221 

the increase of temperature from 350 °C to 450 °C. At 500 °C and 550 °C , the yield of 222 

biofuel dropped to 69 wt% and 66 wt%, respectively. The reduction in the yield of biofuel 223 

at 500 °C and above is likely due the secondary cracking and carbonization of the WPCO 224 
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(or the evolved pyrolysis-volatiles) to produce higher amounts of incondensable pyrolysis 225 

gases and carbonaceous char residues, which can be observed from increased yield of both 226 

the pyrolysis gases and char residue. At a high process temperature of 550 °C and above, 227 

the occurrence of secondary cracking reactions have further increased the yield of pyrolysis 228 

gases. It was likely that carbonization had also occurred during the pyrolysis at higher 229 

temperature (≥500 °C)[11] and this had increased the yield of the carbonaceous char 230 

residues from 1 wt% to 3 wt%.  231 

A comparison of the yield of pyrolysis products obtained in this study can be made 232 

with the study conducted recently by Omar & Robinson[12] on conventional and 233 

microwave-assisted pyrolysis of rapeseed oil. Their study was conducted with and without 234 

HZSM-5 as a catalyst and no microwave absorber was used in the pyrolysis process. The 235 

authors claimed in their study that the highest conversion of oil was obtained at 14 wt% for 236 

the pyrolysis performed at 500 °C, and they explained that the low conversion of oil sample 237 

was due to the low energy (~30%) absorbed by the oil sample during the pyrolysis process 238 

and this had caused undesirable pyrolysis cracking of the oil that resulted in the low 239 

conversion. In contrast in our experiments, a much higher yield of 70 wt% was obtained for 240 

the biofuel product at an even lower process temperature at 450 °C, indicating that the use 241 

of a microwave-heated bed of AC showed advantages in providing a good heat transfer to 242 

the WPCO. Extensive pyrolysis cracking of the WPCO occurred during the pyrolysis 243 

process and resulted in a higher yield of liquid hydrocarbon products compared to that 244 

obtained by Omar & Robinson[12] from microwave pyrolysis performed with no 245 

microwave absorber.      246 

 247 

3.3.3 Chemical composition of the biofuel product 248 

This section presents the chemical composition of the biofuel obtained from the pyrolysis 249 

performed at a process temperature ranging from 400-550 °C. Data are not presented for 250 

the biofuel obtained at 350 °C and below due to the low yields obtained. 251 

3.3.3.1 Elemental composition and calorific value (CV) 252 

Table 2 shows the elemental analysis and CV of the biofuel obtained at different 253 

process temperatures. Carbon (~76-81 wt%) and hydrogen (~13-14 wt%) represented the 254 

main elements present in the biofuel, whereas oxygen (4-10 wt%) and nitrogen (1 wt%) 255 

were detected in low concentrations, and sulphur was not detected in the biofuel.  256 

The biofuels showed a H/C ratio of about 2, indicating the presence of aliphatic 257 

hydrocarbons (CxHy) such as alkanes, naphthenes, alkenes, dialkenes in the oil products. 258 

The detection of low oxygen content (4-10 wt%) in the biofuels indicates the presence of 259 

low amounts of oxidized species in the biofuel (Table 2). This could be attributed to the use 260 
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of a bed of activated carbon that also provided a reducing chemical environment at the 261 

process temperatures. The bed of activated carbon acted as a reductant to remove oxygen 262 

functionalities from the feed oil and to decrease the formation of undesirable oxidized 263 

species during the pyrolysis, thus leading to the low oxygen content in the biofuel; the mass 264 

loss of activated carbon was regarded as negligible as it was found to be less than 1 wt.% 265 

after the pyrolysis operation. In addition, the oxygenated compound that initially present in 266 

WPCO might form gaseous compound such as carbon dioxide or light hydrocarbons as a 267 

result of deoxygenation reactions (e.g. dehydration, decarbonylation, decarboxylation) 268 

during pyrolysis cracking of WPCO[20, 21], and these compounds would remain in the 269 

gaseous phase and escape from the reactor, thus leading to the reduction in the oxygen 270 

content of the biofuel. Interestingly, sulphur was not detected in the biofuels (Table 2). This 271 

indicates the potential of the liquid products to be used as a fuel since their zero sulphur 272 

content will result in no SOx emissions compared to the use of traditional liquid fuels 273 

derived from fossil fuels. Nitrogen was detected in low concentrations in the biofuel, 274 

recording a concentration of about 1 wt%. It was likely that the nitrogen was obtained from 275 

the distillation or evaporation of some of the nitrogen-containing components in the WPCO 276 

that occurred during the pyrolysis process; the nitrogen-containing components was likely 277 

to derive from the heterocyclic aroma compounds originally present as flavor enhancer in 278 

the food and which had been transferred and trapped within the oil during the frying of the 279 

food. These processes transferred the nitrogen-containing compounds from the WPCO in 280 

the reactor to the condensation system and then into the recovered biofuel. Although the 281 

biofuel contains relatively low concentration of nitrogen, given its likely future uses as a 282 

fuel in engine operation and if the concentration assessed to pose too great a risk, the 283 

nitrogen content can be removed via catalytic upgrading through the use of zeolite catalyst 284 

(e.g. ZSM-5, USY).  The biofuel obtained showed a CV ranging from 41 to 46 MJ/kg 285 

(Table 2), which is higher than the original WPCO before pyrolysis (39.2 MJ/kg; Table 1).  286 

 287 

3.3.3.2 Hydrocarbon composition 288 

Fig. 4 shows the main compounds determined by GC-MS analysis for WPCO and 289 

the resulting biofuel obtained at different process temperatures. The further breakdown of 290 

the main compounds into individual chemical compounds is presented in Table S1 in 291 

Appendix A. The main compounds can be classified into seven components according to 292 

their structure, namely: alkanes, alkenes, cycloalkanes, carboxylic acids, ketones, aldehydes 293 

and other unknown compounds (unidentified GC peaks).  294 

This study showed that WPCO was thermally cracked to a liquid hydrocarbon 295 

product dominated by aliphatic hydrocarbons (alkanes, alkenes). The aliphatic 296 

hydrocarbons were mostly alkanes (~50%), and alkanes from decane (C10H22) to tridecane 297 

(C13H28) showed the highest concentration.  Alkenes (~34%) with carbon chain lengths 298 
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ranging from C9-C18 were also present with 5-octadecene (C18H36) and 8-heptadecene 299 

(C17H34) being the most abundant. The biofuel obtained at 500 °C contains the highest 300 

concentration of aliphatic hydrocarbons, accounting for 89% of its composition. The 301 

aliphatic hydrocarbons accounts for 79 % of the liquid obtained at 450 °C, whereas only 302 

76% was recorded at 400 °C. The production of liquid products comprising mainly of 303 

aliphatic hydrocarbons represents a potentially high-value chemical feedstock or fuel 304 

source. In particular, the C10-C15 alkanes (43-49 %; Table S1) is within the hydrocarbon 305 

range of diesel fuel (C10-C15)[22] and thus could be upgraded to produce transport-grade 306 

diesel, whereas the alkenes are highly desired chemicals that can be used in plastic 307 

manufacture[9]. 308 

Process temperature was found to have an influence on the chemical composition of 309 

the biofuel generated. Increasing the temperature from 450 °C to 550 °C led to an increase 310 

in the content of alkanes in the biofuel, and the alkanes content improved towards the 311 

presence of smaller hydrocarbon chains (C10-C12) (Table S1). The increase in the process 312 

temperature also resulted in greater production of alkenes in the biofuel (up to 37%) with 313 

the size of the alkenes being improved towards the presence of smaller hydrocarbon chains 314 

(≤C13; Table S1). In addition, the biofuel obtained at 550 °C showed a higher concentration 315 

of light hydrocarbons (C5-C13) (72 %) compared to the biofuel obtained at 500 °C (60 %), 316 

450 (45 %) and 400 °C (4%) (Table S1). These results indicate the increased occurrence of 317 

the cracking of heavier hydrocarbons in the WPCO at higher process temperatures to 318 

produce lighter hydrocarbons. The higher thermal energy at higher process temperatures 319 

enhances secondary cracking of the pyrolysis volatiles evolved from the WPCO being 320 

pyrolyzed, thus enhancing the cleavage of larger hydrocarbon chains present in the 321 

pyrolyzed volatiles into smaller hydrocarbon chains and this leads to a higher 322 

corresponding yield of light hydrocarbons in the biofuel. Overall, increasing process 323 

temperature leads to higher production of light hydrocarbons in the biofuel. 324 

Interestingly, there was no carboxylic acid detected in the biofuel during the 325 

pyrolysis at the process temperature of 450 °C, 500 °C, and 550 °C, suggesting that 326 

carboxylic acids, particularly the fatty acids attached to triglycerides in the WPCO (Table 327 

1), had been converted to other compounds during the pyrolysis at these process 328 

temperatures. The carboxylic acids were likely to be split during the pyrolysis and from 329 

which the carboxyl group was converted to an alkane and the remaining bits of the 330 

hydrocarbon chain were converted to alkenes; these types of deoxygenation reactions (e.g. 331 

decarbonylation, decarboxylation) have been reported to commonly occur during thermal 332 

treatment processes like pyrolysis [20, 21]. The production of a biofuel with no carboxylic 333 

acids and triglycerides represents a desirable feature because their presence could lead to 334 

the occurrence of undesired polymerization reactions during the storage and upgrading in 335 

which the carboxylic acids may react to form acidic tar or sludge and this could lead to 336 
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increased viscosity of the oil and furthermore the tar or sludge could cause problems such 337 

as filter plugging and system fouling[9].  338 

The hydrocarbons produced in the biofuel (C10-C15 hydrocarbons) are of 339 

fundamentally much smaller length (less than one third) than those present in original 340 

WPCO (the presence of triglycerides that is equivalent to C51 or C57 hydrocarbons). The 341 

production of a biofuel with short hydrocarbon chains and that is also free of carboxylic 342 

acids by this pyrolysis approach represents a favorable feature in producing a hydrocarbon 343 

product that is much more suited to be used as a fuel, particularly as a diesel fuel 344 

considering that the hydrocarbons with short chains are within the hydrocarbon range of 345 

diesel fuel (C10-C15)[22]. 346 

Oxygenated compounds such as aldehydes and ketones were found to be present 347 

only in minor quantities in the biofuel (≤6%) compared to that present in the biofuel (53%) 348 

obtained by conventional pyrolysis of palm oil using a furnace [10]. Combined with the 349 

results of no carboxylic acids being detected in the biofuel, this provides useful information 350 

as to the extent of oxidation that had occurred and resulted in the formation of oxygenated 351 

by-products such as aldehydes, ketones, and carboxylic acids in the biofuel during 352 

pyrolysis. The presence of only small amounts of aldehydes and ketones with no detection 353 

of carboxylic acids indicates little occurrence of such oxidation reactions in this pyrolysis 354 

process, since the AC bed had acted as a reductant to convert some of the oxygen present in 355 

the feedstock to CO or CO2 which then leaves the system in the gas phase, thus reducing 356 

the amount of oxygen that is transformed into oxygenated by-products in the biofuel. This 357 

corroborates the low oxygen contents found in the biofuel by elemental analysis (Table 2), 358 

and the beneficial effects of the activated carbon bed (acting as a reducing reaction 359 

environment) in decreasing both the extent of oil oxidation and the resulting formation of 360 

oxygenated by-products that could generate undesirable acidic tar or sludge in the biofuel. 361 

 362 

3.3.3.3 Chemical composition of biofuel compared to transport-grade diesel and biodiesel   363 

The biofuel obtained from this pyrolysis approach was assessed for its suitability to 364 

be used as a fuel based on its elemental content, carbon components, and CV, and these 365 

values were also compared to those of transport-grade diesel and biodiesel obtained from 366 

the literature[22-27]. The biofuel obtained at a process temperature of 450 °C in this study, 367 

which showed the highest yield of biofuel, and the conventional biodiesel produced from 368 

palm oil and waste cooking oil via transesterification were selected for comparison (Table 369 

3).  370 

Our biofuel shows lower oxygen content (5 wt%) than that of biodiesel (11 wt%). 371 

and represents a favorable feature in producing a fuel with improved stability and higher 372 

heating value compared to conventional biodiesel that shows a higher oxygen content. 373 
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However, the biofuel was found to have a higher oxygen content compared to fossil 374 

transport-grade diesel, which is oxygen-free. This suggests that additional steps are needed 375 

to eliminate oxygen from the biofuel if it is to be used as a diesel fuel. Although the biofuel 376 

contains a relatively low level of oxygen given their likely future uses as a fuel (e.g. diesel), 377 

were the concentration of oxygen assessed to pose too great a risk, or if complete removal 378 

of oxygen was required, one potential route would be to perform deoxygenation or 379 

decarboxylation to convert the oxygenated compounds that remained in the biofuel to 380 

alkanes or aromatics. 381 

The biofuel is formed mainly by light C4-C18 hydrocarbons (84 %; Table S1), and in 382 

particular the C10-C15 hydrocarbons, which are within the hydrocarbon range of diesel fuel 383 

(C10-C15), account for 65% of the light hydrocarbons (Table 3). It was also found that the 384 

the biofuel is formed by lighter hydrocarbons compared to that present in the biodiesel. The 385 

CV is an important fuel property that allows evaluation of the potential of the material to be 386 

used as a fuel. The biofuel obtained in this study showed a CV of 46 MJ/kg, which is within 387 

the range of the CV reported for the traditional liquid fuels derived from fossil fuel (42-46 388 

MJ/kg)[25]. The CV of the biofuel is higher than that reported for the biodiesel derived 389 

either from palm oil (37-38 MJ/kg)[25] or waste cooking oil (43 MJ/kg)[26], and is nearly 390 

similar to that reported for diesel fuel (45 MJ/kg)[23, 28].  391 

It is clear that the pyrolysis approach offers a promising alternative to 392 

transesterification and produces a biofuel that may have advantages over conventional 393 

biodiesel. This approach also offers advantages over transesterification in avoiding the use 394 

of solvents and catalysts such as the methanol and acid or base catalyst required to perform 395 

transesterification. In addition, there is no need to remove oxygenated compounds 396 

(particularly glycerol and any non-esterified fatty acids) from the products formed during 397 

transesterification. The use of catalyst and the presence of free fatty acid and glycerol as 398 

by-products in the resulting biodiesel are common problems associated with 399 

transesterification that could lead to many drawbacks such as slow reaction rate, corrosion, 400 

and difficulty in separating catalyst from the biodiesel [29, 30], and also the formation of 401 

undesired soap that can lead to reduction in biodiesel yield, decreased catalyst efficiency, 402 

and increased formation of gel and viscosity of biodiesel[31].  403 

It can also be inferred from these results that the diesel-like biofuel can be used as 404 

an energy source for oil-fired power plant or internal combustion engines with an electricity 405 

generation efficiency of about 39 - 44%[32]. Thus, the biofuel used as a diesel fuel through 406 

these applications could show a higher electricity generation efficiency compared to that 407 

shown by electricity generating plant fueled by biomass such as biodiesel (35%).  408 

 409 

 410 
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3.3.4 Energy balance  411 

Table 4 shows estimates of the energy recovery compared with the energy 412 

consumption in the microwave pyrolysis of WPCO. These estimations provide a useful 413 

measure of the energy efficiency of the pyrolysis process, which is an important factor that 414 

determines the viability of this process, especially in scaling and optimizing the design and 415 

operation to the commercial level. In particular, it allows the evaluation on whether the 416 

energy recovered by the biofuel could sustain the energy consumed during the pyrolysis 417 

process. It should be noted that the estimations are limited by the following assumptions: 418 

1. The energy consumption is assumed to derive mainly from the usage of electricity 419 

to generate the microwave radiation for pyrolysis to occur. The electrical 420 

consumption is based on the electrical power input (1.12 kW) during the pyrolysis 421 

treatment, which is estimated to be approximately 1.5 times the nominal power 422 

output of the magnetron (0.75 kW) for the sum of the periods when they are 423 

switched on during the pyrolysis operation, assuming that the energy conversion 424 

efficiency of electricity into microwave energy is about 0.67 as reported by others in 425 

the literature [33-35]. It should be mentioned that the 1.12 kW of electrical input is 426 

an overestimate of the actual electrical consumption, considering the simplicity of 427 

the pyrolysis reactor and the fact that the actual amount of absorbed microwave 428 

power is not measured in this operation. Adding a device to record the absorbed 429 

power would improve the estimate of the energy consumption in the process, and 430 

would further increase the apparent energy conversion efficiency.  431 

 432 

2. Heat losses from the pyrolysis reactor are substantial and would not be 433 

representative of the losses that would occur at pilot or industrial scale. No attempt 434 

has been made to fully insulate the pyrolysis reactor and fittings nor to recover 435 

energy during the condensation of the pyrolysis products. 436 

 437 

3. The CV of the pyrolysis gases and char are ignored in this assessment since only the 438 

biofuel is of particular interest in this study. 439 

 440 

The electrical energy (Epyrolysis) supplied to power the pyrolysis process varied 441 

between 16800 to 23520 kJ/kg over a process temperature ranging from 450 °C to 550 °C. 442 

This is equivalent to 43-60% of the CV of the WPCO pyrolyzed. Less electrical energy was 443 

needed to pyrolyze the WPCO at lower process temperature. This can be attributed to the 444 

need for less energy to heat the WPCO to a lower operational temperature and to supply the 445 

enthalpy to drive the endothermic pyrolysis reaction, resulting in lower electrical energy 446 

consumption observed at lower process temperature.  447 

The microwave pyrolysis process showed a positive energy ratio ranging from 1.96-448 

2.73 and a net energy output (Ebalance) of 22480-29200 kJ/kg. This demonstrates that this 449 
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pyrolysis approach is capable of recovering an oil product with an energy content much 450 

greater than the amount of electrical energy used for operating the pyrolysis process. These 451 

results suggest that the setup of a pyrolysis equipment using the apparatus described from 452 

this pyrolysis approach with an electrical power input of 1.12 kW is capable of processing 453 

WPCO at a process temperature of 450 °C to produce a biofuel product with an energy 454 

content equivalent to about 3.06 kW (i.e. 1.12 kW * energy ratio of 2.73).  455 

Despite the fact that there was energy loss occurred during the pyrolysis operation 456 

(18-27% of Einput), the pyrolysis process still showed significantly high recovery (≥73%) of 457 

the energy input to the system. It should however be noted that the high energy recovery 458 

observed in this study involve the assumption that the only energy input of the process is 459 

the electrical energy used to operate the pyrolysis operation. In practice lower energy 460 

recovery would be realized in which additional energy inputs have been considered, 461 

including the energy needed for the collection and transport of WPCO to the processing 462 

plant, and for the refining or upgrading of the biofuel if it needs to be further processed to 463 

produce a transport-grade diesel fuel. However, it is envisaged that inclusion of heat 464 

integration and recovery systems to recover energy loss from the prototype reactor, which 465 

are normally implemented during pilot or industrial scale operation, could further increase 466 

the amount of energy that can be recovered from the pyrolysis system. In addition, the CV 467 

of the pyrolysis gases and char have been ignored in this assessment. Inclusion of the 468 

energy content from these pyrolysis products would further increase the energy recovery. 469 

Furthermore, the recovered energy in the form of these pyrolysis products, 470 

particularly the diesel-like biofuel, can potentially be used as a fuel source for on-site 471 

generation of electrical energy to power the pyrolysis system. It can be inferred that if the 472 

biofuel is used as a diesel fuel in an internal combustion engine, which shows an electricity 473 

generation efficiency of about 33-40% [32], the electrical energy generated by this 474 

application, which is about 15180-18400 kJ/kg, is capable of providing either all or most of 475 

the electrical energy needed for the pyrolysis operation (16800 kJ/kg of Epyrolysis). The use 476 

of the diesel-like biofuel also showed advantages over the use of biodiesel as the fuel 477 

source as indicated by its higher electricity generation efficiency (≥33%) compared to that 478 

shown by biodiesel (30%)[32]. Overall, our results show that the pyrolysis approach using 479 

a microwave-heated bed of AC is also an energetically viable means of converting the 480 

WPCO into a useful biofuel product. 481 

 482 

4. Conclusion 483 

Pyrolysis using a microwave-heated bed of activated carbon provided rapid heating 484 

(~18 °C/min) which heated and pyrolyzed the waste oil at 450 °C in a process taking less 485 

than 25 min. It also showed advantages in providing a localized reaction hot zone that 486 
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thermally promoted extensive cracking to produce higher yield of a biofuel product, while 487 

simultaneously created a reducing environment that prevented the formation of undesirable 488 

oxidized compounds in the biofuel. 489 

The pyrolysis produced a biofuel product that is low in oxygen, free of sulphur, 490 

carboxylic acid and triglycerides, and which also contains light C10-C15 hydrocarbons and a 491 

high calorific value nearly comparable to diesel fuel. The biofuel shows lower oxygen 492 

content, lighter hydrocarbon content, and a higher calorific value than that reported for 493 

biodiesel derived from transesterification of waste cooking oil. 494 

The pyrolysis apparatus operated with an electrical power input of 1.12 kW was 495 

capable of producing a biofuel with an energy content equivalent to about 3 kW, showing a 496 

positive energy ratio of 2.7 and ≥73% recovery of the energy input to the system.  497 

 498 
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 622 

Table 1 623 

Characteristics of WPCO 624 

Elemental composition (wt%)  

C 71.2  

H 13.3 

N 0.8 

S  0 

Oa  14.7 

Calorific value (CV) (MJ/kg) 39.2 

Fatty acid composition (wt%)  

Palmitic acid (C16H32O2) 25 

Stearic acid (C18H36O2) 8 

Oleic acid (C18H34O2) 29 

Linoleic acid (C18H32O2) 12 
a Oxygen calculated by mass difference 625 

 626 

Table 2  627 

Elemental composition and CV of biofuel obtained at different process temperatures 628 

Biofuel properties Temperatures 

400°C 450°C 500°C 550°C 

Elemental analysis (wt%)     

C 75.7 80.1 79.4 80.5 

H 13.3 13.5 13.6 14.4 

N 1.4 1.1 1.1 1.1 

S 0.0 0.0 0.0 0.0 

O (calculated by mass 

difference) 

9.6 5.3 5.9 4.0 

H/C (mol/mol) 2.0 2.1 2.1 2.1 

CV (MJ/kg) 41 46 46 46 

 629 

 630 

 631 

 632 
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Table 3 633 

Chemical composition of the biofuel compared to transport-grade diesel and biodiesel   634 

Biofuel properties Biofuela Biodieselb  

from 

transesterification 

Dieselc  

(Transport-grade) from  

microwave pyrolysis  

(this study) 

Elemental analysis 

(wt%) 

   

C 80.1 77 87 

H 13.5 12 13 

N 1.1 - - 

S 0.0 - - 

Od 5.3 11 0.0 

Carbon components C4-C18  

(5% by C6) 

(65% by C10-C15) 

(30% by C17-C18) 

C14–C24
e 

(1% by C14) 

(43% by C16) 

(55% by C18) 

(1% by C20-24) 

C10-C15
f 

Calorific value (MJ/kg) 46 37-43e 45 
a Process conditions: Pyrolysis was performed at a process temperature of 450°C. 635 
b ASTM D6751 specifications of biodiesel [23, 24] 636 
c ASTM D975 specifications of diesel [23, 24] 637 
d Calculated by mass difference 638 
e Carbon range of biodiesel (C14–C24) [27] 639 
f Hydrocarbon range of diesel fuel (C10-C15)[22] 640 
g CV of biodiesel derived from palm oil and waste cooking oil from previous studies [25, 641 

26] 642 
(-) not available 643 

 644 

 645 

 646 

 647 

 648 

 649 

 650 

 651 

 652 

 653 

 654 

 655 

 656 

 657 

 658 

 659 
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Table 4  660 

Energy recovery and consumption in microwave pyrolysis of WPCO 661 

Process 

temperature 

EWO
a 

(kJ/kg) 

EBO
b 

(kJ/kg) 

Epyrolysis
c 

(kJ/kg) 

Epyrolysis/Ewo
d 

(%) 

Eratio
e Ebalance

f 

(kJ/kg) 

450 °C 39200 46000 16800 43 2.73 29200 

500 °C 39200 46000 20160 51 2.28 25840 

550 °C 39200 46000 23520 60 1.96 22480 
 662 

Einput
g Eloss

f Erecovery
i 

(kJ/kg) (kJ/kg) (kJ/kg) 

56000 10000 46000 

59360 13360 46000 

62720 16720 46000 
 663 
a Energy content or CV of WPCO. 664 
b Energy content of biofuel, i.e. CV of biofuel*amount of biofuel obtained/amount of WPCO  665 
c Electrical energy consumed during the pyrolysis treatment, i.e. 1.12 kW of electrical power 666 
input*duration of pyrolysis treatment/amount of WPCO  667 
d Amount of energy (from EWO) consumed by Epyrolysis 668 
e Energy ratio, defined as the energy content of the biofuel divided by the electrical energy input 669 
needed to operate the system, i.e. EBO/Epyrolysis 670 
f Energy balance, defined as the energy content of the biofuel minus the electrical energy input 671 
needed to operate the system, i.e. EBO-Epyrolysis 672 
g Energy input of the system, defined as the sum of the total CV of the WPCO (EWO) and the 673 
electrical energy input needed to operate the system (Epyrolysis), i.e. EWO+Epyrolysis. 674 
h Energy losses from the system, includes the heat losses from the prototype reactor, the energy loss 675 
from the conversion of microwave energy into thermal energy, and the CV of the pyrolysis-gases 676 
and the char, i.e. (EWO+Epyrolysis)-EBO. 677 
i Energy recovered from the system, i.e. (EWO+Epyrolysis) – Eloss. 678 
 679 

 680 

 681 

 682 

 683 

 684 

 685 

 686 

 687 

 688 



20 
 

List of Figures 689 

Fig. 1 Schematic drawing of the microwave pyrolysis system. (1) Nitrogen gas, (2) 690 
Flowmeter, (3) Temperature controller, (4) Modified microwave oven, (5) Pyrolysis 691 

reactor, (6) Stirrer, (7) 1st collecting vessel, (8) Vigreux column, (9) Liebig condenser, (10) 692 
2nd collecting vessel, (11) Ice bath. 693 
Fig. 2 Temperature profiles shown by microwave pyrolysis of WPCO at different process 694 
temperature. 695 
Fig. 3 Product yield (wt%) from microwave pyrolysis of WPCO performed at different 696 

process temperatures. 697 

Fig. 4 Main compounds (peak area%) detected in WPCO and the biofuel obtained at 698 

different process temperatures. 699 

 700 

 701 

Fig. 1 Schematic drawing of the microwave pyrolysis system. (1) Nitrogen gas, (2) 702 

Flowmeter, (3) Temperature controller, (4) Modified microwave oven, (5) Pyrolysis 703 

reactor, (6) Stirrer, (7) 1st collecting vessel, (8) Vigreux column, (9) Liebig condenser, (10) 704 

2nd collecting vessel, (11) Ice bath. 705 

 706 



21 
 

 707 

Fig. 2 Temperature profiles shown by microwave pyrolysis of WPCO at different process 708 

temperature. 709 
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Fig. 3 Product yield (wt%) from microwave pyrolysis of WPCO performed at different 712 
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different process temperatures 718 

 719 

 720 

 721 

 722 


