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Synchronization is a universal concept in nonlinear science but has received little atten-
tion in thermoacoustics. In this numerical study, we take a dynamical systems approach
to investigating the influence of harmonic acoustic forcing on three different types of
self-excited thermoacoustic oscillations: periodic, quasiperiodic and chaotic.

When the periodic system is forced, we find that (i) at low forcing amplitudes, it
responds at both the forcing frequency and the natural (self-excited) frequency, as well
as at their linear combinations, indicating quasiperiodicity; (ii) above a critical forcing
amplitude, the system locks into the forcing; (iii) the bifurcations leading up to lock-in
and the critical forcing amplitude required for lock-in depend on the proximity of the
forcing frequency to the natural frequency; (iv) the response amplitude at lock-in may be
larger or smaller than that of the unforced system and the system can exhibit hysteresis
and the jump phenomenon owing to a cusp catastrophe; and (v) at forcing amplitudes
above lock-in, the oscillations can become unstable and transition to chaos, or switch
between different stable attractors depending on the forcing amplitude.

When the quasiperiodic system is forced at a frequency equal to one of the two
characteristic frequencies of the torus attractor, we find that lock-in occurs via a saddle-
node bifurcation with frequency pulling. When the chaotic system is forced at a frequency
close to the dominant frequency of its strange attractor, we find that it is possible to
destroy chaos and establish stable periodic oscillations.

These results show that the open-loop application of harmonic acoustic forcing can be
an effective strategy for controlling periodic or aperiodic thermoacoustic oscillations. In
some cases, we find that such forcing can reduce the response amplitude by up to 90%,
making it a viable way to weaken thermoacoustic oscillations.

1. Introduction

A self-excited nonlinear system oscillating periodically at one frequency can be forced
to oscillate at a different frequency when subjected to external forcing (Pikovsky et al.
2003). This process is known as forced synchronization. It has been studied in various
natural and human-made systems including pendulum clocks (Huygens 1673), chemical
reactions (Petrov et al. 1997), circadian rhythms (Rompala et al. 2007), neurons (Hopfield
1994) and organ pipes (Abel et al. 2009). It has also been modelled accurately with
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universal low-dimensional oscillators such as the forced van der Pol (1927) oscillator. The
use of external forcing to control or suppress self-excited oscillations has been attracting
growing interest because of its applicability to fields as wide ranging as hydrodynamics,
electromagnetics, neuronics and thermoacoustics (Hovel 2010).

In thermoacoustic systems, such as gas turbines used for power generation and aircraft
propulsion, self-excited pressure oscillations can arise from the coupling between unsteady
heat release and acoustics, leading to increased noise and pollutant emissions (Lieuwen
& Yang 2005). Experiments (Kabiraj & Sujith 2012; Kabiraj et al. 2012a,b) and low-
order simulations (Kashinath et al. 2014) have shown that even simple thermoacoustic
systems (e.g. a laminar premixed flame in a duct) can exhibit rich nonlinear behaviour.
For example, they can undergo multiple bifurcations as a control parameter is varied,
producing not just period-1 oscillations but also quasiperiodic, intermittent, frequency-
locked, chaotic or period-k oscillations. Experiments on more complex thermoacoustic
systems have revealed similarly elaborate dynamics (Gotoda et al. 2011, 2012). However,
the effect of external harmonic forcing on such systems, particularly those that oscillate
quasiperiodically or chaotically, has not been studied before.

Nevertheless, for thermoacoustic oscillations that are periodic, various control methods
have been demonstrated (Dowling & Morgans 2005). In combusting systems, harmonic
forcing of the fuel flow rate at the same frequency as a periodic self-excited mode,
but out of phase with it, has been implemented for feedback control (Lubarsky et al.
2003). Recently, more sophisticated strategies have been proposed using model-based
control (Annaswamy 2006) and adaptive feedback control (Illingworth & Morgans 2010).
However, although feedback control works well in simple thermoacoustic systems, it is
challenging in industrial systems because the sensors and actuators have to withstand
harsh environments. It is also unacceptably risky in some applications, such as aircraft.

For those reasons, open-loop control is preferred. In laboratory experiments, Bellows
et al. (2008) and Balusamy et al. (2015) investigated the effectiveness of open-loop har-
monic acoustic forcing as a means of weakening self-excited thermoacoustic oscillations in
lean-premixed swirl-stabilized turbulent combustors. They found that (i) the oscillations
can be synchronized by strong external forcing; (ii) the overall acoustic power can be
reduced by the forcing, with maximum reductions of up to 90% near lock-in; but that
(iii) weak forcing (u′/U0 < 10%) has no appreciable effect on the amplitude or frequency
content of the oscillations. This last finding could be due to two reasons: (i) the high noise
levels in those large-scale turbulent combustors and (ii) the use of forcing frequencies that
were far away from the natural frequencies of the system.

Bellows et al. (2008) and Balusamy et al. (2015) also mentioned that the system
response is complicated by hydrodynamic instabilities and their interactions with the
acoustic forcing. Recent experiments have shown that forced self-excited hydrodynamic
systems can exhibit rich nonlinear behaviour near lock-in, including multiple bifurcations,
quasiperiodicity and frequency pulling (Li & Juniper 2013a,b,c). These dynamics have
not been studied in combustion-driven thermoacoustic systems, but need to be under-
stood and accounted for during initial design or when developing control strategies.

Intrigued by the rich nonlinear dynamics of forced synchronization and motivated by
the success of open-loop forcing in weakening self-excited oscillations, we explore the
influence of external (open-loop) acoustic forcing on a simple thermoacoustic system (a
laminar premixed flame in a duct) that oscillates periodically, quasiperiodically or chaot-
ically. We use the coupled dynamical model described in our previous study (Kashinath
et al. 2014) because (i) it can accurately capture the dynamics and bifurcations seen in
experiments; (ii) it has only 5000 degrees of freedom, which is significantly fewer than a
comparable high-fidelity CFD simulation; and (iii) it is a relatively simple model consist-
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ing of a few coupled nonlinear oscillators, for which low-dimensional chaotic analogues
exist in the synchronization literature (Pikovsky et al. 2003). Dynamical systems theory
has been used extensively to study synchronization in nonlinear systems and provides a
suitable framework within which to investigate this problem in thermoacoustics.

The aims of this study are (i) to investigate the influence of open-loop harmonic acous-
tic forcing on three different types of self-excited thermoacoustic oscillations: periodic,
quasiperiodic and chaotic; (ii) to characterize the synchronization dynamics leading up
to and beyond lock-in, including identifying the bifurcations that cause lock-in and their
positions on the primary (1:1) Arnold tongue; and (iii) to explore the feasibility of using
open-loop forcing to weaken aperiodic thermoacoustic oscillations.

In §2 we introduce the low-order coupled dynamical model. In §3 we present the
dynamics of the unforced self-excited system. In §4 we discuss the influence of forcing
above and below the natural (self-excited) frequency of period-1 oscillations, at various
forcing amplitudes. In §4.4 we construct a lock-in map centred on the 1:1 Arnold
tongue, examine its bifurcations and asymmetries, and discuss the implications for
controlling period-1 oscillations in thermoacoustic systems. In §5 we discuss the influence
of harmonic forcing on quasiperiodic and chaotic oscillations, before concluding in §6.

2. Models, analysis methods, and forcing conditions

We consider a constant-area duct, open at both ends, containing a two-dimensional slot
stabilized laminar premixed flame at a distance xf from one end. This thermoacoustic
system is modelled identically to that of our previous study (Kashinath et al. 2014, §2):
(i) the acoustics is treated linearly – because the perturbation Mach number remains
small even for large acoustic velocity fluctuations (Dowling 1997) – and its governing
equations are discretized with the Galerkin method; (ii) the premixed flame, which is the
main source of nonlinearity in this system, is described by a kinematic model based on
the level-set approach, known as the G-equation in combustion (for details, see Williams
1994):
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where tildes denote dimensional values and G(x̃, ỹ, t̃) is a time-varying function that is
negative in the unburnt gas, positive in the burnt gas and zero on the flame surface. Ũ and
Ṽ are the instantaneous velocities along the x and y directions respectively, and sL is the
flame speed. ; and (iii) the perturbation velocity field is modelled as a travelling wave that
originates at the burner lip and propagates downstream according to the one-dimensional
advection equation with a constant phase speed (Kashinath et al. 2014, Eq. 2.10). This
perturbation model has been proven to be able to reproduce the characteristic vortex
formation at the burner lip and its roll up along the flame (Orchini et al. 2015). This gives
rise to flame wrinkling, which modulates the flame surface area and the resultant heat
release rate fluctuations (Preetham et al. 2008). Figure ?? shows a qualitative comparison
of the numerically simulated G-field against experimental results.

We acoustically force this system by applying a harmonic velocity perturbation at the
burner lip. This type of forcing may be achieved in reality using an actuator, such as a
loudspeaker. Note that there is no perturbation to the geometry of the system but only
to the velocity and pressure fields. The total velocity perturbation at this location is the
sum of the self-excited oscillations and the forced perturbations, which may be added
together because the acoustics is linear. The flame therefore experiences the combined
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Figure 1. Flame wrinkling due to vortex formation and roll up: (a) experimental image of a
forced conical flame, reprinted from Karimi et al. (2009) with permission from Elsevier; (b) the
G-field obtained from numerical simulations of a forced conical flame, reprinted from Orchini
et al. (2015) with permission from Cambridge University Press. In both cases, the forcing is
harmonic, with the same frequency and amplitude. The flame contour G = 0 is highlighted to
show that it can qualitatively reproduce the experimental results.

effect of the self-excited oscillations and the forced perturbations. The net perturbations
propagate along the flame surface according to the advection equation (Kashinath et al.
2014, Eq. 2.10).

The evolution equations of this low-order coupled nonlinear dynamical system (i.e. the
acoustic equations, the G-equation, and the perturbation velocity equations) are solved
simultaneously using a weighted essentially non-oscillatory (WENO) fifth-order scheme
in space (Jiang & Peng 2000) with a third-order total variation diminishing (TVD)
Runge–Kutta scheme (Gottlieb & Shu 1998) in time. The details of these computations,
including the local level-set algorithm used to solve the G-equation (Hemchandra 2009),
can be found in our previous study (Kashinath et al. 2014, §2).

A full description of the synchronization dynamics of this system requires the de-
termination of its Arnold tongues and the bifurcations around them. In this study, we
focus on the primary (1:1) Arnold tongue (i.e. ff ≈ fn) because it is the widest and
hence the easiest to resolve. The forcing frequency, ff/fn, is varied from 0.85 to 1.15 in
steps of 0.01 with a higher resolution of 0.001 for 0.98 < ff/fn < 1.02. Here fn is the
natural (self-excited) frequency, which is defined as (i) the frequency of the limit cycle
of a periodic oscillation; or (ii) one of the two characteristic frequencies of the 2-torus of
a quasiperiodic oscillation; or (iii) the dominant frequency in the spectrum of a chaotic
oscillation. The forcing amplitude, u′f , normalized by the mean flow velocity, U0, given
by ε ≡ u′f/U0, is varied from 0.01 to 0.60 in steps of 0.01. This range is sufficient to
achieve lock-in for all the ff values used in this study.

The response of the system is examined via the pressure fluctuation at a fixed duct
location (x = 0.375), which is away from the pressure nodes of the dominant acoustic
modes. At each forcing condition, we produce a time series lasting 400 steady-state
cycles of the fundamental acoustic mode, which is long enough to resolve the low-
frequency modulations arising when the system is near its synchronization boundaries. It
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State xf Oscillation type Natural frequency Preceding bifurcation

A 0.166 Period-1 fn = 2.304 Supercritical Hopf
B 0.480 Period-1 fn = 1.125 Subcritical Hopf
C 0.400 Quasiperiodic f1 = 2.22, f2 = 0.17 Neimark–Sacker (torus-birth)
D 0.067 Chaotic fn = 1.16 –

Table 1. The natural (unforced) states of the system to which harmonic forcing is applied.
These states are reached by varying the flame position xf within a constant-area duct with
open ends, whilst keeping all other parameters constant (Kashinath et al. 2014, see figure 3
for details). The natural frequency is non-dimensionalized by the frequency of the fundamental
acoustic mode in the absence of heat release and damping.

is worth mentioning that complex behaviour could arise during the transient stages of the
simulations, as was observed in our previous study (Kashinath et al. 2014). Nevertheless,
the focus of the present study is on the steady-state dynamics.

For a periodically forced self-excited system with a single oscillatory mode, two types
of synchronization can occur: phase trapping and phase locking (Pikovsky et al. 2003).
In this study, we use the term lock-in to refer to phase locking, which occurs when a
forced self-excited system has a constant phase difference with respect to the forcing at
all instants in time. This means that the system always oscillates at ff . Phase trapping,
also known as frequency locking without phase locking, occurs when the phase difference
oscillates boundedly around a fixed value as though it is trapped (Aronson et al. 1990).
The instantaneous frequency of the system is therefore not always equal to ff but its
time-averaged frequency is. To distinguish between phase locking and phase trapping, we
extract the instantaneous phase and amplitude of the pressure signal using the Hilbert
transform (Gabor 1946). This technique has the advantage that it can be applied to
nonlinear and non-stationary data. Its usefulness in the study of nonlinear dynamics and
synchronization is well recognized (Pikovsky et al. 2003).

The dynamics of self-excited thermoacoustic systems and the phenomenon of synchro-
nization are governed by nonlinear processes and cannot be described with linear tools.
We therefore use methods from dynamical systems theory and nonlinear time-series
analysis. These methods are well established and have been documented in textbooks
(Strogatz 1994; Thompson & Stewart 2002; Kantz & Schreiber 2003; Small 2005).

3. The unforced self-excited system

The dynamics of the unforced self-excited system were characterized by Kashinath
et al. (2014). From figure 3 of that paper, we choose four states (corresponding to four
different flame positions xf ) at which to study the forced response of the system. These
four states are described in table 1. Their time series, power spectra, phase portraits,
Poincaré sections, correlation dimensions and instantaneous flame images were shown
by Kashinath et al. (2014) and are not reproduced here for the sake of conciseness. We
choose these particular states because (i) they are representative of the different types
of oscillations present in this thermoacoustic system; (ii) they include limit cycles due
to both subcritical and supercritical Hopf bifurcations of the steady base state; and
(iii) their amplitudes are small enough that lock-in may be achieved with moderate
forcing amplitudes, justifying the attachment boundary condition used for the flame’s
base (Kashinath et al. 2014, §2.3).
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4. Forcing of period-1 oscillations: states A and B

In this section, we examine the forced response of the system during period-1 oscilla-
tions, which arise from supercritical (state A) or subcritical (state B) Hopf bifurcations
of the steady base state. We consider forcing conditions leading up to lock-in for ff
above and below fn, both close to and far from fn, i.e. ff/fn between 0.95 and 1.05
(close to) and between 0.85 and 1.15 (far from). We also examine the response when the
forcing amplitude (ε) increases beyond that which is required for lock-in. In all cases, the
data shown represent the system’s dynamics after reaching steady state. At each forcing
condition, we produce a time series lasting 400 steady-state cycles of the fundamental
acoustic mode, which is long enough to resolve the low-frequency modulations arising
when the system is near its synchronization boundaries. It is worth mentioning that
complex behaviour could arise during the transient stages of the simulations, as was
observed in our previous study (Kashinath et al. 2014, §6). Nevertheless, the focus of the
present study is on the steady-state dynamics.

4.1. Before lock-in: ff close to fn

First we force the system at a frequency close to its natural frequency: ff/fn = 0.98.
The responses for states A and B are qualitatively similar to each other, so for brevity
only state A is presented here: a period-1 oscillation arising from a supercritical Hopf
bifurcation (Kashinath et al. 2014, figure 3 at xf = 0.166). Figure 2 shows the time series
and Poincaré maps for this state at different forcing amplitudes (ε).

When forced, the system responds at both its natural frequency and the forcing
frequency but, as will be shown later, the former (f ′n, where the prime indicates the
presence of forcing) shifts towards the latter (ff ) and is therefore no longer equal to
the natural frequency of the unforced system (fn). The oscillations in figure 2(a–f) are
quasiperiodic and arise from a torus-birth bifurcation (i.e. a Neimark-Sacker bifurcation)
of the unforced period-1 oscillation. The power spectrum, which is not shown here but
is similar to that reported for forced self-excited hydrodynamic systems (Li & Juniper
2013b,a), contains peaks at linear combinations of f ′n and ff , indicating nonlinear triad
interactions between the natural and forced modes. The Poincaré maps show two rings,
indicating that the phase trajectory is not closed but spirals around the surface of a stable
ergodic 2-torus. The time series shows evidence of beating, a low-frequency modulation
of the pressure amplitude at the beating frequency, ∆f = f ′n − ff .

When forced above a critical amplitude (figure 2g: ε = 0.13), the system locks into the
forcing and oscillates only at ff . The Poincaré map shows two discrete points, indicating
a closed period-1 orbit in phase space. This transition from a quasiperiodic oscillation to
a period-1 oscillation is abrupt, which, as will be confirmed later, reveals a saddle-node
bifurcation to lock-in. The attractor at lock-in is a stable periodic orbit on the surface
of the 2-torus that existed before the saddle-node bifurcation (Balanov et al. 2009).

Figure 3 shows the phase difference φ1,2 (normalized by 2π) between the system and
the forcing at the conditions of figure 2. The response pressure is measured at the same
position in the duct as the forcing (i.e. the burner lip). Furthermore, we assume acoustic
compactness of the flame. Different x positions in the duct will have different phase,
but focusing on one location is sufficient to understand the complete dynamics because
other locations will behave similarly with a constant (time-invariant) phase difference.
To explore the different states of synchronization, it is necessary to consider only the
temporal evolution of φ1,2 and not its absolute value (Pikovsky et al. 2003). The average
slope of each curve is the beating frequency, ∆f = f ′n−ff . In all cases except at ε = 0.128
(strong forcing), the oscillations are quasiperiodic, as indicated by the non-zero slope of
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Figure 2. Saddle-node bifurcation to lock-in: the forced response of the system during period-1
oscillations (state A) when the forcing frequency is close to the natural frequency, ff/fn = 0.98
where fn = 2.304. Time series and Poincaré maps are shown for increasing forcing amplitudes:
(a) ε ≡ u′

f/U0 = 0.03, (b) 0.06, (c) 0.09, (d) 0.11, (e) 0.12, (f) 0.125, and (g) 0.13.

φ1,2, showing that f ′n 6= ff . As ε increases, two trends emerge. First, the linear decrease in
φ1,2 becomes increasingly wavy, with alternating periods of synchronicity (flat slope) and
asynchronicity (steep slope), the latter of which are called phase slips (Pikovsky et al.
2003). Second, the magnitude of the average slope of each curve decreases, indicating
that f ′n → ff . This behaviour, called frequency pulling, is characteristic of lock-in via a
saddle-node bifurcation and can be modelled with universal low-dimensional oscillators
(Balanov et al. 2009).

With strong forcing (ε > 0.12), there are times when φ1,2 is nearly constant, indicating
synchronicity, with phase slips occurring relatively abruptly. The phase slips are equal to
−2π because here ff/fn < 1, which means that the system overtakes the forcing by one
full cycle during a phase slip. As ε increases further, both the abruptness of the phase
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Figure 3. Saddle-node bifurcation to lock-in: the phase difference (normalized by 2π) between
the system and the forcing at the conditions of figure 2.

slips and the time interval between them increase, ultimately leading to infinitely long
intervals of constant φ1,2 and thus lock-in.

The characteristics observed in figures 2 and 3, which correspond to ff < fn, are also
observed when ff > fn as long as ff is close to fn. Crucially, the sequence of bifurcations
remains unchanged: it begins with a torus-birth bifurcation to quasiperiodicity from a
period-1 oscillation, followed by a saddle-node bifurcation to lock-in at a critical forcing
amplitude. However, when ff > fn, the phase slips occur in the opposite direction (+2π)
because the system loses one full cycle with respect to the forcing when it phase slips.

4.2. Before lock-in: ff far from fn

Next we force the system at a frequency far from its natural frequency: ff/fn = 0.89.
For completeness, here we present state B, which responds qualitatively similarly to state
A and is likewise a period-1 oscillation. However, state B arises from a subcritical, rather
than a supercritical, Hopf bifurcation of the steady base state (Kashinath et al. 2014,
figure 3). Figure 4 shows the time series, power spectra, and phase portraits for this state
at increasing ε, starting with the unforced case (figure 4a).

Compared to figure 2 (ff close to fn), figure 4 (ff far from fn) shows many similarities
but also some key differences. In both cases, at intermediate forcing amplitudes, the
system responds at both f ′n and ff , becoming quasiperiodic via a torus-birth bifurcation
of the unforced period-1 oscillation. Furthermore, the time series show low-frequency
beating and the phase portraits show a stable ergodic 2-torus.

For ff far from fn (figure 4), f ′n remains unchanged from its unforced value (fn) as ε
increases, but for ff close to fn (§4.1), f ′n shifts towards ff , leading to frequency pulling.
Moreover, for ff far from fn, the power spectra show a steady decrease in the amplitude
of the natural mode (at f ′n) and a corresponding increase in the amplitude of the forced
mode (at ff ). At lock-in (figure 4h), the system oscillates only at ff , with the natural
mode becoming suppressed and the phase trajectory in a closed period-1 orbit, similar
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Figure 4. Torus-death bifurcation to lock-in: the forced response of the system during period-1
oscillations (state B) when the forcing frequency is far from the natural frequency, ff/fn = 0.89
where fn = 1.125. Time series, power spectra, and phase portraits are shown for increasing
forcing amplitudes: (a) ε ≡ u′

f/U0 = 0.00 or unforced, (b) 0.02, (c) 0.08, (d) 0.14, (e) 0.16, (f)
0.18, (g) 0.20, and (h) 0.23.

to the case for ff close to fn (figure 2g). However, unlike for ff close to fn, here the
transition from quasiperiodicity to lock-in is gradual rather than abrupt, revealing an
inverse Neimark–Sacker bifurcation (i.e. a torus-death bifurcation) rather than a saddle-
node bifurcation. This is consistent with predictions from generic models of self-excited
oscillators, such as the forced van der Pol oscillator (Balanov et al. 2009). Finally, the
response amplitude at lock-in is significantly lower than that of the unforced case; at
this particular value of ff/fn, it is about 70% lower (compare figure 4a with figure 4h).
As will be discussed in §4.4, this decrease tends to occur when ff is far from fn. When
ff is close to fn, however, the response amplitude at lock-in tends to be higher than
that of the unforced case. Nevertheless, the decrease shows that weakening of self-excited
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Figure 5. Torus-death bifurcation to lock-in: the phase difference (normalized by 2π) between
the system and the forcing at the conditions of figure 4.

thermoacoustic oscillations is possible via open-loop acoustic forcing at far-off-resonance
frequencies, confirming the results of Bellows et al. (2008).

Figure 5 shows the phase difference φ1,2 (normalized by 2π) at the conditions of figure 4.
For weak forcing (0 < ε 6 0.14), φ1,2 decreases linearly with an average slope equal to
the beating frequency, ∆f = ff − f ′n. For moderate forcing (0.14 < ε 6 0.18), the
magnitude of the average slope increases via large phase slips (many of them > 2π),
indicating frequency pushing: f ′n shifts away from ff as ε increases, which will be
discussed below. For stronger forcing, the magnitude of the average slope decreases
slightly (0.18 < ε 6 0.218), indicating frequency pulling, before abruptly snapping to
zero at ε = 0.218 → 0.22. After this, the phase slips continue to occur, keeping φ1,2
bounded within a ±π band around φ1,2 = 0. The result is a partially synchronous state
known as phase trapping (Aronson et al. 1990), which was only recently discovered in
hydrodynamics (Li & Juniper 2013c) and thermoacoustics (Balusamy et al. 2015). During
phase trapping, the oscillations are still quasiperiodic and frequency-locked but are not
phase-locked. They become phase-locked only at lock-in, when the amplitude at f ′n is
completely quenched (ε = 0.23). In figure 4, this last sequence of events (frequency pulling
→ phase trapping→ lock-in) coincides with the forced mode overtaking the natural mode
in amplitude (figure 4e→h) and was recently reported for a forced hydrodynamically self-
excited low-density jet (Li & Juniper 2013c). It is worth mentioning that, although the
results shown in figures 4 and 5 are for ff < fn, the same qualitative behaviour is seen
for ff > fn as long as ff is far from fn.

The phenomenon of frequency pushing has been observed by Bellows et al. (2008)
and Balusamy et al. (2015) in experiments on lean-premixed turbulent combustors at
similar forcing conditions, i.e. for ff far from fn. Those researchers mentioned that
this shift in the natural frequency could not be explained simply. Frequency pushing is
well known, however, in magnetrons (Chen 1990) and has been modelled successfully
by adding a Duffing (cubic restoring force) term to the van der Pol equation (Walsh
et al. 1989). In magnetrons, frequency pushing arises from highly nonlinear electron-
wave interactions that change the mean field (Chen 1990). Given the similarities between
this thermoacoustic system and universal model oscillators, we speculate that frequency
pushing in thermoacoustics could also be modelled by adding a Duffing term.
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Figure 6. Dependence of the beating frequency, ∆f = ff − f ′
n, on the forcing frequency, ff ,

both normalized by the unforced natural frequency, fn, at two forcing amplitudes: (a) ε = 0.04,
where lock-in occurs via a saddle-node bifurcation for both ff < fn and ff > fn, and (b)
ε = 0.06, where lock-in occurs via a saddle-node bifurcation for ff < fn but via a torus-death
bifurcation for ff > fn.

4.3. Before lock-in: beating frequency and summary

For a closer examination of the beating frequency, figure 6 shows the dependence of
∆f = ff − f ′n on ff , both normalized by fn at two different values of ε. The data
shown are for state B but are also representative of state A. In figure 6(a), where the
forcing is weak (ε = 0.04), ∆f/fn around ff/fn = 1 is zero, indicating lock-in. For
higher or lower values of ff/fn, the magnitude of ∆f/fn increases (i) nonlinearly close
to the lock-in boundary, indicating frequency pulling, but (ii) linearly away from it,
indicating no frequency pulling. This behaviour of ∆f/fn has been derived analytically
for low-order model oscillators and is well known in the literature of nonlinear dynamics
and synchronization (Pikovsky et al. 2003): ∆f/fn has a square-root dependence on
frequency detuning (ff − fn) close to the saddle-node bifurcation, where ff is relatively
close to fn. In figure 6(a), an approximately square-root dependence is seen on both sides
of ff/fn = 1.

Figure 6(b) is with stronger forcing (ε = 0.06). As in figure 6(a), ∆f/fn is zero
near ff/fn = 1 (indicating lock-in) and has a similar square-root-like dependence when
ff/fn < 1 (indicating frequency pulling). However, when ff/fn > 1, ∆f/fn increases (i)
abruptly at the lock-in boundary and (ii) linearly away from it, indicating an absence
of frequency pulling. This suggests that, at this particular forcing amplitude (ε = 0.06),
lock-in occurs via a torus-death bifurcation when ff/fn > 1 but via a saddle-node
bifurcation when ff/fn < 1. This will be confirmed in §4.4.

In summary, we have shown that, even when oscillating periodically, this self-excited
thermoacoustic system responds to harmonic forcing in many different ways, depending
on the proximity of the forcing frequency (ff ) to the natural frequency (fn) and whether
ff is above or below fn. When the forcing amplitude (ε) increases from zero, the system
first undergoes a torus-birth bifurcation to quasiperiodicity from a period-1 oscillation.
When ε exceeds a critical value, the system locks into the forcing. If ff is close to fn,
lock-in occurs via a saddle-node bifurcation with frequency pulling. If ff is far from fn,
lock-in occurs via a torus-death bifurcation, with frequency pushing if ff and fn are
sufficiently far apart. The lock-in process has two subtle features: (i) it is asymmetric
about ff/fn = 1 and (ii) the response amplitude at lock-in may be larger or smaller than
that of the unforced system. These and other lock-in features will be discussed next.
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Figure 7. The 1:1 Arnold tongue for period-1 oscillations (state B) when forced across (a) a
small range of frequency detuning (0.98 < ff/fn < 1.02) and (b) a large range of frequency
detuning (0.85 < ff/fn < 1.15). The diamond markers denote saddle-node bifurcations, and
the circular markers denote torus-death bifurcations. The dashed lines are linear fits to the
saddle-node data on either side of ff/fn = 1.

4.4. At lock-in: the 1:1 Arnold tongue, response amplitudes, and jump phenomena

In this section, we continue to examine the system during period-1 oscillations (state
B), but we focus on the forced response at lock-in. Figure 7 shows the 1:1 Arnold tongue:
the minimum forcing amplitude required for lock-in, εlock, as a function of the frequency
detuning around ff/fn = 1. The diamond markers denote saddle-node bifurcations, and
the circular markers denote torus-death bifurcations. The dashed lines are linear fits to
the saddle-node data on either side of ff/fn = 1.

In figure 7(a), εlock increases linearly with |ff − fn| when ff is close to fn, producing
a characteristic ∨-shaped lock-in curve for saddle-node bifurcations. Similar ∨-shaped
curves have been reported for other self-excited, but physically disparate, systems such
as turbulent lean-premixed combustors (Bellows et al. 2008), momentum-dominated low-
density jets (Li & Juniper 2013a), laminar jet diffusion flames (Li & Juniper 2013b), low-
density and equidensity crossflowing jets (Davitian et al. 2010; Getsinger et al. 2012),
capillary jets (Olinger 1992), and cylinder wakes (Provansal et al. 1987). The slope of
the ∨ is asymmetric about ff/fn = 1: lock-in occurs more readily for ff/fn > 1 than for
ff/fn < 1. A similar asymmetry has been observed in laminar jet diffusion flames (Li &
Juniper 2013b) and equidensity crossflowing jets (Davitian et al. 2010), but an opposite
asymmetry has been observed in cylinder wakes (Blevins 1985), low-density crossflowing
jets (Getsinger et al. 2012), and momentum-dominated low-density jets (Li & Juniper
2013a). The exact cause of the asymmetry is unknown.

The boundary between saddle-node and torus-death bifurcations lies closer to ff/fn =
1 when ff/fn > 1. Beyond this boundary, the loci of the torus-death bifurcations deviate
from the linear fits to the saddle-node data, which is a trend that has been proved
analytically for the forced van der Pol oscillator (Holmes & Rand 1978). Furthermore, the
loci of the torus-death bifurcations are different on either side of ff/fn = 1 (i.e. the left
and right branches of the 1:1 Arnold tongue). Figure 7(b) shows the same Arnold tongue
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Figure 8. (a) The system response at lock-in, i.e. at the critical forcing amplitude, εlock.
The response is defined as the non-dimensional amplitude of the pressure oscillations,
Alock = p′/γMp0. As in figure 7(b), the diamond markers denote saddle-node bifurcations,
and the circular markers denote torus-death bifurcations, with the different colours indicating
different regimes. (b) The frequency-response curve for a forced Duffing oscillator with a soft
cubic spring. The dashed branch (between points 3 and 6) is unstable and cannot be reached in
experiments or simulations, leaving a discontinuous jump that resembles that seen in (a).

as figure 7(a) but over a larger range of ff/fn. The data for ff/fn > 1 (right branch)
saturate at εlock ≈ 0.12, but the data for ff/fn < 1 (left branch) peak at εlock ≈ 0.32
(where ff/fn ≈ 0.97) before decreasing with decreasing ff/fn. This behaviour of the
left branch is identical to that seen in experiments on hydrodynamically self-excited jet
diffusion flames (Li & Juniper 2013b). It is attributed to subharmonic lock-in arising
from the overlap of the adjacent 3:4 Arnold tongue.

Figure 8(a) shows the response amplitude of the system at lock-in (i.e. at εlock) as a
function of ff/fn. Here the response amplitude is defined as the non-dimensional ampli-
tude of the pressure oscillations,Alock = p′/γMp0. The peak inAlock at a frequency below
ff/fn = 1 and the sharp decrease on either side of it give rise to a characteristic ‘shark-
fin’ curve that has been observed in other nonlinear systems, such as hydrodynamically
self-excited jet diffusion flames (Li 2012) and thermoacoustically self-excited turbulent
premixed flames (Bellows et al. 2008). Crucially, this behaviour is also observed in the
forced response of low-dimensional model oscillators, such as the Duffing oscillator with
a soft cubic spring (Thompson & Stewart 2002). This similarity in the forced response of
physically disparate systems is further evidence that, with more analysis, some aspects of
thermoacoustically self-excited systems can be represented by simple model oscillators.

A discontinuous jump in Alock occurs at a critical value of ff/fn (0.97), suggesting a
region of bi-stability and the possibility of hysteresis. This jump phenomenon is a classical
feature of a cusp catastrophe (Thompson & Stewart 2002). It arises when variations in one
or two of the control parameters (here ff and ε) cause the system to cross the fold curve on
the catastrophe surface, jumping from a point on the upper (lower) stable manifold to a
point on the lower (upper) stable manifold (Nayfeh & Mook 1995). To produce figure 8(a),
we started the simulations at ff/fn = 1 and worked outwards, increasing ff to get to
ff/fn > 1 and decreasing ff to get to ff/fn < 1. Hence, the bifurcation at ff/fn = 0.97
is reached by decreasing ff . This corresponds to path 1→ 2→ 3→ 4→ 5 in figure 8(b),
which is a sketch of the frequency-response curve for a forced Duffing oscillator with a
soft cubic spring (Nayfeh & Mook 1995). The reverse path 5 → 4 → 6 → 2 → 1 is not
explored in this study, but is expected to extend the lower branch of figure 8(a) (green
circles) further to the right.
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Like the ∨-shaped lock-in curve and the ‘shark-fin’ frequency-response curve, the jump
phenomenon has been observed in various nonlinear systems, such as electronic circuits
(Giannakopoulos & Deliyannis 2001), hypoid gears (Wang & Lim 2011), ecosystems
(Scheffer et al. 2001), shape memory alloys (Xia & Sun 2015), and turbulent premixed
combustors (Bellows et al. 2008). Crucially, it can be modelled accurately with a forced
Duffing oscillator, a second-order nonlinear damped oscillator with cubic elasticity sub-
jected to periodic forcing (Nayfeh & Balachandran 2004):

ẍ+ 2ζω0ẋ+ ω2
0x+ βx3 = ε cos(ωf t), (4.1)

where x is the position at time t, ζ is the damping constant, ω0 is the undamped natural
frequency, and β controls the degree of nonlinearity in the restoring force. On the RHS,
ε is the forcing amplitude and ωf is the angular frequency of the forcing. Figure 8(b)
shows the typical frequency-response curve for a forced Duffing oscillator with a soft cubic
spring (β < 0). The dashed branch (between points 3 and 6) is unstable and cannot be
reached in experiments or simulations, leaving a discontinuous jump that resembles that
seen in figure 8(a). The forced Duffing oscillator is also able to reproduce the peak in
the response amplitude at ff/fn < 1, as well as predicting hysteresis. Moreover, when
ff is far from fn, both the Duffing oscillator and the thermoacoustic system oscillate at
amplitudes that are far below those of their unforced states. This implies that it may
be possible (i) to use open-loop harmonic forcing to weaken self-excited thermoacoustic
oscillations and (ii) to understand and predict how this occurs through analysis of low-
order model oscillators. Quantitatively relating the coefficients of such model oscillators
to the system characteristics is possible but beyond the scope of this study.

In summary, lock-in occurs most readily when ff is close to fn, but the details depend
on whether ff > fn or ff < fn. When ff < fn, stronger forcing is required for lock-in
than when ff > fn. However, when ff is gradually decreased from fn, the response
amplitude at lock-in first increases, reaches a maximum, and then drops abruptly in
turn. This jump phenomenon is a well-known hysteretic feature of nonlinear oscillators
undergoing a cusp catastrophe. When ff is far from fn, the response amplitude at lock-in
drops to as low as 10% of that of the unforced system. This shows that lock-in can be
an effective means of weakening self-excited thermoacoustic oscillations, provided that
ff is chosen carefully with respect to fn. Finally, the similarities in the forced response
of this thermoacoustic system and that of universal model oscillators suggest that the
behaviour seen here is not limited to this particular system, but is representative of an
entire class of self-excited oscillators with a single dominant oscillatory mode.

4.5. An alternative route to lock-in: intermittency

In §4.1 and §4.2, we showed that lock-in can occur via a torus-birth bifurcation
followed by either (i) a saddle-node bifurcation with frequency pulling or (ii) a torus-death
bifurcation without frequency pulling. Although this is true for many types of periodic
oscillations, the transition to lock-in may sometimes involve other bifurcations, including
transition to chaos. This may arise from large forcing amplitudes, forcing frequencies far
away from the natural frequency, or self-excited oscillations that are extremely resistant
to external forcing (Pikovsky et al. 2003).

Figure 9 shows the transition to lock-in when the system, undergoing period-1 oscilla-
tions (state A), is forced at ff/fn = 0.97. As ε increases from zero, the first transition is a
torus-birth bifurcation to quasiperiodicity, as seen previously in §4.1 and §4.2. However,
this is followed by intermittent instability in the torus attractor: the phase trajectories
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Figure 9. Intermittency route to lock-in: the forced response of the system during period-1
oscillations (state A) when ff/fn = 0.97, where fn = 2.304. Time series and Poincaré maps are
shown for increasing forcing amplitudes: (a) ε ≡ u′

f/U0 = 0.06, (b) 0.12, (c) 0.16, (d) 0.18, (e)
0.20, (f) 0.21, (g) 0.22, (h) 0.23, and (i) 0.24.

in a neighbourhood around the surface of the 2-torus start to diverge. In the time series,
this appears as mildly chaotic oscillations separated by ‘quiet’ quasiperiodic intervals,
but complete breakdown of the 2-torus to fully chaotic oscillations does not occur. (It
is worth noting that, at a different operating point, complete breakdown to chaos does
occur, resembling the Ruelle–Takens–Newhouse route to chaos presented by Kashinath
et al. (2014).) When ε increases further, the mildly chaotic oscillations eventually lock
into the forcing, resulting in period-1 oscillations again but this time at ff (figure 9i).

Figure 10 shows φ1,2 at the conditions of figure 9. As ε increases from zero, the
magnitude of the slope of φ1,2 decreases, indicating frequency pulling, similar to that seen
in figure 3. For ε > 0.15 (solid lines), phase slips occur between periods of quasiperiodicity.
The arrows show that the phase slips can be greater than 2π and cause the slope of φ1,2
to become positive, producing an overshoot in the frequency pulling that causes the
system to oscillate at a frequency slightly higher than that of the forcing, even though
ff/fn = 0.97. Inspection of figures 9 and 10 shows that the phase slips coincide with
(i) intervals of intermittent ‘spikes’ in the time series and (ii) intermittent instability of
the phase trajectories around the 2-torus. With stronger forcing (0.21 6 ε 6 0.23), the
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Figure 10. Intermittency route to lock-in: the phase difference (normalized by 2π) between the
system and the forcing at the conditions of figure 9. The arrows show that phase slips can be
greater than 2π.

phase slips become more infrequent and, at ε = 0.24, the slope of φ1,2 is zero, indicating
lock-in.

Intermittency is well-known in synchronization and has been studied extensively in
many systems, from simple one-dimensional maps, such as the circle map, to more com-
plex systems of coupled chaotic oscillators (Belair & Glass 1983; Glass et al. 1984). The
reasons behind the various transitions and their bifurcations have been studied for low-
dimensional dynamical systems using periodic orbit theory (Venkatesan & Lakshmanan
1997). A detailed investigation of these transitions and bifurcations in our thermoacoustic
system is beyond the scope of this study.

4.6. Beyond lock-in: the stability of synchronized oscillations

As ε increases above εlock, the amplitude of the phase-locked oscillations at ff also
increases. However, for large values of ε, the periodic orbit at ff can become unstable
and transition to chaos. Pikovsky et al. (2003) explain that there are three main routes to
chaos when ε increases within an Arnold tongue: route I, which is typically found near the
centre of the Arnold tongue where the stable and unstable periodic orbits are far apart,
involves a series of period-doubling bifurcations of the stable periodic orbit; and routes
II and III, which are typically found near the outer edges of the Arnold tongue where
the frequency detuning is large, involve intermittency, which manifests as long ‘laminar’
synchronized periods separated by phase slips at chaotic intervals (route II usually occurs
at smaller values of ε, Pikovsky et al. 2003). All three routes to chaos have been analysed
by Aronson et al. (1990) and Afraimovich & Shilnikov (1983).

Figure 11 shows an example of route I: transition to chaos via period-doubling bifurca-
tions of the locked-in periodic orbit at ff . In our previous study, we observed this route to
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Figure 11. Transition to chaos from lock-in via period-doubling bifurcations (route I): the forced
response of the system during period-1 oscillations (state B) when ff/fn = 1, where fn = 1.125.
Time series, power spectra, phase portraits, and Poincaré maps are shown for increasing forcing
amplitudes: (a) ε ≡ u′

f/U0 = 0.16, (b) 0.24, (c) 0.30, (d) 0.34, and (e) 0.36.

chaos when the flame position was varied (Kashinath et al. 2014, figure 14). In figure 11,
the same route to chaos is observed when ε is increased. The period-1 oscillations (arising
from lock-in) undergo a period-doubling bifurcation to period-2 oscillations, followed by
another period-doubling bifurcation to period–4 oscillations and so on. The power spectra
show the emergence of a new subharmonic at each period-doubling bifurcation: ff/2 in
figure 11(b), ff/4 in (c), ff/8 in (d), ultimately leading to chaos in (e).

Apart from chaos, there are other features of synchronization at large ε that are not
observed at small ε. For example, different synchronization regions (Arnold tongues) can
overlap, leading to multi-stability. This means that, for certain combinations of ff and
ε, periodic oscillations with different rational ratios between the observed and forcing
frequencies can coexist. This phenomenon has been experimentally observed by van der
Pol & van der Mark (1927) in a low-dimensional oscillator circuit and, as figure 12 shows,
is also present in our thermoacoustic system when ff/fn = 1.06. Figure 12(a) shows the
familiar quasiperiodic oscillation that arises from a torus-birth bifurcation, followed by
lock-in at ε = 0.12 via a torus-death bifurcation (not shown). At larger ε, the system
switches to a periodic oscillation at ff/2 (figure 12b). At still larger ε, it switches back
to the primary synchronization orbit at ff (figure 12e). This occurs because the external
forcing modifies the stability of the different attractors, altering their basins of attraction,
thus making one state more stable than another depending on ε (Pikovsky et al. 2003).
These results show that besides choosing ff carefully, in order to maximize the weakening
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Figure 12. Switching between different stable attractors after lock-in: the forced response of the
system during period-1 oscillations (state A) when ff/fn = 1.06, where fn = 2.304. Time series,
power spectra, phase portraits, and Poincaré maps are shown for increasing forcing amplitudes:
(a) ε ≡ u′

f/U0 = 0.03, (b) 0.16, (c) 0.18, (d) 0.21, and (e) 0.24.

of the self-excited mode, it is also important to examine the stability of the system at
lock-in.

5. Forcing of aperiodic oscillations: states C and D

Kashinath et al. (2014) showed that this thermoacoustic system can oscillate not just
periodically but also aperiodically. In this section, we examine the forced response of this
system when its natural (unforced) self-excited state is quasiperiodic and chaotic.

First we consider the system when it is oscillating quasiperiodically at characteristic
frequencies of f1 = 2.22 and f2 = 0.17 (state C in table 1), with the amplitude at f1
being higher than that at f2. Figure 13 shows the response of this system when forced
at ff = f1. The time series shows that the beating frequency decreases as ε increases.
This can be seen in the power spectra as a steady decrease in the bandwidth of the
side bands, indicating frequency pulling. The shape of the 2-torus changes as ε increases,
until the system undergoes a saddle-node bifurcation to a stable periodic orbit at lock-in
(figure 13f). This is the same type of transition and bifurcation described in §4.1.

Synchronization and control of driven and autonomous chaotic oscillators have been
attracting growing interest in the last two decades (Miranda 2004). In particular, the
destruction of chaos via lock-in to a stable periodic orbit presents an appealing strategy
for open-loop control of chaotic oscillations. The strength of chaos is indicated by the
maximal Lyapunov exponent, with stronger chaos requiring stronger forcing to cause
chaos-destruction. In our previous study (Kashinath et al. 2014), we characterised some of
the strange attractors associated with chaotic oscillations in this thermoacoustic system
by calculating the Lyapunov exponent and the correlation dimension.

Figure 14 shows the response of the system when forced at the dominant frequency of
its strange attractor, fn = 1.16 (state D in table 1). As ε increases, the time series show
the emergence of order, the power spectra show sharper peaks at discrete frequencies, and
the phase portraits and Poincaré maps show a change in the topology of the attractor.
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Figure 13. Synchronization of a T2 attractor: the forced response of the system during
quasiperiodic oscillations (state C) when forced at the dominant characteristic frequency of
its 2-torus, ff/f1 = 1, where f1 = 2.22. Time series, power spectra, and Poincaré maps are
shown for increasing forcing amplitudes: (a) ε ≡ u′

f/U0 = 0.00 or unforced, (b) 0.09, (c) 0.18,
(d) 0.24, (e) 0.30, and (f) 0.31.

With stronger forcing (ε ∼ 0.30), the system is stabilized to a period-3 orbit (figure 14e).
Destruction of chaos may be viewed as the stabilization of one of the infinitely many
unstable periodic orbits that comprise the strange attractor. When ε increases, one
(or more) of these unstable periodic orbits is stabilized, resulting in lock-in. One may
therefore speculate that the control of chaos could be achieved via a two-step process:
(i) stabilize one of the unstable periodic orbits, and then (ii) apply techniques from §4
to weaken this periodic orbit.

6. Conclusions

We have examined the forced response of a low-order numerical model of a ther-
moacoustic system consisting of a realistic flame, several acoustic modes, and negligible
numerical noise. Our aims are (i) to understand and predict the synchronization be-
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Figure 14. Synchronization of a strange attractor: the forced response of the system during
chaotic oscillations (state D) when forced at the dominant frequency of its unforced spectrum,
ff/fn = 1, where fn = 1.16. Time series, power spectra, phase portraits, and Poincaré maps are
shown for increasing forcing amplitudes: (a) ε ≡ u′

f/U0 = 0.00 or unforced, (b) 0.09, (c) 0.18,
(d) 0.27, (e) 0.30, and (f) 0.31.

haviour by relating it to that of simple forced nonlinear dynamical systems; (ii) to provide
‘clean’ test cases against which other numerical or experimental results can be compared;
and (iii) to investigate the potential of using open-loop harmonic forcing as a means of
weakening self-excited thermoacoustic oscillations that are periodic, quasiperiodic and
chaotic.

We find that the forced response of this system is quite elaborate, with the following
features: (i) forced period-1 oscillations have different bifurcations leading up to lock-in,
some of which involve transitions to intermittency and chaos; (ii) the critical forcing
amplitude required for lock-in depends on two factors: (a) whether the forcing frequency
is above or below the natural (self-excited) frequency, and (b) the proximity of the
forcing frequency to the natural frequency; (iii) the response amplitude at lock-in may be
larger or smaller than that of the unforced system and can exhibit hysteresis (the jump
phenomenon) owing to a cusp catastrophe; at certain forcing frequencies, even weak
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forcing is sufficient to weaken the self-excited oscillations to amplitudes nearly 90% lower
than that of the unforced system; (iv) when the locked-in state is forced at increasing
amplitudes, two types of behaviour are observed: (a) the locked-in state loses stability
and transitions to chaos via period-doubling bifurcations, or (b) it repeatedly switches
between different stable attractors, indicating multi-stability; and (v) quasiperiodic and
chaotic oscillations can be synchronized to periodic forcing via different bifurcations,
which suggests that weakening an aperiodic oscillation may be possible via a two-step
strategy: (a) the aperiodic oscillation is first stabilized to a periodic oscillation by periodic
forcing, and then (b) that periodic oscillation is suppressed by additional periodic forcing
applied at a frequency far from the frequency of the original forcing. In other words, it
may be possible to weaken aperiodic thermoacoustic oscillations via a careful choice of
two forcing frequencies and amplitudes, applied sequentially.

In summary, we find that this thermoacoustic system exhibits rich synchronization
behaviour, similar to that seen in recent experiments on forced hydrodynamically self-
excited jet diffusion flames and low-density jets (Li & Juniper 2013a,b,c) but previously
unreported in the literature on thermoacoustics. The numerical model used in this study
has around 5000 degrees of freedom and consists of 20 coupled oscillators interacting
with each other via a nonlinear heat release rate and perturbed by open-loop harmonic
forcing. The behaviour observed in this study, however, suggests that this system behaves
similarly to low-dimensional model oscillators. This implies that a low-order dynamical
model may exist that is capable of reproducing the dynamics of the larger system.
The pursuit of such a model is attractive because it could provide opportunities to
identify the causes of the rich synchronization behaviour, to improve our interpretation
of the underlying nonlinear dynamics, and to develop and test new control strategies for
weakening self-excited oscillations, as well as making the direct application of well-known
results from dynamical systems theory in thermoacoustics possible.
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