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A 3D gene expression atlas of the floral meristem
based on spatial reconstruction of single nucleus
RNA sequencing data
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Cellular heterogeneity in growth and differentiation results in organ patterning. Single-cell
transcriptomics allows characterization of gene expression heterogeneity in developing
organs at unprecedented resolution. However, the original physical location of the cell is lost
during this methodology. To recover the original location of cells in the developing organ is
essential to link gene activity with cellular identity and function in plants. Here, we propose a
method to reconstruct genome-wide gene expression patterns of individual cells in a 3D
flower meristem by combining single-nuclei RNA-seq with microcopy-based 3D spatial
reconstruction. By this, gene expression differences among meristematic domains giving rise
to different tissue and organ types can be determined. As a proof of principle, the method is
used to trace the initiation of vascular identity within the floral meristem. Our work
demonstrates the power of spatially reconstructed single cell transcriptome atlases to
understand plant morphogenesis. The floral meristem 3D gene expression atlas can be
accessed at http://threed-flower-meristem.herokuapp.com.
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haracterizing gene expression dynamics and heterogeneity

at single-cell resolution is essential to understanding

the molecular mechanisms underlying cellular differ-
entiation in multicellular organisms. Technologies based on cell
dissociation!=3 or nuclei isolation*7 combined with high-
throughput transcriptome sequencing (scRNA-seq/snRNA-seq)
allow for the characterization of the transcriptomes of hundreds
of thousands cells at single-cell resolution. However, the physical
location of these cells is lost during the experimental process. In
plants and other multicellular organisms, cell fate strongly
depends on its precise position within the developing organism®.
Therefore, it is essential to characterize gene expression patterns
of each cell in their native physical context to fully understand the
link between gene activity and organ development.

In recent years, there has been a strong development in the
field of spatial transcriptomics®~11. However, to date, only one
study in plants has been published using an early version of the
10x Visium technology with limited cellular resolution!2. This
lack of technological adaptation of spatial transcriptomics to
plants maybe because of the difficulties with the enzymatic per-
meabilization of the cell wall. Single-molecule FISH (smFISH)
and other high-resolution FISH experiments are also rarely used
in plant studies!>!4 due to the endogenous autofluorescence of
many plant cells!3.

Mapping of scRNA-seq transcriptomes into a computational
representation of the studied organ/structure provides an alter-
native method for spatial reconstruction of omics data. Two
seminal papers implemented this idea by mapping scRNA-seq
data to a computationally binned spatial map consisting of the
expression of ~100 reference genes!>1. This idea, with different
implementations, was successfully followed by others in diverse
tissues and organisms!7-22, New methods aim to combine
scRNA-seq with high-throughput spatial transcriptome data (e.g.,
MERFISH, Slide-seq) that collect the expression of thousands of
reference genes. They are based on the projection of the scRNA-
seq and the spatial transcriptomes into a common latent space
e.g., SEURAT?3, Liger?4, Harmony?°, gimVI?, SpaGe?’. In gen-
eral, there is a tendency to develop computational methods that
require a large number of reference genes, which limits these tools
to organisms with extensive spatial transcriptomics resources.

In plants, spatiotemporal gene expression patterns are usually
established using traditional in situ hybridization or by confocal
microscopy of promoter fusions to fluorescent reporters. Con-
focal microscopy has the advantage that it can be used to
reconstruct 3D  structures by combining several z-stack
images?8-32, In addition, combined with live image microscopy,
the temporal dynamics of gene expression and morphology
development can be reconstructed3233, In this way, Refahi et al.>?
combined the information on spatiotemporal expression patterns
of 28 regulatory genes into 3D reconstructed Arabidopsis flower
meristems, ranging from initiation to stages 4, 5 of flower
development. These methods are limited by the low number of
genes profiled per experiment. Therefore, tools to integrate
scRNA-seq with expression data of defined, limited sets of 3D
reference gene expression patterns need to be developed for
spatial reconstruction of single-cell transcriptomes in plants.

Here, we adapted novoSpaRc?4, a methodology for spatial
reconstruction of single-cell RNA-seq data, to generate a 3D
single-cell transcriptome atlas of a floral meristem by integrating
single-nuclei RNA-seq and a 3D reconstructed flower meristem?32.
NovoSpaRc reconstruction aims to explicitly preserve the tran-
scriptome similarity among closely located scRNA-seq cells in the
spatial map, while maximizing the transcriptome similarity
between the scRNA-seq cells and the cells of the spatial map to
which they are assigned. In such a way, novoSpaRc performance
is less affected by the number of reference genes than other

methods, and, in theory, it can also be used without any reference
genes’%. Such property makes novoSpaRc an ideal method for
plant single-cell data considering the low number of available
reference genes in plant tissues. However, novoSpaRc was
developed to make use of spatial 2D continuous reference gene
expression maps, while the 3D expression spatial map of floral
meristem generated by Refahi et al.32 is binary. We adapted the
methodology for reconstructing single-cell transcriptomes in 3D
making use of binary reference gene expression data. By this, we
were able to generate an atlas of gene expression in different
meristematic domains and spatially trace the earliest stages of
tissue differentiation within the Arabidopsis flower. In summary,
these results provide a primer for future initiatives to generate
plant organ 3D atlases of gene expression.

Results

snRNA-seq of Arabidopsis floral meristems. In order to obtain
genome-wide gene expression profiles in the floral meristem at
the single-cell level, we use a system for synchronized floral
induction®® (pAPI:AP1-GR apl-1 cal-13°) to maximize the
collection of plant material from the desired developmental
stage (stage 5, 4 days after DEX-induction). We chose to study
stage 5 of flower development because of the availability of
several —omics datasets from this stage3>~37, which are needed
to validate the performance of the method. At stage 4, 538, the
flower whorls get established by homeotic gene activity, there-
fore being an excellent stage to study the initial steps of floral
organ specification.

We performed single-nuclei RNA-seq (snRNA-seq)*7, where
nuclei were collected by fluorescence-activated DAPI-stained
nuclei sorting (FANS) after 4 days (stage 5) of DEX-induction.
We isolate nuclei instead of protoplasts to avoid the transcrip-
tome changes that protoplast may create®3%40, After, snRNA-seq
datasets were produced using the 10x Chromium system. In this
way, Cell Ranger v3.1.0 identified 7716 single-nuclei transcrip-
tomes with a median of 1110 genes expressed per nucleus. The
low number of reads mapping to mitochondria genes (<5%)
indicates low organelle contamination (Supplementary Fig. 1).
Figure 1a shows that snRNA-seq is able to recapitulate (R = 0.88)
the expression profile of bulk RNA-seq data obtained from the
same stage and tissue type. Analysis of the data using Seurat
v3.2.3 identified 12 main clusters and the marker genes defining
these clusters (Supplementary Data 1). To annotate the clusters,
we identified the top 20 marker genes specific for each cluster and
plotted the expression of these marker genes in publicly available
bulk RNA-seq datasets of different tissues and floral stages
(Fig. 1d and Supplementary Fig. 2). In addition, we calculated the
average expression of known floral meristem marker genes in the
12 snRNA-seq clusters (Fig. 1c).

We were able to recover the main tissue types present in
the meristem, including different epidermal as well as vascular tissue
types. The clusters appear to be dominantly grouped by the tissue
where they are located (epidermis versus vasculature, and
parenchyma), and their cell cycle status. The four epidermis clusters
(0,9, 10, and 11) show specific expression of MERISTEM LAYER 1
(ATML1#! and PROTODERMAL FACTOR 1/2 (PDF1/2)* (Sup-
plementary Data 1 and Supplementary Fig. 3). Clusters 0 and 9 are
distinguished by the expression of individual marker genes such as
TRIPTYCHON (TRY)®, TRICHOMELESSI (TCL1)**, and genes
involved in wax composition which indicates epidermal cells that
will develop trichomes (cluster 0) or not (cluster 9). Clusters 10 and
11 represent dividing epidermal cells, marked by the expression of
genes coding for histones which is characteristic of the S-phase
and genes involved in cell division (Supplementary Data 1 and
Supplementary Fig. 3).

2 | (2022)13:2838 | https://doi.org/10.1038/s41467-022-30177-y | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30177-y

ARTICLE

density

e

4000

|
2000 0+

read counts per gene (bulk RNA-seq)
UMAP 2

10°< © cccommmmmenne wme © . -5

@ 0 - epidermis
@ 1 - (pro-)cambium
@ 2 - cortex
@ 3 - dividing cells
@ 4 - floral meristem
@ 5-S-phase cells
6 - dividing cells
7 - mesophyll
@ 8- xylem parenchyma
© 9 - epidermis
@ 10 - epidermis/dividing
@ 11 - epidermis/dividing
@ 12 - phloem

T T T
10 10? 10° 10* 10°
read counts per gene (snRNA-seq)

=
s

L& (VO o P O MV 024 R sk
ou¥ :&e [S¥QA Y V%‘N%‘*Qv‘v » PP

N AR D™ DN D VoD Y N > VR QPO D DD
FNFE RS @V&ioo(‘?o‘b@?o%&&@%\é ST

Known marker genes

RNA-seq samples

Fig. 1 Single-nucleus RNA-sequencing of Arabidopsis floral meristems. a Reproducibility (R =0.88) of the gene expression estimated from
computationally pooling all nuclei from our snRNA-seq compared to bulk RNA-seq of stage 5 flower meristem (average of three biological replicates).
b UMAP plot and clustering snRNA-seq analysis of Arabidopsis floral meristems obtained by Seurat analysis. ¢ Average relative expression of known floral
markers on the identified snRNA-seq clusters. d Relationship between domain-specific shoot apical meristem bulk RNA-seq datasets profiled by (Tian
et al.7) and the snRNA-seq clusters. The heatmap shows the relative average expression of the top 20 marker genes for each snRNA-seq cluster (y-axis)
on domain-specific shoot apical meristem bulk RNA-seq datasets. For example, the top 20 marker genes of cluster 1 have a high specific expression on the
ATHB8-domain, meaning that they are specific to this domain. See Supplementary Fig. 2 for expression profiles in other plant domains/stages.

Clusters 1, 8, and 12 can be classified as vasculature (Fig. 1d).
More specifically, cluster 1 corresponds to vascular stem cells, as
marked by cambium (Supplementary Fig. 2c) expressing markers
genes such as PHLOEM INTERCALATED WITH XYLEM (PXY)
and SMAXI-LIKE 5 (SMXL5)*> (Supplementary Fig. 3). Cluster
12 contains cells that are associated with phloem, containing the
marker genes ALTERED PHLOEM DEVELOPMENT (APL)*>46
(Supplementary Fig. 3). Cluster 8 is enriched for vascular xylem
parenchyma genes, for example, CYTOCHROME P450, FAMILY
708 (CYP708A3)*> (Supplementary Fig. 3), and shows signatures
of cell expansion and cellulose biosynthesis. It should be noted
that in this dataset, no mature xylem vessels or phloem sieve
elements can be expected because these structures lack a nucleus.

The analysis of marker genes of cluster 2 shows an enrichment
on genes involved in the starch catabolic process as well as genes
expressed in the cortex such as CHALLAH (CHAL)¥’; (Supple-
mentary Fig. 3) and JACKDAW (JKD)*3, which indicates that
cluster 2 represents cortex. Cluster 4 represents the floral
meristem, containing specific markers such as APETALA3
(AP3)%¥, REPRODUCTIVE MERISTEM 34 (REM34)>° (Supple-
mentary Fig. 3). Cluster 7 corresponds to cells that differentiate
into mesophyll, e.g., in sepals or pedicel, and it shows a specific
expression of marker genes such as LIPOXYGENASE 2 (LOX2)>!
(Supplementary Fig. 3) and REDUCED CHLOROPLAST COVER-
AGE (RECI)%2.

Clusters 3, 5, 6, 10, and 11 denote dividing cells (Supplemen-
tary Fig. 3). Cluster 3 is a cluster showing enriched expression of
several cell-cycle associated genes. Cluster 5 shows specific
activation of many histone genes whose activity is associated
with the S-phase of the cell cycle, as well as some genes involved
in cell proliferation and cell growth (e.g., AINTEGUMENTA?3).
Cluster 6 is enriched in cell cycle markers, in particular CELL
DIVISION CYCLE 20.2 (CDC20.2), which accumulates in the
nucleus from prophase until cytokinesis®*. Clusters 10 and 11 are
epidermal cells in different cell cycle phases as described before.

Unsupervised clustering has been successfully used for the
analysis of scRNA-seq data, however, one of the major drawbacks
of this approach is that it identifies groups of cells depending on
their transcriptome variance, and therefore it may miss cell types
of biological interest without sufficient biological variance in the
system. For example, we were not able to distinguish clusters
representing individual floral whorls, likely because the tran-
scriptome variance between tissue types such as epidermis and
vasculature is much greater than between different whorls, at least
at this stage of development. In addition, the correspondence of
each cell cluster to a particular homogeneous physiological cell
type is not guaranteed. For example, cluster 1 represents vascular
(pro)cambium, but close inspection of this cluster (Supplemen-
tary Fig. 3) reveals specific expression of PXY (a marker of
proximal cambium) and SMXL5 (a marker of distal cambium) in
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separate regions of the cluster. This provides additional justifica-
tion for the development of a method to map the snRNA-seq
transcriptomes to a physical representation of the plant tissue/
organ at study. In the next sections, we describe how we map
snRNA-seq data to a spatial expression map of the floral
meristem that will enable the selection of the group of cells of
interest (e.g., floral whorls).

Reconstructing gene expression by snRNA-seq and microscopy
image integration. We used novoSpaRc?* to integrate snRNA-
seq data and a published 3D reconstructed Arabidopsis stage 4, 5
floral meristem (“spatial map”) that has information on the
expression pattern of 28 genes (“reference genes”)32. To adapt
novoSpaRc to map single-nuclei transcriptomes to the 3D floral
meristem map with a binary expression of the reference genes, we
implemented three main modifications:

1. Filtering: snRNA-seq was performed on the “cauliflower-
like” meristem plant material, which may contain cells from
regions (e.g., short pedicels and stems) that were not
present in our spatial map. Therefore, we set up a filtering
procedure to eliminate snRNA-seq transcriptomes that
were too dissimilar to the transcriptomes of the spatial map
(see Material and Methods for details).

2. Genes used for calculating snRNA-seq transcriptome
distances: The original novoSpaRc pipeline calculates the
distance between snRNA-seq transcriptomes using a set of
genes selected depending on their variability across the
snRNA-seq transcriptome (highly variable genes). Because
in our dataset these highly variable genes were not enriched
among the known flower marker genes, we also used the
top 100 genes with the highest expression correlation with
the reference genes, which included very well-known floral
regulator genes, to calculate this distance.

3. The distance used to calculate dissimilarity between spatial
map and snRNA-seq transcriptomes: The original novoS-
paRc pipeline calculates distances between transcriptomes
from the spatial map and snRNA-seq data using the
Euclidean distance. Because our spatial map data is binary,
we also employed two other distances commonly used for
binary data: Hamming and Jaccard distances.

Subsequently, we studied the performance of these modifica-
tions by calculating the area under the receiver operating
characteristic (AUROC) for predicting the expression of each
reference gene when this gene was removed from the spatial map
during the data integration step. Supplementary Fig. 4 shows the
general good performance (AUROC) of our method for each gene
and parameter combination tested. Three genes, HISTIDINE
PHOSPHOTRANSFER PROTEIN 6 (AHP6), AUXIN RESPONSE
TRANSCRIPTION FACTOR 3 (ARF3, ETTIN), and CLAVATA3
(CLV3), had very low performance independently of the
parameters used (see next paragraph for an explanation).
Therefore, we calculated the overall performance of the method
as the average AUROC of all genes except AHP6, ETTIN, CLV3,
and WUSCHEL (WUS). WUS was excluded due to the low
number of cells (n = 8) where it was expressed in the spatial map.
In general, modifications improved the performance of the
original novoSpaRc pipeline (Supplementary Fig. 5). In particular,
using the Jaccard distance had a positive impact on the
performance of the method in this particular dataset (Supple-
mentary Fig. 5). In our hands, other datasets show different
optimal parameter settings, but filtering always improves the
performance. For visual comparison, Fig. 2 shows the recon-
structed expression of representative genes whether our mod-
ifications are applied or not. In particular, APETALA3 (AP3) and

SEPALATA3 (SEP3) are the genes showing the biggest differences
(see also Supplementary Fig. 4). For the final prediction,
modifications and the parameter values which maximized the
average AUROC were used to reconstruct gene expression using
the whole spatial map dataset (see Material and Methods).

As mentioned before, three genes (ETTIN, AHP6, and CLV3)
had low performance (AUROC close to 0.5) for any set of
parameter values used when these genes were removed from the
spatial map during the data integration step. We hypothesized
that this is because cells expressing these genes are not expressing
any of the other reference genes used, and therefore, these cells
cannot be correctly mapped. We measured this expression-
dependency as the maximum Spearman correlation value of a
particular gene against any other gene from the reference list in
the snRNA-seq data. We call this value the predicted estimation
performance (PEP) for a particular gene. Indeed, there is a strong
correlation between the performance of the method (AUROC)
and PEP for each gene (Supplementary Fig. 6a), which indicates
that we can use it as a predictor of the performance of the method
for each particular gene. As we sequentially eliminate genes from
the spatial map prior to gene expression reconstruction, starting
with the highest correlated reference gene, and therefore
decreasing the PEP value of that reconstructed gene, we see a
drop in the performance (AUROC) (Supplementary Fig. 6b).
However, when we sequentially eliminate reference genes starting
with the lowest correlated reference gene, there is no evident
decrease in performance (Supplementary Fig. 6¢).

Based on Supplementary Fig. 6a, we chose a PEP threshold of
0.13 to decide which genes (n=1306) we consider to have a
reliable expression prediction. We obtained this threshold as the
point in Supplementary Fig. 6a where the AUCROC starts to be
bigger than 0.5. As the PEP value is estimated without using the
spatial map, it can be used to select a set of reference genes for
future experiments in order to maximize the number of correctly
predicted genes. The number of genes with high PEP values
(n=1306 for PEP > 0.13) is mainly influenced by the number of
reference genes in the spatial map. Therefore, when using a
higher number of reference genes, higher PEP values are obtained
per gene (Supplementary Fig. 7).

To validate the predictions of spatial gene activity in the floral
meristem, we analyzed expression patterns of a set of genes by
reporter gene analysis in planta (Fig. 3). In brief, promoter-GFP
fusions were stably expressed in A. thaliana, and stage 4, 5 floral
meristems were analyzed using confocal laser scanning micro-
scopy. As expected, in vivo expression patterns highly correlated
with reconstructed expression patterns of genes used as reference
genes (ETTIN; SHOOT MERISTEMLESS, STM, and MERISTEM
LAYER 1, ATMLI) as well as genes with high PEP scores, e.g.,
AT1G62500 (CO2, PEP =0.17), while there was lower overlap
with reconstructed expression patterns of genes with low PEP
scores, such as SHORT ROOT (SHR, PEP =0.15), and PIN-
FORMED 1 (PIN1, PEP=0.14). In general, the prediction
broadly recovered the cells and tissues that show activities of
the genes, but some gene expression patterns were more restricted
in the reporter gene analyses (e.g., SHR, PINI). This could be
explained by the limited set of reference genes that was used for
the prediction, in particular in the periphery where few reference
genes were available, but also by the possibility that the reporter
gene constructs do not contain all regulatory elements needed for
correct spatial expression of the genes.

Identifying floral meristem expression domains and their
temporal dynamics. Another advantage of our method is that we
can identify expression domains in the flower meristem. For this,
we set our clustering method (see Methods) to identify 15
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Fig. 2 Examples of reconstructed expression patterns for representative genes in Arabidopsis floral meristem. The top row shows the reference
expression obtained from the spatial reference map. The second and third row is the reconstructed expression using the parameters that maximize
the average AUROC when the gene to be predicted is removed from the data integration step and the original novoSpaRc pipeline (second row)

or our modified pipeline (third row) is used. The bottom row is the final reconstructed expression using all the spatial map data. To facilitate visual
comparison, we standardized the expression of each gene to have a mean of O and a variance of 1. The expression of other genes can be visualized at

http://threed-flower-meristem.herokuapp.com.

expression domains in the whole flower meristem (Supplemen-
tary Fig. 8a, b). Recently, Refahi et al.3? have identified 11
expression domains in the L1 layer of the flower meristem using a
large set of RNA in situ hybridization or confocal microscopy
experiments, which we reproduce in Supplementary Fig. 8c. Our
method identified seven expression domains in the L1 layer
(Supplementary Fig. 8a) with an almost perfect correspondence
with Refahi et al.3% (Supplementary Fig. 8d), therefore validating
our methodology. We used this correspondence to transfer the
names of the expression domains of Refahi et al.32 to our iden-
tified domains in the L1 layer. In addition to the L1 layer’s
domains, our method is also able to identify different expression
domains deep in the flower meristem which mostly are associated
with the expression of vascular-specific marker genes (Supple-
mentary Fig. 8e). The experimental validation of these new
domains in the meristem is presented in further sections of this
manuscript. Refahi et al.32 may have missed these new domains
because their experiment started with a pre-selection of genes that
didn’t include any vascular marker gene; this drawback is not
present in our method since we don’t need to pre-select genes to
be studied. However, our method is not able to resolve the
AGAMOUS domain with the resolution of Refahi et al.32 showing
that selecting genes to be used in the clustering process also has
some advantages. When compared to the clusters identified in the
analysis of the snRNA-seq data (Fig. 1b), our method is able to
identify particular morphological domains, whereas the cluster
analysis of the snRNA-seq data is limited to groups of cells with
similar transcriptomes (e.g. similar cell cycle stage) that are not
necessarily linked to specific flower meristem domains.

Next, to also integrate temporal information, we exemplify our
methodology with a second time point. We collect plant material

from day 3 after DEX-induction using the same system for
synchronized floral induction (pAPI:AP1-GR apl-1 cal-1) as
before. We chose this time point because the flower morphology
is almost identical to day 4 after DEX-induction, which will allow
us to use the same reference spatial map as before and, therefore,
to allow us a straightforward comparison of the changes in gene
expression happening between these two time points. It is
important to note that no automatic method is available to link
3D microscopy-based reconstructed meristems with very differ-
ent morphologies®?, so using an earlier time point, although
biologically interesting, will not allow us a straightforward
comparison between time points. In this way, Cell Ranger
v3.1.0 identified 9792 single-nuclei transcriptomes with a median
of 954 genes expressed per nucleus and a low number of reads
mapping to the organelles (Supplementary Fig. 9a-d) in the
sample collected three days after DEX-induction. Supplementary
Fig. 9e shows that snRNA-seq is able to recapitulate (R =0.88)
the expression profile of bulk RNA-seq data obtained 4 days after
DEX-induction. Using Seurat v3.2.3, we identified 11 clusters
(Supplementary Fig. 9f). We integrated the snRNA-seq data with
the reference spatial map using novoSpaRc with the same
parameters as before. As expected, the expression domains
obtained by clustering the predicted spatial expression profiles are
almost identical between both time points, with just some
differences in the sepal primordia (Supplementary Fig. 8a, b and
Supplementary Fig. 10a, b). As we have mapped both time points
to the same reference spatial map, we can calculate the average
gene expression for each identified expression domain at each
time point (Supplementary Fig. 10c). For example, for cluster
15:“carpel boundary” (Supplementary Fig. 10d), we identified
several genes up- or down- regulated in the early time point,

NATURE COMMUNICATIONS | (2022)13:2838 | https://doi.org/10.1038/s41467-022-30177-y | www.nature.com/naturecommunications 5


http://threed-flower-meristem.herokuapp.com
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

ETTIN (PEP=1) STM (PEP = 1.00)

ATML1 (PEP = 1.00)

Fig. 3 Validation of reconstructed gene expression patterns with reporter gene assays. Upper part in a-f shows the predicted expression of ETTIN, STM,

ATMLI1, CO2, SHR, and PIN1 from the top and cross-section view of stage 4-

5 flower meristems. To facilitate visual comparison, we standardized the

expression of each gene to have a mean of O and a variance of 1. Titles include gene symbol and PEP score for the predicted 3D expression profile. The
lower part in a-f shows the GFP expression pattern (green) for plant lines under the control of the respective promoter, as detected by confocal laser
scanning microscopy in A. thaliana stage 4-5 flower meristems. Confocal images show the flower meristem from the top (left) as well as different

orthogonal sections (right). Cell walls were stained using propidium iodide (red

). Scale bars indicate 20 um. At least five independent transgenic lines were

investigated for each of the ETT, STM, and ATML1promoter-reporter fusions. One single CO2, SHR, and PIN1 promoter-reporter line was obtained as part

of the BREAK line set (Marqués-Bueno et al.52). For each of the BREAK lines

including important floral regulators as GENERAL REGULA-
TORY FACTOR 2 (GRF2), PSEUDO-RESPONSE REGULATOR 5
(PRR5), D6 PROTEIN KINASE (D6PK), or LIGHT SENSITIVE
HYPOCOTYLS 4 (LSH4). Next, we were curious if the genes that
increase in expression between day 4 compared to day 3
(log2foldchange >1) for each expression domain will be good
predictors of the genes expressed in the mature flower organs that
originated from each of these domains. Indeed, when we plot the
average expression of the set of genes increasing in each domain,
we see a specificity for genes expressed in the mature floral organ
that will be raised from these domains (Supplementary Fig. 10e),
indicating that some of the gene programs that will be active in
the mature floral organ start to be activated at this early stage of
flower meristem development.

Quantitative gene expression reconstruction of AG- and AP3-
floral meristem domains. Next, we evaluated the performance of
spatial expression reconstruction on day 4 after DEX-induction to
study quantitative gene expression in particular domains that give
rise to the different organ types in the flower. In Arabidopsis
flower development, the identities of different organ types are
determined by floral homeotic transcription factors. In particular,
sepals are specified by the activity of APETALAI (AP1), petals are
defined by the combination of API and APETALA3 (AP3),
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, the experiment was performed at least twice.

stamens are specified by AP3 and AGAMOUS (AG), and the
carpels is determined by AG activity.

We estimated the expression of a gene in the AP3- and AG-
domains of the 3D reconstructed meristem, as the average
expression of that gene in the cells which had a positive
expression of AP3 or AG reference genes, respectively. To validate
these results we generated sorted nuclei RNA-seq (FANS RNA-
seq) from floral meristems expressing nuclear targeting fusion
protein (NTF)®> in AP3 vs. AG-expression domains after 4 days
of DEX- induction. The GFP-containing NTF protein was
transcribed under the control of the AP3 promoter (pAP3:NTF)
and the second intron of AG (pAGi:NTF) in the floral induction
system (pAPI:AP1-GR apl-I cal-1)*°. The expression patterns of
PpAP3:NTF and pAGi:NTF were visualized by confocal micro-
scopy (Supplementary Fig. 11) and the nuclei of AP3- or AG-
expression domains were sorted based on the positive GFP signal
in FANS.

Transcriptomes retrieved from the spatially reconstructed AP3
and AG domains in the floral meristem showed a high correlation
with the domain-specific bulk RNA-seq expression (Rho = 0.89
for AP3- and Rho = 0.88 for AG- domain when using genes with
a PEP higher than 0.13). This was close to the correlation
obtained among the bulk RNA-seq biological replicates (Rho =
0.95 for AP3 and Rho=0.93 for AG) when using the same set of
genes (Fig. 4), which indicates a very good performance of the
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Fig. 4 Prediction of AP3 and AG domain gene expression. Scatterplot showing the gene expression for AP3 (a) and AG (b) domain predicted by our
method (y-axis) and observed by our FANS bulk RNA-seq data (x-axis) when using genes with PEP value >0.13 (n =1306). The bottom row shows the
scatterplot for the gene expression of both biological FANS bulk RNA-seq replicates for AP3 (¢) and AG (d). On the top of each figure, the Spearman'’s rank

correlation coefficient (Rho) is reported.

method. Even more interesting, the reconstructed expression was
able to recover the log, fold-change gene expression between both
domains (Supplementary Fig. 12a, Rho = 0.37) when using genes
with a PEP higher than 0.13 (n=1306). In particular, the
obtained correlation was very close to the correlation of the log,
fold-change gene expression obtained from the bulk RNA-seq
biological replicates when using the same set of genes (Rho =
0.47, Supplementary Fig. 12c¢). This indicates that spatially
reconstructed transcriptomes are able to predict domain-specific
differential gene expression. The correlation between gene
expression prediction and domain-specific bulk RNA-seq
increases with increasing PEP scores (Supplementary Fig. 12b),
which is in agreement with the notion of the PEP score being an
indicator of the quality of the predicted 3D expression.

In this way, we detected a large number of genes with specific
expression (Supplementary Data 2) in the different floral whorls
as determined by the (combined) expression of API (sepal), AP3-
API (petal), AP3-AG (stamen), and AG (carpel). For example, we
predict a higher expression of APETALA2 in the sepal domain,
which is in line with its known role in sepal specification together
with AP1°°. We predicted PETAL LOSS (PTL) expression in the
API1 and API-AP3 domain, which is consistent with previous
findings that PTL is expressed in sepal margins while controlling
petal development®’. On the other hand, we predict PERI-
ANTHIA to be strongly induced in the three inner whorls, as
expected from the literature®8, while we predicted UNUSUAL
FLORAL ORGANS (UFO) to be expressed in the AP3-AG and
AP3-API domain which fits with the observed expression in the

petal and stamen whorls®®. This exemplifies the power of the
method to identify whorl-specific genes. The predicted floral
whorl-specific expression is significantly related to the direct
DNA-binding of flower domain-specific TFs in their regulatory
regions (Supplementary Data 2 and Supplementary Fig. 13).

It is worth noting that we could apply a similar methodology
directly to the snRNA-seq data (w/o 3D reconstruction), where
average domain-specific expression is calculated as the average
expression among the snRNA-seq transcriptomes of nuclei that have
a positive expression of AP3, or AG for each domain respectively.
However, the obtained fold-change expression has low agreement
with the domain-specific bulk RNA-seq data (Rho = 0.04 pv <0.14,
Supplementary Fig. 14) when using the same genes as before
(PEP > 0.13). This indicates that the advantage of integrating the
4395 transcriptomes of the snRNA-seq data into a physical map of
1331 cells has the additional benefit of obtaining a more accurate
estimate of gene expression per cell as it is calculated since it
combines the information from several snRNA-seq transcriptomes.

In summary, the presented data demonstrates that our method
can be used to create a genome-wide 3D gene expression atlas of a
plant organ, and to correctly predict gene expression and gene
fold-change expression of particular morphological regions that
was not possible with the snRNA-seq data alone.

The origin of vascular cell identity in the floral meristem.
Spatial reconstruction of transcriptomics data can be used to
pinpoint the spatial location of cells characterized with a parti-
cular transcriptome signature (e.g., snRNA-seq cell clusters,
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ploidy levels®0, vascular cells*?) by using an expression similarity-
based method. For example, the initial establishment of vascular
stem cell identity in the apical meristems is not well known®!. The
transcriptomes of vascular tissues in inflorescence stems have
been characterized by FANS bulk RNA-seq*, including SMXL5
(distal cambium) and PXY (proximal cambium). Therefore,
assuming that the vascular tissues have similar transcriptomes in
the inflorescence stem and in the floral meristems, we could
predict the location of vascular stem cells on the reconstructed 3D
meristem even when they cannot be distinguished anatomically.
We indeed obtained a distinct distribution pattern of vascular
stem cells (Supplementary Fig. 15), where the cambium (PXY and
SMXL5) localizes in the cell layers adjacent and just below the
floral meristem with a radial disposition. Confocal imaging
confirmed that PXY and SMXL5 expression is initiated in cells
just adjacent/below the apical meristem, but in a specific subset of
cells along the central axis of the meristem (Supplementary
Fig. 15). This discrepancy could be due to the low number of
reference genes used, which may not allow having the needed
resolution. Once these cells have been located, their transcriptome
can be estimated as explained before, obtaining a good correlation
(Rho = 0.34-0.42; Supplementary Fig. 16) when compared with
the FANS bulk RNA-seq data. This information can be used in
future work to characterize the molecular control and regulatory
networks of initiation of vascular identity in the floral meristem.

NovoSpaRc outputs the probability of each snRNA-seq
transcriptome as corresponding to a particular cell in the spatial
map. Therefore, we can map the location of the identified snRNA-
seq clusters (https://threed-flower-meristem.herokuapp.com) and
visualize their physical location. In particular, cluster 1-(pro)
cambium shows the same location adjacent/below the apical
meristem as the one estimated by transcriptome similarity.

In summary, this shows the potential to integrate different
features (e.g., cells differentiating to vascular tissues) into a
common spatial map which can be used to associate with the
spatial expression profiles.

Discussion

The identity and function of plant cells are strongly influenced by
their precise location within the plant body®. Therefore, to
understand plant development at the molecular level, it is
important not only to characterize the molecular status and
dynamics of each individual cell but also to know their physical
location in the plant. As stated in the introduction, spatial
genomics in plants has been limited to profiling only a limited
number of genes per experiment. Here, we provide a proof of
concept for a methodology to overcome this limitation by com-
bining scRNA-seq/snRNA-seq with a 3D microscope-based
reconstructed floral meristem. The core of our approach is
based on the use of the tool novoSpaRc to map the scRNA-seq
data to the spatial map. In contrast to other methods that were
designed to use hundreds!>!¢ or thousands of reference genes?’
to map both datasets, novoSpaRc requires very few reference
genes. For example, in this work, we successfully used it using just
23 reference genes. Therefore, meanwhile experimental methods
to profile the spatial expression pattern of a large (>100) number
of genes are not available in the plant field, we believe that the
novoSpaRc method should be the preferred option to integrate
scRNA-seq and spatial maps in the flower meristem. Recently,
Bravo Gonzalez-Blas et al.3! implemented a new methodology to
map scRNA-seq and/or scATAC-seq to a 1D or 2D spatial map.
The method doesn’t require any reference gene and it is based on:
(1) Linking the known expression domains in the spatial map to
the cell clusters identified and annotated in the scRNA-seq (e.g.,
cells from the cluster annotated to epidermis will be linked to the

epidermis regions of the spatial map). (2) To use pseudo-time
analysis to order the transcriptomes of the scRNA-seq in a spatial
axis, this assumes that there is only one axis of variation in
the spatial expression patterns (e.g., ventral-dorsal axis), and the
expression patterns are symmetric around the axis. Although, we
can imagine that this will be a valid approach to some root tis-
sues, where one main axis of expression variation is present (from
root cap to maturation region), it is not the case for the complex
3D morphology of the flower meristem.

Using NovosSpaRc, we are able to reconstruct the spatial
expression of a large number of genes (>1000) in their native
spatial context. Moreover, we were able to quantitatively estimate
the expression of these genes in particular morphological regions
of the floral meristem. Future work should develop more dedi-
cated statistical methods to test for gene expression differences on
the 3D reconstructed structure. One possibility is to apply a re-
sampling approach to the snRNA-seq data. We envision that by
independently mapping multiple subsamples of the snRNA-seq
data to the reference map, we will be able to estimate the variance
of the gene expression which is needed to test for differential gene
expression in different (groups of) cells.

The number of high-quality genes predicted is heavily dependent
on the number and identity of genes present in the reference spatial
map. Thus, we provide a PEP score that can be used to estimate the
performance of the predicted expression for each gene, even before
having generated the reference spatial map. In this way, this score
can be used to select the minimum set of reference genes needed to
obtain a good prediction of the spatial expression of a desired group
of genes. Hence, this score helps in planning the design of a spatial
genomics experiment whose data will be used as a spatial reference
to predict the spatial expression of a set of genes.

This methodology has the potential to be applied to other types
of -omics experiments. For example, it could be applied to map
scATAC-seq experiments into the 3D reconstructed floral mer-
istem. This offers the additional benefit of being able to integrate
multiple single cells -omics data in their natural physical context.
Indeed, an important problem is how to integrate multiple single-
cell-omics experiments (e.g., sScCRNA-seq and scATAC-seq data).
The typical approach?? is to find anchors between genes and
ATAC-seq regions that allow us to link the cells profiled inde-
pendently in both types of experiments. We envision that inde-
pendently mapping the scRNA-seq data and the scATAC-seq to a
common spatial map will be an alternative way to integrate both
types of experiments. In addition, we have shown that we can map
transcriptional signatures of particular features (e.g., cells differ-
entiating from vascular tissues) to the reconstructed spatial map,
allowing us to annotate or integrate additional experiments/data in
the spatial map.

Furthermore, time-series scRNA-seq datasets could also be
tackled with this approach. For example, when live imaging has
been used to reconstruct the spatial map at different time points
and cell segmentation and lineage tracking have been used to infer
cell lineage in the spatial map32, the inferred cell lineage can be used
to link the cells at different time points. Alternatively, when the
plant structure at the different time points considered has similar
morphology, the scRNA-seq data could be mapped to the spatial
map of one particular time point. Otherwise, computational
alignment of the spatial maps at each time point will be required.

In summary, these results provide a primer for future initia-
tives to generate plant organ 3D atlases and for studies aiming to
understand single-cell-omics studies with regard to plant mor-
phology and development.

Methods

Plant material. pAPI:AP1-GR aplI-1 cal-1 plants®® were grown at 22 °C under
long-day conditions (16 h light, 8 h dark) on the soil. After plants bolted and
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reached the height of 2 to 5 cm, they were induced daily by applying the DEX-
induction solution (2 uM Dexamethasone and 0.00016% Silwet L-77) to their main
inflorescences. Around 20 inflorescences were collected and snap-frozen in liquid
nitrogen on day 3 and day 4 after the first DEX-induction for snRNA-seq and on
day 4 after induction for the domain-specific RNA-seq library preparation.

Nuclei isolation. Inflorescences were gently crushed to pieces in liquid nitrogen
using a mortar and a pestle and then transferred to a gentleMACS M tube. After
liquid nitrogen evaporated totally, 5 ml of Honda buffer (2.5% Ficoll 400, 5% Dextran
T40, 0.4 M sucrose, 10 mM MgCl,, 1 uM DTT, 0.5% Triton X-100, 1 tablet/50 ml
cOmplete Protease Inhibitor Cocktail, 0.4 U/ul RiboLock, 25 mM Tris-HCI, pH 7.4)
was added to the tube. Nuclei were released at 4 °C by homogenizing the tissue in an
M Tube using the gentleMACS benchtop dissociator. The M Tube bears septums, a
rotor, and a stator on the cap. After being attached to the gentleMACS dissociator, the
M tube can homogenize plant tissues into single-nuclei suspension automatically with
a defined program. Our program consists of several rounds of spin commands with
different speeds (200-400 rpm) and durations and the integration of counter-
clockwise rotations in between. The whole program lasts for around 5 min (see
Supplementary Data 3). The resulting homogenate was filtered through a 70-um
strainer, and another 5 ml Honda buffer was applied onto the filter to collect the
remaining nuclei. Nuclei were then pelleted by centrifugation at 1000 x g for 6 min at
4°C and then resuspended gently in 500 ul Honda buffer. The nuclei suspension was
filtered again through a 30-um strainer, diluted by adding 500 ul PBS buffer and
stained with 2 uM DAPI. Ambion RNase Inhibitor and SUPERaseln RNase Inhibitor
were added to a final concentration of 0.4 and 0.2 U/ul, respectively. 200,000 events of
single-nuclei were selected on DAPI signals by a BD FACS Aria Fusion into a 1.5-ml
tube with landing buffer (15 ul 4% BSA in PBS with 80 U Ambion RNase Inhibitor
and 80 U SUPERaseln RNase Inhibitor). Sorted nuclei were counted in Neubauer
counting chambers under a Leica DMi8 fluorescent microscope.

Preparation of snRNA-seq libraries. Single-nuclei RNA-seq library was prepared
from 10,000 freshly-isolated plant nuclei with the Chromium Single Cell 3" Reagent
Kits v3 according to the manufacturer’s instructions. 14 PCR cycles were used for
cDNA amplification, and 13 PCR cycles were used for the final amplification of day
4 after the DEX-induction snRNA-seq library. 11 PCR cycles were used for cDNA
amplification, and 14 PCR cycles were used for the final amplification of day 3 after
the DEX-induction snRNA-seq library. The average fragment size of the snRNA-
seq library was checked with an Agilent High Sensitivity D1000 ScreenTape, and
the concentration was measured with Qubit 1X dsDNA HS Assay Kit. Sequencing
was performed on a HiSeq 4000 (Illumina) platform for day 4 after the DEX-
induction sample and NovaseqS2 (Illumina) for day 3.

Preparation of domain-specific RNA-seq libraries. Nuclei were from pAPI:AP1-
GR apl-1 cal-1 transgenic plants expressing a GFP labeled nuclei envelope protein
driven by tissue-specific promoters>. We used AP3 promoter and AG 2nd intron
plus a minimal 35 S promoter element as promoters for the constructs to mark AP3
and AG expressing domains in flowers, respectively. After nuclei isolation, as
described in the previous paragraph, nuclei were sorted into a 1.5-ml tube with
15 pl of 4% BSA in PBS and 6 ul of RiboLock RNase Inhibitor by a BD FACS Aria
I1I. The GFP channel was set using pAPI:AP1-GR apl-1 cal-1 as a negative control,
and then nuclei were selected by gating on the DAPI peaks under the GFP positive
events. After sorting, nuclei were pelleted at 1500 x g for 10 min at 4 °C, and the
supernatant was then removed. Nuclei were lysed by vortex in 350 ul RLT buffer
with 2-Mercaptoethanol, and RNA was then isolated with Qiagen RNeasy Micro
Kit. After RNA isolation, cDNA synthesis was done with SMART-Seq” v4 Ultra®
Low Input RNA Kit following the manufacturer’s instructions. cDNA was sheared
to 200-500 bp size by Covaris AFA system and constructed with sequencing
adapters by ThruPLEX DNA-Seq Kit.

Confocal imaging. GFP expressing plant lines under the control of the
CO,(AT1G62500), PINI (AT1G73590 and SHR (AT4G37650) promoters were
obtained from the Nottingham Arabidopsis Stock Centre (NASC, UK) as part of the
SWELL line seed collection (BREAK line set N2106365), which was previously
generated by Marqués-Bueno et al.%2, To generate plant lines driving GFP expression
from the ETT/ARF3 (AT2G33860) promoter, we inserted a 3 kb long promoter
fragment into the pK7GW-INTACT_AT vector (Ron et al..%%) using gateway cloning.
Similarly, the 6.1 kb promoter of STM (AT1G62360) and the 5 kb promoter of
ATMLI (AT4G21750) were introduced into the pK7GW-INTACT_AT vector. A.
thaliana Col-0 wild-type plants were transformed by the floral dip method (Clough
and Bent, 1998). Plant lines expressing HISTONE 4 (H4)-coupled GFP under the
control of the PXY (AT5G61480) and the SMXL5 (AT5G57130) promoters
(PXY:H4-GFP/SMXL5:H4-GFP) were previously generated by Bravo Gonzélez-Blas
et al.*>. For GFP expression analysis, plants were grown on the soil at 22 °C and 16/8 h
light/dark cycles using daylight led lights (200 ymol m=2s~1).

GFP expression was detected by confocal laser scanning microscopy using the
Zeiss LSM 800 confocal microscope equipped with a Plan-Apochromat 20x/0.8
M27 or a C-Apochromat 40x/1.2 W Korr objective. GFP was excited at a
wavelength of 488 nm with an argon laser, while emission was filtered by a
410-532 nm bandpass filter. Propidium iodide (Sigma-Aldrich) was used to stain

cell walls. It was excited at a wavelength of 305 nm and detected in a range of
595-617 nm. Z-stack images were median corrected and merged to orthogonal
projections using the ZEN imaging software (Zeiss).

snRNA-seq data analysis. Fastq files were processed with Cell Ranger v3.1.0 with
default parameter values and using the Araportl] gene annotation®, obtaining 7,716
nuclei transcriptomes as a read count matrix for day 4 after DEX-induction and 4504
nuclei transcriptomes for day 3 after DEX-induction. Genes encoded in the organelles
were removed. Next, read count normalization and clustering were done with the R
package Seurat v3.2.3%3. In particular, nuclei transcriptomes with less than 1000
expressed genes were removed and SCT-normalization was applied within the SEURAT
package setting the parameter variable.features.n to 3,000 and other parameters to
default values. Next, the optimal number of PCAs was chosen to be the first nine
principal components by plotting the standard deviations of the principal components
using the RunPCA and ElbowPlot functions. UMAP dimensionality reduction was
obtained with the runUMAP function using the parameters values dims = 1:9,
reduction = “pca”, n.neighbors = 50, min.dist = 0.01, umap.method = “uwot’,

metric = “cosine”. In order to identify clusters in the UMAP space, we used Find-
Neighbors and FindClusters functions with parameter values resolution = 0.04, algo-
rithm = 1 and default values for other parameters. Marker genes for each cluster were
identified with the function FindAllMarkers and parameter values: only.pos = TRUE,
assay = “SCT”, slot = “scale.data”, min.pct = 0.25, logfc.threshold = 0.25. In order to
annotate the identified clusters, the average relative expression of the top 20 cluster
marker genes in different publically available RNA-seq (see bulk RNA-seq analysis) and
microarray samples were visualized in heatmaps in order to help to annotate the
clusters. Expression values for GSE28109% were downloaded directly from the GEO
omnibus (file: GSE28109_averaged_mas5_data.txt). Heatmaps showing the expression
of markers genes were calculated as the average relative expression across all nuclei for
each cluster. Relative expression was calculated as the normalized read count expression
of a gene minus the average expression of this gene across all samples/nuclei considered.

Bulk RNA-seq analysis. Fastq files from publicly available bulk RNA-seq data were
downloaded from Sequence Read Archive (SRA; https://www.ncbi.nlm.nih.gov/sra).
The next analysis was done for each dataset independently. The analyzed datasets
were: PRINA314076%6, PRINA47123267; PRINA595605%5, and the AG- and AP3-
domain-specific bulk RNA-seq data generated in this project. Fastq files were trim-
med from adapters using Trimmomatic v0.36%. The reads were then mapped to the
TAIR10 Arabidopsis genome using STAR v2.7.0b%° with parameter values
--alignIntronMax 10000 --outFilterMultimapNmax 1 --outS]filterReads Unique and
other parameters with default values. featureCounts v1.6.47% was used to count the
number of mapped reads per gene (in exon and introns) with default parameters.
Next, reads mapping to genes encoded in the organelles were removed. Only genes
with more than ten reads mapped in at least two samples were considered in the
further analyses. Read count data were analyzed with DESeq2 v1.24.07), in particular,
normalized expression was calculated with variance stabilizing transformation func-
tion using default parameters.

snRNA-seq and spatial gene expression map data integration. snRNA-seq data
were processed as described in the previous section, which results in a matrix of
normalized expression values of 6104 nuclei and 19,718 genes for day 4 after DEX-
induction and 4504 nuclei and 19,497 genes for day 3. Genes expressed in less than
30 cells were removed (n = 2890) with the exception of WUS and CLV3 which
were kept in the dataset due their biological importance. Data of the spatial map
containing positional coordinates of 1451 cells, their associated cell growth, cell
volume, lineage, and expression of 28 genes for the reconstructed 3D stage four
floral meristem was downloaded from Refahi et al.32. First, cells (n = 52) with an
expression of none of the 28 reference genes were removed. Next, genes (1 =5)
with the same expression in all nuclei or not present in the normalized snRNA-seq
dataset were removed as they are not informative for the data integration proce-
dure. Cells from the spatial map (n = 68) were removed when they had less than
three reference genes expressed, or when the combination of genes expressed in
one particular cell was present in less than four other cells. This resulted in a spatial
map of 1331 cells and 23 genes. Next, nuclei from the snRNA-seq datasets not
expressing any of the 23 genes considered in the reconstructed meristem were
removed. At this step, the snRNA-seq contained 5910 nuclei and 16,828 genes for
day 4 and 4504 nuclei and 16,496 genes for day 3. The resulting snRNA-seq dataset
and the reconstructed floral meristem were integrated using novoSpaRc v0.4.134,
As described in the main text, three modifications were considered for day 4:

1. Filtering. When this modification was applied, distances between all the
transcriptomes of the snRNA-seq and the spatial map were calculated. Only
the top 50 snRNA-seq transcriptomes with the closest distance to each cell
of the spatial map were kept in order to eliminate nuclei that were not
present in the spatial map (e.g., cauline leaves, pedicel...). The final number
of snRNA-seq nuclei depends on the distance used.

2. Genes are used for calculating distance among the snRNA-seq transcrip-
tomes. The standard novoSpaRc procedure uses the highly variable genes
identified by the program to analyze the snRNA-seq data in order to
calculate the distances among the snRNA-seq transcriptomes. We modified
this option to use the top 100 genes with the highest Pearson correlation
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value in the snRNA-seq space to the 23 genes considered in the spatial map.
In our case, this results in 1709 unique genes.

3. Distance. By default, novoSpaRc used the Euclidean distance between the
snRNA-seq and spatial map transcriptomes. We also included Jaccard
and Hamming distances for binary data. When these distances were used,
the snRNA-seq data was binarized as non-expressed when the normalized
expression of a gene was zero and as expressed when the normalized
expression was bigger than zero. When using the Euclidean distance, we
include the optional binarization of the snRNA-seq expression data.

The best set of modifications and parameter value sets was chosen as the ones
minimizing the average AUCROC of the genes from the spatial map except AHP6,
ETT, WUS, and CLV3, we excluded these four genes because their performance was
always poor independently of the parameter values used and/or because the low
number of cells where they were expressed in the spatial map. The final parameter set
was using all three proposed modifications, in particular using the Jaccard distance,
and with values for the novoSpaRc parameters: num_neighbors_source = 2, num_
neighbors_target =5, epsilon = 0.05, alpha = .1, max_iter = 5000 and tol = Ie-9. As
output, novoSpaRc provides a matrix (Gromoth-Wasserstein matrix, GW)
containing the probabilistic assignment of each nucleus from the snRNA-seq to
each of the cells of the spatial map. For numerical reasons (to avoid long
decimals), the GW matrix was multiplied by 10°. It also outputs the predicted
expression of each gene considered in the spatial map space. For day 3, we used
the same parameters described above to allow a better comparison between time
points.

Identification of expression domains. In order to identify expression domains in
the flower meristem using our reconstructed expression profiles, we first selected
high variable genes as the genes with a PEP score bigger than 0.13 and a variance
bigger than 3. Next, the expression of each gene was log2-transformed and, after,
standardized to mean 0 and variance 1. Then, we clustered the transcriptomes
based on the euclidean distance of the previously selected high variable genes
expression profiles using the hierarchical clustering algorithm implemented in the
R function hclust with method = “average”. We choose to identify 15 clusters or
expression domains. For each cluster/expression domain, we calculated the
expression of each gene for each domain as the average expression of those genes in
all the cells of that domain. Next, we obtained the list of genes with a log2fold-
change bigger than one between day 4 and day 3 after DEX-induction. For each of
these list of upregulates genes, we calculated their median expression (read per
million) in mature floral organs using the expression data from PRJNA314076°.
Supplementary Fig. 10e shows relative expression calculated by subtracting the
median expression of each list of upregulated genes versus the median expression
of all genes whose expression is predicted with a PEP score >0.13.

PEP score calculation. The Spearman correlation coefficient for a particular gene
against each reference gene was calculated in the scRNA-seq data after the filtering
step. The highest Spearman correlation coefficient was chosen as the PEP score for
that particular gene.

Localization of the vascular stem cells into the spatial map. FANS RNA-seq
data®® was analyzed as explained above. After, the data were log2-transformed, and
the expression of each gene was normalized to have a mean of 0. The same
procedure was applied to the gene expression profiles of the spatial map. Pearson
correlation was calculated between each FANS RNA-seq dataset to the tran-
scriptome of each cell of the spatial map. Only genes (n = 1281) defined as vascular
markers in*> were used to calculate the correlation. P-values were calculated by
testing if the correlation was higher than zero.

Localization of the snRNA-seq clusters into the spatial map. NovoSpaRc
outputs the probability of each snRNA-seq transcriptome as corresponding to a
particular cell in the spatial map (GW matrix). Once obtained, the GW matrix was
transformed so that columns (corresponding to cells in the spatial map) sum to 1.
The score of one cell of the spatial map belonging to a particular cluster was
calculated as the sum of the probabilities of all snRNA-seq transcriptomes of one
particular cluster belonging to that particular cell in the spatial map.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
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