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Abstract

This dissertation is in two parts, each of three chapters. In Part 1, I shall prove some

results concerning variants of the ‘secretary problem’. In Part 2, I shall bound several

generalizations of the acyclic chromatic number of a graph as functions of its maximum

degree.

I shall begin Chapter 1 by describing the classical secretary problem, in which the aim

is to select the best candidate for the post of a secretary, and its solution. I shall then

summarize some of its many generalizations that have been studied up to now, provide

some basic theory, and briefly outline the results that I shall prove.

In Chapter 2, I shall suppose that the candidates come as m pairs of equally qualified

identical twins. I shall describe an optimal strategy, a formula for its probability of success

and the asymptotic behaviour of this strategy and its probability of success as m→∞. I

shall also find an optimal strategy and its probability of success for the analagous version

with c-tuplets.

I shall move away from known posets in Chapter 3, assuming instead that the candi-

dates come from a poset about which the only information known is its size and number

of maximal elements. I shall show that, given this information, there is an algorithm that

is successful with probability at least 1
e
. For posets with k ≥ 2 maximal elements, I shall

prove that if their width is also k then this can be improved to k−1

√
1
k
, and show that no

better bound of this type is possible.

In Chapter 4, I shall describe the history of acyclic colourings, in which a graph must

be properly coloured with no two-coloured cycle, and state some results known about

them and their variants. In particular, I shall highlight a result of Alon, McDiarmid

and Reed, which bounds the acyclic chromatic number of a graph by a function of its

maximum degree. My results in the next two chapters are of this form.

ix



x ABSTRACT

I shall consider two natural generalizations in Chapter 5. In the first, only cycles of

length at least l must receive at least three colours. In the second, every cycle must receive

at least c colours, except those of length less than c, which must be multicoloured.

My results in Chapter 6 generalize the concept of a cycle; it is now subgraphs with

minimum degree r that must receive at least three colours, rather than subgraphs with

minimum degree two (which contain cycles). I shall also consider a natural version of this

problem for hypergraphs.
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Introduction

This dissertation is split into two unrelated parts. In Part 1, I shall consider several

problems of optimal choice on posets, which are generalizations of a problem popularly

known as the ‘secretary problem’. In Part 2, I shall consider generalizations of acyclic

colourings of graphs, a concept whose origins can be traced back to Nash-Williams’s

theorem concerning the decomposition of the edge set of a graph into forests.

Part 1: Problems of optimal choice on posets

The classical secretary problem is as follows. There are n candidates to be interviewed

for a position as a secretary. They are interviewed one by one and, after each interview,

the interviewer must decide whether or not to accept that candidate. If the candidate is

accepted then the process stops, and if the candidate is rejected then the interviewer moves

on to the next candidate. The interviewer may only accept the most recently interviewed

candidate. At each stage, the interviewer knows the complete ranking of the candidates

interviewed so far, all of whom are comparable, but has no other measure of their ability.

The interviewer is only interested in finding the very best candidate; selecting any other

for the job is considered a failure. The aim is to find a strategy that maximizes the

probability that the interviewer chooses the best candidate, under the assumption that

the candidates are seen in a uniformly random ordering. In Chapter 1, I shall describe

the solution to this problem, that there is a strategy that is successful with probability

at least 1
e

and that this is asymptotically best possible. I shall also provide more of the

historical background of this problem and some of its generalizations up to now.

In the rest of Part 1, I shall consider two generalizations of this problem. In Chapter 2,

I shall first assume that there are 2m candidates who are in fact m pairs of identical twins,

each pair of twins being equally well-qualified for the job. As in the classical problem, the

interviewer knows at each stage how the candidates interviewed so far compare with each

other, but has no other measure of their ability. I shall describe an optimal strategy, a

1



2 INTRODUCTION

formula for its probability of success and the asymptotic behaviour of this strategy and its

probability of success as m→∞. I shall also find an optimal strategy and its probability

of success for the analagous version on m sets of c-tuplets, and provide bounds that give

some indication of their asymptotic behaviour.

I shall move from these known posets to unknown posets in Chapter 3. Specifically, I

shall assume that the candidates come from a poset whose size n and number of maximal

elements k is known, but whose structure is unknown. Here, the interviewer knows the

poset induced by the candidates interviewed so far. I shall describe a strategy that is

successful on all posets with given n and k with probability at least 1
e
, which is the best

possible bound when k = 1, but probably not for k > 1. I shall also find a strategy that

is successful with probability at least k−1

√
1
k

when the width of the poset is known to be

the same as the number of maximal elements k and k ≥ 2. By considering the poset

consisting of k disjoint chains, I shall show that no greater probability of success can be

guaranteed.

Part 2: Generalizations of acyclic colourings

An acyclic colouring of a graph is a proper vertex-colouring such that every cycle

contains vertices of at least three colours. To put it another way, it is an assignment of

colours to the vertices such that the graph induced by the vertices in any colour class must

be an independent set, and the graph induced by the vertices in any two colour classes

must be a forest. The acyclic chromatic number of a graph is the minimum number of

colours needed to colour it acyclically. In Chapter 4, I shall describe how this concept

came into being as a generalization of the arboricity of a graph, which is the minimum

number of forests into which its edge set can be decomposed, and I shall state some of

the many results proved about acyclic colourings up to this point. In particular, I shall

highlight a result of Alon, McDiarmid and Reed, which bounds the acyclic chromatic

number of a graph by a function of its maximum degree. My results in Part 2 will be of

this form.

In Chapter 5, I shall consider two generalizations in which the subgraphs under scru-

tiny are still cycles. In the first, the extra condition that a proper colouring must satisfy

is relaxed so that only cycles of length at least l must receive three colours, that is, the
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graph induced by the vertices in any two colour classes does not contain a cycle of length

at least l. In the second, I shall strengthen the condition so that every cycle must receive

at least c colours, with the obvious exception of cycles of length less than c, which must

be multicoloured. In this case, the graph induced by the vertices in any x colour classes

with x < c does not contain any cycles of length greater than x.

The definitions given so far would work just as well if ‘cycle’ were replaced by ‘2-regular

subgraph’ or even ‘subgraph with minimum degree at least 2,’ since cycles fall into both

of these categories and any subgraph of either type must contain a cycle. I shall focus my

attention in Chapter 6 on subgraphs with minimum degree r; a graph contains at least

as many of these as r-regular subgraphs, and indeed is unlikely to have any r-regular

subgraphs for large r, so this is more restrictive. In a proper colouring, it is possible for

any bipartite subgraph with minimum degree r to receive only two colours; I shall insist

that it receive three. I shall also consider the same problem for u-uniform hypergraphs,

under the assumption that a proper colouring is one in which every edge is multicoloured.





Part 1

Problems of optimal choice on posets





CHAPTER 1

The classical secretary problem

1.1. The problem

The exact origins of the classical secretary problem are complicated (and the subject

of Ferguson’s history of the problem [26]), but the problem was popularized by Martin

Gardner [32, 33] in his Scientific American column in February 1960, as the game goo-

gol. The problem itself is simple to state, and its ‘secretary problem’ formulation is as

follows. There are n candidates to be interviewed for a position as a secretary. They are

interviewed one by one and, after each interview, the interviewer must decide whether or

not to accept that candidate. If the candidate is accepted then the process stops, and

if the candidate is rejected then the interviewer moves on to the next candidate. The

interviewer may only accept the most recently interviewed candidate. At each stage, the

interviewer knows the complete ranking of the candidates interviewed so far, all of whom

are comparable, but has no other measure of their ability. The interviewer is only inter-

ested in finding the very best candidate; selecting any other for the job is considered a

failure. The aim is to find a strategy that maximizes the probability that the intervie-

wer chooses the best candidate, under the assumption that the candidates are seen in a

uniformly random ordering.

1.2. Outline solution

The solution to the classical secretary problem is now folklore but was first published

by Lindley [57], and I shall give an outline of it here.

It is obvious that the interviewer should only consider accepting a candidate who is the

best seen so far. It is intuitively clear that a candidate should not be accepted very early

on even if he or she is the best seen so far, since there is a reasonable probability that a

small number of candidates all come from near the bottom of the ranking. Conversely, the

interviewer should not wait too long, or the best candidate will probably be missed and

7



8 1. THE CLASSICAL SECRETARY PROBLEM

the interviewer will not have the opportunity to select anyone. Furthermore, if a strategy

dictates that the ith candidate should be accepted if he or she is the best candidate seen

so far, it seems reasonable that the (i+1)th should be accepted in the same circumstances,

since more candidates have been seen and that candidate’s credentials are stronger. From

these observations, it might be expected that some sort of threshold should be passed

before the interviewer considers choosing a candidate.

Using backward induction, one can prove exactly that. This will be described in more

detail in Section 1.5; for now, I shall assume the following consequence of it without proof.

For some k, the strategy “reject the first k candidates, and accept the next who is the

best seen so far” is optimal. As an aside, it is worth noting that there might be more

than one optimal strategy: for example, when there are exactly two candidates, the two

possible deterministic strategies are equivalent, and both are equivalent to tossing a coin

to choose between the two candidates.

Let W be the event that, using this strategy, the interviewer chooses the best candidate

and let Bi be the event that the ith candidate interviewed is the best candidate. Let Ai be

the event that the interviewer is still interviewing by the time the ith candidate arrives,

that is, that the best of the first i− 1 candidates interviewed is in the first k interviewed.

Then Bi and Ai are independent, and the probability of winning is given by

P(W ) =
n∑

i=k+1

P(Bi)P(W |Bi)

=
n∑

i=k+1

P(Bi)P(Ai)

=
n∑

i=k+1

1

n
· k

i− 1

=
k

n

n−1∑
j=k

1

j
.

A value of k that maximizes this satisfies

k

n

n−1∑
j=k

1

j
≥ k − 1

n

n−1∑
j=k−1

1

j
and

k

n

n−1∑
j=k

1

j
≥ k + 1

n

n−1∑
j=k+1

1

j
,
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that is,
n−1∑
j=k

1

j
≥ k − 1

k − 1
= 1 and

n−1∑
j=k+1

1

j
≤ k

k
= 1,

from which simple integration arguments give

n

e
− 1 ≤ k ≤ n

e
+
e− 1

e
.

From this, it is clear that for such k

lim
n→∞

k

n
=

1

e

and that the probability of winning tends to the same limit. In fact, in Chapter 3, it will

become evident that this is a lower bound.

1.3. Variants

A problem posed by Cayley [18] may have inspired the classical secretary problem.

This is what is now known as the ‘full information’ case, where the candidates’ abilities

are represented by real random variables from a known distribution, and the aim is to

maximize the expected ability of the chosen candidate. The uniform distribution U [0, 1]

was considered by Moser [62]; Guttman [46] found an optimal strategy for a general

distribution and also gave an explicit optimal strategy for the normal distribution N(0, 1).

His general optimal strategy is to accept a candidate if there are at least m candidates

remaining after that one and his or her ability is at least Em, for some (Em)m∈N. For

U(0, 1), the first few values of Em are 0.5, 0.625, 0.6953, 0.7417 and 0.775, and for N(0, 1)

they are 0, 0.3992, 0.6298, 0.7904 and 0.9127. The expected ability is the first threshold

for acceptance, E1.

Since 1960, many generalizations of the classical secretary problem have been conside-

red. Freeman [28] wrote an extensive review of the area in 1983, which shows how many

versions had already been considered by then. I shall describe only some of them, and

some more recent results.

Besides the full information case, the most obvious generalization might be to be more

flexible over what constitutes success, and to try to minimize the expected rank (viewing

the best candidate as being from rank 1 and the worst from rank n) rather than insisting
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on choosing the best candidate. This version was solved by Chow, Moriguti, Robbins and

Samuels [21]. Perhaps surprisingly, in the limit as n → ∞ the optimal expected rank

tends to a constant rather than a multiple of n, namely,

∞∏
j=1

(
j + 2

j

) 1
j+1

≈ 3.8695.

They showed that an optimal strategy is to accept a candidate who is in the top k seen so

far as long as at least ik candidates have been seen in total, for some thresholds ik. They

also showed that the ik satisfy

lim
n→∞

ik
n

=
∞∏
j=k

(
j

j + 2

) 1
j+1

.

This means that, for large n, once we have seen approximately 26% of candidates we

should be prepared to accept the next one who is the best so far, after 45% we should

accept anyone who is one of the top two seen so far, after 56% one of the top three, after

64% one of the top four, after 69% one of the top five and so on. At the other end of the

scale, once we have seen 99% of candidates we should accept anyone who is in the top

200 and after 99.9% anyone in the top 2000.

Yang [80] considered the situation where, as well as being allowed to offer the job to

the most recently interviewed candidate, who would accept it, the interviewer can offer the

job to any of the other candidates seen so far, who is still available with probability q(r),

where q is a known non-increasing function of the number r of candidates interviewed since

that one. If a candidate is unavailable, he or she never becomes available again. The aim

is to choose the best possible secretary, as in the classical secretary problem. Smith [74]

studied a version where the job can only be offered to the currently interviewed candidate,

but there is some fixed probability that the candidate will refuse the offer. Petruccelli [67]

worked on these two problems simultaneously, that is, Yang’s problem with q(r) still non-

increasing but with q(0) no longer forced to be 1.

In particular, Petruccelli considered the case where the probabilities form a geometric

progression, that is, where q(r) = qpr for some p and q. He proved that there are two

cases, depending on p, q and the number n of candidates. If
∑∞

r=0 q(r) = q
1−p > n − 1

then an optimal strategy is to observe all n candidates and then to offer the job to the
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best one. If q
1−p ≤ n − 1, then an optimal strategy is to wait until sn candidates have

been seen, for some sn, and then to offer the job to the best one seen so far. If this one

is unavailable, then the interviewer should continue interviewing and offer the job to the

next candidate who is the best seen so far. If this one is unavailable, then the interviewer

should continue as before, and so on. He gave an explicit formula for sn, namely, the

smallest value of s for which

n−1∏
k=s+1

(
1 +

1− q
k

)
≤
[
q

(
1 +

1− q
s(1− p)

)]−1

.

He also showed that both sn
n

and the probability of success tend to q
1

1−q as n→∞. This

is independent of p, which means that for large n there is effectively no benefit to being

allowed to recall a previous candidate, since p can be arbitrarily small. However, this is

not surprising, since if p is fixed then only a constant number of candidates are likely to

be available at any one point, even as n→∞.

Gusein-Zade [45] allowed selection of any of the top r candidates to count as success,

and showed that an optimal strategy is of the same form as in the expected rank case,

that is, an optimal strategy is to accept a candidate who is in the top k seen so far as

long as at least ik candidates have been seen in total, for some thresholds ik. He showed

that for r = 2 the limiting probability of success as n → ∞ is about 0.5736. Frank and

Samuels [27] proved that the optimal probability of success p(n, r) satisfies

lim
r→∞

lim
n→∞

(
1− p(n, k)

) 1
r = 1− t∗, where t∗ = lim

n→∞

i1
n
≈ 0.2834.

Gilbert and Mosteller [40] considered what could be called the inverse of this problem:

the interviewer is allowed to pick up to r candidates and wins if any of them is the best.

(Many other variations of the secretary problem are included in the same paper.) They

showed that an optimal strategy is to wait until t(n, r) candidates have been seen, for

some function t(n, r), then to pick the next who is the best seen so far, and then to play an

optimal strategy for the remaining candidates and r− 1 choices. They found an iterative

method to calculate the limits

ur = lim
n→∞

t(n, r)

n
,
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showed that the first few values of ur are e−1, e−
3
2 , e−

47
24 and e−

2761
1152 , and showed that as

n→∞ the optimal probability of success tends to

r∑
i=1

ui.

Some authors wondered what would happen if the number of candidates were unk-

nown, but the distribution of that number, the random variable N , were known. Presman

and Sonin [69] found an explicit optimal strategy for a general distribution, where the

aim is to choose the best candidate. They also showed that if the number of candidates is

uniform in [n], then an optimal strategy is of the same form as in the classical secretary

problem, but where the threshold is asymptotically equivalent to n
e2

and the probability

of success tends to 2
e2
≈ 0.2707 as n→∞.

Gianini-Pettitt [39] considered the minimal expected rank version of this problem,

and restricted her attention to distributions of the form

P
(
N = x

∣∣N ≥ x
)

= (n− x+ 1)−α,

for some α. She proved that, as when the number of candidates is known, an optimal

strategy is of the form ‘accept the ith candidate if it is one of the best k(i) seen so far,’

but that k(i) is not necessarily an increasing function. She also proved the surprising

fact that if N1 and N2 are possible distributions of the number of candidates and N1

is stochastically smaller than N2, that is, P(N1 ≤ x) ≥ P(N2 ≤ x) for all x, this does

not imply that the minimum expected rank decreases. One example of this is that if N1

is uniformly distributed on [n], that is, if α = 1, then the optimal expected rank tends

to infinity as n → ∞, whereas if N2 = n with probability 1 then, as shown by Chow,

Moriguti, Robbins and Samuels [21], the optimal expected rank tends to about 3.8695.

In fact, she showed that the optimal expected rank tends to infinity if α < 2 and to the

Chow, Moriguti, Robbins and Samuels limit of approximately 3.8695 if α > 2, and if

α = 2 then the lim inf of the optimal expected rank is greater than 3.8695 and the lim

sup is finite.

More generally, one could consider problems of optimal choice on more complicated

systems; up to this point the assumption has always been that there are n rankable
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candidates. Kuchta and Morayne [56] considered a version of the classical secretary

problem where the interviewer has k ‘lives’: if all n candidates are interviewed without

any of them being chosen, then a new set of n candidates is interviewed, and the aim

is to chose the best of these, and so on. At most k sets of candidates are allowed to be

interviewed in total. They showed that, for some function t(n, k), an optimal strategy

is to ignore the first t(n, k) candidates from the first set, and accept the next candidate

who is the best seen so far; if no such candidate appears, then ignore the first t(n, k − 1)

candidates from the next set and accept the next candidate who is the best seen so far,

and so on. They showed that

lim
n→∞

t(n, k)

n

exists, and denoting it by ak, that ak+1 = eak−1, where of course a1 = 1
e
.

Stadje [75] introduced the idea that the candidates could be ranked separately in

each of k > 1 different criteria, with the interviewer wishing to select a candidate who is

maximal in at least one of them, and Gnedin [41] solved the version where these rankings

are random and independent of each other. He proved that an optimal stratgy is to wait

until a certain number of candidates have been seen and then to select the next who is best

according to at least one criterion, and that the limiting values of this threshold and the

probability of success are both k−1

√
1
k
. Gnedin has also produced a more general survey

of multicriteria problems [42]. In fact, these last two problems could both be viewed as

versions of the secretary problem on k disjoint chains, which I shall solve in Chapter 3,

with an extra restriction, about which I shall say more at the time.

Moving slightly further away from the classical secretary problem, Kubicki and Mo-

rayne [55] considered the problem on a directed path, where at each stage the selector

knows the directed graph induced by the vertices seen so far and wishes to choose the

end-vertex with no edge going out of it. This is similar to the classical secretary problem,

but each candidate can only be compared with the one immediately above it or below it

in the ranking. They showed that an optimal strategy is to wait until the first time t when

the induced graph has n − t + 1 connected components and to pick the tth vertex. Note

that this is the first time when the selector can be sure that the sought after end-vertex

has been seen: if at time t the induced graph has n− t + 1 connected components, then
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the remaining n − t vertices must be used to join components together, and so none of

them is the end-vertex. Note also that this strategy is independent of whether or not

the tth vertex is an end-vertex of its component; if it is not, then it does not make any

difference which vertex is chosen. They showed that the probability of success pn satisfies

lim
n→∞

pn
√
n =

√
π

2
.

Przykucki and Sulkowska [71] adapted this problem in a similar way to Gusein-Zade’s

version of the classical secretary problem, so that choosing the end-vertex or its neighbour

counts as success. In this case, the optimal stopping time and its analysis are more

complicated, but their numerical analysis shows that the probability of success behaves

approximately like 1.26√
n

. For comparison with the previous result,
√
π

2
≈ 0.8862.
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Figure 1.1. Directed ternary tree of depth 3.

Morayne and Sulkowska [61] studied a variation of the directed path version, in this

case working with the complete k-ary directed rooted tree of depth n (see Figure 1.1) and

again assuming that the selector knows the induced directed graph at each stage of the

process. They found a lower bound for the probability of success of an optimal strategy by

considering a natural (but not necessarily optimal) strategy: select the currently examined

element if there is a directed path of length n terminating at it. If this ever happens, then

the strategy must be successful. In this way, they showed that on a binary tree the limit

of the optimal probability of success is at least 2 log 2− 1 ≈ 0.3863 and that on a ternary

tree it is at least 3
2

log 3− 2 + π
2
√

3
≈ 0.5548, and that it tends to 1 as k →∞.

Przykucki [70] posed a problem concerning the random graph Gn,p with n vertices

and any two connected by an edge with probability p independently of the others. Again,

the selector knows the graphs induced by the vertices seen so far, and wishes to find a

vertex of full degree, that is, degree n− 1. He showed that an optimal strategy is to wait
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until k(n, p) vertices have been seen and then to pick the next vertex connected to every

vertex seen so far, for some k(n, p). He showed that, for fixed p ∈ (0, 1),

k(n, p) = log 1
p
n+O(1)

as n→∞, and found a formula for the probability of its success, which of course tends to

zero more quickly than npn−1, which is an upper bound for the probability that a vertex

of full degree exists.

In this dissertation, the type of generalization that I shall consider is to put partial

orders other than a total order on the candidates. Here, the selector knows the poset from

which the elements are taken and the poset induced by the elements observed so far, and

wishes to choose an element that is maximal in the ground poset.

s
s s

s s s s
s s s s s s s s

s s s s s s s s s s s s s s s s

���
���

��

HHH
HHH

HH
�
�

�
�

�
�

�
�

@
@
@
@

@
@
@
@

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

C
C
C
C

C
C
C
C

C
C
C
C

C
C
C
C

C
C
C
C

C
C
C
C

C
C
C
C

C
C
C
C

Figure 1.2. Binary tree of depth 4.

A generalization due to Morayne [60] is to consider the case of a binary tree of depth

n (see Figure 1.2). Intuitively, it seems unlikely that a random selection of nodes would

come from a subtree with a maximum other than the global maximum unless they are

linearly ordered, and he showed that this is indeed the case. An optimal strategy here is

to select the maximum out of the elements seen so far when the poset induced by these

elements is either linear of length greater than n
2

or non-linear with a unique maximum.

He showed further that as n→∞, the probability of success tends to 1.

Kaźmierczak [49] added a ‘witness’ to the classical secretary problem, an extra element

w in the poset that lies immediately below the maximal element but cannot be compared

with any other element. Tkocz [77] extended this concept to put the witness below the
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Figure 1.3. Tkocz’s poset.

kth highest element (see Figure 1.3). He gave an explicit optimal strategy, which uses

three different thresholds, essentially depending on the size of k relative to n. If the poset

induced by the elements seen so far is linear and of length greater than the threshold

then a maximal element should be accepted; if it is not linear then an optimal strategy

for the classical secretary problem on k elements should be followed. He also calculated

the asymptotic probabilities of success for k = 2 and 3, approximately 0.415 and 0.384

respectively, compared with the figure of approximately 0.573 for k = 1 obtained by

Kaźmierczak.
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Figure 1.4. Five pairs of identical twins.

Micha l Morayne, Grzegorz Kubicki and I [34] considered the case of m pairs of ‘twins’,

where there are m levels with two incomparable elements on each level (see Figure 1.4); I

shall present these results in Chapter 2. I shall show that an optimal strategy is to wait

until elements from a certain threshold number of levels have been seen and then to select

the next element that is maximal and whose twin has already been seen. I shall further

show that as m → ∞, this threshold behaves roughly like 0.4709m and the probability

of success tends to approximately 0.7680. Calculating these asymptotic values for the
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natural extension to ‘c-tuplets’ for c > 2, is a harder problem, and I shall provide some

bounds.

A further interesting generalization, due to Preater [68], was an attempt to find an

algorithm that was successful on all posets of a given size with positive probability. Sur-

prisingly, he proved that there is such a ‘universal’ algorithm (depending only on the

size of the poset), which is successful on every poset with probability at least 1
8
. In this

algorithm, an initial random number of elements are rejected and a subsequent element is

accepted according to randomized criteria. A slightly modified version of the algorithm,

also suggested by Preater, was analysed by Georgiou, Kuchta, Morayne and Niemiec [36],

and gave an improved lower bound of 1
4

for the probability of success. More recently,

Kozik [54] introduced a ‘dynamic threshold strategy’ and showed that it was successful

with probability at least 1
4

+ ε, for some ε > 0 and for all sufficiently large posets. When

I was about to submit this dissertation, Micha l Morayne drew my attention to a very

recent paper of Freij and Wästlund [29]. In it, they describe a strategy that is successful

with probability at least 1
e
. This cannot be improved, since the best possible probability

of success in the classical secretary problem, on a totally ordered set, is 1
e
. I shall say

more about this in Section 3.4.

Before Kozik, Freij and Wästlund had published their results, Robert Morris and I [35]

showed that, given any poset, there is an algorithm that is successful with probability at

least 1
e
, so, in this sense, the total order is the hardest possible partial order. I shall

present these results in Chapter 3. In fact, this algorithm depends only on the size of

the poset and its number of maximal elements, so it is universal for any family where

these are given. It is therefore natural to ask which is the hardest partial order with a

given number of maximal elements. The most obvious choice is the poset consisting of

k disjoint chains. I shall give an asymptotically sharp lower bound on the probability of

success in the problem of optimal choice on k disjoint chains, and show that it is at least

as hard as on any poset with k maximal elements and of width k, that is, whose largest

antichain has size k.
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1.4. Formal model and notation

In this section, I shall define formally the probability space in which I shall work in

Chapters 2 and 3.

This probability space will depend on a poset (P,≺) with P = {x1, . . . , xn}. In

Chapter 2, this will be a known poset, the poset of m pairs of identical twins or, later,

m sets of identical c-tuplets. In Chapter 3, this will be a fixed but unknown poset. Let

max≺(P ) denote the set of its maximal elements, that is,

max≺(P ) = {x ∈ P : 6 ∃y such that x ≺ y}.

The subscript in max≺ will be suppressed when it is clear from the context.

Given (P,≺), I shall work with a probability space (ΩP ,FP ,PP ), with EP defined in

the obvious way. The subscripts will be suppressed when they are clear from the context,

as they will be for the rest of this section. The probability space (Ω,F ,P) is defined as

follows. Set Ω = Sn×[0, 1], where Sn is the permutation group on [n], and F = P(Sn)×B,

where B is the Borel σ-algebra. Let P = µ×λ, where µ is the uniform probability measure,

that is,

µ({ρ}) =
1

n!

for all ρ ∈ Sn, and λ is the Lebesgue measure. In other words, (ρ, δ) ∈ Ω is picked

uniformly at random. Given (ρ, δ) ∈ Ω, the ρ-co-ordinate will determine the order in which

elements of P appear and the δ-co-ordinate will allow the introduction of randomness

independent of this order into our algorithms. This will not be needed in Chapter 2; in

Chapter 3, the δ-co-ordinate will determine an initial number of elements to reject without

considering. The reason why continuous space and Lebesgue measure are used, despite

the fact that all of the randomized strategies considered pick one of a finite number of

options, is that this allows them all to lie in the same probability space.

Write P [n] for the set of permutations of P , and let π : Ω → P [n] be the random

variable defined by

π(ρ, δ)(i) = xρ(i).
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Let Pt denote the set of all posets with vertex set [t] = {1, . . . , t}. Let (Pt)t∈[n] be a family

of random variables with Pt representing the poset seen at time t. Formally, Pt : Ω→Pt

and each Pt(ρ, δ) = ([t],≺t) is defined by

∀i, j ∈ [t], i ≺t j ⇐⇒ π(i) ≺ π(j).

The poset Pt is the natural description of what is seen at time t as the elements of P

appear one by one.

Let (Ft)t∈[n] be the sequence of σ-algebras with each Ft generated by the random

variables P1, . . . , Pt, that is,

Ft = σ(P1, . . . , Pt) = σ(Pt),

the second equality holding since Pt is a labelled poset and thus its value determines the

values of P1, . . . , Pt−1. The σ-algebra Ft can be thought of as the information known at

time t about where we are in the universe Ω. Since Pt takes only finitely-many values,

Ft has a simple structure; it is the pre-images in Ω of the possible values of Pt and the

unions of these pre-images. These pre-images are called the atoms of Ft.

Let F ′t be the projection of Ft onto P(Sn). Since definitions have so far depended only

on the ρ-co-ordinate of (ρ, δ) ∈ Ω, it is clear that, for each t,

Ft = {A× [0, 1] : A ∈ F ′t}.

In other words, (ρ1, δ1) and (ρ2, δ2) are in the same atom of Ft if and only if ρ1 and ρ2

are in the same atom of F ′t, which happens if and only if the labelled posets induced by

the first t elements π(1), . . . , π(t) are identical.

A stopping time is a random variable τ taking values in [n] and satisfying the property

{τ = t} ∈ Ft,

that is, the decision to stop at time t is based only on the values of P1, . . . , Pt.

I shall give a brief reminder of the formal definitions of conditional expectation and

probability, which in the finite world are intuitive concepts. For more details, see page 304

of Galambos [30] or page 313 of Chung [23], for example. Let X be a random variable.
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Then the conditional expectation of X given Ft, denoted by E(X|Ft) is any Ft-measurable

random variable satisfying∫
A

E
(
X
∣∣Ft) =

∫
A

X for all A ∈ Ft.

Any two random variables satisfying these conditions are equal with probability 1. As Ft

is finite, this random variable is constant on each atom of Ft and takes the average value

of X on that atom, that is,

E
(
X
∣∣Ft) (ω) =

∫
A
X

P(A)
= E(X|A),

where A is the atom of Ft containing ω. In the same way that the probability of an

event E is the expectation of the indicator function 1(E) of this event, the conditional

probability of E given Ft is defined by

P
(
E
∣∣Ft) = E

(
1(E)

∣∣Ft) ,
that is, since Ft is finite,

P
(
E
∣∣Ft) (ω) = E

(
1(E)

∣∣Ft) (ω) =

∫
A
1(E)

P(A)
=

P(A ∩ E)

P(A)
= P(E|A),

where A is the atom of Ft containing ω.

Define the family of random variables (Zt)t∈[n] by

Zt = P
(
π(t) ∈ max(P )

∣∣Ft) ,
that is, the random variable Zt is the probability that the tth element observed is maxi-

mal given P1, . . . , Pt. The general aim will be to choose stopping times τ to maximize

P
(
π(τ) ∈ max(P )

)
. This quantity is equal to E(Zτ ) (see page 45 of Chow, Robbins and

Siegmund [22], for example):

E(Zτ ) =

∫
Ω

Zτ =
n∑
t=1

∫
{τ=t}

Zt =
n∑
t=1

∫
{τ=t}

P
(
π(t) ∈ max(P )

∣∣Ft)
=

n∑
t=1

∫
{τ=t}

1
(
π(t) ∈ max(P )

)
=

∫
Ω

1
(
π(τ) ∈ max(P )

)
= P

(
π(τ) ∈ max(P )

)
,
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the fourth equality holding by the definition of conditional expectation since {τ = t} ∈ Ft.

These equivalent formulations will be useful later; this conditional probability can be

treated as a pay-off offered at each step of the process.

Recall that F ′t is the projection of Ft onto P(Sn). A randomized stopping time is a

random variable τ taking values in [n] and satisfying the property

{τ = t} ∈ F ′t × B,

that is, the decision to stop at time t is based on the values of P1, . . . , Pt and on some B-

measurable random variable. The randomized stopping times considered in Chapter 3 will

be convex combinations of a finite number of true stopping times, so if such a randomized

stopping time gives a certain probability of success, then there is a true stopping time

with at least that probability of success. In fact, this is true in general, as proved by

Ghoussoub [38].

1.5. Useful theorems

In this section, I shall define backward induction formally and use it to solve the

classical secretary problem. I shall also state a theorem that gives an optimal stopping

time for monotone processes, to be defined later.

The next theorem, which is proved as Theorem 3.2 on page 50 of Chow, Robbins and

Siegmund [22], gives in principle an optimal stopping time for any finite process, although

in practice it might be hard to define such a stopping time more explicitly. It formalizes

the concept of backward induction. Informally, it can be described is as follows.

Define a new random variable for each t, the value of the process at time t. This is the

expected pay-off ultimately accepted given what has happened so far. These values are

calculated inductively, starting at the end. The value of the process at the final step is

just the final pay-off offered. The value of the process at each earlier step is the maximum

of the currently offered pay-off and the expected value of the process at the next step.

An optimal strategy is to stop when the currently offered pay-off is at least the expected

value at the next step.

In the theorem below, the pay-offs offered are the Wt and the values at each step

are the γt. The σ-algebras At represent what is known at time t. As a reminder, being
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At-measurable means that σ(Wt) ⊂ At, that is, the value of Wt is determined by what is

known at time t or, in the finite world, Wt is constant on each atom of At. In fact, the

nested condition means that At ⊃ σ(W1, . . . ,Wt). The conclusion of the theorem is that

the strategy that stops at the first t when Wt = γt (or, equivalently, when Wt is at least

as large as the expected value of γt+1 given At) is indeed a stopping time and achieves

the optimal value.

Theorem 1.1. Let A1 ⊂ . . . ⊂ An be a nested sequence of σ-algebras and let W1, . . . ,Wn

be a sequence of random variables with each Wt being At-measurable. Let C(At) be the class

of stopping times relative to (At)t∈[n] and let v∗ be given by

v∗ = sup
τ∈C(At)

E(Wτ ).

Define successively γn, γn−1, . . . , γ1 by setting

γn = Wn,

γt = max
{
Wt,E

(
γt+1

∣∣At)}, t = n− 1, . . . , 1.

Let

τ ∗ = min{t : Wt = γt}.

Then τ ∗ ∈ C(At) and

E(Wτ∗) = E(γ1) = v∗ ≥ E(Wτ ) for all τ ∈ C(At).

�

This theorem can now be used to justify the assertion in Section 1.2 that an optimal

strategy is of the form “reject the first k candidates, and accept the next who is the best

seen so far.” Recall from Section 1.4 that

Zt = P
(
π(t) ∈ max(P )

∣∣Ft) ,
that is, the probability that the tth candidate is the best one given what is known at this

point. Backward induction will be applied with the Zt corresponding to the Wt, with Ft

to Gt and with δt to γt.
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Since the random variables Zt are independent, the values of Z1, . . . , Zt give no infor-

mation about the values of Zt+1, . . . , Zn, and therefore E(δt+1|Ft) is constant on all atoms

of Ft and equal to E(δt+1). Therefore, define the function v : [n]→ R by

v(t) = E(δt)

and note that backward induction tells us that the stopping time that stops at the first t

such that Zt ≥ E(δt+1|Ft) = v(t+ 1) is optimal. By definition,

v(t) = E
(

max{Zt, v(t+ 1)}
)
≥ v(t+ 1),

whereas t
n
, the potential non-zero value of Zt, is a non-decreasing function of t. Therefore,

there exists k such that

t

n
< v(t+ 1) if t ≤ k,

t

n
≥ v(t+ 1) if t > k,

and an optimal strategy is “reject the first k candidates, and accept the next who is the

best seen so far,” as claimed.

In fact, this argument is not even necessary, as the classical secretary problem is a

sufficiently straightfoward process that backward induction can be used to give an explicit

optimal strategy. This is because in this case the δt can be calculated explicitly, as in the

next lemma, and these define an optimal strategy.

Lemma 1.2. For all t ≤ n, if
n∑
i=t

1

i
≤ 1,

then

E
(
δt
∣∣Ft−1

)
=
t− 1

n

n−1∑
i=t−1

1

i
,

that is, it is the constant random variable taking that value; otherwise,

E
(
δt
∣∣Ft−1

)
= E

(
δt+1

∣∣Ft) .
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Proof. By definition, δn = Zn and so

E
(
δn
∣∣Fn−1

)
=

1

n
=
n− 1

n
· 1

n− 1
.

For t ≤ n− 1, if

t

n
≥ t

n

n∑
i=t

1

i
= E

(
δt+1

∣∣Ft) ,
then

E
(
δt
∣∣Ft−1

)
= P

(
Zt ≥ E

(
δt+1

∣∣Ft) ) · E(Zt∣∣∣(Zt ≥ E(δt+1|Ft)
))

+ P
(
Zt < E

(
δt+1

∣∣Ft) ) · E(E(δt+1|Ft)
∣∣∣(Zt < E(δt+1|Ft)

))
(1.1)

=
1

t
· t
n

+
t− 1

t
· t
n

n−1∑
i=t

1

i

=
t− 1

n

n−1∑
i=t−1

1

i
.

If

t

n
<
t

n

n∑
i=t

1

i
= E

(
δt+1

∣∣Ft) ,
then, from the formula in (1.1), it is the case that

E
(
δt
∣∣Ft−1

)
= 0 · t

n
+ 1 · E

(
δt+1

∣∣Ft)
= E

(
δt+1

∣∣Ft) .
�

This lemma and the backward induction theorem clearly give the same optimal stop-

ping time as before: accept the tth candidate if he or she is the best so far and
∑n

i=t
1
i
> 1.

The other main tool used in Part 1 of this dissertation is the most basic result for

infinite processes. It is used in Chapter 2 for the reason that the twins case will be reduced

to a process that, although finite, does not have a fixed number of steps, and so backward

induction is inappropriate. The following theorem is slightly adapted from that on page

55 of Chow, Robbins and Siegmund [22], since the random variables of interest are all

positive.
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This theorem applies only to the monotone case, and monotonicity is a strong pro-

perty: it is the property that, after the first time in the process where the currently

offered pay-off is at least the expected pay-off at the next step, the same is true at all

future times. The conclusion of the theorem is that the first time when this is true is an

optimal stopping time.

Theorem 1.3. Let A1 ⊂ A2 ⊂ . . . be a nested sequence of σ-algebras and let W1,W2, . . .

be a sequence of random variables with each Wt being At-measurable. Let C(At) be the class

of stopping times relative to (At)t∈[n]. For t ∈ N, let

At =
{
E
(
Wt+1

∣∣At) ≤ Wt

}
.

and suppose that

A1 ⊂ A2 ⊂ . . . and
∞⋃
t=1

At = Ω. (1.2)

Let

τ ∗ = min
{
t : Wt ≥ E

(
Wt+1

∣∣At)}.
Suppose that P(τ ∗ <∞) = 1 and E(Wτ∗) exists and that

lim inf
t

∫
{τ∗>t}

Wt = 0.

Then

E(Wτ∗) ≥ E(Wτ ) for all τ ∈ C(At).

�

If equation (1.2) holds then the process (Wt,At)t∈[n] is said to be monotone.





CHAPTER 2

How to choose the best twins

2.1. Introduction

Sections 2.1 to 2.5 of this chapter are based on joint work with Micha l Morayne

and Grzegorz Kubicki [34], but with some significant reorganization of its presentation,

particularly in Section 2.3. Sections 2.6 and 2.7 are my own work.

The poset initially considered in this chapter is the set of m pairs of identical twins.

This can also be viewed as a version of the classical secretary problem where each element

is seen exactly twice. The Hasse diagram of this poset is Figure 2.1.
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Figure 2.1. The poset (U ∪ V,≺) for m = 5.

In Section 2.6, the poset considered is the natural extension to m sets of identical

c-tuplets. The main results of this chapter are summarized in the following theorems.

Theorem 2.1. For m ∈ N, let

km = min

{
k :

2m

k
+

m−1∑
j=k

1

j
≤ 5

}
.

An optimal strategy for the secretary problem on m pairs of identical twins is to wait until

candidates have been seen from at least km of the pairs and then to pick the next candidate

who is the best so far and whose twin has already been seen. Asymptotically,

lim
m→∞

km
m

=
1

x0

≈ 0.4709,

27
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where x0 is the unique solution to 2x+ log x = 5, and the probability of success tends to

1

x0

+
4(x0 − 1)2

3x0

((
x0

x0 − 1

) 1
2

− 1

)
≈ 0.7680.

Theorem 2.2. For c,m ∈ N with c ≥ 2, let

k(c)
m = min

{
k :

m−k∑
j=1

[(
m−j−1
k−1

)(
m−1
k−1

) j∏
i=2

(
1− 1(

ci
c

))] ≤ 1

}
.

An optimal strategy for the secretary problem on m sets of identical c-tuplets is to wait

until candidates have been seen from at least k
(c)
m of the c-tuples and then to pick the next

candidate who is the best so far and all of whose c-tuplets have already been seen. For all

m, (
1

2
− c+ 1

2(2c+1(c− 1)− c− 1)

)
m < k(c)

m ≤
⌈m

2

⌉
,

and the probability of success is at least

1− c+ 1

2c(c− 1)
.

At first, it might seem surprising that the secretary problem is easier in the twins

case than on the total order, since there are fewer comparisons that can be made and so

apparently less information. However, this is reconciled by the fact that if we attempt to

compare two candidates then there are three possible outcomes rather than two, which

gives us more information. Similarly, viewing the twins case as having two chances with

each candidate makes it intuitive that it should be easier, which is correct.

Most of the notation used is as described in Section 1.4, and in Section 2.2 I shall

describe the notation used specifically for the twins case. In Section 2.3, I shall use the

monotone case theorem (Theorem 1.3) to find an optimal strategy for this problem and

in Section 2.4 I shall give a formula for its probability of success. In Section 2.5, I shall

describe the asymptotic behaviour of the threshold in the definition of the optimal strategy

given and of the probability of success. I shall adapt the earlier method in Section 2.6 to

find an optimal strategy and its probability of success for the natural generalization to

c-tuplets, and give some bounds that illustrate their behaviour. Finally, in Section 2.7, I
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shall state what work there is still to be done in this case and suggest some other posets

that one might wish to consider.

2.2. Notation and basic definitions

In this section, I shall define the poset consisting of m pairs of identical twins explicitly,

as I shall refer to it in this way in the rest of the chapter.

Consider a set consisting of two chains U = {u1, . . . , um} and V = {v1, . . . , vm} with

u1 and v1 being maximal elements. For every i with 1 ≤ i ≤ m, the elements ui and vi

are incomparable. An element with a smaller subscript is higher then an element with a

larger subscript, that is,

ui ≺ vj if i > j and vj ≺ ui if i < j.

The elements ui and vi are referred to as the twins at level i. The Hasse diagram of this

partial order (U ∪ V,≺) for m = 5 is given in Figure 2.1.

Suppose that the elements of U ∪ V are observed one by one in the order given by a

random permutation π, with all (2m)! permutations of U∪V equally likely. For every time

t with 1 ≤ t ≤ 2m, we observe the partial order induced by the set {π(1), π(2), . . . , π(t)}.

As an example, suppose that we have a permutation

π = (u3, v2, u1, v3, u5, v1, u4, v5, v4, u2).

The induced orders observed for π up to t = 6 are given in Figure 2.2.

The goal is to choose the presently observed element to maximize the probability

that this element is either u1 or v1, that is, one of the two maximal elements of the

poset (U ∪ V,≺). In other words, we are looking for the stopping time τ such that

P
(
π(τ) ∈ {u1, v1}

)
is maximal. The function τ , the optimal stopping time, depends itself

on π. The decision at time t is based exclusively on the induced partial orders observed

until time t and the order of appearance of their elements. For example, if the stopping

time tells us to stop on the third element of the permutation given in Figure 2.2, then

using this function we have to stop at time t = 3 for all permutations of U ∪ V whose

first three elements have strictly decreasing subscripts.
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Figure 2.2. Induced orders when π = (u3, v2, u1, v3, u5, v1, u4, v5, v4, u2)
for 1 ≤ t ≤ 6.

2.3. The optimal stopping time

In this section, I shall use the monotone case theorem to find an optimal stopping

time for the process.

Define recursively the following stopping times:

τi = min
{
t > τi−1 : π(t) ∈ max{π(1), π(2), . . . , π(t)} and

{π(1), π(2), . . . , π(t− 1)} contains the twin of π(t)
}
,

with the assumptions that τ0 = 0 and if the set under the minimum is empty, then its

minimum is 2m. Recall that the twins come from m levels, with the elements ui and vi

referred to as the twins at level i. Let

km = min

{
k :

2m

k
+

m−1∑
j=k

1

j
≤ 5

}

and let

τ = min{τi : the number of levels occupied by π(1), π(2), . . . , π(τi) is at least km},

with the assumption that if the set under minimum is empty, then τ = 2m.

Theorem 2.3. The stopping time τ is optimal.
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Clearly, we should not consider stopping unless the currently observed element is

maximal. Furthermore, if we are yet to see its twin then we should continue: if it is from

level 1, then we shall have seen elements from at least as many levels by the time we

see its twin and so shall be at least as confident that it is from level 1; if it is not from

level 1, then we have a chance of finding this out by observing an element from a higher

level. Thus, in order to maximize P (π(τ) ∈ {u1, v1}), it is necessary to consider only such

stopping times τ whose values coincide with some τi’s.

Define the random variables

Lt = level of the element π(t).

Recall from Section 1.4 that

Zt = P
(
π(t) ∈ {u1, v1}

∣∣Ft) = P
(
Lt = 1

∣∣Ft) .
The main aim is to show that the process (Zτi ,Fτi)i∈N is monotone (see equation (1.2)),

so that Theorem 1.3 can be applied. First note that if τi = 2m then τi+1 = 2m and

E
(
Zτi+1

∣∣Fτi) = Zτi , so it is only necessary to consider those i for which τi < 2m. For the

rest of this section it will therefore be assumed that τi is a maximal element whose twin

has already been seen, and that there are still some unseen elements.

A result is needed about the probability of success of the simple stopping time τ1.

When using τ1, we stop at the first opportunity when we see a second twin who is maximal

at that moment. Denote this probability by P (m). Interestingly, the next lemma says

that even the most naive strategy is successful with probability greater than 2
3
, which is

much better than the corresponding 1
n

for the total order on n elements.

Lemma 2.4. For the stopping time τ1 the probability of success is equal to

P (m) =
2m+ 1

3m
.

Proof. Observe that

P
(
Lτ1 = 1

∣∣L1 = 1
)

= 1,
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since π(τ1) can only be maximal at time τ1 if it is from a level at most L1. I shall prove

by induction on l that

P
(
Lτ1 = 1

∣∣L1 = l
)

=
2

3

for all l ≥ 2, from which the result follows, since then

P (m) = P
(
Lτ1 = 1

)
=

m∑
l=1

P
(
Lτ1 = 1

∣∣L1 = l
)
· P
(
L1 = l

)
=

1

m

(
1 +

2

3
(m− 1)

)
=

2m+ 1

3m
.

If l = 2, then the claim is true, since the second twin from level 2 and the two twins

from level 1 are identically distributed, and we win if and only if the first of these three to

appear is from level 1. Now suppose that l > 2 and consider the level of the next element

to appear from a level at most L1, at time τ ′, say. If 1 < Lτ ′ < l, then the situation is

the same as if π(τ ′) were the first element chosen, and by the induction hypothesis

P
(
Lτ1 = 1

∣∣{L1 = l} ∩ {1 < Lτ ′ < l}
)

=
2

3
.

Otherwise, we win if and only if one of the two twins from level 1 appears before the

second twin from level l. Since these three are identically ditstributed, it is the case that

P
(
Lτ1 = 1

∣∣{L1 = l} ∩ {1 < Lτ ′ < l}c
)

=
2

3
.

Thus, in either case, the probability is 2
3
, and the claim is proved. �

I shall use the following combinatorial identity, which arises from consideration of

the classical secretary problem, to simplify the formulae in the definition of the optimal

stopping time and, later, its probability of success.

Lemma 2.5. For all 1 ≤ k ≤ m− 1,

m−k∑
j=1

1

j
·
(
m−j−1
k−1

)(
m
k

) =
k

m

m−1∑
j=k

1

j
.

Proof. The proof proceeds by showing that both sides are equal to the probability of

success in the classical secretary problem using the strategy: “reject the first k elements,
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and accept the next maximal element observed.” Let W be the event that the best

candidate is chosen.

LHS. For 0 ≤ j ≤ m− k, let Bj be the event that the highest of the first k elements

observed is at level j + 1. This means that there are m − j − 1 levels available for the

remaining k − 1 elements. Let Cj be the event that the maximum element is the first

element seen out of the highest j elements. Then Bj and Cj are independent, and

P(W ) =
m−k∑
j=1

P(Bj)P(W |Bj)

=
m−k∑
j=1

P(Bj)P(Cj)

=
m−k∑
j=1

(
m−j−1
k−1

)(
m
k

) · 1

j
.

RHS. For k ≤ j ≤ m − 1, let Dj be the event that the (j + 1)th element observed is

the maximal element of the chain, and let Ej be the event that the highest of the first j

elements observed is in the first k observed. Then Dj and Ej are independent, and

P(W ) =
m−1∑
j=k

P(Dj)P(W |Dj)

=
m−1∑
j=k

P(Dj)P(Ej)

=
m−1∑
j=k

1

m
· k
j
.

Thus the lemma is proved. �

Let Nk(i) denote the event that at time τi the number of levels occupied by the

elements π(1), π(2), · · · , π(τi) is equal to k. Note that Nk(i) ∈ Fτi . The next two lemmas

find the values that, when compared, determine whether or not a process is monotone.

Lemma 2.6. For all ω ∈ Nk(i),

Zτi(ω) =
k

m
.



34 2. HOW TO CHOOSE THE BEST TWINS

Proof. Elements from different levels are equally likely to appear in any position in

the random order. Therefore, when k levels have been observed, the probability that one

of them is the highest level is k
m

, independent of the most recently observed element being

from the highest level seen so far. �

Lemma 2.7. For all ω ∈ Nk(i),

E
(
Zτi+1

∣∣Fτi) (ω) =
2

3
+

k

3m

(
m−1∑
j=k

1

j
− 2

)
.

Proof. Let

E =

∫
A

E
(
Zτi+1

∣∣Fτi) ,
where A ∈ Fτi is the atom containing ω. By the definition of conditional expectation, it

is sufficient to show that

E =

(
2

3
+

k

3m

(
m−1∑
j=k

1

j
− 2

))
P(A).

It is the case that

E =

∫
A

Zτi+1
=

∫
A

1
(
Lτi+1

= 1
)

= P
(
{Lτi+1

= 1} ∩ A
)

=
m−k∑
j=1

P
(
{Lτi+1

= 1} ∩ {Lτi = j + 1} ∩ A
)

=
m−k∑
j=1

P
(
Lτi+1

= 1
∣∣{Lτi = j + 1} ∩ A

)
· P
(
Lτi = j + 1

∣∣A) · P(A).

As the probability of getting an element from the highest level at time τi+1 does not

depend on the pattern of the levels up to the time τi, and as A provides only a certain

pattern how to put elements on any chosen k levels, it follows that, by Lemma 2.4,

E =
m−k∑
j=1

2j + 1

3j
·
(
m−j−1
k−1

)(
m
k

) · P(A)

=

(
m−k∑
j=1

2

3
·
(
m−j−1
k−1

)(
m
k

) +
m−k∑
j=1

1

3j

(
m−j−1
k−1

)(
m
k

) )
P(A)
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and, by Lemma 2.5,

E =

(
2

3
·
(
m−1
k

)(
m
k

) +
1

3

m−1∑
j=k

1

j

(
m−1
k−1

)(
m
k

) )P(A)

=

(
2

3
· m− k

m
+

1

3
· k
m

m−1∑
j=k

1

j

)
P(A),

which proves the lemma. �

Let Ai =
{
E
(
Zτi+1

∣∣Fτi) ≤ Zτi

}
be the event that the pay-off offered at time τi is at

least the expected value of the pay-off at time τi+1.

Lemma 2.8. For all ω ∈ Nk(i), it is the case that ω ∈ Ai if and only if

2m

k
+

m−1∑
j=k

1

j
≤ 5.

Proof. Let ω ∈ Nk(i). Then, by Lemmas 2.6 and 2.7, it is the case that ω ∈ Ai if

and only if

2

3
+

k

3m

(
m−1∑
j=k

1

j
− 2

)
= E

(
Zτi+1

∣∣Fτi) (ω) ≤ Zτi(ω) =
k

m
,

which gives the result. �

The proof that τ is an optimal stopping time can now be completed.

Proof of Theorem 2.3. It is sufficient to show that the process (Zτi ,Fτi)i∈N is

in the monotone case, that is, that Ai ⊂ Ai+1 for each i; the monotone case theorem

(Theorem 1.3) then says that τ is optimal.

Let ω ∈ Ai and let k be the number of levels observed at time τi, so that ω ∈ Nk(i).

Then, by Lemma 2.8, the inequality

2m

k
+

m−1∑
j=k

1

j
≤ 5

holds. At time τi+1 we must have seen more than k levels, and the left-hand side of the

inequality decreases as k increases, and so ω ∈ Ai+1. �
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2.4. The probability of success

In this section, I shall work out a formula for the probability of success when using an

optimal stopping time.

Theorem 2.9. When using the optimal stopping time τ , the probability of success

equals

P
(
Lπ(τ) = 1

)
=

1

3m

[
2m+ km −

(
km −

km−1∑
s=0

s∏
r=1

2(m− km + r)

2(m− km + r) + 1

)(
3−

m−1∑
j=km

1

j

)]
.

(2.1)

It is not surprising that evaluating the threshold produces a formula involving the

harmonic series that cannot be expressed in closed form; a similar phenomenon occurs in

the solution of the classical secretary problem.

For a permutation π ∈ S(U ∪ V ), let

τπ = min
{
t : π(1), π(2), . . . , π(t) occupy exactly km levels

}
.

Set

M1 =
{

poset
〈
π(1), π(2), . . . , π(τπ)

〉
has exactly one maximal element

}
and

M2 =
{

poset
〈
π(1), π(2), . . . , π(τπ)

〉
has exactly two maximal elements

}
.

I shall begin by proving the following lemma.

Lemma 2.10.

P(M1) =
1

km

km−1∑
s=0

s∏
r=1

2(m− km + r)

2(m− km + r) + 1
. (2.2)

Proof. In the proof of this lemma, the levels will be referred to in the order in which

they are observed (1, 2, . . . , km), not their positions in the poset. Some of the elements

will come from the same level as earlier elements, so one or two elements from each of

these km levels will have been observed.

Let τπ(j) be the smallest t such that π(1), π(2), . . . , π(t) occupy exactly j levels (so,

in particular, τπ = τπ(km)). For i ≤ j, let Bi(j) be the event that exactly one of
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π(1), π(2), . . . , π
(
τπ(j)

)
occupies the ith level, that is, at the first moment when j le-

vels have been seen, exactly one element has been seen from the ith level. Note that

P
(
Bi(i)

)
= 1 for all i, and also that, for i ≤ km, the events are nested in the sequence

Bi(i) ⊃ Bi(i+ 1) ⊃ . . . ⊃ Bi(km). Thus

P
(
Bi(km)

)
= P

(
Bi(i) ∩Bi(i+ 1) ∩ . . . ∩Bi(km)

)
= P

(
Bi(i)

)
P
(
Bi(i+ 1)

∣∣Bi(i)
)
. . .P

(
Bi(km)

∣∣Bi(km − 1)
)
.

The probability P
(
Bi(j + 1)

∣∣Bi(j)
)

is easy to calculate. Indeed, suppose we are at

time τπ(j), having observed elements from j levels including exactly one element from

the ith level. There are 2(m − j) elements occupying levels not yet observed, and for

Bi(j + 1) we require that one of these is observed before the second element from the ith

level. These 2(m− j) + 1 elements are identically distributed, so by symmetry

P
(
Bi(j + 1)

∣∣Bi(j)
)

=
2(m− j)

2(m− j) + 1
.

Thus

P
(
Bi(km)

)
= P

(
Bi(i)

)
P
(
Bi(i+ 1)

∣∣Bi(i)
)
. . .P

(
Bi(km)

∣∣Bi(km − 1)
)

=
km−1∏
r=i

2(m− r)
2(m− r) + 1

=
km−i∏
r=1

2(m− km + r)

2(m− km + r) + 1
,

following the convention that the empty product has value 1.

Let Ci be the event that the ith level observed is the highest level observed by time

τπ, and let Di be the event that both Bi(km) and Ci hold, that is, that by time τπ exactly

one element has been observed from the ith level and it is the highest observed so far.

Note that the levels are equally likely to be observed in any order, so P(Ci) = 1
km

, and
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that Bi(km) and Ci are independent, so

P(Di) = P
(
Bi(km) ∩ Ci

)
= P

(
Bi(km)

)
P(Ci)

=
1

km

km−i∏
r=1

2(m− km + r)

2(m− km + r) + 1
.

Note finally that M1 is the disjoint union of the Dis, so

P(M1) = P(D1) + P(D2) + . . .+ P(Dkm)

=
km∑
i=1

1

km

km−i∏
r=1

2(m− km + r)

2(m− km + r) + 1

=
1

km

km−1∑
s=0

s∏
r=1

2(m− km + r)

2(m− km + r) + 1
,

and the lemma is proved. �

The proof of the formula for the probability of success can now be completed.

Proof of Theorem 2.9. For each integer j with 2 ≤ j ≤ m− km + 2, define M j
1 to

be the subevent of M1 where a second best element of 〈π(1), π(2), . . . , π(τπ)〉 is on level

j. These subevents form a partition of M1 and

P(M j
1 ) = P

(
M j

1

∣∣M1

)
P(M1) =

(
m−j
km−2

)
(j − 1)(
m
km

) P(M1).

Similarly, for each integer j with 1 ≤ j ≤ m − km + 1, define M j
2 to be the subevent of

M2 where the maximal elements of 〈π(1), π(2), . . . , π(τπ)〉 are on level j. These subevents

form a partition of M2 and

P(M j
2 ) = P

(
M j

2

∣∣M2

)
P(M2) =

(
m−j
km−1

)(
m
km

) (1− P(M1)
)
.

Given M j
2 , the probability of success when using τ , which tells us to stop at the next

τi, is equal to 2(j−1)+1
3(j−1)

, the probability of success when we use the simple stopping time τ1

on the poset consisting of j − 1 pairs of twins above the level j. Similarly, given M j
1 , the

probability of success when using τ is equal to 2(j−1)+1
3(j−1)

, the probability of success when

we use the simple stopping time τ1 on the poset consisting of j − 1 pairs of twins above
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the level j of a second best element obtained so far, and with the maximal element being

treated as the first random element observed in this reduced poset. The term with j = 1

in the second sum below disappears since there is no chance of stopping on a maximal

element in that case. Therefore,

P(Lτ = 1) =
m−km+2∑
j=2

P
(
Lπ(τ) = 1

∣∣M j
1

)
P(M j

1 ) +
m−km+1∑
j=1

P
(
Lπ(τ) = 1

∣∣M j
2

)
P(M j

2 )

=
m−km+2∑
j=2

2(j − 1) + 1

3(j − 1)
·
(
m−j
km−2

)
(j − 1)(
m
km

) P(M1)

+
m−km+1∑
j=2

2(j − 1) + 1

3(j − 1)
·
(
m−j
km−1

)(
m
km

) (1− P(M1)
)
,

which, after changing the index of summation in both sums, becomes

P(Lτ = 1) = P(M1)
m−km+1∑
j=1

2j + 1

3
·
(
m−j−1
km−2

)(
m
km

) +
(
1− P(M1)

)m−km∑
j=1

2j + 1

3j
·
(
m−j−1
km−1

)(
m
km

)
= P(M1)

∑m−km+1
j=1

2j
3

(
m−j−1
km−2

)
+ 1

3

∑m−km+1
j=1

(
m−j−1
km−2

)(
m
km

)
+
(
1− P(M1)

)∑m−km
j=1

2
3

(
m−j−1
km−1

)
+
∑m−km

j=1
1
3j

(
m−j−1
km−1

)(
m
km

) .

Since, by standard combinatorial methods,

m−km+1∑
j=1

j

(
m− j − 1

km − 2

)
=

(
m

km

)
,

m−km+1∑
j=1

(
m− j − 1

km − 2

)
=

(
m− 1

km − 1

)
and

m−km∑
j=1

(
m− j − 1

km − 2

)
=

(
m− 1

km

)
,

and, by Lemma 2.5,

m−km∑
j=1

1

j

(
m− j − 1

km − 1

)
=

(
m− 1

km − 1

) m−1∑
j=km

1

j
,



40 2. HOW TO CHOOSE THE BEST TWINS

it is the case that

P(Lτ = 1) = P(M1)

(
2

3
+

1

3
·
(
m−1
km−1

)(
m
km

) )+
(
1− P(M1)

) 2
3

(
m−1
km

)
+ 1

3

(
m−1
km−1

)∑m−1
j=km

1
j(

m
km

)
= P(M1)

(
2

3
+
km
3m

)
+
(
1− P(M1)

)(2(m− km)

3m
+
km
3m

m−1∑
j=km

1

j

)

=
2m+ km

3m
−
(
1− P(M1)

)(km
m
− km

3m

m−1∑
j=km

1

j

)
,

and substituting in the formula for P(M1) from Lemma 2.10 gives the result. �

2.5. Asymptotics

I shall begin this section with exact evaluations of, and a crude bound for, the threshold

needed for the optimal stopping time τ and the probability of success for m = 7, and then

determine the asymptotic behaviour of those quantities as m→∞.

Example. For m = 7, the threshold km = k7 = 4, since for k = 4 it is the case that

2 · 7
4

+
1

4
+

1

5
+

1

6
=

247

60
≤ 5

but for k = 3 the reverse inequality holds, namely,

2 · 7
3

+
1

3
+

1

4
+

1

5
+

1

6
=

337

60
> 5.

The probability of success is equal to

P(Lτ = 1) =
1

21

[
18−

(
4−

(
1 +

8

9
+

80

99
+

960

1287

))(
3− 37

60

)]
=

3001

3780
≈ 0.7939.

Observation. By the definition of km, one can easily observe that for every m it

must be the case that

km ≤
⌈m

2

⌉
.
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Indeed, if k ≥ m
2

then

2m

k
+

m−1∑
j=k

1

j
≤ 2m

k
+
m− k
k
≤ 5.

The following theorems establish the asymptotic behavior of the threshold km and

the limit of the probability of success as m → ∞. Since m changes here, the optimal

stopping time for the partial order consisting of m twins will be denoted by τ (m). Denote

the unique solution of the equation 2x+ log x = 5 by x0, so that x0 ≈ 2.12347.

Theorem 2.11. The threshold km satisfies

m

x0

< km <
m

x0

+ 2

for all m ∈ N. In particular,

lim
m→∞

km
m

=
1

x0

≈ 0.4709.

Proof. By the definition of km from Theorem 2.9, it is the case that km satisfies the

inequality

5 ≥ 2m

km
+

m−1∑
j=km

1

j
>

2m

km
+ log

(
m

km

)
,

the latter inequality by a simple integration argument. Since 2x + log x is an increasing

function, it must be the case that

m

km
< x0.

On the other hand, km − 1 does not satisfy the condition, so a similar argument yields

5 <
2m

km − 1
+

m−1∑
j=km−1

1

j
<

2m

km − 1
+ log

(
m− 1

km − 2

)
<

2m

km − 2
+ log

(
m

kn − 2

)

and hence

m

km − 2
> x0.

Thus

m

x0

< km <
m

x0

+ 2,

as required. �

I shall now turn to the asymptotic probability of success.
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Theorem 2.12. The probability of success when using optimal stopping time τ (m)

satisfies

lim
m→∞

P(Lπ(τ (m)) = 1) =
1

x0

+
4(x0 − 1)2

3x0

((
x0

x0 − 1

) 1
2

− 1

)
≈ 0.7680.

The proof uses the following lemma, which gives the asymptotic value of the expression

in (2.2). As with τ (m), the notation P
(
M

(m)
1

)
is used to emphasize the dependence on m.

Lemma 2.13. The probability of M
(m)
1 occurring satisfies

lim
m→∞

P
(
M

(m)
1

)
= 2(x0 − 1)

((
1 +

1

x0 − 1

) 1
2

− 1

)
.

Proof. Recall from Lemma 2.10 that P(M
(m)
1 ) is given by

P
(
M

(m)
1

)
=

1

km

km−1∑
s=0

s∏
r=1

2(m− km + r)

2(m− km + r) + 1
.

Write f(s) for the summand, that is,

f(s) =
s∏
r=1

(
1− 1

2(m− km + r) + 1

)
,

and consider log(f(s)):

log(f(s)) =
s∑
r=1

log

(
1− 1

2(m− kn + r) + 1

)

= −
s∑
r=1

(
1

2(m− km + r) + 1
+

1

2

(
1

2(m− km + r) + 1

)2

+ . . .

)
.

For sufficiently largem, Theorem 2.11 shows that km
m
< 1

2
, and hence that 1

2(m−km+r)+1
< 1

m

for all r. Thus, since s < m, the expression log(f(s)) is bounded by

−
s∑
r=1

1

2(m− km + r) + 1
−
(

1

2m
+

1

3m2
+ . . .

)
< log(f(s)) < −

s∑
r=1

1

2(m− km + r) + 1

and hence by

−
s∑
r=1

1

2(m− km + r) + 1
−
(

1

m
+

1

2m2
+ . . .

)
< log(f(s)) < −

s∑
r=1

1

2(m− km + r) + 1
.

(2.3)
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The sum can be bounded further by integrals. Note that 1
2x

is a decreasing function

and obtain∫ s+1
m

1
m

1

2
(
1− km

m
+ 1

2m
+ x
)dx ≤

s∑
r=1

1

2(m− km + r) + 1
≤
∫ s

m

0

1

2
(
1− km

m
+ 1

2m
+ x
)dx

and hence

1

2
log

(
1 +

s

m− km + 3
2

)
≤

s∑
r=1

1

2(m− km + r) + 1
≤ 1

2
log

(
1 +

s

m− km + 1
2

)
. (2.4)

Exponentiating (2.3) and substituting in the bounds in (2.4) gives(
1− 1

m

)(
1 +

s

m− km + 1
2

)− 1
2

< f(s) <

(
1 +

s

m− km + 3
2

)− 1
2

.

Noting that f(s) is a decreasing function, the same technique is used to bound

P
(
M

(m)
1

)
= 1

km

∑km−1
s=0 f(s), which gives

∫ 1

0

(
1− 1

m

)(
1 +

x
m
km
− 1 + 1

2km

)− 1
2

dx < P
(
M

(m)
1

)
<

∫ 1− 1
km

− 1
km

(
1 +

x
m
km
− 1 + 3

2km

)− 1
2

dx

and hence

2

(
1− 1

m

)(
m

km
− 1 +

1

2km

)((
m+ 1

2

m− km + 1
2

) 1
2

− 1

)

< P
(
M

(m)
1

)
<

2

(
m

km
− 1 +

3

2km

)((
m+ 1

2

m− km + 3
2

) 1
2

−
(

1− 1

m− km + 3
2

) 1
2

)
.

Recalling from Theorem 2.11 that limm→∞
m
km

= x0, take limits as m→∞ and notice

that both sides of this inequality tend to the same limit. Hence,

lim
m→∞

P
(
M

(m)
1

)
= 2(x0 − 1)

((
x0

x0 − 1

) 1
2

− 1

)
,

and the lemma is proved. �

The proof of the asymptotic optimal probability of success can now be completed.
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Proof of Theorem 2.12. A similar integration argument to that in the proof of

Lemma 2.13 gives

lim
m→∞

m−1∑
j=km

1

j
= lim

m→∞
log

(
m

km

)
= log x0 = 5− 2x0.

Substituting these limiting values into the equation for success (2.1),

P(Lτ = 1) =
1

3m

[
2m+ km −

(
km −

km−1∑
s=0

s∏
r=1

2(m− km + r)

2(m− km + r) + 1

)(
3−

m−1∑
j=km

1

j

)]
,

and writing L = limm→∞ P
(
Lτ (m) = 1

)
gives

L =
1

3

[
2 +

1

x0

−

(
1

x0

− 1

x0

· 2(x0 − 1)

[(
x0

x0 − 1

) 1
2

− 1

])(
3− (5− 2x0)

)]

=
1

x0

+
4(x0 − 1)2

3x0

((
x0

x0 − 1

) 1
2

− 1

)
,

as required. �

2.6. How to choose the best c-tuplets

The posets most closely related to the one considered in this chapter are those that

consist of m sets of c-tuplets, that is, with vertex set U1∪. . .∪Uc where Ui = {u1
i , . . . , u

m
i },

for fixed j the uji s are incomparable and for all i1, j1, i2, j2 it is the case that

uj1i1 ≺ uj2i2 if and only if j1 > j2.

In this section, I shall give an explicit optimal strategy and a formula for the probability

of its success. Finding their asymptotic behaviour is an open problem, although I shall

give some bounds that represent progress in that direction.

As with the twins case, the monotone case theorem can be used to find an explicit

optimal strategy. Where it is unambiguous, I shall use notation from earlier in this chapter

in this slightly different context without comment. Similarly to before, let

τ
(c)
i = min

{
t > τ

(c)
i−1 : π(t) ∈ max{π(1), π(2), . . . , π(t)} and

{π(1), π(2), . . . , π(t− 1)} contains all the c-tuplets of π(t)
}
,
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with the assumptions that τ
(c)
0 = 0 and if the set under the minimum is empty, then its

minimum is cm.

To begin with, Lemma 2.4 can be generalized in the following way, where τ
(c)
1 is the

stopping time that stops at the first element that is maximal so far and all of whose

c-tuplets have been seen.

Lemma 2.14. For the stopping time τ
(c)
1 the probability of success is equal to

Pc(m) =
m∏
i=2

(
1− 1(

ci
c

)) .
Proof. For 2 ≤ i ≤ m, let Ni be the event that an element from level i is not chosen.

Then

Pc(m) = P
(
N2 ∩ . . . ∩Nm

)
= P

(
Nm

)
P
(
Nm−1

∣∣Nm

)
. . .P

(
N2

∣∣N3 ∩ . . . ∩Nm

)
.

Conditioned on Ni+1 ∩ . . . ∩ Nm, an element from level i will be selected if and only if

the c elements from this level all come before the c(i − 1) elements from the i − 1 levels

above. Hence,

P
(
Ni

∣∣Ni+1 ∩ . . . ∩Nm

)
= 1− 1(

ci
c

) ,
and the result follows. �

This gives rise to an optimal stopping time. Similarly to before, let

k(c)
m = min

{
k :

m−k∑
j=1

[(
m−j−1
k−1

)(
m−1
k−1

) j∏
i=2

(
1− 1(

ci
c

))] ≤ 1

}

and let

τ (c) = min
{
τ

(c)
i : the number of levels occupied by π(1), π(2), . . . , π(τi) is at least k(c)

m

}
,

with the assumption that if the set under the minimum is empty then its minimum is cm.

Theorem 2.15. The stopping time τ (c) is optimal for the secretary problem on m sets

of identical c-tuplets.
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Proof. The proof of this using the monotone case theorem is essentially the same as

in Section 2.3. �

Calculating the probability of success is slightly hard work algebraically, but follows

broadly similar lines to the twins case. As then, let

Lt = level of the element π(t).

I shall use the multinomial coefficient notation(
m

r1, . . . , rc,m− r1 − . . .− rc

)
to denote the number of ways of choosing c distinguishable sets of sizes r1, . . . , rc from a

ground set of size m.

Theorem 2.16. The probability that the stopping time τ (c) is successful is

P(Lτ (c) = 1) =
c−1∑
i=1


 ∑
r1+...+rc=k

(c)
m

r1,ri≥1

(
m

r1,...,rc,m−k(c)m

)(
c
1

)r1 . . . (c
c

)rc(
cm

r1+2r2+...+crc

) · r1

r1 + 2r2 + . . .+ crc
· ri
k

(c)
m


k(c)

m

m
+

m−k(c)m +1∑
j=2

( m−j
k
(c)
m −1

)(
m

k
(c)
m

) (1− 1(
cj−i
c−i

)) j−1∏
k=2

(
1− 1(

ck
c

))


+

 ∑
r1+...+rc=k

(c)
m

r1,rc≥1

(
m

r1,...,rc,m−k(c)m

)(
c
1

)r1 . . . (c
c

)rc(
cm

r1+2r2+...+crc

) · r1

r1 + 2r2 + . . .+ crc
· rc
k

(c)
m


m−k(c)m +1∑

j=2

( m−j
k
(c)
m −1

)(
m

k
(c)
m

) j−1∏
k=2

(
1− 1(

ck
c

))
 .

As with the twins case, I shall need a lemma that gives the probability that, at the

first moment when k
(c)
m levels have been seen, exactly i elements have been observed from

the highest level seen. Let Mi be this event.

Lemma 2.17. Let i be an integer with 1 ≤ i ≤ c. Then

P(Mi) =
∑

r1+...+rc=k
(c)
m

r1,ri≥1

(
m

r1,...,rc,m−k(c)m

)(
c
1

)r1 . . . (c
c

)rc(
cm

r1+2r2+...+crc

) · r1

r1 + 2r2 + . . .+ crc
· ri
k

(c)
m

.
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Proof. For r1 + . . .+ rc = k
(c)
m , let Ar1,...,rc be the event that when r1 + 2r2 + . . .+ crc

elements have been seen, the number of levels from which exacly j elements have been seen

is rj, for all j. Out of the
(

cm
r1+2r2+...+crc

)
possible choices for the first r1 + 2r2 + . . . + crc

elements, the number of choices such that Ar1,...,rc holds is as follows. First, there are(
m

r1,...,rc,m−k(c)m

)
choices for the levels with each number of elements seen. Then, for each j

and for each of the rj levels with j elements, there are
(
c
j

)
choices for which of its elements

have been seen. Therefore,

P(Ar1,...,rc) =

(
m

r1,...,rc,m−k(c)m

)(
c
1

)r1 . . . (c
c

)rc(
cm

r1+2r2+...+crc

) .

Now let Br1,...,rc be the event that the number of levels from which exacly j elements

have been seen is rj, for all j, at the first moment when k
(c)
m levels have been observed.

Then Br1,...,rc is only a non-empty event if r1 ≥ 1 and in that case Br1,...,rc occurs if and

only if Ar1,...,rc occurs and the last element observed is one of the singletons. By symmetry,

the singletons are equally likely to be in any position in the first r1+2r2+. . .+crc elements,

and therefore

P
(
Br1,...,rc

∣∣Ar1,...,rc) =
r1

r1 + 2r2 + . . .+ crc
.

Finally, let Cr1,...,rc be the event that Br1,...,rc holds and that exactly i elements have

been seen from the highest level. The highest level is equally likely to be any of the

r1 + . . .+ rc = k
(c)
m levels chosen, and so

P
(
Cr1,...,rc

∣∣Br1,...,rc

)
=

ri

k
(c)
m

.

For Mi to occur, there must be at least one level from which only one element has

been seen (the last one observed), and at least one level from which exactly i elements

have been seen (the highest one). Subject to these restrictions, if Mi occurs then Cr1,...,rc

occurs for some choice of r1, . . . , rc with r1 + . . . + rc = k
(c)
m , and the Cr1,...,rc are disjoint
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and all lie within Mi. Therefore,

P(Mi) =
∑

r1+...+rc=k
(c)
m

r1,ri≥1

P(Cr1,...,rc)

=
∑

r1+...+rc=k
(c)
m

r1,ri≥1

(
m

r1,...,rc,m−k(c)m

)(
c
1

)r1 . . . (c
c

)rc(
cm

r1+2r2+...+crc

) · r1

r1 + 2r2 + . . .+ crc
· ri
k

(c)
m

,

as required. �

Let M j
i be the event that at the first moment when k

(c)
m levels have been seen, there

have been i elements from the highest level seen and that level is level j. Lemma 2.14

can easily be modified to give the following lemma, which gives the probability of success

conditioned on M j
i for all possible i and j.

Lemma 2.18. (1) For i with 1 ≤ i ≤ c− 1,

P
(
Lτ (c) = 1

∣∣M1
i

)
= 1.

(This is the case where 1 ≤ i ≤ c− 1 and j = 1.)

(2) For i, j with 1 ≤ i ≤ c− 1 and 2 ≤ j ≤ m− k(c)
m + 1,

P
(
Lτ (c) = 1

∣∣M j
i

)
=

(
1− 1(

cj−i
c−i

)) j−1∏
k=2

(
1− 1(

ck
c

)) .
(This is the case where 1 ≤ i ≤ c− 1 and 2 ≤ j ≤ m− k(c)

m + 1.)

(3)

P
(
Lτ (c) = 1

∣∣M1
c

)
= 0.

(This is the case where i = c and j = 1.)

(4) For j with 2 ≤ j ≤ m− k(c)
m + 1,

P
(
Lτ (c) = 1

∣∣M j
c

)
=

j−1∏
k=2

(
1− 1(

ck
c

)) .
(This is the case where i = c and 2 ≤ j ≤ m− k(c)

m + 1.)

�

The proof of the formula for the probability of success can now be completed.
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Proof of Theorem 2.16. By the same argument as in the proof of Theorem 2.9,

it is the case that

P(M j
i ) =

( m−j
k
(c)
m −1

)(
m

k
(c)
m

) P(Mi)

=

( m−j
k
(c)
m −1

)(
m

k
(c)
m

) ∑
r1+...+rc=k

(c)
m

r1,ri≥1

(
m

r1,...,rc,m−k(c)m

)(
c
1

)r1 . . . (c
c

)rc(
cm

r1+2r2+...+crc

) · r1

r1 + 2r2 + . . .+ crc
· ri
k

(c)
m

.

The events
{
M j

i : 1 ≤ i ≤ c, 1 ≤ j ≤ m− k(c)
m + 1

}
partition the space and thus

P (Lτ (c) = 1) =
c∑
i=1

m−k(c)m +1∑
j=1

P
(
Lτ (c) = 1

∣∣M j
i

)
P
(
M j

i

)
,

and the proof is completed using Lemma 2.18. �

Recall that

k(c)
m = min

{
k :

m−k∑
j=1

[(
m−j−1
k−1

)(
m−1
k−1

) j∏
i=2

(
1− 1(

ci
c

))] ≤ 1

}
.

The following lemma will be helpful for finding bounds for k
(c)
m .

Lemma 2.19. For all integers c ≥ 2, and for all positive integers k and m with k ≤ m,

it is the case that(
1− c+ 1

2c(c− 1)

)(m
k
− 1
)
<

m−k∑
j=1

[(
m−j−1
k−1

)(
m−1
k−1

) j∏
i=2

(
1− 1(

ci
c

))] ≤ m

k
− 1.

Proof. For the upper bound, first observe that the value of the product is at most

one. By standard combinatorial arguments,

m−k∑
j=1

(
m− j − 1

k − 1

)
=

(
m− 1

k

)

and so
m−k∑
j=1

(
m−j−1
k−1

)(
m−1
k−1

) =
m− k
k

=
m

k
− 1,

which gives the upper bound.
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For the lower bound, first observe that(
ci

c

)
=
ci

c
· ci− 1

c− 1
· . . . · ci− c+ 1

1
≥ ic.

Therefore,

j∏
i=2

(
1− 1(

ci
c

)) > 1−
∞∑
i=2

i−c

> 1− 1

2c
−
∫ ∞
i=2

x−cdx (2.5)

= 1− c+ 1

2c(c− 1)
.

Since this bound is independent of j, it can be treated as a constant factor and the sum

evaluated as before, and the lower bound follows. �

The reason that in (2.5) I bounded the sum only from i = 3, rather than the whole

sum, was just to make the upper and lower bounds exponentially close. If I had not done

so, then the first factor in the lower bound in Lemma 2.19 would have been 1− 1
c−1

, and

the first factor in the lower bound in the next theorem would have been 1
2
− 1

2(2c−3)
.

Theorem 2.20. For all integers c ≥ 2 and m ≥ 1, it is the case that(
1

2
− c+ 1

2(2c+1(c− 1)− c− 1)

)
m < k(c)

m ≤
⌈m

2

⌉
.

In particular, for all m ≥ 1,

lim
c→∞

k(c)
m =

⌈m
2

⌉
.

Proof. If

k ≤
(

1

2
− c+ 1

2(2c+1(c− 1)− c− 1)

)
m =

1− c+1
2c(c−1)

2− c+1
2c(c−1)

m,

then, by Lemma 2.19,

m−k∑
j=1

[(
m−j−1
k−1

)(
m−1
k−1

) j∏
i=2

(
1− 1(

ci
c

))] > (1− c+ 1

2c(c− 1)

)(m
k
− 1
)
≥ 1,

and the lower bound follows.
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If

k ≥ m

2
,

then, by Lemma 2.19,

m−k∑
j=1

[(
m−j−1
k−1

)(
m−1
k−1

) j∏
i=2

(
1− 1(

ci
c

))] ≤ m

k
− 1 ≤ 1,

and the upper bound follows. �

A lower bound for the probability of success comes from observing that the proof of

Lemma 2.19 bounds the probability of success of the simple stopping time τ1 given in

Lemma 2.14 by

Pc(m) ≥ 1− c+ 1

2c(c− 1)
,

and an optimal stopping time must do at least as well. This argument is equivalent to

bounding the products in the formula for the probability of success in Theorem 2.16.

c 1
2
− c+1

2(2c+1(c−1)−c−1)
k

(c)
100 k

(c)
1000 limm→∞

k
(c)
m

m
1− c+1

2c(c−1)
w

(c)
100 limm→∞w

(c)
m

1 - 38 369 0.3679 - 0.3708 0.3679
2 0.2000 48 471 0.4709 0.2500 0.7697 0.7680
3 0.4286 50 493 ? 0.7500 0.9354 ?
4 0.4725 50 499 ? 0.8958 ? ?
5 0.4880 50 500 ? 0.9531 ? ?
6 0.4945 50 500 ? 0.9781 ? ?
7 0.4974 50 500 ? 0.9896 ? ?
8 0.4987 50 500 ? 0.9950 ? ?
9 0.4994 50 500 ? 0.9976 ? ?

10 0.4997 50 500 ? 0.9988 ? ?

Figure 2.3. A table showing bounds for and exact and asymptotic values

of k
(c)
m and w

(c)
m = P(Lτ (c) = 1) for small values of c.

For convenience and to emphasise the dependence on m, for given c and m let

w(c)
m = P(Lτ (c) = 1)

be the probability of success of τ (c) on m sets of c-tuplets. Figure 2.3 summarizes the

bounds from this section, and gives exact values of k
(c)
100, k

(c)
1000 and w

(c)
100, calculated using
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Maple™ 13. Unfortunately, the formula in Theorem 2.16 is too complicated to be calcu-

lated efficiently for anything but small c; similarly, these values of m are near the limit of

what I could calculate.

2.7. Open problems

I shall first summarize the main goals for the c-tuplets case.

(1) Simplify the formula for the probability of success in Theorem 2.16.

(2) For fixed c, prove that limm→∞
k
(c)
m

m
exists.

(3) If limm→∞
k
(c)
m

m
exists, find its value as the root of an equation or as a function of

limm→∞
k
(c−1)
m

m
.

(4) For fixed c, prove that limm→∞w
(c)
m exists.

(5) If limm→∞w
(c)
m exists, find its value as the root of an equation or as a function of

the value for limm→∞w
(c−1)
m .

I have already shown that for any fixed m,

lim
c→∞

k(c)
m =

⌈m
2

⌉
and

lim
c→∞

w(c)
m = 1,

which gives the values of

lim
c→∞

lim
m→∞

k
(c)
m

m

and

lim
c→∞

lim
m→∞

w(c)
m

if they exist.

In this chapter, I have assumed that the aim is to pick the best candidate. It is almost

certainly a harder problem, as with the original secretary problem, to try to minimize

the expected rank instead. Alternatively, the full information case would be interesting

to study; here, m random samples would be taken from a known distribution and each

replicated c− 1 times, and all cm of these values revealed to the selector one by one.



2.7. OPEN PROBLEMS 53

Inspired further by the results in Chapter 1, one could allow the interviewer to go

back to an earlier candidate, who is still available with a certain probability, or assume

that the number of sets of c-tuplets is unknown but comes from a known distribution.

A modification of the c-tuplets poset that might be worth thinking about is a ‘pyramid’

with i candidates at level i. It seems likely that this would lie between the classical

secretary problem and the twins version in terms of difficulty. It is also natural to try to

solve the problem of optimal choice, or any of these variations, on other common posets,

for example

(1) Qk = {0, 1}k, where (x1, . . . , xk) ≺ (y1, . . . , yk) if (x1, . . . , xk) 6= (y1, . . . , yk) and

xi ≤ yi for 1 ≤ i ≤ k,

(2) [m]2, where (x1, x2) ≺ (y1, y2) if (x1, x2) 6= (y1, y2) and xi ≤ yi for i = 1, 2, or

even

(3) [m]k, where (x1, . . . , xk) ≺ (y1, . . . , yk) if (x1, . . . , xk) 6= (y1, . . . , yk) and xi ≤ yi

for 1 ≤ i ≤ k, which includes both of the previous examples.





CHAPTER 3

The secretary problem on an unknown poset

3.1. Introduction

This chapter is based on joint work with Robert Morris [35], and is substantially the

same as the paper.

In this chapter, I shall show that for the problem of optimal choice on any poset there

is an algorithm that is successful with probability at least 1
e
, so, in this sense, the total

order is the hardest possible partial order. In fact, this algorithm depends only on the size

of the poset and its number of maximal elements, so it is universal for any family where

these are given. It is therefore natural to ask which is the hardest partial order with a

given number of maximal elements. The most obvious choice is the poset consisting of

k disjoint chains. I shall give an asymptotically sharp lower bound on the probability of

success in the problem of optimal choice on k disjoint chains, and show that it is at least

as hard as on any poset with k maximal elements and of width k, that is, whose largest

antichain has size k.

More precisely, the main aim is to prove the following two theorems.

Theorem 3.1. Let (P,≺) be a poset with k maximal elements and of width k. Then

there is an algorithm for the secretary problem on (P,≺) depending only on |P | and k

that is successful with probability at least pk, where

pk =


1
e

if k = 1,

k−1

√
1
k

if k > 1,

(3.1)

and these are the best possible such bounds.

Theorem 3.2. Let (P,≺) be a poset with k maximal elements. Then there is an

algorithm for the secretary problem on (P,≺) depending only on |P | and k that is successful

with probability at least 1
e
, and this is the best possible such bound.

55
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Robert Morris and I conjectured that both of these theorems can be improved, by

removing the width condition in Theorem 3.1 and the dependence on k in Theorem 3.2;

see Conjectures 3.20 and 3.21 in Section 3.4.

The poset consisting of k disjoint chains was considered by Kuchta and Morayne [56],

but with a restriction on the order in which the elements are observed: those from the

first chain all appear in a random order, then those from the second chain, and so on.

This poset is also related to multicriteria extensions of the secretary problem. In the

multicriteria version due to Gnedin [41], each element is ranked independently in k > 1

different criteria, and the selector wishes to select an element that is maximal in at least

one of them. This is equivalent to the problem on k equally-sized disjoint chains with the

elements appearing one at a time from each chain in the same cyclic order. Interestingly,

the asymptotic value of the probability of success in Theorem 3.1, k−1

√
1
k
, is the same as

in the multicriteria version.

This chapter is organized as follows. In Section 3.2, I shall describe a (randomized)

algorithm for choosing an element of a given poset, and prove lower bounds for its pro-

bability of success on various families of posets. In Section 3.3, I shall show that these

bounds are best possible, by proving that, for the poset that consists of k disjoint chains

of length x (which lies in each of these families), there is no strategy that is successful with

probability greater than pk + o(1) (as x→∞). Finally, I shall suggest some conjectures

and open problems in Section 3.4.

3.2. Lower bounds

Throughout this section, p is a real number satisfying 0 < p < 1. Recall that π(t) is

the tth element of the poset P that we see, and that Pt is a poset with vertex set [t] that

is isomorphic to the poset seen at time t. I shall prove lower bounds for the probability

of success of the following randomized algorithm on different families of posets.

Algorithm. Given a poset with n elements, of which k are maximal, let X(p) ∼

Bin(n, p). Reject the first X(p) elements and accept the first subsequent element where

the following condition holds: the poset induced by the elements seen so far (including the
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currently observed element) has at most k maximal elements and the currently observed

element is one of them.

This algorithm gives rise to the following randomized stopping time, τk(p).

Recall that Ω = Sn × [0, 1] and that P is the uniform probability measure on Ω. Let

X(p) : Ω→ {0, . . . , n} be the random variable defined by

X(p)(ρ, δ) = min

{
x ≥ 0 :

x∑
i=0

(
n

i

)
pi(1− p)n−i ≥ δ

}
,

so that

P
(
X(p) = x

)
=

(
n

x

)
px(1− p)n−x

and X(p) = X(p)(ρ, δ) is independent of ρ. Then τk(p) is defined by

τk(p) =


min

{
t > X(p) : |max(Pt)| ≤ k and t ∈ max(Pt)

}
if this exists,

n otherwise.

Given the definition of τk(p), it makes sense to consider another random variable, the

set of X(p) elements that we reject without considering. Denote this random variable by

S(p), where

S(p) = {π(t) : t ≤ X(p)}.

The following simple property of S(p) is important. It means that one can think of

the algorithm as rejecting each element of P with probability p, independently of the

others and of the random ordering π, which makes it easier to work out a formula for the

probability that it is successful.

Lemma 3.3. The events {x ∈ S(p)}x∈P are independent and P
(
x ∈ S(p)

)
= p for all

x ∈ P .

Proof. The random variables π and X(p) can be generated with the required dis-

tributions in the following way. Put each element of P in S(p) with probability p in-

dependently of all other elements. Let π consist of a uniformly random ordering of the

elements of S(p) followed by a uniformly random ordering of P \S(p). By symmetry, π is
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a uniformly random ordering of P , and X(p) = |S(p)| is a binomial random variable inde-

pendent of π. The events {x ∈ S(p)}x∈P depend only on π and X(p), and by construction

the properties in the statement of the lemma hold. �

The following identity will be useful for simplifying the formula for the probability of

success.

Lemma 3.4. For all integers k ≥ 1, the following holds:

∞∑
s=0

(
k + s− 1

k − 1

)
(1− p)s =

1

pk
.

Proof. Suppose that we have a coin that comes up heads with probability p and tails

with probability 1− p, and that we toss it infinitely many times. Then, with probability

1, we shall see at least k heads, and the kth head comes up in position k + s for some

s ≥ 0. In this case, we know that k − 1 of the first k + s − 1 tosses are heads and the

remaining s are tails, and so, summing over the probabilities that the kth head comes in

each position, we have
∞∑
s=0

(
k + s− 1

k − 1

)
pk(1− p)s = 1.

�

In order to prove Theorem 3.1, I shall first calculate a lower bound for the probability

that τk(p) is successful on the poset consisting of k disjoint chains. Recall that p is a real

number satisfying 0 < p < 1 and that π
(
τk(p)

)
is the element that the algorithm τk(p)

selects.

Theorem 3.5. Let (P,≺) be a poset consisting of k disjoint chains. Then

P
(
π
(
τk(p)

)
∈ max(P )

)
>


p log

(
1
p

)
if k = 1,

k
k−1

p(1− pk−1) if k > 1.

Proof. First note that π
(
τk(p)

)
∈ max(P ) in the exceptional case where S(p) = P

and π
(
τk(p)

)
= π(n) ∈ max(P ), an event with probability k

n
pn. This tends to 0 as n→∞,

and the bounds in the theorem are obtained by considering only the cases where X(p) < n
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and hence π
(
τk(p)

)
6∈ S(p). However, later on, in the proof of Lemma 3.11, the fact that

these bounds are for a slightly smaller event will be important.

s
s
s
s
s

pppi
i
i

s
s
s
s
s
s

pppi
i

p p p
s
s
s
s

ppp
i

6

?

6

?

m1

jk

C1 C2 Ck

Figure 3.1. An example of k disjoint chains with the elements of S(p) cir-
cled. This illustrates an instance of the event A0,3,...,1. The region enclosed
by the solid curve marks the j1 + . . .+ jk elements that might be selected.

Let the k chains be denoted by C1, . . . , Ck and have lengths m1, . . . ,mk. Let Aj1,...,jk

be the event that for each i there are ji elements from Ci not in S(p) above the highest

element from Ci in S(p) (see Figure 3.1), that is,

Aj1,...,jk =
k⋂
i=1

{ ∣∣∣{x ∈ Ci\S(p) :6 ∃y ∈ Ci ∩ S(p) such that x ≺ y
}∣∣∣ = ji

}
.

For ji < mi, this means that the top ji elements are not in S(p) but the (ji + 1)th is.

For ji = mi, this means that there are no elements from the ith chain in S(p). Note that

if Aj1,...,jk occurs then π
(
τk(p)

)
will be the first element observed from the j1 + . . . + jk

elements not in S(p) that are at the tops of their chains.

The events
{
Aj1,...,jk : 0 ≤ j1 ≤ m1, . . . , 0 ≤ jk ≤ mk

}
partition the whole space.

Thus, writing Qk(p) for P
(
π
(
τk(p)

)
∈ max(P )

)
,

Qk(p) =
∑

0≤j1≤m1,...,0≤jk≤mk

P
(
π
(
τk(p)

)
∈ max(P )

∣∣∣Aj1,...,jk)P (Aj1,...,jk)

>
∑

0≤j1≤m1,...,0≤jk≤mk
(j1,...,jk)6=(0,...,0)

|{i : ji > 0}|
j1 + . . .+ jk

(1− p)j1+...+jkp|{i:ji<mi}|. (3.2)
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Since 1 + (1− p) + (1− p)2 + . . . = 1
p
, this can be written as

Qk(p) >
∑

0≤j1≤m1,...,0≤jk≤mk
(j1,...,jk) 6=(0,...,0)

|{i : ji > 0}|
j1 + . . .+ jk

(1− p)j1+...+jkpk(1 + (1− p) + (1− p)2 + . . .)|{i:ji=mi}|

=
∑

j1,...,jk≥0
(j1,...,jk) 6=(0,...,0)

|{i : ji > 0}|
min{j1,m1}+ . . .+ min{jk,mk}

(1− p)j1+...+jkpk

>
∑

j1,...,jk≥0
(j1,...,jk) 6=(0,...,0)

|{i : ji > 0}|
j1 + . . .+ jk

(1− p)j1+...+jkpk.

Rewriting the last line as a sum over r = |{i : ji > 0}| and s = j1 + . . .+ jk gives

Qk(p) >
k∑
r=1

∞∑
s=r

∣∣∣{(j1, . . . , jk) :
∣∣{i : ji > 0}

∣∣ = r and j1 + . . .+ jk = s
}∣∣∣ · r

s
(1− p)spk.

The rest of the proof is a straightforward calculation. To calculate

∣∣∣{(j1, . . . , jk) :
∣∣{i : ji > 0}

∣∣ = r and j1 + . . .+ jk = s
}∣∣∣ ,

we note that there are
(
k
r

)
ways of choosing the indices i with ji > 0 and there are then(

s−1
r−1

)
ways for r non-zero numbers to add up to s. Thus

Qk(p) >
k∑
r=1

∞∑
s=r

(
k

r

)(
s− 1

r − 1

)
r

s
(1− p)spk = kpk

k∑
r=1

∞∑
s=r

(
k − 1

r − 1

)(
s− 1

r − 1

)
1

s
(1− p)s.

Reversing the order of summation,

Qk(p) > kpk
∞∑
s=1

1

s
(1− p)s

min{k,s}∑
r=1

(
s− 1

r − 1

)(
k − 1

k − r

)
.

The second sum is easily evaluated (a result known as Vandermonde’s identity) to give

Qk(p) > kpk
∞∑
s=1

1

s
(1− p)s

(
k + s− 2

k − 1

)
. (3.3)

It remains to evaluate the sum in the above inequality. Write

Vk(p) =
∞∑
s=1

1

s
(1− p)s

(
k + s− 2

k − 1

)
.
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Differentiating, and then applying Lemma 3.4, gives

dVk(p)

dp
= −

∞∑
s=1

(1− p)s−1

(
k + s− 2

k − 1

)
= − 1

pk
.

Integrating gives

Vk(p) =


− log p+ c1 if k = 1,

1
(k−1)pk−1 + ck if k > 1,

where the ck are constants. Since the expressions above are continuous in p in the interval

(0, 1], limits as p→ 1 exist and may be used to find ck and deduce that

Vk(p) =
∞∑
s=1

1

s
(1− p)s

(
k + s− 2

s− 1

)
=


log
(

1
p

)
if k = 1,

1
k−1

(
1

pk−1 − 1
)

if k > 1.

Substituting the value of Vk(p) into (3.3) gives the result. �

In order to extend the result above to posets whose width is the same as their number of

maximal elements, I shall use Dilworth’s theorem [24] (see also page 81 of Bollobás [11]):

Theorem 3.6. A poset with largest antichain of size k can be covered by k chains. �

In the next theorem, I shall show that the secretary problem is no harder on a poset

with k maximal elements and width k than on a poset consisting of k disjoint chains.
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p
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Figure 3.2. An example of k disjoint chains with one extra comparison,
and with elements of S(p) circled. The region enclosed by the solid curve
marks the elements that might be selected. The element in the dotted
region could have been selected if the extra comparison were not there (cf.
Figure 3.1).
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Theorem 3.7. Let (P,≺) be a poset with n elements. Suppose that (P,≺) has k

maximal elements and that none of its antichains has size greater than k. Then

P
(
π
(
τk(p)

)
∈ max(P )

)
>


p log

(
1
p

)
if k = 1,

k
k−1

p(1− pk−1) if k > 1.

Proof. Dilworth’s theorem (Theorem 3.6) implies that P takes the form of k chains

with some comparisons in between them. Clearly, the k elements of max(P ) lie at the

top of the k chains. The proof therefore proceeds in an almost identical manner to that

of Theorem 3.5. The only difference is that the denominator in each term of (3.2) is now

at most, rather than equal to, j1 + . . . + jk (see Figure 3.2), so the expression in this

line is still a lower bound. The calculations that make up the remainder of the proof of

Theorem 3.5 therefore follow in the same way. �

The values that maximize the function in Theorem 3.7 are

pk =


1
e

if k = 1,

k−1

√
1
k

if k > 1.

(3.4)

This has the following consequence, which gives the lower bounds in Theorem 3.1.

Corollary 3.8. Let (P,≺) be a poset with n elements. Suppose that (P,≺) has k

maximal elements and that none of its antichains has size greater than k. Then

P
(
π
(
τk(pk)

)
∈ max(P )

)
> pk.

�

It is curious to note that the expected proportion of elements that we reject without

considering is the same as the probability of success; it is not clear to me why this should

be the case.

The next objective is to prove the following theorem, which, with the right choice of

p, will give a lower bound of 1
e

for all posets, as in Theorem 3.2.
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Theorem 3.9. Let (P,≺) be a poset with n elements. Suppose that (P,≺) has k

maximal elements. Then

P
(
π
(
τk(p)

)
∈ max(P )

)
> kpk log

(
1

p

)
.

The proof will use two simple lemmas. The first states that the linear order is the

hardest of all posets with a unique maximal element.

Lemma 3.10. Let (P,≺) be a poset with n elements. Suppose that (P,≺) has exactly

one maximal element. Then the probability that τ1(p) is successful on (P,≺) is at least

the probability that it is successful on a linear extension of P , and hence

P
(
π
(
τk(p)

)
∈ max(P )

)
> p log

(
1

p

)
.

Proof. Begin by taking an arbitrary linear extension of ≺, that is, a partial order

≺′ such that any two elements are comparable and such that x ≺ y ⇒ x ≺′ y. (It is clear

that such a partial order exists.) Denote the unique element in max≺(P ) = max≺′(P ) by

xmax.

Given this new poset, (P,≺′), define random variables π′, X ′(p), S ′(p) and τ ′1(p) in

the same way as π, X(p), S(p) and τ1(p) were defined given (P,≺). Couple the random

variables
(
π,X(p), S(p), τ1(p)

)
and

(
π′, X ′(p), S ′(p), τ ′1(p)

)
in the obvious way; set π′ = π

and X ′(p) = X(p), and hence S ′(p) = S(p). This means that the elements appear in

the same order in both instances, and the same set S(p) is rejected in both cases. The

induced posets observed in the process on (P,≺′) are linear extensions of those observed

in the process on (P,≺). The proof proceeds by showing that if π
(
τ1(p)

)
6= xmax then

π′
(
τ ′1(p)

)
6= xmax, that is, if τ1(p) fails in the process on (P,≺) then τ ′1(p) fails on (P,≺′).

From this, the result follows, since the probability of success is therefore at least as large

on (P,≺) as on (P,≺′), and Theorem 3.5 applied to (P,≺′) gives the lower bound.

If we reach xmax then it will be accepted, since it must be the unique maximal element

in the poset induced by the elements observed so far. Thus π
(
τ1(p)

)
6= xmax if either

(i) xmax ∈ S(p) or

(ii) after rejecting S(p), we accept an element that appears earlier than xmax.
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In case (i), τ ′1(p) must fail on (P,≺′) for the same reason, since S ′(p) = S(p). In case (ii),

such an element must be the unique maximal element of the poset induced by what we

have seen so far, and this is still the case in any linear extension. Therefore, with τ ′1(p), if

this element is observed then it must be accepted, and so we still accept an element that

appears earlier than xmax. It follows that in either case π′
(
τ ′1(p)

)
6= xmax. �

The next lemma gives a lower bound for the probability of success restricting our

attention to the case when all but one of the maximal elements of our poset are in S(p).

This turns out to be enough to prove Theorem 3.9.

Lemma 3.11. Let (P,≺) be a poset with n elements. Suppose that (P,≺) has k maximal

elements. Then

P
(
π
(
τk(p)

)
∈ max(P )

∣∣∣|max(P ) ∩ S(p)| = k − 1
)
>

p

1− p
log

(
1

p

)
.

Proof. First observe that we may assume that k = 1, for the following reason. The

condition that |max(P ) ∩ S(p)| = k − 1 means that the k − 1 maximal elements in

max(P ) ∩ S(p) will be maximal for the remainder of the process, so when using τk(p)

these and all elements dominated by at least one of these may be ignored, and a unique

maximal element from the remaining elements will be selected. Those elements form

a poset (P ′,≺′) with a unique maximal element xmax, which is not in S(p). Since all

elements are in S(p) with probability p independently of the others, the situation is the

same as if we were working with (P ′,≺′) and conditioning on xmax 6∈ S(p). Looking for

one of at most k maximal elements in P using τk(p) is the same as looking for a unique

maximal element in P ′ using τ1(p).

Assume from now on that k = 1; Lemma 3.10 will be used to prove the result in

this case. Lemma 3.10 used the bound from Theorem 3.5, and recall from the proof of

that theorem that the lower bound for P
(
π
(
τ1(p)

)
= xmax

)
is in fact a lower bound for

P
(
{S(p) 6= P} ∩

{
π
(
τ1(p)

)
= xmax

})
.

Set

M = {xmax ∈ S(p)}
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and

W = {S(p) 6= P} ∩
{
π
(
τ1(p)

)
= xmax

}
.

Note that if S(p) 6= P and xmax ∈ S(p) then π
(
τ1(p)

)
6= xmax and hence W ⊂ M c.

Therefore,

P(W ) = P(W ∩M c) = P(M c)P(W |M c) = (1− p)P(W |M c).

Since, by the bound from Lemma 3.10,

P(W ) > p log

(
1

p

)
,

and the quantity that we are interested in is P(W |M c), the result follows. �

The theorem can now be proved.

Proof of Theorem 3.9. It is clear that

P
(
|max(P ) ∩ S(p)| = k − 1

)
= kpk−1(1− p).

Thus, for general k,

P
(
π
(
τk(p)

)
∈ max(P )

)
> P

(
π
(
τk(p)

)
∈ max(P )

∣∣∣|max(P ) ∩ S(p)| = k − 1
)

· P
(
|max(P ) ∩ S(p)| = k − 1

)
>

p

1− p
log

(
1

p

)
· kpk−1(1− p)

= kpk log

(
1

p

)
,

as required. �

This theorem has the following consequence. The probability e−
1
k is chosen to maxi-

mize the function in Theorem 3.9 and gives the lower bound in Theorem 3.2. As described

in Chapter 1, it is well-known that 1
e

is the best possible lower bound for the probability of

success in the classical secretary problem, and so this completes the proof of Theorem 3.2.
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Corollary 3.12. Let (P,≺) be a poset with n elements of which k are maximal.

Then

P
(
π
(
τk

(
e−

1
k

))
∈ max(P )

)
>

1

e
.

�

3.3. Upper bound

In this section, I shall show that the bound in Corollary 3.8 is best possible. The

proof of Theorem 3.5 shows that the probability of success of the stopping time τk(pk) on

k disjoint chains decreases towards the given lower bound as the chains increase in length.

This might suggest that the probability of success of an optimal strategy is reduced as

the chains increase in length and thus, to prove that the bounds are best possible, one

should consider chains of length tending to infinity. The main theorem in this section,

Theorem 3.13, does just that; for sufficiently long chains, the probability of success of

an optimal stopping time can be made arbitrarily close to that in Corollary 3.8, and so

τk(pk) is asymptotically optimal. Since the poset consisting of k disjoint chains satisfies

the conditions of Corollary 3.8, the bounds given are the best possible such bounds.

Define Dk(x) to be the poset consisting of k disjoint chains, each of size x. It might

be useful at this point to recall some definitions from Section 1.4. The probability space

associated with the poset Dk(x) is denoted by (ΩDk(x),FDk(x),PDk(x)), but the subscripts

are suppressed when they are clear from the context. The poset induced by the first t

elements observed is isomorphic to the random variable Pt, which is a poset on vertex

set [t], and Ft is the σ-algebra generated by P1, . . . , Pt, which represents what is known

at time t. A stopping time is a random variable τ taking values in [n] and satisfying the

property

{τ = t} ∈ Ft.

Let C(Ft) denote the class of all such stopping times, and extend this notation to any

sequence of σ-algebras in the analogous way.

The aim is to find an upper bound for E(Zτ ) that holds for all stopping times τ , where

Zt = P
(
π(t) ∈ max

(
Dk(x)

)∣∣∣Ft) .
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Theorem 3.13 states that, as x → ∞, the limit of the probability of success of an

optimal stopping time on Dk(x) is no greater than pk. Since Corollary 3.8 showed the

existence of a stopping time with probability of success at least pk, Theorem 3.13 shows

that this is the best possible such bound and so gives Theorem 3.1.

Theorem 3.13. Let pk be as defined in (3.4). Then

lim
x→∞

sup
τ∈C(Ft)

EDk(x)(Zτ ) ≤ pk.

Note that the supremum is over stopping times in C(Ft), which means that we are

allowed to use the extra information from the structure of the posets, not just the pay-

offs that we are offered.

The following observation is important and so is recorded as a lemma.

Lemma 3.14. When (P,≺) = Dk(x), it is the case that

Zt =


y
x

if t ∈ max(Pt), π(t) ∈ C and |C ∩ {π(1), . . . , π(t)}| = y,

0 if t 6∈ max(Pt),

where C is one of the k chains in Dk(x).

Proof. The maximal element of a chain C is equally likely to be at any position in

the order in which its x elements are observed. Therefore, when y elements have been

observed from this chain, the probability that one of them is the maximal element is y
x
,

independent of the most recently observed element being maximal. �

The proof of Theorem 3.13 will proceed roughly as follows. At time t we expect to have

seen approximately t
k

elements from each chain. Therefore, since all orders are equally

likely, the tth element observed is maximal in what has been seen so far with probability

approximately 1
t/k

= k
t
. By Lemma 3.14, if this happens then it is a maximal element of

Dk(x) with probability approximately t
kx

. Therefore, Zt is approximately distributed as

Zt =


t
kx

with probability k
t
,

0 with probability 1− k
t
.

(3.5)
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If Zt were distributed exactly like this with the Zt all independent of each other, then

the proof would not be difficult to complete. Since the potential non-zero value of Zt

increases with t, it is straightforward to show (as in the classical secretary problem; more

details will be given later in this section) that an optimal strategy is, for some I, to ignore

the first I elements and accept the next non-zero Zt. I will denote the associated stopping

time by τI and make some rough calculations. This is only an outline of the more precise

argument that will be given later; in particular, ≈ is only intended to have an intuitive

meaning and does not stand for any well-defined relation. The approximate distribution

of Zt gives

E(ZτI ) =
kx∑

t=I+1

P(τI = t)E
(
Zt
∣∣τI = t

)
≈

kx∑
t=I+1

P
({
Zi = 0 for all i ∈ {I + 1, . . . , t− 1}

}
∩
{
Zt > 0

})
· t
kx

≈
kx∑

t=I+1

(
t−1∏
i=I+1

(
1− k

i

))
· k
t
· t
kx

=
1

x

kx∑
t=I+1

t−1∏
i=I+1

(
1− k

i

)
.

I shall apply this formula in the case where k is much smaller than I, so 1 − k
i

can be

approximated by e−
k
i , and sums are twice approximated by integrals to give

E(ZτI ) ≈
1

x

kx∑
t=I+1

e−
∑t−1
i=I+1

k
i ≈ 1

x

kx∑
t=I+1

e−k log( tI )

=
Ik

x

kx∑
t=I+1

t−k ≈


I
x
· log

(
x
I

)
if k = 1,

k
k−1
· I
kx
·
(

1−
(
I
kx

)k−1
)

if k > 1.

This is the formula in Theorem 3.7 with p = I
kx

and is thus maximized, as in Corol-

lary 3.8, when I
kx

= pk, in which case E(ZτI ) ≈ pk. Therefore the bounds in Corollary 3.8

are best possible, and if these calculations had been exact then the proof of Theorem 3.1

would be complete.

Unfortunately, Zt is not distributed exactly as in (3.5). In order to conclude that an

optimal stopping time is of the simple form above, it would be nice to use the principle of
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backward induction described in Section 1.5. This formalizes the intuitive principle that,

in a finite game, an optimal strategy is simply to analyse at each step whether or not we

expect our situation to improve by continuing, and to do so if and only if this is the case.

The reason why the sequence of random variables (Zt)t∈[n] is difficult to analyse is that

the values they can take vary depending on how the process unfolds. However, it is very

likely that at any time we shall have seen approximately the same number of elements from

each chain. The proof will therefore proceed by defining a sequence of random variables

(Yt)t∈[n], which act as asymptotically almost sure upper bounds for Zt and are easier to

analyse. To obtain these bounds, each chain will be split into m segments, each of length

l, and the process split into m sets of kl observations. These lengths l are margins of error

beyond which the number of elements observed from a chain is not expected to deviate.

Initially, I shall fix m and let l →∞ to find an upper bound for E(Yτ ) and hence E(Zτ )

in terms of m. Letting m→∞ will then give a best possible result.

This means that the precise statement proved for Theorem 3.13 is in fact

lim
m→∞

lim
l→∞

sup
τ∈C(Ft)

EDk(lm)(Zτ ) ≤ pk.

However, this is purely a matter of convenience; it is clear that the proof can be extended

to posets Dk(x) where x is not a multiple of m by dividing each chain into m almost equal

rather than exactly equal segments.

p p p
6

?

6

?

lm

l

l(s− 1)

ls

l(s+ 1)

C1 C2 Ck

Figure 3.3. This figure shows the number of elements observed from each
chain. In this example, after a total of kls elements have been observed we
see that UC1,s and UCk,s hold but UC2,s does not.

It is necessary to show that the process behaves in this approximately uniform manner

with high probability as l → ∞. I shall first define what it means to be approximately



70 3. THE SECRETARY PROBLEM ON AN UNKNOWN POSET

uniform in one particular chain C at time kls, an event called UC,s (see Figure 3.3), and

then what it means to be approximately uniform everywhere at all times, an event called

U .

Given one of the chains, C, and for all s ∈ {0, . . . ,m}, let UC,s be the event that when

we have observed kls elements in total we have observed between l(s − 1) and l(s + 1)

elements from C, that is,

UC,s =
{
l(s− 1) ≤

∣∣∣C ∩ {π(1), . . . , π(kls)}
∣∣∣ ≤ l(s+ 1)

}
.

For all t ∈ {0, . . . , klm}, let s(t) be the unique integer s such that kl(s − 1) < t ≤ kls,

that is,

s(t) =

⌈
t

kl

⌉
. (3.6)

Let U be the event that for all t when we have observed t elements in total we have

observed between l
(
s(t)− 2

)
and l

(
s(t) + 1

)
elements from each chain, that is,

U =
⋂
i,t

{
l
(
s(t)− 2

)
≤
∣∣∣Ci ∩ {π(1), . . . , π(t)}

∣∣∣ ≤ l
(
s(t) + 1

)}
.

I shall use Lemma 3.16, which states that the process is approximately uniform with

high probability and follows easily from Lemma 3.15.

Lemma 3.15. Let m ≥ 1 be an integer, let C be one of the chains in Dk(lm) and let

s ∈ {0, . . . ,m}. Then

lim
l→∞

PDk(lm)(UC,s) = 1.

Proof. I shall show that the probability that we have observed more than l(s + 1)

or fewer than l(s− 1) elements tends to zero as l→∞. (If s = 0 or s = m then only one

of these tails needs to be considered.)

Assume C and s are given. Let N be the number of elements observed from chain C

when kls elements have been observed in total, and write f(x) = P(N = x). Then

f(x) =

(
lm
x

)(
(k−1)lm
kls−x

)(
klm
kls

)
and hence

f(x+ 1)

f(x)
=

(lm− x)(kls− x)

(x+ 1)((k − 1)lm− kls+ x+ 1)
.
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Note that this is a decreasing function in x. Thus, if x ≥ ls, then

f(x+ 1)

f(x)
<
l(m− s)(k − 1)ls

ls(k − 1)l(m− s)
= 1 (3.7)

and, if x+ 1 ≤ ls, then

f(x+ 1)

f(x)
>
l(m− s)(k − 1)ls

ls(k − 1)l(m− s)
= 1. (3.8)

Observe also that, if x ≥ l(s+ 1), then

f(x+ 1)

f(x)
<

(m− s− 1)((k − 1)s− 1)

(s+ 1)((k − 1)(m− s) + 1)
= cs+1 < 1 (3.9)

and, if x+ 1 ≤ l(s− 1), then

f(x+ 1)

f(x)
>

(m− s+ 1)((k − 1)s+ 1)

(s− 1)((k − 1)(m− s)− 1)
=

1

cs−1

> 1, (3.10)

where cs+1 and cs−1 are constants depending on k, m and s but not l.

Since (3.7) and (3.8) imply that f
(
l(s+1)

)
< . . . < f(ls) and f

(
l(s−1)

)
< . . . < f(ls),

it follows that f
(
l(s+ 1)

)
< 1

l
and f

(
l(s− 1)

)
< 1

l
. Finally, (3.9) and (3.10) give

P
(
N > l(s+ 1)

)
<
∞∑
i=0

cis+1

l
=

1

l (1− cs+1)
→ 0 as l→∞

and

P
(
N < l(s− 1)

)
<

∞∑
i=0

cis−1

l
=

1

l (1− cs−1)
→ 0 as l→∞,

which proves the claim. �

Lemma 3.16. Let m ≥ 1 be an integer. Then

lim
l→∞

PDk(lm)(U) = 1.

Proof. This lemma follows simply from the previous lemma: choose l sufficiently

large that each of the k(m+ 1) events UCi,s occurs with probability at least 1− δ. Then,

trivially, all k(m+ 1) events hold with probability at least 1− k(m+ 1)δ. It is easy to see

that ⋂
Ci,s

UCi,s ⊂ U,
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since the the events UCi,s(t)−1 and UCi,s(t) imply that

l
(
s(t)− 2

)
≤
∣∣∣Ci ∩ {π(1), . . . , π(t)}

∣∣∣ ≤ l
(
s(t) + 1

)
,

and so this holds for every t and i, as required. �

The next lemma states that in order to prove Theorem 3.13, it suffices to show that its

statement is true conditioned on U occurring. This formalizes the intuition that, since the

process is asymptotically almost surely uniform (that is, since liml→∞ PDk(lm)(U) → 1),

we may assume that it is uniform.

Recall that C(Ft) is the class of all stopping times relative to the σ-algebras Ft =

σ(P1, . . . , Pt), that is, the decision to stop at time t depends only on P1, . . . , Pt.

Lemma 3.17. For all m,

lim
l→∞

sup
τ∈C(Ft)

EDk(lm)(Zτ ) ≤ lim
l→∞

sup
τ∈C(Ft)

EDk(lm)(Zτ |U).

Proof. By Lemma 3.16, for all ε > 0 the value of l may be chosen sufficiently large

that PDk(lm)(U
c) ≤ ε. By definition, it is also the case that Zt ≤ 1 for all t. Therefore,

for all τ ,

EDk(lm)(Zτ ) = EDk(lm)(Zτ |U)PDk(lm)(U) + EDk(lm)(Zτ |U c)PDk(lm)(U
c)

≤ EDk(lm)(Zτ |U) + ε.

Taking suprema gives

sup
τ∈C(Ft)

EDk(lm)(Zτ ) ≤ sup
τ∈C(Ft)

EDk(lm)(Zτ |U) + ε.

Since ε is arbitrary, the result follows. �

Now that I have shown that the process is asymptotically almost surely uniform, and

in light of the previous lemma, I shall assume that U occurs. The next aim is to find a

process that offers at least the pay-offs that Zt offers but is easier to analyse. This means

that I shall be able to find an upper bound for the probability of success of an optimal

stopping time on this process and hence on Zt.
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I shall now define the random variables Yt that act as upper bounds for the (Zt|U)

and are easier to analyse. These random variables are not strict upper bounds, in the

sense that the random variables are not coupled in any way. However, conditioned on U

occurring, Zt is less than the potential non-zero value of Yt and the probability that Zt

is non-zero is less than the probability that Yt is non-zero, and I shall be able to show

that an optimal strategy for the game on Zt has a lower expected pay-off than an optimal

strategy for the game on Yt.

I shall often need to refer to the potential non-zero value of Yt and the probability

that it takes this value; set

yt =
s(t) + 1

m
and pt =


1

l(s(t)−2)
if s(t) ≥ 3,

1 if s(t) ≤ 2,

where s(t) is as defined in (3.6). Now define a sequence of independent random variables

(Yt)t∈[n] by

Yt =


yt with probability pt,

0 with probability 1− pt.

These will not be explicitly defined on Ω as there is no need, although it is of course

straightforward to do so.

The next lemma states the intuitive principle that we expect to do at least as well

in the game with the random variables Yt as in the game with the random variables

Zt conditioned on U occurring. Analagously to Ft for Zt, let (Gt)t∈[n] be defined by

Gt = σ(Y1, . . . , Yt).

Lemma 3.18. For all l,m ∈ N with m ≥ 3,

sup
τ∈C(Ft)

EDk(lm)(Zτ |U) < sup
τ∈C(Gt)

EDk(lm)(Yτ ).

This will be proved shortly. Putting Lemmas 3.17 and 3.18 together tells us that

lim
l→∞

sup
τ∈C(Ft)

EDk(lm)(Zτ ) ≤ lim
l→∞

sup
τ∈C(Gt)

EDk(lm)(Yτ ).
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The proof of the lemma relies on Theorem 1.1, which was the theorem that formalized

backward induction.

Proof of Lemma 3.18. For convenience, I shall continue to use n to denote the

number of elements in Dk(lm), that is, n = klm. I shall apply Theorem 1.1 to the

sequences (Yt)t∈[n] and (Zt)t∈[n], conditioned on U occurring, to show that the optimal

expected pay-off for (Yt)t∈[n] is at least as large for (Zt)t∈[n].

First consider what happens with the sequence (Yt)t∈[n]. Recall that (Gt)t∈[n] are

defined by Gt = σ(Y1, . . . , Yt) and let (αt)t∈[n] be defined for (Yt)t∈[n] as (γt)t∈[n] were for

(Wt)t∈[n] in the backward induction theorem, that is,

αn = Yn,

αt = max
{
Yt,E

(
αt+1 | Gt

)}
, t = n− 1, . . . , 1.

Since the random variables Yt are independent, the values of Y1, . . . , Yt give no information

about the values of Yt+1, . . . , Yn, and therefore E(αt+1|Gt) is constant on all atoms of Gt

and equal to E(αt+1). Therefore, define the function v : [n]→ R by

v(t) = E(αt)

and note that backward induction tells us that the stopping time that stops at the first t

such that Yt ≥ E(αt+1|Gt) = v(t+ 1) is optimal. By definition,

v(t) = E
(

max{Yt, v(t+ 1)}
)
≥ v(t+ 1),

whereas yt, the potential non-zero value of Yt, is a non-decreasing function of t. Therefore,

there exists I such that

yt < v(t+ 1) if t ≤ I and

yt ≥ v(t+ 1) if t > I,

and an optimal strategy for the game on Yt is ‘reject the first I elements, and accept the

next with a non-zero pay-off.’
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Recall that the distribution of Yt is given by

Yt =


yt with probability pt,

0 with probability 1− pt.

From this, it follows that

v(n) = E(αn) = E(Yn) = pnyn =
m+ 1

m
· 1

l(m− 2)
>

1

lm
=
k

n
(3.11)

and that, for 1 ≤ t ≤ n− 1,

v(t) = E(αt) = E
(

max{Yt,E(αt+1)}
)

=


ptyt + (1− pt)v(t+ 1) if t > I,

v(t+ 1) if t ≤ I.

(3.12)

Now consider the sequence of random variables (Zt)t∈[n]. Since the statement of the

lemma is conditioned on U occurring, define a new sequence of σ-algebras (Ht)t∈[n] by

Ht = σ
(
Ft ∪ {U}

)
and consider only ω ∈ U . Analogously to γt and αt, let

βn = Zn

and, for 1 ≤ t ≤ n− 1, let

βt = max
{
Zt,E

(
βt+1 |Ht

)}
.

Recalling that C(Ft) denotes the class of stopping times relative to Ft, observe that Ft ⊂

Ht, and hence C(Ft) ⊂ C(Ht) and

sup
τ∈C(Ft)

EDk(lm)(Zτ |U) ≤ sup
τ∈C(Ht)

EDk(lm)(Zτ |U).

Note that intuitively this is obvious: it just says that having extra information (that the

event U occurs) can only help in choosing our stopping time τ .
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Recall that E(βt|Ht−1)(ω) denotes the expected value of the game at time t, if we have

so far seen the first t − 1 elements of P and are told whether or not U holds (that is,

whether or not ω ∈ U). I shall prove the following claim by induction on n− t.

Claim. For all ω ∈ U and for all t ∈ [n],

E
(
βt
∣∣Ht−1

)
(ω) < v(t),

where H0 = {∅, U, U c,Ω} and so E(β1|H0)(ω) = E(β1|U).

Proof of claim. First, observe that if ω ∈ U , then

Zt(ω) ≤ yt and P
(
Zt > 0 |Ht−1

)
(ω) ≤ pt,

by Lemma 3.14 and the definition of U . Moreover, by Lemma 3.14 and (3.11),

E
(
βn
∣∣Hn−1

)
=

1

n/k
· 1 =

k

n
< v(n),

which proves the case n− t = 0.

Now let 1 ≤ t ≤ n − 1 and assume that the result holds for t + 1. Since Ht−1 is

finite, the random variable E(βt|Ht−1) is constant on each of its atoms. Given ω ∈ U , let

A ∈ Ht−1 be the atom containing ω, so that

E
(
βt
∣∣Ht−1

)
(ω) = E

(
βt
∣∣A)

= P
(
Zt ≥ E

(
βt+1

∣∣Ht

) ∣∣∣A) · E(Zt∣∣∣(Zt ≥ E(βt+1|Ht)
)
∩ A

)
+ P

(
Zt < E

(
βt+1

∣∣Ht

) ∣∣∣A) · E(E(βt+1|Ht)
∣∣∣(Zt < E(βt+1|Ht)

)
∩ A

)
.

Now,
(
Zt < E(βt+1|Ht)

)
∈ Ht and Ht−1 ⊂ Ht, and so

(
Zt < E(βt+1|Ht)

)
∩ A ∈ Ht. Note

first that, since ω ∈ U and U ∈ Ht−1, it must be the case that A ⊂ U , and second that(
Zt < E(βt+1|Ht)

)
∩ A is non-empty since P

(
Zt < E(βt+1|Ht)

∣∣A) ≥ 1− pt > 0.

For all ω′ ∈
(
Zt < E(βt+1|Ht)

)
∩ A, by the induction hypothesis,

E
(
βt+1

∣∣Ht

)
(ω′) < v(t+ 1)
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and therefore

E
(
βt+1

∣∣∣(Zt < E(βt+1|Ht)
)
∩ A

)
< v(t+ 1).

Moreover,

E
(
Zt

∣∣∣(Zt ≥ E(βt+1|Ht)
)
∩ A

)
≤ yt,

since Zt ≤ yt whenever U holds and A ⊂ U . Since yt ≤ v(t+ 1) if and only if t ≤ I, and

P
(
Zt ≥ E(βt+1|Ht)

∣∣A) ≤ P(Zt > 0|A) ≤ pt < 1, it follows that

E
(
βt
∣∣Ht−1

)
(ω) <


ptyt + (1− pt)v(t+ 1) if t > I,

v(t+ 1) if t ≤ I,

and hence that E
(
βt
∣∣Ht−1

)
(ω) < v(t), by (3.12). This completes the induction step, and

hence proves the claim. �

The lemma follows from the claim, since, by the backward induction theorem (Theo-

rem 1.1), it follows that

sup
τ∈C(Ht)

EDk(lm)(Zτ |U) = E(β1|U) < v(1) = E(α1) = sup
τ∈C(Gt)

EDk(lm)(Yτ ),

as required. �

In the final lemma before the proof of Theorem 3.13, backward induction is used to

show that an optimal stopping time for the process with the Yt takes the simple form

of rejecting the first klu∗ elements, for some integer u∗, and accepting the next non-zero

pay-off.

Lemma 3.19. For u∗ ∈ {0, . . . ,m− 1}, let

τu∗ =


min {t > klu∗ : Yt > 0} if this exists,

n otherwise.

Then

sup
τ∈C(Gt)

EDk(lm)(Yτ ) = sup
u∗∈{0,...,m−1}

EDk(lm)(Yτu∗ )

Proof. It has already been shown in the proof of Lemma 3.18 that an optimal

strategy takes the form ‘ignore the first I, and accept the next non-zero pay-off.’ In
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fact, I must be a multiple of kl: suppose, for contradiction, that I = klu∗ + r, where

r ∈ {1, . . . , kl − 1}. Then it must be the case that

v(I + 1) ≤
kl
(
s(I + 1) + 1

)
m

=
kl(u∗ + 2)

m
,

since we would be willing to stop at time I + 1, but then

v(I) ≤ max

{
kl(u∗ + 2)

m
, v(I + 1)

}
≤ kl(u∗ + 2)

m
=
kl(s(I) + 1)

m
,

which is a contradiction since we would not be willing to stop at time I. �

The proof of the main theorem in this section can now be completed.

Proof of Theorem 3.13. All that remains is to calculate and maximize E(Yτu∗ )

over u∗, where τu∗ is the smallest t > klu∗ such that Yt > 0. These calculations are very

similar to those on page 68, but also include error terms which tend to zero as l,m→∞.

Assume first that u∗ → ∞ as m → ∞, as the calculation will show that this is a

valid assumption. Indeed, if t = o(n) then yt = o(1), whereas a probability of success will

be obtained that is separated from zero. We should therefore never accept a pay-off for

t = o(n). In particular, for sufficiently large m it is the case that u∗ ≥ 3, and so

E (Yτu∗ ) =
m−1∑
u=u∗

kl∑
r=1

P
(
Yklu∗+1 = 0, . . . , Yklu+r−1 = 0, Yklu+r > 0

)
· yklu+r.

Recall that the Yt are independent, and that s(klu+h) = u+ 1 when 1 ≤ h ≤ kl. Hence,

using the convention that the empty product takes the value 1, it follows that

E (Yτu∗ ) =
m−1∑
u=u∗

kl∑
r=1

(
u∏

q=u∗+1

(
1− 1

l(q − 2)

)kl)(
1− 1

l(u− 1)

)r−1

· 1

l(u− 1)
· u+ 2

m
.

The formula for the sum of the geometric progression
(

1− 1
l(u−1)

)r−1

gives

E (Yτu∗ ) =
m−1∑
u=u∗

(
u∏

q=u∗+1

(
1− 1

l(q − 2)

)kl)(
1−

(
1− 1

l(u− 1)

)kl)
· u+ 2

m
,
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and multiplying out the term

(
1−

(
1− 1

l(u−1)

)kl)
gives

E (Yτu∗ ) =
m−1∑
u=u∗

(
u∏

q=u∗+1

(
1− 1

l(q − 2)

)kl)
· u+ 2

m

−
m∑

u=u∗+1

(
u∏

q=u∗+1

(
1− 1

l(q − 2)

)kl)
· u+ 1

m
.

Parts of these two sums cancel each other out, leaving

E (Yτu∗ ) =
u∗ + 2

m
−

(
m∏

q=u∗+1

(
1− 1

l(q − 2)

)kl)
· m+ 1

m

+
m−1∑

u=u∗+1

(
u∏

q=u∗+1

(
1− 1

l(q − 2)

)kl)
· 1

m
.

Now, let ε > 0 be arbitrary, choose m = m(ε) and l = l(m, ε) sufficiently large,

and recall that therefore u∗ = u∗(ε) may be chosen to be sufficiently large also. Since(
1− 1

n

)n
< 1

e
<
(
1− 1

n

)n−1
for all n ≥ 2, it is the case that

m∏
q=u∗+1

(
1− 1

l(q − 2)

)kl
≥ exp

(
−kl − 1

l

m∑
q=u∗+1

1

q − 2

)
≥
(
u∗

m

)k
− ε

2
,

and similarly

u∏
q=u∗+1

(
1− 1

l(q − 2)

)kl
≤ exp

(
−k

u∑
q=u∗+1

1

q − 2

)
≤
(
u∗

u

)k
.

Setting p = u∗

m
, it follows that

E (Yτu∗ ) ≤


p− p+ p log

(
1

p

)
+ ε if k = 1,

p− pk +
p

k − 1

(
1− pk−1

)
+ ε if k > 1.

As before, these expressions are maximized when p = pk, and thus

lim
m→∞

lim
l→∞

E
(
Yτu∗

)
≤ pk + ε.

Since ε > 0 was arbitrary, this completes the proof. �

Putting Corollary 3.8 and Theorem 3.13 together gives Theorem 3.1.
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3.4. Open problems

It seems likely that these theorems can be improved. Firstly, Robert Morris and I [35]

conjectured that Theorem 3.1 can be extended to all posets with k maximal elements.

It is not inconceivable that the algorithm in Corollary 3.8 works on all posets with k

maximal elements rather than just those whose width is also k; if not, it would be good

to find some other algorithm dependent only on k that does so.

Conjecture 3.20. Let (P,≺) be a poset with k maximal elements. Then there is an

algorithm for the secretary problem on (P,≺) that is successful with probability at least

pk, where pk is as defined in (3.1).

Our algorithm, which gives the bound in Theorem 3.2, depends only on the size of the

poset and the number of maximal elements. Our second conjecture was that the latter

piece of information is not needed.

Conjecture 3.21. Let (P,≺) be a poset. Then there is an algorithm for the secretary

problem on (P,≺) that depends only on |P | and is successful with probability at least 1
e
.

In light of the threshold probabilities e−
1
k in Corollary 3.12, we considered the stopping

time

τ =


min

{
t : t > e−

1
mn, where m = |max(Pt)| and t ∈ max(Pt)

}
if this exists,

n otherwise,

and tried to show that this algorithm might be used to prove Conjecture 3.21, but un-

fortunately we did not make any progress with its analysis. Kozik [54] considered this

stopping time independently at the same time, and was able to show that it was successful

with probability strictly greater than 1
4

for sufficiently large posets. Kozik’s proof is based

on the analysis of many cases by computer, and he does not specify how much greater.

However, whereas the bound of 1
4

is best possible for Preater’s algorithm, Kozik’s analysis

is not at all tight and, like Robert Morris and me, he is hopeful that this algorithm might

be successful with the best possible probability of 1
e
.

After I had finished writing this dissertation, Micha l Morayne alerted me to the fact

that, very recently, Freij and Wästlund [29] had proved Conjecture 3.21. Their strategy
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and proof of its probability of success are beautifully simple. Firstly, they assume that

the elements are observed at n times uniformly distributed in [0, 1]. Secondly, in addition

to this, they assign a weight uniformly distributed in [0, 1] to each element as it appears,

independently of the others, and define the greedy maximum of a poset (P,≺) as follows.

Let z0 ∈ P be the element of minimal weight. If z0 is not a maximal element, then let

z1 be the element of minimal weight in {x : z0 ≺ x}. Repeat this process, producing a

chain z0 ≺ z1 ≺ z2 ≺ . . ., until a maximal element is reached. This element is the greedy

maximum.

Their strategy is to wait until time 1
e

and then to select the next element that is the

greedy maximum out of what has been seen so far; their analysis of it is surprisingly

brief. Writing Ak for the event that the kth element observed is the greedy maximum

out of what has been seen so far, they first show that the joint distribution of (Ak)k∈[n] is

independent of the ground poset, and in particular the same as for the single chain. They

then show that the probability that a maximal element is the greedy maximum at time t,

conditioned on it appearing at time t, is equal to the conditional probability that it is the

greedy maximum of the ground poset given that its weight is at most t; this is at least the

probability that it is the greedy maximum of the ground poset. Finally, they carry out

a simple calculation for the conditional probability that a maximal element is accepted

given that it appears at time t, integrate over t and sum over the maximal elements, and

find that with probability at least 1
e

one of them is accepted.

In this chapter, the aim was to select a maximal element; the same problems can be

posed for the minimum rank version instead. In a general poset, the rank of an element x

is most naturally defined as the maximum number of elements in a chain whose minimal

element is x. In light of the results in this chapter, the following questions are appealing:

(1) Is it the case that the single chain is the hardest poset for the minimal expected

rank problem, that is, is it the case that for every poset there is a strategy that

selects an element with expected rank at most about 3.8695?

(2) Is there a strategy that depends only on the size of the poset and its number of

maximal elements, or even just its size, that selects an element of finite expected

rank for every poset where these are given?
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As with the problems that I suggested at the end of Chapter 2, one could also allow

the interviewer to go back to a previous candidate, who is still available with a certain

probability, and see how this affects the problem.

This chapter has been about unknown posets with a known number of elements.

In Chapter 1, I described a version of the problem where the poset is a chain whose

length comes from a known distribution. Distributions that did not seem too unpleasant

nevertheless forced the expected rank to infinity. What distributions on the number of

elements in an unknown poset admit a strategy that chooses a maximal element with

positive probability, or a strategy that selects an element with finite expected rank?



Part 2

Generalizations of acyclic colourings





CHAPTER 4

Acyclic colourings of graphs

4.1. Colouring problems

Throughout the history of graph theory, colouring problems have been widely studied.

I shall summarize some of the highlights in this chapter, and show how this part of this

dissertation fits into that journey. For a more detailed history and for proofs of these

results, see Chapter V of Bollobás [11], whose notation I shall use.

A proper vertex-colouring of a graph G = (V,E) is an assignment of colours to its

vertices such that the end-points of any edge are differently coloured. The smallest number

of colours needed to do this is called the chromatic number χ(G) of G. It is obvious that

any graph with maximum degree d = ∆(G) can be properly coloured with at most d+ 1

colours: if the vertices are coloured with a palette of d+1 colours one by one in any order,

then for each vertex v there is always at least one colour available that has not been used

to colour its neighbours, and so v can be given this colour.

The following theorem, due to Brooks [16], says that one can usually do slightly better.

Theorem 4.1. Let G be a connected graph. Then χ(G) ≤ ∆(G) unless G is a complete

graph or a cycle of odd length, in which case χ(G) = ∆(G) + 1. �

The chromatic number of a graph can also be bounded if it can be drawn on a particular

surface without its edges crossing. The Euler characteristic of a surface S, unfortunately

usually denoted by χ(S), is the invariant

χ(S) = V − E + F,

where V , E and F are the numbers of vertices, edges and faces in a triangulation of S,

that is, a graph drawn on S all of whose faces are triangles. In the following theorem,

due to Heawood [47], a bound is given for surfaces other than the plane or, equivalently,

the sphere, which has Euler characteristic 2.

85
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Theorem 4.2. The chromatic number of a graph drawn on a closed surface of Euler

characteristic χ ≤ 1 is at most

h(χ) =

⌊
7 +
√

49− 24χ

2

⌋
.

�

The function h(χ) is known as the Heawood bound, which was proved to be best

possible for every surface except the Klein bottle by Ringel and Youngs [72]. The Klein

bottle has Euler characteristic 0, but every graph that can be drawn on it has chromatic

number at most 6, rather than 7. The famous four-colour theorem, proved by Appel and

Haken with computational assistance from Koch [7, 8, 9], states that every graph drawn

on the plane can be coloured using at most four colours.

It is just as natural to colour a graph’s edges as its vertices; in a proper edge-colouring

the edges meeting at any one vertex are all coloured differently. This gives rise to the

chromatic index χ′(G) of G, the smallest number of colours needed to do this. In this

case, it is obvious that ∆(G) is a lower bound for χ′(G), since the edges incident to a

vertex of maximum degree must all be differently coloured. What is surprising is that

the best possible upper bound is only one larger, which was proved by Vizing [78] in the

following theorem.

Theorem 4.3. Let G be a graph. Then ∆(G) ≤ χ′(G) ≤ ∆(G) + 1. �

There are of course many more results concerning colourings, and I shall briefly men-

tion some in only one more direction. An L-colouring is a proper vertex-colouring where

the colour of each vertex v is chosen from a given list L(v) of possible colours for that

vertex. The list-chromatic number χl(G) is the minimum k such that G can be L-coloured

for any L where |L(v)| ≥ k for all v. It is clearly the case that χl(G) ≥ χ(G) and one

might expect always to have equality, since it seems most restrictive when the L(v) are

all the same. This turns out not to be true; Voigt [79] proved that there are some planar

graphs with list-chromatic number greater than 4. However, Thomassen [76] proved that

the list chromatic number of planar graphs is at most 5.
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The list-chromatic index χ′l(G) is the corresponding concept for edge colourings, and

again it must be the case that χ′l(G) ≥ χ′(G). It is conjectured (by whom first is not

known) that χ′l(G) = χ′(G) for all graphs G. Galvin [31] proved the conjecture for

bipartite graphs and Kahn [48] proved that χ′l(G) =
(
1 + o(1)

)
χ′(G) as χ′(G)→∞. The

full conjecture is still open.

4.2. From Nash-Williams to acyclic colourings

Perhaps surprisingly, given their name, acyclic colourings did not evolve as generali-

zations of proper colourings; their history, which I shall outline in this section, is more

closely related to the ‘acyclic’ part of the term. An acyclic graph is often called a forest,

and I shall use the terms interchangeably.

Suppose that a graph G is the union of k forests F1 ∪ . . . ∪ Fk. For all subgraphs

H ⊂ G and for all i, it must be the case that

∣∣E(Fi ∩H)
∣∣ ≤ |V (H)| − 1,

as otherwise Fi would contain a cycle somewhere in H. Summing over the forests, it is

therefore the case that

|E(H)| ≤ k
(
|V (H)| − 1

)
.

A fundamental theorem of Nash-Williams [65] (whose proof relies on his work in an earlier

paper [64]) asserts that this necessary condition is also sufficient.

Theorem 4.4. Let G be a graph. Suppose that every subgraph H ⊂ G satisfies

|E(H)| ≤ k
(
|V (H)| − 1

)
, (4.1)

for some integer k. Then G can be decomposed into at most k forests. �

The minimum value of k such that G can be decomposed into at most k forests, or

equivalently such that G satisfies (4.1), is called the arboricity of G.

This concept was generalized to point-arboricity by Chartrand, Geller and Hedet-

niemi [19], and formally defined and further explored by Chartrand, Kronk and Wall [20].

The point-arboricity of a graph is the minimum number of colours needed to colour the
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vertices (not necessarily properly) so that the graph induced by each colour class is a

forest, that is, is acyclic.
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Figure 4.1. This graph can be 4-coloured in two different ways, shown on
this figure up to relabelling of the colours. Neither of them is acyclic, since
the vertices coloured 1 and 2 form a cycle.

Acyclic colourings were introduced as a natural next step by Grünbaum [44]. A proper

vertex-colouring of a graph is acyclic if every graph induced by the union of two colour

classes is acyclic, that is, there is no two-coloured cycle. The minimum number of colours

needed to do this is the graph’s acyclic chromatic number. Whereas the point-arboricity

of a graph is clearly at most the chromatic number, since an independent set is certainly

acyclic, the acyclic chromatic number must be at least as large. Grünbaum exhibited

simple planar graphs with acyclic colouring number 5, for example the octahedron (see

Figure 4.1), and conjectured that the acyclic chromatic number of all planar graphs is

at most 5. Grünbaum himself proved that it was at most 9; this was improved to 8 by

Mitchem [58], to 7 by Albertson and Berman [2] and to 6 by Kostochka [50]. Finally,

the full conjecture was proved by Borodin [13].

4.3. Variants

In this section, I shall demonstrate how many traditional colouring problems, as des-

cribed in Section 4.1, have been transferred to the acyclic arena. I shall also describe the

natural extensions of these problems that I shall consider in this part of this dissertation.

Kostochka [51] proved that it is an NP-complete problem to decide for given G and k
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if the acyclic chromatic number of G is at most k; thus, it makes sense to try to find

sufficient conditions for it to be small.

Given their introduction, it is unsurprising that acyclic chromatic numbers were next

bounded for graphs drawn on surfaces other than the plane. The genus g(S) of a surface

S is the maximum number of closed curves along which S can be cut without being

disconnected or, informally, the number of handles that need to be added to a sphere to

obtain S. The plane has genus 0 and, for any surface S, it is the case that χ(S) = 2−2g(S).

A graph is said to be of genus g if the smallest genus of a surface on which it can be

drawn without its edges crossing is g. Albertson and Berman [1] instigated this study

and proved the following theorem [3].

Theorem 4.5. Any graph of genus g > 0 can be acyclically coloured with 4g + 4

colours.

When bounding the acyclic chromatic number, the shortest cycles are critical, since

these are less likely to receive three colours in a proper colouring. The girth of a graph is

the length of its shortest cycle. Borodin, Kostochka and Woodall [15] proved that planar

graphs of girth at least 5 have acyclic chromatic number at most 4 and that those of girth

at least 7 have acyclic chromatic number at most 3.

A bound for the acyclic chromatic number of a graph as a function of its maximum

degree was found by Alon, McDiarmid and Reed [4]. In the following theorem, A(d) is the

maximum possible value of the acyclic chromatic number of a graph of maximum degree

d.

Theorem 4.6.

Ω

(
d

4
3

(log d)
1
3

)
≤ A(d) ≤ O

(
d

4
3

)
.

My results are generalizations of this one, so it is worth outlining its proof. The upper

bound is proved by colouring a graph of maximum degree d randomly and then using

the Erdős-Lovász local lemma. This essentially says that if we have a collection of bad

events, each of which happens with small probability and is independent of most other bad

events, then with positive probability none of them happens. I shall state this precisely

in Section 4.5. For acyclic colourings, the most obvious bad events are,
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(1) for each edge, that the vertices that it connects are the same colour, and,

(2) for each even cycle, that its vertices are coloured with alternating colours.

There is no need to consider odd cycles explicitly, since in a proper colouring they will

receive at least three colours anyway.

These are not quite the events considered, for two reasons. Firstly, considering cycles

of all lengths makes it harder to find a useful bound for the number of other bad events that

each bad event might depend on. Secondly, if two vertices u and v are opposite vertices

in many 4-cycles, then by avoiding bad events of the second type we effectively end up

insisting that u and v are differently coloured too many times to get best possible bounds.

The first problem is easily dealt with; 4-cycles and paths of length 4 are considered, since

longer cycles contain a path of length 4. The second problem is overcome by calling u and

v ‘special’ if they have many common neighbours and are therefore in many 4-cycles and,

for each special pair u, v, introducing the bad event that u and v are the same colour. If

these bad events do not occur then properly coloured 4-cycles containing a special pair

receive at least three colours, and there remain only 4-cycles not containing a special pair.

The final type of bad event is that such 4-cycles are coloured with alternating colours,

and each vertex cannot be in too many of them without being in a special pair.

They proved that the upper bound is best possible up to a logarithmic factor by

considering a random graph Gn,p on n vertices with each edge present with probability

p independently of the others. They showed that if p ≥ 3
(

logn
n

) 1
4 then, however the

vertices are coloured with at most n
2

colours, the probability that every 4-cycle receives

at least three colours is so small that the probability that any colouring has every 4-cycle

receiving at least three colours is less than one. At the same time, for p = 3
(

logn
n

) 1
4 , with

high probability the maximum degree of the graph d satisfies d < 2pn = 6n
3
4 (log n)

1
4 , and

therefore a graph exists with maximum degree d that cannot be acyclically coloured with

fewer than n
2

= Ω

(
d
4
3

(log d)
1
3

)
colours.

In terms of precise evaluation of A(d), it is obvious that A(1) = 2 and A(2) = 3. It is

known that A(3) = 4 (mentioned without proof by Grünbaum [44]; see also Skulrattana-

kulchai [73]), A(4) = 5 (Burnstein [17]), A(5) ≤ 8 and A(6) ≤ 12 (Kothapalli, Varagani,
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Venkaiah and Yadav [52, 53]). No lower bounds better than d+ 1 are known for d = 5, 6,

for which the example is the complete graph Kd+1.

In the same paper as earlier, Alon, McDiarmid and Reed [4] defined the edge acyclic

chromatic number A′(G) and its maximum A′(d) for graphs of maximum degree d in the

obvious way. They proved that A′(d) ≤ 64d, without trying to optimize the constant.

When quoting this result in a later paper, Molloy and Reed [59] showed that the same

proof can easily be modified to give a bound of 16d. Alon, Sudakov and Zaks [6] conjec-

tured that in fact A′(d) ≤ d+2. They proved that A′(Gn,d) ≤ d+2 for almost all random

d-regular graphs Gn,d and showed that there exists c > 0 such that A′(G) ≤ d + 2 for

all graphs G with ∆(G) = d and girth at least cd log d. They also commented that this

conjecture would be best possible, by considering acyclic edge colourings of the complete

graph K2n. The largest that any one colour class can be is n, when it is a perfect mat-

ching, and no two colours classes can have more than 2n − 1 edges without containing

a cycle. This means that the largest colour class has size at most n and all the others

at most n − 1, so there are at least 2n + 1 colour classes. Nešetřil and Wormald [66]

improved the bound for almost all random d-regular graphs to d+ 1.

As with the vertex version, further improvements have been made for graphs of large

girth. Muthu, Narayanan and Subramanian [63] improved the bound to 6d for graphs

with girth at least 9 and to 4.52d for graphs of girth at least 220.

Gerke, Greenhill and Wormald [37] defined the r-acyclic edge chromatic number to be

the minimum number of colours in a proper edge-colouring in which each cycle receives

at least r colours. They showed that (r− 2)d is asymptotically almost surely (as d→∞)

a bound for the r-acyclic edge chromatic number of a random d-regular graph.

List colourings have natural acyclic analogues, which I shall not define formally as

they are obvious. Borodin, Fon-Der Flaass, Kostochka, Raspaud and Sopena [14] proved

that the list-acyclic chromatic index of a planar graph is at most 7.

When acyclic colourings are considered in isolation, rather than as a generalization

of arboricity, there is no particular reason why the subgraphs chosen to be subject to

extra conditions should be cycles. Again in the same paper as before, Alon, McDiarmid

and Reed [4] discussed Pk-free colourings; these are proper vertex colourings such that
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no path with k vertices is 2-coloured. They pointed out that, since there are at most

d+ d(d− 1) = d2 vertices within distance 2 of any vertex, a greedy algorithm can be used

to colour a graph in a P3-free fashion with at most d2 + 1 colours. They also commented

that a modification of their work in that paper proves that there is always a Pk-free

colouring for k ≥ 4 with at most O
(
d
k−1
k−2

)
colours.

4.4. Generalized acyclic colourings

The problems that I shall consider in this part of this dissertation are extensions

of Theorem 4.6, which gave a bound for A(d), the maximum possible acyclic chromatic

number of a graph of maximum degree d. There are many possibilities for generalizations,

and these are just some of them. I shall introduce some more general versions of acyclic

colourings, which will be formally defined in Section 4.5.

As described in Section 4.3, since it is the shortest cycles that are most likely to receive

only two colours in a proper colouring, several authors have imposed a minimum girth

condition on the underlying graph to be coloured. My approach is slightly different; I

shall continue to allow all graphs of maximum degree d, but only require long cycles to

receive at least three colours. Specifically, I shall introduce the length-l-acyclic chromatic

number, where cycles of length at least l must be 3-coloured. Since an odd cycle is

already 3-coloured in a proper colouring, it is only necessary to consider length-2m-acyclic

colourings for integers m.

Recall from Section 4.3 that the r-acyclic edge chromatic number was defined to be

the minimum number of colours in a proper edge-colouring in which each cycle receives at

least r colours. I shall do the same for the vertex-colouring version, but to avoid ambiguity

with the length-l-acyclic chromatic number, I shall call it the c-colour acyclic chromatic

number. This is a natural concept to consider; for point-arboricity the defining condition

is that every cycle receives at least two colours, for an acyclic colouring it is that every

cycle receives at least three colours. What happens if we demand that every cycle receives

at least c colours? Point-arboricity corresponds to the 2-colour acyclic chromatic number

and the usual acyclic chromatic number to the 3-colour acyclic chromatic number.
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During my oral examination, I discovered that my bounds on the c-colour acyclic

chromatic number (Section 5.3) had already been proved by Greenhill and Pikhurko [43],

along with corresponding results for edge-colourings.

I also mentioned Pk-free colourings in Section 4.3, which are an example of a variation

on the theme of acyclic colourings in which the subgraphs that must receive extra colours

are not cycles. One way to think of the acyclic chromatic number as a generalization

of the chromatic number is as follows. In a proper colouring, every 1-regular connected

subgraph (edge) receives at least two colours. In an acyclic colouring, every 2-regular

connected subgraph (cycle) receives at least three colours. The next step is to ask what

happens if every r-regular connected subgraph must receive at least three colours.

However, this seems quite restrictive, as there are not likely to be many r-regular

connected subgraphs. An alternative, related approach is to require subgraphs with mi-

nimum degree at least r to receive at least three colours. This is still a natural thing

to do: a proper colouring is one in which every subgraph with minimum degree at least

1 receives at least two colours, and an acyclic colouring is one in which every subgraph

with minimum degree at least 2 receives at least three colours. I shall define the degree-r

chromatic number of a graph to be the minimum number of colours needed to colour the

graph properly in such a way that this happens. The methods that I shall use work just

as well for r-regular subgraphs; I have chosen to proceed in this way only because it seems

more interesting.

This definition can be easily extended to hypergraphs; here, a degree-r colouring of

a u-uniform hypergraph is a colouring such that every edge is multicoloured and every

subhypergraph with minimum degree at least r receives at least u+ 1 colours. This is the

first case to consider since every subhypergraph with at least one edge already receives at

least u colours in a multicolouring.

4.5. Definitions and a useful tool

In the next two chapters, I shall bound the following quantities for (hyper)graphs with

maximum degree d. These bounds will be asymptotically best possible up to constant or

logarithmic factors. In Chapter 5, I shall bound the two that concern cycles in graphs:

the length-l-acyclic chromatic number and the c-colour chromatic number. In Chapter 6,
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I shall bound the degree-r chromatic number of a u-uniform hypergraph. This is best

separated into two cases: where u = 2, that is, for simple graphs, and where u ≥ 3.

Note that the maxima in the following definitions all exist; trivial upper bounds are

d2 + 1, dc−1 + 1 and
(
(u− 1)d

)2
+ 1 colours, sufficient to colour vertices differently from

those at distance at most 2, c− 1 and 2 away.

The length-l-acyclic chromatic number of a graph. A colouring f : V (G)→ [x]

is a length-l-acyclic colouring if it is a proper colouring and every cycle of length at least

l receives at least three colours. For a graph G and an integer l, let

A(l)(G) = min{x : G can be length-l-acyclically coloured using x colours}.

For integers l, d, let

A(l)(d) = max{A(l)(G) : ∆(G) = d}.

Note that a length-l-acyclic colouring is also a length-(l+1)-acyclic colouring, soA(l+1)(G) ≤

A(l)(G) and A(l+1)(d) ≤ A(l)(d). Also, since a cycle of odd length must receive three

colours in a proper colouring, it must be the case that A(2m−1)(G) = A(2m)(G) and

A(2m−1)(d) = A(2m)(d) for any integer m.

The c-colour acyclic chromatic number of a graph. A colouring f : V (G)→ [x]

is a c-colour acyclic colouring if it is a proper colouring, every cycle of length less than

c is multicoloured and every cycle of length at least c receives at least c colours. For a

graph G and an integer c, let

Ac(G) = min{x : G can be c-acyclically coloured using x colours}.

For integers c, d, let

Ac(d) = max{Ac(G) : ∆(G) = d}.

Note that a (c+1)-colour acyclic colouring is also a c-colour acyclic colouring, so Ac(G) ≤

Ac+1(G) and Ac(d) ≤ Ac+1(d).

The degree-r chromatic number of a u-uniform hypergraph. Let H be a u-

uniform hypergraph. A colouring f : V (H) → [x] is a degree-r colouring if every edge is

multicoloured and every subhypergraph K with δ(K) ≥ r receives at least u+ 1 colours.
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For a u-uniform hypergraph H and an integer r, let

D(u)
r (H) = min{x : H can be degree-r coloured using x colours}.

For integers r, d, let

D(u)
r (d) = max{D(u)

r (H) : ∆(H) = d and H is a u-uniform hypergraph}.

I shall bound D
(u)
r separately when u = 2 and when u ≥ 3.

It is not easy to guess what the upper bounds should be, even knowing that they should

include Theorem 4.6. In fact, in the case of c-colour acyclic colourings, this theorem is in

fact an exceptional case and so unhelpful in providing intuition.

As with most results in this area, the proofs of these bounds will all use random

colourings and the Erdős-Lovász local lemma [25], in its nonsymmetric form (see page 64

of Alon and Spencer [5]).

Lemma 4.7. Let A1, . . . , An be events in an arbitrary probability space. Let the graph

G = (V,E) with V = [n] be a dependency graph for the events Ai, that is, assume that

for each i, Ai is independent of the family of events {Aj : ij /∈ E}. If there are reals

0 < yi < 1 such that for all i

P(Ai) ≤ yi
∏
ij∈E

(1− yj),

then

P

(⋂
i

Aci

)
≥

n∏
i=1

(1− yi) > 0,

so that with positive probability no event Ai occurs.

The events Ai are commonly called bad events.

To prove that the upper bounds that I shall give are asymptotically best possible up

to constant or logarithmic factors, I shall give explicit or probabilistic constructions. In

the probabilistic constructions, the number of colours needed will be proportional to the

number of vertices, so I shall need to bound this in terms of the maximum degree of a

random graph. Bollobás [12] (page 65, Corollary 3.4) proved the following precise result
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about the maximum degree ∆ of a random graph Gn,p with n vertices and with each edge

present with probability p = p(n) independent of the others, and with q = 1− p.

Theorem 4.8. Suppose pqn
(logn)3

→∞ and y is a fixed real number. Then the maximal

degree ∆ of Gn,p satisfies

lim
n→∞

P

[
∆ < pn+ (2pqn log n)

1
2

(
1− log log n

4 log n
− log(2π

1
2 )

2 log n
+

y

2 log n

)]
= e−e

−y
.

I shall use only the trivial consequence that, under these conditions, asymptotically

almost surely the maximum degree satisfies ∆ < 2pn. In fact, I shall only ever use

probabilities p of a particular form, and the lemma that I shall apply is as follows.

Lemma 4.9. Let α ≥ 0, 0 < β < 1 and C ≥ 1
2

be real numbers, and let

p = C
(log n)α

nβ
.

Then asymptotically almost surely the maximal degree ∆ of Gn,p satisfies

n >

(
∆
2C

) 1
1−β(

1
1−β log ∆

) α
1−β

. (4.2)

Proof. The bounds on β mean that Theorem 4.8 can be applied, and so asymptoti-

cally almost surely

∆ < 2Cn1−β(log n)α,

from which it follows that

n >

(
∆
2C

) 1
1−β

(log n)
α

1−β
. (4.3)

Either the bound in (4.2) holds, in which case there is nothing to prove, or it does not

hold, in which case

log n ≤ 1

1− β
log ∆− α

1− β
log log ∆− 1

1− β
log

(
2C

(1− β)α

)
≤ 1

1− β
log ∆,

and (4.2) follows from (4.3). �



CHAPTER 5

Long acyclic colourings and acyclic colourings with many

colours

5.1. Introduction

I have grouped the two results in this chapter together as they both involve genera-

lizations of the acyclic chromatic number in a way that still relates to cycles in graphs,

which is not the case with the results in the next chapter. Alon, McDiarmid and Reed [4]

showed that a graph with maximum degree d can be acyclically coloured with O(d
4
3 )

colours. In this chapter, I shall answer the following questions:

(1) How many colours do we need if only cycles of length at least l must receive at

least three colours (Section 5.2)?

(2) How many colours do we need if cycles must receive at least c colours (Sec-

tion 5.3)?

In Section 5.4, I shall suggest some natural open problems following on from these.

5.2. The length-l-acyclic chromatic number

Recall that the length-l-acyclic chromatic number is the minimum number of colours

needed to colour a graph properly so that each cycle of length at least l receives at least

three colours. Recall also that, in a proper colouring, cycles of odd length will automati-

cally receive at least three colours. In this section, I shall bound the maximum possible

length-l-acyclic chromatic number of graphs of a given maximum degree d, denoted by

A(l)(d).

Theorem 5.1. For all integers d,m ≥ 2, it is the case that(
d
6

) 2m
2m−1

m
(

2m
2m−1

log d
) 1

2m−1

< A(2m)(d) = A(2m−1)(d) < 14(2m+ 1)d
2m

2m−1 .

This has the following immediate corollary.

97
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Corollary 5.2. For a fixed integer m ≥ 2, it is the case that

Ω

(
d

2m
2m−1

(log d)
1

2m−1

)
≤ A(2m)(d) = A(2m−1)(d) ≤ O

(
d

2m
2m−1

)
as d→∞. �

I shall begin by proving the lower bound.

Theorem 5.3. For n sufficiently large there is a graph G on n vertices with maximum

degree ∆(G) = d satisfying

n

m
≥

(
d
6

) 2m
2m−1

m
(

2m
2m−1

log d
) 1

2m−1

= Ω

(
d

2m
2m−1

(log d)
1

2m−1

)

such that there is no length-2m-acyclic colouring with at most n
m

colours.

Proof. This proof is a generalization of one by Alon, McDiarmid and Reed [4].

Let

p = 3

(
log n

n

) 1
2m

,

let n be large and divisible by m2, and let G ∈ Gn,p.

Suppose that f : V (G)→
[
n
m

]
is a colouring that uses at most n

m
colours. From each

class, discard as few vertices as possible to make its size divisible by m. Note that at most

m− 1 vertices are discarded from each class, so at most (m−1)n
m

vertices are discarded in

total and there remain at least n
m

vertices. Since the size of each colour class is now

divisible by m, at least n
m2 distinct monochromatic m-tuples can be taken from these

vertices. Choose n
m2 of these and call them T1, . . . , T n

m2
.

���
���

���
���

���
���

���
���

���
���

���
���Z

Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Zs

s
s
s

s
s
s
s

t
(m)
i

t
(2)
i

t
(1)
i

t
(m)
j

t
(2)
j

t
(1)
j

Figure 5.1. A 2m-cycle of the form t
(1)
i t

(1)
j t

(2)
i t

(2)
j . . . t

(k)
i t

(k)
j .
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For each m-tuple Ti, fix an ordering of the vertices t
(1)
i , . . . , t

(m)
i . Let Ci,j be the event

that G contains the cycle t
(1)
i t

(1)
j t

(2)
i t

(2)
j . . . t

(m)
i t

(m)
j (see Figure 5.1). If any event Ci,j occurs

then this colouring cannot be a length-2m-acyclic colouring of G. Let Af be the event

that f is a length-2m-acyclic colouring. Then

P(Af ) ≤ P

(⋂
i<j

Cc
i,j

)

=
(
1− p2m

)(n/m2

2 )
,

since the events Ci,j are independent. Writing E for the event that G can be length-2m-

acyclically coloured with at most n
m

colours,

P(E) ≤
∑

f :V (G)→[ nm ]

P(Af )

≤ nn
(
1− p2m

)(n/m2

2 )

≤ exp

(
n log n−

(
n/m2

2

)
p2m

)
= o(1),

which means that there exists a graph G that cannot be length-2m-acyclically coloured

with at most n
m

colours, as required. By Lemma 4.9, the graph G can be chosen so that,

in addition, the bound in the theorem is satisfied. �

I shall now prove the upper bound.

Theorem 5.4. Let G be a graph with ∆(G) = d and let m ≥ 2 be an integer. Then

it is possible to colour G length-2m-acyclically with at most 14(2m+ 1)d
2m

2m−1 = O(d
2m

2m−1 )

colours.

Proof. In this and the next chapter, there will be several proofs that use the Erdős-

Lovász local lemma. I shall apply the method in more detail in this proof than in later

ones.

Call a pair of vertices {u, v} special if u and v have at least d
2m−2
2m−1 common neighbours.

Let f : V (G)→ [x] be a random function where each vertex receives a colour from [x]

uniformly at random.
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The proof uses the Erdős-Lovász local lemma. The bad events to be considered are

as follows:

(1) For each edge uv, let Wuv = {f(u) = f(v)}.

(2) For each special pair {u, v}, let Xu,v = {f(u) = f(v)}.

(3) For each 2m-cycle C = v0v1 . . . v2m−1 containing no special pairs of vertices dis-

tance 2 apart, where v0, v1, . . . , v2m−1 are distinct vertices, let

YC =
{
f(v0) = f(v2) = . . . = f(v2m−2) and f(v1) = f(v3) = . . . = f(v2m−1)

}
.

(4) For each path P = v0v1 . . . v2m of length 2m, where v0, v1, . . . , v2m are distinct

vertices, let

ZP =
{
f(v0) = f(v2) = . . . = f(v2m) and f(v1) = f(v3) = . . . = f(v2m−1)

}
.

If none of the events Wuv occurs then f is a proper colouring. The only way that a

cycle of even length can be 2-coloured in a proper colouring is if its colours alternate, and

so if in addition none of the events Xu,v and YC occurs then every cycle of length 2m

receives at least three colours whether or not it contains special pairs distance 2 apart.

If it is also the case that none of the events ZP occurs then every cycle of length at least

2m+ 2 receives at least three colours.

Claim 1. Each vertex v is in at most

(1) d edges,

(2) d
2m

2m−1 special pairs,

(3) d
2m(2m−2)

2m−1 cycles of length 2m not containing any special pairs of vertices distance

2 apart, and

(4) (m+ 1)d2m paths of length 2m.

Proof of claim. (1) By supposition, the maximum degree ∆(G) = d.

(2) Since ∆(G) = d, the vertex v has at most d neighbours, each of which has at

most d neighbours, and so there are at most d2 paths of length 2 starting at v.

By definition, for each special pair that v is in there are at least d
2m−2
2m−1 paths of
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length 2 starting at v and so v is in at most

d2

d
2m−2
2m−1

= d
4m−2−(2m−2)

2m−1 = d
2m

2m−1

special pairs.

(3) Without loss of generality, assume that v plays the role of v0 in the cycle C.

Since ∆(G) = d, there are at most d choices for v1, for each of these there are

most d choices for v2 and so on, and so there at most d2m−2 choices for the

path v0 . . . v2m−2. Since {v0, v2m−2} is not a special pair, there are at most d
2m−2
2m−1

choices for their common neighbour v2m−1 and so in total v is in at most

d2m−2+ 2m−2
2m−1 = d

2m(2m−2)
2m−1

cycles of length 2m not containing any special pairs of vertices distance 2 apart.

(4) Without loss of generality, assume that v plays the role of one of v0, v1, . . . , vm in

P = v0v1 . . . v2m, which gives m + 1 possibilities. For each of these there are at

most d2m paths P , which means that v is in at most (m+ 1)d2m paths of length

2m.

�

By multiplying the number of vertices in a pair, cycle or path by the number of edges,

special pairs, cycles without special pairs and paths that each vertex can be in, the number

of edges in the dependency graph from an event of each type to events of each type is at

most that shown in the table below.

to

Wu,v Xu,v YC ZP

Wu,v 2d d
2m

2m−1 2d
2m(2m−2)

2m−1 2(m+ 1)d2m

from Xu,v 2d 2d
2m

2m−1 2d
2m(2m−2)

2m−1 2(m+ 1)d2m

YC 2md 2md
2m

2m−1 2md
2m(2m−2)

2m−1 2m(m+ 1)d2m

ZP (2m+ 1)d (2m+ 1)d
2m

2m−1 (2m+ 1)d
2m(2m−2)

2m−1 (2m+ 1)(m+ 1)d2m

Claim 2. The probabilities of the events of each type are given by

(1) P(Wu,v) = 1
x
,

(2) P(Xu,v) = 1
x
,
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(3) P(YC) = 1
x2m−2 , and

(4) P(ZP ) = 1
x2m−1 .

Proof of claim. All four statements follow from the fact that f colours vertices

uniformly at random with colours taken from [x]. �

I shall now apply the Erdős-Lovász local lemma (Lemma 4.7). The weightings used

are double the probabilities, that is, let

y1 = 2P(Wu,v) =
2

x
,

y2 = 2P(Xu,v) =
2

x
,

y3 = 2P(YC) =
2

x2m−2
and

y4 = 2P(ZP ) =
2

x2m−1
,

and the four statements that need to be proved are

P(Wu,v) ≤ 2P(Wu,v)

(
1− 2

x

)2d(
1− 2

x

)2d
2m

2m−1

(
1− 2

x2m−2

)2d
2m(2m−2)

2m−1 (
1− 2

x2m−1

)2(m+1)d2m

,

P(Xu,v) ≤ 2P(Xu,v)

(
1− 2

x

)2d(
1− 2

x

)2d
2m

2m−1

(
1− 2

x2m−2

)2d
2m(2m−2)

2m−1 (
1− 2

x2m−1

)2(m+1)d2m

,

P(YC) ≤ 2P(YC)

(
1− 2

x

)2md(
1− 2

x

)2md
2m

2m−1

(
1− 2

x2m−2

)2md
2m(2m−2)

2m−1 (
1− 2

x2m−1

)2m(m+1)d2m

, and

P(ZP ) ≤ 2P(ZP )

(
1− 2

x

)(2m+1)d(
1− 2

x

)(2m+1)d
2m

2m−1

(
1− 2

x2m−2

)(2m+1)d
2m(2m−2)

2m−1 (
1− 2

x2m−1

)(2m+1)(m+1)d2m

.
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Since m ≥ 2, it suffices to show the fourth statement, that is,

(
1− 2

x

)(2m+1)d(
1− 2

x

)(2m+1)d
2m

2m−1 (
1− 2

x2m−2

)(2m+1)d
2m(2m−2)

2m−1

(
1− 2

x2m−1

)(2m+1)(m+1)d2m

≥ 1

2
.

It suffices to choose x such that each factor is at least 6
7
, since

(
6
7

)4
= 1296

2401
> 1

2
, and it

therefore suffices to choose x such that

x ≥ max
{

14(2m+ 1)d, 14(2m+ 1)d
2m

2m−1 , 2m−2
√

14(2m+ 1)d
2m

2m−1 ,

2m−1
√

14(2m+ 1)(m+ 1)d
2m

2m−1

}
,

for which it suffices to take x = 14(2m+ 1)d
2m

2m−1 . �

5.3. The c-colour acyclic chromatic number

The results in this section had already been proved by Greenhill and Pikhurko [43],

which I did not know until my oral examination.

Recall that the c-colour acyclic chromatic number is the minimum number of colours

needed to colour a graph properly so that each cycle receives at least c colours. In this

section, I shall bound the maximum possible c-colour acyclic chromatic number of graphs

of a given maximum degree d, denoted by Ac(d).

Theorem 5.5. For all integers d, k ≥ 2, it is the case that

max

{(
d

k

)k
,

(
d
4

)k
2k log d

}
< A2k(d) ≤ A2k+1(d) < 6(k + 2)(2k)k+1dk.

This has the following immediate corollary.

Corollary 5.6. For a fixed integer k ≥ 2, it is the case that

A2k(d), A2k+1(d) = Θ(dk)

as d→∞. �
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It is interesting that this bound does not include the bound on the 3-colour acyclic

chromatic number of Alon, McDiarmid and Reed [4]. It will become clearer why this is

the case once Theorem 5.11 has been proved; I shall say more at the time.

For c = 4, a probabilistic lower bound can be found in a similar way to Theorem 5.3.

Theorem 5.7. For n sufficiently large there is a graph G on n vertices with maximum

degree ∆(G) = d satisfying

n

2
≥ d2

400 log d

such that there is no 4-colour acyclic colouring with at most n
2

colours.

Proof. Let

p = 5

√
log n

n
,

let n be large and divisible by 4, and let G ∈ Gn,p.

Suppose that f : V (G)→
[
n
2

]
is a colouring that uses at most n

2
colours. By discarding

at most one vertex from each colour class, at least n
4

monochromatic pairs can be found.

Let P be a set of n
4

of these pairs and split the remaining singletons into two sets S1 and

S2 each of size n
4
.

s
s
s

s
s
s

s
s
s

s
s
s

S1 P S2

Figure 5.2. The type of 4-cycle that is avoided.

If any pair in P has a common neighbour in S1 and a common neighbour in S2 then

f cannot be 4-colour acyclic (see Figure 5.2). For each pair pi ∈ P let Npi,j be the event

that the pair pi has a common neighbour in Sj and let Af be the event that f is a 4-colour
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acyclic colouring. Then

P(Af ) ≤ P

(⋂
pi∈P

(
N c
pi,1
∪N c

pi,2

))

≤
(

2
(
1− p2

)n
4

)n
4
,

since the events Npi,j are independent. Writing E for the event that G can be 4-colour

acyclically coloured with at most n
2

colours,

P(E) ≤
∑

f :V (G)→[n2 ]

P(Af )

≤ nn
(

2
(
1− p2

)n
4

)n
4

≤ exp

(
n log n+

n

4
log 2− p2n2

16

)
= o(1),

which means that there exists a graph G that cannot be 4-colour acyclically coloured with

at most n
2

colours, as required. By Lemma 4.9, the graph G can be chosen so that, in

addition, the bound in the theorem is satisfied. �

For c > 4, this does not seem easy to generalize. A sensible alternative approach to

finding a lower bound is to find a graph of small maximum degree such that any two

vertices are in a cycle of length at most c, so that all vertices must be coloured differently.

One way of doing this is to join two graphs of small diameter together. The most obvious

graph with small diameter for a given maximum degree is a tree.
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Figure 5.3. The tree Td,h for d = h = 3.

Let Td,h be the tree where all vertices except the leaves have degree d and the leaves

are all distance h from a fixed root vertex (see Figure 5.3). Let T1 and T2 be copies of
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Td,b k−1
2 c and form G by taking T1 and T2 and adding edges between vertices v1 ∈ T1 and

v2 ∈ T2 if they are copies of the same vertex v ∈ Td,b k−1
2 c. Then the number of vertices

in G is

2
(

1 + d+ d(d− 1) + . . .+ d(d− 1)b
k−1
2 c−1

)
= 2 + 2d

(
(d− 1)b

k−1
2 c − 1

d− 2

)

>

(
d

2

)b k−1
2 c

= Ω
(
db

k−1
2 c
)
,

and any two vertices of G are in a cycle of length at most 2k. Therefore, G cannot

be 2k-acyclically coloured (or (2k + 1)-acyclically coloured) with less than Ω
(
db

k−1
2 c
)

colours.

This is a long way from the lower bound of Ω
(

dk

log d

)
. Using probabilistic techniques,

Bollobás [10] (see also page 259 of Bollobás [12], Theorem 10.10) found graphs of small

diameter with much smaller maximum degree:

Theorem 5.8. Let h be a positive constant, k = k(n) ≥ 2 a natural number, and

define p = p(n, h, k), 0 < p < 1, by

pknk−1 = log

(
n2

h

)
.

Suppose that pn
(logn)3

→∞. Then for G ∈ Gn,p we have

lim
n→∞

P
(
diam(G) = k

)
= e−

h
2 and lim

n→∞
P
(
diam(G) = k + 1

)
= 1− e−

h
2 .

�

Using this, I can obtain a lower bound that is best possible up to logarithmic factors.

Theorem 5.9. For n sufficiently large there is a graph G on n vertices with maximum

degree ∆(G) = d satisfying

n ≥ dk

22k+1k log d
= Ω

(
dk

log d

)
such that any two vertices are in a cycle of length at most 2k. In particular, a 2k- or

(2k + 1)-colour acyclic colouring of such a graph must use at least n colours.
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Proof. Set

p =

(
2 log n

nk−1

) 1
k

,

which corresponds to h = 1 in Theorem 5.8, and q = 2p. Let Gn,q ∈ Gn,q and obtain G1

and G2 by putting each edge of Gn,q in G1 or G2 uniformly at random independently of

all other edges. Since q = 2p, this coupling means that G1 ∈ Gn,p and G2 ∈ Gn,p, but G1

and G2 are disjoint. By Theorem 5.8,

lim
n→∞

P
(
diam(G1) = k

)
= lim

n→∞
P
(
diam(G2) = k

)
= e−

1
2 ≈ 0.6065.

Take n sufficiently large that P
(
diam(G1) = k

)
= P

(
diam(G2) = k

)
> 3

5
and so

P
((

diam(G1) = k
)
∧
(
diam(G2) = k

))
>

1

5
.

Since this probability is greater than zero, this means that there is a graph G with any

two vertices in a cycle of length at most 2k. By Lemma 4.9, the graph G can be chosen

so that, in addition, the bound in the theorem is satisfied. �

In fact, an explicit construction does even better and gives the best possible lower

bound up to a constant factor.

Theorem 5.10. For n sufficiently large there is a graph G on n vertices with maximum

degree ∆(G) = d satisfying

n >

(
d

k

)k
= Ω(dk),

such that any two non-adjacent vertices are in a cycle of length at most 2k (and so a 2k-

or (2k + 1)-colour acyclic colouring must use at least n colours).

Proof. Let G = (V,E) be defined as follows. For some large positive integer b, let

V = [b]k and let uv ∈ E if u and v differ in exactly one co-ordinate. Then G is a k(b− 1)-

regular graph. For all non-adjacent u, v, there is a cycle of length at most 2k containing u

and v as follows. Start with u and then, working from left to right, for each digit ui where

ui 6= vi, change it to vi, and then do the same to get back to u from v (see Figure 5.4). All

vertices are therefore adjacent or in a cycle of length at most 2k, and must be differently

coloured in a 2k- or (2k + 1)-colour acyclic colouring.
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(1, 2, 3,2, 1)

(3, 2, 3, 2, 1)

(3, 2,2, 2, 1)

(3, 2, 2,3, 1)

(1, 2, 2, 3, 1)

(1, 2,3, 3, 1)

Figure 5.4. A 6-cycle for b = 3, k = 5, u = (1, 2, 3, 2, 1) and v =
(3, 2, 2, 3, 1), with the new digit in each k-tuple in bold type.

Setting d = k(b− 1), this is a graph G with n = |V (G)| and ∆(G) = d satisfying

n =

(
d

k
+ 1

)k
,

and the result follows. �

For fixed k, the probabilistic bound is worse as d → ∞, but it is better for small d,

that is, for d up to about

exp

((
k
4

)k−1

8

)
.

To prove an upper bound of the same order of magnitude as the explicit construction,

I shall again use the Erdős-Lovász local lemma.

Theorem 5.11. Let G be a graph with ∆(G) = d and let k ≥ 2 be an integer. Then

it is possible to colour G (2k + 1)-colour acyclically (and therefore 2k-colour acyclically)

with at most 6(k + 2)(2k)k+1dk = O(dk) colours.

Proof. If d = 1, then G contains only isolated edges and only two colours are needed,

so assume that d ≥ 2.

Call a pair of vertices {u, v} special if there are at least d paths of length k + 1 from

u to v.

Let f : V (G)→ [x] be a random function where each vertex receives a colour from [x]

uniformly at random.

The proof uses the Erdős-Lovász local lemma. The bad events to be considered are

as follows:

(1) For each u, v with 1 ≤ d(u, v) ≤ k, let Wu,v = {f(u) = f(v)}.
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(2) For each special pair u, v, let Xu,v = {f(u) = f(v)}.

(3) For each (2k+2)-cycle C = v0v1 . . . v2k+1 containing a non-special pair of opposite

vertices, where v0, v1, . . . , v2k+1 are distinct vertices, let YC be the event that C

receives at most 2k colours.

(4) For each path P = v0v1 . . . v2k+2, where v0, v1, . . . , v2k+2 are distinct vertices, let

ZP be the event that P receives at most 2k colours.

If none of the events of type Wu,v occurs then f is a proper colouring and every cycle

of length at most 2k+1 is multicoloured. In this case, the only vertices in a (2k+2)-cycle

that can be the same colour are pairs of opposite vertices, so if in addition none of the

events Xu,v and YC occurs then every cycle of length 2k+2 receives at least 2k+1 colours,

whether or not it contains a non-special pair of opposite vertices. If none of the events

ZP occurs then every cycle of length at least 2k + 3 receives at least 2k + 1 colours.

Claim 1. Each vertex v is in at most

(1) 2dk pairs of vertices distance at most k apart,

(2) dk special pairs,

(3) (k + 1)dk+2 cycles containing a non-special pair of opposite vertices, and

(4) (k + 2)d2k+2 paths of length 2k + 2.

Proof of claim. (1) By the same argument as in the proof of Theorem 5.4,

there are at most d vertices distance 1 from v, at most d2 vertices distance 2 from

v and so on, and so at most

d+ d2 + . . .+ dk =
d

d− 1
(dk − 1) < 2dk

vertices distance at most k from v, the inequality holding since d ≥ 2.

(2) There are at most dk+1 paths of length k + 1 starting at v, and each special pair

that v is in contributes d such paths, so v is in at most

dk+1

d
= dk

special pairs.
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Figure 5.5. A cycle with a non-special opposite pair.

(3) The aim is to count the (2k + 2)-cycles containing v and a non-special pair of

opposite vertices in groups depending on where the closest non-special pair to v

is. Moving clockwise from v, let w1 be the first vertex in a non-special pair and

let a1 be its distance from v, and let w2 be the vertex opposite w1 at distance a2

anticlockwise from v, so that a1 + a2 = k + 1 (see Figure 5.5). It is possible that

w1 = v and a1 = 0. There are k+ 1 choices for a1 and a2. Given a1 and a2, there

are at most da1 paths of length a1 and da2 paths of length a2 starting at v, and

so at most

da1+a2 = dk+1

choices for the arc from w1 to w2 containing v. Since {w1, w2} is a non-special

pair, there are at most d choices for the arc from w1 to w2 not containing v. In

total, there are therefore at most

(k + 1)dk+1d = (k + 1)dk+2

(2k + 2)-cycles containing v and a non-special pair of opposite vertices.

(4) Without loss of generality, assume that v plays the role of one of v0, v1, . . . , vk+1

in P = v0v1 . . . v2k+2, which gives k + 2 possibilities. For each of these there are

at most d2k+2 paths P , which means that v is in at most (k + 2)d2k+2 paths of

length 2k + 2.

�
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By multiplying the number of vertices in a pair, cycle or path by the number of paths

of length at most k, special pairs, cycles with a non-special pair and paths that each

vertex can be in, the number of edges in the dependency graph from an event of each

type to events of each type is at most that shown in the table below.

to

Wu,v Xu,v YC ZP

Wu,v 4dk 2dk 2(k + 1)dk+2 2(k + 2)d2k+2

from Xu,v 4dk 2dk 2(k + 1)dk+2 2(k + 2)d2k+2

YC 4(k + 1)dk 2(k + 1)dk 2(k + 1)2dk+2 2(k + 1)(k + 2)d2k+2

ZP 2(2k + 3)dk (2k + 3)dk (2k + 3)(k + 1)dk+2 (2k + 3)(k + 2)d2k+2

Claim 2. The probabilities of the events of each type satisfy the following equalities

and inequalities:

(1) P(Wu,v) = 1
x
,

(2) P(Xu,v) = 1
x
,

(3) P(YC) ≤ (2k)2k+2

x2
, and

(4) P(ZP ) ≤ (2k)2k+3

x3
.

Proof of claim. (1) This is true since f is a uniformly random colouring with

colours taken from [x].

(2) See (1).

(3) For each S ⊂ [x] with |S| = 2k, let Y S
C be the event that C is coloured with

colours taken from S, so that

YC =
⋃
S⊂[x]
|S|=2k

Y S
C .

(However, this is not a partition, since if a colouring uses strictly fewer than 2k

colours, then more than one event Y S
C holds.) Given a choice of S, each of the

2k + 2 vertices of C must receive one of the colours in S, which means that

P
(
Y S
C

)
=

(
2k

x

)2k+2

,
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and hence

P(YC) ≤
∑
S⊂[x]
|S|=2k

P
(
Y S
C

)
≤
(
x

2k

)(
2k

x

)2k+2

≤ x2k

(
2k

x

)2k+2

=
(2k)2k+2

x2
.

(4) As in (3),

P(ZP ) ≤
(
x

2k

)(
2k

x

)2k+3

≤ (2k)2k+3

x3
.

�

As in the proof of Theorem 5.4, the weightings used are double the probabilities or

bounds for the probabilities given in Claim 2; it is enough to prove the condition in the

Erdős-Lovász local lemma for the events ZP , that is,

(
1− 2

x

)2(2k+3)dk (
1− 2

x

)(2k+3)dk (
1− 2(2k)2k+2

x2

)(2k+3)(k+1)dk+2

(
1− 2(2k)2k+3

x3

)(2k+3)(k+2)d2k+2

≥ 1

2
.

It suffices to find x such that all four factors are at least 6
7
, for which any

x ≥ max
{

28(2k + 3)dk, 14(2k + 3)dk,
√

14(2k + 3)(k + 1)(2k)k+1d
k
2

+1,

3
√

14(2k)2k+3(2k + 3)(k + 2)d
2k+2

3

}
will do. Since k ≥ 2, it is enough to take x = 6(k+ 2)(2k)k+1dk (or even x = 28(2k+ 3)dk

once d is reasonably large). �

When choosing the order of magnitude of x at the end of the proof, the critical

condition was that the colouring was a distance-k colouring, not that special pairs and

(2k + 2)-cycles were coloured in a particular way. This was because there was plenty

of room to manoeuvre when choosing the threshold function for a pair to be considered

special.

Indeed, suppose that a pair of vertices were called special if there are least ds paths of

length k+1 between them. Then each vertex would be in at most O(dk+1−s) special pairs

and at most O(dk+1+s) (2k + 2)-cycles containing a non-special pair of opposite vertices.

Since the probability that a special pair is monochromatic is 1
x

and the probability that a
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(2k+ 2)-cycle is coloured with at most 2k colours is O( 1
x2

), the number of colours needed

to avoid these events is O(dk+1−s) and O(d
k+1+s

2 ). Since k ≥ 2, these are both O(dk) for

any choice of s provided that 1 ≤ s ≤ k − 1.

In the case of 3-colour acyclic colouring studied by Alon, McDiarmid and Reed [4],

k = 1 and so this is not possible. Instead, s is chosen so that k + 1− s = k+1+s
2

, that is,

s = k+1
3

= 2
3
, and the number of colours needed is O(d

4
3 ) rather than O(d).

5.4. Open problems

In the results in this chapter, I have found the orders of magnitude of both the length-

l-acyclic chromatic number (up to a logarithmic factor) and the c-colour acyclic chromatic

number of a graph as functions of its maximum degree, assuming that l or c is fixed. As

a result, the bounds are nowhere near best possible as functions of l or c. It would be

worth trying to improve these and to remove the logarithmic factor in the lower bound

for the length-l-acyclic chromatic number.

The two concepts in this chapter can be combined to give a c-colour length-l-acyclic

colouring. If l ≥ c then this is a proper colouring such that every cycle of length at least

l receives at least c colours. If l < c then it is a proper colouring such that every cycle

of length at least l but less than c is multicoloured and every cycle of length at least c

receives at least c colours.

In this chapter I have proved results for c = 3 and general l, and for l = 3 and general

c. What happens for general c and l?





CHAPTER 6

Small minimum degree colourings of graphs and hypergraphs

6.1. Introduction

Recall that a degree-r colouring of a u-uniform hypergraph is a colouring such that

every edge is multicoloured and every subhypergraph with minimum degree at least r

receives at least u + 1 colours. In this chapter, I shall bound the maximum possible

degree-r chromatic number for u-uniform hypergraphs of a given maximum degree d,

denoted by D
(u)
r (d). The bounds are of a different nature when u = 2 and when u ≥ 3, so

I shall treat them separately. In Section 6.2, I shall bound D
(2)
r (d), which for convenience

I shall denote simply by Dr(d), and in Section 6.3 I shall bound D
(u)
r (d) for u ≥ 3. In

Section 6.4, I shall suggest some natural open problems following on from these.

6.2. The degree-r chromatic number of a graph

The main theorem that I shall prove in this section is the following.

Theorem 6.1. For integers r, d ≥ 2, it is the case that

(
d
6

) r2

r2−1

r
(

r2

r2−1
log d

) 1
r2−1

< Dr(d) < 2r
3+r+1r4d

r2

r2−1 .

This has the following immediate corollary.

Corollary 6.2. For a fixed integer r ≥ 2, it is the case that

Ω

 d
r2

r2−1

(log d)
1

r2−1

 ≤ Dr(d) ≤ O

(
d

r2

r2−1

)

as d→∞. �

The probabilistic method for finding a lower bound is by now familiar from Theo-

rems 5.3, 5.7 and 5.9.

115
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Theorem 6.3. For n sufficiently large there is a graph G on n vertices with maximum

degree ∆(G) = d satisfying

n

r
≥

(
d
6

) r2

r2−1

r
(

r2

r2−1
log d

) 1
r2−1

= Ω

 d
r2

r2−1

(log d)
1

r2−1


such that there is no degree-r colouring with at most n

r
colours.

Proof. Let

p = 3

(
log n

n

) 1
r2

,

let n be large and divisible by r2 and let G ∈ Gn,p.

Suppose that f : V (G)→
[
n
r

]
is a colouring that uses at most n

r
colours. By discarding

at most r − 1 vertices from each colour class, at least n
r2

monochromatic r-tuples can be

found. Choose n
r2

of these and call them T1, . . . , T n
r2

.

Let Ki,j be the event that the graph induced by the vertices in Ti ∪ Tj contains the

complete bipartite graph with vertex classes Ti and Tj. If any event Ki,j occurs then this

colouring cannot be a degree-r colouring of G. Let Af be the event that f is a degree-r

colouring. Then

P(Af ) ≤ P

(⋂
i<j

Kc
i,j

)

≤
(

1− pr2
)(n/r

2

2 )
,

since the events Ki,j are independent. Writing E for the event that G can be degree-r

coloured with at most n
r

colours,

P(E) ≤
∑

f :V (G)→[nr ]

P(Af )

≤ nn
(

1− pr2
)(n/r

2

2 )

≤ exp

(
n log n−

(
n/r2

2

)
pr

2

)
= o(1),
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which means that there exists a graph G that cannot be degree-r coloured with at most

n
r

colours, as required. By Lemma 4.9, the graph G can be chosen so that, in addition,

the bound in the theorem is satisfied. �

Theorem 6.4. Let G be a graph with ∆(G) = d and let r ≥ 2 be an integer. Then it

is possible to degree-r colour G with at most 2r
3+r+1r4d

r2

r2−1 = O

(
d

r2

r2−1

)
colours.

Proof. Call the tree on r+1 vertices, r of which are leaves, the r-claw (see Figure 6.1);

call the r-tuple {v1, . . . , vr} special if it is the set of leaves of at least d
r
r+1 r-claws, that

is, if there are at least d
r
r+1 vertices adjacent to all of v1, . . . , vr.

s
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Figure 6.1. The 6-claw.

Let f : V (G)→ [x] be a random function where each vertex receives a colour from [x]

uniformly at random.

The proof uses the Erdős-Lovász local lemma. The bad events to be considered are

as follows:

(1) For each edge uv, let Wuv = {f(u) = f(v)}.

(2) For each special r-tuple v1, . . . , vr, let Xv1,...,vr be the event that f(v1) = . . . =

f(vr).

(3) For each connected bipartite subgraph B ⊂ G with δ(B) ≥ r and |V (B)| = t ≤ r2

not containing a special r-tuple, let Y t
B be the event that B receives at most two

colours.

(4) For each connected bipartite subgraph B ⊂ G with |V (B)| = r2 + 1, let ZB be

the event that B receives at most two colours.

If none of the events of type Wuv occurs then f is a proper colouring and every non-

bipartite subgraph receives at least three colours. If in addition none of the events Xv1,...,vr

and Y t
B occurs then every bipartite subgraph with minimum degree at least r on at most

r2 vertices receives at least three colours. If none of the events ZB occurs then every
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bipartite subgraph with minimum degree at least r on at least r2 + 1 vertices receives at

least three colours.

Claim 1. Each vertex is in at most

(1) d edges,

(2) d
r2

r+1 special r-tuples,

(3) t2
t2

2 dt−
2r
r+1 connected bipartite subgraphs B with δ(B) ≥ r and |V (B)| = t ≤ r2

not containing a special r-tuple, and

(4) (r2 + 1)2r
4
dr

2
bipartite subgraphs B with |V (B)| = r2 + 1.

Proof of claim. (1) The maximum degree ∆(G) = d.

(2) The vertex v is a leaf in a most dr r-claws: there are at most d choices for the

root and then at most d choices for each of the other r − 1 leaves. Each special

r-tuple that v is in provides at least d
r
r+1 r-claws, and so v is in at most

dr

d
r
r+1

= d
r2+r−r
r+1 = d

r2

r+1

special r-tuples.

(3) There are at most

2(t2) ≤ 2
t2

2

graphs on t vertices, so certainly at most that many connected bipartite graphs

B on t vertices with δ(B) ≥ r. For each vertex w ∈ V (B), I shall show that v is

in at most dt−
2r
r+1 copies of B in the position of w, which is enough since there

are at most t choices for w.

In the bipartite graph B, let V1 be the smaller vertex class and let V2 be the

larger. (If they are equally sized then either labelling will do.) Let s1 = |V1| and

s2 = |V2|. I shall first construct a set U ⊂ V2 with |U | ≤ s2 − r + 1 such that

w ∈ V1 ∪ U and the graph induced by the vertices in V1 ∪ U is connected (see

Figure 6.2).

If w ∈ V2 then let u1 = w; otherwise, let u1 be any neighbour of w, so that in

either case u1 ∈ V2. Let X1 = Γ(u1), so that w ∈ {u1} ∪X1 and |X1| ≥ r. Since

B is a connected graph, there exists some u2 ∈ V2 with neighbours in both X1



6.2. THE DEGREE-r CHROMATIC NUMBER OF A GRAPH 119

ss
ss
ss

ss
ss
ss((((

(((
((((

(

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

((

((

((

��

��

��

ppp ppp ppp ppp ppp ppp

6

?
6

?

≥ r

≤ s1 − r
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Figure 6.2. A set U ⊂ V2 such that the graph induced by the vertices in
V1 ∪ U is connected, and |U | ≤ s2 − r + 1 and |V2 \ U | ≥ r − 1.

and V1 \X1. Let X2 = X1 ∪ Γ(u2). Since u2 has neighbours in V1 \X1, it is the

case that |X2| ≥ r + 1, and since u2 has neighbours in X1, the graph induced by

the vertices in {u1, u2} ∪X2 is connected.

Repeat this process, at each step picking a vertex ui+1 with neighbours in

both Xi and V1 \ Xi and then defining Xi+1 = Xi ∪ Γ(ui+1). By the choice of

ui+1, it is always the case that |Xi+1| ≥ r + i and that the graph induced by

{u1, . . . , ui+1} ∪Xi+1 is connected.

The process terminates after j steps when Xj = V1. Let U = {u1, . . . , uj}.

Since s2 ≥ s1 = |V1| = |Xj| ≥ r+ j− 1, the inequality |U | = j ≤ s2− r+ 1 holds,

as required.

Given w, there are at most ds1−1+j ways of choosing the s1− 1 + j vertices in(
V1 ∪ U

)
\ {w}. Since all the vertices in V1 have now been chosen and there are

no special r-tuples, there are then at most
(
d

r
r+1

)s2−j
ways of picking the s2 − j

vertices in V2 \ U , which gives a total of at most

ds1−1+j+
(s2−j)r
r+1 = d

r(s1+s2)+s1+j−r−1
r+1

ways. Since j ≤ s2 − r + 1, this gives at most

d
r(s1+s2)+s1+s2−2r

r+1 = d
(r+1)t−2r

r+1 = dt−
2r
r+1

ways, as required.

(4) There are at most

2(r
2+1
2 ) ≤ 2r

4
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graphs on r2 + 1 vertices, so certainly at most that many connected bipartite

graphs B on r2 + 1 vertices. For each such B, there are at most r2 + 1 choices

for where to put v, up to isomorphism. Working through the remaining vertices

one by one, each time picking a vertex that is adjacent to one of those already

considered, there are then at most dr
2

choices for the other r2 vertices, which

means that v is in at most (r2 + 1)2r
4
dr

2
such graphs.

�

By multiplying the number of vertices in an edge, r-tuple or bipartite graph by the

number of edges, special r-tuples, and bipartite graphs that each vertex can be in, the

number of edges in the dependency graph from an event of each type to events of each

type is at most that shown in the table below.

to

Wuv Xv1,...,vr Y t
B ZB

Wuv 2d 2d
r2

r+1 t2
t2

2
+1dt−

2r
r+1 (r2 + 1)2r

4+1dr
2

from Xv1,...,vr rd rd
r2

r+1 rt2
t2

2 dt−
2r
r+1 r(r2 + 1)2r

4
dr

2

Y t
B r2d r2d

r2

r+1 r2t2
t2

2 dt−
2r
r+1 r2(r2 + 1)2r

4
dr

2

ZB (r2 + 1)d (r2 + 1)d
r2

r+1 (r2 + 1)t2
t2

2 dt−
2r
r+1 (r2 + 1)22r

4
dr

2

Claim 2. The probabilities of the events of each type satisfy the following equalities

and inequalities:

(1) P(Wuv) = 1
x
,

(2) P(Xv1,...,vr) = 1
xr−1 ,

(3) P(Y t
B) ≤ 2t

xt−2 , and

(4) P(ZB) ≤ 2r
2

xr2−1
.

Proof of claim. This is straightforward, and proved in the same way as Claim 2

in the proof of Theorem 5.11. �

As in the proofs of Theorems 5.4 and 5.11, the weightings used are double the pro-

babilities or bounds for the probabilities given in Claim 2, and it is enough to prove the
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condition in the Erdős-Lovász local lemma for the events ZB, that is,

(
1− 2

x

)(r2+1)d(
1− 2

xr−1

)(r2+1)d
r2

r+1 r2∏
t=2r

(
1− 2t+1

xt−2

)(r2+1)t2
t2

2 d
t− 2r

r+1

(
1− 2r

2+1

xr2−1

)(r2+1)22r
4
dr

2

≥ 1

2
.

Since there are at most r2 factors in this product, it suffices to find x such that each factor

is at least 1 − 1
2r2

. The power of d in the order of magnitude of x necessitated by each

term (
1− 2t+1

xt−2

)(r2+1)t2
t2

2 d
t− 2r

r+1

is
t− 2r

r+1

t−2
. This is maximized in the range 2r ≤ t ≤ r2 when t = 2r, when it is equal to

2r − 2r
r+1

2r − 2
=

2r2 + 2r − 2r

2(r − 1)(r + 1)
=

r2

r2 − 1
.

It therefore suffices to choose any

x ≥ max

{
4r2(r2 + 1)d, r−1

√
4r2(r2 + 1)d

r2

r2−1 ,
2r−2

√
2
r4

2
+r2+2r4(r2 + 1)r2r3+2d

r2

r2−1 ,

r2−1

√
2r4+r2+2r2(r2 + 1)2d

r2

r2−1

}
.

Since r ≥ 2, it is enough to take x = 2r
3+r+1r4d

r2

r2−1 . �

6.3. The degree-r chromatic number of a hypergraph

There are (at least) two possible definitions of what constitutes a proper vertex-

colouring of a uniform hypergraph: one where each edge must be multicoloured and

one where each edge cannot be monochromatic. I shall consider the first case, and prove

that degree-r colouring a u-uniform hypergraph for u ≥ 3 is essentially no harder than en-

suring that all of its edges are multicoloured. Colouring the vertices greedily in any order

shows that the vertices of a u-uniform hypergraph H with maximum degree ∆(H) = d

can be coloured with at most (u − 1)d + 1 colours, and I shall show that a number of

colours linear in d is sufficient to degree-2 colour and therefore to degree-r colour H for

all r.
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Recall that a degree-r colouring of a u-uniform hypergraph is a colouring such that

every edge is multicoloured and every subhypergraph with minimum degree at least r

receives at least u + 1 colours. In this section, I shall bound the maximum possible

degree-r chromatic number of hypergraphs of a given maximum degree d, denoted by

D
(u)
r (d).

Theorem 6.5. For integers u ≥ 3, r ≥ 2 and d ≥ 2, it is the case that(
1− 1

u

)
d < D(u)

r (d) ≤ D
(u)
2 (d) < 3duu.

This has the following immediate corollary.

Corollary 6.6. For fixed integers u ≥ 3, r ≥ 2, it is the case that

D(u)
r (d) = Θ(d)

as d→∞. �

s

s

s

s

s s

s s

Figure 6.3. The desired hypergraph is formed by superimposing one copy
of this hypergraph for each vertex.

For every edge to be multicoloured, it might be necessary to use at least
(
1− 1

u

)
d

colours. Indeed, for any m ≥ 2, let H be a u-uniform hypergraph with V (H) = [m(u−1)],

for 0 ≤ j ≤ m− 1 let

Ij =
{
j(u− 1) + 1, j(u− 1) + 2, . . . , (j + 1)(u− 1)

}
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and let

E(H) =
{
{i} ∪ Ij : i /∈ Ij

}
(see Figure 6.3). Then each vertex i is in an edge for each of the m − 1 intervals Ij not

containing i and in an edge for each of the (m − 1)(u − 1) vertices not in the interval

containing i. Therefore,

d = m− 1 + (m− 1)(u− 1) = (m− 1)u

and every pair of vertices is in at least one common edge, so the number of colours needed

to ensure that every edge is multicoloured is

(u− 1)m = (m− 1)(u− 1) + u− 1 =

(
1− 1

u

)
d+ u− 1.

The proof of the upper bound using the Erdős-Lovász local lemma is easier than those

up to this point, in the sense that there are only two types of bad event.

Theorem 6.7. Let H be a u-uniform hypergraph with ∆(G) = d. Then it is possible

to degree-2 colour H with at most 3duu colours.

Proof. Let f : V (G)→ [x] be a random function where each vertex receives a colour

from [x] uniformly at random.

The proof uses the Erdős-Lovász local lemma. The bad events to be considered are

as follows:

(1) For all v1, v2 with v1 and v2 in some common edge, let Wv1,v2 = {f(v1) = f(v2)}.

(2) For every pair of edges e1, e2 with 1 ≤ |e1 ∩ e2| ≤ u − 2, let Xe1,e2 be the event

that the two edges receive the same multiset of colours.

If none of the events Wv1,v2 occurs then f is a multicolouring and every non-u-partite

subhypergraph receives at least u+ 1 colours. In the claim below, I shall show that every

connected u-partite u-uniform hypergraph with minimum degree at least 2 contains two

edges e1, e2 with 1 ≤ |e1 ∩ e2| ≤ u− 2. Therefore, if in addition none of the events Xe1,e2

occurs then every subhypergraph with minimum degree at least 2 receives at least u + 1

colours.
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Claim 1. Let K be a connected u-partite u-uniform hypergraph with δ(K) ≥ 2, where

u ≥ 3. Then there exist e1, e2 ∈ E(K) such that 1 ≤ |e1 ∩ e2| ≤ u− 2.

Proof of claim. Suppose that there are no two edges e1, e2 ∈ E(K) such that

1 ≤ |e1 ∩ e2| ≤ u − 2. Then for any two distinct edges e1 6= e2, either e1 ∩ e2 = ∅ or

|e1 ∩ e2| = u− 1.

Pick any edge e1 ∈ E(K). Since K is connected, there is an edge e2 ∈ E(K) with

|e1 ∩ e2| = u − 1. Let v1 be the vertex in e1 \ e2, let v2 be the vertex in e2 \ e1 and let

S = e1 ∩ e2. Since K is u-partite, v1 and v2 cannot be in any common edge.

s s s

s s

v1 v2 v3

S

Figure 6.4. The condition on the sizes of the intersections forces K to
have this structure, which contradicts δ(K) ≥ 2.

There must be at least three edges, as otherwise d(v1) = d(v2) = 1, which contradicts

δ(K) ≥ 2. Thus there is a third edge e3 that intersects at least one of e1 and e2, so

without loss of generality |e1 ∩ e3| = u− 1. Since u < 2(u− 1) for u ≥ 3, this means that

e2 ∩ e3 6= ∅ and so |e2 ∩ e3| = u− 1. Since |e1 ∩ e3| = |e2 ∩ e3|, the edge e3 must contain

both v1 and v2 or neither. The former is not possible as K is u-partite, so it must be that

e1 ∩ e2 = e1 ∩ e3 = e2 ∩ e3 = S, and e3 = S ∪ {v3} for some v3 (see Figure 6.4).

Since K is connected, the argument can be repeated and must eventually include all

edges, so that each edge ei = S ∪ {vi} for some vertex vi. But then the degree d(vi) = 1

for all i, which contradicts δ(K) ≥ 2. �

Claim 2. Each vertex v is in at most

(1) (u− 1)d pairs of vertices in a common edge, and

(2) ud2 pairs of edges e1, e2 with 1 ≤ |e1 ∩ e2| ≤ u− 2.



6.3. THE DEGREE-r CHROMATIC NUMBER OF A HYPERGRAPH 125

Proof of claim. (1) Since ∆(H) = d, the vertex v is in at most d edges, each

of which contains u−1 more vertices (not necessarily different from those in other

edges).

(2) Since ∆(H) = d, the vertex v is in at most
(
d
2

)
< d2 pairs of edges whose

intersection contains v. By choosing one of the edges containing v, one of the

other vertices in that edge and then one of the other edges containing that vertex,

the vertex v is in at most (u− 1)d2 pairs of intersecting edges whose intersection

does not contain v.

�

Note that the bounds on |e1 ∩ e2| were not needed to obtain the bound in (2); this

condition is in the statement of the claim only as a reminder of the type of event being

considered.

By multiplying the number of vertices in a pair of vertices or edges by the number

of pairs of vertices and edges that each vertex can be in, the number of edges in the

dependency graph from an event of each type to events of each type is at most that

shown in the table below.

to

Wv1,v2 Xe1,e2

from Wv1,v2 2(u− 1)d 2ud2

Xe1,e2 (2u− 1)(u− 1)d (2u− 1)ud2

Claim 3. The probabilities of the events of each type satisfy the following equality and

inequality:

(1) P(Wv1,v2) = 1
x

and

(2) P(Xe1,e2) ≤
(u−1)!
x2

.

Proof of claim. (1) This is true since f is a uniformly random colouring with

colours taken from [x].

(2) Let q = |e1 ∩ e2|, so that 1 ≤ q ≤ u− 2. For each bijection π : e1 \ e2 → e2 \ e1,

let

Aπ =
{
f(v) = f

(
π(v)

)
for all v ∈ e1 \ e2

}
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be the event that the colourings of the edges e1 and e2 match up in this order,

and let E be the event that the colourings of the edges e1 and e2 are the same in

any order, so that

E =
⋃

π:e1\e2→e2\e1

Aπ.

(However, this is not a partition, since if f is not a multicolouring, then more

than one event Aπ might hold.) Then

P(E) ≤
∑

π:e1\e2→e2\e1

P
(
Aπ
)

=
(u− q)!
x(u−q) ≤

(u− 1)!

x2
.

�

As in the proofs of Theorems 5.4, 5.11 and 6.4, the weightings used are double the

probabilities or bounds for the probabilities given in Claim 2, and it is enough to prove

the condition in the Erdős-Lovász local lemma for the events Xe1,e2 , that is,(
1− 2

x

)(2u−1)(u−1)d(
1− 2(u− 1)!

x2

)(2u−1)ud2

≥ 1

2
.

It suffices to find x for which both factors are at least 3
4
, for which any

x ≥ max
{

8(2u− 1)(u− 1)d,
√

8(u− 1)!(2u− 1)ud
}

will do. Since u ≥ 3, it is enough to take x = 3duu. �

6.4. Open problems

As in Chapter 5, I have only tried to find the order of magnitude of the degree-r

chromatic numbers of graphs and u-uniform hypergraphs as functions of their maximum

degree d, and it would be nice to have tighter bounds as functions of r and u as well.

An alternative way of describing a degree-r colouring is that any 2-coloured subgraph

has minimum degree at most r. What if the graph induced by any two classes has

maximum degree at most r?

Over the course of the last two chapters, I have introduced an analogue of the acyclic

chromatic number by varying the following one at a time:
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(1) the minimum length l of the cycles that we care about (or more generally the

minimum order l of the subgraphs we care about),

(2) the minimum number of colours c that these subgraphs should receive,

(3) the minimum degree r of these subgraphs, and

(4) the number of vertices u in an edge.

In addition to these, for u ≥ 3 one could relax the condition from every edge being

multicoloured to no edge being monochromatic.

The ultimate goal is a result including all five of these factors, but for now even a

result taking more than one into account would constitute progress. As well as uniting

some or all of these, one could merge them with many of the ideas from Chapter 4. For

example, there are obvious list and edge analogues. Finding exact best possible bounds

for the various quantities as functions of the graph’s maximum degree d for small d would

also be good.

Beyond that, there is still plenty of scope for varying the problems posed; in this part

of this dissertation, I have only attempted to bound them as functions of the graph’s

maximum degree. As with the original work on acyclic colourings, it would be interesting

to find bounds for graphs drawn on different surfaces, for graphs with large girth, and for

random graphs, for example.





Conclusion

In this dissertation, I proved eight main results, four in each part.

Part 1: Problems of optimal choice on posets

In Chapter 2, I found an optimal strategy for the secretary problem when the candi-

dates arem pairs of identical twins, its probability of success and the asymptotic behaviour

of both of these.

Result 1 (Theorem 2.1). For m ∈ N, let

km = min

{
k :

2m

k
+

m−1∑
j=k

1

j
≤ 5

}
.

An optimal strategy for the secretary problem on m pairs of identical twins is to wait until

candidates have been seen from at least km of the pairs and then to pick the next candidate

who is the best so far and whose twin has already been seen. Asymptotically,

lim
m→∞

km
m

=
1

x0

≈ 0.4709,

where x0 is the unique solution to 2x+ log x = 5, and the probability of success tends to

1

x0

+
4(x0 − 1)2

3x0

((
x0

x0 − 1

) 1
2

− 1

)
≈ 0.7680.

For its extension to c-tuplets, I found an optimal strategy and its probability of success,

and bounded the behaviour of these.

Result 2 (Theorem 2.2). For c,m ∈ N with c ≥ 2, let

k(c)
m = min

{
k :

m−k∑
j=1

[(
m−j−1
k−1

)(
m−1
k−1

) j∏
i=2

(
1− 1(

ci
c

))] ≤ 1

}
.

An optimal strategy for the secretary problem on m sets of identical c-tuplets is to wait

until candidates have been seen from at least k
(c)
m of the c-tuples and then to pick the next

129
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candidate who is the best so far and all of whose c-tuplets have already been seen. For all

m, (
1

2
− c+ 1

2(2c+1(c− 1)− c− 1)

)
m < k(c)

m ≤
⌈m

2

⌉
,

and the probability of success is at least

1− c+ 1

2c(c− 1)
.

In Chapter 3, I found a strategy for the secretary problem on a poset where the number

of elements n and the number of which are maximal k are both known and the width

is equal to k, and showed that it gave the best possible probability of success for this

problem.

Result 3 (Theorem 3.1). Let (P,≺) be a poset with k maximal elements and of width

k. Then there is an algorithm for the secretary problem on (P,≺) depending only on |P |

and k that is successful with probability at least pk, where

pk =


1
e

if k = 1,

k−1

√
1
k

if k > 1,

and these are the best possible such bounds.

For a poset whose width is not necessarily equal to its number of maximal elements

k, I found a strategy that is successful with probability 1
e
, which is the best possible

probability of success for the classical secretary problem and therefore best possible in

this situation.

Result 4 (Theorem 3.2). Let (P,≺) be a poset with k maximal elements. Then there

is an algorithm for the secretary problem on (P,≺) depending only on |P | and k that is

successful with probability at least 1
e
, and this is the best possible such bound.

Part 2: Generalizations of acyclic colourings

In Chapter 5, I found an upper bound for the number of colours needed to colour a

graph G properly in such a way that every cycle of length at least l receives at least three
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colours, as a function of its maximum degree d, and showed that it was best possible up

to a logarithmic factor.

Result 5 (Corollary 5.2). For a fixed integer m ≥ 2, it is the case that

Ω

(
d

2m
2m−1

(log d)
1

2m−1

)
≤ A(2m)(d) = A(2m−1)(d) ≤ O

(
d

2m
2m−1

)
as d→∞.

I found an upper bound for the number of colours needed to colour a graph G properly

in such a way that every cycle receives at least c colours, as a function of its maximum

degree d, and showed that it was best possible up to a constant factor.

Result 6 (Corollary 5.6). For a fixed integer k ≥ 2, it is the case that

A2k(d), A2k+1(d) = Θ(dk)

as d→∞.

In Chapter 6, I found an upper bound for the number of colours needed to colour

a graph G properly in such a way that every subgraph with minimum degree at least r

receives at least three colours, as a function of its maximum degree d, and showed that it

was best possible up to a logarithmic factor.

Result 7 (Corollary 6.2). For a fixed integer r ≥ 2, it is the case that

Ω

 d
r2

r2−1

(log d)
1

r2−1

 ≤ Dr(d) ≤ O

(
d

r2

r2−1

)

as d→∞.

I found an upper bound for the number of colours needed to colour a u-uniform

hypergraph H in such a way that every edge is multicoloured and every subhypergraph

of minimum degree at least r receives at least three colours, as a function of its maximum

degree d, and showed that it was best possible up to a constant factor.

Result 8 (Corollary 6.6). For fixed integers u ≥ 3, r ≥ 2, it is the case that

D(u)
r (d) = Θ(d)
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as d→∞.

These results are part of a natural progression from earlier work, and suggest possible

directions of future research.
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