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ABSTRACT

The Spline-DCS model is developed and applied to forecasting the

high-frequency trade volume of selected equity and foreign currency

exchange pairs. The cubic spline model of Harvey and Koopman (1993) is

applied to capture intra-day periodic patterns. The model is robust to

outliers as the dynamics of scale is driven by the score. The empirical

application illustrates that Spline-DCS is a practical forecasting tool that

is robust to the choice of sampling frequency or sampling period. The

predictive performance of the model is compared with the state-of-the-art

volume forecasting model, named the component-MEM, of Brownlees

et al. (2011). The model can substantially outperform the

component-MEM in minimizing common forecast error functions.
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1 Introduction

A key objective of execution algorithms in high-frequency trading is to minimize

the price impact of a given order by slicing it into smaller transaction sizes and

spreading the timing of transactions throughout the day. This reduces the risk of

slippage in price, which is the difference between the expected price of a trade

and its actual traded price. Accurate intra-day volume prediction can help

investors optimize the size and the timing of orders in this sense since the level of

market liquidity and trade intensity change throughout the day. It also helps

investors achieve the execution price of transactions for the day to be near the

Volume-Weighted Average Price (VWAP) benchmark.1 It is a measure

widely-used for a range of purposes, such as assessing the performance of a given

trading strategy in minimizing the price impact, or as a guarantee to clients that

their orders will be executed at the VWAP target.

Volume prediction in high-frequency finance is a non-trivial task due to the

statistically complex features of high-frequency trade volume. Until the seminal

work by Brownlees et al. (2011), there has been no well-established methodology

for forecasting high-frequency trade volume. Brownlees et al. (2011) introduced

the components multiplicative error model (MEM), and showed that the model

can outperform some of the existing common methods in volume prediction.

In this paper, we introduce the Spline-DCS model2 and use it to forecast the

trade volume of the IBM stock traded on the New York Stock Exchange

(NYSE), as well as two of the most popular currency exchange pairs, euro-dollar

(EURUSD) and dollar-yen (USDJPY), traded in the foreign exchange market

(FX). We show that the model captures salient empirical features such as

intra-day periodic patterns, autocorrelation, and the highly non-Gaussian

features of the empirical distribution of our data.

The components MEM model is a GARCH-type observation driven model. It

decomposes the dynamics of the conditional moment of data into several

components. The periodic component adopts the Fourier series approximation

technique, which is a commonly used methodology for capturing intra-day

periodic patterns. Our Spline-DCS also has a component specification, but its

periodic component applies a cubic spline function. Thus, in order to clarify the

distinction between the components-MEM and Spline-DCS, we refer to the

1For a given asset class or an order, it is the transaction prices weighted by the associated
volume of each transaction.

2The model was initially studied by Ito (2013), but the paper has been restructured and
partially merged with a later project to become this paper and the latest version of Ito (2013).
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former as Fourier-MEM in this paper.

The defining features of Spline-DCS are the cubic spline component and the

dynamic specification of the filter. Spline-DCS is an extension of the dynamic

conditional score (DCS) model, formally defined and studied by Harvey (2013)

and also independently by Creal et al. (2011, 2013). The latter authors call DCS

the generalized autoregressive score (GAS) model. It is a relatively new class of

observation-driven model for forecasting the conditional density of data via

modeling the time-varying volatility, scale, or location. DCS is useful for

modeling data with heavy-tails due to its robustness feature: the score, which

drives the dynamics of the filter, weighs down the effect of extreme observations

when some well-known or useful distributions are used to characterize the

distribution of data. The parameters of the model are estimated easily by the

method of maximum likelihood (ML).

The periodic component of Spline-DCS applies the cubic spline model of

Harvey and Koopman (1993). The authors originally developed it to estimate

periodic patterns in hourly electricity demand. It is a parsimonious way of

modeling intra-day periodicity, and it can be estimated simultaneously with all

other components of the model by ML. Aside from the computational and other

empirical advantages of the spline function that we investigate extensively in this

paper, an additional notable feature of their cubic spline is that the pattern of

periodicity can be allowed to evolve stochastically. As such, Harvey and

Koopman (1993) call it the dynamic cubic spline model. Bowsher and Meeks

(2008) interpret it as a special type of “dynamic factor model”, where the knots

of the spline are the factors and the factor loadings are treated as given and

specified according to the requirement that the model has to be a cubic spline.

Their spline was employed by Harvey et al. (1997) to model a changing seasonal

component of weekly money supply in the U.K., and also by Bowsher and Meeks

(2008) to forecast zero-coupon yield curves. In order to simplify (and maintain

our focus on) the task of illustrating the usefulness of Spline-DCS in

high-frequency volume forecasting, we keep the model specification simple by

fixing the pattern of periodicity to be the same every day, which is a standard

assumption in the literature. Ito (2013) generalizes our proposed model by fully

specifying the dynamic cubic spline version of Spline-DCS, and illustrate the

empirical merit of allowing for the patterns of intra-day periodicity to evolve in

high-frequency finance.

Trade volume is a measure of intensity of trading activity. There is a variety

of volume measures including the number of shares traded, number of
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transactions, and turnover (shares traded divided by shares outstanding). For

the IBM equity data, we model the number of shares traded. For the FX data,

the volume is as measured by the traded units in the left hand currency of a

given pair (i.e. Euro for EURUSD and dollar for USDJPY), which is priced in

the right hand currency of the same pair (i.e. dollar for EURUSD and yen for

USDJPY). The sampling frequency we consider ranges between 30 seconds and

10 minutes, which is relatively high in the volume prediction literature.

Although this study deals with non-negative time series, Spline-DCS can be

applied to variables with support over the entire real line, in which case the

model should be viewed as an extension of Beta-t-EGARCH of Harvey and

Chakravarty (2008). As such, Spline-DCS can be used to model asset returns

and compared with the seminal work by Andersen and Bollerslev (1998).

The key findings of our analysis can be summarized in two parts as follows.

First, we produce both density and level forecasts of volume using Spline-DCS

and illustrate the model’s practicality, good in-sample fit, and out-of-sample

forecasting performance in the context of both equity and FX. Testing the model

in these two disperate markets reveal that our model can capture any periodic

shape including convex, concave, and multi-modal ones, without imposing any

restrictions on the shape of the spline to achieve it. The estimation results are

robust to the choice of initial parameters, the sampling frequency, or the

sampling period, largely due to the robustness feature of DCS. We compare our

model’s predictive performance with that of Fourier-MEM, which is the

state-of-the-art volume forecasting model in the literature. Our extensive

backtesting3 procedure using the FX data show that Spline-DCS can outperform

the components MEM in minimizing common forecast error functions.

Second, we discuss several computational and analytical advantages of

Spline-DCS that we identified to highlight its practicality in high-frequency

finance. It is a field in which a typical analysis deals with a very large set of

data, and thus forecasting can become computationally intensive. These

advantages of Spline-DCS we highlight stem from the ML estimation procedure

and the use of the spline. Our experience with estimating Fourier-MEM by the

generalized method of moments (GMM) as proposed by Brownlees et al. (2011)

led us to think that the computational cost of it is noticeably higher than

Spline-DCS for a given sample size and convergence tolerance. With the FX

data, the optimization procedure for Spline-DCS always converged in less than 5

3Backtest is a financial jargon that refers to the test of predictive performance of a model
using historical data.
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minutes, whereas the Fourier-MEM usually took hours to converge (about 4

hours or longer). We think that the main source of computational cost in

Fourier-MEM is the combination of the GMM criteria equation and the use of

the Fourier series as the intra-day periodic component. These computational

features are compared in Section 7. The spline yields smoother and more

intuitive shape of intra-day periodic patterns with relatively few parameters

compared to the use of Fourier series.

The plan of this paper is as follows. Section 2 describes the characteristics of

our data and motivates the construction of our model. Section 3 defines

Spline-DCS. Sections 3.6 and 6.2 lay out our estimation and forecast evaluation

methods. Sections 4 and 5 report the in-sample and out-of-sample results for

Spline-DCS. Section 6 compares the predictive performance of the competing

models using the FX data. Section 7 discusses the computational and practical

aspects of the models studied in this paper. Section 8 concludes by laying out

aspects of our study that can be improved for further research.

2 Data characteristics

Before proceeding to detailed modeling strategies and forecasting results, it is

useful to get an overall feel for the trade volume data. This section provides an

initial investigation of our data to motivate our model formally defined in

Section 3.

The equity trade volume we consider is the number of shares of IBM stock

traded on NYSE during the market opening hours (9.30am-4pm in the New York

local time) between Monday 28 February and Friday 31 March 2000, which

includes 25 trading days and no public holidays. Our raw data set is in

tick-format and consists of the record of every trade in the order of occurrence.

The tick-data is irregularly spaced and often has multiple transactions in one

second. In order to explore the effects of marginal changes in the aggregation

interval on our inference, we aggregate the tick-data by 30 seconds and 1 minute.

There are 780 observations per trading day if the aggregation interval is 30

seconds, and 390 observations if 1 minute. For convenience, we refer to the

aggregated series as IBM30s if the aggregation interval is 30 seconds, and

IBM1m if 1 minute. IMB30s aggregates to IBM1m over any 1-minute interval.

We also consider the trade volume of EURUSD and USDJPY, which are two

of the most widely-traded pairs in FX. The definition of trade volume we employ

here is the quantity traded in the units of the left hand currency (e.g. euro for

EURUSD), which is priced in the units of the right hand currency (e.g. the US
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Figure 1. IBM30s (left column) and the same series smoothed by the simple moving
average of nearest 20 observations (right column). Time on the x-axis. Top panel:
Monday 20 - Friday 24 March 2000. Bottom panel: Wednesday 22 March 2000. Any
given day covers the market opening hours between 9.30am-4pm only (in the New York
local time).

dollar for EURUSD).4 The sampling frequency we consider here is 10 minutes.

Thus, we have 144 observations per trading day for the FX data. The highest

sampling frequency Brownlees et al. (2011) consider is 15 minutes. For a given

sampling frequency, the sample size per day for the FX data is more than 3

times larger than for the equity data. This is because trades in FX typically take

place throughout the day and night during the weekdays and data is collected 24

hours every day. We use the FX data to compare Spline-DCS and Fourier-MEM

in Sections 6 and 7. The sampling period is between Monday 6 January and

Sunday 21 December 2014, which is split into sixteen rolling sub-sample windows

for the backtesting analysis. See Table 1.

We have more recent and larger samples for the FX data compared to the

equity data. This is simply due to the data availability, as we did not have access

to more recent volume data for equity at the level of sampling frequency we

desired to study. We study both the equity and FX data to illustrate the

4For confidentiality reasons, we divided the original FX trade volume series by some arbi-
trarily chosen constant number to hide the actual level of traded quantity. This pre-estimation
transformation does not affect the dynamic structure or the shape of the empirical distribution
of data. Thus, the estimated value of ω (defined in Section 3) for the FX data should be viewed
in this context.
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In-sample (3 weeks) Out-of-sample (2 weeks)

Window # From To From To
1 Mon 06-Jan-14 Sun 26-Jan-14 Mon 27-Jan-14 Sun 09-Feb-14
2 Mon 27-Jan-14 Sun 16-Feb-14 Mon 17-Feb-14 Sun 02-Mar-14
3 Mon 17-Feb-14 Sun 09-Mar-14 Mon 10-Mar-14 Sun 23-Mar-14
4 Mon 10-Mar-14 Sun 30-Mar-14 Mon 31-Mar-14 Sun 13-Apr-14
5 Mon 31-Mar-14 Sun 20-Apr-14 Mon 21-Apr-14 Sun 04-May-14
6 Mon 21-Apr-14 Sun 11-May-14 Mon 12-May-14 Sun 25-May-14
7 Mon 12-May-14 Sun 01-Jun-14 Mon 02-Jun-14 Sun 15-Jun-14
8 Mon 02-Jun-14 Sun 22-Jun-14 Mon 23-Jun-14 Sun 06-Jul-14
9 Mon 23-Jun-14 Sun 13-Jul-14 Mon 14-Jul-14 Sun 27-Jul-14
10 Mon 14-Jul-14 Sun 03-Aug-14 Mon 04-Aug-14 Sun 17-Aug-14
11 Mon 04-Aug-14 Sun 24-Aug-14 Mon 25-Aug-14 Sun 07-Sep-14
12 Mon 25-Aug-14 Sun 14-Sep-14 Mon 15-Sep-14 Sun 28-Sep-14
13 Mon 15-Sep-14 Sun 05-Oct-14 Mon 06-Oct-14 Sun 19-Oct-14
14 Mon 06-Oct-14 Sun 26-Oct-14 Mon 27-Oct-14 Sun 09-Nov-14
15 Mon 27-Oct-14 Sun 16-Nov-14 Mon 17-Nov-14 Sun 30-Nov-14
16 Mon 17-Nov-14 Sun 07-Dec-14 Mon 08-Dec-14 Sun 21-Dec-14

Table 1. Sub-sampling windows for the FX trade volume data. The overall sampling
period between Mon 6 Jan and Sun 21 Dec 2014 is split into sixteen sub-sample windows
for the backtesting analysis.

usefulness of our model in these two disperate applications.

Figure 1 gives a snapshot of our equity data. In the top panel, we observe

several recurrent spikes in volume near the moment of market opening or closure.

These extreme observations make the upper tail of the empirical distribution of

data very long. (See Table 2.) The volume fluctuates a lot throughout the day.

The smoothed IBM30s series in the right column of Figure 1 reflects that there is

a diurnal U-shaped pattern in trading activity on every trading day. High

volume in the morning trading hours can be caused by news transmitted over

night. The level of activity declines towards lunch time (bottoming out at

around 1pm) as overnight information is processed, but picks up again in the

afternoon as traders re-balance their positions before the market closes. In the

equity context, other measures of trading activity based on durations (such as

trade durations, midquote change durations, and volume durations) exhibit

similar diurnal patterns, but the shape is inverted so that the duration is long

during lunch. (See Hautsch (2012, p.41).)

Figure 2 gives a snapshot of our FX data. Trade volume tends to be high

around midday and low in the evening (in GMT). It also fluctuates a lot

throughout the day. On Friday 5 September 2014, there is an extreme spike in

volume at around 1.30pm in GMT. This coincides with the release of non-farm

payroll data in the US, which is known to be one of the most important events in
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Series Obs. Mean S.D. Skew Max. Max-99% Q Zero freq.

IBM30s 19,500 10,539 26,071 29 1,652,100 1,591,073 0.47%
IBM1m 9,750 21,297 39,114 18 1,652,100 1,532,175 0.06%

Table 2. Sample statistics of IBM trade volume. Sampling period is Mon 28 Feb - Fri
31 Mar 2000. The skewness statistics must be interpreted with care as the theoretical
skewness may not exist.

Obs. Mean S.D. Skew Max Max-99%Q Zero freq.

EURUSD (10 mins) 50,112 136 316 9.5 10,017 8,668 2.1%
USDJPY (10 mins) 50,112 121 250 8.8 7,379 6,322 2.0%

Table 3. Sample statistics of EURUSD and USDJPY trade volume. Sampling period:
Mon 6 Jan - Fri 19 Dec 2014. The skewness statistics must be interpreted with care as
the theoretical skewness may not exist.

Window 1 2 3 4 5 6 7 8

EURUSD (10 mins) 0.1% 0.1% 0.6% 0.8% 2.6% 2.2% 2.2% 2.1%
USDJPY (10 mins) 0.2% 0.0% 0.4% 0.9% 1.9% 2.4% 2.1% 1.9%

Window 9 10 11 12 13 14 15 16

EURUSD (10 mins) 2.7% 1.9% 1.8% 1.3% 1.0% 0.8% 0.3% 0.7%
USDJPY (10 mins) 2.7% 1.9% 1.5% 1.3% 0.9% 0.7% 0.4% 0.0%

Table 4. The percentage of samples for each window that are zero-valued. The sixteen
sub-sample windows are listed in Table 1.

FX. This spike highlights the importance of the announcement effect (see, for

instance, Andersen and Bollerslev (1998) and Lo and Wang (2010)). There are

very few trades between Friday 10pm and Sunday 6pm in GMT. Although

trades in FX occur continuously throughout the day during any weekday, the

market closes when New York closes on Friday at 9pm in GMT and re-opens

when the Auckland market resumes at around 9pm in GMT on Sunday.

Figure 3 shows that the FX volume series also exhibit intra-day periodic

patterns. The intra-day percentage distribution of volume appears to have a

bimodal pattern for EURUSD and a trimodal pattern for USDJPY. The activity

level peaks at around 8am and again at around 2pm in GMT. The market is

relatively quiet at around 10pm, but picks up around midnight, particularly for

USDJPY. These modes come roughly when trading activity in major markets

around the world is high for the day. In GMT outside the daylight saving period,

trading is very active in London between 8am and 4pm, in New York between
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(a) EURUSD

(b) USDJPY

Figure 2. The percentage of total day volume attributed to each intra-day 10-minute
bin. The series sum to 100% in each picture. The days are between Mon 1 Sep 2014
and Sun 7 Sep 2014 excluding Sat 6 Sep 2014. Each day covers the 24-hour period (in
GMT). Intra-day time on the x-axis.

1pm and 9pm, and in Tokyo between 11pm and 7am. However, trading is not

restricted to these hours; for instance, many traders in London trade between

7am and 5pm in the London local time. For EURUSD, volume is particularly

high between 1pm and 4pm when the active period in London and New York

overlaps. The London and New York markets attract high volume since the

bid-ask spread tends to be tighter there for popular currency pairs than in the

Asian markets. From this figure, it is not clear whether the pattern of intra-day

trading activity differs substantially by the day of the week.

9



Figure 3. The percentage of total day volume attributed to each intra-day bin. The
x-axis is between Monday and Friday (left) and intra-day hours in GMT on Monday
(right). The series are obtained by computing the average trade volume at each intra-
day bin on each weekday, and dividing it by the total trade volume of that weekday.
The series sum to 100% each day. This uses the data between Monday 6 January and
Friday 19 December 2014.

The left and middle columns of Figure 4 show that our series are heavily

right-skewed and have a heavy (or long) upper-tail. The length of the upper-tail

can be also seen in the difference between the maximum and the 99% sample

quantile in Tables 2 and 3. The right column of Figure 4 shows the highly

persistent nature of our series. IBM30s exhibits statistically significant

autocorrelation that is very slow to decay. Sample autocorrelation decays faster

for series with wider aggregation interval. Moreover, our series contain a

non-negligible number of zero-valued observations. The number of zero-valued

observations increases with the sampling frequency. (See Table 2.) Table 4 shows

the percentage of samples for each sub-sampling window that are zero-valued for

the FX data. These numbers can be compared with the estimated parameter

value of p (defined in Section 3), which is the probability mass of zero-valued

observations in the Spline-DCS model.

The discussion so far suggests that our model needs a periodic component to

capture the intra-day periodic patterns. Moreover, non-periodic factors may

coexist with the periodic component. One such factor is a highly persistent
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(b) IBM1m
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(c) EURUSD

(d) USDJPY

Figure 4. The empirical frequency distribution (left), the empirical cumulative distri-
bution function (middle), and the sample autocorrelation (right). The sampling period
is Mon 28 Feb - Fri 31 Mar 2000 for the equity data and Mon 6 Jan - Fri 19 Dec 2014 for
the FX data. The 200th lag corresponds approximately to 1.5 hours prior for IBM30s,
3 hours prior for IBM1m, and 1.4 days prior for the FX data.
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low-frequency component. The empirical autocorrelation structure suggests that

we should allow for highly persistent behavior similar to long memory. This can

be captured by a combination of autoregressive components. The presence of a

non-negligible number of zero-valued observations can be explained by a binary

component governing whether the next observation is zero or non-zero. The next

section gives the formal definition of each of these components.

3 The Spline-DCS model

3.1 Notations

We divide each trading day into I ∈ N>0 intra-day bins. yt,τ denotes the

observation of trade volume at the τ -th intra-day bin on the t-th trading day for

t = 1, . . . , T and τ = 1, . . . , I. T ∈ N>0 and H ∈ N>0 denote the number of

in-sample and out-of-sample days, respectively. We set yt,T = yt+1,0 for all

t ∈ N>0, so that τ = 1 is the location of the first aggregated observation for each

trading day. Then, over a given T consecutive trading days, we have I × T
observations. Our data is generated on the probability space (Ω,F ,P) equipped

with a filtration (Ft,τ )T,It,τ=1. Any F1,1-measurable random variables are almost

surely constant. We denote in-sample estimates by ·̂ and forecast quantities by ·̃.
We use the following set notations;

ΨT, I = {(t, τ) ∈ {1, 2, . . . , T} × {1, 2, . . . , I}},

ΨT,I>0 = {(t, τ) ∈ {1, 2, . . . , T} × {1, 2, . . . , I} : yt,τ > 0}.
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3.2 Spline-DCS

Formally, our spline-DCS model is defined by:

yt,τ = εt,τ exp(λt,τ ), εt,τ ∼ i.i.d. F (ε; θ)

λt,τ = ω + µt,τ + ηt,τ + st,τ + et,τ

µt,τ = µt,τ−1 + κµut,τ−1,

ηt,τ = η
(1)
t,τ + η

(2)
t,τ ,

η
(1)
t,τ = φ

(1)
1 η

(1)
t,τ−1 + φ

(1)
2 η

(1)
t,τ−2 + κ(1)

η ut,τ−1 + κ(1)
η,asign(−rt,τ−1)(ut,τ−1 + νξ),

η
(2)
t,τ = φ

(2)
1 η

(2)
t,τ−1 + κ(2)

η ut,τ−1 + κ(2)
η,asign(−rt,τ−1)(ut,τ−1 + νξ),

et,τ = φeet,τ−1 + κ>e dt,τ ,

dt,τ = (dt,τ,1, . . . , dt,τ,m), dt,τ,i = 1l{type i event at time (t,τ)}, i = 1, . . . ,m.

(1)

for (t, τ) ∈ ΨT,I and ω ∈ R. The non-periodic components are µt,τ and ηt,τ . et,τ

is the event component. The periodic component, st,τ , is defined first in Section

3.3. Then we define the distribution, F , in order to define the score variable ut,τ ,

which is another defining feature of DCS and drives the dynamics of the

non-periodic components. Then we define the rest of the components.

3.3 The cubic spline

The periodic component, st,τ , captures the pattern of intra-day periodicity. This

is an application of the seminal work by Harvey and Koopman (1993). We refer

to the version of the spline studied here as the static (cubic) spline, which

assumes that the pattern of periodicity does not change over time. This is a

standard assumption in the existing literature. Ito (2013) challenges this

assumption by introducing a generalized Spline-DCS specification with the

dynamic version of the cubic spline. The empirical merit of such a generalization

in high-frequency finance is illustrated by Ito (2013).

Some of the technical details are omitted in the following sections, but we

give the complete mathematical construction in Appendix B.

3.3.1 Static daily spline

The cubic spline is termed a daily spline if the periodicity is complete over one

trading day. The static daily spline assumes that the shape of intra-day periodic

patterns is the same every day. The daily spline is a continuous piecewise

function of time and connected at k + 1 knots for some k ∈ N>0 such that k < I.

The coordinates of the knots along the time axis are denoted by τ0 < · · · < τk,

where τ0 = 1, τk = I, and τj ∈ {2, . . . , I − 1} for j = 1, . . . , k − 1. The set of the
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knots is also called mesh. The y-coordinates (height) of the knots are denoted by

γ = (γ0, . . . , γk)
>. The static daily spline (st,τ = sτ ) is defined as

sτ =
k∑
j=1

1l{τ∈[τj−1,τj ]} zj(τ) · γ, τ = 1, . . . , I, (2)

where zj : [τj−1, τj]
k+1 → Rk+1 for j = 1, . . . k is a (k + 1)-dimensional vector of

deterministic functions that conveys all information about the polynomial order,

continuity, and zero-sum conditions of the spline. See Appendix B for the

definition of these conditions and the derivation of zj(τ). The zero-sum

condition ensures that the parameters in γ are identified. To impose the

zero-sum condition, we also need to set γk = −
∑k−1

i=0 w∗iγi/w∗k, where

w∗ = (w∗0, . . . , w∗k)
> is defined in the appendix.

For the equity data, we capture the overnight effect that arises from the

regular overnight market closure by relaxing the periodicity condition of the

spline, and allowing for a discrepancy in the spline between the end and the

beginning of any two consecutive trading days. That is, we assume that

(τk, γk) 6= (τ0, γ0). The definition of zj(τ) given above is this case, and it is

different from the one defined by Harvey and Koopman (1993). See Appendices

B.1 and B.2. Harvey and Koopman (1993) impose the periodicity condition,

since their hourly electricity demand data is collected 24 hours a day. This

feature is the same as the FX data. Thus, the spline we use for the FX data

maintains the periodicity condition, and it is fully defined in Appendices B.3 and

B.4. (2), (3), (4), and Figure 5 are the version for the equity data and capture

the overnight effect.

3.3.2 Location of daily knots and overnight effect

The location of knots, τ1, . . . , τk−1, and the size of k depend on the empirical

shape of periodicity and the number of intra-day observations. Increasing k does

not necessarily improve the fit of the model, and using too many knots

deteriorates the speed of computation. We give tips on how to select the location

and the number of knots in Section 7.

For the FX data, based on the empirical observations we made in Section 2

and from Figure 3, we find that the following locations of knots (in hours) along

the intra-day time axis works well:

1, 2, 3.30, 5, 6, 7, 8, 9.30, 11, 12, 13, 14, 15, 16, 17.30, 19,

20, 21, 22, 23, 24.

For the FX data, the period between Friday 10pm and Sunday 10pm is treated

as the regular period of missing data over the weekend. Although there is no
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regular and decisive moments on Friday and Sunday at which transactions end

and begin for the week, we omit data points over the specified weekend period

for simplicity. Then, in the static daily spline for FX, we impose the periodicity

condition on the knots at Friday 10pm and Sunday 10pm.

For the equity data, we find the following location of knots (in hours) along

the intra-day time axis works well:

9.30, 11, 12.30, 14.30, 16

The shape of the spline up to 12.30pm captures the busy trading hours in the

morning, between 12.30pm and 2.30pm captures the quiet lunch hours, and after

2.30pm captures any acceleration in trading activities before the market closes.

There is little to no improvement in the goodness of fit of the model to the data

when the number of knots per day increases from this specification.

3.3.3 Static weekly spline

The static spline becomes a static weekly spline if we set the periodicity to be

complete over one trading week instead of one day. The static weekly spline

allows the shape of periodic patterns to be different for each weekday, but it

assumes that the overall shape for the whole week cannot change from week to

week.

For this version, we redefine τ0, τ1, . . . , τk as follows. We let

τ̃0 < τ̃1 < · · · < τ̃k′ denote the coordinates along the time-axis of the intra-day

mesh, where k′ < I, τ̃0 = 1, τ̃k′ = I, and τ̃j ∈ {2, . . . , I − 1} for j = 1, . . . , k′ − 1.

Then the coordinates, τ0, τ1, . . . , τk, along the time-axis of the total mesh for the

whole week is defined as τi(k′+1)+j = τ̃j + iI for i = 0, . . . , 4 and j = 0, . . . , k′.

Then (τj)
k
j=0 is still an increasing sequence. The total number of knots for one

whole week is k + 1 = 5(k′ + 1). The height of the knots are γ0, γ1, . . . , γk′ for

Monday, γk′+1, γk′+2, . . . , γ2(k′+1) for Tuesday, and so on.

Here, we do not impose periodicity condition between τk and τ0 in order to

allow for the effect of weekend news on trading patterns. (Also see Section 3.3.4.)

Moreover, for the equity data, we capture the overnight effect of weeknights by

relaxing the continuity and polynomial order restrictions between τ̃k′ and τ̃0 of

any two successive weekdays. Thus, the procedure for computing zj(τ) is

different from the daily spline. See Appendix B.2 for the complete specification

of the weekly spline with these features for the equity data. For the FX data, we

maintain the continuity and polynomial order conditions on τ̃k′ and τ̃0. Then the

number of knots for the whole week is k + 1 = 5k′ + 1. See Appendix B.4.

The weekly spline can be used to capture the day-of-the-week effect. It allows
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Figure 5. Picture illustration of the static weekly spline with overnight effect and
weekend effect when the number of knots per day is k = 3. The shape depends on the
day of the week.

for the overall shape of the pattern of periodicity to depend on the day of the

week by varying the height of the knots for different weekdays. That is, the

weekly spline allows for

(γ0, γ1, . . . , γk′) 6= (γk′+1, γk′+2, . . . , γ2(k′+1)) 6= · · · 6= (γ4k′+4, γ4k′+5, . . . , γ5(k′+1)).

See Figure 5.

3.3.4 Restricted weekly spline

One disadvantage of the weekly spline is that the total number of knots for one

week increases quickly (fivefold) with the number of daily knots. If we use 5

knots per trading day (k′ = 4) as we specified for the daily spline, the total

number of knots for the week is 25 (k = 24) for the weekly spline with the

overnight effect. Estimating such a high number of knots can be computationally

costly.

Instead of letting the coordinates of the mesh be free for each weekday, we

can restrict them to be the same on selected days. We term this special case the

restricted weekly spline. We restrict the pattern to be the same on mid-weekdays

(Tuesday-Thursday) and let the pattern be different on Monday and Friday.

This restricted weekly spline captures a special type of the day-of-the-week effect

called the weekend effect, which, in the context of this paper, refers to the

tendency of trade volume before and after the weekend to display distinct

patterns compared to mid-weekdays. This effect arises from news disseminated

over the weekend period.

Formally, we define (the static version of) the restricted weekly spline as:

st,τ =
k∑
j=1

1l{I×(t−1)mod(5)+τ∈[τj−1,τj ]} zj(τ) · Sγ (3)
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where γ = (γ̃>1 , γ̃
>
2 , γ̃

>
3 )> and γ̃i for i = 1, 2, 3 are (k′ + 1)-dimensional mesh

vectors for Monday, mid-weekdays (Tuesday-Thursday), and Friday, respectively,

and zj(τ) is of the weekly spline. S is the following 5(k′ + 1)× 3(k′ + 1) matrix

of zeros and ones:

S =


I(k′+1) 0 0

0 I(k′+1) 0
...

...
...

0 I(k′+1) 0

0 0 I(k′+1)

 .
where I(k′+1) is the identity matrix of size (k′ + 1). We can rewrite (3) as

st,τ =
k∑
j=1

1l{I×(t−1)mod(5)+τ∈[τj−1,τj ]} z̃j(τ) · γ (4)

where z̃j(τ) = S>zj(τ). If we place 5 knots per trading day (i.e. k′ = 4) as we

specified for the daily spline for the equity data, we have 15 unrestricted knots

for one week.

The evidence for the day-of-the-week effect in financial data is generally

mixed and largely depends on the estimation method and the variable being

estimated. For instance, Andersen and Bollerslev (1998) found that the

day-of-the-week effect is insignificant in the deutsche mark-dollar FX returns

once the calendar effect (e.g. daylight saving and public holidays) and the effects

of major macroeconomic announcements are taken into account. However, they

found indications of a weak (but clear) seasonality on Monday mornings and

Friday afternoons. Lo and Wang (2010) found that some financial assets exhibit

a strong day-of-the-week effect. Their volume data as measured by turnover is

roughly constant on all days except on Mondays and Fridays when turnover is

slightly lower than mid-weekdays. The weekend effect is studied in many other

studies (mainly in the context of asset returns) and appears to be more

pronounced than the more general day-of-the-week effect. Thus, given the

computational cost of the fully flexible weekly spline, estimating the restricted

weekly spline may suffice for us.

3.4 Dealing with zero-valued observations

The cumulative distribution function (c.d.f.), F : R≥0 → [0, 1], with the constant

parameter vector θ of a standard random variable X ∼ F is defined as

PF (X = 0) = p ∈ (0, 1), PF (X > 0) = 1− p, PF (X ≤ x|X > 0) = F ∗(x; θ∗).
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for any x > 0. F ∗ : R≥0 → [0, 1] is the c.d.f. of some conventional standard

continuous random variable with the time-invariant parameter vector θ∗. We

write θ = (θ∗>, p)> and use the notations, f and f ∗, to denote the probability

density function (p.d.f.) of F and F ∗, respectively. The distribution, F ,

explicitly deals with zero-valued observations, and it is useful given that the

presence of a non-negligible number of zero-valued observations cannot be

explained by conventional continuous distributions as the probability of

observing a particular value is typically zero by definition. The unconditional

n-th moment of X is well-defined as long as it is well-defined for F ∗ because

E[Xn] = (1− p)
∫∞

0
xnf ∗(x)dx. F ∗ is chosen parametrically, and the quality of

its fit to the empirical distribution of data is tested using the standardized

observations ε̂t,τ ≡ yt,τ/ exp(λ̂t,τ ). The properties of this type of distributions are

studied formally in Hautsch et al. (2014). This decomposition technique is a

standard one in econometrics and similar to the ones studied in McCulloch and

Tsay (2001) and Rydberg and Shephard (2003).

ut,τ is the score of F ∗. We set ut,τ = infs∈Ω ut,τ (s) whenever yt,τ = 0. This

means that, if F ∗ is the generalized beta distribution of the second kind (GB2)

formally defined in Appendix A.1, we set ut,τ = −νξ whenever yt,τ = 0. It is

natural to suspect that p may change throughout the day because the

probability of observing a trade must change with the level of trading activity.

Rydberg and Shephard (2003) and Hautsch et al. (2014) independently study

decomposition models for estimating the conditional dynamics of p via the logit

link. An interesting extension of our model is a hybrid Spline-DCS model for the

intra-day dynamics of p as well as the level of volume. However, in this paper,

we assume p to be constant for simplicity and leave this extension for future

research. This simplification is inconsequential in our application as the fraction

of samples that are zero-valued is small.

3.5 Non-periodic components

The stationary component is ηt,τ . ηt,τ consists of two stationary components, η
(1)
t,τ

and η
(2)
t,τ . This structure allows us to capture highly persistent dynamics similar

to long memory.5 η
(1)
t,τ and η

(2)
t,τ are stationary if −φ(1)

1 + φ
(1)
2 < 1, φ

(1)
2 > −1,

5ηt,τ can be generalized as:

ηt,τ =

J∑
j=1

η
(j)
t,τ , ∀ (t, τ) ∈ ΨT, I

η
(j)
t,τ = φ

(j)
1 η

(j)
t,τ−1 + φ

(j)
2 η

(j)
t,τ−2 + · · ·+ φ

(j)

m(j)η
(j)

t,τ−m(j) + κ(j)η ut,τ−1, j = 1, . . . , J
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0 < φ
(1)
1 + φ

(1)
2 < 1, and 0 < φ

(2)
1 < 1 (see, for instance, Harvey (1993, p.19)). The

non-stationary component, µt,τ , captures the slowly changing movements that is

non-periodic. The estimation results in Section 4 suggest that this component

can do a good job in capturing the low-frequency dynamics of our data.

The role of each component is such that µt,τ should be less sensitive to

changes in ut,τ−1 than η
(1)
t,τ , which should be, in turn, less sensitive than η

(2)
t,τ .

That is, we should typically expect |κµ| < |κ(1)
η | < |κ(2)

η | (although this condition

is not imposed during the estimation). Moreover, the scale of trade volume

should increase in the wake of positive news. Thus we would expect κµ > 0. We

set η
(1)
1,1 = η

(2)
1,1 = 0 as we have E[η

(1)
t,τ ] = E[η

(2)
t,τ ] = 0.6 Since E[µt,τ ] = µ1,1, we

assume µ1,1 = 0 so that ω is identified. The identification conditions of the

parameters in st,τ are as laid out in Section 3.3.

3.5.1 Asymmetric effect

For the equity data, analogously to the well-documented leverage effects in

equity return volatility, we can test for asymmetric effects in volume related to

the direction of price change by testing the significance of the coefficients, κ
(1)
η,a

and κ
(2)
η,a. κ

(1)
η,a > 0 (or κ

(1)
η,a < 0) gives an increase (decrease) in the scale of volume

when price falls (i.e. when the return, rt,τ , which is the log-difference in price, is

negative). We use the sign function (instead of the indicator function) in order

to capture the asymmetric effect of price change in both the positive and

negative directions. That is, the sign function with κ
(i)
η,a > 0 (or κ

(i)
η,a < 0) gives a

decrease (increase) in the scale of volume when price increases for i = 1, 2. How

to model leverage effects in the DCS models is discussed in Harvey (2013).

For the FX data, the ways in which we should assess the existence and the

directional impact of such an effect is less straight forward than the equity data.

For instance, a fall in the exchange rate of the US dollar per one euro means that

euro depreciated against the dollar, but also that the dollar appreciated against

euro. Then a sudden sizable strengthening of euro against the dollar can cause

panic and trigger asymmetric effects if the market generally expected the dollar

to stay strong against euro. In this view, the statistical significance of this effect,

and the sign of the asymmetry term if the effect exists, must depend on market

expectation. Since we do not have a measure of market expectation or any other

coherent measure to assess whether estimation results for the asymmetry term

for some J ∈ N>0. We assume that m(j) ∈ N>0 and η
(j)
t,τ is stationary for all j = 1, . . . , J . J = 2

works well for our application.
6With the asymmetry terms, this assumes that rt,τ and yt,τ are independent for any (t, τ) ∈

ΨT,I , and E[rt,τ ] = 0.
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Currency EURUSD USDJPY

Event category Count Frequency (%) Count Frequency (%)
Small 1024 93% 543 90%

Intermediate 65 6% 51 8%
US non-farm payroll 12 1% 12 2%

Table 5. Event schemes between Monday 6 January - Sunday 21 December 2014.

makes sense, we set κ
(i)
η,a = 0 for i = 1, 2 for the FX data for simplicity.

3.5.2 Announcement effect

The event component, et,τ , captures the effect of anticipated macroeconomic

events. Its dynamics are assumed to be deterministic. Any deviation of market

response from the deterministic pattern at each event is assumed to be captured

by other non-deterministic components. We set e1,1 = 0. et,τ reverts to zero if

|φe| < 1.

In FX, major macroeconomic events that affect our selected currency pairs

include monetary policy announcements and macroeconomic data releases (e.g.

US non-farm payrolls, gross domestic product (GDP), and consumer prices).

Since there are usually many events per day that can impact our currency pairs,

we categorize events by the anticipated size of the impact as tabulated in Table

5. We used the information provided in the Forex Economic Calendar by

DailyFX (www.dailyfx.com) as a benchmark to collate events. Then we assign a

dummy variable (dt,τ,i, i = 1, . . . ,m) to each category. The small event category

include scheduled releases of retail sales data, manufacturing data, home sales

data, and various indicators of house prices. The intermediate events category

include some of the central bank announcements (e.g. by the European Central

Bank and the Federal Reserve Board for EURUSD) and the release of GDP

data, employment figures, and consumer price data by governments in the

relevant currency areas. The release of US non-farm payroll data on the first

Friday of each month is assigned its own category. The elements of dt,τ are

ordered by the anticipated size of the impact. The size of m varies across the

sub-sample windows. The first element of dt,τ correspond to the event category

with the largest anticipated impact for that window. Multiple events usually

occur simultaneously. If there are more than one small event occurring

simultaneously, they are treated as one small event. We do the same for events

in other categories.

For the equity data, the events that affect the trade volume of the IBM stock
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Figure 6. Nested diagram of some of the useful non-negative distributions. The scale
and location parameters are assumed to be one and zero, respectively, in all of these
cases.

include the company’s quarterly or annual earnings and dividend

announcements, the earnings and dividend announcements by the competitors

(e.g. Accenture, Hewlett-Packard, and Microsoft), and important news in the

technology industry. To our knowledge, IBM did not make any earnings or

dividend related announcements during the sampling period. Since the sampling

period of our data is relatively old, we could not find the exact timing of news

releases in intra-day hours for all of the companies mentioned here. Due to the

limitation with acquiring information, we remove the event component, et,τ , for

the equity data for simplicity.

3.6 The estimation method

All of the parameters of the model are estimated by ML. For non-negative series,

F ∗ can be a number of distributions including Weibull, Gamma, Burr, and

log-normal, many of which are special cases of the generalized gamma (GG) and

GB2 distributions. See Figure 6 and, more formally, Appendix A and Kleiber

and Kotz (2003) for their definitions and the relationship between these

distributions.

The joint log-likelihood function given by F for the set of observations

(yt,τ )(t,τ)∈ΨT,I is

logL = A log(1− p) + (T × I −A) log(p) +
∑

(t,τ)∈ΨT,I>0

log (exp(−λt,τ )f ∗(εt,τ ;θ∗)) ,

(5)

where A = |ΨT,I>0|. It is easy to check that the ML estimator (MLE) of p is

p̂ = (T × I −A)/(T × I). We do not formally verify that the consistency and the

asymptotic normality of MLE in DCS (along the lines of the discussions by Ito
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(2016) and by Blasques et al. (2014) and Harvey (2013)) also extend to our

particular specification in which the exponential link function is used and λt,τ is

nonstationary. We simply assume that they hold, and leave the verification for

future research.

3.6.1 Derivatives for standard errors

Let ϑ denote the vector of all of the constant parameters of Spline-DCS

including the distribution parameters in θ. Denoting the single log-likelihood of

an observation, yt,τ , as log fY (yt,τ ;ϑ),7 we compute the standard error of MLE

for the i-th element of ϑ (denoted by ϑ̂i) using the outer-product of the

first-derivative of the joint log-likelihood as:

S.E.(ϑ̂i) =

√√√√√
 ∑

(t,τ)∈ΨT,I

∂ log fY (yt,τ ; ϑ̂)

∂ϑ

∂ log fY (yt,τ ; ϑ̂)

∂ϑ>

−1

ii

,

where ·ii for i = 1, . . . , dim(ϑ) denotes the i-th diagonal element.

If F ∗ is GB2, ϑ includes θ = (θ∗>, p)> with θ∗ = (ν, ξ, ζ)>, as well as the

parameters of λt,τ . Then we have the following derivatives for the parameters in

θ:
∂ log fY (yt,τ ;ϑ)

∂ν
=

1

ν
+ ξ log(yt,τe

−λt,τ ) + ut,τ
∂λt,τ
∂ν

,

∂ log fY (yt,τ ;ϑ)

∂ξ
= log(bt,τ )−

1

B(ξ, ζ)

∂B(ξ, ζ)

∂ξ
+ ut,τ

∂λt,τ
∂ξ

,

∂ log fY (yt,τ ;ϑ)

∂ζ
= − 1

B(ξ, ζ)

∂B(ξ, ζ)

∂ζ
+ log(1− bt,τ ) + ut,τ

∂λt,τ
∂ζ

,

∂ log fY (yt,τ ;ϑ)

∂p
= 1l{yt,τ=0}/p− 1l{yt,τ>0}/(1− p),

where ut,τ ≡ ν(ξ + ζ)bt,τ − νξ is the score of GB2 and

bt,τ ≡ 1/(1 + (yt,τ exp(−λt,τ ))−ν). (See (A.1) and (A.2) in Appendix A.1). We

also have ∂B(ξ, ζ)/∂ξ = B(ξ, ζ)(ψ(ξ)− ψ(ξ + ζ)) with

∂B(ξ, ζ)/∂ζ = ∂B(ζ, ξ)/∂ζ by the symmetry of the Beta function. ψ(·) is the

digamma function. For other parameters of ϑ (denoted by ϑ−θ), we have

∂ log fY (yt,τ ;ϑ)

∂ϑ−θ,i
= ut,τ

∂λt,τ
∂ϑ−θ,i

,

where ϑ−θ,i is the i-th element of ϑ−θ. Denoting the i-th element of ϑ by ϑi, the

7The relationship between fY and f are given in Appendix A.
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derivatives of λt,τ are given by the following recursions:

∂λt,τ
∂ϑi

= 1l{ϑi=ω} +
∂µt,τ
∂ϑi

+
∂ηt,τ
∂ϑi

+
∂st,τ
∂ϑi

+
∂et,τ
∂ϑi

∂µt,τ
∂ϑi

=
∂µt,τ−1

∂ϑi
+ ut,τ1l{ϑi=κµ} + κµ

∂ut,τ−1

∂ϑi

∂ηt,τ
∂ϑi

=
∂η

(1)
t,τ

∂ϑi
+
∂η

(2)
t,τ

∂ϑi

∂η
(j)
t,τ

∂ϑi
= η

(j)
t,τ−11l{ϑi=φ(j)1 }

+ η
(j)
t,τ−21l{ϑi=φ(1)2 }

+ ut,τ−11l{ϑi=κ(j)η }

+ φ
(j)
1

∂η
(j)
t,τ−1

∂ϑi
+ φ

(j)
2

∂η
(j)
t,τ−2

∂ϑi
+ κ(j)

η

∂ut,τ−1

∂ϑi

+ sign(−rt,τ )(ut,τ−1 + νξ)1l{ϑi=κ(j)η,a}

+ κ(j)
η,asign(−rt,τ )

(
∂ut,τ−1

∂ϑi
+ ξ1l{ϑi=ν} + ν1l{ϑi=ξ}

)
, j = 1, 2,

∂et,τ
∂ϑi

= et,τ−11l{ϑi=φe} + φe
∂et,τ−1

∂ϑi
+ dt,τ,m1l{ϑi=κe,m}, m = 1, . . . , dim(dt,τ ),

where κe,m is m-th element of κe. As for the spline component, we have

∂sτ
∂ϑi

=
k∑
j=1

1l{τ∈[τj−1,τj ]}zj,l(τ)1l{ϑi=γl},

if it is a static daily spline, and

∂st,τ
∂ϑi

=
k∑
j=1

1l{I×(t−1)mod(5)+τ∈[τj−1,τj ]}z̃j,l(τ)1l{ϑi=γl},

if it is a restricted weekly spline, where l = 0, . . . , k − 1 and k is the number of

knots. Given our assumption about F1,1, these recursions are assumed to begin

from zero. Finally, for the score variable, we have

∂ut,τ
∂ϑi

= ((ξ + ζ)bt,τ − ξ)1l{ϑi=ν} + ν(bt,τ − 1)1l{ϑi=ξ} + νbt,τ1l{ϑi=ζ} + ν(ξ + ζ)
∂bt,τ
∂ϑi

∂bt,τ
∂ϑi

=

−bt,τ (1− bt,τ ) log(yt,τe
−λt,τ )(yt,τe

−λt,τ )∂λt,τ
∂ϑi

if ϑi = ν,

−νbt,τ (1− bt,τ )∂λt,τ∂ϑi
otherwise.

3.6.2 Market closure

For the equity data, public holidays can be treated in the same way as the

overnight period or weekends where data is missing due to market closure.

Whenever (t, τ) ∈ H ≡ {(t, τ) ∈ {1, . . . , I} × {1, . . . , T} : the market is closed},
we set µt,τ = µt,τ−1, η

(1)
t,τ = η

(1)
t,τ−1, η

(2)
t,τ = η

(2)
t,τ−1, and st,τ = st,τ−1 so that λt,τ is

unchanged. The joint log-likelihood is defined only for days t ∈ Hc.
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4 In-sample estimation results

4.1 Choice of distribution

Given the shape of the empirical distribution of data, the candidate distributions

we considered for F ∗ include the log-normal distribution, the Pareto

distributions, GB2 and its special cases, and GG and its special cases. GB2 nests

log-logistic and Burr, and is closely related to the Pareto class of distributions.

See Appendix A and Figure 6 for the formal definitions of these distributions

and the relationship between them. Taking a general-to-specific approach, we

sequentially estimate GB2, Burr, and then log-logistic for the GB2 class of

distributions. As for the GG class of distributions, we sequentially estimate GG,

and then Gamma and Weibull.

For the FX data, we found that choosing GB2 as the error distribution, F ∗,

gives a good fit to the empirical distribution of the data.8 Burr, which is a

special case of GB2 with ξ = 1, was found to fit the empirical distribution of the

equity data well.9

Figures 7 and 8 illustrate the impressive fit of the chosen F ∗. The empirical

c.d.f. of non-zero ε̂t,τ appears to overlap the c.d.f. of GB2(ν̂, ξ̂, ζ̂) or Burr(ν̂,ζ̂).10

The closeness of the fit can be also checked by inspecting the the probability

integral transform (PIT) of non-zero ε̂t,τ computed under the assumption that it

is from F ∗(·; θ̂∗). The empirical c.d.f. of the PIT values lies along the diagonal,

indicating that the PIT values are close to being standard uniformly distributed

(denoted by U [0, 1]). The results are similar for IBM1m and other sampling

windows that are tested for the FX data. The model appeared to be robust to

the choice of sampling frequency, sampling period, or the choice of initial

parameter values. The computing time for the ML estimation to converge when

F ∗ is GB2 or Burr is generally short (up to 5 minutes). This suggests that the

theoretical moments and quantiles of GB2(ν̂, ξ̂, ζ̂) or Burr(ν̂, ζ̂) scaled by

exp(λ̂t,τ ) should approximate the time-varying (conditional) moments and

8The score variable (ut,τ ) for when F ∗ is GB2 is defined in Appendix A.1. θ∗ = (ν, ξ, ζ)> are
the shape parameters of GB2.

9 For the equity case, we found it difficult to estimate the GB2 distribution. This could be
due to the relatively high sampling frequency. Some of the features in the empirical distribution
of data that arise from market microstructure (e.g. the discreteness of volume) may have become
more dominant when the sampling frequency is as high as 1 minute or 30 seconds. In such cases,
imposing restrictions on some of the distribution parameters and testing relatively more specific
distribution specifications can work well.

10The large sample size would make formal tests such as the Kolgomorov-Smirnov test sensitive
to small departures from the theoretical distribution being tested.
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Figure 7. Fitting Burr to IBM30s over 28 February - 31 March 2000. The empirical
c.d.f. of ε̂t,τ > 0 plotted against the theoretical c.d.f. of Burr(ν̂, ζ̂) (left). The empirical

c.d.f. of the PIT values of ε̂t,τ > 0 when F ∗(·; θ̂
∗
) is Burr(ν̂, ζ̂) (right). Spline-DCS with

the static daily spline was used.

� ��� � ��� � ��� � ��� � ��� �
�

���

���

���

���

���

���

��	

��


���

�

�
����������

�
�����

���������
������
�������
�
��

� ��� ��� ��� ��� ��� ��� ��	 ��
 ��� �
�

���

���

���

���

���

���

��	

��


���

�

�
���������

Figure 8. Fitting GB2 to the trade volume of EURUSD (top) and USDJPY (bottom)
in Window 1. The empirical c.d.f. of ε̂t,τ > 0 plotted against the theoretical c.d.f. of

GB2(ν̂, ξ̂, ζ̂) (left). The empirical c.d.f. of the PIT values of ε̂t,τ > 0 when F ∗(·; θ̂
∗
) is

GB2(ν̂, ξ̂, ζ̂) (right). Spline-DCS with the static daily spline was used.

quantiles of volume well.

4.2 Autocorrelation

Spline-DCS does a good job in capturing the dynamics of the data. Figure 9

shows that the estimation residuals, ε̂t,τ , and the score, ût,τ , exhibit little to no

signs of serial correlation. For the FX data, the results are generally similar for

other sampling windows. The large sample size makes the Ljung-Box statistics

sensitive to small departures from zero autocorrelation. This can be seen in the
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Figure 9. The sample autocorrelation of trade volume (left), ε̂t,τ (middle), and ût,τ
(right). IBM30s (top row), IBM1m (second row), EURUSD (Window 1, third row), and
USDJPY (Window 6, bottom row). Spline-DCS with the static daily spline. The 95%
confidence interval is computed at ±2 standard errors.

statistics reported in Table 6, which pick up statistically significant

autocorrelation. 11

4.3 Estimated coefficients

Table 7 shows the estimated coefficients. The estimates are obtained without

imposing any restrictions on the parameters. The standard errors are computed

analytically using the methodology outlined in Section 3.6.1. (For the FX data,

11Note that the sample autocorrelation of ût,τ may exhibit stronger serial correlation than
that of ε̂t,τ , because the score weighs down (and thus it is robust to) the effect of extreme
observations.
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ε̂t,τ ε̂2t,τ

Window ρ̂1 ρ̂day Q1 Qday p-val. 1 p-val. day ρ̂1 ρ̂day Q1 Qday p-val. 1 p-val. day
1 0.120 -0.033 31.048 169.116 0.000 0.000 0.080 -0.010 13.961 53.550 0.000 1.000
2 0.147 -0.018 46.998 188.952 0.000 0.000 0.125 -0.006 33.870 43.940 0.000 1.000
3 0.187 -0.002 74.982 277.065 0.000 0.000 0.094 -0.006 18.854 68.910 0.000 0.999
4 0.079 -0.009 13.309 142.910 0.000 0.016 0.069 0.000 10.271 92.462 0.001 0.872
5 0.069 -0.023 10.246 150.444 0.001 0.005 0.037 -0.009 2.862 84.197 0.091 0.963
6 0.080 0.009 13.494 157.383 0.000 0.002 0.177 0.008 65.872 191.092 0.000 0.000
7 0.050 -0.001 5.387 130.444 0.020 0.089 0.007 0.007 0.095 16.065 0.758 1.000
8 0.099 -0.030 20.931 163.575 0.000 0.000 0.156 -0.014 51.776 192.510 0.000 0.000
9 0.223 -0.019 104.555 268.999 0.000 0.000 0.388 0.003 317.345 361.753 0.000 0.000

10 0.092 0.030 18.075 174.686 0.000 0.000 0.050 0.016 5.386 201.496 0.020 0.000
11 0.131 -0.017 36.784 182.354 0.000 0.000 0.047 -0.002 4.613 16.008 0.032 1.000
12 0.084 -0.006 14.891 161.028 0.000 0.001 0.038 -0.002 3.075 98.504 0.079 0.755
13 0.088 -0.024 16.557 171.534 0.000 0.000 0.017 -0.006 0.613 206.254 0.434 0.000
14 0.128 -0.033 34.979 201.509 0.000 0.000 0.045 -0.004 4.436 29.458 0.035 1.000
15 0.188 -0.022 75.888 195.670 0.000 0.000 0.090 -0.002 17.539 23.249 0.000 1.000
16 0.082 -0.036 12.476 129.013 0.000 0.082 0.060 -0.011 6.660 25.878 0.010 1.000

ût,τ û2
t,τ

Window ρ̂1 ρ̂day Q1 Qday p-val. 1 p-val. day ρ̂1 ρ̂day Q1 Qday p-val. 1 p-val. day
1 0.029 -0.031 1.855 155.616 0.173 0.002 0.081 -0.028 14.022 205.040 0.000 0.000
2 0.007 -0.003 0.101 298.334 0.750 0.000 0.066 -0.026 9.491 197.152 0.002 0.000
3 0.044 -0.002 4.139 233.940 0.042 0.000 0.127 0.012 34.561 175.616 0.000 0.000
4 0.004 -0.016 0.037 196.560 0.847 0.000 0.095 -0.018 19.508 173.661 0.000 0.000
5 0.024 -0.009 1.252 178.331 0.263 0.000 0.084 0.000 15.044 191.530 0.000 0.000
6 0.002 0.001 0.006 183.804 0.936 0.000 0.072 0.033 10.861 162.538 0.001 0.001
7 0.008 -0.035 0.144 137.420 0.705 0.039 0.077 0.002 12.462 149.393 0.000 0.007
8 0.001 -0.022 0.003 133.777 0.957 0.047 0.042 -0.009 3.734 264.000 0.053 0.000
9 0.017 -0.035 0.625 151.152 0.429 0.004 0.101 -0.014 21.569 180.611 0.000 0.000

10 0.044 0.024 4.172 150.216 0.041 0.005 0.063 0.016 8.341 150.025 0.004 0.006
11 0.012 -0.036 0.326 166.686 0.568 0.000 0.077 -0.015 12.615 203.411 0.000 0.000
12 0.036 0.000 2.780 188.838 0.095 0.000 0.075 -0.004 11.865 188.038 0.001 0.000
13 0.018 -0.036 0.732 141.613 0.392 0.017 0.090 0.006 17.540 280.275 0.000 0.000
14 0.008 -0.008 0.139 169.272 0.709 0.000 0.121 0.037 31.273 262.037 0.000 0.000
15 0.008 -0.022 0.127 170.162 0.721 0.000 0.121 0.003 31.749 214.484 0.000 0.000
16 0.025 -0.033 1.160 265.047 0.281 0.000 0.071 -0.010 9.441 215.045 0.002 0.000

Table 6. Residual analysis for Spline-DCS with the static daily spline fitted to the trade
volume of EURUSD. Ql is the Ljung-Box statistic to test the null of no autocorrelation
up to the l-th lag.

the additional results for other sampling windows are given in Appendix C.) In

Table 7, we have κ̂
(2)
η > κ̂

(1)
η > κ̂µ > 0, which means that η

(2)
t,τ is more sensitive to

changes in ut,τ−1 than η
(1)
t,τ , which is, in turn, more sensitive than µt,τ . We also

have 0 < φ̂
(2)
1 < 1 so η

(2)
t,τ is stationary. The stationarity of η

(1)
t,τ requires

φ
(1)
1 + φ

(1)
2 < 1, −φ(1)

1 + φ
(1)
2 < 1, and φ

(1)
2 > −1. (See Harvey (1993, p.19).) It is

easy to check that these conditions are satisfied by φ̂
(1)
1 and φ̂

(1)
2 so that η

(1)
t,τ is

also stationary. We have |φ̂e| < 1 so that êt,τ reverts to zero after an event. The

estimates of the probability mass at zero are consistent with the sample statistics

in Tables 2 and 4 (e.g. p̂ = 0.0047 for IBM30s). For the equity data, the

estimated asymmetry term, κ̂
(2)
η,a, in η

(2)
t,τ is negative and statistically significant,

reflecting the tendency of volume to decrease when price falls. Brownlees et al.

(2011) found that the sign of their asymmetry term was positive so that volume

on average increases when price falls. The direction of asymmetry appears to be

in the opposite direction compared to us. κ̂
(1)
η,a was found to be statistically

insignificant for both IBM1m and IBM30s, suggesting that there is no

asymmetry effect in the lower frequency component η
(1)
t,τ .
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Variable IBM30s IBM1m USDJPY EURUSD
Window — — 2 3

ν 1.632 (0.016) 2.229 (0.033) 1.738 (0.018) 2.002 (0.019)
ξ — — 1.738 (0.069) 1.369 (0.048)
ζ 1.484 (0.045) 1.143 (0.044) 2.062 (0.085) 1.501 (0.059)
ω 9.172 (0.199) 9.774 (0.178) 5.521 (0.095) 4.232 (0.068)
κµ 0.006 (0.001) 0.007 (0.002) 0.010 (0.003) 0.006 (0.003)

φ
(1)
1 0.554 (0.134) 0.391 (0.091) 0.570 (0.017) 0.582 (0.016)

φ
(1)
2 0.414 (0.133) 0.555 (0.093) 0.373 (0.017) 0.363 (0.016)

κ
(1)
η 0.049 (0.007) 0.047 (0.008) 0.059 (0.007) 0.070 (0.007)

φ
(2)
1 0.690 (0.041) 0.610 (0.057) 0.438 (0.083) 0.369 (0.114)

κ
(2)
η 0.092 (0.008) 0.067 (0.008) 0.094 (0.009) 0.080 (0.010)

κ
(2)
η,a -0.004 (0.004) -0.008 (0.003) — —
p 0.0047 (0.0005) 0.0006 (0.0003) 0.000 (0.000) 0.006 (0.002)
γ0 1.197 (0.066) 1.119 (0.064) (omitted) (omitted)
γ1 0.061 (0.041) 0.066 (0.041) (omitted) (omitted)
γ2 -0.419 (0.036) -0.392 (0.036) (omitted) (omitted)
γ3 -0.216 (0.037) -0.244 (0.037) (omitted) (omitted)
φe — — 0.807 (0.047) 0.504 (0.108)
κe,1 — — 2.739 (1.024) 0.998 (0.021)
κe,2 — — 2.457 (1.094) 0.645 (0.097)
κe,3 — — 1.424 (0.021) 1.707 (1.208)

Table 7. The estimated parameter values for Spline-DCS with the static daily spline.
The standard errors are computed analytically using the outer-product of the first deriva-
tive of the joint log-likelihood (see Section 3.6.1). The estimated values for the parame-
ters of st,τ are omitted in this table for the FX data due to the relatively large number
of nodes. Burr (GB2 with ξ = 1) is estimated for the IBM data due to the reasons
described in Section 4.1 and Footnote 9.

4.4 Comparing with log-normal and generalized gamma

The log-normal distribution is widely used to model non-negative time series

whenever the logarithm of observations roughly resembles normality. In such

cases, the degree of efficiency and bias in estimated parameters depend on how

far the distribution of the log-transformed variable is from normality. See, for

example, Alizadeh et al. (2002) for a discussion and an empirical example. See

Appendix A.3 for the formal definition of log-normal. In our case, the quality of

the fit of log-normal was inferior to that of Burr or GB2.12 This was presumably

due to the departure of the log-transformed non-zero data (denoted by

log(IBM1m) and so on) from normality, particularly around the tail regions. The

quantile-to-quantile (QQ) plot in Figure 10 shows that the normal distribution

appears to put too much weight on the lower-tail and too little weight on the

12For the equity data, the Bowman-Shenton (Jarque-Bera) test comfortably rejected normality
of the logarithm of the estimation residuals when F ∗ is log-normal.
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Figure 10. The QQ-plot of log(IBM1m) (left) and of log(IBM30s) (right). The loga-
rithm series are re-centered around mean and standardized by one standard deviation.
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Figure 11. The p.d.f. of log(X): X ∼ Burr(ν̂ ,ζ̂) against X ∼ log-normal(σ) at
different values of σ. Spline-DCS with the static daily spline was fitted to IBM1m (left)
and IBM30s (right).

upper-tail.

Burr and GB2 may fit better than log-normal because the shape of

log-normal is determined by only one parameter (σ), whereas Burr and GB2

have two to three shape parameters ((ν, ξ, ζ) for GB2 with ξ = 1 for Burr).

Using the estimation results for the equity data, we compare the shape of Burr

and log-normal in Figure 11. It plots the p.d.f. of log(X) when X ∼ Burr(ν̂, ζ̂)13

against the case when X ∼ log-normal(σ) at different values of σ. The

asymmetric shape of the p.d.f. of log(X) when X ∼ Burr(ν̂, ζ̂) illustrates the

13If a random variable X follows the standard GB2 distribution with parameters, ν, ξ, and ζ,
we say that log(X) follows the exponential-GB2 distribution with the p.d.f.

f(x; ν, ξ, ζ) =
ν exp(xνξ)(exp(xν) + 1)−ξ−ζ

B(ξ, ζ)
, x > 0, and ν, ξ, ζ > 0

where B(·, ·) denotes the Beta function. Setting ξ = 1 gives the exponential-Burr distribution.
Also see Harvey and Lange (2015) and McDonald and Xu (1995).
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Series Loglike Likelihood χ2
1,

ζ = 1 ζ 6= 1 ratio stat p-value

IBM30s -195,587 -195,490 194.6 0.000
IBM1m -104,118 -104,112 12.0 0.001

Table 8. The likelihood ratio statistics to test the null H0 : ζ = 1 (log-logistic) against
the alternative H1 : ζ 6= 1 (Burr).

relatively more flexible shape of Burr compared with the normal distribution.

Although GB2 is related to log-normal, the estimated parameters (ν̂, ξ̂, ζ̂)

suggest that the estimated GB2 is comfortably far from being log-normal since ν̂

is comfortably away from zero, and (ν̂, ξ̂, ζ̂) are far from being large.

In the existing literature, the gamma distribution is also frequently used

when dealing with non-negative variables (see Brownlees et al. (2011)). The

gamma distribution is a special case of GG, and GG is a limiting case of GB2 for

when ζ is large. Gamma and GG did not fit the empirical distribution of data

well compared to GB2. This is consistent with the estimated ζ, which is far from

being large. GB2 is not well-known unlike its special or limiting cases (such as

Pareto, Burr, log-logistic, F, Weibull, and exponential). We can use the

likelihood ratio test to check whether the estimated distributions are statistically

significantly different from its special cases. As an illustration, Table 8 shows

that the likelihood ratio test rejects the null hypothesis that ζ = 1, which rules

out the estimated Burr as being log-logistic. See Harvey and Lange (2015) for

discussions and more examples of such tests.

We have 2 < ν̂ζ̂ < 3 for IBM1m and IBM30s, implying that only the first and

second moments exist, and that the theoretical skewness does not exist, under

the assumption that F ∗ is Burr.14 (See Appendix A.1 for the existence of

moments.) For the FX data, 3 < ν̂ζ̂ < 4, so that the moments up to the third

exist. Since νζ is also the (upper) tail-index of GB2, the estimates suggest that

our series are heavy-tailed. Since a gamma distribution can never be

heavy-tailed, this could be why the gamma distribution did not work well. GB2

may be preferred to the gamma distribution when dealing with heavy-tailed data.

Also see Harvey (2013, p.12, p.189). We ruled out other candidate distributions

after inspecting the empirical distribution of the estimation residuals.

14We did not check whether this result is because we estimated Burr instead of GB2 since we
found it difficult to estimate GB2 for IBM1m and IBM30s as noted in Footnote 9.
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Pair EURUSD
Freq 10 mins

AIC BIC
Window SDS SWS SDS SWS

1 11.03 11.07 11.13 11.28
2 13.09 13.13 13.19 13.34
3 10.78 10.82 10.88 11.03
4 10.95 11.00 11.04 11.21
5 12.57 12.61 12.67 12.82
6 10.14 10.21 10.23 10.42
7 12.79 10.48 12.88 10.69
8 13.10 13.14 13.20 13.35
9 12.28 12.32 12.38 12.53

10 12.73 12.77 12.83 12.98
11 10.52 10.56 10.61 10.77
12 11.29 11.33 11.39 11.53
13 11.52 11.60 11.62 11.81
14 13.77 11.66 13.86 11.87
15 13.84 13.88 13.94 14.09
16 10.77 10.80 10.87 11.01

Total min # 14 2 14 2

Pair USDJPY
Freq 10 mins

AIC BIC
Window SDS SWS SDS SWS

1 11.54 11.56 11.64 11.77
2 11.71 11.74 11.81 11.95
3 11.20 11.22 11.29 11.43
4 11.12 11.15 11.21 11.35
5 12.33 12.37 12.43 12.58
6 11.75 11.78 11.84 11.99
7 11.99 12.03 12.08 12.23
8 11.58 11.62 11.68 11.83
9 11.56 11.60 11.66 11.81

10 10.33 10.40 10.42 10.60
11 10.84 10.86 10.94 11.07
12 11.26 11.29 11.36 11.50
13 11.70 11.74 11.80 11.94
14 12.96 13.00 13.06 13.21
15 12.17 12.19 12.28 12.40
16 11.08 11.10 11.19 11.31

Total min # 16 0 16 0

AIC BIC

SDS SWS SDS SWS
IBM30s 20.0261 20.0262 20.032 20.036
IBM1m 21.3048 21.3046 21.316 21.323

Table 9. Spline-DCS: in-sample model selection using AIC and BIC to determine
the spline specification. SDS stands for the static daily spline and SWS for the static
(restricted) weekly spline.

4.5 The estimated spline component

One way of choosing the specification of the periodic component (st,τ ) is to

compare the values of the Akaike information criterion (AIC) and the Bayesian

information criterion (BIC). If the restricted weekly spline is preferred, it signals

that the weekend effect may be present in our data. Table 9 shows that both

AIC and BIC are typically in favor of the static daily spline, although they

occasionally favor the static weekly spline in some cases. BIC penalizes free

parameters more severely than AIC.15 Thus the evidence for the weekend effect

is generally weak and mixed in our data.

Figure 12 shows the estimated static daily spline, ŝt,τ , for IBM30s. We find

that ŝt,τ successfully captures the tendency of trade volume to be high in the

15Note that likelihood based tests computed under the null H0 : γ̃1 = γ̃2 = γ̃3, against the
alternative, which replaces = by 6=, are invalid since the zero-sum constraint (or the weights w∗
imposed) on γ is not the same for the daily spline and the weekly spline.
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Figure 12. exp(ŝt,τ ) for IBM30s from market open to close. Spline-DCS with the static
daily spline. Intra-day hours in the NY local time along the x-axes.

(a) Daily spline for EURUSD (b) Daily spline for USDJPY
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(c) Weekly spline for EURUSD: Mon (left), Tue-Thu (middle), Fri (right)

(d) Weekly spline for USDJPY: Mon (left), Tue-Thu (middle), Fri (right)
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Figure 13. ŝt,τ for the EURUSD volume (the in-sample window 2) and the USDJPY
volume (the in-sample window 13). Intra-day hours in GMT along the x-axis.

morning, fall during the quiet lunch hours of around 1pm, and pick-up again in

the afternoon. The spline takes a step-increase between the end and the

beginning of any two consecutive trading days, reflecting the overnight effect.

Figure 13 shows the estimated spline component for the FX data. The spline

successfully captures the tendency of volume to increase when trading activities
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Figure 14. IBM30s (top left), ε̂t,τ (top middle), exp(λ̂t,τ ) (top right), µ̂t,τ (bottom

left), ŝt,τ (bottom middle), and η̂
(1)
t,τ (bottom right). Time along the x-axes between 28

February - 31 March 2000. Spline-DCS with the static daily spline.

in major markets are high as we discussed in Section 2. For both the equity data

and the FX data, the shapes we obtained are smooth. The difference in the

overall pattern of periodicity between the equity and FX data is presumably

because the dynamics of equity trade volume is dominated by the overnight

effect, whereas the dynamics of FX trade volume is dominated by the timing of

peaks in trade intensity around the world.

4.6 Estimated components

Figure 14 shows ε̂t,τ and the estimated components of λ̂t,τ for IBM30s. All series

are displayed over the entire sampling period between 28 February and 31 March

2000. While the IBM30s volume series clearly exhibits periodic patterns, ε̂t,τ

appears free of periodicity. The diurnal U-shaped patterns are captured by

exp(λ̂t,τ ) via the spline, ŝt,τ . µ̂t,τ and η̂t,τ appear to satisfy their dynamic

assumptions as µ̂t,τ resembles a random-walk, and η̂
(1)
t,τ and η̂

(2)
t,τ resemble

stationary AR(2) and AR(1) processes, respectively.

5 Out-of-sample performance

5.1 Model stability: one-step ahead forecasts

We use the predictive c.d.f. to assess the stability of the estimated distribution

and parameters, as well as the ability of our model to produce good one-step

ahead forecasts over a given out-of-sample prediction period without
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re-estimating the in-sample parameter values. Henceforth, we use the following

notations

ΨH = {(t, τ) ∈ {T + 1, . . . , T +H} × {1, . . . , I}}

ΨH,>0 = {(t, τ) ∈ {T + 1, . . . , T +H} × {1, . . . , I} : yt,τ > 0} .

The procedure is as follows. Taking the in-sample parameter estimates obtained

using samples up to date T , we recursively update the time-varying scale

parameter at each new observation point yT+h,τ for τ = 1, . . . , I and

h = 1, . . . , H to obtain one-step ahead forecasts, λ̃t,τ , for the out-of-sample

period, (t, τ) ∈ ΨH,>0. We then compute the predictive c.d.f at each positive

observation as

F ∗(ε̃t,τ ; θ̂
∗

), ε̃t,τ = yt,τ/ exp(λ̃t,τ ) (6)

for all (t, τ) ∈ ΨH,>0. The predictive c.d.f. in (6) simply gives the PIT values of

forecast standardized observations.

Figure 15 shows the empirical c.d.f. of the PIT values for IBM30s over

different forecast horizons up to H = 20 days ahead. (The results for IBM1m are

very similar to Figure 15.) As we have 390 observations per day for IBM1m and

780 observations per day for IBM30s, H = 20 corresponds to 7,800 steps ahead

for IBM1m and 156,000 steps ahead for IBM30s. Likewise, Figure 16 shows the

results for the EURUSD volume in Window 1. The length of the out-of-sample

windows is two weeks as in Table 1. As before, the distribution of the PIT values

is roughly U [0, 1] for this extended out-of-sample period, although there is

non-negligible deterioration in the quality of fit. The results are similar for

USDJPY and other sampling windows. Thus, Burr and GB2 appears to capture

the empirical distribution of out-of-sample observations remarkably well for an

extended out-of-sample period. Figure 17 shows the sample autocorrelation of

the one-step ahead forecast ε̃t,τ and ũt,τ for the EURUSD volume in the

out-of-sample window 1. The results are similar for the equity data, as well as

other out-of-sample windows and USDJPY. The one-step ahead forecasts by

Spline-DCS appear to capture the volume dynamics over this extended

out-of-sample period. In summary, our estimated distributions and parameter

values appear to be fairly stable and able to provide good one-step-ahead

forecasts of the conditional distribution of our data.

5.2 Multi-step ahead forecasts

We now examine multi-step forecasts, which are of greater interest than one-step

forecasts as they give us an ultimate assessment of our model’s predictive ability.
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10 days ahead

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F*(res > 0)

E
m

pi
ric

al
 C

D
F

 o
f F

*(
re

s 
>

 0
)

Empirical CDF

 

 

20 days ahead

Figure 15. The empirical c.d.f. of the PIT values (predictive c.d.f.) of one-step ahead
ε̃t,τ . Computed using the theoretical c.d.f. of Burr(ν̂, ζ̂). Spline-DCS with the static
weekly spline is fitted to IBM30s. Forecast horizons: 1 day ahead (left), 5 days ahead
(left centre) 10 days ahead (right centre), and 20 days ahead (right). IBM30s for forecast
horizons between 3 - 23 April 2000.

Figure 16. The empirical c.d.f. of the PIT values (predictive c.d.f.) of one-step ahead
ε̃t,τ . Computed using the theoretical c.d.f. of GB2(ν̂, ξ̂, ζ̂). Spline-DCS with the static
weekly spline is fitted to EURUSD trade volume in Window 1. Forecast horizons: 1-day
ahead (left), 2 days ahead (left centre), 5 days ahead (right centre), and 12 days ahead
(right).

Figure 17. The sample autocorrelation of the out-of-sample ε̃t,τ (top) and ũt,τ (bottom)
when Spline-DCS with the static weekly spline is fitted to the trade volume of EURUSD
(window 1). From the left column, 1-day ahead, 2 days ahead, 5 days ahead, and 12
days ahead.

We produce multi-step ahead density forecasts over a long forecast horizon using

the estimation results obtained in Section 4.

We make optimal forecasts of exp(λt,τ ) for (t, τ) ∈ ΨH conditional on FT,I .
This optimality is in the sense of minimizing mean square error (MSE) so that

the prediction is E [exp(λt,τ )|FT,I ] ≡ exp(λt,τ ) for (t, τ) ∈ ΨH . We use the

property of DCS that the analytic expression of the multi-step optimal predictors

35



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

E
m

pi
ric

al
 C

D
F

 o
f P

IT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

E
m

pi
ric

al
 C

D
F

 o
f P

IT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

E
m

pi
ric

al
 C

D
F

 o
f P

IT

Figure 18. The empirical c.d.f of the PIT of multi-step forecasts. IBM30s for forecast
horizons between 3 - 23 April 2000. Forecast horizons: 1 day ahead (left), 5 days ahead
(middle), 8 days ahead (right). Spline-DCS with the static daily spline.
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Figure 19. The empirical c.d.f of the PIT of multi-step forecasts. EURUSD (the out-
of-sample window 1). Forecast horizons: 2 days ahead (left), 4 days ahead (middle), 8
days ahead (right). Spline-DCS with the static daily spline.
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Figure 20. The empirical c.d.f of the PIT of multi-step forecasts. USDJPY (the out-
of-sample window 3). Forecast horizons: 2 days ahead (left), 4 days ahead (middle), 8
days ahead (right). Spline-DCS with the static daily spline.

in the sense of minimizing MSE is available whenever the corresponding

moments of F and the moment generating function (m.g.f) of ut,τ exist. The

methodology is as described by Harvey (2013). The difference between the

notations, ·̃t,τ and ·t,τ , is that the computation of the former does not involve

evaluating the conditional moment condition. We then standardize the actual

future observations yt,τ by exp(λt,τ ) for all (t, τ) ∈ ΨH . The standardized future

observations εt,τ ≡ yt,τ/exp(λt,τ ) should be conditionally distributed as Burr(ν̂, ζ̂)

for the equity data and GB2(ν̂, ξ̂, ζ̂) for the FX data at least approximately.

Then F ∗(εt,τ ; θ̂
∗) for (t, τ) ∈ Ψh,>0 gives the PIT values of the forecast

standardized observations. They should be distributed approximately as U [0, 1]

and be free of autocorrelation if the predictions are good. We make predictions

for up to H = 8 future trading days, which corresponds to 3,120 steps ahead for
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Figure 21. The sample autocorrelation of the PIT values of multi-step forecasts.
IBM30s for forecast horizons between 3 - 23 April 2000. Forecast horizons: a quarter of
a day ahead (left), one day ahead (middle), two days ahead (right). Spline-DCS with
the static daily spline.
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Figure 22. The sample autocorrelation of the PIT values of multi-step forecasts.
EURUSD (the out-of-sample window 1). Forecast horizons: 1 day ahead (left), 2 days
ahead (middle), 3 days ahead (right). Spline-DCS with the static daily spline.
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Figure 23. The sample autocorrelation of the PIT values of multi-step forecasts.
USDJPY (the out-of-sample window 3). Forecast horizons: a quarter of a day ahead
(left), one day ahead (middle), two days ahead (right). Spline-DCS with the static daily
spline.

IBM1m, 6,240 steps ahead for IBM30s, and 1,152 steps ahead for the FX data.

For the equity data, the distribution of the PIT values is close to U [0, 1] for

the first day of forecast horizon for both IBM1m and IBM30s. See Figure 18. We

omit presenting the pictures for IBM1m again as they are very similar to

IBM30s. This means that the density prediction produced by our model is good

for the first 390 steps for IBM1m and 780 steps for IBM30s. A Box-Ljung test
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indicates that the PIT values for the first quarter of the first forecast day,

equivalent to around 200 steps ahead for IBM30s (100 steps for IBM1m), are not

serially correlated. See Figure 21. By the end of the first forecast day, the PIT

becomes autocorrelated, although the degree of autocorrelation remains very

small. These results are again similar for IBM1m. If we consider this predictive

performance in terms of the number of steps, these results appear to be good as

they imply that the PIT values are close to being i.i.d. U [0, 1] for several

hundred steps of the forecast horizon. Beyond the first forecast day, the quality

of density forecasts deteriorate and the degree of autocorrelation increases with

the length of forecast horizon.

For the FX data, we find that the distribution of the PIT values is fairly close

to U [0, 1] (particularly around the 4th or 5th day of the forecast horizon for the

cases shown in Figures 19 and 20). However, the closeness of the PIT values to

being U [0, 1] fluctuates, and it is typically determined by the size of errors in

forecasting the announcement effect. As before, by the end of the first forecast

day (equivalent to 144 steps ahead), there is non-negligible autocorrelation in the

PIT values. See Figures 22 and 23.

6 Out-of-sample model comparison

In this section, the FX data is used to compare the out-of-sample predictive

performance of Spline-DCS and Fourier-MEM. First, we outline Fourier-MEM.

6.1 Fourier-MEM

Throughout this report, we adhere to the notations of Brownlees et al. (2011).

The version of their model we test in this paper is

yt,τ = ηtφτµt,τe
∗
t,τεt,τ , εt,τ i.i.d. ∼ (1, σ2),

ηt = α
(η)
0 + β

(η)
1 ηt−1 + α

(η)
1 y

(η)
t−1

µt,τ = α
(µ)
0 + β

(µ)
1 µt,τ−1 + α

(µ)
1 y

(µ)
t,τ−1 + α

(µ)
2 y

(µ)
t,τ−2

φτ+1 = exp


bI/2c∑
k=1

[
δ1k cos

(
2πkτ

I

)
+ δ2k sin

(
2πkτ

I

)] ,

e∗t,τ = exp(et,τ ), et,τ = β
(e)
1 et,τ−1 +α

(e)>
1 dt,τ .

ηt is the daily component, µt,τ is the intra-day non-periodic component, and φτ

is the intra-day periodic component, which approximate periodic patterns using

the Fourier series. A new component we add to their model is e∗t,τ , which

captures the effect of anticipated macroeconomic announcements. dt,τ is as
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defined in (1) and dim(α
(e)
1 ) = m. y

(η)
t and y

(µ)
t,τ are the standardized daily

volume and intra-daily volume, respectively, which are defined as

y
(η)
t = ηtI

−1

I∑
τ=1

εt,τ , and y
(µ)
t,τ = µt,τεt,τ .

These make the model analogous to the GARCH model in the return volatility

literature.16 There are no asymmetry terms due to the reasons we discussed in

Section 3.5.1.

The interpretations and identification conditions of the parameters are as laid

out by the authors. To give a refresher, we mention some of them here. µt,τ is

stationary if |β(µ)
1 + α

(µ)
1 + α

(µ)
2 | < 1. ηt is stationary if |β(η)

1 + α
(η)
1 | < 1. For the

identification of the parameters, we assume E[µt,τ ] = 1, giving the constraint

α
(µ)
0 = 1− (β

(µ)
1 + α

(µ)
1 + α

(µ)
2 ). The initial conditions are

η1 = x
(η)
1 =

∑5
t=1

∑I
τ=1 yt,τ/5 (i.e. the daily average volume over the first

observation week excluding the weekend period) and µ1,1 = y
(µ)
1,1 = E[µt,τ ] = 1.

The continuity condition of data is µt,0 = µt−1,I and y
(µ)
t,0 = y

(µ)
t−1,I . A sufficient

condition to ensure that volume is positive is that the parameters of ηt and µt,τ

are positive. Taking the exponential of the Fourier series ensures that φτ is

positive. δ2bI/2c = 0 if I is even. φτ assumes that the pattern of periodicity is the

same every day. In our case, there is no overnight dummies of the type used by

Brownlees et al. (2011) in µt,τ for the reasons described in Section 3.3 as we are

modeling the FX data.

Brownlees et al. (2011) apply the model to forecasting the volume turnover of

three Exchange Traded Funds that replicate the movements of U.S. stock

indices, SPDR S&P 500, Diamonds, and PowerShares QQQ, between 2002 and

2006. The highest sampling frequency they consider is 15 minutes. The authors

find that their intra-day volume data tend to cluster and that there is a strong

serial-correlation in daily average volume. They also find that their data displays

diurnal U-shaped patterns, with low volume around noon and high volume at

the beginning and the end of trading day. This is similar to the periodic patterns

we found in our equity data, but different to the patterns we found in our FX

volume data. Our in-sample estimation results indicated that the model with the

second lag-term in µt,τ generally performed well in capturing the volume

16ηt and µt,τ are GARCH-like filters because

E[y
(µ)
t,τ |Ft,τ−1] = µt,τ , Var[y

(µ)
t,τ |Ft,τ−1] = µ2

t,τσ
2,

and likewise for y
(η)
t (with the normalization factor 1/I for the variance). The conditional

moment of volume in the τ -th bin on the t-th observation day is E[yt,τ |Ft,τ−1] = ηtφτµt,τ .
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dynamics, which is consistent with Brownlees et al. (2011).

6.1.1 GMM and MLE estimation

Brownlees et al. (2011) estimate Fourier-MEM by the generalized method of

moment (GMM) in order to allow for a greater flexibility in the distribution of

the error term. We adopt their GMM estimation strategy. The in-sample

estimation method and results are given in Appendix D.

In addition to the GMM approach of Brownlees et al. (2011), we report the

results of our attempt to estimate Fourier-MEM by ML. We try this alternative

estimation method because we found the proposed GMM in Fourier-MEM

computationally considerably slower to converge than ML. Also note that the

GMM condition does not capture zero-valued observations explicitly. These

features of Fourier-MEM are inconsequential if the sampling frequency is

sufficiently low (so that the total sample size can be typically small and the

number of zero-valued observations is small). Although we report the estimation

results for ML in Fourier-MEM to highlight our preliminary investigation, the

results must be interpreted with caution since the asymptotic properties of MLE

in this model have not been studied and the results were typically sensitive to

the choice of initial parameter values. The computational aspects of competing

models are discussed in Section 7.

For ML in Fourier-MEM, we redefine the error distribution to be

εt,τ ∼ i.i.d F (ε; θ), where F is as defined in Section 3.4 so that it captures

zero-valued observations explicitly. We also use GB2 for F ∗ in this case. Since

Fourier-MEM assumes that the mean of the error distribution is one, we redefine

y
(η)
t and y

(µ)
t as

y
(η)
t = ηt(I ×M)−1

I∑
τ=1

εt,τ , and y
(µ)
t,τ = µt,τεt,τ/M,

where M ≡ E[εt,τ ]. M = (1− p)B(ξ + 1/ν, ζ − 1/ν)/B(ξ, ζ) for GB2 defined in

Appendix A.1, where B(·, ·) is the Beta function and (ν, ξ, ζ) are the distribution

parameters as before. The stationarity and identification conditions outlined in

Section 6.1 remain the same.

6.2 Comparison method

Since the proposed GMM in Fourier-MEM can be used to forecast the level of

volume (hereafter, level forecasts), but not the density, the performance of the

competing models are compared using their level forecasts.

For Spline-DCS, the one-step ahead level forecasts of volume (denoted by
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ỹT+h,τ ) we evaluate are

ỹT+h,τ ≡ E[yT+h,τ |FT+h,τ−1] = exp(λ̃T+h,τ )

∫ ∞
0

xf(x; θ̂)dx (7)

(i.e. one-step ahead (conditional first) moment forecast), and

ỹT+h,τ ≡ exp(λ̃T+h,τ )Q0.5(θ̂), where P
(
εT+h,τ ≤ Q0.5(θ̂)|FT+h,τ−1

)
= 0.5 (8)

(i.e. (conditional) median forecast) for h = 1, . . . , H and τ = 1, . . . , I. Since the

distribution of εt,τ is fully specified by GB2, the median and the first moment of

F (ε; θ̂) can be computed analytically.

For Fourier-MEM, we produce one-step ahead forecasts of ηtφτµt,τe
∗
t,τ

without updating the in-sample parameter estimates by following the same

recursive updating methodology as Spline-DCS. For GMM in Fourier-MEM, the

moment condition, E[εt,τ ] = 1, means that the forecast path of ηtφτµt,τe
∗
t,τ gives

the model’s (conditional first moment) level forecasts of volume. There is no

other type of level forecasts we derived from it given the minimal GMM

assumption for the error distribution. As for ML in Fourier-MEM, since the

error distribution is completely defined in this case, we can compute two types of

level forecasts using the mean and the median of F (ε; θ̂) by following the same

methodology as Spline-DCS.

For each in-sample window listed in Table 1, we estimate the models and

produce forecasts for the corresponding out-of-sample window. We do this for all

of the sixteen windows listed in Table 1. Then, we compute the forecast errors

(yt,τ − ỹt,τ ) for all (t, τ) ∈ ΨH of each out-of-sample window. Our loss functions

are the daily mean absolute errors (MAE):

L
(
(yT+h,τ , ỹT+h,τ )

I
τ=1

)
= (I)−1

I∑
τ=1

|yT+h,τ − ỹT+h,τ | ,

and the daily root mean squared errors (RMSE)

L
(
(yT+h,τ , ỹT+h,τ )

I
τ=1

)
=

√√√√(I)−1

I∑
τ=1

(yT+h,τ − ỹT+h,τ )
2.

They are computed for each h = 1, . . . , H of each out-of-sample window. The

conditional first moment is theoretically optimal in the sense of minimizing

RMSE. We consider not only RMSE, but also MAE, since few extreme

observations can drive the conclusions of forecast evaluation studies that rely

only on RMSE. The conditional median is theoretically the optimal predictor if

the loss function is MAE.

Since the volume data, yt,τ is highly volatile, the value of the daily loss
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functions are typically dominated by large errors and, in some sense, can obscure

the picture of comparative performance of competing models in minimizing loss

function values. To get around this, we produce benchmark forecasts using some

relatively ad-hoc ARMA-style model, and assess, by how much in percentage

terms, each model is able to improve on the daily loss function values of the

ARMA-style model. We call this model the baseline model. It is defined in

Appendix E. We compute

100×
L
(
(yT+h,τ , ỹT+h,τ )

I
τ=1

)
Model i

− L
(
(yT+h,τ , ỹT+h,τ )

I
τ=1

)
Baseline

L ((yT+h,τ , ỹT+h,τ )Iτ=1)Baseline
(9)

for each out-of-sample day h = 1, . . . , H. This is the percentage difference

between the loss function value of a given model and that of the baseline on a

given out-of-sample day h. The idea is to look for a model with forecast errors

substantially below the errors of the baseline in percentage terms (i.e. small (9)).

(9) is a good indicator of comparative performance for us since it can normalize

errors that are due to extreme observation points in (yt,τ )(t,τ)∈ΨH,>0
.

6.3 Forecast comparison

Table 10 summarizes the forecast comparison results. In terms of minimizing the

daily MAE, the median forecasts (i.e. the (8) quantities) by Spline-DCS yield

the largest (16%) improvement on the daily MAE of the baseline on average each

day with relatively small standard deviation (17% or 18%). The confidence

intervals tabulated in Table 10 show that these sample averages are statistically

significantly and comfortably different from zero at the 5% significance level. In

evaluating the confidence intervals, we note that there are 158 out-of-sample

days in total.17 In terms of the number of days, the median forecasts (i.e. the (8)

quantities) by Spline-DCS achieve the largest improvement on the daily MAE of

the baseline on at least 113 days (or 72%) of the 158 out-of-sample days.

In terms of minimizing the daily RMSE, the confidence intervals suggest that

Spline-DCS could not yield statistically significant improvement on the daily

RMSE of the baseline. In contrast, the relatively wider confidence intervals in

the positive region for Fourier-MEM suggest that it was typically outperformed

by the baseline. The confidence intervals signal that the predictive performance

of Spline-DCS does not fluctuate as much as that of Fourier-MEM.

The daily MAE appears to favor Spline-DCS more strongly than does the

17Two days (26 Nov. and 27 Nov. 2014) of the 15th out-of-sample window were excluded from
the forecast evaluation due to some sampling errors in the data. More specifically, the intra-day
times that records the moment observations (yt,τ ) are collected were not consecutive for some
of the samples on these dates.
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Daily MAE

(9), % diff. 95% confidence # days it is
from baseline interval the best

Average S.D. Lower bd Upper bd Count Win rate
EURUSD Fourier-MEM GMM Moment f (7) -3% 28% -7% 2% 21 13%
10 mins Fourier-MEM MLE Moment f (7) 54% 164% 28% 79% 7 4%

Median f (8) 31% 119% 12% 49% 7 4%
Spline-DCS (SDS) Moment f (7) -8% 18% -10% -5% 7 4%

Median f (8) -16% 17% -19% -13% 116 73%

USDJPY Fourier-MEM GMM Moment f (7) -3% 27% -7% 1% 27 17%
10 mins Fourier-MEM MLE Moment f (7) 36% 239% -1% 73% 7 4%

Median f (8) 17% 174% -10% 44% 10 6%
Spline-DCS (SDS) Moment f (7) -7% 21% -10% -3% 1 1%

Median f (8) -16% 18% -19% -13% 113 72%

Daily RMSE

(9), % diff. 95% confidence # days it is
from baseline interval the best

Average S.D. Lower bd Upper bd Count Win rate
EURUSD Fourier-MEM GMM Moment f (7) 8% 51% 0% 16% 54 34%
10 mins Fourier-MEM MLE Moment f (7) 76% 437% 8% 144% 10 6%

Median f (8) 51% 328% 0% 102% 8 5%
Spline-DCS (SDS) Moment f (7) -2% 53% -10% 6% 46 29%

Median f (8) -4% 41% -10% 2% 40 25%

USDJPY Fourier-MEM GMM Moment f (7) 16% 79% 4% 29% 57 36%
10 mins Fourier-MEM MLE Moment f (7) 29% 142% 7% 51% 17 11%

Median f (8) 18% 101% 2% 33% 15 9%
Spline-DCS (SDS) Moment f (7) 3% 56% -5% 12% 43 27%

Median f (8) 1% 40% -5% 7% 26 16%

Table 10. Fourier-MEM and Spline-DCS: out-of-sample forecast comparison. SDS
stands for the static daily spline. Note that the figures in the last column may add up
to slightly below 100% due to the rounding of decimal places.

daily RMSE. This is because loss functions such as RMSE penalizes models for

occasionally throwing up large errors more severely than MAE. When the data

being estimated is heavy-tailed, a robust approach would prefer the use of MAE

because it is not clear whether we should penalize forecast errors squarely when

the timing and the size of tail observations are very difficult to predict.

Figure 24 shows the empirical distribution18 of the (9) quantities for the

selected models. A given model can improve on the baseline forecasts if the

distribution rests in the negative territory. The relatively less disperse shape of

the distribution for Spline-DCS compared to Fourier-MEM illustrates that the

ability of Spline-DCS in improving on the daily MAE of the baseline can be

more reliable and less variable for the forecasting horizons listed in Table 1.

18This is obtained using a smoothing kernel.
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Figure 24. The empirical distribution of the (9) quantities for the selected model. For
the EURUSD data (left) and the USDJPY data (right). The (9) quantity is computed
for each out-of-sample day listed in Table 1. The vertical dashed lines correspond to the
sample average of the distribution of the same color.

7 Discussions

7.1 Computing time: Fourier versus spline

We found MLE in Spline-DCS faster and easier to compute than GMM in

Fourier-MEM. With the FX data and the same convergence tolerance, the

optimization procedure for Spline-DCS converged in about 5 minutes, whereas

the Fourier-MEM usually took hours to converge (about 4 hours or longer). The

main source of computational cost for the latter is the MM criterion (given in

Appendix D), which includes the gradient vector of each component with respect

to the parameters. The number of recursive dynamic equations to evaluate at

each parameter value being tested is (the number of components)×(1+the

number of parameters), which can be large when the number of intra-day bins is

high due to the Fourier component. Since the FX volume data is collected 24

hours a day, the total number of intra-day data is 144 at 10-minute frequency.

Then, the number of Fourier coefficients become b144/2c × 2− 1 = 143 for the

sine and cosine terms combined. This is a large number of parameters to

estimate.

Figure 25 shows a snapshot of the estimated Fourier component, φ̂τ . This

compares with the estimated spline component (ŝt,τ ) of Spline-DCS we showed

earlier in Figure 13. The Fourier component successfully captures the bimodal or

trimodal intra-day patterns in trade volume. However, unlike the estimated
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spline of Spline-DCS, which is smooth and has no spikes, the estimated Fourier

component has a lot of spikes. Some of the larger spikes seem as if they are

picking up some of the announcement effects, especially at around 1.30pm in

GMT for the USDJPY case, since regular data releases in the US are scheduled

at this time of the day. These spikes are somewhat unintuitive as we expect the

periodic component to capture smooth and regular transitions in volume and the

non-periodic components to capture any (erratic) deviations from the regular

patterns. The spikes in φ̂τ are presumably due to the well-known fact that the

Fourier approximation does not work well at the discontinuous points of the

function being approximated. The number of Fourier coefficients needed to

achieve a good approximation is large if the function being approximated has

many points of discontinuity. In our high-frequency context, the more the

volume series fluctuate, the higher the number of Fourier terms we would need.

Using substantially fewer Fourier terms than bI/2c not only makes the Fourier

component smoother, but also reduces the computing time. However, the quality

of approximation can also deteriorate substantially, especially around the points

of extreme movements in volume. There seems to be a non-trivial trade-off

between the quality of approximation and the computing time for GMM in

Fourier-MEM.

As for Spline-DCS, the number of parameters used in the spline component is

determined by the number of intra-day knots. As we mentioned in Section 3.3.2,

the static daily spline has 21 parameters (or knots) for the FX data. Increasing

the number of knots does not necessarily improve the quality of the fit of the

model to data. The location and the number of knots play a key role in achieving

good estimation outcomes. For both the equity and FX data, there were two

rules of thumb that worked well. The first is to place one knot approximately

every 1 hour to 1.5 hours along the intra-day time axis. The second is to place

relatively more knots around the hours in which the intensity of trading activity

changes fast. These hours correspond to the hours after NYSE opens or before it

closes for the equity data, and the hours trading in major markets around the

world peaks for the FX data. We placed fewer knots around the hours in which

trading intensity does not change much. These hours typically correspond to

lunch hours (in the NY local time) for the equity data and the evening hours (in

GMT) when both New York and Asia are closed for FX. It is useful to sketch

how a piecewise function of cubic polynomials would fit the empirical shape of

intra-day patterns when determining the location and the number of knots.
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(a) EURUSD volume, Window 2 (b) USDJPY volume, Window 10

Figure 25. The estimated Fourier component φτ of Fourier-MEM. The x-axis is intra-
day hours in GMT.

7.2 Computing time: GMM versus ML

The computing time of Fourier-MEM can be reduced substantially if it is

estimated by ML, since this eliminates the need to compute a large number of

recursive dynamic equations for the gradient vector in the MM criterion.

However, as we noted in Section 6.1.1, the asymptotic properties of MLE in

Fourier-MEM have not been studied, and the estimation results appeared to be

sensitive to the choice of initial parameter values.

A main objection to an ML approach is that it requires the error distribution

to be fully defined. GMM in Fourier-MEM may be preferred to ML in

Spline-DCS if, for instance, there are reasons to believe that no parametrically

chosen distribution can reasonably describe the empirical distribution of data.

This does not seem to be the case at least in our application, since GB2 and

Burr appeared to work well. If a parametrically chosen distribution works well,

ML is useful since it allows us to produce density forecasts, from which we can

compute other quantities such as the level forecasts we considered and other

quantile or moment forecasts relating to risk measures (e.g. value at risk and

expected shortfall).

8 Concluding remarks

This paper developed the Spline-DCS model for forecasting the dynamics of

high-frequency trade volume with intra-day periodic patterns. We showed that it

captures salient features of the high-frequency data such as the pattern of
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periodicity, autocorrelation, and highly non-Gaussian empirical distribution of

the data. The out-of-sample forecast results show that the in-sample estimation

results are stable, and that our model can produce good density forecasts for a

relatively long forecast horizon. Our estimation results are robust to the choice

of sampling frequency and sampling period. We also found that the model can

outperform the component MEM model (which we called Fourier-MEM)

introduced by Brownlees et al. (2011) in forecasting the level of trade volume.

The ease of computation and the intuitive shape of the estimated spline are two

of the key advantages of Spline-DCS.

Burr and GB2 achieved a very good fit to the empirical distribution of the

data. The estimated parameter values indicated that our data is heavy tailed.

The flexible shape of these distributions presumably meant that they worked

better than the gamma or log-normal distribution in our application due to the

heavy-tailed feature and the departure of the log-transformed data from

normality.

The pattern of periodicity was assumed to be the same every day in this

paper. Ito (2013) challenges this standard assumption by introducing Spline-DCS

with a dynamic spline, and show the empirical merit of such a generalization.

The object of our empirical analysis is trade volume, and, as such, this study

also contributes to the literature dedicated to the analysis of market activity and

intensity. It would be interesting to test our model to other variables such as

asset price using heavy-tailed two-sided distributions. We studied the movements

of volume in complete isolation from price, which is ultimately not satisfactory if

one is interested in studying the interaction of price and quantity dynamics.

Thus, the next natural step is to construct multivariate intra-day DCS that

models price and volume simultaneously. One can also extend our framework to

study correlation of scale with other variables, or construct a model for

panel-data using a composite likelihood.

For the FX data, the forecast accuracy of Spline-DCS can be improved by

adjusting the location of the knots of the spline to reflect the onset or the end of

daylight saving. We estimated the announcement effect using relatively short

in-sample period. Since the announcement effect can substantially dominate

volume dynamics in FX, the accuracy of forecasts reported in this paper can be

improved substantially by making the in-sample window longer to include a

more comprehensive set of data points at anticipated events. These extensions

are left for future research.
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Appendix A: List of distributions

A.1 The generalized beta distribution of the second kind

The (standard) generalized beta distribution of the second kind (GB2) has the

p.d.f.:

f(x; ν, ξ, ζ) =
νxνξ−1(xν + 1)−ξ−ζ

B(ξ, ζ)
, x > 0, and ν, ξ, ζ > 0

where B(·, ·) denotes the Beta function. GB2 becomes the Burr distribution

when ξ = 1 and the log-logistic distribution when ξ = ζ = 1. The Burr

distribution is also called the Pareto Type IV distribution (Pareto IV).

Log-logistic is also called Pareto III. Burr becomes Pareto II when ν = 1. Burr
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becomes Weibull (defined in Appendix A.2) when ζ →∞. GB2 with ν = 1 and

ξ = ζ is a special case of the F distribution with the degrees of freedom

ν1 = ν2 = 2ξ. GB2 is related to the generalized gamma (GG) distribution as its

limiting case.

If a non-standardized random variable Y follows the GB2 distribution, its

p.d.f. fY : R>0 → R with the scale parameter α > 0 is

fY (y;α, ν, ξ, ζ) = f(y/α; ν, ξ, ζ)/α for y > 0. To obtain GG defined in Appendix

A.2 from GB2, we replace α by αζ1/ν and replace ζ by the tail index, νζ. Then

GB2 becomes GG by setting ξ = γ and letting νζ →∞. GG becomes

log-normal when γ →∞, provided that other parameters satisfy additional

conditions. See Kleiber and Kotz (2003) or Harvey and Lange (2015). For a set

of i.i.d. observations y1, . . . , yT where each follows the non-standardized GB2

distribution, the log-likelihood function of a single observation yt can be written

using the exponential link function α = exp(λ) with the link parameter λ ∈ R as:

log fY (yt) = log(ν)− νξλ+ (νξ− 1) log(yt)− logB(ξ, ζ)− (ξ+ ζ) log[(yte
−λ)ν + 1].

(A.1)

The score ut of the non-standardized GB2 computed at yt is

ut ≡
∂ log fY (yt)

∂λ
=
ν(ξ + ζ)(yte

−λ)ν

(yte−λ)ν + 1
− νξ = ν(ξ + ζ)bt − νξ (A.2)

where we used the notation bt ≡ (yte
−λ)ν/((yte

−λ)ν + 1). By the property of the

GB2 distribution, we know that bt follows the beta distribution with parameters

ξ and ζ. The beta distribution characterized by the m.g.f. is

Mb(z; ξ, ζ) ≡ E[ebz] = 1 +
∞∑
k=1

(
k−1∏
r=0

(
ξ + r

ξ + ζ + r

)
zk

k!

)
.

It is easy to check that E[ut] = 0. bt(ξ, ζ) is bounded between 0 and 1, which

means that we have −νξ ≤ ut ≤ νζ.
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A.2 The generalized gamma distribution

The (standard) generalized gamma (GG) distribution has the p.d.f.:

f(x; γ, ν) =
ν

Γ(γ)
xνγ−1 exp (−xν) , 0 < x, and γ, ν > 0,

where Γ(·) is the gamma function. The GG distribution becomes the gamma

distribution when ν = 1, the Weibull distribution when γ = 1, and the

exponential distribution when ν = γ = 1.

If a non-standardized random variable Y follows the GG distribution, its

p.d.f. fY : R>0 → R with the scale parameter α > 0 is

fY (y;α, γ, ν) = f(y/α; γ, ν)/α for y > 0. For a set of i.i.d. observations

y1, . . . , yT where each follows the non-standardized GG distribution, the

log-likelihood function of a single observation yt can be written using the

exponential link function α = exp(λ) as:

log fY (yt) = log(ν)− λ+ (νγ − 1) log(yte
−λ)− (yte

−λ)ν − log Γ(γ).

The score ut of the non-standardized GG computed at yt is

ut ≡
∂ log fY (yt)

∂λ
= ν(yte

−λ)ν − νγ = νgt − νγ,

where we used the notation gt ≡ (yte
−λ)ν . By the property of the GG

distribution, we know that gt follows the (standard) gamma distribution with

parameter γ, which is characterized by the m.g.f., E[egz] = (1− z)−γ, for z < 1.

We also have E[ut] = 0 and ut > −νγ by the property of the gamma distribution.

A.3 The log-normal distribution

The (non-standardized) log-normal distribution has the p.d.f.:

fY (y;α, σ) =
1

y
√

2πσ2
exp

(
−1

2

(
log(y)− log(α)

σ

)2
)
, y > 0, and α, σ > 0.

For a log-normally distributed random variable Y , the moments of all orders can

be obtained easily using the m.g.f. of the normal distribution as

E[Y m] = E[em log(Y )] for all m ∈ N>0.

For a set of i.i.d. observations y1, . . . , yT , where each follows the log-normal

distribution, the log-likelihood function of a single observation yt can be written

using the exponential link function α = exp(λ) as:

log fY (yt) = − log(yt)−
1

2
log(2π)− 1

2
log(σ2)− 1

2

(
log(yt)− λ

σ

)2

.
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The score ut of the log-normal computed at yt is

ut ≡
∂ log fY (yt)

∂λ
=

log(yt)− λ
σ2

.

Thus, ut is a Gaussian random variable. We also have E[ut] = 0 as λ is the first

moment of log(yt).

Appendix B: The spline component

In this section, we formally explain the mathematical construction of the spline

component st,τ .

The spline is termed a daily spline if the periodicity is complete over one

trading day. The static daily spline assumes that the shape of intra-day periodic

patterns is the same for every trading day.

The daily spline is a continuous piecewise function of time and connected at

k + 1 knots for some k ∈ N>0 such that k < I. The coordinates of the knots

along the time axis are denoted by τ0 < · · · < τk, where τ0 = 1, τk = I, and

τj ∈ {2, . . . , I − 1} for j = 1, . . . , k − 1. The set of the knots is also called mesh.

The y-coordinates (height) of the knots are denoted by γ = (γ0, . . . , γk)
>. We

denote the distance between the knots along the time-axis by hj = τj − τj−1 for

j = 1, . . . k. We begin by defining the cubic spline function g : [τ0, τk]→ R, which

is a piecewise function of the form

g(τ) =
k∑
j=1

gj(τ)1l{τ∈[τj−1,τj ]}, ∀ τ ∈ [τ0, τk],

where each function gj : [τj−1, τj]→ R is a polynomial of order up to three for all

j = 1, . . . , k. We can set g to be continuous at each knot (τj, γj); that is,

gj(τj) = γj and gj(τj−1) = γj−1 for all j = 1, . . . , k. This means we have

gj(τj−1) = gj−1(τj−1) and g′j(τj−1) = g′j−1(τj−1) (B.1)

for j = 2, . . . , k. (B.1) is the continuity condition of g. The polynomial order of

each gj means that g′′j (·) is a linear function on [τj−1, τj] for j = 1, . . . , k. This

implies that

g′′j (τ) = aj−1 +
τ − τj−1

hj
(aj − aj−1) =

(τj − τ)

hj
aj−1 +

(τ − τj−1)

hj
aj, (B.2)

for τ ∈ [τj−1, τj] and j = 1, . . . , k, where a0 = g′′1(τ0) and aj = g′′j (τj) for

j = 1, . . . , k. We call (B.2) the polynomial order condition of g.

We integrate (B.2) with respect to τ to find the expressions for g′j and gj.

That is, we evaluate g′j(τ) =
∫
g′′j (τ)dτ and gj(τ) =

∫ ∫
g′′j (τ)dτ for each

j = 1, . . . , k, where we recover the integration constant using (B.1). Then we
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obtain

g′j(τ) = −
[

1

2

(τj − τ)2

hj
− hj

6

]
aj−1 +

[
1

2

(τ − τj−1)2

hj
− hj

6

]
aj, (B.3)

gj(τ) = rj(τ) · γ + sj(τ) · a (B.4)

for τ ∈ [τj−1, τj] and j = 1, . . . , k, where a = (a0, a1, . . . , ak)
>, and rj(τ) and

sj(τ) are the following k-dimensional vectors

rj(τ) =

(
0, . . . , 0,

(τj − τ)

hj
,
(τ − τj−1)

hj
, 0, . . . , 0

)>
,

sj(τ) =

(
0, . . . , 0, (τj − τ)

(τj − τ)2 − h2
j

6hj
, (τ − τj−1)

(τ − τj−1)2 − h2
j

6hj
, 0, . . . , 0

)>
.

(B.5)

The non-zero elements of rj(τ) and sj(τ) are at the jth and (j + 1)th entries.

53



B.1 Static daily spline with overnight effect

The conditions for g′j in (B.1) and (B.3) give

hj
hj + hj+1

aj−1 + 2aj +
hj+1

hj + hj+1

aj+1 =
6γj−1

hj(hj + hj+1)
− 6γj
hjhj+1

+
6γj+1

hj+1(hj + hj+1)

for j = 1, . . . , k − 1. From these, we obtained a system of k − 1 equations with

k + 1 unknowns a0, . . . , ak. Following Poirier (1976) we set a0 = ak = 0 (the

natural condition for a spline). We can write this system of equations in a

matrix form as Pa = Qγ, where P and Q are the following square matrices of

size (k + 1):

P =



2 0 0 0 . . . 0 0
h1

h1+h2
2 h2

h1+h2
0 . . . 0 0

0 h2
h2+h3

2 h3
h2+h3

· · · 0 0

0 0 h3
h3+h4

2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 2 hk
hk−1+hk

0 0 0 0 . . . 0 2


,

Q =



0 0 0 . . . 0 0
6

h1(h1+h2)
− 6
h1h2

6
h2(h1+h2)

. . . 0 0

0 6
h2(h2+h3)

− 6
h2h3

. . . 0 0

0 0 6
h3(h3+h4)

. . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . − 6
hk−1hk

6
hk(hk−1+hk)

0 0 0 . . . 0 0


.

The first and the last rows of P and Q ensure that a0 = ak = 0. For a

non-singular P, we have a = P−1Qγ. Then (B.4) can be written as

gj(τ) = wj(τ) · γ for τ ∈ [τj−1, τj], where wj(τ)> = rj(τ)> + sj(τ)>P−1Q.

Finally, we obtain the following expression for the daily cubic spline

sτ = g(τ) =
k∑
j=1

1l{τ∈[τj−1,τj ]}wj(τ) · γ, ∀ τ ∈ [τ0, τk]. (B.6)

The elements of γ are the parameters of the model to be estimated. For the

parameters to be identified, we impose the following zero-sum constraint on the

elements of γ:∑
τ∈[τ0,τk]

sτ =
∑

τ∈[τ0,τk]

k∑
j=1

1l{τ∈[τj−1,τj ]}wj(τ) · γ = w∗ · γ = 0,
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where

w∗ = (w∗0, w∗1, . . . , w∗k)
> =

∑
τ∈[τ0,τk]

k∑
j=1

1l{τ∈[τj−1,τj ]}wj(τ).

We can impose this condition by setting γk = −
∑k−1

i=0 w∗iγi/w∗k. Then (B.8)

becomes

sτ =
k∑
j=1

1l{τ∈[τj−1,τj ]}

k−1∑
i=0

(
wji(τ)− wjk(τ)w∗i

w∗k

)
γi =

k∑
j=1

1l{τ∈[τj−1,τj ]}zj(τ) · γ

(B.7)

for τ ∈ [τ0, τk]. wji(τ) denotes the ith element of wj(τ), and the ith element of

zj(τ) is

zji(τ) =

wji(τ)− wjk(τ)w∗i/w∗k i 6= k

0 i = k

for τ ∈ [τj−1, τj] and each i = 0, . . . , k and j = 1, . . . , k. When estimating the

model, it is convenient to compute w∗ using the equation w>∗ = r>∗ + s>∗ P−1Q,

where r∗ and s∗ are k-dimensional vectors computed using the rules of

arithmetic and polynomial series as

r∗ =

(
τ1 − τ0 + 1

2
,
τ2 − τ0

2
, . . . ,

τk−1 − τk−3

2
,
τk − τk−1 + 1

2

)>
,

s∗ =

(
h1 − h3

1

24
,
τ2 − τ0 − h3

2 − h3
1

24
, . . . ,

τk−1 − τk−3 − h3
k−1 − h3

k−2

24
,
hk − h3

k

24

)>
.

Note that these formulae for computing w∗, r∗, and s∗ are different from those

of Harvey and Koopman (1993) due to the removal of the periodicity condition.

B.2 Static weekly spline with overnight effect

The static spline becomes a static weekly spline if we set the periodicity to be

complete over one trading week instead of one day. For this spline, recall that we

redefine τ0, τ1, . . . , τk as follows. We let τ̃0 < τ̃1 < · · · < τ̃k′ denote the coordinates

along the time-axis of the intra-day mesh, where k′ < I, τ̃0 = 1, τ̃k′ = I, and

τ̃j ∈ {2, . . . , I − 1} for j = 1, . . . , k′ − 1. Then the coordinates τ0, τ1, . . . , τk along

the time-axis of the total mesh for the whole week is defined as

τi(k′+1)+j = τ̃j + iI for i = 0, . . . , 4 and j = 0, . . . , k′. Then (τj)
k
j=0 is still an

increasing sequence. The total number of knots for one whole week is

k + 1 = 5(k′ + 1). The height of the knots are γ0, γ1, . . . , γk′ for Monday,

γk′+1, γk′+2, . . . , γ2(k′+1) for Tuesday, and so on.

As before, there is no periodicity condition between τk and τ0, so that γk 6= γ0

is allowed and we can capture the effect of weekend news on trading patterns.
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Moreover, we capture the overnight effect of weeknights by relaxing the

continuity and polynomial order restrictions, (B.1)-(B.2), between τ̃k′ and τ̃0 of

any two successive weekdays. Thus, the procedure for computing zj(τ) is

different from the daily spline described above. This redefines P and Q matrices

as follows. For the P matrix, we replace the off-diagonal entries in the i(k′ + 1)th

and (i(k′ + 1) + 1)th rows by zeros for each i = 1, . . . (k + 1)/(k′ + 1). For the Q

matrix, we replace all entries in the i(k′ + 1)th and (i(k′ + 1) + 1)th rows by

zeros for each i = 1, . . . (k + 1)/(k′ + 1). If we use five knots per day as we

specified in the main text, P and Q become
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P =



2 0 0 0 0 0 0 . . . 0 0
h1

h1+h2
2 h2

h1+h2
0 0 0 0 . . . 0 0

0 h2
h2+h3

2 h3
h2+h3

0 0 0 . . . 0 0

0 0 h3
h3+h4

2 h4
h3+h4

0 0 . . . 0 0

0 0 0 0 2 0 0 . . . 0 0

0 0 0 0 0 2 0 . . . 0 0

0 0 0 0 0 h6
h5+h6

2 . . . 0 0
...

...
...

...
...

...
...

. . .
...

...

0 0 0 0 0 0 0 . . . 2 hk
hk−1+hk

0 0 0 0 0 0 0 . . . 0 2



,

Q =



0 0 0 0 0 0 0 . . . 0 0
6

h1(h1+h2)
− 6
h1h2

6
h2(h1+h2)

0 0 0 0 . . . 0 0

0 6
h2(h2+h3)

− 6
h2h3

6
h3(h2+h3)

0 0 0 . . . 0 0

0 0 6
h3(h3+h4)

− 6
h3h4

6
h4(h3+h4)

0 0 . . . 0 0

0 0 0 0 0 0 0 . . . 0 0

0 0 0 0 0 0 0 . . . 0 0

0 0 0 0 0 0 6
h6(h5+h6)

. . . 0 0
...

...
...

...
...

...
...

. . .
...

...

0 0 0 0 0 0 0 . . . − 6
hk−1hk

6
hk(hk−1+hk)

0 0 0 0 0 0 0 . . . 0 0



.

B.3 Static daily spline with no overnight effect

Since the FX data is collected 24 hours a day, we assume the periodicity

condition in this case; that is, g1 and gk satisfy γ0 = γk, g
′
1(τ0) = g′k(τk), and

g′′1(τ0) = g′′k(τk) so that a0 = ak. This condition is the same as Harvey and

Koopman (1993) since their hourly electricity demand data is also collected 24

hours a day.

By the periodicity condition, we have γ0 = γk and a0 = ak so that γ0 and a0

become redundant during estimation. Moreover, the conditions for g′j in (B.1)

and (B.3) give

hj
hj + hj+1

aj−1 + 2aj +
hj+1

hj + hj+1

aj+1 =
6γj−1

hj(hj + hj+1)
− 6γj
hjhj+1

+
6γj+1

hj+1(hj + hj+1)
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for j = 2, . . . , k − 1 and

h1

h1 + h2

ak + 2a1 +
h2

h1 + h2

a2 =
6γk

h1(h1 + h2)
− 6γ1

h1h2

+
6γ2

h2(h1 + h2)
, j = 1,

hk
hk + h1

ak−1 + 2ak +
h1

hk + h1

a1 =
6γk−1

hk(hk + h1)
− 6γk
hkh1

+
6γ1

h1(hk + h1)
j = k.

From these, we obtained k equations for k “unknowns” a1, . . . , ak. Using

notations γ† = (γ†1, . . . , γ
†
k)
> = (γ1, . . . , γk)

> and

a† = (a†1, . . . , a
†
k)
> = (a1, . . . , ak)

>, we can write this system of equations in a

matrix form as Pa† = Qγ†, where P and Q are the following square matrices of

size k:

P =



2 h2
h1+h2

0 0 . . . 0 h1
h1+h2

h2
h2+h3

2 h3
h2+h3

0 . . . 0 0

0 h3
h3+h4

2 h4
h3+h4

· · · 0 0

0 0 h4
h4+h5

2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 2 hk
hk−1+hk

h1
h1+hk

0 0 0 . . . hk
h1+hk

2


,

Q =



− 6
h1h2

6
h2(h1+h2)

0 . . . 0 6
h1(h1+h2)

6
h2(h2+h3)

− 6
h2h3

6
h3(h2+h3)

. . . 0 0

0 6
h3(h3+h4)

− 6
h3h4

. . . 0 0

0 0 6
h4(h4+h5)

. . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . − 6
hk−1hk

6
hk(hk−1+hk)

6
h1(h1+hk)

0 0 . . . 6
hk(h1+hk)

− 6
h1hk


.

For a non-singular P, we have a† = P−1Qγ†. Then (B.4) can be written as

gj(τ) = wj(τ) · γ† for τ ∈ [τj−1, τj], where wj(τ)> = rj(τ)> + sj(τ)>P−1Q. rj(τ)

and sj(τ) are now k × 1 vectors by the periodicity condition with

r1(τ) =

(
τ − τ0

h1

, 0, . . . , 0,
τ1 − τ
h1

)>
,

s1(τ) =

(
(τ − τ0)

(τ − τ0)2 − h2
1

6h1

, 0, . . . , 0, (τ1 − τ)
(τ1 − τ)2 − h2

1

6h1

)>
,

and rj(τ) and sj(τ) for j = 2, . . . , k are as defined in (B.5) but the non-zero

elements are shifted to (j − 1)-th and j-th entries. Finally, we obtain the
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following expression for the daily cubic spline

sτ = g(τ) =
k∑
j=1

1l{τ∈[τj−1,τj ]}wj(τ) · γ†, ∀ τ ∈ [τ0, τk]. (B.8)

The elements of γ† are the parameters of the model to be estimated. For the

parameters to be identified, we impose the following zero-sum constraint on the

elements of γ†∑
τ∈[τ0,τk]

sτ =
∑

τ∈[τ0,τk]

k∑
j=1

1l{τ∈[τj−1,τj ]}wj(τ) · γ† = w∗ · γ† = 0,

where

w∗ = (w∗0, w∗1, . . . , w∗k)
> =

∑
τ∈[τ0,τk]

k∑
j=1

1l{τ∈[τj−1,τj ]}wj(τ).

We can impose this condition by setting γk = −
∑k−1

i=0 w∗iγi/w∗k. Then (B.8)

becomes

sτ =
k∑
j=1

1l{τ∈[τj−1,τj ]}

k−1∑
i=1

(
wji(τ)− wjk(τ)w∗i

w∗k

)
γ†i =

k∑
j=1

1l{τ∈[τj−1,τj ]}zj(τ) · γ†

(B.9)

for τ ∈ [τ0, τk]. wji(τ) denotes the ith element of wj(τ), and the ith element of

zj(τ) is

zji(τ) =

wji(τ)− wjk(τ)w∗i/w∗k i 6= k

0 i = k

for τ ∈ [τj−1, τj] and i, j = 1, . . . , k. Thus, zj : [τj−1, τj]
k → Rk for j = 1, . . . k is a

k-dimensional vector of deterministic functions that conveys all information

about the polynomial order, continuity, periodicity, and zero-sum conditions of

the spline. (B.9) is the static daily spline we estimate in this chapter.

When estimating the model, it is convenient to compute w∗ using the

equation w>∗ = r>∗ + s>∗ P−1Q, where r∗ and s∗ are k-dimensional vectors

computed using the rules of arithmetic and polynomial series as

r∗=

(
τ2 − τ0

2
, . . . ,

τk − τk−2

2
,
τ1 − τ0 + τk − τk−1

2

)>
,

s∗=

(
τ2 − τ0 − h3

2 − h3
1

24
, . . . ,

τk − τk−2 − h3
k − h3

k−1

24
,
h1(1− h2

1) + hk(1− h2
k)

24

)>
.

Note that these formulae for computing w∗, r∗, and s∗ are different from the

static daily spline with overnight effect.
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B.4 Static weekly spline with no overnight effect

The way we redefine τ0, τ1, . . . , τk here is slightly different to the static weekly

spline with overnight effect.

τ̃0 < τ̃1 < · · · < τ̃k′ still denote the coordinates along the time-axis of the

intra-day mesh, where k′ < I, τ̃0 = 1, τ̃k′ = I, and τ̃j ∈ {2, . . . , I − 1} for

j = 1, . . . , k′ − 1. Then the coordinates τ0, τ1, . . . , τk along the time-axis of the

total mesh for the whole week is defined as τ0 = τ̃0 and τik′+j = τ̃j + iI for

i = 0, . . . , 4 and j = 1, . . . , k′. (Note the difference here.) Then (τj)
k
j=0 is still an

increasing sequence. The total number of knots for one whole week is

k + 1 = 5k′ + 1.

The height of the knots are γ†1, γ
†
2, . . . , γ

†
k′ for Monday, γ†k′+1, γ

†
k′+2, . . . , γ

†
2k′ for

Tuesday, and so on. We capture the weekend effect by allowing for

(τk, γ
†
k) 6= (τ0, γ

†
0). The rest of the derivations that give zj(·) are the same as

Appendix B.1. This weekly spline can capture the day-of-the-week effect by

allowing for

(γ†1, γ
†
2, . . . , γ

†
k′)
> 6= (γ†k′+1, γk′+2, . . . , γ

†
2k′)
> 6= · · · 6= (γ†4k′+1, γ

†
4k′+2, . . . , γ

†
5k′)
>.

The restricted weekly spline is obtained by pre-multiplying γ† of this weekly

spline by the matrix S as before.
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Appendix C: Additional in-sample results for Spline-

DCS

Pair USDJPY

Spline SDS SDS SWS
Window 11 13 11

Estimate Std.Error Estimate Std.Error Estimate Std.Error
ν 1.576 0.017 1.702 0.016 1.688 0.019
ξ 1.459 0.052 1.605 0.063 1.334 0.047
ζ 1.982 0.078 1.866 0.072 1.822 0.074
ω 4.414 0.088 4.184 0.084 4.638 0.080
κµ 0.031 0.006 0.013 0.004 0.025 0.005

φ
(1)
1 0.439 0.091 0.581 0.024 0.427 0.090

φ
(1)
2 0.258 0.091 0.328 0.024 0.305 0.091

κ
(1)
η 0.087 0.012 0.091 0.009 0.076 0.012

φ
(2)
1 0.522 0.107 0.608 0.080 0.506 0.111

κ
(2)
η 0.094 0.013 0.092 0.010 0.088 0.012
φe 0.582 0.089 0.819 0.036 0.604 0.086
p 0.015 0.003 0.009 0.002 0.015 0.003

κe,1 2.854 0.021 2.527 0.021 2.239 0.021
κe,2 1.130 0.161 0.825 0.139 1.136 0.157
κe,3 NaN NaN 0.677 0.728 NaN NaN

Pair EURUSD

Spline SDS SDS SWS
Window 6 14 11

Estimate Std.Error Estimate Std.Error Estimate Std.Error
ν 1.973 0.021 1.844 0.021 1.754 0.019
ξ 1.089 0.037 1.427 0.049 1.379 0.048
ζ 1.538 0.062 2.119 0.088 1.903 0.078
ω 3.366 0.072 5.067 0.073 4.156 0.050
κµ 0.010 0.005 0.004 0.003 0.016 0.004

φ
(1)
1 0.486 0.011 0.550 0.017 0.473 0.081

φ
(1)
2 0.495 0.011 0.384 0.017 0.279 0.081

κ
(1)
η 0.062 0.008 0.079 0.007 0.070 0.010

φ
(2)
1 0.638 0.073 0.526 0.079 0.455 0.122

κ
(2)
η 0.094 0.011 0.086 0.009 0.076 0.010
φe 0.477 0.135 0.755 0.066 0.596 0.068
p 0.022 0.003 0.008 0.002 0.018 0.003

κe,1 0.575 0.089 2.632 0.021 2.830 0.021
κe,2 0.214 0.021 0.569 0.085 0.908 0.087
κe,3 0.025 2.049 0.570 0.827 NaN NaN

Table 11. The estimated parameter values for Spline-DCS for selected in-sample win-
dows. The standard errors are computed analytically as described in Section 3.6.1. SDS
stands for the static daily spline, and SWS stands for the static (restricted) weekly
spline.
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Appendix D: Fourier-MEM estimation

Let ϕ denote the vector of all parameters of Fourier-MEM. Brownlees et al.

(2011) show that the GMM estimator, ϕ̂IT , of ϕ solves the MM equation

1

IT

T∑
t=1

I∑
τ=1

at,τut,τ = 0,

where
at,τ = η−1

t ∇ϕηt + µ−1
t,τ∇ϕµt,τ + φ−1

τ ∇ϕφτ + e∗−1
t,τ ∇ϕe

∗
t,τ ,

ut,τ = yt,τ/(ηtφτµt,τe
∗
t,τ )− 1.

Under certain regularity conditions, ϕ̂IT is asymptotically normal. The

asymptotic covariance matrix is consistently estimated by

Âvar(ϕ̂IT ) =
1

IT

T∑
t=1

I∑
τ=1

û2
t,τ

[
T∑
t=1

I∑
τ=1

at,τa
>
t,τ

]−1

,

where û2
t,τ = yt,τ/(η̂tφ̂τ µ̂t,τ ê

∗
t,τ )− 1.
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D.1 Estimation results

(a) EURUSD, window 2

(b) EURUSD, window 10

(c) USDJPY, window 4

(d) USDJPY, window 11

Figure 26. The sample autocorrelation of trade volume (yt,τ , left), ε̂t,τ (middle), and
ε̂2
t,τ (right) in Fourier-MEM estimated by GMM. The sampling frequency is 10 minutes.

The 95% confidence intervals are based on the numerical standard errors.
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(a) EURUSD

ε̂t,τ ε̂2t,τ

Window ρ̂1 ρ̂day Q1 Qday p-val. 1 p-val. day ρ̂1 ρ̂day Q1 Qday p-val. 1 p-val. day
1 0.005 -0.005 0.060 142.769 0.807 0.000 -0.006 -0.004 0.066 11.130 0.797 1.000
2 0.038 0.021 3.186 228.207 0.074 0.000 0.012 -0.002 0.297 140.553 0.586 0.000
3 0.017 -0.035 0.610 215.108 0.435 0.000 0.001 -0.021 0.001 123.142 0.971 0.000
4 -0.004 -0.036 0.031 159.340 0.860 0.000 0.003 -0.027 0.024 147.307 0.878 0.000
5 -0.014 0.004 0.397 115.537 0.529 0.000 -0.006 -0.005 0.078 34.249 0.781 0.644
6 -0.007 0.019 0.116 149.841 0.733 0.000 -0.012 0.020 0.286 120.798 0.593 0.000
7 -0.027 0.005 1.496 144.800 0.221 0.000 -0.010 -0.005 0.196 58.338 0.658 0.024
8 0.003 0.033 0.016 144.045 0.900 0.000 0.002 0.002 0.008 27.122 0.929 0.883
9 -0.024 0.041 1.212 179.660 0.271 0.000 -0.015 0.069 0.482 119.112 0.488 0.000

10 -0.009 0.006 0.173 137.055 0.677 0.000 -0.006 -0.007 0.087 52.116 0.768 0.063
11 0.023 0.004 1.143 213.948 0.285 0.000 0.012 0.003 0.286 109.275 0.593 0.000
12 -0.003 -0.007 0.016 122.563 0.899 0.000 -0.005 -0.006 0.062 50.420 0.803 0.086
13 0.008 -0.016 0.146 160.541 0.703 0.000 0.003 -0.017 0.017 114.118 0.895 0.000
14 0.028 -0.018 1.739 162.601 0.187 0.000 0.006 0.001 0.090 103.395 0.765 0.000
15 0.049 -0.031 5.188 194.885 0.023 0.000 0.013 -0.017 0.379 167.052 0.538 0.000
16 -0.021 -0.018 0.825 132.971 0.364 0.000 -0.002 -0.002 0.007 2.656 0.935 1.000

(b) USDJPY

Window ρ̂1 ρ̂day Q1 Qday p-val. 1 p-val. day ρ̂1 ρ̂day Q1 Qday p-val. 1 p-val. day

1 0.040 -0.039 3.405 208.051 0.065 0.000 0.012 -0.022 0.330 95.807 0.566 0.000
2 0.054 -0.012 6.219 175.668 0.013 0.000 0.006 -0.009 0.071 91.761 0.790 0.000
3 0.034 0.016 2.548 162.420 0.110 0.000 0.008 0.018 0.140 71.724 0.708 0.001
4 0.000 0.004 0.000 129.530 0.991 0.000 0.000 0.002 0.000 78.487 0.992 0.000
5 0.023 -0.005 1.108 282.144 0.293 0.000 -0.001 -0.001 0.002 50.904 0.966 0.079
6 0.085 0.036 15.300 210.363 0.000 0.000 0.066 0.033 9.243 161.357 0.002 0.000
7 0.003 0.035 0.021 56.842 0.884 0.032 -0.002 0.004 0.007 0.678 0.935 1.000
8 0.019 0.009 0.790 151.175 0.374 0.000 0.000 0.011 0.000 29.212 0.984 0.846
9 0.039 0.028 3.260 189.737 0.071 0.000 0.009 0.048 0.171 247.381 0.680 0.000

10 0.051 0.048 5.558 213.444 0.018 0.000 0.002 0.053 0.012 130.015 0.914 0.000
11 0.030 0.003 1.929 210.740 0.165 0.000 0.002 -0.004 0.006 84.452 0.939 0.000
12 0.038 0.001 3.076 152.323 0.079 0.000 -0.001 -0.004 0.005 164.788 0.945 0.000
13 0.046 0.039 4.467 103.816 0.035 0.000 0.000 0.010 0.000 2.641 0.985 1.000
14 0.026 -0.042 1.423 169.537 0.233 0.000 0.007 -0.032 0.110 146.309 0.740 0.000
15 0.162 0.044 56.645 175.068 0.000 0.000 0.038 0.001 3.050 4.265 0.081 1.000
16 0.005 0.017 0.044 26.517 0.833 0.848 -0.001 0.000 0.003 0.351 0.957 1.000

Table 12. Residual analysis for Fourier-MEM. The sampling frequency is 10 minutes.
Ql is the Ljung-Box statistic to test the null of no autocorrelation up to the l-th lag.
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Pair EURUSD
Freq 10mins

Window 3 6 9 12

Estimate Std.Error Estimate Std.Error Estimate Std.Error Estimate Std.Error

α
(η)
0 4.239 1.707 3.064 1.577 2.981 1.343 12.726 2.649

β
(η)
1 0.504 0.016 0.410 0.019 0.486 0.017 0.516 0.018

α
(η)
1 0.495 0.017 0.497 0.019 0.478 0.017 0.420 0.018

β
(e)
1 0.699 0.105 0.500 0.159 0.628 0.206 0.681 0.137

β
(µ)
1 0.498 0.005 0.507 0.002 0.517 0.004 0.534 0.002

α
(µ)
1 0.336 0.004 0.353 0.002 0.322 0.003 0.358 0.002

α
(µ)
2 0.000 0.007 0.018 0.004 0.000 0.006 0.097 0.004

α
(e)
1,1 1.291 0.457 0.936 0.521 0.221 0.123 2.110 0.530

α
(e)
1,2 0.569 0.132 0.682 0.132 -0.105 0.874 0.302 0.137

α
(e)
1,3 -0.609 0.864 0.582 1.001 0.792 0.920 -0.135 0.970

Pair USDJPY
Freq 10mins

Window 1 6 8 10

Estimate Std.Error Estimate Std.Error Estimate Std.Error Estimate Std.Error

α
(η)
0 6.335 3.006 3.162 1.672 4.709 2.539 13.490 2.016

β
(η)
1 0.525 0.016 0.512 0.018 0.520 0.019 0.431 0.021

α
(η)
1 0.498 0.017 0.505 0.019 0.503 0.020 0.516 0.023

β
(e)
1 0.844 0.083 0.616 0.155 0.705 0.179 0.800 0.060

β
(µ)
1 0.496 0.003 0.512 0.002 0.483 0.001 0.526 0.003

α
(µ)
1 0.363 0.002 0.423 0.002 0.389 0.001 0.373 0.002

α
(µ)
2 0.075 0.005 0.005 0.004 0.041 0.002 0.000 0.004

α
(e)
1,1 2.171 0.730 1.793 0.524 -2.015 0.865 3.763 0.709

α
(e)
1,2 0.542 0.193 0.510 0.187 1.064 0.675 1.313 0.671

α
(e)
1,3 0.730 0.929 0.765 0.980 0.567 0.214 0.258 0.162

Table 13. The estimated parameter values for Fourier-MEM. The results are shown
for selected sampling windows. The standard errors are computed analytically using the
asymptotic results outlined above. The parameters of φτ are excluded.
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Appendix E: The baseline model

The out-of-sample performance of Spline-DCS and Fourier-MEM are

benchmarked using an ARMA-style model, which we referred to as the baseline

model. The construction of the baseline model is simple. The dynamics of

volume, yt,τ , are decomposed into the periodic component ypt,τ and non-periodic

component ynpt,τ as

yt,τ = ypt,τ + ynpt,τ . (E.1)

The model assumes that the non-periodic component follows the dynamics given

by

ynpt,τ =

p∑
i=1

φiy
np
t,τ−i + εt,τ +

q∑
i=1

θiεt,τ−i +ϕ>dt,τ , (E.2)

for (t, τ) ∈ ΨT,I , where dt,τ is defined in (1) and dim(ϕ) = m. For simplicity, we

assume that εt,τ ∼ i.i.d. tν , where tν denotes Student’s t with the degrees of

freedom parameter ν. We choose p = 1 and q = 0.

Since we cannot observe the intra-day periodic component, ypt,τ , its in-sample

estimate is given by ŷpt,τ = ̂̂pτyt, where yt =
∑I

τ=1 yt,τ is the total day volume. To

obtain ̂̂pτ , we first compute

p̂τ =
T∑
t=1

yt,τ/
T∑
t=1

I∑
τ=1

yt,τ .

(p̂τ )
I
τ=1 measures the proportion of daily volume, yt, that is attributed to each

intra-day bin. By construction, we have p̂τ ∈ (0, 1) and
∑I

τ=1 p̂τ = 1. Since p̂τ is

noisy, we smooth it using the Fourier series to obtain ̂̂pτ . This smoothing step

means that
∑I

τ=1 ŷ
p
t,τ 6= yt. Then we set ŷnpt,τ = yt,τ − ŷpt,τ and estimate (E.2).

In order to produce out-of-sample forecasts, we need to forecast daily volume

first. We assume that it follows the dynamics given by

yt = cday + φdayyt + ε∗t . (E.3)

For simplicity, we assume that ε∗t ∼ i.i.d.N(0, σ2
∗). We estimate (E.3) using

in-sample observations of daily volume, and forecast yt before forecasting yt,τ .

Over an out-of-sample period up to H ∈ N>0 days ahead, forecasts are

generated as follows.

1. Forecast daily volume yT+h for h = 1, . . . , H using (E.3). Denote the

forecast quantity by ỹT+h.
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2. The implied forecast of intra-day periodic component is

ỹpT+h,τ ≡ ̂̂pτ ỹT+h

for each τ = 1, . . . , I and h = 1, . . . , H.

3. Forecast yT+h,τ . Its one-step forecasts are obtained by updating (E.2) by

plugging in the errors, ε̃t,τ = yT+h,τ − ỹpT+h,τ − ỹ
np
T+h,τ , without updating

in-sample parameter estimates.

4. Forecast of yT+h,τ is

ỹT+h,τ = ỹpT+h,τ + ỹnpT+h,τ .

Since the baseline model has an ARMA-based structure, its out-of-sample

forecasts are the first (conditional) moment forecasts of volume.

To be noted that this baseline model does not ensure that its volume

forecasts are positive. Also, Step 3 means that any forecast errors in intra-day

volume prediction is due to the non-periodic component, ỹnpt,τ , which may or may

not be the case. Although these aspects of the model are unintuitive, we do not

think that they pose practical issues, since it serves merely as a benchmark and

yielded positive volume predictions in our application.

It is also to be noted that this model does not guarantee that the forecast

intra-day volume, ỹT+h,τ , add up to the forecast day volume ỹT+h we obtain

using (E.3). This misalignment stems from our assumption regarding ypt,τ and

the fact that we assume yt and yt,τ follow separate dynamics given by (E.2) and

(E.3). That is, instead of assuming that ypt,τ = ypt′,τ for any t 6= t′ and all

τ = 1, . . . , I, we choose to fix (pτ )
I
τ to be the same every day given that the

day-of-the-week effect was not obvious in Figure 3. Since we use the baseline

model merely as a benchmark to compare different models and specifications, we

do not think that this misalignment affects the conclusions of this paper.
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