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We investigate the mechanisms of condensed phase proton-coupled electron transfer

(PCET) using Mapping-Variable Ring Polymer Molecular Dynamics (MV-RPMD),

a recently developed method that employs an ensemble of classical trajectories to

simulate nonadiabatic excited state dynamics. Here, we construct a series of system-

bath model Hamiltonians for PCET, where four localized electron-proton states are

coupled to a thermal bath via a single solvent mode, and we employ MV-RPMD

to simulate state population dynamics. Specifically, for each model, we identify the

dominant PCET mechanism and by comparing against rate theory calculations, we

verify that our simulations correctly distinguish between concerted PCET, where the

electron and proton transfer together, and sequential PCET, where either the electron

or the proton transfers first. This work represents a first application of MV-RPMD

to multi-level condensed phase systems; we introduce a modified MV-RPMD expres-

sion that is derived using a symmetric rather than asymmetric Trotter discretization

scheme and an initialization protocol that uses a recently derived population esti-

mator to constrain trajectories to a dividing surface. We also demonstrate that,

as expected, the PCET mechanisms predicted by our simulations are robust to an

arbitrary choice of the initial dividing surface.
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I. INTRODUCTION

Understanding the mechanism of condensed phase proton-coupled electron transfer

(PCET) in biological processes like water oxidation by photosystem II1–4 is an essential

step towards the development of biomimetic, photocatalytic materials for water-splitting

and the efficient generation of hydrogen fuel.5,6 At present, rate theories developed to

characterize PCET in specific regimes3,7,8 have proven remarkably powerful in explaining

experimental observations, and more recently in the predicting trends in physical properties

and designing catalytic systems.8–10 In addition, several direct dynamic simulation methods

that can provide mechanistic information have been developed, including on-the-fly coupled

electron-nuclear dynamics,8,11,12 mixed quantum-classical (MQC) dynamics,13–18 and semi-

classical simulations.19,20 However, these methods employ dynamics that fail to preserve

detailed balance and the use of different levels of theory to describe electronic and nuclear

motion (particularly by MQC methods) introduce uncontrolled errors in the simulation of

nonadiabatic processes.

Imaginary-time path integral21 based methods like Ring Polymer Molecular Dynamics

(RPMD) overcome this challenge by providing a uniform dynamic framework for electronic

and nuclear motion. In addition, RPMD employs an ensemble of classical trajectories that

conserve the quantum Boltzmann distribution,22 yields reaction rates that are independent

of the location of the dividing surface ,23–26 and can accurately describe PCET in both

adiabatic and nonadiabatic regimes.27,28 Unfortunately, RPMD is limited to the simulation

of thermal one-electron PCET processes and in general, cannot be used to characterize

nonadiabatic dynamics in multi-level systems.29

Several extensions of RPMD to multi-level systems have been proposed,30–34 however,

only the Mapping Variable (MV)-RPMD31 method employs dynamics that conserve the ex-

act quantum Boltzmann distribution. MV-RPMD describes multi-state system dynamics

by mapping discrete electronic states to continuous classical analog variables,35–37 and accu-

rately describes dynamics in both the adiabatic and nonadiabatic regimes.31 Recently, two

of us demonstrated its short-time accuracy in simulations of photo-induced excited state

dynamics in the gas phase.34 In this work, we obtain an improved MV-RPMD expression

derived from a symmetric rather than asymmetric Trotter discretization scheme,38 and we

use a recently introduced population estimator39 to constrain the ensemble of MV-RPMD
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trajectories to an arbitrary dividing surface. We then construct a series of system-bath

models for PCET and use MV-RPMD to identify the dominant mechanism in each case.

Comparing these mechanistic predictions against rate theory calculations (Fermi’s Golden

Rule for nonadiabatic processes and Kramer’s rate theory for adiabatic electron transfer), we

show that our simulations correctly distinguish between concerted and sequential PCET. In

addition, we also demonstrate that the mechanistic predictions from MV-RPMD are robust

to an arbitrary choice of dividing surface.

This paper is organized as follows: In Section II we present the modified MV-RPMD ex-

pression and in Section III we describe the quasi-diabatization procedure used to construct

system-bath models for PCET where four localized electron-proton states are coupled to a

thermal bath of oscillators via a single solvent coordinate. In Section IV, we introduce the

MV-RPMD correlation function used to track the electron-proton state population dynam-

ics and the initialization protocol used to constrain MV-RPMD trajectories to a dividing

surface. In Section V, we provide simulation details and in Section VI we present the popu-

lation dynamics obtained from MV-RPMD simulations and we validate the resulting PCET

mechanisms against rate theory calculations.

II. THEORY

A. MV-RPMD Formulation

The Hamiltonian for a general K-level system is

Ĥ =
PTP

2M
+ V0(R) +

K∑
n,m=1

|ψn⟩Vnm(R)⟨ψm|, (1)

where R,P are nuclear position and momentum operators respectively, V0(R) is a state

independent nuclear potential, Vnm(R) are elements of the diabatic potential energy matrix,

and |ψn⟩ represents the nth electronic state. Implementing the Meyer-Miller-Stock-Thoss

protocol,35,36 we map the electronic states to singly excited oscillator (SEO) states,

|ψn⟩⟨ψm| → a†nam ≡ |n⟩⟨m|, (2)

where a†n and am are boson creation and annihilation operators respectively that obey the

commutation rules [a†n, am] = δnm. In Eq. 2, we use the notation |n⟩ = |0102 . . . 1n . . . 0K⟩,
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to represent SEO states that correspond to a product of K − 1 uncoupled oscillators in the

ground state and one oscillator in the first excited state.

Following the original MV-RPMD derivation,31 path integral discretization of the canon-

ical partition function, Z = Tr
[
e−βĤ

]
where β = 1/kT , is performed using continuous

Cartesian variables for the electronic and nuclear degrees of freedom by inserting N − 1

copies of the identity,37

I =

∫
dx

∫
dR |x,R⟩⟨x,R|P , (3)

where P ≡
∑

n |n⟩⟨n| is the projection operator in the SEO basis. Evaluating the matrix

elements of the Boltzmann operator using the symmetric Trotter approximation (detailed

derivation provided in Appendix A) and employing a Wigner transform in the electronic

variables,31 we obtain an exact path integral expression for the quantum Boltzmann distri-

bution in electronic and nuclear phase space variables,

Z ∝ lim
N→∞

∫
d{Rα}

∫
d{Pα}

∫
d{xα}

∫
d{pα}

× e−βNHN ({Rα},{Pα},{xα},{pα})sgn(Θ), (4)

where βN = β/N ,
∫
d{Rα} ≡

∫
dR1

∫
dR2 . . .

∫
dRN and similarly for the other variables

of integration. In Eq. 4, the MV-RPMD Hamiltonian is

HN = HRP +
N∑

α=1

(
1

βN
xT
αxα +

1

βN
pT
αpα

)
− 1

βN
ln |Θ|, (5)

where N is the number of ring polymer beads, and the nuclear ring polymer Hamiltonian,

HRP =
N∑

α=1

[
PT

α ·Pα

2M
+ V0(Rα)

+
1

2
Mω2

N(Rα −Rα+1)
T · (Rα −Rα+1)

]
, (6)

whereM is the physical mass of the nuclei, and ωN = N/β. The electron-nuclear interaction

term in Eq. 5 is

Θ = Re(Tr[Γ]), (7)

where

Γ =
N∏

α=1

(Cα − 1

2
I)M(Rα,Rα+1), (8)

Cα = (xα + ipα)⊗ (xα − ipα)
T , (9)
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and xα, pα are continuous position and momentum vectors of length K representing the K

electronic states of the αth ring polymer bead. Finally, the interaction matrix in Eq. 8 is

given by

Mnm(Rα,Rα+1) =


e−

βN
2

[Vnn(Rα)+Vnn(Rα+1)] +O(β2
N) n = m∑

j ̸=n −
βN

4
[Vnj(Rα) + Vnj(Rα+1)]e

−βN
2

[Vjj(Rα)+Vjj(Rα+1)]

+
∑

j ̸=m−βN

4
[Vjm(Rα) + Vjm(Rα+1)]e

−βN
2

[Vjj(Rα)+Vjj(Rα+1)] +O(β2
N) n ̸= m

,

(10)

a result that is well known in the context of state space path integrals.40 The interaction

matrix in Eq. 10 is symmetric (in keeping with the original quantum Hamiltonian) making

the MV-RPMD Hamiltonian symmetric, and improving the numerical stability of the ap-

proximate dynamics. We also emphasize that the symmetric and asymmetric formulations

are equivalent for equilibrium simulations and exhibit similar bead-convergence properties.

III. PCET MODEL SYSTEMS

Previous work using RPMD for the simulation of PCET in condensed phase model sys-

tems used a position-space representation to describe a single distinguishable electron and

proton coupled to a thermal bath.27 Exact quantum dynamics studies41 and surface hopping

based simulations13 for similar model systems choose to employ a two-state representation

of the electron donor and acceptor states coupled to a position space proton. Here, we

transform these model Hamiltonians to a representation where four localized, quasi-diabatic

electron-proton states are coupled to a thermal bath via a solvent polarization coordinate.

The quasi-diabatic states are labeled, DD, DA, AD, and AA following previous literature,13

where the letters D/A indicate the donor/acceptor state of the particle and the first letter

describes the state of the electron while the second letter describes the state of the proton.

Following the quasi-diabatization procedure (described in detail in Appendix B) we obtain

a four-state system-bath PCET Hamiltonian,

H =
P 2
s

2ms

+
A∑

X,X′,Y,Y ′=D

|XY ⟩VXYX′Y ′(s)⟨X ′Y ′|

+
∑
j

P 2
j

2M
+

1

2
Mω2

j (Qj −
cjs

Mω2
j

)2. (11)
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where s, Ps and ms are the position, momentum, and mass of the solvent polarization

coordinate, VXY,X′Y ′(s) are the elements of the diabatic potential energy matrix where the

subscripts X/Y/X ′/Y ′ = {D,A} label the donor and acceptor states of the particles. In

Eq. 11, Pj, Qj and M are the momentum, position and mass of the jth bath mode, and cj is

the coupling between the solvent and the jth bath mode of frequency ωj. The bath spectral

density is Ohmic,

J(ω) = ηωe−ω/ωc , (12)

with cut-off frequency ωc = ωs and the dimensionless parameter η/msωs determines the

coupling strength between the solvent and the bath modes.42 The continuous spectral density

is discretized into f oscillators with frequencies23

ωj = −ωclog

(
j − 0.5

f

)
, (13)

and the coupling constants cj are defined as

cj = −ωj

(
2ηMωc

fπ

)1/2

, (14)

where j = 1, . . . , f .

The diagonal elements of the potential energy matrix in Eq. 11 obtained through our

quasi-diabatization protocol are fitted to quadratic polynomials of the form,

VXYXY (s) = as2 + bs+ c (15)

and the off-diagonal couplings are taken to be constants that are independent of the solvent

coordinate.

IV. STATE POPULATION DYNAMICS

In general, thermal real-time correlation functions in the MV-RPMD framework are writ-

ten as

CAB(t) =
⟨sgn(Θ)A({ξξξα}0)B({ξξξα}t)⟩W

⟨sgn(Θ)⟩W
, (16)

where {ξξξα}t represents the set of bead positions and momenta {Rα,Pα,xα,pα} at time t, and

the bead-averaged function A({ξξξα}0) = 1/N
∑

αA(ξξξα(0)) and B({ξξξα}t) is similarly defined.

The initial positions and momenta are generated from a standard Path Integral Monte
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Carlo (PIMC) simulation that employs the sampling function, W . For a system initially at

equilibrium, W = e−βNHN ({ξξξα}0) with the MV-RPMD Hamiltonian, HN , defined in Eq. 5,

however, this function can also be defined to describe an initial non-equilibrium distribution

as discussed below. Real-time trajectories are generated by integrating equations of motion

corresponding to the MV-RPMD Hamiltonian,

Ṙα =
∂HN

∂Pα

, Ṗα = −∂HN

∂Rα

ẋα =
∂HN

∂pα

, ṗα = −∂HN

∂xα

. (17)

For the PCET model systems considered here, the nuclear position vector, Rα = (sα,Qα),

includes both the 1D solvent coordinate coupled to the local electron-proton states and the

positions of all the bath modes.

Here, we investigate the mechanism of thermal PCET by initializing trajectories to a non-

equilibrium distribution, ρneq(0), corresponding to a particular choice of dividing surface.

We then track the electron-proton state population dynamics by evaluating the real-time

quantum correlation function,

CPn,h(t) = Tr [ρneq(0)Pn(t)h] , (18)

where the heaviside function, h, is defined in terms of the solvent coordinate and allows us

to separately ensemble average over trajectories moving forward (from the dividing surface

towards reactants) and backwards (towards products),

h =

 h(st − s‡) forward

h(s‡ − st) backward.
(19)

In the MV-RPMD framework, the heaviside function in Eq. 18, is written in terms of the

solvent ring polymer centroid, h ≡ h(±(s̄t − s‡)), where s̄ = 1/N
∑N

α=1 sα. The n
th state

populations at time t are evaluated using the ‘Boltzmann’ estimator,31,34

Pβ
n =

Γnn

Tr[Γ]
, (20)

where Γnn is a diagonal element of the matrix previously defined in Eq. 8 and the time-

evolved positions and momenta are obtained by integrating the MV-RPMD equations of

motion in Eq. 17.
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To initialize trajectories to the dividing surface, we define an initial non-equilibrium

density operator, ρneq = ρsysneq ⊗ ρbatheq where the full system is divided into a relevant

subsystem described with non-equilibrium initial conditions and the bath that is initially at

equilibrium. The subsystem density matrix is defined by

ρsysneq = e−βHsδ(s− s‡)
K∏

n=1

δ(Pn − P‡
n), (21)

where Hs is the subystem Hamiltonian given by the first line of Eq. 11, Pn is the population

of the nth state, and the solvent position, s‡, and electron-proton state populations, P‡
n,

together define the dividing surface. Ignoring the Boltzmann weights associated with each

electronic state, we can write the corresponding constraints in the MV-RPMD framework

as,

ρsysneq(0) = e−βHRP (s)δ(s̄0 − s‡)
K∏

n=1

δ(PSC
n (0)− P‡

n), (22)

where the nuclear ring polymer Hamiltonian is defined in Eq. 6 and s̄0 is the nuclear RP

centroid constrained to its dividing surface value, s‡. Further, in Eq. 22, we use the recently

derived ‘semiclassical’ estimator,39

PSC
n =

1

N

N∑
α=1

[
PSC

n

]
α
=

1

2N

N∑
α=1

([xα]
2
n + [pα]

2
n − 1), (23)

where
[
PSC

n

]
α
is the state population associated with the αth bead. We note that this pop-

ulation estimator was rigorously derived in the context of MV-RPMD to yield the exact

equilibrium populations at time t = 0,39 and is of similar form to the original semiclassical

population function.35,36 The present bead-averaged form in Eq. 23 has also been used as

an estimator in the Nonadiabatic-RPMD method where trajectories are initialized to an

exact equilibrium path-integral distribution and time-evolved under the semiclassical map-

ping Hamiltonian.43 Finally, it is important to recognize that constraining electronic state

populations via PSC
n in the correlation function in Eq. 22, does not constrain Pβ

n to the same

values at t = 0 since the latter includes the correct Boltzmann weights for each electronic

state at a given nuclear configuration.

V. SIMULATION DETAILS

We construct three model systems that correspond to different PCET regimes and report

values of shared parameters for each case in Table. I. Parameters for the quasi-diabatic
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potential energy matrix elements are tabulated in Appendix C.

Parametera Model I Model II Model III

ms 22000 22000 22000

ωs × 104 3.72 4.00 3.72

f 12 12 12

M ms ms ms

η/msωs 1 1 1

T/K 300 300 300

TABLE I. Solvent and bath parameters common to all three model PCET systems.

a All parameters specified in atomic units

For each model, we calculate the real-time correlation function in Eq. 18 by sampling

the initial nuclear and electronic non-equilibrium distribution using Path Integral Monte

Carlo (PIMC). The initial electronic state population variables should be sampled subject

to the bead-average constraint described in Eq. 22. However, following previous work,34 we

implement this constraint by setting individual bead state populations to the desired values

at the dividing surface rather than constraining the average,[
PSC

n

]
α
= P‡

n. (24)

The dividing surface for all three models is chosen to be the intersection of the reactant

(DD) and product (AA) quasi-diabatic state potentials such that s‡ = 0 a.u. and only the

DD and AA states are populated with P‡
DD = P‡

AA = 0.5 and P‡
DA = P‡

AD = 0. For each

model, we sample the distribution with a total of 5× 108 MC points and bead convergence

is achieved with N = 10 beads.

For all three models, MV-RPMD trajectories initialized to the dividing surface are prop-

agated using a 4th order Adams-Bashforth-Moulton predictor corrector integrator with a

time step of size 10−2 fs. Trajectories were integrated for a total simulation time of 500 fs

for models I and III, and 3000 fs for model II. The number of trajectories used to obtain

the converged results shown below were 2.5 × 104, 8 × 104, and 1.5 × 105 for models I, II,

and III respectively.

We separate the ensemble of trajectories into a group that moves ‘forward’ towards prod-

uct formation (increasing values of the solvent coordinate) and a group that moves ‘back-
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ward’ towards the reactant state (decreasing values of the solvent coordinate) to obtain the

correlation function CPn,h(t) defined in Eq. 18. Splicing the forward and backward averages

together at time zero, we obtain the population plots shown here.

Finally, we use model III to demonstrate that the mechanism predicted by MV-RPMD

is independent of the choice of initial dividing surface We choose a different dividing surface

with s‡ = −0.8 a.u. (at the intersection of the DD and AD states) and the initial electronic

state populations are taken to be P‡
DD = P‡

AD = 0.5 and P‡
DA = P‡

AA = 0. For this

simulation, trajectories were integrated for a total time of 500 fs and 2.5× 104 trajectories

were employed to obtain the converged results shown here.

VI. RESULTS AND DISCUSSION

The diabatic potential energy surfaces as a function of the solvent coordinate for model I

are shown in Fig. 1, and the corresponding population dynamics are shown in Fig. 2. Reading

the plot chronologically from left to right, we find the initially populated reactant state (DD)

where both electron and proton are in the donor state transfers population to the product

state (AA) where both the electron and proton are in the acceptor state. This indicates

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

-6 -4 -2  0  2  4  6

V
n

n
(s

)

s(a.u)

FIG. 1. The quasi-diabatic state potentials as a function of solvent coordinate are shown for

model I, with state DD in red, DA in green, AD in blue, and AA in pink.

a concerted PCET mechanism where the proton and electron transfer simultaneously on a

sub-picosecond time scale. The energetically unfavorable AD and DA states are not involved

in the PCET process, but we find a small population in both states that decays to zero at

long times.

We plot the diabatic potential energy surfaces for model II in Fig. 3 and the corresponding
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FIG. 2. Population dynamics for model I (concerted), where population transfers directly from the

reactant DD state (in red) to product AA state in pink. The intermediate AD (in blue) and DA

(in green) states are not populated during the course of the reaction.

MV-RPMD population dynamics plotted in Fig. 4. Again, reading the plot chronologically,

we find that both the reactant (DD) state and the DA (proton transfer only) state are

populated although the monotonic trend indicates that at sufficiently long times t → −∞

the DD state will be fully populated and the DA state will have zero population.
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n
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FIG. 3. The quasi-diabatic state potentials as a function of solvent coordinate for model II with

state DD in red, DA in green, AD in blue, and AA in pink.

In Fig. 4, we see additional population transfer from the DD to DA state on a timescale

of ≈ 200 fs preceding the rise in the product (AA) state population. We also note a

negligible population transfer from the DA to AD state at short times that decays into

thermal population in the AD state at longer times. These results thus suggest a sequential

mechanism for PCET where the proton transfers first, facilitating electron transfer.

The diabatic potential energy surfaces for model III is shown in Fig. 5 and the corre-

sponding population dynamics in Fig. 6. We find that the system is initially in the reactant

DD state with significant thermal population the DA state. Following the dynamics we find,
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FIG. 4. Population dynamics for model II (sequential proton transfer followed by electron trans-

fer), where population first transfers from the reactant DD state (in red) to the DA state (in

green) corresponding to proton transfer before the electron transfers leading to a rapid rise in the

population of the product AA state in pink. There is a small thermal population in the AD state

in blue.
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FIG. 5. The quasi-diabatic state potentials as a function of solvent coordinate are shown for

model III, with state DD in red, DA in green, AD in blue, and AA in pink.

however, that unlike model II population transfers from the reactant state to the AD state

corresponding to electron transfer preceding the rise in population of the product AA state.

This indicates a sequential PCET mechanism where the electron transfers first facilitating

proton transfer.

Despite initializing MV-RPMD trajectories to the same initial dividing surface for all

three models, we find population dynamics point to three different PCET mechanisms. We

now show that MV-RPMD simulations can yield mechanistic insights independent of the

initial choice of dividing surface for the reactive trajectories by using a different dividing

surface in model III. In Fig. 7 we plot the results of this simulation where the initial dividing

surface is chosen to be at the intersection of the reactant DD state and the electron-transfer

only AD state. We find the predicted mechanism is unchanged —population transfer from
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FIG. 6. Population dynamics for model III (sequential ET-PT), where population first transfers

from the reactant DD state (in red) to the AD state (in blue) corresponding to electron transfer

before the proton transfers leading to a rapid rise in the population of the product AA state in

pink. The DA state (in green) shows some initial thermal population but is not populated during

the course of the reaction.
the reactant state to the AD state first, before PCET product formation.

FIG. 7. Population dynamics for model III (sequential ET-PT), with reactant state in red, PT

state in green, ET in blue and product state in pink where trajectories are initialized to the electron

transfer transition state.

A. Verification with Rate Theories

We verify the accuracy of the PCET mechanism predicted by the MV-RPMD simulation

by calculating Fermi’s Golden Rule (FGR) rates for concerted PCET, electron-transfer, and

proton-transfer for each model.44 For Models I and III, the electron transfer is near-adiabatic

and we use Kramer’s rate theory45 to calculate rates for these processes.

We estimate the FGR rate using a simple analytical form derived for systems in which the

reactant and product diabatic potential energy surfaces are displaced harmonic oscillators
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Reaction Path Model I Model II Model III

kDD→AA 1.85× 107 1.61× 106 4.70× 106

kDD→DA 9.81× 10−17 2.53× 109 5.97× 104

kDD→AD 2.69× 105
∗

1.01× 106 1.03× 1011
∗

TABLE II. FGR and Kramer’s theory rates (indicated with a ∗) for concerted PCET (kDD→AA),

electron transfer (kDD→AD), and proton transfer (kDD→DA) from the reactant DD state for all three

models are reported in s−1. The fastest rate for each model is highlighted in bold to indicate the

preferred mechanism.

with frequency ω and coupling ∆ ,46,47

kFGR =
2π

h̄ω
|∆|2evz−S coth(z)Iv (S csch (z)) , (25)

where ω =
√

2a/ms is the frequency of the product diabatic state, v = (VR − VP )/ω,

z = βω/2, S = msωV
2
d /2h̄, Iv is a modified Bessel function of the first kind, Vd is the

horizontal displacement of the diabatic potential energy functions, and VR/P are the values

of the potential energy at the reactant/product minimum such that VR − VP measures the

driving force. For adiabatic ET, we use Kramers theory,45

kKT =

√
1 +

(
γ

2ωb

)2

− γ

2ωb

 ω

2π
e−βG‡

cl , (26)

where ωb is the frequency at the top of the barrier, G‡
cl is the solvent FE barrier when the

solvent is treated classically, and γ = η/MS.
48 The resulting rates are reported in Table II,

and as expected we find that the fastest rate for model I corresponds to a concerted PCET

reaction, for model II the proton transfer reaction is the most rapid and for model III the

electron transfer reaction rate is the fastest.

VII. CONCLUSIONS

We have extended the applicability of MV-RPMD to the simulation of condensed phase

PCET using an improved formalism and a new population estimator to follow state to

state population transfer dynamics. We employed a simple quasi-diabatization procedure

to build three model PCET systems where four local electron-proton states are coupled
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to a thermal bath via a single solvent polarization coordinate. Following the population

dynamics by initializing MV-RPMD trajectories to an arbitrary dividing surface we identify

the mechanism of PCET for each of the three models and verify the accuracy of the predicted

mechanism against FGR and Kramer’s rate theory predictions. By performing a simulation

with a different dividing surface, we were also able to clearly establish that our MV-RPMD

simulations yield mechanisms that are independent of the initial choice of dividing surface

to which trajectories are constrained.

The direct dynamic simulation techniques presented here can be readily extended to

future studies of complex photochemical reactions and particularly photo-initiated PCET

processes in the condensed phase. Future work in this direction will include deriving a sys-

tematic correction to the approximate MV-RPMD dynamics. In addition, we recognize that

accurately parameterizing a system-bath Hamiltonian of the form described in Appendix B

from an atomistic simulation remains a significant challenge.
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Appendix A: Symmetric Trotter Derivation

In the limit that N → ∞, the high-temperature symmetric Trotter approximation is used

to separate the state independent nuclear potential operator, V0 and the diabatic potential
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energy matrix, V , from the nuclear kinetic operator T ,

⟨n,Rα|e−βNH |Rα+1,m⟩ (A1)

≈ ⟨n,Rα|e−
βN
2

V0e−
βN
2

V e−βNT e−
βN
2

V e−
βN
2

V0 |Rα+1,m⟩

= e−
βN
2

(V0(Rα)+V0(Rα+1))⟨Rα|e−βNT |Rα+1⟩

×⟨n|e−
βN
2

V (Rα)e−
βN
2

V (Rα+1)|m⟩

The nuclear kinetic matrix element can be evaluated exactly to obtain

⟨Rα|e−βNT |Rα+1⟩

=

∫
dP ⟨Rα|P ⟩⟨P |e−βNT |Rα+1⟩ (A2)

=

∫
dP ⟨Rα|P ⟩e−βNP 2/2m⟨P |Rα+1⟩

=

(
M

2πβN

)1/2

e−
βN
2

Mω2
N (Rα−Rα+1)2 .

Substituting Eq. A2 back in the Boltzmann matrix element, we have

⟨n,Rα|e−βNHN |Rα+1,m⟩

≈
(

M

2πβN

)1/2

e
−βN

2

(
V0(Rα+V0(Rα+1)+

Mω2
N

2
(Rα−Rα+1)2

)

×⟨n|e−
βN
2

[V (Rα)+V (Rα+1)]|m⟩. (A3)

In order to evaluate the electronic matrix element, we begin by defining a diagonal matrix

with elements, VD (Rα, Rα+1) = 1
2
(VD(Rα) + VD(Rα+1)), and off-diagonal matrix elements

VOD (Rα, Rα+1) = 1
2
(VOD(Rα) + VOD(Rα+1)). Employing a high-temperature Trotter ap-

proximation, we further split the off-diagonal terms symmetrically around the diagonal terms

to obtain

⟨n|e−βN (VD+VOD)|m⟩ (A4)

≈ ⟨n|e
−βN

2
VODe−βNVDe

−βN
2

VOD|m⟩

=
∑
j,k

⟨n|e
−βN

2
VOD|j⟩⟨j|e−βNVD|k⟩⟨k|e

−βN
2

VOD|m⟩

=
∑
j

⟨n|e
−βN

2
VOD|j⟩e−βNVjj⟨j|e

−βN
2

VOD|m⟩
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The off-diagonal matrix elements are easily evaluated,

⟨n|e
−βN

2
VOD|j⟩ ≈ ⟨n|(1− βN

2
VOD)|j⟩+O(β2

N)

=

 1 n = j

βN

2
[VOD]n,j n ̸= j

(A5)

where [V ]nm is used to indicate off-diagonal elements of the diabatic potential energy matrix.

Substituting Eq. A5 into Eq. A4, we obtain an expression for the electronic matrix elements

by considering two cases:

Case 1 (n = m):

If n = j

⟨n|e−βN (VD+VOD)|n⟩ (A6)

= ⟨n|e
−βN

2
VOD|n⟩e−βNVnn⟨n|e

−βN
2

VOD|n⟩ = e−βNVnn

If n ̸= j

⟨n|e−βN (VD+VOD)|n⟩ (A7)

=
∑
n ̸=j

⟨n|e
−βN

2
VOD|j⟩e−βNVjj⟨j|e

−βN
2

VOD|n⟩

=
∑
n ̸=j

(
−βN
2

)2

V 2
nje

−βNVjj = 0 +O(β2
N)

Case 2 (n ̸= m):

If n = j and if m ̸= j ∑
m̸=j

⟨n|e
−βN

2
VOD|j⟩e−βNVjj⟨j|e

−βN
2

VOD|m⟩

=
∑
m̸=j

−βN
2
Vjme

−βNVjj (A8)

If n ̸= j and if m = j ∑
n ̸=j

⟨n|e
−βN

2
VOD|j⟩e−βNVjj⟨j|e

−βN
2

VOD|m⟩

=
∑
n ̸=j

−βN
2
Vnje

−βNVjj (A9)
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If n ̸= j and if m ̸= j ∑
n ̸=m̸=j

⟨n|e
−βN

2
VOD|j⟩e−βNVjj⟨j|e

−βN
2

VOD|m⟩ (A10)

=
∑

n̸=m̸=j

(
βN
2

)2

VnjVjme
−βNVjj = 0 +O(β2

N)

Appendix B: Quasi-Diabatization Protocol

To construct a Hamiltonian in the basis of local electron-proton states, we start with a

previously-used system-bath model Hamiltonian for PCET where the proton is represented

in position space and a two-state system describes the electron transfer.13,41,49–51 The system

Hamiltonian is

H =
P 2
s

2ms

+
P 2
R

2mR

+ Vp(R) + Vps(R, s) + Vij(R, s). (B1)

In Eq. B1, R is the proton coordinate with conjugate momentum PR, and Vp(R) is a double

well potential in the proton coordinate,

Vp(R) = −mRω
2
R

2
R2 +

m2
Rω

4
R

16V0
R4 − λR3, (B2)

where mR is the mass of the proton, ωR is the frequency, λ is a measure of anharmonicity,

and V0 determines the height of the barrier for proton transfer. Further, the proton-solvent

coupling is

Vps(R, s) = −µ1s tanh(ϕR), (B3)

where µ1 and ϕ are constants that can be chosen to favor either concerted or sequential

mechanism. The two-state diabatic potential for electron transfer is

Vii(R, s) =
1

2
msω

2
s(s− si)

2 + aiµ2 tanh(ϕR), (B4)

where µ2, ai, and ϕ are constants that can be tuned to construct models that favor either

concerted or sequential mechanisms. Parameters for the three models considered here are

provided in Table III

For each value of the solvent configuration in the range −6a0 ≤ s ≤ 6a0, we diagonalize

the system hamiltonian on a uniform DVR grid in the proton coordinate with a grid range of

−2a0 ≤ R ≤ 2a0 and 100 grid points. The adiabatic eigenstates obtained upon diagonalizing
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Parametera Model I Model II Model III

mR 1836.1 1836.1 1836.1

ωR 0.0104 0.0104 0.0104

V0 0.012 0.014 0.012

s1 -2.13 -2.16 -2.13

s2 2.13 2.16 2.13

V12 0.00245 0.0124 0.00245

µ1 0.0011 0.017 -0.0011

µ2 × 103 5.84 0.71 5.84

λ 0.0 0.012 0.0

TABLE III. Parameters for the model Hamiltonians in Eq. B1

a All parameters specified in atomic units

the system Hamiltonain are writtten as ⟨R; s|ϵi⟩ where ϵi is the ith adiabatic state with

eigenenergy Ei.

Further, by diagonalizing the system Hamiltonian for a single electronic state (donor or

acceptor) at each value of s, we construct localized proton wavefunctions, ⟨R; s|lj⟩ where lj
is the jth quasi-diabatic local electron-proton states that can be expressed in terms of the

adiabatic eigenstates as,

⟨R; s|lj⟩ =
∑
i

∫
dR′⟨R; s|ϵi⟩⟨ϵi|R′; s⟩⟨R′; s|lj⟩ (B5)

Matrix elements of the Hamiltonian in the quasi-diabatic basis can then be constructed

using

⟨lj|H|lj′⟩

=
∑
i,i′

⟨lj|ϵi⟩⟨ϵi|H|ϵi′⟩⟨ϵi′|l′j⟩

=
∑
i

⟨lj|ϵi⟩Ei⟨ϵi|l′j⟩, (B6)

where Ei is the energy of the ith eigenstate of the Hamiltonian in Eq. B1.

The overlap between the reference quasi-diabatic wavefunction and the adiabatic state

for a given value of the solvent coordinate, s, is then obtained by evaluating

⟨ϵi|lj⟩ =
∫
dR⟨ϵi|R⟩⟨R|lj⟩. (B7)
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Appendix C: Parameters for Quasi-Diabatic Potential Surfaces

We provide the diabatic potential energy matrix parameters for all three models below.

Diabat a b c

VDD 0.0015 0.0075 -0.0041

VDA 0.0015 0.0055 0.0072

VAD 0.0015 -0.0055 0.0072

VAA 0.0015 -0.0075 -0.0041

TABLE IV. Diabatic potential energy surface parameters for model I

Coupling ∆

VDD,DA 9.7× 10−5

VDD,AD 2.5× 10−3

VDD,AA 1.8× 10−4

VDA,AD 1.8× 10−4

VDA,AA 2.5× 10−3

VAD,AA 9.7× 10−5

TABLE V. Diabatic coupling matrix elements for model I

Diabat a b c

VDD 0.0015 0.0072 -0.0018

VDA 0.0018 0.0058 -0.0013

VAD 0.0018 -0.0061 0.0034

VAA 0.0016 -0.0083 -0.0018

TABLE VI. Diabatic potential energy surface parameters for model II
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Coupling ∆

VDD,DA 1.1× 10−3

VDD,AD 1.2× 10−4

VDD,AA 1.2× 10−4

VDA,AD 1.2× 10−4

VDA,AA 1.2× 10−4

VAD,AA 1.4× 10−3

TABLE VII. Diabatic coupling matrix elements for model II

Diabat a b c

VDD 0.0015 0.008 0.0009

VDA 0.0015 0.0098 0.013

VAD 0.0015 -0.0056 -0.0095

VAA 0.0015 -0.013 0.0009

TABLE VIII. Diabatic potential energy surface parameters for model III.

Coupling ∆

VDD,DA 6.9× 10−4

VDD,AD 2.5× 10−3

VDD,AA 1.8× 10−4

VDA,AD 1.8× 10−4

VDA,AA 2.5× 10−3

VAD,AA 6.9× 10−4

TABLE IX. Diabatic coupling matrix elements for model III
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