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Abstract

Bayesian generalised ensemble (BayesGE)
is a new method that addresses two ma-
jor drawbacks of standard Markov chain
Monte Carlo algorithms for inference in high-
dimensional probability models: inapplica-
bility to estimate the partition function and
poor mixing properties. BayesGE uses a
Bayesian approach to iteratively update the
belief about the density of states (distribu-
tion of the log likelihood under the prior)
for the model, with the dual purpose of en-
hancing the sampling efficiency and mak-
ing the estimation of the partition function
tractable. We benchmark BayesGE on Ising
and Potts systems and show that it compares
favourably to existing state-of-the-art meth-
ods.

1 INTRODUCTION

For most probabilistic models, p(x), exact infer-
ence is intractable, and one has to resort to some
form of approximation (Bishop 2006). Markov chain
Monte Carlo (MCMC) methods constitute a partic-
ularly powerful and versatile approach for this pur-
pose (Metropolis and Ulam 1949; Metropolis et al.
1953; Hastings 1970). In standard MCMC methods,
p(x) is sampled through a Markov chain with a fixed
transition kernel that is constructed to have the unique
invariant distribution p(x). In the following we will
broadly refer to this as canonical sampling.

While the canonical MCMC method has been the
workhorse in statistics and physics for the last 50
years or so, it suffers from two primary deficiencies.
First, it only samples from a narrow interval of log-
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likelihood values, which makes the method inapplica-
ble for calculating key multivariate integrals, in partic-
ular the partition function (evidence, marginal likeli-
hood) or the density of states associated with p(x) (Iba
2001; Bishop 2006; Ferkinghoff-Borg 2012). Secondly,
canonical sampling is often hampered by a high degree
of correlations between the generated states for stan-
dard choices of the transition kernel. This property,
which is referred to as poor mixing or slow relaxation
of the Markov chain, reduces the effective number of
samples and may lead to results which are erroneously
sensitive to the arbitrary initialisation of the chain.

In the past few decades, a variety of MCMC methods
known as extended ensembles have been proposed to
alleviate these two deficiencies (see review and refer-
ence in Gelman and Meng (1998), Iba (2001), Mur-
ray (2007), and Ferkinghoff-Borg (2012)). The un-
derlying idea of this approach is to build a “bridge”
from the part of the probability distribution where the
Markov chain suffers from slow relaxation to the part
where the sampling is free from such problems. These
methods include simulated tempering (Marinari and
Parisi 1992; Lyubartsev et al. 1992; Irbäck and Pot-
thast 1995), parallel tempering (Swendsen and Wang
1986; Geyer 1991) and generalised ensembles (Berg
and Neuhaus 1992; Lee 1993; Hesselbo and Stinch-
combe 1995). In extended ensembles the transition
kernel is extended in such way that it at the same
time allows for the calculation of the partition function
as well as for the reconstruction of the desired statis-
tics for the original target distribution p(x). However
this kernel depends on integral quantities of the model
which are not a priori known. Therefore these tech-
niques rely on an iterative approach, where estimates
of these quantities obtained from previous iteration(s)
are used to define the transition probability kernel
for the next iteration (Murray 2007; Ferkinghoff-Borg
2012).

At present, however, extended ensemble techniques
use rather heuristic approaches to define the required
iteration procedure and are all based on frequentist
estimators. Consequently, whilst they have shown
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promising results in a wide range of problems in ma-
chine learning and statistical physics (Salakhutdinov
2010; Landau and Binder 2014), these aspects compro-
mise both the robustness and speed of the algorithms
and limit their applicability for inference in more com-
plex systems.

In this paper we focus on the generalised ensemble
(GE) subclass of methods, due to its larger domain of
application compared to the tempering based coun-
terparts (Hansmann and Okamoto 1997). We pro-
pose a novel Bayesian generalised ensemble (BayesGE)
method to address the problems pertaining the tra-
ditional GE techniques. The proposed method is
applicable to both discrete and continuous distribu-
tions but requires discretisation of the log-likelihood
in the current formulation. We test the algorithm
on two discrete 2D spin systems: an Ising model
and a Potts model. Both models are canonical ex-
amples of systems displaying cooperative transitions
and slow relaxation, for which tempering based in-
ference methods in general are inadequate. Infer-
ence in Potts models is further complicated by their
generic multimodal nature as opposed to the essen-
tial bimodal nature of Ising systems. We demonstrate
the robustness and accuracy of the algorithm in esti-
mating the full density of states and partition func-
tion of the two models for different size and/or com-
plexity and show that BayesGE outperforms existing
state-of-the-art methods: the Wang–Landau (WL) al-
gorithm (Wang and Landau 2001), annealed impor-
tance sampling (AIS) (Neal 2001) and nested sam-
pling (Skilling 2006; Murray et al. 2005).

In section 2, we outline the basic methodology of gen-
eralised ensembles. In section 3, we detail the ele-
ments of the BayesGE method. The inference results
of the algorithm in comparison to existing advanced
sampling methods on the two spin systems are pre-
sented in section 4. We conclude by discussing relevant
extensions of the method for future work.

2 GENERALISED ENSEMBLES

Consider a posterior distribution of x ∈ X on the form

pβ(x) =
exp(−βE(x))p0(x)

Zβ
(1)

where

Zβ =

∫
exp(−βE(x))p0(x) dx . (2)

In the context of statistical physics, β represents the
inverse temperature times the Boltzmann constant,
E(x) is the energy and the normaliser Zβ is known
as the partition function, which plays a central role

due to its link to the thermodynamical free energy.
Here, p0 = pβ=0 represents the normalised integra-
tion measure and consequently Z0 ≡ Zβ=0 = 1.1 In
the non-thermal context of Bayesian statistics, we set
β = 1 in which case the “energy” equals minus log
likelihood E(x) = − log p(data|x), x are model pa-
rameters and latent variables, p0 is the prior distri-
bution and Z ≡ Zβ=1 is known as the model evidence
or marginal likelihood. Another central object is the
density of states which is defined as

g(E) =

∫
δ(E − E(x))p0(x) dx (3)

and measures the prior mass associated with energy
E. In statistical physics, g(E) is related to the micro-
canonical entropy s(E) through Boltzmann’s formula
s(E) ≡ log g(E), from which all thermodynamic po-
tentials can be calculated. Typically, the energy can
be evaluated for any x but the partition function Zβ
and g are unknown.

A Markov chain with unique invariant distribution
pβ can be constructed using the Metropolis–Hastings
(MH) algorithm (Metropolis et al. 1953; Hastings
1970), in which a sequence of states {xi} is gener-
ated by sampling a trial state from a proposal distri-
bution x′ ∼ q(·|xi) and accepting the state with prob-

ability a(x′|xi) = min
{

1,
pβ(x

′)q(x|x′)
pβ(x)q(x′|x)

}
at each time

step. Typically, pβ only occupies an exponentially
small part of the volume under p0, as illustrated in
figure S1. For the Metropolis–Hastings algorithm, this
implies that the normalisation constant Zβ (as well as
other multivariate-integrals) is not tractable and fur-
thermore that the sampling for more complex models
may suffer from slow mixing of the Markov chain.

In the GE procedure, an artificial target distribution
is constructed that facilitates a “bridging” between
p0 and pβ . The starting point is to replace the log-
Boltzmann weights −βE with a different weight func-
tion w(y(x)), where y(x) represent a set of functions
of x of particular interest (“reaction coordinates” or
“order parameters”). The most common choice is to
set y = E in which case the GE target distribution
takes the form

pGE(x) = p(x|w) ≡ exp(w(E(x)))p0(x)

Zw
(4)

where

Zw =

∫
exp(w(E(x)))p0(x) dx . (5)

1Note, that the physical partition function Z0 is nor-
mally identified with the total volume of X , corresponding
to p0 being an actual integration measure as opposed to
a normalised one. However, for most statistical considera-
tions it is the ratio Zβ/Z0 that is of primary importance,
so this normalisation convention poses no loss of generality.
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Sampling from p(x|w) is realised with MH by replacing
pβ(x) with p(x|w) in a(x′|xi).

In order to ensure the target distribution has the de-
sired properties, GE methods make use of the den-
sity of states to define the weights. Using the defi-
nition from equation (3), the marginal distribution of
the energy p(E|w) =

∫
δ(E − E(x))p(x|w) dx can be

expressed as

p(E|w) =
exp(w(E) + s(E))

Zw
(6)

and the partition function from equation (5) as

Zw =

∫
exp(w(E) + s(E)) dE . (7)

We can use this distribution to estimate canonical
quantities for any choice of β, for example

Zβ = Zw

∫
exp(−βE − w(E))p(E|w) dE

=

∫
exp(−βE + s(E)) dE .

(8)

So in principle, for any choice of w(E) we can collect
samples from p(x|w) and thereby from p(E|w) to get
posterior estimates.

If we know the entropy s(E) we can then define two
prominent generalised ensembles: the multicanoni-
cal ensemble (MUCA) (Berg and Neuhaus 1992; Lee
1993) and the 1/k ensemble (Hesselbo and Stinch-
combe 1995) with weights given respectively by

wMUCA(E) = −s(E) w1/k(E) = − log k(E) (9)

where k(E) ≡
∫ E
−∞ g(E′) dE′. The multicanonical en-

semble makes the marginal distribution p(E|w) flat,
which implies that once the Markov chain has con-
verged all energies are visited with equal probability.
The 1/k ensemble is constructed to put roughly equal
probability to all values of the entropy, which leads to
more frequent sampling of the low-energy part com-
pared to the multicanonical sampling, c.f. section S1.

The primary obstacle of the GE approach is that s(E)
is not known a priori. Indeed, had this been the case
the partition function Zβ could have been directly cal-
culated according to the one-dimensional integral (8).
The fact that the GE ensemble is defined in terms of
quantities that are the primary aim to infer from the
method in the first place, implies that all GE methods
rely on a iterative procedure in which weights are it-
eratively refined based on the data and weights from
previous iteration(s). The different GE learning al-
gorithms differ in the choice of data, estimators and
iteration procedure, but are all based on count statis-
tics and do not account for prior knowledge in any
systematic manner, c.f. section S2.

3 BAYESIAN GENERALISED
ENSEMBLE

We wish to address the problems of traditional GE ap-
proaches in a principled manner, by treating the en-
tropy estimation as an inference problem in a Bayesian
framework. In the following we will assume that
we are considering a discrete or discretised system
having J possible energy values. To this end, let
s = (s1, . . . , sJ) be the entropy vector over the energy
values E = (E1, . . . , EJ) with sj = log g(Ej).

Assume that for each weight vector w(τ) =
(w1, . . . , wJ) in a given set of weights W = {w(τ)}tτ=1

we perform a Metropolis–Hastings simulation with
ν(τ) steps and target distribution

P
(
x|w(τ)

)
=

expw
(τ)
j

Zw(τ)

P0(x) , (10)

where E(x) = Ej . Based on the samples {x(τ)
i }ν

(τ)

i=1

from the τ ’th simulation, we can compute an en-

ergy histogram n(τ) = (n
(τ)
1 , . . . , n

(τ)
J ), where n

(τ)
j =

|{x(τ)
i |E(x

(τ)
i ) = Ej}|. This gives us a set of t energy

histograms N = {n(τ)}tτ=1. Based on these t simu-
lations we can write the posterior distribution of the
entropy s as

P (s|N,W, σ) =
P (N |W, s)P (s|σ)

P (N |W,σ)
, (11)

where σ are hyperparameters of the prior. We propose
to use a Gaussian process prior for s and a product
of multinomial distributions for the likelihood of N .
As detailed below and in algorithm 1, this allows us
to define an efficient and robust algorithm, where the
posterior P (s|N,W, σ) is iteratively updated and used
to define the weights w(t+1) for the next simulation.

3.1 Prior Specification

For continuous systems s(E) is typically a smooth and
(mostly) concave function with a non-trivial shape.
Similarly, for a discrete or discretised system s will
be values of such a function. We propose to use a
Gaussian process prior GP(0, κ) for s(E) with a suit-
able kernel κ (Rasmussen and Williams 2006). As
s(E) is typically concave, the kernel needs to be non-
stationary because the entropy should not revert back
to the mean function away from observed energies.
Concavity cannot directly be modelled on quadratic
form, but a cubic spline extrapolates linearly and gives
a quite flexible fit. Linear extrapolation appears to be
a good choice because we need be reasonably conserva-
tive in order to keep the iterative estimation of weights
robust.
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The cubic spline prior penalises curvature, and by as-
suming the boundary conditions s(0) = s′(0) = 0 the
kernel on the unit interval can be expressed as (section
6.3.1 in Rasmussen and Williams 2006; Wahba 1978)

κ(E,E′|σ) = σ2
(
|E − E′|v2/2 + v3/3

)
, (12)

where v = min(E,E′). As these boundary condi-
tions are not appropriate for our problem, we remove
them by incorporating explicit linear basis functions
u(E) = (1, E)ᵀ with a normal prior on the coefficients
N (0, B), B ∈ R2×2. By integrating out the coefficients
we obtain the prior

s|σ ∼ GP(0, κ(E,E′|σ) + u(E)ᵀBu(E′)) , (13)

where we take the limit B−1 → 0 to make the prior on
the basis functions vague (section 2.7 in Rasmussen
and Williams 2006).

3.2 Likelihood

The probability of observing a histogram n ∈ N gen-
erated with the weights w ∈W is naturally expressed
through the multinomial distribution (Ferkinghoff-
Borg 2002)

p(n|w, s) = ν!
∏
j∈S

p(Ej |w, s)nj

nj !
, (14)

where ν =
∑
j∈S nj , S is the index set associated with

the histogram (see below) and

p(Ej |w, s) =
exp(wj + sj)

Zw
, (15)

where
Zw =

∑
j∈S

exp(wj + sj) . (16)

Equation (15) is the discrete version of equation (6).
If n represents a fully equilibrated sample from p(x|w)
the sum in equation (16) should run over the full index
set S = {1, . . . , J}. However, if we do not have a fully
equilibrated sample, it was proposed by Ferkinghoff-
Borg (2002) to assume that each histogram n only rep-
resents an equilibrated sampling within the observed
support S̃ = {j | nj > 0}. In this case we would con-
strain the summation in the normalisation constant
Zw to S̃ to reflect the assumption of local equilibra-
tion only, as detailed by Ferkinghoff-Borg (2002, 2012).
As the weights and entropy function render the his-
tograms independent, the probability for the combined
set of observations N is then given by

P (N |W, s) =

t∏
τ=1

P (n(τ)|w(τ), s) . (17)

To compensate for the likelihood not scaling correctly
with the number of independent samples, we scale the
histograms n(τ) with the inverse of the number of de-
grees of freedom of the sampled model.

3.3 Posterior Inference

In order to make posterior inference analytically
tractable, we approximate the log-likelihood function
from equation (17) by a second order Taylor expan-
sion. Using the maximal likelihood estimate (MLE)
ŝ = arg maxs P (N |W, s) as expansion point this ap-
proximation reads

logP (N |W, s) ≈ logP (N |W, ŝ)

− 1

2
(s− ŝ)ᵀH(s− ŝ) , (18)

where ŝj is only well-defined for j ∈ S = ∪tτ=1S̃(τ). H
is given by the negative Hessian

H = −∂
2 logP (N |W, s)

∂s2
(̂s)

=

t∑
τ=1

ν(τ) [diag(p̂(τ))− p̂(τ) · (p̂(τ))ᵀ] ,

(19)

where p̂
(τ)
j = P (Ej |w(τ), ŝ). We note that third (and

higher) order terms in the expansion are generally neg-
ligible as these involve two (or more) outer products of
p̂(τ) and for the broad target distribution of GE meth-
ods

∥∥p̂(τ)
∥∥
∞ � 1. The MLE ŝ solution can be found

using the generalised multi-histogram (GMH) equa-
tions (Ferkinghoff-Borg 2002), which involve a set of t
nonlinear equations (S3) with unknowns {Zw(τ)}tτ=1.
These can be solved effectively using the standard it-
erative Newton–Raphson method, and ŝ can be calcu-
lated from the solution using equation (S4), see sec-
tion S3 for details.

Using this second order approximation, P (N |W, s) ≈
N (̂s, H), we can perform posterior inference analyti-
cally, as both the prior and likelihood are Gaussian.
This means that P (s|N,W, σ) ≈ N (s̄, V ) and when
taking the limit B−1 → 0 in equation (13) we get (sec-
tion 2.7 in Rasmussen and Williams 2006)

s̄ = κ(E,ES |σ)K−1H ŝ +Rᵀ(UK−1H Uᵀ)−1UK−1H ŝ (20)

V= κ(E,E|σ)− κ(E,ES |σ)K−1H k(ES ,E)

+Rᵀ(UK−1H Uᵀ)−1R
(21)

where ES = (Ej |j ∈ S), HS = [Hjj′ |j, j′ ∈ S],
KH = κ(ES ,ES |σ) + H−1S , U = u(E), US = u(ES)
and R = US − UK−1H κ(ES ,E|σ). An estimate σ̂
for the hyperparameter is obtained by optimising the
marginal likelihood P (N |W,σ) w.r.t. σ. See section S4
for further details.

We have also tested other approximations to the pos-
terior, including a quadratic approximation to the in-
dividual likelihood terms from equation (14) and a
Laplace approximation to the posterior. Approximat-
ing the individual terms turned out to be too inaccu-
rate. For the Laplace approximation we can update
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the posterior either sequentially using the current his-
togram plus the previous Laplace approximation, or
using all histograms plus the Gaussian process prior.
The latter will in principle give the best approxima-
tion, however the Laplace approximation involves solv-
ing a |S| dimensional optimisation problem, while the
MLE can be found by solving a system of t nonlinear
with t unknown, where t� |S| typically.

3.4 Setting the Weights

At each iteration of the algorithm, we can use the pos-
terior mean estimate s̄, equation (20), to define the
weights of the generalised ensemble in the next step.
The simplest approach is to use the definition of the
GE ensemble from equation (9) directly which implies
the updating rules for respectively multicanonical and
1/k weights:

w̄[MUCA](t+1) = −s̄ (22)

w̄[1/k]
(t+1)
j = − log

∑
j′≤j

exp(s̄j′) . (23)

However, this rule fails to account for the uncertainty
of the posterior of s. A more robust approach is to
define the weights according to expectation values of
the marginal distribution P (Ej |w(t+1)) under the pos-
terior distribution P (s|N,W, σ̂), where N and W are
the set of histograms and weights for the first t iter-
ations. For any weight function w this expectation is
given as

〈P (Ej |w)〉P (s|N,W ) =

〈
exp(wj + sj)

Zw

〉
P (s|N,W )

(24)

In section S5 we show that, to first order in δs = s −
s̄, the expected GE target distribution is realised by
simply setting

w̃(t+1) = w̄(t+1) − 1

2
diag(V ) , (25)

where w̄(t+1) are the weights defined in equations (22)
to (23) and V is the posterior covariance matrix (21).

3.5 Algorithmic Details

The BayesGE algorithm is outlined in algorithm 1. We
use a simple exponential scheme for setting the simula-
tion time for each iteration of the algorithm, which has
previous been shown to be efficient (Ferkinghoff-Borg
2002). The simulations time ν(t+1) for the (t + 1)’th
iteration of the algorithm is set to

ν(t+1) =

γν
(t) if n(t) and

∑t−1
τ=1 n(τ)

have the same support

ν(t) otherwise

, (26)

Algorithm 1 The BayesGE algorithm

Input: ν(1), γ
1: w(1) ← 0
2: N,W ← {}, {}
3: for t ∈ (1, . . . , T ) do

4: Draw ν(t) samples {xi}ν
(t)

i=1
M.H.∼ P (x|w(t))

5: Compute an energy histogram n(t) based on

the samples {xi}ν
(t)

i=1

6: Insert n(t) and w(t) into N and W respectively
7: Optimise P (N |W,σ) w.r.t. σ and update the

posterior P (s|N,W, σ̂)
8: Set the weight for next iteration w(t+1) using

P (s|N,W, σ̂) and equation (25)
9: Set the simulation time for the next iteration

ν(t+1) using equation (26)

Output: P (s|N,W, σ̂)

where the increasement factor γ > 1. The motiva-
tion for this scheme is that if we did not see any new
energies in the last simulations then we either need
to run longer simulations to see new energies or we
have seen all possible energies. If we have seen new
energies in the last simulations, then the simulation
time is already long enough to explore new energies.
As default values we use ν(1) = 5000 and γ = 21/10.
The algorithm is robust to changes in these values and
they do not change the performance of the algorithm
significantly.

3.6 Complexity and Convergence

The computational complexity of the BayesGE al-
gorithm stems from ν =

∑t
τ=1 ν

(τ) evaluations of
the posterior target distribution, equation (1), and
T = O(log ν) entropy inference steps each of which
is O(J3). Accordingly, in term of MC steps ν the al-
gorithm scales as O(νc+J3 log ν), where c is the com-
plexity of evaluating the posterior target, equation (1).
The latter term can be reduced to be linear in J using
sparse GP approximations (Quiñonero-Candela and
Rasmussen 2005). Note that the BayesGE algorithm
does not introduce an additional cost at the individ-
ual MC step, as the weights are kept fixed for each
iteration of the algorithm. For fully connected models
(e.g. Boltzmann machines and polymer systems) the
complexity of posterior target evaluations scales with
the square of the number of degrees of freedom and
linear with the number of data points, in which case
the overhead of the inference step is expected to be
negligible, as empirically illustrated in section S7.

Convergence to the target ensemble is in principle
guaranteed by the formal correctness of the inference
procedure (in keeping with the preservation of de-
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Figure 1: Examples of the posterior distribution of the entropy function s for BayesGE with multicanonical weight
at three different simulations lengths (corresponding to 1, 25 and 45 histograms) for the 2D Ising model of size
16 × 16. The orange line is the ground truth and the blue line is the posterior mean estimate s̄, equation (20),
with the shaded area showing ± two standard deviations.

tailed balance) and the exponential update rule, equa-
tion (26), which serves the dual purpose of ensuring
accumulation of statistics as well as asymptotic unbi-
ased sampling. As demonstrated on the chosen models
the BayesGE algorithm has a learning stage where the
error of an estimator scales with sub O(1/

√
ν) and a

sampling stage where the error displays a O(1/
√
ν)

scaling, similar to the WL algorithm (Iba 2001).

4 RESULTS

We have applied the method on two discrete Markov
random field model: the 2D square lattice Ising model
and Potts model (see Wu (1982) for a review) and
compared it against three other state-of-the-art algo-
rithms: the WL algorithm, AIS and nested sampling.

In the Ising model the state is x ∈ {−1, 1}L2

and in

the Potts model x ∈ {1, 2, . . . , q}L2

, where L is the
size of the lattice side and q is the number of colours.
We use a homogeneous coupling constant of 1 and no
external field in which case the energy of a state is
given respectively by

EIsing(x) = −
∑
〈a,b〉

xaxb (27)

EPotts(x) = −
∑
〈a,b〉

δ(xa, xb) , (28)

where the sums run over neighbour pairs 〈a, b〉 in the
lattice and δ is the Kronecker delta. For these models
we want to estimate the partition function Zβ from
equation (2) with a uniform prior.2 The Ising model
has a second order phase transition, while the Potts

2The total number of states in the two models are eas-
ily calculated by Z0 = 2L

2

and Z0 = qL
2

respectively,
using the natural (unnormalised) counting measure for p0.

model has a first order phase transition and is noto-
riously hard to sample for temperature based meth-
ods (Iba 2001). For all algorithms we use a single spin
flip Metropolis proposal.

4.1 Posterior Distribution of Entropy

Examples of the posterior distribution of the entropy
s for a simulation of the 16 × 16 Ising model using
BayesGE with multicanonical weights are illustrated in
figure 1 and compared to the correct values obtained
by analytical means (Beale 1996). We see that the
BayesGE algorithm initially learns about the entropy
around the peak of the curve (corresponding to low
β) and is very uncertain about the tails. As more
samples are collected the uncertainty drops in the tails
of the entropy function. Similar plots for BayesGE
with 1/k weights are shown in figure S2. A notable
difference is that the multicanonical weights explores
the whole phase space, whereas 1/k explores the left
branch of the entropy curve only. As the Zβ values
that we will consider below all correspond to sums with
the majority weight on the left branch this give 1/k
a natural advantage over the multicanonical weights.
AIS and nested sampling also essentially only sample
the left branch of the entropy curve.

4.2 Estimation of Partition Functions

In figure 2 we compare the performance of BayesGE to
WL, AIS and nested sampling (see alternative illustra-
tions in figures S3 and S4) in estimating the partition
functions for Ising and Potts models. For each model
we ran 50 independent simulations using each method,

This implies that we in these cases could obtain absolute
estimates for any partition function Zβ in the BayesGE
methodology.
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Figure 2: The relative root mean square error (RMSE) of logZβ as a function of the number Monte Carlo (MC)
steps for simulations on 2D Ising and Potts models with different sizes, number of colours (q) and values of β.
For an unbiased MC estimator the RMSE scales with the number of MC steps ν as O(1/

√
ν), which is indicated

with a dashed line. We show results for BayesGE with the multicanonical ensemble (BayesGE MUCA) and the
1/k ensemble (BayesGE 1/k), annealed importance sampling (AIS), the Wang and Landau (WL) algorithm and
nested sampling.

and the plots show the relative root mean square er-
ror3 (RMSE) of logZβ as a function of the number
of Monte Carlo (MC) steps. For the Ising model the
reference logZβ is calculated from the analytically en-
tropy function (Beale 1996). For the Potts model we
cannot compute logZβ analytically, so as reference we
use the average logZβ over 50 independent WL simu-
lations using 1010 MC steps. For each model, we se-
lected β such that the mode of p(E|wβ) lies well below
the phase transition.

We ran BayesGE with multicanonical and 1/k weights
using the standard settings from section 3, and calcu-
lated Zβ using the posterior mean estimate s̄ and equa-
tion (8). The implementation details of BayesGE and
the other methods are discussed in section S6. The un-
known hyperparameters of nested sampling have been

3The relative RMSE is

√
〈(log Ẑ − logZref)2〉/ logZref

where Ẑ is the estimated partition function, Zref the ref-
erence partition function and the expectation 〈·〉 is taken
over repeated simulations.

optimised prior to the simulation results presented in
figure 2 in a laborious trial-and-error manner (see fig-
ure S5). Furthermore, both AIS and nested sampling
require full rerun for each choice of the total allocated
simulation time. In contrast, the GE algorithms sim-
ply proceed with the iteration process, and as such
provide a more flexible framework for increasing the
precision of the estimators.

The first observation to make from figure 2 is that
the BayesGE algorithm in all cases display a sigmoidal
type of behaviour with a sharp decrease at intermedi-
ate times (learning stage) followed by a O(1/

√
ν) be-

haviour at large times (sampling stage), as previously
discussed. This long time scaling behaviour testifies to
the convergence properties of the algorithm.

If we compare the two multicanonical methods,
BayesGE MUCA and WL, we see that they are some-
what on par on the two Ising models. On the Potts
models however, BayesGE MUCA does perform much
better than WL, with a particular pronounced speedup
on the 100 colour problem. This testifies to the advan-
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tage of the Bayesian approach, since the target ensem-
ble is the same for the two algorithms.

On all four models AIS performs well at a low num-
ber of MC steps, and for the Ising models AIS is one
of the best methods. However, for the Potts models,
which have a first order phase transition, we see that
AIS converges very slowly and performs the worst of
all methods. This fits with the expectation that tem-
perature based methods have notorious difficulties on
systems with first order phase transitions (Iba 2001),
due to trapping in metastable states. Nested sampling
also performs well at low number of MC steps, but on
the Ising models it has the highest RMSE at the end
of the simulations. As expected, nested sampling does
not have the same problems as AIS with the first or-
der phase transition in the Potts model. On the 20
colour Potts model the error is about an order of mag-
nitude lower for nested sampling than for AIS at the
same number of iterations. However, at the end of the
simulation WL and the two BayesGE methods have
a lower error than nested sampling. Nested sampling
performs very well on the 100 colour Potts model and
it is only the two BayesGE methods that has a lower
RMSE at 109 MC steps.

BayesGE 1/k performs consistently well on all four
models and in all cases it has the lowest RMSE at
the maximal number of MC steps. On the Ising mod-
els BayesGE 1/k has a similar performance as AIS,
though AIS has a lower RMSE at low numbers of MC
steps, whereas BayesGE 1/k has the lowest error at
high numbers of MC steps. On the 20 colour Potts
model BayesGE 1/k outperforms all the other meth-
ods: it is only AIS that has a slightly lower RMSE at
low numbers of MC steps. On the 100 colour Potts
model both AIS and nested sampling performs best
at low number of iterations, but at the end the two
BayesGE methods have the lowest RMSE. If we ex-
clude the AIS results on the Ising system the typical
speed-up time to reach a prescribed accuracy between
BayesGE 1/k and any of the other algorithms is of one
order of magnitude, as illustrated in figure S3.

Here we compared the performance of the algorithms
in terms of number of MC steps, as for most systems
the actual simulation time will be dominated by the
evaluation of the posterior target distribution, c.f. sec-
tion 3.6. On the 20 colour 16 × 16 Potts model the
running times for AIS and WL with 109 MC steps
are approximately 3 minutes (C++ implementation),
whereas the BayesGE methods uses approximately 6
minutes (simulation implemented in C++ and infer-
ence in Python). The time overhead for BayesGE can
mainly be attributed to the posterior inference for the
entropy. It has to be emphasised, however, that the
Ising and Potts models have been specifically chosen

due to the fact that the posterior can be evaluated in
constant time, which is what makes the accurate com-
parison of the different inference algorithms tractable
on a wide range of MC timescales. As a proof-of-
principle we have also applied BayesGE and AIS to
a binary restricted Boltzmann machine trained on the
MNIST dataset (LeCun et al. 1998), with the dual
purpose of demonstrating the application of our algo-
rithm to a more computational intensive model having
a semi-continuous energy spectrum and verifying that
BayesGE approaches the same scaling behaviour as
AIS in this case, see section S7.

5 CONCLUSION

In conclusion, we have presented a new method for en-
hancing sampling efficiency and estimating key multi-
variate integrals in high-dimensional probability mod-
els. The robustness and accuracy of the method
has been demonstrated and compared with existing
methodologies on two classical spin systems display-
ing cooperative transitions and multimodality.

We note that both the WL and the BayesGE algo-
rithm in its present formulation require a reasonable
binning to be known prior to the simulation. How-
ever, in contrast to the WL algorithm our update rule,
equation (26), does not presume prior knowledge of
the relevant energy range, which is a considerable ad-
vantage in systems where the ground state(s) or low
temperature properties are unknown. Extensions of
our method to online binning will be the subject of
future work.

There are a number of other directions to be pursued
in future works. First of all, we wish to pertain a more
absolute interpretation of the covariance structure of
the posterior, by ensuring that the likelihood function
scales correctly with the number of independent obser-
vations. Secondly, it is of obvious interest to explore
other prior functions and determine their proper do-
main of application. Thirdly, we aim to extend the
method to larger systems as well as multivariate rep-
resentations of the density function using approximate
posterior inference. As our of method can be applied
to any statistical model, we believe it should find im-
portant applications in a wide range of computational
fields, including machine learning, statistics, statistical
physics and bioinformatics, where inference in high-
dimensional systems forms a central problem.
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